Ansatzpunkte für die Modulation der postinflammatorischen Hyperpigmentierung – Rolle des dermalen entzündlichen Infiltrats im Vergleich zur UV-induzierten Pigmentierung

Masterarbeit
im Studiengang Pharmaceutical Biotechnology

zur Erlangung des akademischen Grades Master of Science

vorgelegt von
Kristin Knüppel

Hamburg, 15. April 2013

Gutachter: Prof. Dr. Oliver Ullrich (HAW Hamburg)
Dr. Christoph Smuda (Beiersdorf AG)

Die Masterarbeit wurde betreut und erstellt im Labor Ethnic Skin /Suncare im Arbeitsbereich Research Skin Care der Beiersdorf AG in Hamburg.
Eidesstattliche Erklärung

Ich versichere hiermit, dass ich die Arbeit selbstständig verfasst und nur die angegebenen Quellen und Hilfsmittel verwendet habe. Alle Ausführungen, die anderen Schriften wörtlich oder sinngemäß entnommen wurden, sind unter Angabe der Quellen kenntlich gemacht.

Kristin Knüppel
Danksagung

An dieser Stelle möchte ich mich bei allen Menschen bedanken die zum Gelingen dieser Masterarbeit beigetragen haben.

Mein besonderer Dank gilt Dr. Ludger Kolbe und Dr. Christoph Smuda, die mir die Bearbeitung des interessanten Themas bei der Beiersdorf AG ermöglichten und mich mit umfassender wissenschaftlicher Betreuung unterstützt haben.

Herrn Prof. Dr. Oliver Ullrich danke ich für die wissenschaftliche Begleitung seitens der Hochschule für Angewandte Wissenschaften Hamburg, sowie für die Übernahme der ersten Korrektur dieser Arbeit.

Ganz herzlich bedanken möchte ich mich bei Dr. Sonja Wessel, für die Beantwortung zahlreicher Fragen, neue Anregungen und die Einführung in die Bildauswertung. Vielen Dank für die ständige Diskussions- und Hilfsbereitschaft bei der Beseitigung von aufgetretenen Fragen oder Problemen jeglicher Art.

Ich möchte mich bei den Kollegen und Kolleginnen des Labors Ethnic Skin/ Suncare für die Diskussionen, die stetige Hilfsbereitschaft und die sehr schöne Zeit bei Beiersdorf bedanken.

Mein tiefster Dank gilt meinem Freund Maik, der zu jeder Zeit vorbehaltlos an meiner Seite steht.
Inhaltsverzeichnis

Tabellenverzeichnis .. vii
Abbildungsverzeichnis ... viii
Abkürzungsverzeichnis .. x

1 Einleitung .. 1
1.1 Aufbau und Funktion der menschlichen Haut ... 1
1.2 Grundlagen der Pigmentierung .. 4
1.2.1 Epidermale Melanozyten und Melanin ... 4
1.2.2 Biosynthese von Melanin ... 5
1.2.3 UV-induzierte Pigmentierung ... 6
1.3 Postinflammatorische Hyperpigmentierung .. 8
1.4 Immunologie der Haut ... 9

2 Fragestellung der Arbeit .. 14

3 Material ... 15
3.1 Laborgeräte .. 15
3.2 Verbrauchsmaterialien ... 16
3.3 Chemikalien und Reagenzien .. 17
3.4 Medien und Lösungen .. 18
3.5 Kits .. 20
3.6 Antikörper .. 20
3.7 Software ... 21

4 Methoden .. 23
4.1 Studiendesign des Probenmaterials ... 23
4.1.1 PIH-Studie: Untersuchung der Saugblasen-induzierten postinflammatorischen Hyperpigmentierung (PIH) .. 23
4.1.2 UV-Studie: Untersuchung der UV-induzierten Pigmentierung ... 24
4.2 Histologie und Immunhistochemie .. 26
4.2.1 Fixierung von histologischen Gefrierschnitten .. 26
4.2.2 Automatisierte immunhistochemische Färbung ... 26
4.2.3 Quantifizierung immunhistochemischer Hautdünnschnitte .. 28
<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Bezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.4</td>
<td>Fontana Masson Färbung...29</td>
</tr>
<tr>
<td>4.2.5</td>
<td>Automatisierte Immunfluoreszenz..30</td>
</tr>
<tr>
<td>4.3</td>
<td>Zellbiologische Methoden...31</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Kultivierung der Zellen..31</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Passagieren der Melanozyten...32</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Zellzahlbestimmung..33</td>
</tr>
<tr>
<td>4.3.4</td>
<td>Vitalitätsbestimmung..33</td>
</tr>
<tr>
<td>4.4</td>
<td>Inkubation mit konditionierten HMC1-Medium und Substanzen.......................34</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Mastzellstimulierung und Ernte des konditionierten Mediums.......................34</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Melanozytenbehandlung mit konditionierten Medium und synthetischen Substanzen..34</td>
</tr>
<tr>
<td>4.5</td>
<td>Bestimmung von Histamin in Zellkulturüberständen...................................35</td>
</tr>
<tr>
<td>4.6</td>
<td>Ermittlung des Melaningehalts...35</td>
</tr>
<tr>
<td>4.6.1</td>
<td>Bestimmung des Melaningehalts in histologischen Schnitten.........................35</td>
</tr>
<tr>
<td>4.6.2</td>
<td>Ermittlung des Melaningehalts in kultivierten Melanozyten und Kulturüberständen..37</td>
</tr>
<tr>
<td>4.7</td>
<td>Statistische Auswertung..38</td>
</tr>
<tr>
<td>5</td>
<td>Ergebnisse...40</td>
</tr>
<tr>
<td>5.1</td>
<td>Melaninbildung bei UV-induzierter Pigmentierung.......................................40</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Melaninneubildung nach repetitiver und folgender 1,5-facher erythemaler Bestrahlung..40</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Vergleich der Melaninneusynthese mit in vivo Farbwerten............................42</td>
</tr>
<tr>
<td>5.1.3</td>
<td>Erfassung der Melanogeneseaktivität durch TRP1..43</td>
</tr>
<tr>
<td>5.2</td>
<td>Morphologische Untersuchung UV-induzierter Pigmentierung...........................47</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Charakterisierung der Hyperplasie und Verzapfungsgrad................................47</td>
</tr>
<tr>
<td>5.3</td>
<td>Immunzellstatus in UV-induzierten hyperpigmentierten Hautarealen................48</td>
</tr>
<tr>
<td>5.3.1</td>
<td>CD45 positive Zellen (CD45⁺)..49</td>
</tr>
<tr>
<td>5.3.2</td>
<td>CD14 positive Zellen (CD14⁺)...53</td>
</tr>
<tr>
<td>5.4</td>
<td>Immunzellstatus in Saugblasen-induzierter PIH...56</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Mastzelltryptase positive Zellen..57</td>
</tr>
<tr>
<td>5.4.2</td>
<td>CD66b positive Zellen (CD66b⁺)..60</td>
</tr>
<tr>
<td>Chapter</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>5.5</td>
<td>Lokalisation von Immunzellen in hyperpigmentierter Haut</td>
</tr>
<tr>
<td>5.6</td>
<td>Induzierbarkeit der Pigmentierung durch HMC1-konditioniertes Medium</td>
</tr>
<tr>
<td>5.7</td>
<td>Einfluss von Substanzen auf die Melanogenese</td>
</tr>
<tr>
<td>6</td>
<td>Diskussion</td>
</tr>
<tr>
<td>6.1</td>
<td>Mechanismen der UV-induzierten Pigmentierung</td>
</tr>
<tr>
<td>6.1.1</td>
<td>Melanogeneseaktivität und Melaninneubildung nach repetitiver</td>
</tr>
<tr>
<td></td>
<td>Bestrahlung mit UVA und/oder UVB</td>
</tr>
<tr>
<td>6.1.2</td>
<td>Induzierter Photoschutz der Haut durch repetitive UVA- und/oder UVB-</td>
</tr>
<tr>
<td></td>
<td>Strahlung</td>
</tr>
<tr>
<td>6.1.3</td>
<td>Immun- und Zellstatus nach repetitiver Bestrahlung mit UVA und/oder</td>
</tr>
<tr>
<td></td>
<td>UVB</td>
</tr>
<tr>
<td>6.2</td>
<td>Charakterisierung des dermalen entzündlichen Infiltrats in der PIH</td>
</tr>
<tr>
<td>6.3</td>
<td>Dermales Infiltrat in PIH und UV-induzierter Pigmentierung im Vergleich</td>
</tr>
<tr>
<td>6.4</td>
<td>Untersuchungen zur Modulation der Pigmentierung in vitro</td>
</tr>
<tr>
<td>7</td>
<td>Zusammenfassung</td>
</tr>
<tr>
<td>8</td>
<td>Literaturverzeichnis</td>
</tr>
</tbody>
</table>
Tabellenverzeichnis

Tabelle 3.1: Laborgeräteliste ... 15
Tabelle 3.2: Verbrauchsmaterial .. 16
Tabelle 3.3: Liste der verwendeten Chemikalien und Reagenzien 17
Tabelle 3.4: IHC Waschpuffer Ansatz für 1 Liter 18
Tabelle 3.5: Silbernitratlösung 10% ... 18
Tabelle 3.6: Fontana Silbernitrat-Stocklösung ... 19
Tabelle 3.7: Fontana Silbernitratlösung .. 19
Tabelle 3.8: Eosinlösung 1% ... 19
Tabelle 3.9: Stopp-Lösung .. 19
Tabelle 3.10: Melanozyten Kulturmedium .. 19
Tabelle 3.11: Mastzellmedium (IMDM+) ... 20
Tabelle 3.12: Verwendete Kits .. 20
Tabelle 3.13: Primärantikörper .. 20
Tabelle 3.14: Sekundärantikörper ... 21
Tabelle 3.15: Verwendete Software ... 21
Tabelle 4.1: Immunhistochemisches Färbeprotokoll am Dako Autostainer Plus 27
Tabelle 4.2: Färbeprotokoll Fontana Masson Färbung 30
Tabelle 4.3: Immunfluoreszenz-Färbeprotokoll am Dako Autostainer Plus 31
Tabelle 4.4: Verwendete Volumina für das Passagieren von Melanozyten aus einem 175 cm² Kulturgefäß .. 32
Tabelle 4.5: Verwendete Volumina für das Trypsinieren von Melanozyten aus 6-Loch-Platten .. 32
Tabelle 5.1: Verwendete Antikörperkombinationen, Filter und Pseudofarben für IF-Übersichtsfärbung ... 62
Abbildungsverzeichnis

