Der Einfluss von Gewebsmakrophagen auf metabolische Erkrankungen

MASTERARBEIT

zur Erlangung des akademischen Grades Master of Science
an der Hochschule für Angewandte Wissenschaften Hamburg

Fakultät Life Sciences
Department Biotechnology

Prof. Dr. Oliver Ullrich
Dr. Andre Broermann

eingereicht von: Christiane Dickel

Dienstag, 13. November 2012
Hochschule für Angewandte Wissenschaften Hamburg
Fakultät Life Sciences
Department Biotechnology
Lohbrügger Kirchstraße 65
21033 Hamburg

in Zusammenarbeit mit:
Boehringer Ingelheim Pharma GmbH & Co. KG
Birkendorfer Straße 65
88397 Biberach an der Riss

Autor: Christiane Dickel

Abgabedatum: 13.11.2012

Erster Prüfer: Prof. Dr. Oliver Ullrich
Zweiter Prüfer: Dr. Andre Broermann
Inhaltsverzeichnis

1. Einleitung .. VI
 1.1 Fettleibigkeit und Insulinresistenz .. VI
 1.2 Evolutionsbiologische Perspektive .. VIII
 1.3 Makrophagen in metabolischen Erkrankungen ... X
 1.3.1 Makrophagensubtypen .. X
 1.3.2 Transendotheliale Migration von Makrophagen .. XIII
 1.3.3 Rolle von CCR2 und MCP-1 in der Makrophagenrekrutierung XIII
 1.4 Leukozytenmarker für die FACS-Analyse .. XV
 1.5 Tiermodelle .. XVI
 1.5.1 Die ob/ob Maus .. XVI
 1.5.2 Die db/db Maus .. XVII
 1.5.3 DIO-Maus .. XVII
 1.6 Therapiemöglichkeiten von Typ II Diabetes .. XVIII
 1.7 Zielsetzung .. XXII

2. Materialen und Methoden .. XXIII
 2.1 Materialien .. XXIII
 2.1.1 Verbrauchsmaterial ... XXIII
 2.1.2 Verwendete Geräte .. XXIII
 2.1.3 Chemikalien .. XXIV
 2.1.4 Antikörper ... XXVI
 2.1.5 Tierfuttermischungen .. XXVI
 2.2 Methoden .. XXVII
 2.2.1 Gewebepräparation .. XXVII
 2.2.2 Zellisolation .. XXVII
 2.2.3 Zellzählung ... XXVII
 2.2.4 Immunfluoreszenzfärbung .. XXVIII
 2.2.5 Fluorescence activated cell sorter (FACS) Analyse .. XXIX
2.2.6 Auswertung... XXX
2.2.7 Insulintoleranztest (ITT) .. XXXI
2.2.8 Oraler Glukose-Toleranztest (oGTT) ... XXXII
2.2.9 Cytokinassay .. XXXII
2.2.10 Tiere .. XXXIII
2.2.11 Statistik .. XXXIII
3. Ergebnisse ... XXXIV
3.1 Etablierung einer Aufarbeitungsstrategie von murinem, epididymalem Fettgewebe für FACS-Analyse von ATMs .. XXXIV
3.2 Etablierung einer FACS-Methode zur quantitativen Analyse von Leukozyten XXXV
3.2.1 Tandempanel (4er Panel) .. XXXV
3.2.2 Analysen mit 3-fach Färbbungen ... XXXVI
3.2.3 Kombinationspanel (4er Panel) ... XLI
3.3 Test des Systems ... XLIV
3.3.1 Leukozyten in einem genetischen Diabetesmodell ... XLIV
 3.3.1.1 Methodenabgleich ... XLIV
 3.3.1.2 Analyse mit 3er Panels ... XLVII
 3.3.1.3 Analyse mit dem Kombinationspanel ... LI
 3.3.1.4 Ergebnisvergleich ... LI
3.3.2 Leukozyten in einem diätinduzierten Diabetesmodell .. LI
3.4 Subchronische Studie eines CCR2-Antagonisten in huCCR2 Mäusen LVI
3.4.1 Leukozyten ... LVI
3.4.2 Blutplasmakonzentration von MCP-1 .. LXII
3.4.3 Metabolische Parameter ... LXIII
4. Diskussion .. LXV
4.1 Etablierung einer FACS-Analyse zur Quantifizierung von gesamt- und proinflammatorischen Makrophagen in murinem Fettgewebe LXV
 4.1.1 Tandempanel .. LXV
 4.1.2 Kombinationspanel .. LXV
 4.1.3 Dreifach-Färbbungen ... LXVI
 4.1.4 M1/M2-Panel .. LXVI
4.2 Methodenabgleich ... LXVII
4.3 Genetische Mausmodelle .. LXVIII
4.4 Das Diät induzierte Adipositas-(DIO) Modell ... LXX
4.5 Vergleich der Adipositas-Modelle .. LXXI
4.6 Erhöhte ATM-Zahlen in adipösen Mäusen .. LXXII
4.7 CCR2-Antagonismus als Therapiemöglichkeit für Typ II Diabetes LXXIII
 4.7.1 ATM-Zahlen vor Substanzbehandlung ... LXXIII
 4.7.2 Anti-inflammatorische Wirkung von Pioglitazon im DIO-Modell LXXIV
 4.7.3 CCR2-Antagonismus ohne anti-inflammatorischen Effekt im Hodenfettgewebe .. LXXIV
 4.7.4 Zusammenhang zwischen der Fettgewebs-Inflammation und den metabolischen Parametern in diesem Versuch ... LXXV
5. Ausblick ... LXXVI
6. Zusammenfassung ... LXXVII
7. Abkürzungsverzeichnis .. LXXVIII
8. Abbildungsverzeichnis .. LXXXI
9. Tabellenverzeichnis .. LXXXIV
10. Literaturverzeichnis .. LXXXV
11. Anhang .. LXXXIX
 11.1 Datenblätter der Futtermischungen ... LXXXIX
 11.1.1 Datenblatt des Haltungsfutters ... LXXXIX
 11.1.2 Datenblatt der Hochfettdiät .. XC
 11.1.3 Datenblatt der Normaldiät ... XCI
 11.2 FACS-Protokoll der Arbeitsgruppe Dr. Chavakis an der TU Dresden XCII
Eidesstattliche Erklärung .. XCVII
Danksagung ... XCVIII
1. Einleitung

1.1 Fettleibigkeit und Insulinresistenz

1. Einleitung

Mit den steigenden Zahlen von übergewichtigen und adipösen Menschen häufen sich auch die Fälle von Diabetes mellitus und die Prognosen gehen davon aus, dass der Anteil der an Typ II Diabetes erkrankten Bevölkerung weiter zunehmen wird (Abb. 1).

Abbildung 1: Typ II Diabetes weltweit
Voraussichtlich wird sich die Anzahl von Patienten mit Typ II Diabetes in den kommenden 20 Jahren von 285 Millionen Menschen um 50 % auf 438 Millionen Menschen erhöhen. [www.boehringer-ingelheim.de]

Adipositas führt zu einer chronischen Veränderung der metabolischen Homöostase. Charakteristisch für die durch Fettleibigkeit induzierte metabolische Dysfunktion ist die Resistenz von Fettgewebe, Leber und Muskeln im Hinblick auf die anabolische Wirkung von Insulin. Diese so genannte Insulinresistenz manifestiert sich als verminderte Glukoseaufnahme im Muskel und einer angeregten Triglyceridlipolyse im Fettgewebe, welche zu Hyperinsulinämie, Hyperglykämie und Dyslipidämie führt (Chawla et al., 2011). Dieser Zustand wird auch metabolisches Syndrom oder Insulinresistenzsyndrom genannt (Olefsky & Glass, 2010; Reaven, 1988). Durch die verminderte Insulinsensitivität werden die
1. Einleitung

1.2 Evolutionsbiologische Perspektive

1. Einleitung

Abbildung 2: Evolution von Fettgewebe, Leber und hämatopoetischem System in einzelne Organe bei Säugetieren
(Hotamisligil, 2006)
1. Einleitung

1.3 Makrophagen in metabolischen Erkrankungen

1.3.1 Makrophagensubtypen
Im Jahr 2003 wurde erstmals ein Zusammenhang zwischen adipös bedingter Insulinresistenz und einer chronischen Entzündung im Fettgewebe, die sich in Form einer Akkumulation von Makrophagen im weißen Fettgewebe ausdrückte, veröffentlicht (Weisberg et al., 2003; Xu et al., 2003).

Makrophagen sind differenzierte Monozyten, die sich aus Vorläuferzellen des Rückenmarks entwickeln. Sie gehören somit zu den zirkulierenden weißen Blutzellen. Sowohl Monozyten als auch Makrophagen sind heterogene Zellpopulationen. Ursprünglich wurden zwei Makrophagensubtypen definiert: Die klassisch aktivierten proinflammatorischen M1 Makrophagen und die alternativ aktivierten M2 Makrophagen (Gutierrez et al., 2009; Schipper et al., 2010).

In normalgewichtigen Säugetieren sind Leukozyten in Fettgewebe, Leber, Muskel und Pankreas zu finden. Ihr Phänotyp entspricht dem der M2 Makrophagen, die an der Gewebshomöostase beteiligt sind (Lumeng et al., 2007c; Lumeng et al., 2008; Odegaard et al., 2008; Olefsky & Glass, 2010; Lumeng et al., 2007b). Dabei sezernieren sie anti-inflammatorische Cytokine wie Interleukin (IL)-10, IL-4 und IL-13 (Abb. 3).
1. Einleitung

Unter normalgewichtigen Bedingungen sezernieren Adipozyten Faktoren wie Interleukin (IL)-13, welches die alternative Aktivierung von Makrophagen induziert. Alternativ aktivierte (M2) Makrophagen sekretieren anti-inflammatorische Mediatoren wie IL-10. Diese anti-inflammatorischen Cytokine wirken sich positiv auf die Insulinsensitivität aus. Fettleibigkeit induziert Veränderungen im Adipozytenmetabolismus und in der Genexpression von Cytokinen. Dies führt zu einer verstärkten Lipolyse und Freisetzung von proinflammatorisch wirkenden freien Fettsäuren (free fatty acids=FFAs) und Faktoren, die Makrophagen rekrutieren und aktivieren. Solche Faktoren sind das Monozyten Chemotactic Protein-1 (MCP-1) und der Tumornekrosefaktor α (TNFα). Klassisch aktivierte M1 Makrophagen produzieren große Mengen von proinflammatorischen Mediatoren, wie TNFα, IL-1β und Resistin, welches auf Adipozyten wirkt, und damit die Insulinresistenz induziert. Auf diese Weise etabliert sich ein sich selbst verstärkender Teufelskreis, der die Inflammation und Insulinresistenz weiter verstärkt.

(Olefsky & Glass, 2010; Abbildung 2, S. 223)

Abbildung 3: Makrophagenpolarisierung in fettleibigkeitsinduzierter Insulinresistenz im adipösen Fettgewebe

Unter normalgewichtigen Bedingungen sezernieren Adipozyten Faktoren wie Interleukin (IL)-13, welches die alternative Aktivierung von Makrophagen induziert. Alternativ aktivierte (M2) Makrophagen sekretieren anti-inflammatorische Mediatoren wie IL-10. Diese anti-inflammatorischen Cytokine wirken sich positiv auf die Insulinsensitivität aus. Fettleibigkeit induziert Veränderungen im Adipozytenmetabolismus und in der Genexpression von Cytokinen. Dies führt zu einer verstärkten Lipolyse und Freisetzung von proinflammatorisch wirkenden freien Fettsäuren (free fatty acids=FFAs) und Faktoren, die Makrophagen rekrutieren und aktivieren. Solche Faktoren sind das Monozyten Chemotactic Protein-1 (MCP-1) und der Tumornekrosefaktor α (TNFα). Klassisch aktivierte M1 Makrophagen produzieren große Mengen von proinflammatorischen Mediatoren, wie TNFα, IL-1β und Resistin, welches auf Adipozyten wirkt, und damit die Insulinresistenz induziert. Auf diese Weise etabliert sich ein sich selbst verstärkender Teufelskreis, der die Inflammation und Insulinresistenz weiter verstärkt.

(Olefsky & Glass, 2010; Abbildung 2, S. 223)
1. Einleitung

Eine Nahrungszufuhr, die über den Kalorienbedarf hinausgeht, bedingt eine Gewichtszunahme, da die überschüssige Energie in Form von Fett in Adipozyten gespeichert wird (Xu et al., 2003). Aufgrund einer Verschlechterung der Nährstoffversorgung des wachsenden Fettgewebes, können die Adipozyten nekrotisch werden. Dies führt zu einer Rekrutierung von M1 Makrophagen, die sonst auch bei einer klassischen Entzündung mit Rötungen, Schwellungen, Hitze und Schmerzen beteiligt sind. Die M1 Makrophagen lagern sich im interstitiellen Raum um die sterbenden Adipozyten in Form von „crown like structures“ ab (Lumeng et al., 2008). Es wird angenommen, dass es während der Adipositas zu einer Verschiebung des M1/M2 Verhältnisses kommt, bei dem sich mehr M1 Makrophagen im Fettgewebe von fettleibigen Menschen befinden als bei Normalgewichtigen. (Lumeng et al., 2007a). Dabei sekretieren Adipozyten und M1 Makrophagen proinflammatorische Cytokine wie Makrophagenmigrations-Inhibitionsfaktor (MIF), Tumornekrosefaktor (TNF) α, IL-6 und IL-1β (Abb.3) (Olefsky & Glass, 2010). Sie aktivieren proinflammatorisch wirkende Signalkaskadenproteine, einschließlich der Junk N-terminal Kinase (JNK), Inhibitor der κB Kinase (IKK) β und anderer Serinkinasen. Diese phosphorylieren wiederum Insulinrezeptorsubstrat (IRS)-Proteine, Insulinrezeptoren und andere Insulinsignalmoleküle. So kommt es durch eine chronische meta Entzündung im Fettgewebe, die sich durch eine Zunahme von Fettgewebsmakrophagen (adipose tissue macrophages = ATMs) manifestiert (Anderson et al., 2010), zu einer lokalen Insulinresistenz, die sich auf das gesamte Gewebe und schließlich auf den gesamten Organismus übertragen kann (Gregor & Hotamisligil, 2011).

M1 Makrophagen Vorläuferzellen machen 2-5 % der weißen Blutzellen in der Blutbahn aus. Während diese proinflammatorischen Monozyten schnell zu infizierten und entzündeten Stellen rekrutiert werden können, sind Vorläuferzellen von M2 Makrophagen an der Gewebshomöostase und Reparatur beteiligt (Shi & Pamer, 2011; Anderson et al., 2010).

In vitro führt eine Behandlung von Makrophagen mit LPS und Interferon (IFN) γ zu einem inflammatorisch wirkenden M1 Phänotyp, während eine Behandlung mit Interleukin (IL) 4 oder IL-13 zur Ausbildung eines anti-inflammatorischen M2 Phänotyp führt (Anderson et al., 2010; Mantovani et al., 2004).

In vivo ist der alternativ aktivierte M2 Phänotyp von ATMs durch eine gesteigerte Expression von IL-10 und Arginase charakterisiert (Lumeng et al., 2007a). Der proinflammatorische klassisch aktivierte M1 Phänotyp von ATMs weist erhöhte IL-6 Level auf (Lumeng et al., 2007a; Lumeng et al., 2008; Nguyen et al., 2007; Wentworth et al., 2010).

M2 Makrophagen sind durch den durch Peroxisomproliferator aktivierten Rezeptor-γ (PPARγ) induzierte Signale aktiviert und erhalten Funktion von Adipozyten, Insulinsensitivität
1. Einleitung

und Glukosetolleranz (Lumeng et al., 2007a; Odegaard et al., 2007). Es besteht die Möglichkeit, dass bei fortschreitender Adipositas ATMs ihren M2 Phänotyp zu einem klassisch aktiviertem M1 Phänotyp mit einem pro-inflammatorischen Aktionspotential ändern (Odegaard & Chawla, 2011).

1.3.2 Transendotheliale Migration von Makrophagen

1.3.3 Rolle von CCR2 und MCP-1 in der Makrophagenrekrutierung

Der C-C Motiv Chemokinrezeptor-2 (CCR2) und sein hoch-affiner Ligand das monocyte chemotactic protein-1 (MCP-1, CCL2) sind das am besten erforschte Chemokin/Rezeptor-Paar in der ATM-Rekrutierung (Anderson et al., 2010). CCR2 ist auf zirkulierenden Monozyten und ATMs exprimiert, wohingegen MCP-1 in den extrazellulären Raum zwischen Adipozyten als lokaler Faktor sezerniert wird (Dahlman et al., 2005). Bindet MCP-1 an CCR2, wird der Rezeptor von seinem Liganden aktiviert. Es wird davon ausgegangen, dass CCR2 und sein Ligand MCP-1 essentiell für die Einwanderung von Monozyten in Gewebe sind, da das Chemokin/Rezeptor-Paar eine Schlüsselrolle bei der durch M1 Makrophagen ausgelösten Entzündungsantwort spielt (Tsou et al., 2007; Lumeng et al., 2007b; Lumeng et al., 2007c; Shi & Pamer, 2011; Si et al., 2010).

Im Mausmodell zeigen CCR2- und MCP-1-defiziente Tiere eine verminderte Nahrungsaufnahme und damit auch eine geringere Ausprägung der Adipositas (Weisberg et al., 2006). Diese Parameter lassen sich desweiteren mit einer geringeren Makrophagenzahl
1. Einleitung

und einem rückläufigen inflammatorischem Profil im Fettgewebe im Vergleich zu adipösen Wildtypieren in Zusammenhang setzen (Anderson et al., 2010).

