Evaluation of Convolutional Neural Network performance using synthetic data fortraining

URL
Dokumentart: Bachelor Thesis
Institut: Department Informatik
Sprache: Englisch
Erstellungsjahr: 2019
Publikationsdatum:
SWD-Schlagwörter: Computergrafik , Maschinelles Lernen , Deep learning
DDC-Sachgruppe: Informatik

Kurzfassung auf Englisch:

One of the limitations of supervised learning in deep learning algorithm is to gather and label a large set of data. In this document, the approach to solve this limitation is presented by using synthetic data. A scene of a real-like traffic situation with bicycles is created with 3D framework, THREE.js. The synthetic data is automatically generated with labels by taking a screenshot of rendering scene. The data is used to train on convolutional nerual network for image classification. At the end, the performance of convolutional neural network model is evaluated on real image dataset.

Kurzfassung auf Deutsch:

Eine große Herausforderung während des Trainings von faltenden neuronalen Netzwerken besteht darin, eine große Menge gekennzeichneter Daten zu Verfügung zu stellen. In dieser Arbeit wird ein Ansatz zur Lösung dieser Einschränkung durch die Verwendung synthetischer Trainingsdaten vorgestellt. Mithilfe des 3D Framework THREE.js wird eine Szene einer realitätsnahen Verkehrssituation mit Fahrrädern erzeugt. Anschließend werden synthetische Trainingsdaten mit Kennzeichnungen generiert, indem eine Vielzahl von Momentaufnahmen der Szene erstellt werden. Diese Daten werden anschließend verwendet, um ein faltendes neuronales Netzwerk für eine Bildklassifizierungsaufgabe zu trainieren. Abschließend wird die Leistung des Modells des Netzwerks mit Hilfe von realen Bilddaten bewertet.

Hinweis zum Urheberrecht

Für Dokumente, die in elektronischer Form über Datenenetze angeboten werden, gilt uneingeschränkt das Urheberrechtsgesetz (UrhG). Insbesondere gilt:

Einzelne Vervielfältigungen, z.B. Kopien und Ausdrucke, dürfen nur zum privaten und sonstigen eigenen Gebrauch angefertigt werden (Paragraph 53 Urheberrecht). Die Herstellung und Verbreitung von weiteren Reproduktionen ist nur mit ausdrücklicher Genehmigung des Urhebers gestattet.

Der Benutzer ist für die Einhaltung der Rechtsvorschriften selbst verantwortlich und kann bei Mißbrauch haftbar gemacht werden.