Abbildung 1.1: Aufbau der menschlichen Haut ... 2
Abbildung 1.2: Synthesewege der Melanogenese in Melanosomen 6
Abbildung 4.1: Schematische Darstellung der Arealanordnung in der PIH Studie 24
Abbildung 4.2: Studiendesign der Saugblasen-induzierten PIH 24
Abbildung 4.3: Schematische Darstellung der Arealanordnung in der UV-Studie 25
Abbildung 4.4: Studiendesign der UV-induzierten Pigmentierung 25
Abbildung 4.5: Ausschnitt eines mit NuclearQuant quantifizierten Hautdünnschnittes ... 29
Abbildung 4.6: Versuchsaufbau zur Stimulierung von HMC1-Zellen 34
Abbildung 4.7: Versuchsaufbau für die Behandlung von Melanozyten mit konditioniertem HMC1-Medium und Substanzen 35
Abbildung 4.8: Melaninquantifizierung mit ImageJ an Fontana Masson gefärbten Hautschnitten ... 37
Abbildung 5.1: Neusynthese von Melanin nach repetitiver Bestrahlung und 1,5 MED SSR ... 41
Abbildung 5.2: Unterschiedliche Melaninverteilung in der Epidermis als Ursache für starke Streuung der Ergebnisse ... 42
Abbildung 5.3: Gegenüberstellung von MelInd und histologisch quantifiziertem Melanin ... 43
Abbildung 5.4: Gegenüberstellung von Melanineusynthese und Melanogeneseaktivität 7 Tage nach repetitiver Bestrahlung 45
Abbildung 5.5: Gegenüberstellung von Melanineusynthese und Melanogeneseaktivität nach 1,5 MED SSR ... 46
Abbildung 5.6: Entwicklung der mittleren Epidermisdicke bei UV-induzierter Pigmentierung .. 48
Abbildung 5.7: Gesamtzellzahl nach repetitiver Bestrahlung 50
Abbildung 5.8: CD45 positive Zellen nach repetitiver Bestrahlung 51
Abbildung 5.9: Vergleich CD45+ Zellen mit der Melanineusneubildung nach repetitiver Bestrahlung ... 52
Abbildung 5.10: Exemplarische Färbung CD45+ Zellen ... 53
Abbildung 5.11: Gesamtzellzahl nach repetitiver Bestrahlung 54
Abbildung 5.12: CD14 positive Zellen nach repetitiver Bestrahlung 55
Abbildung 5.13: Exemplarische Färbung CD14+ Zellen ... 56
Abbildung 5.14: Entwicklung der Gesamtzellzahl bei Saugblasen-induzierter Pigmentierung .. 58
Abbildung 5.15: Mastzelltryptase positive Zellen in Saugblasen-induzierter Pigmentierung ... 59
Abbildung 5.16: Exemplarische Färbung Mastzelltryptase+ Zellen 60
Abbildung 5.17: Exemplarische Färbung CD66b+ Zellen 61
Abbildung 5.18: Cofärbung von CD45 positiven, Mastzelltryptase positiven und CD14 positiven Zellen; Mosaikaufnahme von der Immunzellverteilung in einem hyperpigmentierten Areal 63
Abbildung 5.19: Cofärbung von CD45 positiven, Mastzelltryptase positiven und CD14 positiven Zellen in hyperpigmentierten Arealen; Unterschiede der Immunzellzahl zweier Probanden 64
Abbildung 5.20: Histaminkonzentration im Kulturüberstand von Melanozyten behandelt mit konditioniertem HMC1-Medium 66
Abbildung 5.21: Melaningehalt im Kulturüberstand und in den Melanozyten nach Behandlung mit konditioniertem HMC1-Medium 67
Abbildung 5.22: Histaminkonzentration im Kulturüberstand von Melanozyten nach der Behandlung mit Substanzen .. 68
Abbildung 5.23: Melaningehalt im Kulturüberstand und in den Melanozyten nach Behandlung mit synthetischen Substanzen 69
Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>Prozent</td>
</tr>
<tr>
<td>*</td>
<td>Signifikant (p ≤ 0,05)</td>
</tr>
<tr>
<td>**</td>
<td>Sehr signifikant (p ≤ 0,01)</td>
</tr>
<tr>
<td>***</td>
<td>Höchst signifikant (p ≤ 0,001)</td>
</tr>
<tr>
<td>°C</td>
<td>Grad Celsius</td>
</tr>
<tr>
<td>µl</td>
<td>Mikroliter</td>
</tr>
<tr>
<td>µm</td>
<td>Mikrometer</td>
</tr>
<tr>
<td>µM</td>
<td>Mikromolar</td>
</tr>
<tr>
<td>64PP</td>
<td>6,4-Photoprodukt</td>
</tr>
<tr>
<td>AK</td>
<td>Antikörper</td>
</tr>
<tr>
<td>AKV</td>
<td>Antikörperverdünner</td>
</tr>
<tr>
<td>APAAP</td>
<td>Alkalische Phosphatase anti-alkalische Phosphatase</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovines Serumalbumin</td>
</tr>
<tr>
<td>bzw.</td>
<td>Beziehungsweise</td>
</tr>
<tr>
<td>ca.</td>
<td>Circa</td>
</tr>
<tr>
<td>cm²</td>
<td>Quadratzentimeter</td>
</tr>
<tr>
<td>CPD</td>
<td>Cyclobutan Pyrimidin Dimer</td>
</tr>
<tr>
<td>d</td>
<td>Tag</td>
</tr>
<tr>
<td>DAPI</td>
<td>4,5-Diamidin-2-phenylindol</td>
</tr>
<tr>
<td>DCT</td>
<td>DOPAchromautomerase</td>
</tr>
<tr>
<td>ddH₂O</td>
<td>Bidestiliertes Wasser</td>
</tr>
<tr>
<td>DHI</td>
<td>5,6-Dihydroxyidol</td>
</tr>
<tr>
<td>DHICA</td>
<td>5,6-Dihydroxyidol-2-Carbonsäure</td>
</tr>
<tr>
<td>DNA</td>
<td>Desoxyribonucleinsäure</td>
</tr>
<tr>
<td>DOPA</td>
<td>3,4-Dihydroxyphenylalanin</td>
</tr>
<tr>
<td>DT</td>
<td>Delayed tanning</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme-linked immunosorbent assay</td>
</tr>
<tr>
<td>et al.</td>
<td>Latein: und andere</td>
</tr>
<tr>
<td>FCS</td>
<td>Fetales Kälberserum</td>
</tr>
<tr>
<td>g</td>
<td>Gramm und Gravitation</td>
</tr>
<tr>
<td>GPI</td>
<td>Glycosyl-Phosphatidylinositol</td>
</tr>
<tr>
<td>h</td>
<td>Stunde</td>
</tr>
<tr>
<td>HbInd</td>
<td>Hämoglobin-Index</td>
</tr>
<tr>
<td>HMC1</td>
<td>Human mast cell 1</td>
</tr>
<tr>
<td>HPLC</td>
<td>Hochleistungsflüssigkeitschromatographie</td>
</tr>
<tr>
<td>IF</td>
<td>Immunfluoreszenz</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>IHC</td>
<td>Immunhistochemie</td>
</tr>
<tr>
<td>IMDM</td>
<td>Iscove’s Modified Dulbecco’s Medium</td>
</tr>
<tr>
<td>in vitro</td>
<td>Latein: im Glas</td>
</tr>
<tr>
<td>in vivo</td>
<td>Latein: im Lebendigen</td>
</tr>
<tr>
<td>IPD</td>
<td>Immediate pigment darkening</td>
</tr>
<tr>
<td>K</td>
<td>Kontrolle</td>
</tr>
<tr>
<td>l</td>
<td>Liter</td>
</tr>
<tr>
<td>LDH</td>
<td>Laktatdehydrogenase</td>
</tr>
<tr>
<td>M</td>
<td>Molar, mol pro Liter</td>
</tr>
<tr>
<td>MBM</td>
<td>Melanocyte Basal Medium</td>
</tr>
<tr>
<td>MED</td>
<td>Minimale erythemale Dosis</td>
</tr>
<tr>
<td>MelInd</td>
<td>Melanin-Index</td>
</tr>
<tr>
<td>MGM</td>
<td>Melanocyte Growth Medium</td>
</tr>
<tr>
<td>min</td>
<td>Minute</td>
</tr>
<tr>
<td>MITF</td>
<td>Microphthalmie-assoziiertes Transkriptionsfaktor</td>
</tr>
<tr>
<td>ml</td>
<td>Milliliter</td>
</tr>
<tr>
<td>mm</td>
<td>Millimeter</td>
</tr>
<tr>
<td>n</td>
<td>Stichprobenumfang</td>
</tr>
<tr>
<td>n.s.</td>
<td>Nicht signifikant (p > 0,05)</td>
</tr>
<tr>
<td>NaOH</td>
<td>Natriumhydroxid</td>
</tr>
<tr>
<td>ng</td>
<td>Nanogramm</td>
</tr>
<tr>
<td>NGF</td>
<td>Nerve Growth Factor</td>
</tr>
<tr>
<td>nm</td>
<td>Nanometer</td>
</tr>
<tr>
<td>OT</td>
<td>Objektträger</td>
</tr>
<tr>
<td>p</td>
<td>Signifikanzwert</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffered saline</td>
</tr>
<tr>
<td>PI</td>
<td>Proidiumjodid</td>
</tr>
<tr>
<td>PIH</td>
<td>Postinflammatorische Hyperpigmentierung</td>
</tr>
<tr>
<td>PPD</td>
<td>Persistent pigment darkening</td>
</tr>
<tr>
<td>R</td>
<td>Korrelationskoeffizient</td>
</tr>
<tr>
<td>Ref</td>
<td>Referenz</td>
</tr>
<tr>
<td>rep. Irr</td>
<td>Repetitive Bestrahlung</td>
</tr>
<tr>
<td>ROI</td>
<td>Region of interest</td>
</tr>
<tr>
<td>rpm</td>
<td>Umdrehungen pro Minute</td>
</tr>
<tr>
<td>RT</td>
<td>Raumtemperatur</td>
</tr>
<tr>
<td>SB</td>
<td>Saugblase</td>
</tr>
<tr>
<td>SP</td>
<td>Substanz P</td>
</tr>
<tr>
<td>SSR</td>
<td>Sonnensimuliertes Licht</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Deutscher Begriff</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------</td>
</tr>
<tr>
<td>TRP oder TYRP</td>
<td>Tyrosinase-assoziierte-Protein</td>
</tr>
<tr>
<td>TYR</td>
<td>Tyrosinase</td>
</tr>
<tr>
<td>upm</td>
<td>Units pro Minute</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolett</td>
</tr>
<tr>
<td>vgl.</td>
<td>Vergleiche</td>
</tr>
<tr>
<td>w/o</td>
<td>Without</td>
</tr>
<tr>
<td>z.B.</td>
<td>Zum Beispiel</td>
</tr>
</tbody>
</table>
1 Einleitung

1.1 Aufbau und Funktion der menschlichen Haut

Die Haut ist die äußerste Abgrenzung des menschlichen Körpers gegenüber der Umwelt. Aufgrund einer durchschnittlichen Oberfläche von 1,5 bis 2 m² und einem Massenanteil von 15 % des Körpergewichts, ist sie das größte und schwerste Organ des menschlichen Körpers (Butnaru und Kanitakis, 2002). Äußeren Einflüssen, mechanischer, chemischer, thermischer oder auch mikrobieller Art, steht die Haut als Schutzbarriere mit einer durchschnittlichen Stärke von 2,5 mm gegenüber (Tobin, 2006). Vor allem die äußerste Hautschicht (Epidermis), die im unmittelbaren Kontakt zur Außenwelt steht, trägt einen großen Anteil zur Schutzfunktion bei. Als Sinnesorgan beherbergt die Haut eine Reihe von Sinneszellen, wie die Mechanorezeptoren für Druck (Merkel-Zellen), Berührung (Meissner-Körperchen) und Vibration (Vater-Pacini-Körperchen) sowie Temperatur- und Schmerzrezeptoren. Wichtige Funktionen der Haut sind die Fähigkeit zur Pigmentierung, als Prävention vor ultravioletter (UV) Strahlung, und die Eigenschaft zum immunologischen Schutz. Zusätzlich ist sie an einer Vielzahl weiterer Funktionen wie Gasaustausch, der Regulation des Elektrolythaushaltes und der Körpertemperatur beteiligt.

Generell lässt sich die Haut in drei Bereiche gliedern. Die Epidermis (Oberhaut) als äußerste Hautschicht, gefolgt von der Dermis (Lederhaut) und abschließend die Subkutis (Unterhaut). Sogenannte Hautanhangsgebilde, wie Haare, Drüsen und Nägel, sind funktionell ebenfalls der Haut zugeordnet. In Abbildung 1.1 ist der Aufbau der Haut mit der Einteilung der Schichten und den enthaltenen Hautanhangsgebilden schematisch dargestellt.

Abhängig von der Hautregion weist die Epidermis eine Dicke von 0,04 bis 1,2 mm auf. Sie ist ein mehrschichtiges, verhornetes Plattenepithel, das sich in fünf Schichten gliedern lässt. Die Schichten bestehen zu 90 % aus Keratinozyten unterschiedlicher
Differenzierungsstadien, diese unterscheiden sich mikroskopisch in Form und Funktion.

Abbildung 1.1: Aufbau der menschlichen Haut
Schematischer Querschnitt der menschlichen Haut. Einteilung in die drei Schichten Epidermis, Dermis und Subcutis. Der vergrößerte Ausschnitt (rechts) zeigt die unterschiedlichen Schichten der Epidermis. In der Basalzellschicht der Epidermis (Stratum basale) befinden sich die Melanin bildenden Melanozyten. (modifiziert nach Informationsprospekt Eucerin®, Beiersdorf AG, Hamburg)

Die unterste Schicht der Epidermis wird als Stratum basale (Basalzellschicht) bezeichnet. In der Basalzellschicht tragen die Keratinozyten zur kontinuierlichen Erneuerung des epidermalen Gewebes, durch eine hohe mitotische Aktivität, bei. Es handelt sich hierbei um eine asymmetrische Teilung, bei der sich eine der durch Mitose entstehenden Tochterzellen erneut teilt, während die zweite in ca. 30 Tagen zur Hautoberfläche wandert (Schoppmeyer, 2007). Neben den kleinen, mit ihrer Längsachse senkrecht zum dermoepidermalen Übergang stehenden Keratinozyten, befinden sich hier die pigmentbildenden Melanozyten und Merkel-Zellen. Im Stratum spinosum (Stachelzellschicht) bilden die Keratinozyten vergrößerte, runde Zellkörper aus. Die horizontal orientierten Zellen sind über stachelförmige Fortsätze (Desmosomen) verbunden, die ihnen die Kommunikation miteinander ermöglichen.

1.2 Grundlagen der Pigmentierung

1.2.1 Epidermale Melanozyten und Melanin

1.2.2 Biosynthese von Melanin

Die Synthesewege der Melanogenese sind schematisch in Abbildung 1.2 dargestellt.

Abbildung 1.2: Synthesewege der Melanogenese in Melanosomen
Bildung von Eumelanin (DHI und DHICA) und Phäomelanin aus L-Tyrosin, mittels Tyrosinase, TYRP1 und DCT in Melanosomen (modifiziert nach Kondo und Hearing, 2011)

1.2.3 UV-induzierte Pigmentierung
Durch äußere und innere Einflüsse kann sich die konstitutive Pigmentierung der Haut ändern. Die UV-Strahlung der Sonne stellt einen bedeutenden Faktor für die Induktion von Pigmentierung dar. Das UV-Licht wird in drei Bereiche (UVA: 320-
400 nm, UVB: 280-320 nm und UVC: 200-280 nm) unterschieden und ist Teil des elektromagnetischen Spektrums. Der Einfluss von UVC-Strahlung auf die Haut ist limitiert, da kurzwelliges Licht von der Ozonschicht in der Stratosphäre absorbiert wird (Clydesdale et al., 2001). Etwa 5 bis 10 % der auf der Erde auftreffenden Strahlung ist ultraviolett Ursprungs, der größere Anteil des Lichtes besteht aus sichtbarem Licht (40 %) und Infrarotstrahlung (50 %). Gegenwärtig wird UVB-Strahlung zu ca. 90 % durch die Ozonschicht zurückgehalten (abhängig von der geographischen Lage und Tageszeit), dadurch besteht die auf die Erdoberfläche eintreffende UV-Strahlung zu 95 % aus UVA-Anteilen. Die Eindringtiefe in die Haut nimmt mit steigender Wellenlänge zu. So erreichen etwa 19-50 % der UVA- und 9-14 % der UVB-Strahlung die Melanozyten in der Basalzellschicht. UVA-Strahlung dringt bis in die Dermis ein (Maverakis et al., 2010). Auf Grund des inversen Zusammenhangs zwischen dem Energiegehalt der Strahlung und der Wellenlänge weist UVA-Strahlung einen 1000-fach niedrigeren Erythem-(Sonnenbrand)-produzierenden Effekt auf, als der des UVB-Anteils, der in erster Linie für die Schädigung der Haut verantwortlich ist. Die individuelle Dosis, die zur Ausbildung einer erythemalen Reaktion führt, wird als MED (minimale erythemale Dosis) bezeichnet (Clydesdale et al., 2001).