Die Behandlung mit einem pharmakologischem Antagonisten von CCR2 verringert nicht nur die Makrophagenzahlen im Fettgewebe, sondern konnte auch eine gesteigerte Insulinsensitivität bewirken, ohne dass sich Körpergewicht oder Lebergröße veränderten (Weisberg et al., 2006; Anderson et al., 2010; Lumeng et al., 2008; Kanda et al., 2006).

CCR2-Deffizienz bei knock-out (KO) Mäusen auf HFD führt hingegen zu keiner Insulinresistenz. CCR2 KO Mäuse auf HFD zeigten eine verringerte ATM-Infiltration, AT-Inflammation, systemisch Insulin Resistenz und hepatische Steatose (Weisberg et al., 2006).

In Studien mit MCP-1 KO-Mäusen konnte eine reduzierte Makrophagenakkumulation in AT, verbesserte Insulinsensitivität und Verbesserung der hepatischen Steatose festgestellt werden (Kanda et al., 2006; Kamei et al., 2006). Diese Ergebnisse sind in der Literatur jedoch nach Veröffentlichungen von Kirk et al. (2008) und Inouye et al. (2007), die keine solchen Veränderungen nachweisen konnten, umstritten. Es ist nach aktuellem Kenntnisstand nicht zu sagen, ob ebenfalls eine MCP-1-Deffizienz bei knock-out Mäusen die ATM-Zahlen verringern kann und die Tiere vor Insulinresistenz schützt (Weisberg et al., 2006).

Trotz sich ähnelnder Phänotypen weisen sowohl CCR2- noch MCP-1-deffiziente Mäuse auf HFD noch Parameter für ein Ungleichgewicht der Homöostase in Adipositas auf (Ferrante, Jr., 2007).

Durch transgene Überexpression von MCP-1 werden die Makrophagenzahlen in AT erhöht und die Insulinwirkung beeinträchtigt (Weisberg et al., 2006; Ferrante, Jr., 2007). Zudem gibt es Anhaltspunkte, dass MCP-1, welches durch Adipozyten sekretiert wird, lokal das Insulinsignal beeinflusst (Sartipy & Loskutoff, 2003b).

Neben MCP-1, welches auch CCL2 genannt wird, binden auch noch andere Cytokine an CCR2. Die anderen Liganden von CCR2, die im Fettgewebe exprimiert werden, sind CCL7 (MCP-3), CCL8 (MCP-2) und CCL11 und könnten ebenfalls die ATM-Rekrutierung beeinflussen (Huber et al., 2008; Kamei et al., 2006). In Experimenten mit Mäusen ohne MCP-1, MCP-3, MCP-5 oder MCP-2 und MCP-5 zeigte sich, dass MCP-3 und MCP-1 hauptverantwortlich für die Erhaltung der normalen Blutmonozytenanzahl sind (Tsou et al., 2007).

Es müssen weitere Untersuchungen vorgenommen werden, um herauszufinden wie Makrophagen in das Fettgewebe einwandern, und wie ATMs von einem M1 zu einem M2 Status polarisiert werden können (Anderson et al., 2010).
1. Einleitung

1.4 Leukozytenmarker für die FACS-Analyse

Die Fluorescence activated cell sorter (FACS)-Analyse ist eine Form der Durchflusszytometrie, bei der Zellen durch die Parameter Größe, Granularität und Fluoreszenzintensität quantitativ erfasst werden können. Mittels Lasertechnik werden Fluoreszenzfarbstoffe von konjugierten Antikörpern, die spezifisch an Oberflächenmoleküle binden, angeregt und die Emission detektiert. Über die Auswahl von spezifischen Oberflächenproteinen, die charakteristisch für bestimmte Zelltypen im Fettgewebe sind, können diese Zellpopulationen in den zu analysierenden Proben markiert werden. Da die spezifischen Antikörper fluoreszenzmarkiert sind, können diese mittels Lasertechnik detektiert werden.

CD11b ist eine Proteinuntereinheit, die zusammen mit CD18 ein Integrin Molekül, welches als Makrophagen-1 Antigen (MAC-1) bekannt ist, bildet. MAC-1 ist auf der Oberfläche von Leukozyten des angeborenen Immunsystems wie Monozyten, Granulozyten, Makrophagen, Mikroglia, B-1 Zellen, natürlichen Killerzellen und sich aus myeloid Zellen entwickelten dendritischen Zellen exprimiert. Dabei vermittelt MAC-1 über die Regulation der Leukozyten-Adhäsion und -Migration die Entwicklung einer Inflammation bei Prozessen wie Phagozytose, Zell-vermittelte Cytotoxizität, Chemotaxis und zelluläre Aktivierung (Solovjov et al., 2005). Das kodierende Gen von CD11b heißt Itgam (Murray & Wynn, 2011).

CD11c ist ein Typ I Transmembranprotein, dass in hohen Zahlen auf den meisten humanen dendritischen Zellen sowie Monozyten, Makrophagen und Neutrophilen exprimiert ist (Murray
1. Einleitung

& Wynn, 2011). Proinflammatorische CD11c⁺ ATMs exprimieren hohe Konzentrationen an Integrrinen und Molekülen der Antigenpräsentation wie IL-1β, IL-6, IL-8, IL-10, TNF-α und CCL-3. Im Unterschied dazu exprimieren CD11c⁻ ATMs Proteine, die in der Erhaltung und Reparatur von Gewebe beteiligt sind (Wentworth et al., 2010). Eine Entfernung aller CD11c⁺ Zellen in Mäusen führte zu einer schnellen Normalisierung der Insulinsensitivität, sowie einem Rückgang an inflammatorischen Markern (Patsouris et al., 2008).

1.5 Tiermodelle

1.5.1 Die ob/ob-Maus

1. Einleitung

1.5.2 Die db/db-Maus

Abbildung 4: C57BL/6 und db/db im Alter von 11 Wochen

1.5.3 DIO-Maus
Durch die Verwendung von entsprechenden Diäten kann bei Mäusen eine Insulinresistenz induziert werden. Gängige Diätformen sind die Cafeteriadiät, die Western-Type Diet, oder die Hochfettdiät. Die Cafeteriadiät ist im Gegensatz zur Western-Type Diet und Hochfettdiät keine definierte Diät, sondern es werden den Tieren neben dem normalen Haltungsfutter zusätzlich Nahrungsmittel zur Verfügung gestellt, die den Ernährungsgewohnheiten beim Menschen entsprechen (z.B. Kekse und Schokolade). Western-Type Diet und Hochfettdiäten sind im Handel erhältliche definierte Futtermischungen, die durch ihren hohen Fettanteil charakterisiert sind. In Western-Type Diets sind hohe Cholesterinanteile enthalten und es
1. Einleitung

1.6 Therapiemöglichkeiten von Typ II Diabetes

<table>
<thead>
<tr>
<th>Einstufung</th>
<th>Nüchternblutzucker</th>
<th>Blutzucker 2 Stunden nach oraler Glukosegabe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>< 6,1 mM</td>
<td>< 7,8 mM</td>
</tr>
<tr>
<td>Abnorme Nüchternglukose</td>
<td>≥ 6,1 - < 7,0 mM</td>
<td>< 7,8 mM</td>
</tr>
<tr>
<td>Gestörte Glukosetolleranz</td>
<td>< 7,0 mM</td>
<td>< 7,8 - < 11,1 mM</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>≥ 7,0 mM</td>
<td>≥ 11,1 mM</td>
</tr>
</tbody>
</table>

Tabelle 1: Diabetes/Blutzucker Kriterien und Einstufung (WHO, 2012)
1. Einleitung

Repaglinid (Prandin®) und Nateglinid (Starlix®) gehören zu den Meglitiniden und regen wie auch Sulfonylharnstoffe β-Zellen an, mehr Insulin auszuschütten. Da Sulfonylharnstoffe und Meglitinide auf dieselbe Weise wirken, kann es bei beiden Medikamenten durch die Glukoseunabhängigkeit zur Hypoglykämie kommen (American Diabetes Association, 2012).

1. Einleitung

Boehringer Ingelheim erforscht und entwickelt ständig weitere antidiabetische Wirkstoffe. In einer Partnerschaft mit Eli Lilly and company wurde ein Natriumglukose-Cotransporter
1. Einleitung

Für anti-inflammatorische Therapien und ihr Potential in der Behandlung von adipöser Insulinresistenz und Glukoseintoleranz muss die Rolle von Makrophagen in metabolischen Krankheiten besser verstanden werden. Dazu gehören die Signaltransduktionskaskaden, die in der metabolisch induzierten Makrophagenaktivierung beteiligt sind.
1. Einleitung

1.7 Zielsetzung
Da eine meta-Inflammation sich unter anderem in Makrophagenzahlen im Fettgewebe manifestiert, ist es von großem wissenschaftlichen Interesse, eine Methode zur Quantifizierung der Makrophagen im Hodenfettgewebe und zur Bestimmung ihres inflammatorischen Phänotyps als Werkzeug in der Wirkstoffforschung einzusetzen.

Ein Abgleich der in der Abteilung CMDR entwickelten FACS-Methode findet in Zusammenarbeit mit der Technischen Universität Dresden statt. Dazu werden ob/ob- und db/db-Tiere als genetische Mausmodelle vergleichend mit Wildtypmäusen (C57BL/6J) an der TU Dresden und in der Abteilung CMDR analysiert und die Ergebnisse miteinander verglichen.

Die erste Anwendung der etablierten Methode im DIO-Modell findet in einer subchronischen Studie eines CCR2-Antagonisten mit huCCR2-Mäusen statt.
2. Materialen und Methoden

2.1 Materialien

2.1.1 Verbrauchsmaterial

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Hersteller #Produktnr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Handschuhe Nitril</td>
<td>Kimberly-Clark #90627</td>
</tr>
<tr>
<td>Mikroreaktionsgefäße Safe Lock Tubes (0,5, 1,5, 2,0 mL)</td>
<td>eppendord #0030121.023</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Pipettenspitzen (20, 200, 1000, 5000 µl)</td>
<td>eppendord #022491521</td>
</tr>
<tr>
<td></td>
<td>eppendord #022491539</td>
</tr>
<tr>
<td></td>
<td>eppendord #022491555</td>
</tr>
<tr>
<td></td>
<td>eppendord #022492080</td>
</tr>
<tr>
<td>Matrixpipettenspitzen</td>
<td>Thermo Scientific #7281</td>
</tr>
<tr>
<td>Einwegpipetten</td>
<td>costar</td>
</tr>
<tr>
<td>Reagenzienreservoir</td>
<td>VWR #613-0430</td>
</tr>
<tr>
<td>Zentrifugengläser (15, 50 mL)</td>
<td>greiner #188271, 227261</td>
</tr>
<tr>
<td>5 mL-Tubes</td>
<td>BD Falcon #352058</td>
</tr>
<tr>
<td>96-well Platte mit tiefem Rundboden</td>
<td>BD Falcon #353918</td>
</tr>
<tr>
<td>Petri Dish</td>
<td>BD Falcon #351007</td>
</tr>
<tr>
<td>Einwegzellzählkammern</td>
<td>invitrogen #10283</td>
</tr>
<tr>
<td>Blutzuckermessstäbchen</td>
<td>Gluko Smart® Swing #21</td>
</tr>
<tr>
<td>Zellstrayner</td>
<td>Fisherbrand #223635448</td>
</tr>
</tbody>
</table>

2.1.2 Verwendete Geräte

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Produktname</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysenwaage</td>
<td>AC211S</td>
<td>Sartorius</td>
</tr>
<tr>
<td>Waage</td>
<td>A30</td>
<td>Mettler</td>
</tr>
<tr>
<td>Brutschrank</td>
<td>BBD 6220</td>
<td>Heraeus</td>
</tr>
<tr>
<td>Kippschüttler</td>
<td>PTR-30</td>
<td>Grant-bio</td>
</tr>
<tr>
<td>Kühlzentrifuge</td>
<td>Heraeus MegaFuge 40R</td>
<td>Thermo Scientific</td>
</tr>
<tr>
<td>Pipetten</td>
<td>2, 10, 20, 100, 200, 1000, 5000 µl</td>
<td>eppendord</td>
</tr>
</tbody>
</table>
2. Materialen und Methoden

<table>
<thead>
<tr>
<th>Material/Gerät</th>
<th>Marke/Modell</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matrixpipetten</td>
<td>1250 Matrix Impact²</td>
<td>Thermo Scientific</td>
</tr>
<tr>
<td>Pipettierhilfe</td>
<td>accu-jet</td>
<td>BRAND</td>
</tr>
<tr>
<td>Sicherheitswerkbänke</td>
<td>Hera Safe</td>
<td>Thermo Scientific</td>
</tr>
<tr>
<td>Tischzentrifuge</td>
<td>5417C</td>
<td>eppendorf</td>
</tr>
<tr>
<td>Vortexer</td>
<td>VF2</td>
<td>Janke&Kunkel</td>
</tr>
<tr>
<td>Zellzähler</td>
<td>Countess</td>
<td>invitrogen</td>
</tr>
<tr>
<td>Fluorescence activated cell sorter</td>
<td>MACS Quant</td>
<td>Miltenyi Biotech</td>
</tr>
<tr>
<td>Blutzuckermessgerät</td>
<td>AGM-4000</td>
<td>Gluko Smart® Swing</td>
</tr>
<tr>
<td>MSD-Messgerät</td>
<td>Cobas Integra 400 plus</td>
<td>Roche</td>
</tr>
</tbody>
</table>

2.1.3 Chemikalien

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Hersteller</th>
<th>Produktionsnummer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacillol® plus</td>
<td>BODE</td>
<td></td>
</tr>
<tr>
<td>RPMI 1640 mit Glutamin</td>
<td>Lonza #4464</td>
<td></td>
</tr>
<tr>
<td>Fetal Bovine Serum</td>
<td>Biological Industries #04-001AUS-1A</td>
<td></td>
</tr>
<tr>
<td>Dulbecco’s Phosphate Buffered Saline</td>
<td>Lonza #6716</td>
<td></td>
</tr>
<tr>
<td>Collagenase</td>
<td>Sigma #C0130</td>
<td></td>
</tr>
<tr>
<td>Trypanblau</td>
<td>invitrogen #T10282</td>
<td></td>
</tr>
<tr>
<td>Running Buffer</td>
<td>MACS Buffer #130-092-747</td>
<td></td>
</tr>
<tr>
<td>Storage Solution</td>
<td>MACS Buffer #130-092-748</td>
<td></td>
</tr>
<tr>
<td>Washing Solution</td>
<td>MACS Buffer #130-092-749</td>
<td></td>
</tr>
<tr>
<td>Bleach Solution</td>
<td>MACS Buffer #130-093-663</td>
<td></td>
</tr>
<tr>
<td>Ammoniumchlorid</td>
<td>Sigma A9434-500G</td>
<td></td>
</tr>
<tr>
<td>EDTA</td>
<td>Sigma #E5134-500G</td>
<td></td>
</tr>
<tr>
<td>Kaliumhydrogencarbonat</td>
<td>MERCK #1.06404.1000</td>
<td></td>
</tr>
<tr>
<td>Natriumchlorid</td>
<td>MERCK #1.04936.0500</td>
<td></td>
</tr>
<tr>
<td>Kaliumchlorid</td>
<td>MERCK #1.06580.1000</td>
<td></td>
</tr>
<tr>
<td>Dinatriumhydrogenphosphat</td>
<td>MERCK #1.05886.0500</td>
<td></td>
</tr>
<tr>
<td>Magnesiumsulfat</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2. Materialien und Methoden

Calciumchlorid
Kaliumdihydrogenhydrogenphosphat
Hepes
Natriumhydrogencarbonat
Glukose
Pioglitazon
CCR2-Antagonist

Sigma #C3306-250G
MERCK #1.04873.1000
Fluka #54466
MERCK #1.06329.1000
Sigma-Aldrich #15,896-8
Takeda
intern hergestellt

Hämolysepuffer

150 mM NH₄Cl
250 µM EDTA
10 mM KHCO₃

KRBH Puffer:

Lösung 1 (4-fach)
137 mM NaCl
5,36 mM KCl
0,34 mM Na₂HPO₄
0,81 mM MgSO₄
1,26 mM CaCl₂
0,44 mM KH₂HPO₄

Lösung 2 (4-fach)
10 mM Heps
4,17 mM NaHCO₃

Jeweils 1 Teil von Lösung 1 und 2 werden mit 2 Teilen doppeldestilliertem Wasser gemischt und mit NaOH bei einer Lösungstemperatur von 4 °C auf einen pH von 7,3 eingestellt.
2. Materialen und Methoden

2.1.4 Antikörper

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Hersteller #Produktnr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE Rat Anti-Mouse CD45</td>
<td>BD Pharmingen #553081</td>
</tr>
<tr>
<td>PE Rat IgG2b, κ Isotype Control</td>
<td>BD Pharmingen #553989</td>
</tr>
<tr>
<td>APC Rat Anti-Mouse CD11b</td>
<td>BD Pharmingen #553312</td>
</tr>
<tr>
<td>APC Rat IgG2b, κ Isotype Control</td>
<td>BD Pharmingen #553991</td>
</tr>
<tr>
<td>PE-Cy™7 Hamster Anti-Mouse CD11c</td>
<td>BD Pharmingen #558079</td>
</tr>
<tr>
<td>PE-Cy™7 Hamster IgG1, λ1 Isotype Control</td>
<td>BD Pharmingen #557798</td>
</tr>
<tr>
<td>PE Hamster Anti-Mouse CD11c</td>
<td>BD Pharmingen #553802</td>
</tr>
<tr>
<td>PE Hamster IgG1, λ1 Isotype Control</td>
<td>BD Pharmingen #553954</td>
</tr>
<tr>
<td>FITC Hamster Anti-Mouse CD11c</td>
<td>BD Pharmingen #553801</td>
</tr>
<tr>
<td>FITC Hamster IgG1, λ1 Isotype Control</td>
<td>BD Pharmingen #553953</td>
</tr>
<tr>
<td>Alexa Fluor® 700 Rat Anti-Mouse CD45</td>
<td>BD Pharmingen #560510</td>
</tr>
<tr>
<td>Alexa Fluor® 700 Rat IgG2b, κ Isotype Control</td>
<td>BD Pharmingen #557964</td>
</tr>
<tr>
<td>Rat Anti-Mouse F4/80 Antigen:FITC</td>
<td>AbDserotec #MCA497FB</td>
</tr>
<tr>
<td>Rat IgG2b Negative Control:FITC</td>
<td>abDserotec #MCA1125FT</td>
</tr>
<tr>
<td>FC Block Rat Anti-Mouse CD16/CD32</td>
<td>BD Pharmingen #553141</td>
</tr>
</tbody>
</table>

2.1.5 Tierfuttermischungen

<table>
<thead>
<tr>
<th>Haltungsfutter</th>
<th>Kliba Nafag #3438</th>
</tr>
</thead>
<tbody>
<tr>
<td>45 % kcal Hochfettdiät</td>
<td>Research diets #D12451</td>
</tr>
<tr>
<td>10 % kcal Kontrolldiät</td>
<td>Research diets #D12450B</td>
</tr>
</tbody>
</table>

Die entsprechenden Datenblätter der Futtermischungen sind im Anhang (Kap. 11.1) zu finden.
2. Materialen und Methoden

2.2 Methoden

2.2.1 Gewebepräparation
Den Mäusen wird bei der Sektion nach Eutanasierung epididymales Fettgewebe entnommen.
Für FACS-Analysen wird das epididymale Gewebe in PBS (mit 0,5 % BSA) auf Eis gelagert und muss sofort weiterverarbeitet werden.

