Hindernis- und Kreuzungserkennung auf autonomen Fahrzeugen durch Kamera und Infrarotsensorik

URL
Dokumentart: Bachelor Thesis
Institut: Department Informatik
Sprache: Deutsch
Erstellungsjahr: 2013
Publikationsdatum:
SWD-Schlagwörter: Bildverarbeitung
Freie Schlagwörter (Deutsch): FAUST, autonomes Fahrzeug, Hinderniserkennung, Kreuzungserkennung
DDC-Sachgruppe: Informatik

Kurzfassung auf Deutsch:

In dieser Arbeit werden Verfahren zur Hindernis- und Kreuzungserkennung für ein autonomes Modelfahrzeug entwickelt. Dies geschieht innerhalb des Forschungsprojektes FAUST der HAW Hamburg. Eingesetzt wird das Fahr-zeug im Carolo-Cup Wettbewerb der Technischen Universität Braunschweig. Als Sensoren werden eine monochrome 0,36 Megapixel Kamera und Infrarot-Entfernungsmesser verwendet. Die statischen und dynamischen Hindernisse auf dem Rundkurs werden mittels Infrarotsensoren erkannt und mit der Fahrzeugkamera verifiziert. Eine Straßenkreuzung wird anhand der Haltelinie erkannt. Hindernisse und Haltelinie unterscheiden sich in ihren Grauwerten signifikant von der Fahrbahn. Um diese im Kamerabild zu erfassen wird eine ROI (Region Of Interest = Bereich von Interesse) in das Bild gelegt. Die ROI passt sich während der Fahrt dynamisch der Fahrbahn an. Innerhalb der ROI werden Bildpixel dann entsprechend ihrem Grauwert klassifiziert und entwe-der den Hindernissen, der Haltelinie oder der Fahrbahn zugewiesen.

Kurzfassung auf Englisch:

For the Carolo-Cup competition of the Technical University of Braunschweig methods for obstacle and crossing detection on an autonomous vehicle have been developed in this thesis. The autonomous vehicle is being developed as part of the FAUST research project (FAUST stands for Driver Assistance and Autonomous Systems) at the University of Applied Sciences in Hamburg. As sensors, a 0.36 megapixel monochrome camera and infrared rangefinders are used. The static and dynamic obstacles on the road are detected by infrared sensors and verified with the vehicle camera. A crossing is detected by stop line. The grayscale values of obstacles and stop line differ significantly from the road surface. To recognize them a region of interest (ROI) is placed into the camera image. The ROI adapts dynamically the road while the vehicle is driving. Inside the ROI pixels are classified according their grayscale value and assigned to the obstacles, the stop line or the road.

Hinweis zum Urherberrecht

Für Dokumente, die in elektronischer Form über Datenenetze angeboten werden, gilt uneingeschränkt das Urheberrechtsgesetz (UrhG). Insbesondere gilt:

Einzelne Vervielfältigungen, z.B. Kopien und Ausdrucke, dürfen nur zum privaten und sonstigen eigenen Gebrauch angefertigt werden (Paragraph 53 Urheberrecht). Die Herstellung und Verbreitung von weiteren Reproduktionen ist nur mit ausdrücklicher Genehmigung des Urhebers gestattet.

Der Benutzer ist für die Einhaltung der Rechtsvorschriften selbst verantwortlich und kann bei Mißbrauch haftbar gemacht werden.