1.3 Postinflammatorische Hyperpigmentierung
Zu den bekanntesten, erworbenen Hyperpigmentierungen zählen Melasma, der Altersfleck und die postinflammatorische Hyperpigmentierung (PIH). Bereits geringe Änderungen im physiologischen Status des menschlichen Organismus oder der Einfluss von gefährdenden, externen Faktoren können die Pigmentierung zeitweilig (z.B. durch die Schwangerschaft) oder anhaltend (z.B. durch chronische UV-Exposition) beeinflussen.

1.4 Immunologie der Haut
Als schützende Grenzschicht zwischen dem Körperinneren und der Umwelt ist die Haut Toxinen, pathogenen Erregern und physikalischen Stress ausgesetzt. Um diesen Einflüssen entgegenzuwirken, agiert die Haut nicht nur als physikalische
Einleitung

T- und B-Zellen

Monozyten

Endothels. Als Reaktion auf Entzündungssignale wandern Monozyten zum Ort der Infektion im betreffenden Gewebe, leiten die Phagozytose von fremden Substanzen ein und initiieren eine frühe Immunantwort durch Rekrutierung von Neutrophilen (Granulozyten) und anderen polymorphkernigen Leukozyten (Zhou et al., 2012).

Dendritische Zellen

Makrophagen

Mastzellen
Mastzellen sind als Effektorzellen von allergischen Sofort-Typ-Reaktionen bekannt. Innerhalb der letzten Dekade wurden experimentelle Hinweise erhalten, die
Granulozyten
2 Fragestellung der Arbeit

Die postinflammatorische Hyperpigmentierung (PIH) ist eine reaktive Hypermelanose und eine Folgeerscheinung von einer Vielzahl an entzündlichen Hautzuständen. Medizinisch stellt die PIH keine Gefährdung dar, kann aber negative Auswirkungen auf die Lebensqualität von betroffenen Patienten haben. Die Fehlpigmentierung ist für die Betroffenen ein kosmetisches Problem, vor allem wenn sich die Pigmentstörung im Gesicht oder anderen exponierten Hautpartien befindet.

Die Ergebnisse dieser Arbeit sollen helfen, grundlegende Mechanismen der PIH aufzuklären, um mögliche Ansatzpunkte zur Modulation abzuleiten.

Ein weiterer Fokus lag auf der Untersuchung der Wirkung von konditionierten HMC1-Medium auf die Melanogenese von Melanozyten in vitro, da melanogene Einflussfaktoren durch Mastzellen und deren Mediatoren vermutet werden.
3 Material

3.1 Laborgeräte

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Typ/ Ausführung</th>
<th>Hersteller/ Bezugsquelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absaugpumpe</td>
<td>Vacusafe comfort</td>
<td>IBS Integra Biosciences, Chur (Schweiz)</td>
</tr>
<tr>
<td>Analysenwaage</td>
<td>CP225 D</td>
<td>Sartorius, Göttingen</td>
</tr>
<tr>
<td>Autoklav</td>
<td>Technoclav</td>
<td>IBS Integra Biosciences, Chur (Schweiz)</td>
</tr>
<tr>
<td></td>
<td>Varioklav 135</td>
<td>SH+P, Oberschleißheim</td>
</tr>
<tr>
<td>Autostainer</td>
<td>Plus</td>
<td>Dako, Hamburg</td>
</tr>
<tr>
<td>Digitalkamera</td>
<td>PowerShot G10</td>
<td>Canon, Deutschland</td>
</tr>
<tr>
<td>Eindeckautomat</td>
<td>CV5030</td>
<td>Leica, Nussloch</td>
</tr>
<tr>
<td>Inkubator</td>
<td>HERAcell 150</td>
<td>Heraeus, Hanau</td>
</tr>
<tr>
<td>Kühlgerät</td>
<td>-196°C Cryostorage System K10</td>
<td>Taylor-Wharton, Theodor, AL (USA)</td>
</tr>
<tr>
<td></td>
<td>-80°C ultra low temperature</td>
<td>New Brunswick Scientific, NJ (USA)</td>
</tr>
<tr>
<td></td>
<td>freezer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kühlkombination -20°C, +4°C</td>
<td>Handelsübliche Geräte</td>
</tr>
<tr>
<td>Laborwaage</td>
<td>3713MP</td>
<td>Sartorius, Göttingen</td>
</tr>
<tr>
<td>Magnetrührer</td>
<td>MR 2002</td>
<td>Heidolph, Kehlheim</td>
</tr>
<tr>
<td></td>
<td>MR 3001</td>
<td>Heidolph, Kehlheim</td>
</tr>
<tr>
<td>Mehrkanalpipette</td>
<td>8 Kanal, 30-300µl</td>
<td>Eppendorf, Hamburg</td>
</tr>
<tr>
<td>Mikropipette</td>
<td>0,1-2,5µl</td>
<td>Eppendorf, Hamburg</td>
</tr>
<tr>
<td></td>
<td>0,5-10µl</td>
<td>Eppendorf, Hamburg</td>
</tr>
<tr>
<td></td>
<td>100-1000µl</td>
<td>Eppendorf, Hamburg</td>
</tr>
<tr>
<td></td>
<td>10-100µl</td>
<td>Eppendorf, Hamburg</td>
</tr>
<tr>
<td></td>
<td>20-200µl</td>
<td>Eppendorf, Hamburg</td>
</tr>
<tr>
<td></td>
<td>2-20µl</td>
<td>Eppendorf, Hamburg</td>
</tr>
<tr>
<td>Mikroplattenlesegerät</td>
<td>Safire²</td>
<td>Tecan, Crailsheim</td>
</tr>
<tr>
<td>Mikroskop</td>
<td>Axiovert 25</td>
<td>Zeiss, Göttingen</td>
</tr>
</tbody>
</table>
Verbrauchsmaterialien

Tabelle 3.2: Verbrauchsmaterial

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Hersteller/ Bezugsquelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-Loch-Platten</td>
<td>Greiner, Nürtingen</td>
</tr>
<tr>
<td>96-Loch-Platten</td>
<td>Greiner, Nürtingen</td>
</tr>
<tr>
<td>Gewebekulturflaschen 75, 175 cm²</td>
<td>Nunc, Roskilde (Dänemark)</td>
</tr>
<tr>
<td>KryoVials™ 2 ml</td>
<td>Nunc, Wiesbaden</td>
</tr>
</tbody>
</table>
Bezeichnung | Hersteller/ Bezugsquelle
--- | ---
Mikroreaktionsgefäße 1,5 ml | Eppendorf, Hamburg
Mikroreaktionsgefäße 2 ml | Eppendorf, Hamburg
NucleoCassette | ChemoMetec, Allerod (Dänemark)
Objekträger SuperFrost Ultra Plus | Menzel-Gläser, Braunschweig
Pasteurpipetten | VWR, Darmstadt
Pipettenspitzen | Eppendorf, Hamburg
Suspensionskulturflaschen 645 ml | Nunc, Roskilde (Dänemark)
Zentrifugenröhrchen 50 ml | BD, Heidelberg

3.3 Chemikalien und Reagenzien

Tabelle 3.3: Liste der verwendeten Chemikalien und Reagenzien

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aceton</td>
<td>Merck, Darmstadt</td>
</tr>
<tr>
<td>Ammoniumhydroxidlösung 28%</td>
<td>Sigma-Aldrich, München</td>
</tr>
<tr>
<td>Antibiotic Supplement</td>
<td>CellSystems, St. Katharinen</td>
</tr>
<tr>
<td>Antikörper-Verdünnungspuffer</td>
<td>DCS, Hamburg</td>
</tr>
<tr>
<td>BSA-Block</td>
<td>Candor, Wangen</td>
</tr>
<tr>
<td>Common AB Diluent</td>
<td>Biogenex (USA)</td>
</tr>
<tr>
<td>Dulbeccos PBS w/o (1x)</td>
<td>PAA, Linz (Österreich)</td>
</tr>
<tr>
<td>EosinY Solution Aqueous 5%</td>
<td>Sigma, München</td>
</tr>
<tr>
<td>Ethanol</td>
<td>Merck, Darmstadt</td>
</tr>
<tr>
<td>Fetales Kälberserum (FCS)</td>
<td>PAA, Linz (Österreich)</td>
</tr>
<tr>
<td>Glutamax I (100x)</td>
<td>Invitrogen, Karlsruhe</td>
</tr>
<tr>
<td>Goldchloridlösung</td>
<td>Sigma-Aldrich, München</td>
</tr>
<tr>
<td>IHC Waschpuffer für Automaten 10x</td>
<td>DCS, Hamburg</td>
</tr>
<tr>
<td>Iscove’s Modified Dilbecco’s Medium</td>
<td>Sigma-Aldrich, München</td>
</tr>
<tr>
<td>Levamisole Solution</td>
<td>Dako, Glostrup (Dänemark)</td>
</tr>
<tr>
<td>Link-Diluent</td>
<td>Biogenex, USA</td>
</tr>
<tr>
<td>Bezeichnung</td>
<td>Hersteller</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Low Cross Buffer</td>
<td>Candor, Wangen</td>
</tr>
<tr>
<td>Lysepuffer</td>
<td>ChemoMetec, Allerod (Dänemark)</td>
</tr>
<tr>
<td>Mayer’s Hämatoxylin Solution</td>
<td>Sigma-Aldrich, München</td>
</tr>
<tr>
<td>Melanocyte Basal Medium</td>
<td>CellSystems, St. Katharinen</td>
</tr>
<tr>
<td>Melanocyte Growth Supplement</td>
<td>CellSystems, St. Katharinen</td>
</tr>
<tr>
<td>Methanol</td>
<td>Merck, Darmstadt</td>
</tr>
<tr>
<td>Monothioglycerol</td>
<td>Sigma-Aldrich, München</td>
</tr>
<tr>
<td>Mounting Medium CV Ultra</td>
<td>Leica, Nussloch</td>
</tr>
<tr>
<td>Natriumthiosulfatlösung</td>
<td>Sigma-Aldrich, München</td>
</tr>
<tr>
<td>Penicillin/Streptomycin</td>
<td>Invitrogen, Karlsruhe</td>
</tr>
<tr>
<td>Silbernitrat</td>
<td>Sigma-Aldrich, München</td>
</tr>
<tr>
<td>Stabilisierungspuffer</td>
<td>ChemoMetec, Allerod (Dänemark)</td>
</tr>
<tr>
<td>Xylol</td>
<td>Merck, Darmstadt</td>
</tr>
<tr>
<td>Ziegennullserum</td>
<td>Jackson, West Grove (USA)</td>
</tr>
</tbody>
</table>

3.4 Medien und Lösungen

Immunhistochemie

IHC Waschpuffer

Tabelle 3.4: IHC Waschpuffer Ansatz für 1 Liter

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Volumen [ml]</th>
</tr>
</thead>
<tbody>
<tr>
<td>IHC Waschpuffer für Automaten 10x</td>
<td>100</td>
</tr>
<tr>
<td>mit ddH₂O auf 1000 ml auffüllen</td>
<td></td>
</tr>
</tbody>
</table>

Fontana Masson Färbung

Silbernitratlösung 10%

Tabelle 3.5: Silbernitratlösung 10%

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Einwaage [g]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silbernitrat</td>
<td>10</td>
</tr>
<tr>
<td>Auf 100 ml mit ddH₂O auffüllen</td>
<td></td>
</tr>
</tbody>
</table>
Fontana Silbernitrat-Stocklösung

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Volumen [ml]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silbernitratlösung 10%</td>
<td>100</td>
</tr>
<tr>
<td>Ammoniumhydroxidlösung 28%</td>
<td>Zugabe tropfenweise bis Lösung fast klar wird</td>
</tr>
</tbody>
</table>

Fontana Silbernitratlösung

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Volumen [ml]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fontana Silbernitrat-Stocklösung</td>
<td>100</td>
</tr>
<tr>
<td>ddH₂O</td>
<td>300</td>
</tr>
</tbody>
</table>

Eosinlösung 1%

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Volumen [ml]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eosin 5%</td>
<td>80</td>
</tr>
<tr>
<td>ddH₂O</td>
<td>320</td>
</tr>
</tbody>
</table>

Zellkultur

Stopp-Lösung

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Zusammensetzung</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBS</td>
<td>500 ml</td>
</tr>
<tr>
<td>FCS</td>
<td>10 %</td>
</tr>
<tr>
<td>Penicillin/Streptomycin</td>
<td>1 %</td>
</tr>
</tbody>
</table>

Melanocyte Growth Medium (MGM)

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Volumen [ml]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melanocyte Basal Medium (MBM)</td>
<td>500</td>
</tr>
<tr>
<td>Melanocyte Growth Supplement</td>
<td>5</td>
</tr>
<tr>
<td>Antibiotic Supplement</td>
<td>1</td>
</tr>
</tbody>
</table>
Mastzellmedium (IMDM+)

Tabelle 3.11: Mastzellmedium (IMDM+)

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Zusammensetzung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iscove’s Modified Dilbecco’s Medium (IMDM)</td>
<td>500 ml</td>
</tr>
<tr>
<td>FCS</td>
<td>10 %</td>
</tr>
<tr>
<td>L-Glutamin (Glutamax)</td>
<td>2 %</td>
</tr>
<tr>
<td>Penicillin/Streptomycin</td>
<td>1 %</td>
</tr>
<tr>
<td>Monothioglycerol</td>
<td>10 µM</td>
</tr>
</tbody>
</table>