2.2.2 Zellisolation
Das Gewebe wird mit einer Schere fein zerschnitten und mit einer abgeschnittenen Pipettenspitze in ein Reaktionsgefäße überführt. Die Probe wird mit PBS (0,5 % BSA) auf ein Volumen von 10 mL aufgefüllt und dann bei 500 \(g\) für 10 min bei 4 °C zentrifugiert. Es bilden sich drei Phasen. Im Pellet befinden sich Erythrozyten und freie Leukozyten aus dem Gefäßsystem. Es folgt die wässrige Interphase und oben auf schwimmt sich das Fettgewebe, welches mit einer Pipette in Reaktionsgefäße überführt wird. Pro Gramm Fettgewebe wird 1 mL Verdaumedium (RPMI 1640 mit 2 mg/mL Collagenase) eingesetzt, um die Zellverbände aufzulösen. Der Verdauf inkubiert für 1 h bei 37 °C auf einem Schüttler im Wärmeschrank. Danach wird die Reaktion mit 1 mL BSA gestoppt und die Emulsion über ein 70 µm Kunststoffsieb passiert. Das Sieb wird mit 2 mL Medium (RPMI 1640) gespült und der Durchfluss ebenfalls mit Medium auf 10 mL aufgefüllt. Anschließend wird für 5 min bei 500 \(g\) zentrifugiert. Der Überstand wird verworfen und das Pellet in 0,5 mL PBS resuspendiert. Es werden 5 mL Hämolysepuffer (150 mM \(\text{NH}_4\text{Cl}\), 250 µM EDTA, 10 mM \(\text{KHCO}_3\)) zugegeben und die Lyse 10 min auf Eis inkubiert. Es folgt ein weiterer Zentrifugationsschritt bei 500 \(g\) für 5 min bei 4 °C. Das Pellet wird in einem adäquaten Volumen Krebs-Ringer-Puffer mit Hepes (KRBH) mit 10 % BSA resuspendiert.

2.2.3 Zellzählung
Die Zellzählung erfolgt mit dem Countess-Counter der Firma Invitrogen und dient in der Methode zur Überprüfung der Aufarbeitungsqualität. Da dieses Gerät auf der Bildanalyse von Trypanblaufärbungen basiert, werden die Proben 1:2 mit Trypanblau verdünnt und 10 µL der Verdünnung in die Einwegzellzählkammern pipettiert.
Das Gerät verwendet einen Bildanalysealgorithmus zur Berechnung (www.invitrogen.com) und gibt die Gesamtzellzahl sowie die Lebend- und Totzellzahl und die Vitalität der Ausgangszellsuspension aus. Auch die Zellgröße der Proben kann analysiert werden und
liegt bei der Analyse der stromal vaskulären Fraktion (SVF) der Fettgewebsproben zwischen 7-12 µm.

2. Materialen und Methoden

2.2.4 Immunfluoreszenzfärbung
Für die Antikörperfärbungen werden die Antikörper in KRBH mit 1 % BSA verdünnt. 100 µl der Zellsuspension werden mit 10 µL des 1:100 vorverdünnten Fc-Rezeptorblocks vorgelegt und mit je 20 µL Antikörperlösung für 45 min bei 4 °C im Dunkeln inkubiert.

Tabelle 2: Verdünnungen verwendeter Antikörper

<table>
<thead>
<tr>
<th>Antikörperpanel</th>
<th>PE</th>
<th>FITC</th>
<th>APC</th>
<th>PE-Cy7</th>
<th>Alexa Fluor700</th>
</tr>
</thead>
<tbody>
<tr>
<td>4er Tandem</td>
<td>Rat Anti-Mouse CD45 1:20</td>
<td>Rat Anti-Mouse F4/80 1:2</td>
<td>Rat Anti-Mouse CD11b 1:20</td>
<td>Hamster Anti-Mouse CD11c 1:20</td>
<td></td>
</tr>
<tr>
<td>3er Makrophagen</td>
<td>Rat Anti-Mouse CD45 1:20</td>
<td>Rat Anti-Mouse F4/80 1:2</td>
<td>Rat Anti-Mouse CD11b 1:20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3er pro-inflammatorische Makrophagen</td>
<td>Rat Anti-Mouse CD45 1:20</td>
<td>Hamster Anti-Mouse CD11c 1:20</td>
<td>Rat Anti-Mouse CD11b 1:20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3er Dresden</td>
<td>Hamster Anti-Mouse CD11c 1:20</td>
<td>Rat Anti-Mouse F4/80 1:2</td>
<td>Rat Anti-Mouse CD11b 1:20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4er Alexa 700</td>
<td>Hamster Anti-Mouse CD11c 1:20</td>
<td>Rat Anti-Mouse F4/80 1:2</td>
<td>Rat Anti-Mouse CD11b 1:20</td>
<td>Rat Anti-Mouse CD45 1:20</td>
<td></td>
</tr>
</tbody>
</table>

Die gefärbten Zellen werden zweimal mit 150 µL KRBH (1 % BSA) gewaschen. Dazu werden die Zellen bei 500 g und 4 °C für 5 min zentrifugiert und der Überstand ausgeschlagen. Für die Messung werden die Zelldünnungen nach der letzten Zentrifugation ebenfalls in KRBH (1 % BSA) resuspendiert. Die Messung erfolgt sofort oder nach einer Lagerung bei 4 °C im Dunkeln.
2. Materialen und Methoden

2.2.5 *Fluorescence activated cell sorter (FACS) Analyse*

Innerhalb der MACSQuant® Analyse Software ist es möglich, sich die Messergebnisse in drei unterschiedlichen optischen Diagrammen anzeigen zu lassen: Mit dem Histogramm kann jeweils nur ein optischer Parameter angezeigt werden, während es mit dem *Dot Plot* oder *Density Plot* möglich ist, zwei optische Parameter zur selben Zeit anzuzeigen. Bei dem Histogramm wird die gemessene Zellzahl auf der y-Achse gegen die Fluoreszenzintensität auf der x-Achse aufgetragen. Bei dem *Dot Plot* wird für jedes Event der erfasste Wert von zwei Parametern als Punkt aufgetragen, während beim *Density Plot* die Eventdichte der beiden Parametern in verschiedenen Farben ausgegeben wird, wobei rot die höchste und blau die niedrigste Dichte darstellt.

2. Materialien und Methoden

2.2.6 Auswertung

Über die Auftragung von *Side scatter* und *Forward scatter* (SSC/FSC) werden die Zellen ihrer Größe und Granularität nach aufgetragen. Im *Dot Blot* ist eine distinkte Zellpopulation erkennbar, die als P1 definiert wird. Diese Zellpopulation schließt Zelldebris aus und wird als SVF definiert. Alle *Gating*strategien bauen auf diesem ersten P1 *Gate* auf.

![Auswertungsschema](image)

Abbildung 5: Auswertungsschema

Aus dem entnommenen x g Fettgewebe wird eine SVF isoliert und das Zellpellet in dem benötigten Volumen aufgenommen. Dieses errechnet sich aus der Anzahl der Färbungen multipliziert mit 100 µL. Je Färbung werden dann 100 µL Zellsuspension eingesetzt. Nach zwei Waschschritten werden die gefärbten Zellen in 150 µL Puffer für die Messung aufgenommen. Es werden je 75 µL Probe vom Gerät vermessen und für jedes *Gate* können die gemessene Zellzahl sowie die Zellzahl pro mL Zellsuspension ausgewertet werden.

Die Ausgabe des FACS-Geräts in Zellen/mL wird auf eine Konzentration von ATMs im Hodenfettgewebe umgerechnet (Formel 3.1) und Zellen werden zur Berechnung des Makrophagenanteils verwendet (Formel 3.2).
2. Materialen und Methoden

Berechnung einer Konzentration von ATMs im Fettgewebe:

\[
\frac{\text{positive Zellen}}{\text{mg}} = \frac{\text{positive Zellen Gate}}{\text{mL}} \times \text{Verdünnungsfaktor} \times \frac{\text{Anzahl Färben}}{0.1 \text{ mL}} \frac{\text{Fettgewicht}}{\text{mg}}
\]

positive Zellen Gate := positiv gezählte Zellen innerhalb eines Gates

Verdünnungsfaktor := Verdünnung der 100 µL eingesetzten Zellsuspension um den Faktor 1:1,5 auf 150 µL

Anzahl der Färben := Summe aller Panels und Isotypkontrollen

Fettgewicht := Gewicht des eingesetzten Fettgewebes

Berechnung des Makrophagenanteils in der SVF:

\[
\text{positiver Anteil in SVF} = \frac{\text{positive Zellen Gate}}{\text{Zellen SVF}} \times 100 \%
\]

positiver Anteil in SVF := positive Zellen bezogen auf alle Zellen der SVF

positive Zellen Gate := Zellen oder Zellen/mL aus dem Gate der zu analysierenden Zellfraktion

Zellen SVF := Zellen in P1

2.2.7 Insulinintoleranztest (ITT)

Der Insulinintoleranztest (ITT) wird auch Insulin-Hypoglykämie-Test genannt und wird zum Nachweis einer Insulinresistenz verwendet.

Nach einer Injektion von Insulin kommt es beim gesunden Organismus zu einer deutlichen Absenkung der Blutzuckerkonzentration. Liegt eine Insulinresistenz vor, ist die Absenkung der Blutzuckerkonzentration als Antwort auf eine Insulingabe vermindert.

2. Materialen und Methoden

2.2.8 Oraler Glukose-Toleranztest (oGTT)
Der orale Glukosetoleranz-Test (oGTT) heißt auch Zuckerbelastungstest und wird zum Nachweis einer gestörten Glukoseverstoffwechselung und damit der Diagnostik der Diabetes mellitus verwendet.

Nach einer oralen Applikation einer definierten Menge an Glukose kommt es zu einem Anstieg der Blutglukosekonzentration. Dadurch wird die Sekretion von Insulin im Körper stimuliert und der Blutzuckerwert fällt bei gesunden Organismen wieder. Bei Diabetikern ist die Insulin-Sekretion vermindert und der Abfall der Blutglukosekonzentration verläuft verzögert. Vor allem die 60- und 120-min-Blutzuckerwerte sind im Vergleich zu gesunden Organismen erhöht.

Zwölf Stunden vor Versuchsbeginn werden die Tiere nüchtern gesetzt. Danach wird vor der Glukoseapplikation der Nüchternwert genommen. Die Glukoselösung wird den Tieren p.o. appliziert (2 g/kg). Dann werden nach 15, 30, 60, 120 und 180 min die Blutzuckerwerte der Tiere gemessen. Dazu wird Kapillarblut aus der Schwanzspitze verwendet.

2.2.9 Cytokinassay
2. Materialien und Methoden

2.2.10 Tiere
Alle Tierversuche wurden unter den Richtlinien des Regierungspräsidiums Tübingen durchgeführt.

Die Tiere wurden bei Janvier bestellt.

In diesem Projekt wurde eine Hochfettdiät zur Induzierung der Insulinresistenz verwendet. Dazu wurden C57BL/6J-Mäusen die Diät D12451 (20 % kcal Protein, 35 % kcal Kohlenhydrate, 45 % kcal Fett) und die passende Kontrolldiät D12450B (20 % kcal Protein, 70 % kcal Kohlenhydrate, 10 % kcal Fett) von Research Diets mit gleich viel kcal insgesamt verfüttert.

2.2.11 Statistik
Die Statistikanalyse wurde mit der Prism Version 5.0 Software für Windows der Firma Graphpad durchgeführt. Für den Vergleich von zwei Gruppen wurde dazu der t-Test angewendet. Für eine Gruppenanalyse mit mehr als zwei Gruppen, wurde die Analyse mit ANOVA und Dunnett-Test durchgeführt. P-Werte ≤0,05 wurden als signifikant angesehen. Die Signifikanz wurde wie folgt gekennzeichnet: * entspricht p≤0,05, ** entspricht p≤0,01 und *** entspricht p≤0,001.
3. Ergebnisse

3.1 Etablierung einer Aufarbeitungsstrategie von murinem, epididymalem Fettgewebe für FACS-Analyse von ATMs

Jedem analysierten Versuchstier wird auf beiden Seiten das epididymale Fettgewebe entnommen. Dabei ist es wichtig alles des tot endenden Gewebes zu entfernen und dabei sowohl die Hoden als auch die Samenleiter und Nebenhoden zu entfernen. Das Gewicht beider Hodenfettgewebslappen wird für die Berechnung von Zellkonzentrationen pro mg gewogen.

Da Gewebsmakrophagen mit dieser Methode analysiert werden sollen, wird vor dem Collagenaseverdau nach der Zerkleinerung des Gewebes ein Zentrifugationsschritt zur Abtrennung der freien Leukozyten im Blutgefässystem verwendet.

In Anlehnung an das in Dresden verwendete Protokoll (Kap. 11.2) wird der Verdau mit einer Konzentration von 2 mg/mL Collagenase auf einem Schüttler im Wärmeschrank bei 37 °C durchgeführt.

Vor der Inkubation der Antikörperfärbung, die über 45 min bei 4 °C erfolgt, werden die Zellen mit einem Fc-Rezeptorblocker behandelt und nach der Färbung zweimal gewaschen, um unspezifische Bindungen zu reduzieren.

Mittels des Countess-Counters kann optional bei jeder Aufarbeitung die Vitalität der Zellen überprüft werden, was bei den Versuchen als Qualitätskontrolle der Aufarbeitung fungieren kann.

Die in diesem Projekt entwickelte Strategie liefert in den FACS-Analysen reproduzierbare und zuverlässige Ergebnisse.
3. Ergebnisse

3.2 Etablierung einer FACS-Methode zur quantitativen Analyse von Leukozyten

3.2.1 Tandempanel (4er Panel)

Für die ersten Versuche wurde ein Antikörperpanel aus dem Leukozytenmarker CD45 mit Phycoerythrin(PE)-Label, den beiden Makrophagenmarkern F4/80 und CD11b mit (Fluoreszein)FITC- und (Allophycocyanin)APC-Label sowie dem proinflammmatorischen Makrophagenmarker CD11c mit dem Tandemkonjugat PE-Cy7 verwendet.

Wie in Abb. 6 zu erkennen ist, überlagern sich die Emissionsspektrumsmaxima der vier verschiedenen Label nicht. Trotzdem war keine Kompensation des Tandempanels möglich, da das Signal im Fluoreszenzmaximum des Tandemlabels PE-Cy7 sowohl für die Antikörperfärbung als auch die entsprechende Isotypkontrolle für dieses Panel das gleiche Signal zeigte. Es konnte somit das negative- nicht von einem positiven Signal unterschiedenen werden (Daten nicht gezeigt).

Abbildung 6: Fluoreszenzspektren des Tandempanels (4er Panel)
(Miltenyi Biotec GmbH 2012)
3. Ergebnisse

3.2.2 Analysen mit 3-fach Färbungen

Gezeigt sind in Abb. 7-12 exemplarisch die Plots der Analyse einer Probe aus einer 10 Wochen alten C57BL/6J-Maus auf Haltungsfutter am FACS-Gerät mit den entsprechenden Isotypkontrollen derselben Probe.

Die Gatingstruktur des Makrophagenpanels zeigt die Analyse der CD45⁺ F4/80⁺ CD11b⁺ Makrophagen (Abb. 7) mit entsprechender Isotypkontrolle (Abb. 8).

