Optimale Trajektorien mit Reinforcement Learning

URL
Dokumentart: Bachelor Thesis
Institut: Department Informatik
Sprache: Deutsch
Erstellungsjahr: 2012
Publikationsdatum:
SWD-Schlagwörter: Bestärkendes Lernen <Künstliche Intelligenz>
DDC-Sachgruppe: Informatik

Kurzfassung auf Deutsch:

Diese Arbeit umfasst die Modellierung, die Umsetzung und den Test eines Zustandssignals für einen Reinforcement Learning Agenten. Ziel ist es, so schnell, wie möglich, über eine Rennstrecke zu fahren, was mit der Suche nach einer optimalen Fahrspur verbunden ist. Mittel des Neural Fitted Q Iteration Algorithmus wird in einem kontinuierlichen Zustand- und Aktionsraum und ohne Modell der Umwelt Daten für die Q-Funktion gesammelt. Die Approximation dieser Funktion wird mit einem künstlichen neuronalen Netz umgesetzt.

Kurzfassung auf Englisch:

This work covers the development, the implementation and the test of a state signal for a Reinforcement Learning agent. The aim is to drive as fast as possible over a race circuit. That involves searching for an optimal racing line. Data for the Q-function is collected in a continuous action-state-space without a model of the environment using the Neural Fitted Q Iteration algorithm. The function approximation of the Q-function is done by an artificial neural network.

Hinweis zum Urherberrecht

Für Dokumente, die in elektronischer Form über Datenenetze angeboten werden, gilt uneingeschränkt das Urheberrechtsgesetz (UrhG). Insbesondere gilt:

Einzelne Vervielfältigungen, z.B. Kopien und Ausdrucke, dürfen nur zum privaten und sonstigen eigenen Gebrauch angefertigt werden (Paragraph 53 Urheberrecht). Die Herstellung und Verbreitung von weiteren Reproduktionen ist nur mit ausdrücklicher Genehmigung des Urhebers gestattet.

Der Benutzer ist für die Einhaltung der Rechtsvorschriften selbst verantwortlich und kann bei Mißbrauch haftbar gemacht werden.