3.5 Kits

Tabelle 3.12: Verwendete Kits

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cytotoxicity Detection Kit</td>
<td></td>
</tr>
<tr>
<td>• Catalyst</td>
<td></td>
</tr>
<tr>
<td>• Dyesolution</td>
<td>Roche, Mannheim</td>
</tr>
<tr>
<td>Histamine ELISA</td>
<td>GenWay, San Diego (USA)</td>
</tr>
<tr>
<td>PermaRot-2-Komponenten-Kit</td>
<td>DCS, Hamburg</td>
</tr>
<tr>
<td>Super Sensitive Link-Label IHC Detection System</td>
<td></td>
</tr>
<tr>
<td>• MultiLink®</td>
<td></td>
</tr>
<tr>
<td>• Conc. Label</td>
<td>Biogenex (USA)</td>
</tr>
</tbody>
</table>

3.6 Antikörper

Tabelle 3.13: Primärantikörper

<table>
<thead>
<tr>
<th>Primärantikörper (Herstellerbezeichnung)</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-CD45 antibody:</td>
<td></td>
</tr>
<tr>
<td>Polyclonal Kaninchen (1:100)</td>
<td>abcam, Cambridge (UK)</td>
</tr>
<tr>
<td>Anti-Human CD14:</td>
<td></td>
</tr>
<tr>
<td>monoclonal Maus, Klon TÜK4 (1:20)</td>
<td>Dako, Glostrup (Dänemark)</td>
</tr>
<tr>
<td>Anti-Human CD45, Leucocyte Common Antigen:</td>
<td></td>
</tr>
<tr>
<td>monoklonal Maus,Klon 2B11 + PD7/26 (1:500)</td>
<td>Dako, Glostrup (Dänemark)</td>
</tr>
<tr>
<td>Anti-Mast Cell Tryptase antibody:</td>
<td></td>
</tr>
<tr>
<td>monoclonal Maus, Klon AA1 (1:1.200)</td>
<td>abcam, Cambridge (UK)</td>
</tr>
</tbody>
</table>
Primärantikörper (Herstellerbezeichnung) | Hersteller
--- | ---
CD66b Antibody: monoklonal Maus, Klon G10F5 (1:100) | NOVUS, Cambridge (UK)
DAPI: (1:10.000) | Roche, Mannheim
TRP1 Antibody: monoclonal Maus, Klon 3F388 (1:100) | Santa Cruz, Dallas (USA)

Tabelle 3.14: Sekundärantikörper

<table>
<thead>
<tr>
<th>Sekundärantikörper</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alexa Fluor 546: Ziege anti-Maus IgG (1:1.000)</td>
<td>Invitrogen, Karlsruhe</td>
</tr>
<tr>
<td>Cy5: Ziege anti-Kaninchen (1:1.000)</td>
<td>Abcam, Cambridge (UK)</td>
</tr>
</tbody>
</table>

3.7 Software

Tabelle 3.15: Verwendete Software

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Verwendung</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excel</td>
<td>Berechnungen; Graphische Darstellung</td>
<td>Microsoft Corporation, Redmond (USA)</td>
</tr>
<tr>
<td>IHC AUTOSTAN</td>
<td>Steuerung des Färbeautomaten (Autostainer Plus, DAKO)</td>
<td>Dako, Hamburg</td>
</tr>
<tr>
<td>ImageJ</td>
<td>Melaninquantifizierung</td>
<td>Wayne Rasband (NIH), Bethesda (USA)</td>
</tr>
<tr>
<td>KEYENCE BZ II Viewer</td>
<td>Bearbeitung der IF Bilder</td>
<td>Keyence, Neu-Isenburg</td>
</tr>
<tr>
<td>Mirax Scan</td>
<td>Bedienung des Mirax Scanner</td>
<td>3DHistech, Budapest (Ungarn)</td>
</tr>
<tr>
<td>NuclearQuant 1.15</td>
<td>Quantifizierung von Hautdünnschnitten</td>
<td>3DHistech, Budapest (Ungarn)</td>
</tr>
<tr>
<td>Origin Pro 8</td>
<td>Statistische Auswertung; Graphische Darstellung</td>
<td>OriginLab Corporation</td>
</tr>
<tr>
<td>Pannoramic Viewer 1.15</td>
<td>Visualisierung und Bearbeitung der Mirax Scan Daten</td>
<td>3DHistech, Budapest (Ungarn)</td>
</tr>
<tr>
<td>Bezeichnung</td>
<td>Verwendung</td>
<td>Hersteller</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Statistika</td>
<td>Statistische Auswertung</td>
<td>StatSoft (Europe) GmbH</td>
</tr>
<tr>
<td>XFluor4SafireII</td>
<td>Bedienung des Spektralphotometers Safire²</td>
<td>Tecan, Crailsheim</td>
</tr>
</tbody>
</table>
4 Methoden

4.1 Studiendesign des Probenmaterials

4.1.1 PIH-Studie: Untersuchung der Saugblasen-induzierten postinflammatorischen Hyperpigmentierung (PIH)

Zur Gewinnung eines hyperpigmentierten Hautareals, das Gegenstand der nachfolgenden Untersuchungen war, wurde eine Saugblasenmethode verwendet. Dafür wurden 4-Loch- und 3-Loch-Saugblasentöpfe, mit einem Lochdurchmesser von 7 mm, auf die zuvor markierten Hautareale am unteren Rücken des Probanden befestigt. Durch Anlegen eines geringen Unterdrucks löste sich die Epidermis innerhalb von 2 bis 3 h und bildete eine sogenannte Saugblase (SB) aus, die anschließend abpräpariert wurde, um den Regenerations- und Pigmentierungsprozess zu induzieren. Als Kontrollareal (K) diente eine Hautpartie derselben Hautregion, welche keiner Behandlung unterzogen wurde. In Abbildung 4.1 ist die Arealanordnung für die PIH-Studie schematisch dargestellt.

Nach 2, 4 und 16 Wochen wurden bei 16 Probanden Farbmessungen durchgeführt und Stanzbiopsien entnommen. Bei 8 Probanden erfolgte noch eine zusätzliche Entnahme einer Stanzbiopsie nach 8 Wochen (siehe Abbildung 4.2). Der Probenumfang für die vorliegende Arbeit umfasst insgesamt 16 Probanden.
Abbildung 4.1: Schematische Darstellung der Arealanordnung in der PIH Studie
Für die PIH-Studie wurden Stanzbiopsien aus dem unteren Rücken des Probanden (n=16) entnommen. Das Kontrollareal (K) wurde zu keinem Zeitpunkt der Studie behandelt und dient deshalb als Referenz für das Saugblasenareal (SB). Um einen systematischen Fehler zu minimieren wurden die Areale permutiert.

Abbildung 4.2: Studiendesign der Saugblasen-induzierten PIH
Zum Zeitpunkt 0 Wochen wurden SB (n=16) entnommen und somit die Genese hyperpigmentierter Areale induziert. Die Farbmessungen und die Entnahme je einer Stanzbiopsie pro Areal erfolgten 2, 4, 8 (n=8) und 16 Wochen nach der SB-Entnahme.

4.1.2 UV-Studie: Untersuchung der UV-induzierten Pigmentierung
Bei der UV-Studie handelte es sich um eine Bestrahlungsstudie. Diese hatte die Aufklärung der zellphysiologischen Mechanismen zum Gegenstand, die für die Pigmentierung der Haut essentiell sind. Um eine vergleichbare Pigmentierung zu erlangen, wurde über einen Zeitraum von 2 Wochen jedes Versuchsareal 10-mal repetitiv mit sonnensimulierten Licht (SSR), UVA oder UVB bestrahlt. Für die Induktion einer annähernd identischen Pigmentierung in den bestrahlten Arealen wurde die Bestrahlung mit dem 2,3-fachen Anteil des in SSR enthaltenen UVA und dem 1,2-fachen UVB-Anteil durchgeführt. Als Kontrolle diente ein unbestrahltes Hautareal der gleichen Körperregion (siehe Abbildung 4.3). Um die Schutzleistung der Hautpigmentierung prüfen zu können wurden zehn Tage nach der letzten repetitiven Bestrahlung alle bereits bestrahlten Areale sowie ein zusätzliches
unbestrahltes Hautareal mit 1,5 MED SSR bestrahlt (siehe Abbildung 4.4). Das zuvor unbestrahlte Hautareal diente als Referenz für die repetitiv bestrahlten Areale.

Abbildung 4.3: Schematische Darstellung der Arealanordnung in der UV-Studie
In der UV-Studie wurden Stanzbiopsien aus dem unteren Rücken der Probanden (n=8) entnommen. Folgende Areale (vgl. Schema, von links beginnend) wurden gekennzeichnet: Das Kontrollareal (K) wurde zu keinem Zeitpunkt der Studie bestrahlt und bildet den Ausgangs- bzw. Normalzustand der Haut ab. Das Referenzareal (Ref) wurde nur zum Zeitpunkt t2 (10 Tage nach repetitiver Bestrahlung) einer UV-Dosis von 1,5 MED SSR ausgesetzt und dient als Referenz für die vorbehandelten Areale SSR, UVA und UVB, die ebenfalls zum Zeitpunkt t2 einem Reiz von 1,5 MED SSR ausgesetzt wurden. Um einen systematischen Fehler auszuschließen können, wurden die Areale permutiert.

Für histologische Untersuchungen wurden zu unterschiedlichen Zeitpunkten Stanzbiopsien von Probanden (n=8) entnommen. Diese Zeitpunkte wurden wie folgt definiert:

- 7 Tage nach letzter repetitiver Bestrahlung 7d post rep. Irr (t1)
- Direkt nach der Bestrahlung mit 1,5 MED SSR post 1,5 MED (t2)

Abbildung 4.4: Studiendesign der UV-induzierten Pigmentierung
Für die Untersuchung UV-induzierter Pigmentierung wurden 7 Tage nach 10-maliger repetitiver Bestrahlung mit SSR, UVA oder UVB Stanzbiopsien entnommen. Nach weiteren 3 Tagen wurden alle repetitiv bestrahlten Areale sowie ein Referenzareal mit 1,5 MED SSR bestrahlt. Die Exzission der Stanzen erfolgte ca. 1 h nach Bestrahlung.
4.2 Histologie und Immunhistochemie

Für die immunhistochemischen und histologischen Untersuchungen wurden Gefrierdünnschnitte der entnommenen Stanzbiopsien aus den oben beschriebenen Studien (4.1.1 und 4.1.2) verwendet. Die Gefrierdünnschnitte, von 5 µm Dicke, wurden am Uniklinikum Eppendorf (Klinik für Dermatologie und Venerologie, Zell- und Molekularbiologisches Labor) angefertigt und jeweils drei Kryoschnitte auf Superfrost Ultra Plus Objektträgern (OT) aufgebracht. Die Anordnung der sogenannten Stufenschnitte erfolgte mit dem Ziel, dass sich keine direkt aufeinanderfolgenden Schnitte auf einem Objektträger befinden, um eine möglichst große Biopsietiefe abbilden zu können.

4.2.1 Fixierung von histologischen Gefrierschnitten

Vor der Fixierung, der bei -20 °C gelagerten Gefrierdünnschnitte, wurden diese bei Raumtemperatur (RT) für wenige Minuten ausgelegt damit Flüssigkeitsrückstände abdampfen können. Proben für Immunhistochemie (IHC) und Immunfluoreszenz wurden in Aceton für 10 min bei -20 °C fixiert. Für die Fixierung von Proben der Fontana Masson Färbung wurde ein Gemisch aus Methanol/Aceton (1:1) verwendet. Dadurch wurden Proteine denaturiert und die Zellen permeabilisiert.

4.2.2 Automatisierte immunhistochemische Färbung

Die zu Grunde liegende Fär bemethode ist die alkalische Phosphatase anti-alkalische Phosphatase (APAAP). Sie ermöglicht einen indirekten Nachweis der Bindung eines Primärantikörpers, der gegen das nachzuweisende Antigen gerichtet ist. Ein Brückenantikörper, der sogenannte Linker, bindet am Primärantikörper und stellt gleichzeitig die Bindungsstelle für den monoklonalen Maus-anti-alkalische-Phosphatase Antikörper (Sekundärantikörper) dar. Am Sekundärantikörper bindet
alkalische Phosphatase, welche durch die Zugabe des Chromogens PermaRot einen roten Niederschlag erzeugt.

Tabelle 4.1: Immunhistochemisches Färbeprotokoll am Dako Autostainer Plus

<table>
<thead>
<tr>
<th>Schritt</th>
<th>Reagenz</th>
<th>Inkubationsdauer [min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blockierung</td>
<td>DCS Antikörperverdünnungspuffer</td>
<td>20</td>
</tr>
<tr>
<td>Vorbehandlung</td>
<td>DCS Antikörperverdünnungspuffer</td>
<td>20</td>
</tr>
<tr>
<td>Primärantikörper</td>
<td>Siehe Tabelle 3.13 (in DCS AKV)</td>
<td>30</td>
</tr>
<tr>
<td>Sekundärreagenz</td>
<td>Link-Diluent mit MultiLink®</td>
<td>20</td>
</tr>
<tr>
<td>Tertiärreagenz</td>
<td>Common AB Diluent mit Conc. Label</td>
<td>20</td>
</tr>
<tr>
<td>Chromogen</td>
<td>PermaRot-2-Komponenten-Kit</td>
<td>20</td>
</tr>
<tr>
<td>Übersichtsfärbung</td>
<td>Mayer’s Hämatoxylin Solution</td>
<td>3</td>
</tr>
</tbody>
</table>

Nach jeder Inkubation folgte ein Waschschritt mit IHC Waschpuffer

4.2.3 Quantifizierung immunhistochemischer Hautdünnschnitte
Mit Hilfe der Quantifizierungssoftware NuclearQuant 1.15 wurden die digitalisierten Gefrierdünnschnitte ausgewertet. Die Software ermöglichte in IHC gefärbten Hautdünnschnitten markierte und nicht markierte Zellen zu detektieren. Für eine individuelle Anwendung standen verschiedene Einstellungsmöglichkeiten zur Verfügung.
Abbildung 4.5: Ausschnitt eines mit NuclearQuant quantifizierten Hautdünnschnittes
Histologische Hautdünnschnitte, die mit immunhistochemischen Färbeverfahren gefärbt wurden, konnten nach der Digitalisierung mittels der Software NuclearQuant analysiert werden. In Gelb dargestellt ist die ROI, welche per Hand mittels Polygonfunktion definiert wurde. Negative (blauer Kreis) und positive Objekte (roter Kreis) wurden vom Programm ausgezählt und standen zusammen mit der Flächenangabe für weitere Auswertungen zur Verfügung. (Vergrößerung 40-fach, Balken entspricht 50 µm)

4.2.4 Fontana Masson Färbung
Kryo-gelagerte Hautdünnschnitte wurden fixiert (vgl. 4.2.1) und für 4 h bei 60 °C in Fontana Silbernitratlösung (siehe Tabelle 3.7) inkubiert. Nach drei Waschschritten über 5 min in VE-Wasser wurden die Objektträger für 1 min in 0,2 % Goldchloridlösung überführt, um die gebildeten Silberniederschläge zu tönen. Für die Fixierung erfolgte eine Inkubation mit 2 % Natriumthiosulfatlösung. Die Übersichtsfärbung erfolgte mit 1% Eosin für 5 min. Anschließend wurden die
Gefrierdünnschnitte mit einer aufsteigenden Alkoholreihe entwässert und mit dem Eindeckautomaten eingedeckt. Das genaue Färbeprotokoll kann in Tabelle 4.2 nachvollzogen werden.