Abbildung 7: Gates des Makrophagenpanels mit CD45-PE, F4/80-FITC und CD11b-APC

3. Ergebnisse

Abbildung 8: Isotypkontrolle des Makrophagenpanels mit Rat IgG2b κ-PE, Rat IgG2b-FITC und Rat IgG2b κ-APC

Es wird eine spezifische CD45⁺ F4/80⁺ Zellpopulation definiert (Abb. 7B). Die doppelpositiven Zellen werden im APC-Kanal auf das spezifische CD11b positive Signal untersucht (Abb. 7C). Diese trippelpositiven Zellen sind Makrophagen. Die entsprechende Isotypkontrolle zeigt sowohl für den PE/FITC-Dot Blot (Abb. 8B) wie auch für das APC Histogramm (Abb. 8C) wie erwartet nur ein sehr niedriges unspezifisches Signal.
3. Ergebnisse

In Abb. 9 ist die Gatingstruktur für die Analyse der CD45⁺ CD11b⁺ CD11c⁺ proinflammatorischen Makrophagen durch das proinflammatorische Makrophagenpanel dargestellt. Die entsprechende Isotypkontrolle ist in Abb. 10 abgebildet.

Das grüne Gate für die CD45⁺ CD11b⁺ CD11c⁺ Zellen in dieser Gatingstruktur (Abb. 9) erfasst ausschließlich das spezifische FITC-Signal. Dieses wurde unter zur Hilfenahme von Isotypkontrollen und Fluorescence minus one (FMO) (Daten nicht gezeigt) definiert und schließt die wenigen hoch positiven unspezifischen Zellen, die über Isotypkontrolle und FMOs als solche erkannt werden konnten, rechts des Gates aus. Das starke Hintergrundsignal ist durch die Autofluoreszenz der Makrophagen bedingt.

Abbildung 9: Gate des proinflammatorischen Makrophagenpanels mit CD45-PE, CD11b-APC und CD11c-FITC
A Im Dot Blot von SSC gegen FSC wird ein Gate P1 (rot) definiert, welches die SVF abbildet. B Das PE-Signal dieses P1 Gates wird im Dot Blot weiter analysiert. Die CD45 positiven Zellen (blau) werden gegatet und C im Histogramm gegen ihr APC-Signal abgebildet. Das positive Signal (pink) wird dann noch D im Hinblick auf das FITC-Signal gegatet. Die trippelpositiven proinflammatorischen Makrophagen der SVF (grün) können so analysiert werden.
3. Ergebnisse

Abbildung 10: Isotypkontrolle des proinflammatorischen Makrophagenpanels mit Rat IgG2b κ-PE, Rat IgG2b κ-APC und Hamster IgG1 λ1-FITC
A Im Dot Blot von SSC gegen FSC wird ein Gate P1 (rot) definiert, welches die SVF abbildet. B Das PE-Signal dieses P1 Gates wird im Dot Blot weiter analysiert. Die CD45 positiven Zellen (blau) werden gegatet und C im Histogramm gegen ihr APC-Signal abgebildet. Das positive Signal (pink) wird dann noch D im Hinblick auf das FITC-Signal gegatet. Die die trippelpositiven proinflammatorischen Makrophagen der SVF (grün) können so analysiert werden.

Das PE Signal des anti-CD45-Antikörpers zeigt zwei klar voneinander abgrenzbare Punktewolken (Abb. 9B). Im APC-Histogramm sind ebenfalls zwei klar umrissene Peaks zu erkennen (Abb. 9C). In beiden Kanälen sind in der Isotypkontrolle keine unspezifischen Bindungen vorhanden (Abb. 10B und 10C). Die doppelpositiven Zellen zeigen jedoch für die Fluoreszenzemission im FITC-Kanal ein hohes Hintergrundrauschen (Abb. 9D). Über das gesetzte Gate können jedoch alle unspezifischen Signale ausgeschlossen werden (Abb. 10D).
3. Ergebnisse

Abbildung 12: Isotypkontrolle des Antikörperpanels ohne Anti-CD45-Antikörper mit Rat IgG2b-FITC, Rat IgG2b κ-APC und Hamster IgG1 λ1-PE
3. Ergebnisse

3.2.3 Kombinationspanel (4er Panel)

Abbildung 13: Fluoreszenzspektren des Kombinationspanels (4er Panel) mit FITC, PE, APC und Alexa Fluor700
3. Ergebnisse

Die sich daraus ergebende Gatingstruktur zur Analyse von Makrophagen und proinflammatorischen Makrophagen ist nachfolgend abgebildet (Abb. 14). Die entsprechende Isotypkontrolle ist in Abb. 15 zu erkennen.

3. Ergebnisse

Abbildung 15: Isotypkontrolle des 4er-Antikörperpanels mit Rat IgG2b κ-Alexa700, Rat IgG2b-FITC, Rat IgG2b κ-APC und IgG1 λ1-PE

3. Ergebnisse

3.3 Test des Systems

3.3.1 Leukozyten in einem genetischen Diabetesmodell

3.3.1.1 Methodenabgleich

Wie in Abb. 16 zu erkennen ist, sind die Gewichtsunterschiede des Hodenfettgewebes der genetischen Modelle im Vergleich zum WT mit p≤0,001 signifikant.

Abbildung 16: Hodenfettgewebsgewicht der FACS-Analyse in Dresden von 10 Wochen alten männlichen C57BL/6J-, ob/ob- und db/db-Mäusen
n=4, One-Way ANOVA mit Dunnett-Test auf Wildtyp bezogen, * entspricht p≤0,05, ** entspricht p≤0,01, *** entspricht p≤0,001
3. Ergebnisse

Die F4/80⁺ CD11b⁺ Gesamtmakrophagenkonzentration bei WT-Tieren und db/db-Mäusen ist gleich hoch, während diese bei ob/ob-Tieren im Vergleich dazu signifikant erhöht ist (Abb. 17A). Der Gesamtmakrophagenanteil zeigt jedoch für ob/ob- und db/db-Tiere einen Erhöhung von Makrophagen im Hodenfett im Vergleich zu den Wildtyptieren, wobei ob/ob-Tiere mit p≤0,01 eine höhere Signifikanz aufweisen als die db/db-Mäuse mit p≤0,05 (Abb. 17B).

Abbildung 17: F4/80⁺ CD11b⁺ Makrophagen aus der FACS-Analyse in Dresden von 10 Wochen alten männlichen C57BL/6J-, ob/ob- und db/db-Mäusen
A Makrophagenkonzentrationen pro g Hodenfettgewebe; B Makrophagenanteil in der SVF; n=4, One-Way ANOVA mit Dunnett-Test auf Wildtyp bezogen, * entspricht p≤0,05, ** entspricht p≤0,01, *** entspricht p≤0,001

Abbildung 18: F4/80⁺ CD11b⁺ CD11c⁺ proinflammatorische Makrophagenzahlen aus der FACS-Analyse in Dresden von 10 Wochen alten männlichen C57BL/6J-, ob/ob- und db/db-Mäusen
A Makrophagenkonzentrationen pro g Hodenfettgewebe; B Makrophagenanteil in der SVF; n=4, One-Way ANOVA mit Dunnett-Test auf Wildtyp bezogen, * entspricht p≤0,05, ** entspricht p≤0,01, *** entspricht p≤0,001
3. Ergebnisse

Abbildung 19: F4/80⁺ CD11c⁻ CD206⁺ M2 Makrophagen der FACS-Analyse in Dresden von 10 Wochen alten männlichen C57BL/6J, ob/ob- und db/db-Mäusen
A Makrophagenkonzentrationen pro g Hodenfettgewebe; B Makrophagenanteil in der SVF; n=4, One-Way ANOVA mit Dunnett-Test auf Wildtyp bezogen, * entspricht p≤0,05, ** entspricht p≤0,01, *** entspricht p≤0,001

Die Konzentration an F4/80⁺ CD11c⁺ CD206⁻ M1-Makrophagen der stromal vaskulären Fraktion (Abb. 20A) bei den ob/ob-Tieren ist höher als bei den db/db-Tieren und beide genetischen Modelle zeigen höhere Werte im Vergleich zum Wildtyp. Der M1-Makrophagenanteil von db/db mit 11 % und ob/ob-Tieren ist mit 9 % ungefähr gleich hoch und im Vergleich zu den Wildtypmäusen mit einem Anteil von 4 % erhöht (Abb. 20B). Mit p≤0,01 weisen db/db-Tiere im Hinblick auf den M1-Anteil eine höhere Signifikanz auf als ob/ob-Tiere mit p≤0,05. Das Verhältnis von M1- zu M2-Makrophagen ist bei den db-Tieren mit 71 % auch im Gegensatz zu ob-Mäusen mit 43 % und Wildtypmäusen mit 20 % (Daten nicht gezeigt) sehr hoch.
3. Ergebnisse

Abbildung 20: F4/80+ CD11c+ CD206− M1 Makrophagen der FACS-Analyse in Dresden von 10 Wochen alten männlichen C57BL/6J-, ob/ob- und db/db-Mäusen
A Makrophagenkonzentrationen pro g Hodenfettgewebe; B Makrophagenanteil in der SVF; n=4, One-Way ANOVA mit Dunnett-Test auf Wildtyp bezogen, * entspricht p≤0,05, ** entspricht p≤0,01, *** entspricht p≤0,001

3.3.1.2 Analyse mit 3er Panels

Der Versuch an der TU Dresden, in dem die beiden genetischen Modelle verglichen mit WT-Tieren analysiert wurden, wird in der Abteilung Cardio Metabolic Diseases Research (CMDR) der Firma Boehringer Ingelheim in Biberach mit einer höheren Tierzahl wiederholt (siehe Abb. 21-27). Zur Analyse des Versuchs werden sowohl die drei 3er Panels als auch das Kombinationspanel (4er Panel) (Kap. 3.3.1.3) verwendet und miteinander verglichen.

Während WT-Mäuse in diesem Versuch Hodenfettgewichte von 0,23 g haben, liegt für die ob/ob-Mäuse eine signifikante Gewichtserhöhung auf 4,0 g und für db/db-Tiere auf 2,3 g vor (Abb. 21). Diese Daten spiegeln damit das Ergebnis aus dem Versuch in Dresden (Abb. 16) wieder.

Abbildung 21: Hodenfettgewebsgewicht der FACS-Analyse mit 10 Wochen alten männlichen C57BL/6J-, ob/ob- und db/db-Mäusen
n=8, One-Way ANOVA mit Duzzett-Test auf Wildtyp bezogen, * entspricht p≤0,05, ** entspricht p≤0,01, *** entspricht p≤0,001
3. Ergebnisse

In der CD45\(^+\) F4/80\(^+\) CD11b\(^+\) Makrophagenkonzentration bezogen auf das Fettgewicht (Abb. 22A) kann zwar kein Unterschied zwischen WT- und \(ob/ob\)-Tieren, wohl aber zu \(db/db\)-Mäusen festgestellt werden. Die Makrophagenkonzentration ist bei den \(db/db\)-Tieren niedriger als bei den Wildtieren und \(ob/ob\)-Mäusen. Makrophagen werden auf die Gesamtzellzahl der SVF (Abb. 22B) bezogen, wodurch sich eine mit \(p \leq 0,001\) signifikante Erhöhung der beiden genetischen Modelle im Bezug auf die WT-Mäuse verzeichnen lässt. Bei \(ob/ob\)-Tieren sind 45 % und bei \(db/db\)-Tieren 38 % aller Zellen der SVF Makrophagen, wohingegen es beim Wildtyp nur 24 % sind.

Das *Panel* ohne Anti-CD45-Antikörper, welches auch im Versuch zum Methodenabgleich in Dresden verwendet wurde (Kap. 3.3.1.1), zeigt für die F4/80\(^+\) CD11b\(^+\) Makrophagen beider genetischen Modelle einen signifikanten Rückgang in den Konzentrationen bezogen auf die Wildtyptiere (Abb. 22C).

Abbildung 22: Makrophagen der FACS-Analyse mit 10 Wochen alten männlichen \(C57BL/6\)\(-\), \(ob/ob\)- und \(db/db\)-Mäusen

A Makrophagenkonzentrationen pro mg Hodenfettgewebe, CD45\(^+\) F4/80\(^+\) CD11b\(^+\) B Makrophagenanteil in der SVF, CD45\(^+\) F4/80\(^+\) CD11b\(^+\) C Makrophagenkonzentrationen pro mg Hodenfettgewebe, F4/80\(^+\) CD11b\(^+\); \(n=8\), One-Way ANOVA mit Dunnett-Test auf Wildtyp bezogen, * entspricht \(p \leq 0,05\), ** entspricht \(p \leq 0,01\), *** entspricht \(p \leq 0,001\)
3. Ergebnisse

Die Konzentration der CD45\(^+\) CD11b\(^+\) CD11c\(^+\) proinflammatorischen Makrophagen (Abb. 23A) ist sowohl für ob/ob- als auch für db/db-Mäuse signifikant niedriger als bei den Kontrolltieren. Durch den Bezug dieser Konzentrationen pro mg Fettgewicht auf das um das 10- bzw. 20-fach höhere Fettgewebsgewicht in den genetischen Modellen im Vergleich zum Wildtyp(Abb. 21) wird jedoch deutlich, dass die Absolutzahlen für die beiden genetischen Modelle deutlich erhöht im Vergleich zum Wildtyp sind. Der Anteil von CD45\(^+\) CD11b\(^+\) CD11c\(^+\) proinflammatorischen Makrophagen bezogen auf die SVF (Abb. 23B) liegt bei den ob/ob-Tieren mit 15 % signifikant höher als bei den Wildtypmäusen mit 6 %. Auch bei dem db/db-Modell ist eine signifikante Erhöhung auf 11 % festzustellen.

Die Konzentrationen der F4/80\(^+\) CD11b\(^+\) CD11c\(^+\) proinflammatorischen Makrophagen (Abb. 23C) beider genetischen Modelle sind jedoch wie auch bei den CD45\(^+\) CD11b\(^+\) CD11c\(^+\) proinflammatorischen Makrophagen (Abb. 23A) niedriger verglichen mit den WT-Mäusen. Beide Panels liefern damit vergleichbare Ergebnisse.

Abbildung 23: Proinflammatorische Makrophagen der FACS-Analyse mit 10 Wochen alten männlichen C57BL/6J-, ob/ob- und db/db-Mäusen
A proinflammatorische Makrophagenkonzentration pro mg Hodenfettgewebe, CD45\(^+\) CD11b\(^+\) CD11c\(^+\) B proinflammatorischer Makrophagenanteil in der SVF, CD45\(^+\) CD11b\(^+\) CD11c\(^+\) C proinflammatorische Makrophagenkonzentration pro mg Hodenfettgewebe, F4/80\(^+\) CD11b\(^+\) CD11c\(^+\); n=8, One-Way ANOVA mit Dunnett-Test auf Wildtyp bezogen, * entspricht p≤0,05, ** entspricht p≤0,01, *** entspricht p≤0,001
3. Ergebnisse

n=8, One-Way ANOVA mit Dunnett-Test auf Wildtyp bezogen, * entspricht p≤0,05, ** entspricht p≤0,01, *** entspricht p≤0,001
3. Ergebnisse

3.3.1.3 Analyse mit dem Kombinationspanel
Für einen direkten Vergleich der Ergebnisse zwischen 3er und 4er Panel wurden die Proben der genetischen Mausmodelle (Kap. 3.3.1.2) auch mit allen vier Panels vermessen.

Abbildung 25: CD45\(^+\) F4/80\(^+\) CD11b\(^+\) Makrophagen der FACS-Analyse mit dem Kombinationspanel in der Abteilung CMDRII mit 10 Wochen alten männlichen C57BL/6J-, ob/ob- und db/db-Mäusen
A Makrophagenkonzentrationen pro mg Hodenfettgewebe B Makrophagenanteil in der SVF; n=8, One-Way ANOVA mit Dunnett-Test auf Wildtyp bezogen, * entspricht p≤0,05, ** entspricht p≤0,01, *** entspricht p≤0,001

Abbildung 26: CD45\(^+\) F4/80\(^+\) CD11b\(^+\) CD11c\(^+\) proinflammatorische Makrophagen der FACS-Analyse mit dem Kombinationspanel in der Abteilung CMDRII mit 10 Wochen alten männlichen C57BL/6J-, ob/ob- und db/db-Mäusen
A proinflammatorische Makrophagenkonzentrationen pro mg Hodenfettgewebe B proinflammatorischer Makrophagenanteil in der SVF; n=8, One-Way ANOVA mit Dunnett-Test auf Wildtyp bezogen, * entspricht p≤0,05, ** entspricht p≤0,01, *** entspricht p≤0,001
3. Ergebnisse

![Graph](image)

Abb. 27: CD45⁺ F4/80⁺ CD11b⁺ CD11c⁺ proinflammatorischer Makrophagenanteil der CD45⁺ F4/80⁺ CD11b⁺ Gesamtmakrophagen der FACS-Analyse mit Kombinationspanel von 10 Wochen alten männlichen C57BL/6, ob/ob- und db/db Mäusen

n≥7, One-Way ANOVA mit Dunnett-Test auf Wildtyp bezogen, * entspricht p≤0,05, ** entspricht p≤0,01, *** entspricht p≤0,001

3.3.1.4 Ergebnisvergleich

Während bei der Analyse in Dresden eine signifikante Erhöhung der gesamt- und proinflammatorischen Makrophagenkonzentration für ob/ob-Mäuse im Vergleich zu WT-Tieren festgestellt werden konnte, ist die Makrophagenkonzentrationen im Wiederholungsversuch für die beiden genetischen Modelle gleich hoch wie beim WT. Die proinflammatorischen Makrophagenkonzentration ist bei den beiden genetischen Modellen sogar signifikant niedriger als beim Wildtyp.

Bei beiden Versuchen sind die gesamt- und proinflammatorischen Makrophagenanteile der SVF signifikant erhöht.
3. Ergebnisse

3.3.2 Leukozyten in einem diätinduzierten Diabetesmodell

In diesem Versuch wurden 24 männliche C57BL/6J-Mäuse ab dem Alter von 7-8 Wochen 17 Wochen lang mit einer 45 % kcal Hochfettdiät (D12451 Kap. 11.1.1) gefüttert. Die Kontrolltiere bekamen die entsprechende Kontrolldiät mit 10% kcal Fettanteil (D12450B Kap. 11.1.2). Es wurde nach dem Gewicht randomisiert, so dass aus jeder Gruppe jeweils die drei leichtesten und schwersten Tiere nicht analysiert wurden.

Obwohl sich schon das Körpergewicht (Abb. 28A) der HFD-Tiere mit 33,6 g von dem der NC-Mäuse mit 29,0 g signifikant unterscheidet, ist der Unterschied im Hodenfettgewicht (Abb. 28B) noch deutlicher. Die HFD-Mäuse haben mit 1,5 g Hodenfettgewebe mehr als doppelt so viel Fett wie die Tiere auf der Kontrolldiät mit 0,6 g.

Abbildung 28: Gewichte der FACS-Analyse von männlichen C57BL/6J Mäusen 17 Wochen auf Hochfettdiät

A Körpergewicht, n=24, B Hodenfettgewebsgewicht, n=18; t-Test: * entspricht p≤0,05, ** entspricht p≤0,01, *** entspricht p≤0,001
3. Ergebnisse

Die HFD-Mäuse haben eine mit $p=0,0446$ signifikant höhere CD45$^+$ F4/80$^+$ CD11b$^+$ Makrophagenkonzentration (Abb. 29A) im Hodenfettgewebe als die Mäuse auf Kontrolldiät. Für den Makrophagenanteil bezogen auf die Gesamtzellzahl in der SVF (Abb. 29B) zeigt die HFD-Gruppe mit $p=0,0003$ ebenfalls eine Signifikanz verglichen mit den NC-Mäusen.

Es lässt sich ein Anstieg der F4/80$^+$ CD11b$^+$ Makrophagenkonzentration bei den HFD-Tieren mit 129 Zellen/mg im Vergleich zu den Tieren auf Kontrolldiät mit 76 Zellen/mg feststellen (Abb. 29C). Für die prozentualen Anteile der SVF (Abb. 29D) ergeben sich bei den Makrophagen mit $p=0,0031$ signifikante Unterschiede.

Abbildung 29: Makrophagen der FACS-Analyse von männlichen C57BL/6J Mäusen 17 Wochen auf Hochfettdiät
A Makrophagenkonzentrationen pro mg Hodenfettgewebe, CD45$^+$ F4/80$^+$ CD11b$^+$ B Makrophagenanteil in der SVF, CD45$^+$ F4/80$^+$ CD11b$^+$ C Makrophagenkonzentration pro mg Hodenfettgewebe, F4/80$^+$ CD11b$^+$ D Makrophagenanteil der SVF, F4/80$^+$ CD11b$^+$; A-B n=18 C-D n=12; t-Test: * entspricht $p\leq0,05$, ** entspricht $p\leq0,01$, *** entspricht $p\leq0,001$
3. Ergebnisse

Eine Erhöhung der F4/80⁺ CD11b⁺ CD11c⁺ proinflammatorische Makrophagenkonzentration zwischen HFD und NC ist mit p=0,042 signifikant (Abb. 30C). Für die prozentualen Anteile der SVF (Abb. 30D) ergeben sich jedoch sowohl bei den Makrophagen mit p=0,0031 als auch bei den proinflammatorischen Makrophagen mit p=0,0016 signifikante Unterschiede.

Abbildung 30: proinflammatorische Makrophagen der FACS-Analyse von männlichen C57BL/6J Mäusen 17 Wochen auf Hochfettdiät

A proinflammatorische Makrophagenkonzentration pro mg Hodenfettgewebe, CD45⁺ CD11b⁺ CD11c⁺
B proinflammatorischer Makrophagenanteil in der SVF, CD45⁺ CD11b⁺ CD11c⁺
C proinflammatorische Makrophagenkonzentrationen pro mg Hodenfettgewebe, F4/80⁺ CD11b⁺ CD11c⁺
D Proinflammatorischer Anteil der SVF, F4/80⁺ CD11b⁺ CD11c⁺; n=12, t-Test: * entspricht p≤0,05, ** entspricht p≤0,01, *** entspricht p≤0,001

In diesem verwendeten DIO-Modell mit C57BL/6J-Mäusen zeigt sich eine signifikante Erhöhung der gesamt- und proinflammatorischen Makrophagenkonzentration für die Hochfettdiätgruppe verglichen mit den NC-Tieren.

Auch für die gesamt- und proinflammatorischen Makrophagenanteile ergeben sich signifikante Erhöhungen bei den HFD-Mäusen im Vergleich zu den NC-Tieren.
3. Ergebnisse

3.4 Subchronische Studie eines CCR2-Antagonisten in huCCR2 Mäusen

Der in dieser Studie getestete CCR2-Antagonist ist humanspezifisch und nicht kreuzreaktiv. Aufgrund dessen wurden in diesem Versuch humanisierte CCR2 (huCCR2) Mäuse mit C57BL/6-Hintergrund verwendet.

3.4.1 Leukozyten

Männliche huCCR2 Mäuse wurden ab dem Alter von 7-8 Wochen 11 Wochen lang mit einer 45 % kcal Hochfettdiät (D12451) gefüttert. Die Kontrolltiere bekamen die entsprechende Kontrolldiät mit 10% kcal Fettanteil (D12450B). Ein Teil der Tiere ging für 6 Wochen in ein Substanztreatment (Abb. 34-37), während in einem Versuch vorab mit je sechs Tieren pro Gruppe der Ausgangszustand analysiert wurde (Abb. 31-33).

Der Hodenfettgewichtsunterschied zwischen den NC- mit 1,3 g im Vergleich zu den HFD-Mäusen mit 1,9 g ist mit p=0,0087 signifikant (Abb. 31).

Abbildung 31: Hodenfettgewebsgewicht der FACS-Analyse von männlichen huCCR2 Mäusen nach 11 Wochen Hochfettdiät
n=6, t-Test: * entspricht p≤0,05, ** entspricht p≤0,01, *** entspricht p≤0,001

Abbildung 32: CD45⁺ F4/80⁺ CD11b⁺ Makrophagenkonzentration pro mg Fettgewebe der FACS-Analyse von männlichen huCCR2 Mäusen nach 11 Wochen Hochfettdiät
n=6, t-Test: * entspricht p≤0,05, ** entspricht p≤0,01, *** entspricht p≤0,001
3. Ergebnisse

Bei den CD45\(^+\) CD11b\(^+\) CD11c\(^+\) proinflammatorischen Makrophagen (Abb. 33) kann ebenfalls kein Unterschied festgestellt werden.

Abbildung 33: CD45\(^+\) CD11b\(^+\) CD11c\(^+\) proinflammatorische Makrophagenkonzentration pro mg Fettgewebe der FACS-Analyse von männlichen huCCR2 Mäusen nach 11 Wochen Hochfettdiät n=6, t-Test: * entspricht p≤0,05, ** entspricht p≤0,01, *** entspricht p≤0,001

Zu Beginn der Substanzbehandlung war bei den gesamt- und proinflammatorischen Makrophagenkonzentrationen kein Unterschied zwischen HFD- und NC-Tieren feststellbar, wohingegen in einem vor oralen Glukosetoleranztest eine signifikante Erhöhung des Blutzuckerwertes der HFD-Gruppe im Vergleich zu NC-Tieren ermittelt wurde (Daten nicht gezeigt).
3. Ergebnisse

In der subchronischen Studie in huCCR2-Mäusen eines CCR2-Antagonisten stellt sich das Gewicht des Fettgewebes (Abb. 34) der verschiedenen Gruppen wie erwartet dar. Die Kontrollgruppe auf der Normal chow zeigt mit 0,9 g Signifikanzen zu allen drei Gruppen auf HFD. Während die Kontrolle auf HFD und die Substanzbehandlungs-Gruppe sich mit jeweils 1,6 g Fettgewicht nicht unterscheiden, zeigt sich in der Gruppe mit der Pioglitazon-Behandlung mit 1,7 g eine leichte Erhöhung des Gewichts.

Abbildung 34: Hodenfettgewebsgewicht FACS-Analyse von männlichen huCCR2 Mäusen der subchronischen Studie eines CCR2-Antagonisten
n≥8; One-Way ANOVA mit Dunnett-Test auf HFD Vehikel-Gruppe bezogen, * entspricht p≤0,05, ** entspricht p≤0,01, *** entspricht p≤0,001

Auffällig und entgegen der Erwartungen sind jedoch starke Fettgewebsgewichtsabweichungen innerhalb der Kontrollgruppe auf NC. Diese sind der Tabelle 3 zu entnehmen.

Tabelle 3: Gewichte der Mäuse aus der chronischen Studie eines CCR2-Antagonisten

<table>
<thead>
<tr>
<th>Tiernr.</th>
<th>Normal chow Vehikel [g]</th>
<th>High fat diet 45 % kcal Vehicle [g]</th>
<th>High fat diet 45 % kcal CCR2-Antagonist [g]</th>
<th>High fat diet 45 % kcal Pioglitazon [g]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,61</td>
<td>1,46</td>
<td>1,58</td>
<td>1,49</td>
</tr>
<tr>
<td>2</td>
<td>0,66</td>
<td>1,71</td>
<td>1,59</td>
<td>2,63</td>
</tr>
<tr>
<td>3</td>
<td>0,83</td>
<td>1,66</td>
<td>1,55</td>
<td>2,06</td>
</tr>
<tr>
<td>4</td>
<td>1,66</td>
<td>1,69</td>
<td>-</td>
<td>1,46</td>
</tr>
<tr>
<td>5</td>
<td>1,49</td>
<td>1,75</td>
<td>1,78</td>
<td>2,21</td>
</tr>
<tr>
<td>6</td>
<td>1,30</td>
<td>1,77</td>
<td>1,75</td>
<td>1,90</td>
</tr>
<tr>
<td>7</td>
<td>0,47</td>
<td>1,61</td>
<td>1,84</td>
<td>1,37</td>
</tr>
<tr>
<td>8</td>
<td>0,99</td>
<td>1,84</td>
<td>1,64</td>
<td>1,54</td>
</tr>
<tr>
<td>9</td>
<td>0,69</td>
<td>1,75</td>
<td>1,55</td>
<td>1,19</td>
</tr>
</tbody>
</table>
3. Ergebnisse

Die Tiere 4, 5 und 6 aus der Vehikelgruppe auf NC zeigen ein ähnlich hohes Fettgewebsgewicht wie auch die Tiere der anderen Gruppen auf HFD. Bei näherer Betrachtung der Daten aus der Anfütterungsphase des Versuchs (Daten nicht gezeigt) fällt auf, dass diese Tiere schon bereits vor Substanzbehandlung deutlich mehr Körpergewicht hatten als die anderen Tiere aus der Gruppe. Die großen Gewichtsunterschiede sind jedoch nicht erklärbar.

Die Konzentrationen der CD45$^+$ F4/80$^+$ CD11b$^+$ Makrophagen aus den verschiedenen Gruppen (Abb. 35A) zeigen nicht wie erwartet für die drei Gruppen auf HFD eine Erhöhung im Vergleich zur NC-Gruppe. Die Tiere der Kontrollgruppe auf NC zeigen mit einem Mittelwert von 63 Zellen/mg eine höhere Makrophagenkonzentration als die Tiere auf HFD mit 55 Zellen/mg. Der Standardfehler des Mittelwerts (SEM) ist jedoch auch sehr hoch. Grund hierfür sind die bereits oben erwähnten Versuchstiere 4, 5 und 6 aus der Vehikelgruppe auf NC. Neben dem erhöhten Körper- und Fettgewicht zeigen diese auch erhöhte Werte in der Makrophagenkonzentration. Bei einem Vergleich der drei Gruppen auf HFD untereinander zeigt sich jedoch das erwartete Ergebnis. Die Makrophagenkonzentration verringert sich mit $p \leq 0,05$ signifikant durch die Pioglitazonbehandlung und auch die Behandlung mit dem CCR2-Antagonisten lässt die Tendenz einer verringerten Makrophagenkonzentration im Hodenfettgewebe erkennen.

Der Makrophagenanteil der SVF (Abb. 35B) zeigt aufgrund der drei sehr schweren Versuchstiere 4, 5 und 6 aus der NC-Gruppe ein ähnliches Bild wie die Makrophagenkonzentrationen. Die Kontrollgruppe auf NC ist auch hier mit 21 % höher als die Kontrollgruppe auf HFD mit 19%. Der Makrophagenanteil für die Pioglitazonbehandlung ist verglichen mit der Kontrollgruppe auf HFD mit 13 % signifikant und auch ein Abfall des Makrophagenanteils durch die Behandlung mit dem CCR2-Antagonisten ist mit 16 % erkennbar.

Abbildung 35: CD45$^+$ F4/80$^+$ CD11b$^+$ Makrophagen der FACS-Analyse von männlichen huCCR2 Mäusen der subchronischen Studie eines CCR2-Antagonisten

A Makrophagenkonzentrationen pro mg Hodenfettgewebe, $n \geq 8$ B Makrophagenanteil in der SVF, $n=9$; One-Way ANOVA mit Dunnett-Test auf HFD Vehikel-Gruppe bezogen, * entspricht $p \leq 0,05$, ** entspricht $p \leq 0,01$, *** entspricht $p \leq 0,001$
3. Ergebnisse

Bei der Betrachtung des CD45⁺ CD11b⁺ CD11c⁺ proinflammatorischen Makrophagenanteils in der SVF (Abb. 36B) zeigen sich mit 7-9 % keine Unterschiede zwischen den Gruppen auf HFD. Eine erwartete Reduktion des Makrophagenanteils bei der Kontrollgruppe auf NC entspricht mit einer Erhöhung auf 12 % dem Gegenteil.

3. Ergebnisse

Abbildung 36: Proinflammatorische Makrophagen der FACS-Analyse von männlichen *huCCR2* Mäusen der subchronischen Studie eines CCR2-Antagonisten

A proinflammatorische Makrophagenkonzentration pro mg Hodenfettgewebe, CD45⁺ CD11b⁺ CD11c⁺, n=8
B proinflammatorischer Makrophagenanteil in der SVF, CD45⁺ CD11b⁺ CD11c⁺, n=9
C proinflammatorische Makrophagenkonzentrationen pro mg Hodenfettgewebe, F4/80⁺ CD11b⁺ CD11c⁺, n=3

Pro-inflammatorischer Anteil der Gesamtmakrophagen, F4/80⁺ CD11b⁺ CD11c⁺, n=3; One-Way ANOVA mit Dunnett-Test auf HFD Vehikel-Gruppe bezogen, * entspricht p≤0,05, ** entspricht p≤0,01, *** entspricht p≤0,001

Bei diesem Versuch wird ein proinflammatorischer Anteil der Gesamtmakrophagen berechnet. Dies wird durch das Panel ohne anti-CD45-Antikörper möglich. Beim Anteil der proinflammatorischen Makrophagen (F4/80⁺ CD11b⁺ CD11c⁺) von den Gesamtmakrophagen (F4/80⁺ CD11b⁺) zeigt sich bei den Gruppen ein mit p<0,01 signifikanter Unterschied zwischen NC mit 18 % und HFD mit 36 % (Abb. 37). Auch die Reduktion der inflammatorischen Makrophagen durch die CCR2-Antagonist auf 19 % zeigt mit p<0,01 eine Signifikanz. Pioglitazon zeigt mit 34 % dagegen kaum einen Effekt.

n=3; One-Way ANOVA mit Dunnett-Test auf HFD Vehikel-Gruppe bezogen, * entspricht p≤0,05, ** entspricht p≤0,01, *** entspricht p≤0,001
3. Ergebnisse

Die nach dem Versuch mit C57BL/6J-Mäusen auf HFD erwartete signifikante Erhöhung der gesamt- und proinflammatorischen Makrophagenkonzentration und -anteile kann in diesem Versuch nicht zwischen den HFD-Gruppen und den NC-Tieren festgestellt werden.

Die Positivkontrolle Pioglitazon zeigt die Tendenz die Makrophagenzahlen zu reduzieren und ist für den Makrophagenanteil der SVF sogar verglichen mit der HFD-Kontrollgruppe signifikant.

Der in dieser Studie getestete CCR2-Antagonist zeigt keinen Effekt auf die Makrophagenzahlen.

3.4.2 Blutplasmakonzentration von MCP-1

Im Rahmen des Versuchs wurden verschiedene Cytokinkonzentrationen bestimmt. In Abb. 38 ist exemplarisch die Konzentration des CCR2-Liganden MCP-1 im Blutplasma dargestellt.

Da durch den CCR2-Antagonisten keine Bindung des Liganden MCP-1 an den Receptor CCR2 erfolgt, erhöht sich die Blutplasmakonzentration auf 52 pg/mL bei der mit dem CCR2-Antagonisten behandelten Gruppe signifikant. Alle drei anderen Gruppen sind mit 25-33 pg/mL ungefähr gleich.