Tabelle 4.2: Färbeprotokoll Fontana Masson Färbung

<table>
<thead>
<tr>
<th>Schritt</th>
<th>Reagenz</th>
<th>Inkubationsdauer [min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inkubation mit Silbernitrat</td>
<td>Fontana Silbernitratlösung</td>
<td>240</td>
</tr>
<tr>
<td>Waschen 3x</td>
<td>VE-Wasser</td>
<td>5</td>
</tr>
<tr>
<td>Tönen</td>
<td>0,2 % Goldchloridlösung</td>
<td>1</td>
</tr>
<tr>
<td>Waschen</td>
<td>VE-Wasser</td>
<td>5</td>
</tr>
<tr>
<td>Fixierung</td>
<td>2 % Natriumthiosulfatlösung</td>
<td>1</td>
</tr>
<tr>
<td>Waschen</td>
<td>VE-Wasser</td>
<td>5</td>
</tr>
<tr>
<td>Übersichtsfärbung</td>
<td>1 % Eosinlösung</td>
<td>5</td>
</tr>
<tr>
<td>Waschen 2x</td>
<td>VE-Wasser</td>
<td>5</td>
</tr>
<tr>
<td>Entwässerung</td>
<td>70 % Ethanol</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>80 % Ethanol</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>96 % Ethanol</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Xylol</td>
<td>15</td>
</tr>
</tbody>
</table>

4.2.5 Automatisierte Immunfluoreszenz

Für die Untersuchungen mittels Immunfluoreszenzfärbung wurden Gefrierdünnschnitte, wie in 4.2 beschrieben, verwendet. Die Färbungen wurden am Dako Autostainer Plus mit dem folgenden Färbeprotokoll (siehe Tabelle 4.3) durchgeführt.

Die gefärbten Schnitte wurden anschließend mit Eindeckmedium und Deckglas versehen, wobei die Aushärtung im Dunkeln über Nacht erfolgte. Im Anschluss wurden Bilder der Schnitte mit dem Fluoreszenzmikroskop KEYENCE angefertigt und mit dem Programm BZ II Viewer bearbeitet.
Methoden

4.3 Zellbiologische Methoden

4.3.1 Kultivierung der Zellen

Tabelle 4.3: Immunfluoreszenz-Farbeprotokoll am Dako Autostainer Plus

<table>
<thead>
<tr>
<th>Schritt</th>
<th>Reagenz</th>
<th>Inkubationsdauer [min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blockierung</td>
<td>BSA-Block + 5 % Ziegen Nullserum</td>
<td>60</td>
</tr>
<tr>
<td>Primärantikörper</td>
<td>Siehe Tabelle 3.13 (in Low Cross Buffer)</td>
<td>60</td>
</tr>
<tr>
<td>Waschschritt I</td>
<td>BSA-Block + 5 % Ziegen Nullserum</td>
<td>5</td>
</tr>
<tr>
<td>Waschschritt II</td>
<td>BSA-Block + 5 % Ziegen Nullserum</td>
<td>5</td>
</tr>
<tr>
<td>Sekundärantikörper</td>
<td>Siehe Tabelle 3.14 (in Low Cross Buffer)</td>
<td>60</td>
</tr>
<tr>
<td>Waschschritt III</td>
<td>BSA-Block + 5 % Ziegen Nullserum</td>
<td>5</td>
</tr>
<tr>
<td>Kernfärbung</td>
<td>DAPI</td>
<td>1</td>
</tr>
</tbody>
</table>

Nach jeder Inkubation folgte ein Waschschritt mit PBS.
4.3.2 Passagieren der Melanozyten

Tabelle 4.4: Verwendete Volumina für das Passagieren von Melanozyten aus einem 175 cm² Kulturgefäß

<table>
<thead>
<tr>
<th>Schritt</th>
<th>Reagenz</th>
<th>Volumen [ml]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waschen</td>
<td>PBS</td>
<td>15</td>
</tr>
<tr>
<td>Trypsinieren</td>
<td>Trypsin</td>
<td>4</td>
</tr>
<tr>
<td>Inhibieren des Trypsins</td>
<td>Stopp-Lösung</td>
<td>21</td>
</tr>
<tr>
<td>Resuspendieren</td>
<td>MGM</td>
<td>5 (i)</td>
</tr>
</tbody>
</table>

(i) abhängig von der weiteren Verwendung

Tabelle 4.5: Verwendete Volumina für das Trypsinieren von Melanozyten aus 6-Loch-Platten

<table>
<thead>
<tr>
<th>Schritt</th>
<th>Reagenz</th>
<th>Volumen pro Well [ml]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waschen</td>
<td>PBS</td>
<td>2</td>
</tr>
<tr>
<td>Trypsinieren</td>
<td>Trypsin</td>
<td>0,1</td>
</tr>
<tr>
<td>Inhibieren des Trypsins</td>
<td>Stopp-Lösung</td>
<td>0,6</td>
</tr>
</tbody>
</table>
4.3.3 Zellzahlbestimmung

4.3.4 Vitalitätsbestimmung
4.4 Inkubation mit konditionierten HMC1-Medium und Substanzen

4.4.1 Mastzellstimulierung und Ernte des konditionierten Mediums
Die, wie in 4.3.1 beschrieben, kultivierten Mastzellen wurden mit Medium in 50 ml Zentrifugenröhrchen überführt. Nach 5-minütiger Zentrifugation bei 1.300 g wurde der Überstand abgesaugt und das Pellet in 2 ml IMDM+ resuspendiert. Nach der Zellzahlbestimmung (vgl. 4.3.3) wurden 350.000 Zellen pro Well in 6-Loch-Platten mit jeweils 4 ml IMDM+ ausgesät. Die Stimulierung der Mastzellen erfolgte 24 h nach Aussaat. Dafür wurden die zu stimuliierenden Substanzen zu den HMC1-Zellen gegeben (siehe Abbildung 4.6) und bei 37 °C, 7 % CO₂ für 30 min inkubiert. Mittels eines Zentrifugationsschrittes bei 4.000 g für 10 min wurden die Zellen vom konditionierten Medium getrennt.

Abbildung 4.6: Versuchsaufbau zur Stimulierung von HMC1-Zellen

4.4.2 Melanozytenbehandlung mit konditionierten Medium und synthetischen Substanzen
Für den Versuchsansatz wurden je 250.000 Melanozyten pro Well mit 2,5 ml MGM ausgesät. Drei Tage später wurde jedem Well 0,5 ml Überstand entnommen und mit 1 ml des konditionierten HMC1-Mediums oder der Substanz (in IMDM+ gelöst) beschickt. Der Versuchsaufbau und eingesetzte Konzentrationen sind in Abbildung 4.7 aufgeführt. Es folgte eine Inkubation von 4 d. Morphologische Veränderungen
Methoden

wurden mit einer Digitalkamera von Canon mit Hilfe eines am Mikroskop (Axiovert 25, Zeiss) angebrachten Adapters (Soligor, Zeiss) dokumentiert.

Abbildung 4.7: Versuchsaufbau für die Behandlung von Melanozyten mit konditioniertem HMC1-Medium und Substanzen

4.5 Bestimmung von Histamin in Zellkulturüberständen

4.6 Ermittlung des Melaningehalts

In zellbiologischen Versuchen wurde der Melaningehalt mittels einer Absorptionsmessung bestimmt. Für die Quantifizierung von Melanin in histologischen Schnitten fand die Bildauswertesoftware ImageJ Verwendung.

4.6.1 Bestimmung des Melaningehalts in histologischen Schnitten

Mit der Fontana Masson Methode gefärbte Gefrierdünnschnitte (siehe 4.2.4) wurden mit dem Mikroskop MiraxScanner digitalisiert und anschließend mit den Bildbearbeitungsprogrammen PannoramicViewer und ImageJ Mosaikbilder generiert. Die Mosaikbilder wurden bei 20-facher Vergrößerung erstellt und
umfassen eine Größe von ca. 1.550 µm Breite und 550 µm Höhe des Gefrierschnittes in realen Maßen. Auf diese Weise wurde je ein repräsentatives Mosaikbild pro Hautdünnschnitt angefertigt. Jeder Objekträger war mit drei Hautdünnschnitten versehen, sodass der Auswertung drei Ergebnisse für den gleichen Behandlungszustand zu Grunde lagen.

4.6.1.1 Quantifizierung mittels ImageJ

Abbildung 4.8: Melaninquantifizierung mit ImageJ an Fontana Masson gefärbten Hautschnitten

4.6.2 Ermittlung des Melaningehalts in kultivierten Melanozyten und Kulturüberständen
Das in Melanozyten produzierte Melanin absorbiert Licht. Dieser Eigenschaft wird sich bei der photometrischen Quantifizierung von Melanin bedient. Von den Melanozyten abgegebenes Melanin kann in den Kulturüberständen ermittelt werden. Dafür wurden die Melanozytenkulturüberstände für 5 min bei 2.000 g zentrifugiert und wie in 4.6.2.1 beschrieben die Absorption gemessen. Als Leerwert wurde das jeweils verwendete Medium verwendet.
Für die Bestimmung des Melaningehalts in den Melanozyten mussten die Zellen zunächst trypsiniert (siehe Tabelle 4.5) und in Stopp-Lösung aufgenommen werden. Nach einer Zellzahlbestimmung (siehe 4.3.3) wurden gleiche Zellzahlen der
unterschiedlich behandelten Ansätze in Mikroreaktionsgefäße pipettiert und bei 5.000 g für 10 min zentrifugiert. Der Überstand wurde verworfen und das entstandene Pellet mit 200 µl 7,5 M NaOH aufgekocht. Nach vierstündiger Inkubation bei 99 °C auf dem Laborschüttler mit 750 rpm wurden die Mikroreaktionsgefäße abgekühlt. Anschließend wurde zu jeder Probe 150 µl Cyclohexan gegeben. Nach guter Durchmischung folgten 10 min Inkubation bei RT. Durch Zentrifugation bei 4 °C, 5.000 g für 10 min wurden die Phasen getrennt. Das in NaOH gelöste Melanin wurde der unteren Phase entnommen und der Absorptionsmessung zugeführt. Als Leerwert für die Quantifizierung von Melanin in den Melanozyten diente 7,5 M NaOH-Lösung.

4.6.2.1 Absorptionsmessung

Für die Messung der Überstände wurden 250 µl Probe für eine Doppelbestimmung in 96-Loch-Platten ausplattiert. Eine Doppelbestimmung des aus den Melanozyten extrahierten Melanins war auf Grund sehr geringer Probenmengen nicht möglich. Für die Quantifizierung wurden in diesem Fall je 150 µl des in NaOH gelösten Melanins pro Ansatz vermessen. Synthetisches Melanin wurde für die Anfertigung einer Standardreihe verwendet.

4.7 Statistische Auswertung

Für die statistische Auswertung der Ergebnisse wurde der Wilcoxon-Vorzeichen-Rang-Test bei verbundenen Stichproben verwendet. Dieser nichtparametrische Vorzeichen-Test ist eine Alternative zum t-Test bei verbundenen Stichproben. Voraussetzung für die Anwendbarkeit des Testes ist, dass es sich bei den Daten um zusammengehörige Paare handelt. Anders als beim t-Test bei verbundenen Stichproben wird hier nicht angenommen, dass die Grundgesamtheit normalverteilt
ist. Bei einer zweifelhaften Normalverteilung wird der Vorzeichentest bei verbundenen Stichproben anstatt des t-Test bei verbundenen Stichproben angewandt.

Es wurden folgende Signifikanzniveaus (p) definiert:

-
- **
- (*)
- n.s.

(***)

p ≤ 0,001 = höchst signifikant

(**)

p ≤ 0,01 = sehr signifikant

(*)

p ≤ 0,05 = signifikant

n.s.

p > 0,05 = nicht signifikant
5 Ergebnisse

5.1 Melaninbildung bei UV-induzierter Pigmentierung

5.1.1 Melaninneubildung nach repetitiver und folgender 1,5-facher erythemaler Bestrahlung

Um pigmentierungsrelevante Fragestellungen untersuchen zu können, wurde mittels UV-Exposition eine Bräune induziert. Die Vorbehandlung mit 10 repetitiven Bestrahlungen bei unterschiedlichen UV-Wellenlängen (vgl. 4.1.2) bietet die Möglichkeit, den Einfluss unterschiedlicher Bestrahlungsarten auf die Melaninbildung untersuchen zu können. Der nachfolgend gesetzte UV-Reiz von 1,5 MED SSR lässt Rückschlüsse auf etwaig ausgebildete Schutzfunktionen zu, die durch die jeweiligen Vorbehandlungen induziert wurden.