Abbildung 38: MCP-1 Konzentration im Blutplasma von männlichen huCCR2 Mäusen der subchronischen Studie eines CCR2-Antagonisten
MSD-Messung, n≥12, One-Way ANOVA mit Dunnett-Test auf HFD Vehikel-Gruppe bezogen, * entspricht p≤0,05, ** entspricht p≤0,01, *** entspricht p≤0,001

MCP-1 ist im Blutplasma der mit dem CCR2-Antagonisten behandelten Gruppe signifikant erhöht.
3. Ergebnisse

3.4.3 Metabolische Parameter

Der Insulintoleranztest (ITT) und der orale Glukosetoleranztest (oGTT) werden in der Diagnose von Diabetes mellitus dazu verwendet, die Wirkung von Insulin im System zu überprüfen. In der subchronischen Studie des CCR2-Antagonisten werden diese beiden Standardtests (siehe Abb. 39-40) dazu verwendet, den systemischen Effekt des CCR2-Antagonisten im Vergleich mit Pioglitazon als Positivkontrolle zu analysieren.

Der zeitliche Verlauf des ITTs in Abb. 39A zeigt deutlich die veränderte Insulinwirkung in der Kontrollgruppe auf HFD verglichen mit der Kontrollgruppe auf NC.

Die Abb. 39B zeigt die durch Integralrechnung ermittelte Flächen unter der in Abb. 39A gezeigten Konzentrations-Zeit-Kurven (area under the curve = AUC). Die erhöhten Blutzuckerwerte nach Insulingabe sind auf die verschlechterte Insulinsensitivität zurückzuführen. Die beiden Substanzgruppen (CCR2-Antagonist und Pioglitazon) zeigen beide einen signifikanten Effekt mit 600 mM x min verglichen mit der Kontrollgruppe auf HFD mit 775 mM x min und sinken damit beinahe auf den Level der Kontrollgruppe auf NC mit 500 mM x min (Abb. 39B).

Abbildung 39: ITT Tag21 in männlichen huCCR2 Mäusen der subchronischen Studie eines CCR2-Antagonisten

A Blutzucker über die Zeit B Fläche unter der Kurve (AUC) n≥12, One-Way ANOVA mit Dunnett-Test auf HFD Vehikel-Gruppe bezogen, * entspricht p≤0,05, ** entspricht p≤0,01, *** entspricht p≤0,001
3. Ergebnisse

Im zeitlichen Verlauf des oGTTs in Abb. 40A ist hingegen kein Unterschied zwischen den beiden Kontrollgruppen erkennbar. Auch bei der Analyse der AUC zeigen beide Gruppen mit ca. 1600 mM x min gleich hohe Werte (Abb. 40B). Bei den beiden Substanzgruppen ist mit 1450 mM x min bei den mit dem CCR2-Anatagonisten behandelten Mäusen und 1600 mM x min bei der Pioglitazongruppe ebenfalls keine Veränderung der Glukosetolleranz feststellbar.

Abbildung 40: oGTT Tag 36 in männlichen huCCR2 Mäusen der subchronischen Studie eines CCR2-Antagonisten
A Blutzucker über die Zeit B Fläche unter der Kurve (AUC); n≥12, One-Way ANOVA mit Dunnett-Test auf HFD Vehikel-Gruppe bezogen, * entspricht p≤0,05, ** entspricht p≤0,01, *** entspricht p≤0,001.

Trotz einer verbesserten Insulinresistenz der Kontrollgruppe auf NC und den Substanzbehandelten Gruppen auf HFD im ITT zeigt sich im oGTT kein Unterschied zwischen den einzelnen Gruppen.
4. Diskussion

4.1 Etablierung einer FACS-Analyse zur Quantifizierung von gesamt- und proinflammatorischen Makrophagen in murinem Fettgewebe

4.1.1 Tandempanel

4.1.2 Kombinationspanel
4. Diskussion

4.1.3 Dreifach-Färbungen

4.1.4 M1/M2-Panel

4. Diskussion

getroffen werden. Die Analyse der M1/M2-Polarisierung wiegt den Mehraufwand durch die Fixierung nicht auf.

Die Aussage über die Anzahl der Gesamtmakrophagen wird über das Makrophagenpanel möglich. Die Aussage über den proinflammatorischen Phänotyp der Makrophagen kann durch das proinflammatorische Makrophagenpanel umgesetzt werden. Dieses proinflammatorische Makrophagenpanel wird auch in anderen Arbeitsgruppen verwendet, was durch Veröffentlichungen deutlich wird (Nguyen et al., 2007). Somit können Fettgewebsproben im Hinblick auf ihren Inflammationsstatus untersucht werden. Dieses Ergebnis erfüllt damit das Ziel einer FACS-Analyse von Leukozyten im murinen Fettgewebe.

4.2 Methodenabgleich

Zur Überprüfung der FACS-Methode werden ob/ob- und db/db-Mäuse im Vergleich mit WT-Tieren (C57BL/6J) sowohl in der Arbeitsgruppe Chavakis an der TU Dresden als auch in der Abteilung CMDR von Boehringer Ingelheim in Biberach analysiert. Dabei werden Makrophagen und ihr proinflammatorischer Phänotyp quantifiziert.

4. Diskussion

Im Bezug auf die Makrophagenkonzentrationsen der ob/ob-Mäuse weichen die Ergebnisse der beiden Versuche voneinander ab. Die Ergebnisse bei den gesamt- und proinflammatorischen Makrophagenanteilen der SVF zeigen für beide genetischen Modelle eine deutliche Erhöhung im Vergleich zu WT-Tieren. Allerdings ist der Unterschied im Vergleich zu WT-Mäusen für das ob/ob- größer als das db/db-Modell, wodurch die ob/ob-Mäuse als Insulinresistenzmodell im Hinblick auf die FACS-Analyse für Substanzbehandlungsversuche gewählt werden sollten.

4.3 Genetische Mausmodelle

In diesem Versuch werden ob/ob- und db/db-Mäuse im Bezug auf ATMs mit WT-Tieren (C57BL/6J) verglichen. Die in diesem Projekt verwendeten C57BL/KsJ-db Mäuse sind insulinresistent, hyperglykämisch und prägen einen Diabetes Typ II aus. Die C57BL/6J-ob Mäuse sind jedoch nur insulinresistent, da die β-Zellen eine Hyperglykämie durch kompensatorische Hyperinsulinämie ausgleichen (Coleman & Hummel, 1974; Kennedy et al., 2010; Srinivasan & Ramarao, 2007). Es wird erwartet, dass die genetischen Mausmodelle, die beide Insulinresistenzen ausprägen, sowohl in gesamt- als auch proinflammtorischen Makrophagenkonzentrationsen und -anteilen erhöht sind.

Der Vergleich der beiden getesteten genetischen Mausmodelle, die beide Insulinresistenzen ausprägen, zeigt eine Erhöhung der gesamt- und proinflammatorischen Makrophagenkonzentrationsen, und auch bei den Makrophagenanteilen bei ob/ob-Mäusen im Vergleich zu db/db-Tieren. Die Makrophagenzahlen korrelieren zudem mit dem Körpergewicht, welches bei den adipösen ob/ob-Mäusen ebenfalls erhöht verglichen mit den db/db-Tieren ist.

Es hat sich gezeigt, dass in den genetischen Modellen die Konzentration der gesamt- und proinflammatorischen Makrophagen, bezogen auf das Fettgewebsgewicht verglichen mit dem Wildtyp, in der Analyse mit den 3er Panels und dem Kombinationspanel, die in der Abteilung CMDRII durchgeführt wurde, (Kap. 3.3.1.2) nicht erhöht ist (Abb. 22A und 23A). Dabei muss jedoch die im FACS-Gerät analysierte Zellfraktion mit einbezogen werden. Denn die SVF entspricht nur den sich im Fettgewebe befindlichen Zellpopulationen. Ausgenommen sind neben Erythrozyten und freien Leukozyten im Blutgefäßsystem auch die Adipozyten. Diese Zellpopulation bildet jedoch das Fettgewebe und ist in ob/ob- und db/db-Tieren stark vergrößert, um die überschüssige Energie in Form von Fett speichern zu können (Xu et al., 2003). Da sich Makrophagen nur in Zellzwischenräumen bewegen, ist die Verteilung der Immunzellen im Fettgewebe von den genetischen Tiermodellen aufgrund dessen anders als bei WT-Mäusen. Die in der SVF gemessenen Makrophagen werden auf
4. Diskussion

das Gewicht des Gesamtfettgewebes bezogen, wobei die SVF nicht dem Fettgewebe selber, sondern nur die sich im Fettgewebe befindlichen Zellen, entspricht. Da das Fettgewebe bei den genetischen Modellen und den WT-Mäusen sich aber im Hinblick auf das Fettgewebsgewicht um ein vielfaches unterscheidet, ist der Vergleich im Hinblick auf die Zellkonzentration daher schwierig. Die Darstellung der Ergebnisse in Zellzahl/mg ist trotzdem wichtig, stellt sie doch multipliziert mit dem Fettgewicht (Abb. 21) eine Absolutzahl an gesamt- und proinflammatorischen Makrophagen dar. Es wird durch erhöhte Makrophagenzahlen im Fettgewebe eine chronische meta-Inflammation ausgelöst, die bei den Adipozyten eine lokale Insulinresistenz auslösen kann.

In Folge der Gendefekte kommt es bei ob/ob- und db/db-Mäusen zu einer Gewichtszunahme mit Entwicklung einer Insulinresistenz. Als Arbeitshypothese für diese Arbeit wird angenommen, dass sich eine entstehende meta-Entzündung in erhöhten gesamt- und proinflammatorischen Makrophagenzahlen im Vergleich zu Wildtyptieren niederschlagen würde. Es konnte in dieser Arbeit gezeigt werden, dass weder für db/db- noch für ob/ob-Mäuse erhöhte gesamt- und proinflammatorische Makrophagenkonzentrationen im Vergleich zu WT-Mäusen nachweisbar sind (Kap. 3.3.1). Im genetischen Mausmodell sollten die Makrophagenkonzentrationen daher nicht als Readout für Substanzeffekte verwendet werden.

Die gesamt- und proinflammatorischen Makrophagenanteile der SVF sind jedoch für db/db- und ob/ob-Mäuse im Vergleich zu WT-Tieren signifikant erhöht (Kap. 3.3.1). Diese Daten sind konsistent zu der Beschreibung eines Versuchs, in dem drei Monate alte ob/ob-Mäuse
4. Diskussion

im Unterschied zu WT-Tieren im selben Alter einen deutlich erhöhten gesamt- und proinflammatorischen Makrophagenanteil aufweisen (Nguyen et al., 2007).

Aufgrund des größeren Unterschieds im Vergleich zu WT-Mäusen bei den gesamt- und proinflammatorischen Makrophagenanteilen der SVF, ist das ob/ob- im Hinblick auf die FACS-Analyse dem db/db-Modell vorzuziehen.

4.4 Das Diät induzierte Adipositas(DIO)-Modell

Da bei DIO-Mäusen die Insulinresistenz ähnlich wie beim Menschen durch hoch kalorische Nahrung induziert ist, könnte nach aktuellem Vorschungsstand eine durch Makrophagen ausgelöste meta-Entzündung im Fettgewebe einen Beitrag zur Entwicklung einer Insulinresistenz leisten. In diesem Projekt konnte gezeigt werden, dass sowohl der gesamt- und proinflammatorische Makrophagenanteil der SVF als auch die gesamt- und proinflammatorische Makrophagenkonzentration bezogen auf das Fettgewicht in HFD-Mäusen im Vergleich zu NC-Tieren signifikant erhöht ist (Kap. 3.3.2). Diese Daten werden durch die Ergebnisse vorangegangener Publikationen gestützt, bei denen F4/80⁺ CD11b⁺ Makrophagen und ihr F4/80⁺ CD11b⁺ CD11c⁺ proinflammatorischer Phänotyp durch HFD bei C57BL/6-Mäusen signifikant erhöht waren (Nguyen et al., 2007; Oh et al., 2012).
4. Diskussion

4.5 Vergleich der Adipositas-Modelle

Die genetischen Insulinresistenzmodelle weisen nur für die gesamt- und proinflammatorischen Makrophagenanteile signifikante Unterschiede im Vergleich zum Wildtyp auf, während sich im DIO-Modell auch die gesamt- und proinflammatorische Makrophagenkonzentration als Parameter für den Test von Substanzeffekten eignet. Dieses Modell bietet zusätzlich den Vorteil auch Wirkstoffe bei gentechnisch veränderten Mäusen testen zu können. Ist eine Substanz humanspezifisch und nicht kreuzreaktiv, kann über die Humanisierung des molekularen Angriffspunkts mit DIO-Modell dennoch eine Substanzbehandlung in Mäusen ohne die Rückkreuzung der Tiere in ein Krankheitsmodell, möglich gemacht werden (so geschehen im CCR2-Versuch).

4. Diskussion

4.6 Erhöhte ATM-Zahlen in adipösen Mäusen

Im Fettgewebe nimmt die Zahl der ATMs mit steigendem Körpergewicht zu. Ihre Anzahl korreliert außerdem mit Werten für Insulinresistenz (Cancello et al., 2005; Weisberg et al., 2003; Xu et al., 2003; Lumeng et al., 2007a). Desweiteren sind ATMs Quelle für proinflammatorische Cytokine wie TNF-α und IL-6, die in der Lage sind die Insulinwirkung in Adipozyten zu inhibieren. Daher stehen sie im Mittelpunkt der Forschung nach einer möglichen Verbindung zwischen Inflammation und Insulinresistenz (Xu et al., 2003; Lumeng et al., 2007a).

Die in dieser Arbeit generierten Daten sowie die Literaturdaten beschreiben eine meta-Inflammation im Fettgewebe von adipösen Mäusen, die sich in einer erhöhten gesamt- und proinflammatorischen Makrophagenanzahl äußert. In späteren Versuchen wird geklärt werden, wie stark die Auswirkung von reduzierten ATM-Zahlen auf metabolische Parameter wie Insulinresistenz ist.
4. Diskussion

4.7 CCR2-Antagonismus als Therapiemöglichkeit für Typ II Diabetes

CCR2 und sein Ligand MCP-1 spielen eine Schlüsselrolle bei der durch M1 Makrophagen ausgelösten Entzündungsantwort. Ausgehend von einer Interaktion der beiden Proteine, die essentiell für die Einwanderung von Monozyten in Gewebe ist, wird eine Reduktion der Fettgewebsmakrophagen durch einen CCR2-Antagonisten erwartet (Weisberg et al., 2006; Anderson et al., 2010; Lumeng et al., 2008; Kanda et al., 2006).

Der in diesem Versuch getestete CCR2-Antagonist ist ein humanspezifischer nicht-kreuzreaktiver Wirkstoff. Aus diesem Grund werden männliche huCCR2 Mäuse verwendet, bei denen der molekulare Angriffspunkt des CCR2-Antagonisten humanisiert wurde. Für die Induzierung einer Adipositas wird den Mäusen eine HFD (D12451) oder als Kontrolle eine entsprechende NC (D12450B) gefüttert. Die Positivkontrolle für die Abnahme der Makrophagenzahlen ist Pioglitazon (Xu et al., 2003). Die Kontrollgruppen auf HFD und NC bekommen einen Vehikel appliziert.

4.7.1 ATM-Zahlen vor Substanzbehandlung

4. Diskussion

4.7.2 Anti-inflammatorische Wirkung von Pioglitazon im DIO-Modell
In einer vorangegangenen Publikation konnte bei HFD-Mäusen eine Reduktion der Makrophagenkonzentration bezogen auf das Fettgewicht sowie eine Verschiebung der Makrophagenpolarisation zum M1 Phänotyp durch Pioglitazonbehandlung festgestellt werden (Fujisaka et al., 2009). In diesem Projekt wurde Pioglitazon daher als Positivkontrolle getestet. Beim Makrophagenanteil in der SVF kann im Versuch ein signifikanter Rückgang der Pioglitazon-behandelten Gruppe gezeigt werden (Abb. 35B). Für die gesamt- und proinflammatorische Makrophagenkonzentration (Abb. 35A und 36A) sowie den proinflammatorischen Makrophagenanteil (Abb. 36B) ist eine Tendenz erkennbar.

4.7.3 CCR2-Antagonismus ohne anti-inflammatorischen Effekt im Hodenfettgewebe
Es konnte bereits gezeigt werden, dass der CCR2-Antagonist Propagermanium die ATM-Akkumulation im Hodenfettgewebe reduziert und die Makrophagenpolarisation von einem proinflammatorischen M1- zu einem M2-Phänotyp in DIO-Mäusen verändert (Tamura et al., 2010). Ähnliche Effekte werden daher auch von dem in diesem Versuch getesteten CCR2-Antagonisten erwartet.

Bei einem CCR2-Antagonismus wird von einer kompetitiven oder nicht-kompetitiven Bindung des CCR2-Antagonisten an CCR2 ausgegangen, die zu einer Erhöhung der MCP-1-Konzentration im Blutplasma führen würde. In der mit dem CCR2-Antagonist behandelten Gruppe ist dieser erhöhte Plasmaspiegel nachweisbar (Kap. 3.4.2), womit die Bindung des getesteten CCR2-Antagonisten an den Rezeptor nachgewiesen ist.

4. Diskussion

4.7.4 Zusammenhang zwischen der Fettgewebs-Inflammation und den metabolischen Parametern in diesem Versuch

Seit dem Jahr 2003 wird in der Forschung von einem Zusammenhang zwischen adipös bedingter Insulinresistenz und einer chronischen Entzündung im Fettgewebe, die sich in Form von einer Akkumulation von Makrophagen im weißen Fettgewebe ausdrückt, ausgegangen (Weisberg et al., 2003; Xu et al., 2003).

Sowohl bei der Kontrollgruppe als auch bei den mit Substanz behandelten Gruppen kann eine verbesserte Insulinintoleranz im ITT an Tag 21 der Substanzbehandlung, die sich durch gesenkte Blutzuckerwerte nach Insulingabe im Vergleich zur Kontrollgruppe auf HFD äußert, festgestellt werden (Abb. 39).

Die Erwartung, beim oGTT eine verbesserte Glukosetolleranz bei der Kontrollgruppe auf NC, verglichen mit der Kontrollgruppe auf HFD zu erzielen, wurde nicht erfüllt. Im oGTT an Tag 36 der Substanzbehandlung (Abb. 40) kann kein Unterschied zwischen den beiden Kontrollgruppen auf NC und HFD festgestellt werden.

In diesem Versuch ist ein Zusammenhang zwischen einer Makrophagenakkumulation und adipös bedingter Insulinresistenz nicht erkennbar. Ein Zusammenhang zwischen metabolischen Parametern in der Diabetes Typ II-Forschung und Makrophagenzahlen als Nachweis für eine Inflammation im Fettgewebe ist nach den in diesem Versuch erarbeiteten Daten jedoch auch nicht auszuschließen.
5. Ausblick

Für weitergehende Forschung könnte die Entwicklung einer FACS-Analysemethode anderer Gewebe (z.B. Leber) aus Mäusen oder auch anderer Spezies (z.B. Ratten) möglich sein. Die in dieser Arbeit entwickelte FACS-Analyse für murine Fettgewebsproben kann dabei die Grundlage für weitere Methoden darstellen.
6. Zusammenfassung

Die etablierte Methode zur Untersuchung des Inflammationsstatus kann einen wertvollen Beitrag zur Wirkstoffentwicklung im Bereich der Diabetes Typ II Forschung leisten. Ein molekularer Angriffspunkt in der durch ATMs ausgelösten meta-Inflammation ist die Leukozytenextravasation, wobei der Rezeptor CCR2 und sein Ligand MCP-1 eine Schlüsselrolle spielen. Ein getester CCR2-Antagonist zeigte keinen Effekt auf die Reduktion der gesamt- und proinflammatorische ATM-Zahlen, was möglicherweise auf kompensatorische Mechanismen im in vivo Modell zurückzuführen ist.

7. Abkürzungsverzeichnis

µL Mikroliter
APC Allophycocyanin
AT Adipose tissue
ATM Adipose tissue macrophage
AUC area under the curve
bid bis in die (lateinisch für: zweimal täglich)
BMI Body mass index
BSP Bruttosozialprodukt
CCL11 C-C Motiv Chemokinrezepor 11
CCL2 MCP-1; C-C Motiv Chemokinligand 2
CCL7 C-C Motiv Chemokinrezepor 7
CCL8 C-C Motiv Chemokinrezepor 8
CCR2 C-C Motiv Chemokinrezepor 2
CMRD Cardio Metabolic Diseases Research
DB diabetische Maus
DIO Diet induced obesity
DPP-4 Dipeptidyl Peptidase 4
E Einheiten
EGF-TM7 epidermal growth factor seven-transmembrane receptor
FACS Fluorescence activated cell sorter
FITC Fluorescein
FMO fluorescence minus one
FSC forwards scatter
g Gramm
g Erdbeschleunigung
GLP-1 Glucagon-like peptide 1
H2O Wasser
HbA1C Glykohämoglobin
HFD Hochfettdiät
i.p. intra peritoneal
IFN Interferon
IKK Inhibitor der κB Kinase
IL-10 Interleukin 10
IL-13 Interleukin 13
IL-1β Interleukin 1β
7. Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-4</td>
<td>Interleukin 4</td>
</tr>
<tr>
<td>IL-6</td>
<td>Interleukin 6</td>
</tr>
<tr>
<td>IL-8</td>
<td>Interleukin 8</td>
</tr>
<tr>
<td>IRS</td>
<td>Insulinrezeptorsubstrat</td>
</tr>
<tr>
<td>ITT</td>
<td>Insulintolleranztest</td>
</tr>
<tr>
<td>JNK</td>
<td>Junk N-terminal Kinase</td>
</tr>
<tr>
<td>kg</td>
<td>Kilogramm</td>
</tr>
<tr>
<td>KO</td>
<td>knock-out</td>
</tr>
<tr>
<td>KRBH</td>
<td>Krebs Ringer Buffer with Hepes</td>
</tr>
<tr>
<td>LPS</td>
<td>Lipopolysaccharide</td>
</tr>
<tr>
<td>M1</td>
<td>klassisch aktivierte Makrophagen</td>
</tr>
<tr>
<td>M2</td>
<td>alternativ aktivierte Makrophagen</td>
</tr>
<tr>
<td>MAC-1</td>
<td>Makrophagen-1 Antigen</td>
</tr>
<tr>
<td>MCP-1</td>
<td>CCL2; monocyte chemotactic protein-1</td>
</tr>
<tr>
<td>mg</td>
<td>Milligramm</td>
</tr>
<tr>
<td>MIF</td>
<td>Makrophagenmigrations-Inhibitionsfaktor</td>
</tr>
<tr>
<td>min</td>
<td>Minute</td>
</tr>
<tr>
<td>mL</td>
<td>Milliliter</td>
</tr>
<tr>
<td>NC</td>
<td>Normal chow</td>
</tr>
<tr>
<td>OB</td>
<td>obesity protein mouse</td>
</tr>
<tr>
<td>oGTT</td>
<td>oraler Glucosetolleranztest</td>
</tr>
<tr>
<td>p.o.</td>
<td>per oral</td>
</tr>
<tr>
<td>PE</td>
<td>Phycoerythrin</td>
</tr>
<tr>
<td>PMT</td>
<td>Photomultiplier tubes</td>
</tr>
<tr>
<td>PPARγ</td>
<td>Peroxisomproliferator aktiverer Rezepor γ</td>
</tr>
<tr>
<td>PTP</td>
<td>Protein Tyrosin Phosphatase</td>
</tr>
<tr>
<td>qd</td>
<td>quaque die (lateinisch für: jeden Tag)</td>
</tr>
<tr>
<td>RT</td>
<td>Raumtemperatur</td>
</tr>
<tr>
<td>rPCR</td>
<td>real time Polymerasekettenreaktion</td>
</tr>
<tr>
<td>SGLT-2</td>
<td>sodium glucose transport protein</td>
</tr>
<tr>
<td>SSC</td>
<td>sideways scatter</td>
</tr>
<tr>
<td>SUR-1</td>
<td>sulfonylurea receptor 1</td>
</tr>
<tr>
<td>SVF</td>
<td>stromal vaskuläre Fraktion</td>
</tr>
<tr>
<td>Th1</td>
<td>T-Helfer 1-Zelle</td>
</tr>
<tr>
<td>Th2</td>
<td>T-Helfer 2-Zelle</td>
</tr>
<tr>
<td>TNF</td>
<td>Tumornekrosisfaktor</td>
</tr>
<tr>
<td>TU</td>
<td>Technische Universität</td>
</tr>
</tbody>
</table>
7. Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA</td>
<td>United States of America</td>
</tr>
<tr>
<td>WHO</td>
<td>World health organisation</td>
</tr>
<tr>
<td>WT</td>
<td>Wildtyp</td>
</tr>
<tr>
<td>z.B.</td>
<td>zum Beispiel</td>
</tr>
</tbody>
</table>
8. Abbildungsverzeichnis

Abbildung 1: Typ II Diabetes weltweit ... VII
Abbildung 2: Evolution von Fettgewebe, Leber und hämatopoetischem System in einzelne Organe bei Säugetieren .. IX
Abbildung 3: Makrophagenpolarisierung in fettleibkeitsinduzierter Insulinresistenz im adipösen Fettgewebe .. XI
Abbildung 4: C57BL/6 und db/db im Alter von 11 Wochen XVII
Abbildung 5: Auswertungsschema ... XXX
Abbildung 6: Fluoreszenzspektrum des Tandempanels (4er Panel) XXXV
Abbildung 7: Gates des Makrophagenpanels mit CD45-PE, F4/80-FITC und CD11b-APC ... XXXVI
Abbildung 8: Isotypkontrolle des Makrophagenpanels mit Rat IgG2b κ-PE, Rat IgG2b-FITC und Rat IgG2b κ-APC .. XXXVII
Abbildung 9: Gates des proinflammatorischen Makrophagenpanels mit CD45-PE, CD11b-APC und CD11c-FITC .. XVIII
Abbildung 10: Isotypkontrolle des proinflammatorischen Makrophagenpanels mit Rat IgG2b κ-PE, Rat IgG2b κ-APC und Hamster IgG1 λ1-FITC .. XXXVIII
Abbildung 12: Isotypkontrolle des Antikörperpanels ohne Anti-CD45-Antikörper mit Rat IgG2b-FITC, Rat IgG2b κ-APC und Hamster IgG1 λ1-PE ... XL
Abbildung 13: Fluoreszenzspektrum des Kombinationspanels (4er Panel) mit FITC, PE, APC und Alexa Fluor700 ... XLI
Abbildung 14: Gates des 4er-Antikörperpanels mit CD45-Alexa700, F4/80-FITC, CD11b-APC und CD11c-PE... XLI
Abbildung 15: Isotypkontrolle des 4er-Antikörperpanels mit Rat IgG2b κ-Alexa700, Rat IgG2b-FITC, Rat IgG2b κ-APC und IgG1 λ1-PE ... XLIII
Abbildung 16: Hodenfettgewebsgewicht der FACS-Analyse in Dresden von 10 Wochen alten männlichen C57BL/6J-, ob/ob- und db/db-Mäusen XLIV
Abbildung 17: F4/80+ CD11b+ Makrophagen aus der FACS-Analyse in Dresden von 10 Wochen alten männlichen C57BL/6J-, ob/ob- und db/db-Mäusen XLV
Abbildung 18: F4/80+ CD11b+ CD11c+ proinflammatorische Makrophagenzahlen aus der FACS-Analyse in Dresden von 10 Wochen alten männlichen C57BL/6J-, ob/ob- und db/db-Mäusen .. XLV
8. Abbildungsverzeichnis

Abbildung 19: F4/80⁺ CD11c⁺ CD206⁻ M2 Makrophagen der FACS-Analyse in Dresden von 10 Wochen alten männlichen C57BL/6J-, ob/ob- und db/db-Mäusen .. XLVI

Abbildung 20: F4/80⁺ CD11c⁺ CD206⁻ M1 Makrophagen der FACS-Analyse in Dresden von 10 Wochen alten männlichen C57BL/6J-, ob/ob- und db/db-Mäusen XLVII

Abbildung 21: Hodenfettgewebsgewicht der FACS-Analyse mit 10 Wochen alten männlichen C57BL/6J-, ob/ob- und db/db-Mäusen ... XLVII

Abbildung 22: Makrophagen der FACS-Analyse mit 10 Wochen alten männlichen C57BL/6J-, ob/ob- und db/db-Mäusen .. XLVIII

Abbildung 23: Proinflammatorische Makrophagen der FACS-Analyse mit 10 Wochen alten männlichen C57BL/6J-, ob/ob- und db/db-Mäusen.. XLIX

Abbildung 24: F4/80⁺ CD11b⁺ CD11c⁺ Proinflammatorischer Anteil der F4/80⁺ CD11b⁺ Gesamtmakrophagen der FACS-Analyse von 10 Wochen alten männlichen C57BL/6, ob/ob- und db/db Mäusen... XL

Abbildung 25: CD45⁺ F4/80⁺ CD11b⁺ Makrophagen der FACS-Analyse mit dem Kombinationspanel in der Abteilung CMDRII mit 10 Wochen alten männlichen C57BL/6J-, ob/ob- und db/db-Mäusen .. LI

Abbildung 26: CD45⁺ F4/80⁺ CD11b⁺ CD11c⁺ proinflammatorische Makrophagen der FACS-Analyse mit dem Kombinationspanel in der Abteilung CMDRII mit 10 Wochen alten männlichen C57BL/6J-, ob/ob- und db/db-Mäusen .. LI

Abb. 27: CD45⁺ F4/80⁺ CD11b⁺ CD11c⁺ proinflammatorischer Makrophagenanteil der CD45⁺ F4/80⁺ CD11b⁺ Gesamtmakrophagen der FACS-Analyse mit Kombinationspanel von 10 Wochen alten männlichen C57BL/6, ob/ob- und db/db Mäusen .. LII

Abbildung 28: Gewichte der FACS-Analyse von männlichen C57BL/6J Mäusen 17 Wochen auf Hochfettdiät.. LII

Abbildung 29: Makrophagen der FACS-Analyse von männlichen C57BL/6J Mäusen 17 Wochen auf Hochfettdiät ... LIV

Abbildung 30: proinflammatorische Makrophagen der FACS-Analyse von männlichen C57BL/6J Mäusen 17 Wochen auf Hochfettdiät .. LIV

Abbildung 31: Hodenfettgewebsgewicht der FACS-Analyse von männlichen huCCR2 Mäusen nach 11 Wochen Hochfettdiät .. LVI

Abbildung 32: CD45⁺ F4/80⁺ CD11b⁺ Makrophagenkonzentration pro mg Fettgewebe der FACS-Analyse von männlichen huCCR2 Mäusen nach 11 Wochen Hochfettdiät LVI

Abbildung 33: CD45⁺ CD11b⁺ CD11c⁺ proinflammatorische Makrophagenkonzentration pro mg Fettgewebe der FACS-Analyse von männlichen huCCR2 Mäusen nach 11 Wochen Hochfettdiät .. LVII

Abbildung 34: Hodenfettgewebsgewicht FACS-Analyse von männlichen huCCR2 Mäusen der subchronischen Studie eines CCR2-Antagonisten ... LVIII
8. Abbildungsverzeichnis

Abbildung 35: CD45⁺ F4/80⁺ CD11b⁺ Makrophagen der FACS-Analyse von männlichen huCCR2 Mäusen der subchronischen Studie eines CCR2-Antagonisten.................................LIX

Abbildung 36: Proinflammatorische Makrophagen der FACS-Analyse von männlichen huCCR2 Mäusen der subchronischen Studie eines CCR2-Antagonisten.................................LXI

Abbildung 38: MCP-1 Konzentration im Blutplasma von männlichen huCCR2 Mäusen der subchronischen Studie eines CCR2-Antagonisten..LXII

Abbildung 39: ITT Tag21 in männlichen huCCR2 Mäusen der subchronischen Studie eines CCR2-Antagonisten ...LXIII

Abbildung 40: oGTT Tag 36 in männlichen huCCR2 Mäusen der subchronischen Studie eines CCR2-Antagonisten..LXIV
9. Tabellenverzeichnis

Tabelle 1: Diabetes/Blutzucker Kriterien und Einstufung (WHO, 2012) .. XVIII

Tabelle 2: Verdünnungen verwendeter Antikörper .. XXVIII

Tabelle 3: Gewichte der Mäuse aus Versuch 12B045 ...LVIII
10. Literaturverzeichnis

10. Literaturverzeichnis

11. Anhang

11.1 Datenblätter der Futtermischungen

11.1.1 Datenblatt des Haltungsfutters

[Image of data sheet]

Maus und Ratte
Souris et rat
Mouse and rat

Inhaltsstoffe	**Substances**	**Major Nutrients**
Trockensubstanz | Matiere sèche | Dry matter 88.0 %
Rohprotein | Protéines brutes | Crude protein 18.5 %
Rohfett | Grassextrakt | Crude fat 4.5 %
Rohfasern | Fibres brutes | Crude fiber 4.5 %
Rohasche | Gendres brutes | Crude ash 6.3 %
NFE | ENK | NFE 54.2 %
Energie | Energie brute | Gross energy 16.1 MJ/kg
Verzehrbare Energie | Energie métabolisée | Metabol. energy 12.2 MJ/kg
Stärke | Amidos | Starch 35.0 %

Aminosäuren	**Acides aminés**	**Amino acids**
Arginin | Arginine | Arginine 1.10 %
Lysin | Lysine | Lysine 1.00 %
Methionin | Méthionine | Methionine 0.39 %
Methionin + Cystein | Méthionine + cystine | Methionine + cystine 0.75 %
Tryptophan | Tryptophane | Tryptophan 0.20 %
Threonin | Théorine | Threonine 0.65 %

Mehrwertstoffe	**Macro-éléments**	**Major mineral elements**
Calcium | Calcium | Calcium 1.05 %
Phosphor | Phosphore | Phosphorus 0.80 %
Magnesium | Magnésium | Magnesium 0.20 %
Kalium | Potassium | Potassium 0.20 %
Kupfer | Cuivre | Copper 14 mg/kg
Kobalt | Cobalt | Cobalt 1 mg/kg
Mangan | Manganèse | Manganese 60 mg/kg
Selen | Sélénium | Selenium 0.3 mg/kg

Spurenelemente	**Oligo-éléments**	**Trace elements**
Eisen | Fer | Iron 250 mg/kg
Zink | Zinc | Zinc 60 mg/kg
Kupfer | Cuivre | Copper 14 mg/kg
Jod | Iode | Iodine 1 mg/kg
Mangan | Manganèse | Manganese 60 mg/kg
Selen | Sélénium | Selenium 0.3 mg/kg

Vitamine	**Vitamines**	**Vitamins**
Vitamin A | Vitamine A | Vitamin A 18.000 (IU)/kg
Vitamin D3 | Vitamine D3 | Vitamin D3 1.000 (IU)/kg
Vitamin E | Vitamine E | Vitamin E 125 mg/kg
Vitamin K | Vitamine K | Vitamin K 8 mg/kg
Vitamin B1 | Vitamine B1 | Vitamin B1 31 mg/kg
Vitamin B2 | Vitamine B2 | Vitamin B2 20 mg/kg
Vitamin B6 | Vitamine B6 | Vitamin B6 16 mg/kg
Vitamin B12 | Vitamine B12 | Vitamin B12 0.05 mg/kg
Niacin | Acide nicotique | Niacin 95 mg/kg
Pantothenäure | Acide pantoténique | Pantothenic acid 40 mg/kg
Folsäure | Acide folique | Fol acid 2 mg/kg
Biotin | Biotine | Biotin 0.24 mg/kg
Cholin | Choline | Choline 2 000 mg/kg
Vitamin C | Vitamine C | Vitamin C 67 mg/kg