Für die folgenden Ergebnisse wurden Hautdünnschnitte von 8 Probanden (Hauttyp II bis III) mit der Fontana Masson Methode gefärbt und wie in 4.6.1 beschrieben quantifiziert. Damit ein Vergleich zwischen den Proben möglich ist, wird das als relative Fläche der ROI quantifizierte Melanin auf die Epidermislänge relativiert. Ergebnisse aus diesen Untersuchungen sind in Abbildung 5.1 dargestellt.
Ergebnisse

Abbildung 5.1: Neusynthese von Melanin nach repetitiver Bestrahlung und 1,5 MED SSR

Ergebnisse

zurückzuführen sind. In Abbildung 5.2 sind exemplarisch gefärbte Hautdünnschnitte abgebildet, um auf einige Ursachen näher eingehen zu können.

Abbildung 5.2: Unterschiedliche Melaninverteilung in der Epidermis als Ursache für starke Streuung der Ergebnisse

5.1.2 Vergleich der Melaninneusynthese mit in vivo Farbwerten
In Abbildung 5.3 zeigen die durchschnittlichen MelInd einen ähnlichen Verlauf wie die ermittelten Melaningehalte der histologischen Schnitte. Trotz großer Standardabweichungen handelt es sich um signifikante Änderungen bezogen auf die Kontrollmessungen. Korreliert man die zu Grunde liegenden Daten der in vivo Messung und der histologischen Quantifizierung miteinander, erhält man einen Korrelationskoeffizienten von 0,85 (Daten nicht gezeigt).

Abbildung 5.3: Gegenüberstellung von MelInd und histologisch quantifiziertem Melanin

5.1.3 Erfassung der Melanogeneseaktivität durch TRP1
Das von Melanozyten synthetisierte Tyrosinase-assozierte-Protein 1 (TRP1, auch TYRP1) dient als Indikator für die Melanogeneseaktivität. Lokalisiert ist das Glykoprotein in der Melanosomenmembran und ist maßgeblich an der Melanogenese beteiligt (vgl. 1.2.2). Ob Unterschiede in der Expression des TRP1 nach repetitiver Bestrahlung mit unterschiedlichen Bestrahlungsarten bestehen, wurde mittels Immunfluoreszenzfärbung mit einem spezifischen gegen TRP1 gerichteten Antikörper untersucht. Eine Steigerung der Expression von TRP1 im Vergleich zur
Kontrolle wird als Indiz für eine erhöhte Melanogenese gewertet. In Abbildung 5.4 und Abbildung 5.5 wird die Melanogeneseaktivität der Melaninneubildung zu zwei Zeitpunkten, repräsentativ am Beispiel eines Probanden, gegenübergestellt. Bei den verwendeten Bildern handelt es sich um Ausschnitte der analysierten Schnitte. Zur Quantifizierung wurden größere Flächen herangezogen. Die Melanogeneseaktivität wird durch TRP1 positiv markierte Zellen (TRP1⁺), normiert auf die Fläche, abgebildet. Dem gegenüber steht die Neusynthese von Melanin, welche durch quantifiziertes Melanin, normiert auf die Epidermislänge, ausgedrückt wird.

Sieben Tage nach repetitiver Bestrahlung ist eine deutlich erhöhte Expression von TRP1 in mit SSR, UVA und UVB bestrahlten Arealen, im Vergleich zum unbehandelten Areal, festzustellen. Die Unterschiede in der Anzahl der TRP1 positiven Zellen deckt sich weitgehend mit der ermittelten Melaninmenge pro Epidermislänge. Vergleicht man die unterschiedlichen Bestrahlungsarten miteinander so weisen die mit SSR induzierten Areale sowohl eine höhere Melaninneusynthese als auch eine höhere Melanogeneseaktivität auf.

Auch nach der Bestrahlung mit 1,5 MED wird in allen Fällen eine signifikante Steigerung der TRP1-Expression im Vergleich zur Kontrolle ermittelt. Ein deutlicher Unterschied in der Intensität zwischen den beiden Zeitpunkten kann nicht festgestellt werden. Lediglich das mit SSR vorbehandelte Areal zeigt nach der Induktion mit 1,5 MED eine deutlich geringere Aktivität im Vergleich zu der Probe 7 Tage nach zehntägiger repetitiver Bestrahlung.

Diese Ergebnisse lassen sich in ähnlicher Form bei zwei weiteren Probanden beobachten (n=3).
Abbildung 5.4: Gegenüberstellung von Melaninneusynthese und Melanogeneseaktivität 7 Tage nach repetitiver Bestrahlung

Abbildung 5.5: Gegenüberstellung von Melanineusynthese und Melanogeneseaktivität nach 1,5 MED SSR
5.2 Morphologische Untersuchung UV-induzierter Pigmentierung

In Beiersdorf internen Untersuchungen zu Saugblasen induzierter Hyperpigmentierung wurden eine Verdickung und eine stärkere Verzapfung der Epidermis beobachtet. Ob diese morphologischen Veränderungen auch bei UV-induzierter Pigmentierung auftreten, wird im folgenden Abschnitt untersucht.

5.2.1 Charakterisierung der Hyperplasie und Verzapfungsgrad

Anhand der generierten Bilder zur Melaninquantifizierung (Fontana Masson Färbung) wurden Vermessungen der Epidermis durchgeführt (n=8). Mit Hilfe der Software ImageJ wurden die Epidermislänge, Basalzellschichtlänge und die Epidermisdicke ermittelt. Der Verzapfungsgrad wurde durch die Bildung des Verhältnisses von Basalzellschichtlänge und Epidermislänge bestimmt.

In allen repetitiv bestrahlten Arealen wird eine erhöhte, mittlere Epidermisdicke nachgewiesen, die den Rückschluss auf eine Hyperplasie erlaubt (siehe Abbildung 5.6). Nach der Bestrahlung mit 1,5 MED SSR kommt es zu einer zusätzlichen Verdickungen bei mit SSR und UVA vorbehandelten Arealen.

Im Vergleich mit den Hautdünnschnitten der Kontrolle können keine signifikanten Unterschiede bezüglich des ermittelten Verzapfungsgrades zu den UV-induzierten Proben nachgewiesen werden (Daten nicht gezeigt).
Abbildung 5.6: Entwicklung der mittleren Epidermisdicke bei UV-induzierter Pigmentierung
Grundlage für die Ermittlung der Epidermisdicke waren Fontana Masson gefärbte Hautdünnschnitte der UV-Studie. Es wurde die mittlere Epidermisdicke von 8 Probanden bestimmt und das arithmetische Mittel in Form von Balken dargestellt. Die Fehlerindikatoren stellen die ermittelte Standardabweichung der Mittelwerte dar.

5.3 Immunzellstatus in UV-induzierten hyperpigmentierten Hautarealen
In hyperpigmentierten Hautpartien, durch das Ziehen von Saugblasen induziert, wurde das Auftreten eines dermalen Infiltrats über einen Zeitraum von bis zu 16 Wochen nach SB-Exzision beobachtet. Dabei waren sowohl die Gesamtzellzahl als auch die Anzahl CD45 positiver Zellen (CD45⁺) und CD14 positiver Zellen (CD14⁺) erhöht (Beiersdorf interne Untersuchungen; Daten nicht gezeigt). In den folgenden Nachweisen werden die durch UV-Exposition behandelten Hautareale auf dieses Phänomen hin untersucht. Daraus resultierende Ergebnisse ermöglichen Rückschlüsse auf Zusammenhänge zwischen Pigmentierung und Entzündungsreaktionen und lassen einen Vergleich zwischen unterschiedlich induzierten Pigmentierungen zu.

Für die Untersuchungen wurden Gefrierdünnschnitte der UV-Studie von 8 Probanden (siehe 4.1.2) mit der APAAP Färbemethode (vgl. 4.2.2) immunhistochemisch mit dem entsprechenden Antikörper von Dako (Tabelle 3.13) gefärbt. Anschließend erfolgte die Digitalisierung und Quantifizierung der
Hautdünnschnitte wie in 4.2.3 beschrieben. Nachfolgende angegebene Zellzahlen wurden auf eine Fläche von 1 mm² normiert. Die Quantifizierungsflächen wurden bei identischen Einstellungen mit einer Dermistiefe von 500 µm und unter Ausschluss der Epidermis erstellt (vgl. Abbildung 4.5).

5.3.1 CD45 positive Zellen (CD45⁺)

Sieben Tage nach 10-facher repetitiver UV-Exposition bleibt der Anteil an CD45 negativen Zellen (CD45⁻) im Vergleich zum unbestrahlten Areal nahezu konstant. Somit resultiert die Zunahme der Gesamtzellzahl um bis zu 15 % (Abbildung 5.7) allein auf einer Erhöhung CD45⁺ Zellen.

Nach repetitiver Bestrahlung mit UVA und UVB ist die Anzahl CD45⁺ Zellen sehr bis höchst signifikant erhöht (4.7; Abbildung 5.8). In diesen Arealen wird eine Zunahme von 40 % CD45⁺ Zellen ermittelt. Hautpartien, die sonnensimulierten Licht (SSR) ausgesetzt waren, zeigen keine statistisch signifikante Zunahme von CD45⁺ Zellen.
Abbildung 5.7: Gesamtzellzahl nach repetitiver Bestrahlung
Ergebnisse

Abbildung 5.8: CD45 positive Zellen nach repetitiver Bestrahlung

In Abbildung 5.9 ist ein gegenläufiger Zusammenhang von Entzündungsreaktion, abgebildet durch CD45⁺ Zellen und Pigmentierung, ausgedrückt durch den Melaningehalt, in SSR behandelten Arealen erkennbar. Im Gegensatz zu den mit UVA/UVB bestrahlten Partien, bei denen eine Steigerung von Melaningehalt und Leukozyten (CD45⁺) in ähnlicher Größenordnung ermittelt wird, steht in SSR bestrahlten Partien eine geringere Entzündungsreaktion einer sehr viel höheren Melanineusynthese gegenüber.

In Abbildung 5.10 sind exemplarisch mit CD45 Antikörper gefärbte Gefrierdünnschnitte eines Probanden, nach repetitiver Bestrahlung, abgebildet.
Abbildung 5.9: Vergleich CD45⁺ Zellen mit der Melaninnneubildung nach repetitiver Bestrahlung

Abbildung 5.10: Exemplarische Färbung CD45⁺ Zellen
Immunhistochemische Färbung mit CD45 Antikörper (Dako) von Gefrierdünnschnitten der UV-Studie. Sieben Tage nach repetitiver Bestrahlung mit SSR, UVA oder UVB. (Vergrößerung 20-fach, Balken entspricht 100 µm)

5.3.2 CD14 positive Zellen (CD14⁺)
Zur näheren Charakterisierung des dermalen entzündlichen Infiltrats wurden immunhistochemische Färbungen gegen das Membranprotein CD14 durchgeführt. Durch Verknüpfung mit Glycosyl-Phosphatidylinositol (GPI) ist das CD14-Molekül in der Zellmembran verankert. Es übernimmt die Funktion eines Receptors für Endotoxin und ist an der letalen Reaktion auf Endotoxin und gramnegativen Bakterien beteiligt (Goyert et al., 1997). In der Literatur werden zusätzlich zwei lösliche Formen von CD14 beschrieben (Goyert, CD14, 2002). Lösische Formen entstehen durch Verlust der Zelloberflächengestalt oder durch Freisetzung durch die Zellen vor dem Anfügen eines GPI-Ankers.

In repetitiv bestrahlten Hautpartien wird bei allen angewendeten Bestrahlungsarten eine starke Zunahme von CD14⁺ Zellen zwischen 42 - 48 % quantifiziert (siehe Abbildung 5.12). Die Datenreihen für die Exposition mit sonnensimulierten Licht (SSR) unterliegen einer starken Streuung, deshalb ist es nicht möglich eine Signifikanz zu ermitteln. Lediglich die Änderung durch UVA und UVB Vorbehandlungen sind im Vergleich zur Kontrolle statistisch signifikant.

Betrachtet man die Gesamtheit der detektierten Zellen sind Steigerungen von 22 - 29 % zu verzeichnen (siehe Abbildung 5.11). In bestrahlten Arealen nehmen als CD14⁻ analysierte Zellen im Vergleich zur Kontrolle um 16 % - 25 % zu.

In Abbildung 5.13 sind exemplarisch mit CD14 Antikörper gefärbte Gefrierdünnschnitte eines Probanden, nach repetitiver Bestrahlung, abgebildet.

Abbildung 5.11: Gesamtzellzahl nach repetitiver Bestrahlung
Ergebnisse

Abbildung 5.12: CD14 positive Zellen nach repetitiver Bestrahlung
Gefrierdünnschnitte der UV-Studie (n=8) wurden gegen den Antikörper CD14 immunhistochemisch gefärbt, digitalisiert und mit dem Auswerteprogramm NuclearQuant quantifiziert. Für die quantitative Erfassung wurden jeweils drei Schnitte einer Probe pro Proband und Zeitpunkt verwendet. Die Box umfasst 25 – 75 % der Ergebnismenge. Der Mittelwert der Bestrahlungsart ist durch ein kleines Quadrat und der Median durch eine Querlinie dargestellt. Minimum und Maximum sind mittels eines Kreuzes abgebildet. Durch sogenannte Whisker (Antennen) werden Werte von 5 und 95 % (anteilig zur Ergebnismenge) mit der Box verbunden. Als Ausreißer ermittelte Datenpunkte sind durch die fehlende Verbindung zur Box zu erkennen.
Abbildung 5.13: Exemplarische Färbung CD14⁺ Zellen
Immunhistochemische Färbung mit CD14 Antikörper (Dako) von Gefrierdünn schnitten der UV-Studie. Sieben Tage nach repetitiver Bestrahlung mit SSR, UVA oder UVB. (Vergrößerung 20-fach, Balken entspricht 100 µm)

5.4 Immunzellstatus in Saugblasen-induzierter PIH

Gefrierdünn schnitte der PIH-Studie (n=16) (siehe 4.1.1) wurden immunhistochemisch gefärbt. Nach der Digitalisierung der gefärbten Hautdünn schnitte erfolgte eine Quantifizierung der markierten Zellen mit NuclearQuant wie in 4.2.3 beschrieben. Dafür wurde unter Verwendung identischer
Einstellungen bis zu einer Dermistiefe von 500 µm quantifiziert und die Ergebnisse auf eine Fläche von 1 mm² normiert.

5.4.1 Mastzelltryptase positive Zellen
Mastzellen verfügen über ein großes Repertoire an Rezeptoren, Mediatoren und Enzymen, wie Histamin, Chymase, Carboxypeptidase und proteolytische Tryptase. Humane Mastzelltryptase gilt als bedeutender Marker für die Mastzellaktivierung und als wichtiger Mediator für Entzündungen.
Für die nachfolgend beschriebenen Untersuchungen wurde ein anti-Mastzelltryptase Antikörper (siehe Tabelle 3.13) verwendet, der sowohl die Alpha- als auch die Beta-Isoform erkennt.
Abbildung 5.14: Entwicklung der Gesamtzellzahl bei Saugblasen-induzierter Pigmentierung

Bei Betrachtung Mastzelltryptase positiver (Mastzelltryptase⁺) Zellen (Abbildung 5.15) ist 4 Wochen nach Saugblasenentnahme ein deutlicher Anstieg von 79 % zu verzeichnen. Der Zeitpunkt stimmt mit der größten Gesamtzellzunahme überein.
Vier Wochen darauf ist die Anzahl an Mastzelltryptase⁺ Zellen auf 125 %, bezogen auf das unbehandelte Areal, gesunken.

In Abbildung 5.16 sind exemplarisch mit Mastzelltryptase Antikörper gefärbte Gefrierdünnschnitte eines Probanden, nach repetitiver Bestrahlung, abgebildet.
Abbildung 5.15: Mastzelltryptase positive Zellen in Saugblasen-induzierter Pigmentierung
5.4.2 CD66b positive Zellen (CD66b⁺)
Das Glykoprotein CD66b ist durch eine GPI-Verknüpfung an der Zelloberfläche von humanen Granulozyten verankert. Unter normalen Bedingungen wird CD66b nur gering auf Neutrophilen exprimiert, erst durch die Anwesenheit von Entzündungsagonisten wird die Expression drastisch verstärkt. Auf Grund dieser Eigenschaft stellt es einen bedeutenden Marker für die Granulozytenaktivierung dar (Torsteinsdottir et al., 1999; Zhao et al., 2004). Die Funktion des Moleküls in
Eosinophilen ist größtenteils unbekannt (De Haas et al., 1994; Eades-Perner et al., 1998).

Für die immunhistochemische Untersuchung wurden Hautdünnschnitte von 3 Probanden der PIH-Studie verwendet.
Die Quantifizierung der Proben ergibt ein sehr geringes Vorkommen an aktivierten Granulozyten sowohl im Saugblasen- als auch im Kontrollareal. In Abbildung 5.17 sind Ausschnitte eines Probanden gegenübergestellt, um das ermittelte Ergebnis zu visualisieren.

Abbildung 5.17: Exemplarische Färbung CD66b⁺ Zellen
Immunhistochemische Färbung mit CD66b Antikörper (Novus) von Gefrierdünnschnitten der UV-Studie. Sieben Tage nach repetitiver Bestrahlung mit SSR, UVA oder UVB. (Vergrößerung 20-fach, Balken entspricht 100 µm)

5.5 Lokalisation von Immunzellen in hyperpigmentierter Haut
Für Untersuchungen zur Verteilung und Lokalisation von Immunzellen in hyperpigmentierter Haut wurden Übersichtsfärbungen mittels Immunfluoreszenz angefertigt. Dabei wurden die Hautdünnschnitte der PIH-Studie von 8 Probanden, zum Zeitpunkt 16 Wochen nach SB-Entnahme, mit folgenden Antikörperkombinationen gefärbt (siehe Tabelle 5.1).

Ergebnisse

Abbildung 5.18: Cofärbung von CD45 positiven, Mastzelltryptase positiven und CD14 positiven Zellen; Mosaikaufnahme von der Immunzellverteilung in einem hyperpigmentierten Areal

Mastzellen und Makrophagen (grün) sind homogen in der Dermis verteilt. Es kommt nur vereinzelt zu einer Anhäufung von ca. 3 bis 4 Zellen dieser Zelltypen. CD45+ Zellen (rot) bilden häufig geballte Anhäufungen in den oberen 300 μm der Dermis

![Abbildung 5.19: Cofärbung von CD45 positiven, Mastzelltrypase positiven und CD14 positiven Zellen in hyperpigmentierten Arealen; Unterschiede der Immunzellzahl zweier Probanden](image)

Abgebildet sind die Immunzellverteilung zweier Probanden (A und B) nach Cofärbung von Kontroll- und Saugblasenareal (SB) 16 Wochen nach SB-Entnahme durch Immunfluoreszenz. Dargestellt sind CD45 positive Zellen in Rot (Cy5-Filter), Mastzelltrypase- und CD14 positive Zellen in Grün (TRITC-Filter), sowie die Zellkerne in Blau (DAPI). Durch Überlagerung von CD45 und CD14 positiven Zellen ergibt sich eine weitere Farbe (Orange). Balken entsprechen 100 µm.

5.6 **Induzierbarkeit der Pigmentierung durch HMC1-konditioniertes Medium**

Ergebnisse

In Transkriptionsanalysen (Beiersdorf interne Untersuchungen, Daten nicht gezeigt) der PIH-Studie waren Histaminrezeptoren in Biopsien des Saugblasenareals hochreguliert. Durch die in dieser Arbeit gewonnene Erkenntnis, dass Mastzellen in hyperpigmentierten Arealen erhöht vorliegen (5.4.1), wurde der Frage nachgegangen, ob ein kausaler Zusammenhang der erhöhten Anzahl von (aktivierten) Mastzellen und der Ausbildung einer Hyperpigmentierung besteht. Zu diesem Zweck wurden Melanozyten in Mastzell-konditioniertem Medium kultiviert. Melanozyten von drei Spendern wurden wie in (4.3.1) beschrieben kultiviert und mit Kulturüberständen von unterschiedlich stimulierten HMC1-Zellen behandelt (vgl. 4.4). Zuvor wurden HMC1-Zellen nach 24 h Kultivierung mit frischem Medium (IMDM+ mit 10 ng ml⁻¹ Nerve Growth Factor (NGF) oder 10 μM Substanz P für 30 min inkubiert.

In Vorversuchen wird der Einfluss des unkonditionierten Mastzellmediums auf die Vitalität, morphologische Veränderung und Melaninneubildung der Melanozyten untersucht (n=2). Es wird keine Veränderungen der Morphologie und der Melaninneubildung im Vergleich zur Kontrolle ermittelt (Daten nicht gezeigt). Die spätere Behandlung mit dem konditionierten HMC1-Medium sieht ein Medienanteil von 33 % IMDM+ vor (siehe 4.4). Das zu einem Drittel veränderte Medium der Melanozyten erzeugt keine Beeinträchtigung der Vitalität (Daten nicht gezeigt). Neben der Quantifizierung von Melanin im Kulturüberstand und in den Zellen wurde eine Histaminbestimmung mittels ELISA durchgeführt.

Die mit konditioniertem Mastzellmedium behandelten Melanozyten der drei Spender weisen eine geringere Histaminkonzentration im Vergleich zur Kontrolle auf (Abbildung 5.20). Bei der Verwendung von NGF als Stimulationssubstanz ergibt sich eine Reduktion um 10 %. Für den Einsatz von Substanz P wird eine 30 % Senkung des Histamingehalts im Melanozytenüberstand ermittelt. Über die viertägige Behandlung werden keine Vitalitätsverluste oder morphologische Veränderungen verzeichnet (Daten nicht gezeigt).
Mittels Histamin ELISA von Genway wurden Histaminkonzentrationen in den Kulturüberständen bestimmt. Aus den gemittelten Absorptionswerten der Dreifachbestimmung wurde die Histaminkonzentrationen in ng ml\(^{-1}\) mittels Standardgeradengleichung ermittelt. Isolierte Melanozyten von drei Spendern wurden mit konditionierten Mastzellmedium, mittels 10 ng ml\(^{-1}\) NGF (HMC1 NGF) oder 10 µM Substanz P (HMC1 Substanz P) stimuliert, behandelt. Die abgebildeten Fehlerindikatoren stellen die Standardabweichung der gemittelten Datenpunkte dar.

In Abbildung 5.21 wird der ermittelte Melaningehalt in % gegen die jeweilige Art der Stimulationssubstanz aufgetragen. Die Kontrollwerte entsprechen 100 %. Unabhängig von der eingesetzten Stimulationssubstanz steigt die Melaninsynthese bis zu 10 % durch HMC1-konditioniertes Medium. Zusätzlich wird weniger Melanin in den Überstand abgegeben (siehe Abbildung 5.21).
Ergebnisse

Abbildung 5.21: Melaningehalt im Kulturüberstand und in den Melanozyten nach Behandlung mit konditioniertem HMC1-Medium

Isolierte Melanozyten (n=3) wurden mit konditioniertem Mastzellmedium für 4 Tage inkubiert. Die Stimulation der Mastzellen erfolgte mit 10 ng ml⁻¹ NGF (HMC1 NGF) oder 10 µM Substanz P (HMC1 Substanz P). Ergebnisse für die Kulturüberstände unterliegen einer Dreifachbestimmung, deren Resultate auf die Zellzahl relativiert wurden. Auf Grund von geringen Probenmengen konnte für die Melaninquantifizierung in Melanozyten nur eine Einfachbestimmung durchgeführt werden. Alle Mittelwerte wurden auf die zugrunde liegende Kontrolle (entspricht 100 %) bezogen. Die berechneten Standardabweichungen werden mit Hilfe von Fehlerindikatoren dargestellt.

5.7 Einfluss von Substanzen auf die Melanogenese

In Kapitel 5.6 konnte gezeigt werden, dass HMC1-konditioniertes Medium einen positiven Einfluss auf die konstitutive Melanogenese hat. Um einen direkten Effekt der mastzellstimulierenden Substanzen auf die Melanogenese nachweisen bzw. ausschließen zu können, wurden Melanozyten mit NGF und Substanz P behandelt. Zusätzlich erfolgte eine Behandlung mit synthetischem Histamin.

Die ermittelte Histaminkonzentration ergibt sich aus der Summe des zugeführten Histamins (10 µM) und des Histamingehalts der Kontrolle.

Abbildung 5.22: Histaminkonzentration im Kulturüberstand von Melanozyten nach der Behandlung mit Substanzen

Abbildung 5.23: Melaningehalt im Kulturüberstand und in den Melanozyten nach Behandlung mit synthetischen Substanzen
Isolierte Melanozyten (n=3) wurden mit 10 ng ml⁻¹ NGF, 10 µM Histamin und 10 µM Substanz P für 4 Tage inkubiert. Die ermittelten Ergebnisse für die Kulturüberstände wurden auf die Zellzahl relativiert. Alle bestimmten Mittelwerte wurden auf die zugrunde liegende Kontrolle (entspricht 100 %) bezogen. Die berechneten Standardabweichungen werden mit Hilfe von Fehlerindikatoren dargestellt.
6 Diskussion

6.1 Mechanismen der UV-induzierten Pigmentierung

6.1.1 Melanogeneseaktivität und Melaninneubildung nach repetitiver Bestrahlung mit UVA und/oder UVB

In der Literatur wird der UVA-Strahlung die Induktion der schnellen Bräunung (IPD und PPD) zugeschrieben. Durch Umverteilung, Photooxidation und/oder Polymerisation des vorhandenen Melanins und von Melaninvorstufen wird eine kurzweilige gräuliche Pigmentierung erzielt, die der Haut keinen Photoschutz bietet. Die biologische Funktion der Sofortbräunung ist weitgehend ungeklärt. Im Gegensatz dazu induziert die Bestrahlung mit UVB eine stabilere Art der Pigmentierung (DT, delayed tanning), die verzögert auftritt. Die Pigmentierung beruht in dieser Art der Bräunung auf einer Melaninneusynthese und der Umverteilung von vorhandenen Melanin (Tadokoro et al., 2005).

Über eine Periode von zwei Wochen wurden Areale des unteren Rücken (n=8) 10-mal repetitiv mit SSR (setzt sich aus UVA und UVB zusammen), UVA oder UVB bestrahlt. Die ermittelten Ergebnisse zur Melaninneusynthese und Melanogeneseaktivität spiegeln sich zum größten Teil in bisherigen Veröffentlichungen wie der.