Haltung	**Entretien**	**Maintenance**

Rohstoffe	**Ingrédients**	**Ingredients**
Weizen, Gerste, Sojaextraktionsrückstand (NGV), Weizenkleie, Mais (NGV), Geflügelhöscheln, Weizenstärke, Molkennährsubstrat, Sojaöl, Bierhefe, Hafer, Mineralstoffe, Vitamine, Aminosäuren

Bemerkungen	**Remarques**	**Remarks**
- Alleinhaltungsmedium für Mäuse und Ratten, auch für Hamster und Gerbile geeignet
- Angegebenen Gehalte sind berechnete Mittelwerte bezogen auf lufttrockene Substanz vor dem Sterilisierungsverfahren
- Herstellung auf Anfrage für Boehringer Ingelheim Pharma (D)
- Alleinkomplettes Futter für Mäuse und Ratten, auch für Hamster und Gerbile
- Eine Kombination der Inhaltsstoffe führt zu einer besseren Verdauung
- Der Anteil an Mineraldustern ist niedrig

Bestellform	**Conditionnement**	**Delivery form**
Pellets 10 mm edsg | Pellets carrés 10 mm | Pellets 10 mm square
3438 PM S25:
- 25 kg in Papiersäcken
- 25 kg in paper bags

3438 PM B1:
- 25 kg in Big Bags

Grundlast	Mietzettel	Grundlast
3438 PM S25:
- 25 kg in Papiersäcken
- 25 kg in paper bags

KLUS NAFAG | PROVIMI KLUSA AG | CH-4303 Kaiseraugst | Tel. +41 61 816 16 16 | Fax +41 61 816 16 00 | www.kluha-nafag.ch
11. Anhang

11.1.2 Datenblatt der Hochfettdiät

Product Data

<table>
<thead>
<tr>
<th>Description</th>
<th>Rodent Diet with 45% kcal% fat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Used in Research</td>
<td>Obesity, Diabetes</td>
</tr>
<tr>
<td>Packaging</td>
<td>Product is packed in 12.5 kg box. Each box is identified with the product name, description, lot number and expiration date.</td>
</tr>
<tr>
<td>Lead Time</td>
<td>IN-STOCK. Ready for next day shipment.</td>
</tr>
<tr>
<td>Gamma-irradiation</td>
<td>Yes. Add 10 days to delivery time.</td>
</tr>
<tr>
<td>Form</td>
<td>Pellet, Powder, Liquid</td>
</tr>
<tr>
<td>Shelf Life</td>
<td>Most diets require storage in a cool dry environment. Stored correctly they should last 3-6 months.</td>
</tr>
<tr>
<td>Control Diets</td>
<td>D12450B</td>
</tr>
</tbody>
</table>

Formula

<table>
<thead>
<tr>
<th>Formula</th>
<th>D12451</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein</td>
<td>24</td>
</tr>
<tr>
<td>Carbohydrate</td>
<td>41</td>
</tr>
<tr>
<td>Fat</td>
<td>24</td>
</tr>
<tr>
<td>Total kcal/gm</td>
<td>4.73</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>gm</th>
<th>kcal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Casein, 80 Mesh</td>
<td>200</td>
<td>300</td>
</tr>
<tr>
<td>L-Cystine</td>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>Corn Starch</td>
<td>73.8</td>
<td>291</td>
</tr>
<tr>
<td>Maltodextrin 10</td>
<td>100</td>
<td>400</td>
</tr>
<tr>
<td>Sucrose</td>
<td>172.8</td>
<td>693</td>
</tr>
<tr>
<td>Cellulose, BW200</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>Soybean Oil</td>
<td>25</td>
<td>225</td>
</tr>
<tr>
<td>Lard*</td>
<td>177.5</td>
<td>1598</td>
</tr>
<tr>
<td>Mineral Mix S10026</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>Dicalcium Phosphate</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>Calcium Carbonate</td>
<td>5.5</td>
<td>0</td>
</tr>
<tr>
<td>Potassium Citrate, 1 H2O</td>
<td>16.5</td>
<td>0</td>
</tr>
<tr>
<td>Vitamin Mix V10001</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>Choline Bitrate</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>FD&C Red Dye #40</td>
<td>0.05</td>
<td>0</td>
</tr>
</tbody>
</table>

Total 858.15 4057

Formulated by E. A. Ulman, Ph.D., Research Diets, Inc. 8/26/98 and 3/11/99.

*Typical analysis of cholesterol in lard = 0.95 mg/gram.
Cholesterol (mg) 4057 kcal = 168.6
Cholesterol (mg)/kg = 196.5
11. Anhang

11.1.3 Datenblatt der Normaldiät

Product Data

D12450B

Description

Rodent Diet with 10% kcal as fat

Used in Research

Obesity
Diabetes

Packaging

Product is packed in 12.5 kg boxes. Each box is identified with the product name, description, lot number, and expiration date.

Lead Time

IN-STOCK. Ready for next day shipment.

Gamma-Irradiation

Yes. Add 10 days to delivery time.

Form

 Pellet, Powder, Liquid

Shelf Life

Most diets require storage in a cool, dry environment. Stored correctly they should last 3-6 months.

Control Diets

Used as a control diet for D12451 and D12492

Formula

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Protein</th>
<th>Carbohydrate</th>
<th>Fat</th>
<th>Total kcal/gm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>g%</td>
<td>g%</td>
<td>g%</td>
</tr>
<tr>
<td>Casein, 80 Mesh</td>
<td>20.2</td>
<td>97</td>
<td>19.2</td>
<td>20</td>
</tr>
<tr>
<td>L-Cystine</td>
<td>3.0</td>
<td>11</td>
<td>12</td>
<td>3.85</td>
</tr>
<tr>
<td>Corn Starch</td>
<td>31.5</td>
<td>140</td>
<td>1260</td>
<td></td>
</tr>
<tr>
<td>Maltodextrin 10</td>
<td>35.0</td>
<td>140</td>
<td>1400</td>
<td></td>
</tr>
<tr>
<td>Sucrose</td>
<td>35.0</td>
<td>140</td>
<td>1400</td>
<td></td>
</tr>
<tr>
<td>Cellulose, BW200</td>
<td>20.0</td>
<td>820</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Soybean Oil</td>
<td>20.0</td>
<td>820</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Land*</td>
<td>20.0</td>
<td>820</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Mineral Mix SI0026</td>
<td>10.0</td>
<td>410</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Dicalcium Phosphate</td>
<td>10.0</td>
<td>410</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Calcium Carbonate</td>
<td>10.0</td>
<td>410</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Potassium Citrate, 1 H2O</td>
<td>10.0</td>
<td>410</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Vitamin Mix V10001</td>
<td>10.0</td>
<td>410</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Choline Bitartrate</td>
<td>10.0</td>
<td>410</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>FD&C Yellow Dye #5</td>
<td>0.05</td>
<td>2100</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Total 1055.05 4057

*Typical analysis of cholesterol in Land = 0.95 mg/gram.
Cholesterol (mg/kg)4057 kcal = 19
Cholesterol (mg/kg) = 18

Research Diets, Inc.
20 Jules Lane
New Brunswick, NJ 08901
Tel: 732.347.2300
Fax: 732.347.2340
info@researchdiets.com

Copyright © 2002 Research Diets, Inc. All rights reserved. D12450B
11.2 FACS-Protokoll der Arbeitsgruppe Dr. Chavakis an der TU Dresden

Adipocyte and SVF isolation from fat pads

Reference: Carey N. lumeng group (117:175-184, 2007, JCI)

Materials:

- Bovine Serum Albumin - (Sigma, A7030-10g)
- Collagenase type I (Gibco, 17100-017)
- Cell strainer with 100 µm nylon mesh (BD, 352360)
- RBC lysis buffer – (ACK solution, Quality Biological, 118-156-721)
- Buffer I: PBS with 1mM CaCl$_2$ and 0.5 % BSA
- DMEM (high Glukose) including 0.5 % BSA
- FACS buffer (0.1% BSA, 0.1% NaN3, Hanks Balanced Salt Solution-GIBCO-cat: 14175053)

Methods:

- Anaesthesia of mouse with isoflurane and decapitation
- Serum is obtained after centrifugation of blood at 8000rpm for 15 min at 4°C and is stored at -80°C
- Perigonadal and subcutaneous fat pads from C57BL/6 mice fed a (normal diet or) high fat diet are excised (for T-cell analysis lymph node has to be discarded) and put in 3 cm dishes including 1 ml buffer I (some tissues are kept at -80°C for PCR/ WB) on ice.
- Liver samples are harvested; weight is protocolled and frozen at -80 °C for further analysis.
- Femoral muscle is excised and just the weight is protocolled.
* Before putting fat pads in dish, check weight.
- Discard buffer I, mince the tissues finely, transfer to 15 ml tube and add buffer I until 10 ml are reached.
- Tissue suspensions are centrifuged at 500 g (2,000 rpm) and 4°C for 10 minutes to remove erythrocytes and free leukocytes.
11. Anhang

* After centrifugation, we can see the separated fraction, the upper phase is adipose tissue we want and the pellets are erythrocytes and free leukocytes.

* In this time, we prepare a fresh collagenase (2 mg/ml) in DMEM (high Glukose) including 0.5 % BSA depending on tissue weight (1 ml/ tissue g)

- Carefully collect floating tissue using 1 ml tip (the end of tip was cut) and transfer to 15 ml polypropylene tube.

- Collected tissues are resuspended with DMEM (high Glukose) including 0.5% BSA and collagenase and incubated at 37°C for 45 - 60 minutes with shaking (water bath).

- Cell suspension is topped up to 10 ml by adding DMEM medium, filtered through a 100-µm filter and centrifuged at 500 g for 5 minutes to separate floating adipocytes from the SVF pellet.

- After removal or collection of the adipocyte fraction, SVF pellet is resuspended in 0.5 ml RBC Lysis Buffer, incubated for 5 minutes on ice and filled up with 10 ml FACS buffer.

- The erythrocyte-depleted SVF is centrifuged at 500 g for 5 minutes and supernatant is discarded.
FACS analysis of endothelial, leukocyte and macrophage cells from Stromal-Vascular Fraction (SVF)

Materials:

*Anti-CD45-Alexa fluor 488 (BioLegend, clone: 30-F11, cat: 103122)

* Anti-CD45-PE (BD, clone 30-F11, cat: 553081) – just for compensation

*Anti-CD31-APC (eBioscience, clone: 390, cat: 17-0311-82)

*Anti-CD11b-APC (BD, clone: M1/70, cat: 553312)

*Anti-CD11c-APC (Biolegend, clone: N418, cat: 117310)

*Anti-CD11c-PE (BD, clone: HL3, cat: 553802)

*Anti-F4/80-Alexa fluor 488 (eBioscience, clone: BM8, cat: 53-4801-82)

*Anti-CD206/MRC1-PE (Acris, cat: SM1857R) → AB prediluted in aqua bidest: 3 µl/ tube used

*Anti-Gr-1-PE (BD, clone: RB6-8C5, cat: 553128)

*Anti-CD8a-APC (MACS, 130-091-606) → AB prediluted: 2,5 µl/ tube used

*Anti-CD4-FITC (MACS, 130-091-608) → AB prediluted: 2,5 µl/ tube used

*Anti-CD3e-PE (MACS, 130-092-976) → AB prediluted: 2,5 µl/ tube used

*Alexa Fluor 488 Rat IgG2b, k (Isotype Ctrl): BioLegend, # 400625 → 10 µl from 1:100 dilution/ tube

*PE Armenian Hamster IgG (Isotype Ctrl): BioLegend, # 400908

*PE Rat IgG2a (Isotype Ctrl): eBioscience # 12-4321-82

*APC Rat IgG2b, k (Isotype Ctrl): BioLegend, # 400612

*FITC Rat IgG2b (Isotype Ctrl): eBioscience, # 11-4031-81 → 10 µl from 1:100 dilution/ tube

FACS buffer-(0.1% BSA, 0.1% NaN₃, Hanks Balanced Salt Solution-GIBCO-cat: 14025-092)

Blocking antibody-2.4G2 (BD, 553141) - 10 µl are used in each tube (dilution 1:100)

*: if not described else wise above, than 10 µl from 1:40 diluted antibody/ tube are used
11. Anhang

Methods:

- Work on ice. Add 10 µl 2.4G2 (blocking Fc receptor to avoid non specific binding) in each FACS tube.

- Dilute SVF samples in FACS buffer (1500 µl for 11 stainings) and pass it through a cell strainer (40 µm pore size).

- Distribute 100 µl cell suspension in each FACS tube and count cells from remaining volume.

- Add each antibody (multiple stainings are premixed to save time and tips) to FACS tube and incubate for 45 min at 4°C (tubes protected from light)

- Add 250 µl FACS buffer, resuspend the cells and FACS with BD FACS Canto II.

<table>
<thead>
<tr>
<th>Tube Name</th>
<th>Antis/Reagents</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>No Fc-blocker</td>
<td>unstained</td>
</tr>
<tr>
<td>2</td>
<td>FITC Rat IgG2b + PE Armenian Hamster IgG + APC Rat IgG2b</td>
<td>isotype ctrl T-cell staining</td>
</tr>
<tr>
<td>3</td>
<td>Anti-CD8a-APC + Anti-CD4-FITC + Anti-CD3e-PE</td>
<td>T-cells</td>
</tr>
<tr>
<td>4</td>
<td>Alexa Fluor 488 Rat IgG2b + APC Rat IgG2b + PE Armenian Hamster IgG</td>
<td>isotype ctrl further stainings</td>
</tr>
<tr>
<td>5</td>
<td>Anti-F4/80-Alexa fluor 488 + Anti-CD11b-APC + Anti-CD11c-PE</td>
<td>M1 / M2 macrophages</td>
</tr>
<tr>
<td>6</td>
<td>Anti-CD45-Alexa fluor 488 + Anti-CD31-APC</td>
<td>Leukocyte / endothelial cells</td>
</tr>
<tr>
<td>7</td>
<td>Anti-Gr-1-PE + Anti-CD11b-APC</td>
<td>Myeloid derived suppressor cells (MDSC)</td>
</tr>
</tbody>
</table>
11. Anhang

CD206 staining:

1. day:
- Stain cell surface antigen(s) as described (45 min).
- Wash cells with 1 mL FACS buffer and centrifuge at 500 g for 5 min.
- Discard the supernatant and pulse vortex the sample to completely dissociate the pellet.
- Add 200 µl of Foxp3 Fixation/Permeabilization (1:3 diluted) working solution to each tube and pulse vortex.
- Incubate at 4°C or room temperature for 30-60 minutes in the dark. (Mouse samples can be incubated for up to 18 hours at 4°C in the dark).

2. day:
- Add 1 mL of FACS buffer to each tube and centrifuge samples at 300-400 g at room temperature or 4°C for 5 minutes. Discard the supernatant.
- Add the recommended amount of fluorochrome-conjugated antibody for detection of intracellular antigen to cells and incubate in the dark at 4°C for 45 minutes.
- Add 1 mL of FACS buffer to each tube, centrifuge at 300-400xg at room temperature for 5 minutes and discard the supernatant.
- Resuspend stained cells in an appropriate volume of FACS buffer and acquire data on BD FACS Canto II.

<table>
<thead>
<tr>
<th>Tube Name</th>
<th>1. day</th>
<th>2. day</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>No Fc-blocker</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Alexa Fluor 488 Rat IgG2b + APC Rat IgG2b + PE Rat IgG2a</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Anti-F4/80-Alexa fluor 488 + Anti-CD11c-APC</td>
<td>PE Rat IgG2a</td>
</tr>
<tr>
<td>4</td>
<td>Anti-F4/80-Alexa fluor 488 + Anti-CD11c-APC</td>
<td>CD206</td>
</tr>
</tbody>
</table>
Eidesstattliche Erklärung

Ich erkläre hiermit an Eides statt, dass ich die vorliegende Arbeit selbständig und ohne unzulässige fremde Hilfe angefertigt habe.

Die verwendeten Literaturquellen sind im Literaturverzeichnis vollständig zitiert.

Biberach, den 13. November 2012

Unterschrift: __________________________
(Christiane Dickel)

Adresse: Erftweg 95
47807 Krefeld
Danksagung

An dieser Stelle möchte ich mich bei allen bedanken, die zum Gelingen dieser Arbeit beigetragen haben:

Als erstes danke ich Dr. Michael Mark und Dr. Rüdiger Streicher für die Möglichkeit diese Masterarbeit in der Abteilung CardioMetabolic Diseases Research bei Boehringer Ingelheim Pharma GmbH & Co. KG schreiben zu können.

Vor allem danke ich Dr. Andre Broermann für die Betreuung dieser Arbeit vor Ort. Bei diesem hoch motivierten Chef stand mir die Tür immer offen. Außerdem bekam ich von ihm immer die Förderung und Hilfe, die ich gebraucht habe. Seine Begeisterung für die Forschung war ansteckend.

Vielen Dank auch an Prof. Dr. Oliver Ullrich für die unkomplizierte Betreuung der Masterarbeit seitens der HAW Hamburg, die trotz der größeren Entfernung super funktioniert hat.

Desweiteren möchte ich mich herzlich bei allein Mitarbeitern der Abteilung CMDR für ihre umfangreiche Hilfe und Unterstützung bedanken.