Bisher wird beschrieben, dass die unterschiedlichen UV-Wellenlängen auch unterschiedliche Reaktionen in der Haut hervorrufen. SSR stimuliert die Expression von spezifischen Melanozytenmarkern, wie Tyrosinase, TYRP1 und dem Microphthalmie-assoziierten Transkriptionsfaktor (MITF) und steigert die Produktion von Melanin, während UVA-Strahlung allein diese Reaktionen nicht induziert. Trotz der Unterschiede im Melaningehalt wird eine ähnliche sichtbare Bräunung bei UVA und UVB behandelten Arealen beobachtet (Wolber et al., 2008; Choi et al., 2010). Anhand der ermittelten MelInd der UV-Studie kann eine einheitliche visuelle Bräune bei unterschiedlichen UV-Bestrahlungen bestätigt werden (Abbildung 5.3). Korrelationen von in vivo ermittelten Farbwerten (MelInd) mit dem Melaningehalt beschreiben einen linearen Zusammenhang mit einem Korrelationskoeffizienten von R=0,85 (Daten nicht gezeigt). Die starke Streuung, der miteinander korrelierten Werte, erklärt die lediglich hohe Korrelation. Viele Parameter können einen Einfluss auf die Streuung der Werte nehmen. Zum Beispiel kann die Bildung von Erythemen, nach UV-Exposition, durch das erhöhte Vorkommen von Hämaglobin und Carotinoiden den MelInd beeinflussen. Generell schließt der für die Berechnung von MelInd zu Grunde liegende Algorithmus diesen Einfluss aus, kann jedoch bei einer starken Erythembildung nicht ausgeschlossen werden. Weitere Gründe für die Streuung der Werte sind die heterogene Packungsdichte, unterschiedliche Verteilung des Melanins in den Strata und die variierende Zapfentiefe der Epidermis. Für die sichtbare Bräunung der Haut sind neben dem Melaningehalt und dessen Zusammensetzung aus Eumelanin und Phäomelanin, die Verteilung und die Partikelgröße der Melanosomen wichtige Parameter (Alaluf et al., 2002). Zusätzlich wird die Betrachtungsrichtung der Methoden zur Melaninquantifizierung als eine Ursache für die Streuung angesehen. Während bei der histologischen Quantifizierung der Querschnitt der Epidermis betrachtet wird, erfolgt in der Farbmessung die Ansicht von Oben auf die äußere Epidermisschicht. Für die Charakterisierung einer Pigmentierungsreaktion sind neben der neugebildeten Melaninmenge, die Anzahl an Melanozyten und deren Aktivität
6.1.2 Induzierter Photoschutz der Haut durch repetitive UVA- und/oder UVB-Strahlung

Es ist bekannt, dass UVA und UVB unterschiedliche Arten von DNA-Schäden hervorrufen können. UVA bewirkt vor allem oxidative Schäden von Proteinen, DNA und Membranen, während UVB zwei Typen von DNA-Schäden bedingt (Cyclobutan Pyrimidin Dimer (CPD) und 6,4-Photoprodukt (64PP)). Durch die fakultative Pigmentierung, induziert durch Bräunung der Haut, wird der photoprotektive Effekt der konstitutiven Pigmentierung verstärkt. Es besteht ein inverser Zusammenhang zwischen dem Melaningehalt und DNA-Schäden. Die Zunahme des Melaningehalts allein stellt allerdings keinen vollständigen Schutz dar (Young et al., 1991). Die Haut verfügt über weitere Schutzmechanismen wie zum Beispiel die Verdickung der Haut durch eine epidermale Hyperplasie und die Verdickung des Stratum corneum (Ausbildung einer sogenannten Lichtschwiele) (Clydesdale et al., 2001). Ergebnisse dieser Arbeit zeigen eine ausgeprägte Hyperplasie der Epidermis nach repetitiver Bestrahlung mit UVA, UVB und SSR (UVA mit UVB) (siehe Abbildung 5.6). Die stärkste Hyperplasie wird von UVA behandelten Arealen ausgebildet. Nach einem induzierten starken Reiz von 1,5 MED SSR wird in UVA und SSR (UVA und UVB) vorbehandelten Arealen eine weitere Zunahme der Hyperplasie festgestellt, die aber keine statistische Signifikanz besitzt. Daraus lässt sich ableiten, dass UVA einen stärkeren Einfluss auf die Ausbildung einer Hyperplasie besitzt als UVB. Ein Grund dafür kann der viel diskutierte geringe Photoschutz durch UVA induzierte Bräunung sein, weshalb eine größere epidermale Hyperplasie ausgebildet wird. Es wird berichtet, dass besonders helle Hauttypen mit geringer konstitutiven Pigmentierung verstärkt Hyperplasien ausbilden und diese in einem höheren Maße an dem UV-Schutz beteiligt sind als das in heller Haut gebildete Melanin (Hennessey et al., 2005).

Nach Setzten des Reizes von 1,5 MED SSR (siehe 4.1.2) ist der Hämoglobin-Index (HbInd) in den vorbehandelten Arealen SSR (*, p=0,03) und UVA (n.s., p=0,09) erhöht (Daten sind nicht gezeigt). Ein erhöhter HbInd weist auf eine stärkere Durchblutung und geweitete Blutgefäße in diesem Bereich hin. Das sind Merkmale für ein
gebildetes Erythem, welches vor allem durch den UVB-Anteil induziert wird. Folglich weist die Vorbehandlung mit UVB einen höheren erythemen Schutz auf als die Vorbehandlung mit UVA und SSR.

In den zuvor repetitiv bestrahlten Arealen kommt es nach der Bestrahlung mit 1,5 MED SSR zu keiner zusätzlichen signifikanten Melanineubildung oder Änderung an TRP1+ Zellen (Abbildung 5.1, Abbildung 5.5). Lediglich die starke Streuung der Werte bei UVA-vorbehandelten Arealen ist, wie bereits nach repetitiver Bestrahlung, auffällig. Die untersuchten Probanden gehören den Hauttypen II und III an. Trotzdem können Unterschiede in der Vorbäune (Studienbeginn) beobachtet werden (siehe Abbildung 5.2). Das und die sehr unterschiedlichen Reaktionen der Probanden auf die UVA-Exposition bedingen die starken Schwankungen der Ergebnisse. Dadurch stellt sich die Frage ob es eventuell unterschiedliche Reaktionstypen für die UVA-Exposition gibt. Obwohl inkonsistente Reaktionen auftreten werden signifikante Resultate erzielt. Eine Erhöhung des Probandenumfangs würde helfen, die getroffenen Aussagen zu untermauern.

6.1.3 Immun- und Zellstatus nach repetitiver Bestrahlung mit UVA und/oder UVB

Es wird mehrfach von entzündlichen Zellinfiltraten nach UV-Exposition berichtet (Kang et al., 1994; Clydesdale et al., 2001). In den Untersuchungen wird hauptsächlich die Infiltration der Epidermis charakterisiert. Die in dieser Arbeit vorgestellten Ergebnisse betrachten ausschließlich die Immun- und Gesamtzellzahl in der Dermis nach repetitiver Bestrahlung mit UVA und/oder UVB. Drei Wochen nach Beginn der repetitiven Bestrahlung ist die Gesamtzellzahl in den bestrahlten Arealen zwischen 5 % (SSR) und 15 % (UVB) erhöht (Abbildung 5.7.). In UVA oder UVB bestrahlten Arealen wird eine sehr bis höchst signifikante Zunahme an CD45+ Zellen verzeichnet (Steigerung um 40 %), die gegenüber der Behandlung mit SSR (Steigerung um 8 %) eine deutlich größere Anzahl an CD45+ Zellen aufweisen. Um einen Zusammenhang zwischen dem Immunzellstatus und dem neusynthetisierten Melanin nach repetitiver Bestrahlung herstellen zu können, wird der quantifizierte Melaningehalt
der Anzahl an CD45⁺ Zellen gegenübergestellt (Abbildung 5.9). SSR behandelte Areale weisen den höchsten Melaningehalt, jedoch eine deutlich geringere Anzahl CD45⁺ Zellen gegenüber UVA oder UVB, auf. Der höhere Melaningehalt könnte einen größeren photoprotektiven Effekt als in UVA und UVB behandelten Arealen ausüben. Dadurch lässt sich die geringere Entzündungsreaktion, in Form von infiltrierten CD45⁺ Zellen, erklären.

Das durch CD45⁺ Zellen charakterisierte, UV-induzierte dermale Infiltrat besteht etwa zu 58 % - 69 % aus CD14⁺ Zellen (Monozyten, Granulozyten und Makrophagen). Der verbleibende Anteil von 31 – 42 % kann T-Zellen, B-Zellen und dendritischen Zellen zugeschrieben werden.

6.2 Charakterisierung des dermalen entzündlichen Infiltrats in der PIH

In den internen Untersuchungen (Daten nicht gezeigt) wird 2 Wochen nach SB-Entnahme ein Anstieg von CD45⁺ und CD14⁺ Zellen um jeweils das 3-fache detektiert. Danach nimmt die Immunzellzahl ab und erreicht 16 Wochen nach SB-Entnahme mit einer Erhöhung von 25 - 30 % immer noch kein Kontrollniveau.
In Veröffentlichungen wird von einem Anstieg der Mastzellpopulation in inflammatorischer Haut und einer tragenden Rolle von Mastzellen in der Wundheilung berichtet (Harvima und Nilsson, 2011; Koh und DiPietro, 2013; Hernandez-Berrera et al., 2008). Aus diesem Grund wurden immunhistochemische Färbungen gegen Mastzelltryphtase, an Gefrierdünnschnitten der PIH-Studie (n=16; 8 Wochen mit n=8), durchgeführt, um das dermale Infiltrat genauer zu beschreiben. Da Tryptase als ein spezifischer Marker für Mastzellen gilt, können Mastzelltryphtase positive Zellen eindeutig als Mastzellen identifiziert werden. In den SB-Arealen wird nach 4, 8 und 16 Wochen eine Erhöhung der Mastzellzahl detektiert. Vier Wochen nach SB-Entnahme erreicht die Mastzellpopulation sein Maximum mit der 1,8-fachen Mastzellanzahl (total 438 ± 78 % Zellen pro mm²; p=0,01) im Vergleich zum Kontrollareal. Danach nimmt die Anzahl an Mastzellen ab, liegt aber noch 16 Wochen nach SB-Entnahme mit 6 % erhöht vor. Die Gesamtzellzahl ist zu diesem Zeitpunkt noch um 25 % erhöht.

6.3 Dermales Infiltrat in PIH und UV-induzierter Pigmentierung im Vergleich

In diesem Kapitel wird ein Vergleich zwischen unterschiedlich induzierter Pigmentierung auf Ebene des ausgebildeten dermalen Infiltrats gezogen.

Beide untersuchte Arten der Pigmentierung (UV-induziert und PIH) weisen einige Wochen nach Induktion der Pigmentierung, durch repetitive UV-Strahlung und SB-Entnahme (PIH), eine erhöhte Gesamtzellzahl und eine Zunahme der Immunzell population (CD45⁺ und CD14⁺ Zellen) in der Dermis auf (vgl. 6.1.3 und 6.2.). Zwei Wochen nach SB-Entnahme ist die Gesamtzellzahl in der PIH um 40 % gestiegen und erreicht ihr Maximum nach vier Wochen mit 62 % Zellzahlzunahme. Im Vergleich zur PIH ist die Gesamtzellzahl durch repetitive UV-Exposition nach drei Wochen nur moderat um bis zu 15 % erhöht. Die Markierung von Immunzellen
(CD45- und CD14+) ermittelt eine Verdreifachung an CD45- und CD14+ Zellen in der PIH, während identisch markierte Zellen in UV-bestrahlten Arealen auf das 1,5-fache, im Vergleich zur Kontrolle, ansteigen.

6.4 Untersuchungen zur Modulation der Pigmentierung in vitro

Für die Untersuchung des melanogenen Effekts von HMC1-konditioniertem Medium auf Melanozyten, wird vor der Inkubation der Melanozyten mit dem Kulturüberstand der Mastzelllinie HMC1, diese mittels SP (Substanz P) oder NGF (Nerve Growth Faktor) stimuliert. SP und NGF besitzen die Fähigkeit Mastzellen zu stimulieren, das heißt durch Inkubation von Mastzellen mit SP oder NGF wird die Freisetzung von Mastzellmediatoren, wie z.B. Histamin, induziert (Molderings, 2010). Mittels Histaminbestimmung wird der Stimulationserfolg bewertet. In der Untersuchung dieser Arbeit wird weder nach Inkubation mit SP noch nach Inkubation mit NGF eine Histaminzunahme ermittelt. Somit erfolgt keine zusätzliche Freisetzung von Mastzellmediatoren, zumindest nicht von Histamin. Nicht aktive, zu
alte HMC1-Zellen könnten ein Grund dafür sein. Das konditionierte Mastzellmedium wird dennoch für die Behandlung von Melanozyten verwendet, da sich neben Histamin eine Vielzahl anderer Mediatoren in dem Kulturüberstand befinden kann.

Die Behandlung mit HMC1-konditioniertem Medium induziert eine Melaninzunahme von 6 % (SP-stimuliert) bis 10 % (NGF-stimuliert) in den Zellen und reduziert den Melaningehalt im Kulturüberstand um 1 % (SP-stimuliert) bis 5 % (NGF-stimuliert) (siehe Abbildung 5.21). Ein Einfluss von SP auf die Melaninbildung kann nicht ausgeschlossen werden, da die Behandlung mit SP allein einen Anstieg von 10 % im Melaningehalt (in den Zellen) induziert. Das Versuchsdmodel ist für die Untersuchung der Wirkung von konditionierten Medien auf Melanozyten geeignet, jedoch muss die Vitalität und Agilität der verwendeten HMC1-Zelllinie abgeklärt werden.
7 Zusammenfassung

Die postinflammatorische Hyperpigmentierung (PIH) ist eine erworbene Dispigmentierung, die für die Betroffenen, speziell bei exponierten hyperpigmentierten Hautpartien, einen psychischen Stressfaktor darstellen kann. Um mögliche Ansatzpunkte zur Modulation dieser Dispigmentierung identifizieren zu können, ist die Aufklärung grundlegender Mechanismen in der PIH Ziel der kosmetischen Forschungsarbeit.

Nach repetitiver Bestrahlung wird durch alle Bestrahlungsarten (SSR, UVA und UVB) ein 2,5 bis 3-fach erhöhter Melaningehalt ermittelt. Durch Verwendung eines verbesserten Fontana Masson Färbeprotokolls ist erstmals eine hohe Korrelation von Melanin-Index (MelInd) mit dem Melaningehalt möglich.

Die Ergebnisse deuten darauf hin, dass ein Netzwerk von zellulären Interaktionen, zwischen den an der Pigmentierung beteiligten Zellen (Melanozyten und Keratinozyten) und den infiltrierenden Immunzellen, eine wichtige Rolle in der Ausbildung einer Hyperpigmentierung spielt.
8 Literaturverzeichnis

