Rekombinante Expression und Charakterisierung von PfEMP1-Proteinen von *Plasmodium falciparum* (Welch, 1897) sowie VIR-Proteinen von *Plasmodium vivax* (Grassi & Feletti, 1890) unter besonderer Betrachtung der Interaktion mit humanen Endothelrezeptoren

Bachelor-Arbeit

Zur Erlangung des Grades Bachelor of Science (B. Sc.) im Studiengang Biotechnologie der Fakultät Life Sciences an der Hochschule für Angewandte Wissenschaften Hamburg

vorgelegt von

Elena Baron

Hamburg

14. Dezember 2015
Diese Arbeit wurde in der Arbeitsgruppe von Prof. Dr. Egbert Tannich und unter der Anleitung von Prof. Dr. Iris Bruchhaus am Bernhard-Nocht-Institut für Tropenmedizin angefertigt.

1. Gutachter: Prof. Dr. Jörg Andrä
 Fakultät Life Sciences
 Department Biotechnologie
 Ulmenliet 20, 21033 Hamburg

2. Gutachter: Prof. Dr. Iris Bruchhaus
 Bernhard-Nocht-Institut für Tropenmedizin
 Abteilung Molekulare Parasitologie
 Bernhard-Nocht-Straße 74, 20359 Hamburg
Inhaltsverzeichnis

I. Abkürzungsverzeichnis ... I

II. Einheiten, Maßeinheiten und Symbole ... IV

1. Einleitung ... 1
 1.1. Krankheitsbild der Malaria ... 1
 1.2. Lebenszyklus von *P. falciparum* und *P. vivax* .. 3
 1.3. Zytoadhäsion durch variable Oberflächenantigene an humane Endothelrezeptoren 5
 1.4. Zielsetzung ... 8

2. Material und Methoden ... 9
 2.1. Materialien .. 9
 2.1.1. *P. falciparum*-Stämme .. 9
 2.1.2. CHO-Zelllinie .. 9
 2.1.3. Oligonukleotide .. 10
 2.1.4. Antikörper .. 11
 2.1.5. Enzyme und Vektoren .. 12
 2.1.6. Puffer, Lösungen, Medien und Zusätze .. 12
 2.1.7. Patientenproben .. 15
 2.2. Zellbiologische Methoden ... 15
 2.2.1. *In vitro* Kultivierung von *P. falciparum* .. 15
 2.2.2. Separation von Zellen mittels Dichtegradientenzentrifugation (Ficoll) 16
 2.2.3. Anfertigen von Stabilaten einer *Plasmodium*-Kultur .. 17
 2.2.4. Auftauen von *Plasmodium*-Stabilaten .. 17
 2.2.5. Synchronisieren von *Plasmodium*-Kulturen mittels Sorbitol 17
 2.2.6. Aufnahme einer Zeitreihe ... 18
 2.2.7. *In vitro* Kultivierung von CHO-Zellen ... 19
 2.2.8. Zellzahlbestimmung und -einstellung .. 19
 2.2.9. Anreicherung von IE an einen bestimmten Rezeptor (*Panning*) 19
 2.2.10. Statistischer Bindungsassay für *P. falciparum* ... 20
 2.3. Molekularbiologische Methoden .. 21
 2.3.1. PCR aus isolierter gDNA .. 21
i. P. vivax Transfektanten .. XIV
ii. MAL6P1.252 .. XIX
b. Nukleotidabgleich ... XXV
 i. Vir-Sequenzen ... XXV
 ii. MAL6P1.252-Sequenzen ... XXVII
c. Gebrauchsmaterialien und Reaktionskits .. XXXII
d. Chemikalien und Reagenzien ... XXXIII
e. Geräte und Software ... XXXV
f. Herstellerprotokolle ... XXXVII
I. Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Begriff</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>Anti</td>
</tr>
<tr>
<td>A</td>
<td>Adenin</td>
</tr>
<tr>
<td>AG</td>
<td>Arbeitsgruppe</td>
</tr>
<tr>
<td>Amp</td>
<td>Ampicillin</td>
</tr>
<tr>
<td>APS</td>
<td>Ammoniumpersulfat</td>
</tr>
<tr>
<td>Aqua dest, A. dest.</td>
<td>Einfach destilliertes Wasser</td>
</tr>
<tr>
<td>ATCC</td>
<td>American Type Culture Collection</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosintriphosphat</td>
</tr>
<tr>
<td>bp</td>
<td>Basenpaare</td>
</tr>
<tr>
<td>BCA</td>
<td>Bicinchoninic acid</td>
</tr>
<tr>
<td>BNITM</td>
<td>Bernhard-Nocht-Institut für Tropenmedizin</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovines Serumalbumin</td>
</tr>
<tr>
<td>bzw.</td>
<td>beziehungsweise</td>
</tr>
<tr>
<td>C</td>
<td>Cytosin</td>
</tr>
<tr>
<td>ca.</td>
<td>circa</td>
</tr>
<tr>
<td>CD</td>
<td>Cluster of Differentiation</td>
</tr>
<tr>
<td>CHO</td>
<td>Chinese Hamster Ovary</td>
</tr>
<tr>
<td>CIDR</td>
<td>Cysteine Rich Interdomain Region</td>
</tr>
<tr>
<td>CSA</td>
<td>chondroitin sulfate A</td>
</tr>
<tr>
<td>DBL</td>
<td>Duffy Binding Like</td>
</tr>
<tr>
<td>DHFR</td>
<td>Dihydrofolatreduktase</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulfoxid</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>dNTP</td>
<td>Desoxyribonucleotriphosphat</td>
</tr>
<tr>
<td>ECL</td>
<td>enhanced chemiluminescence</td>
</tr>
<tr>
<td>E. coli</td>
<td>Escherichia coli</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenendiamintetraacetat</td>
</tr>
<tr>
<td>EM</td>
<td>Erythrozytenmembran</td>
</tr>
<tr>
<td>EPCR</td>
<td>endothelial protein C receptor</td>
</tr>
<tr>
<td>ETRAMP</td>
<td>Early transcribed membrane protein</td>
</tr>
<tr>
<td>G</td>
<td>Guanin</td>
</tr>
<tr>
<td>gDNA</td>
<td>Genomic Deoxyribonucleic acid</td>
</tr>
<tr>
<td>GFP</td>
<td>Grün-fluoreszierendes Protein</td>
</tr>
<tr>
<td>GOI</td>
<td>Gene of interest</td>
</tr>
<tr>
<td>H + L</td>
<td>Heavy + Light</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Deutscher Name</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------</td>
</tr>
<tr>
<td>HA</td>
<td>Human influenza hemagglutinin</td>
</tr>
<tr>
<td>His</td>
<td>Histidin</td>
</tr>
<tr>
<td>hpi</td>
<td>Stunden nach Infektion (hours post invasion)</td>
</tr>
<tr>
<td>HPLC</td>
<td>High-performance liquid chromatography</td>
</tr>
<tr>
<td>HRP</td>
<td>Horseradish peroxidase</td>
</tr>
<tr>
<td>HS</td>
<td>Humanes Serum</td>
</tr>
<tr>
<td>ICAM-1</td>
<td>intercellular adhesion molecule-1</td>
</tr>
<tr>
<td>IE</td>
<td>Infizierte Erythrozyten</td>
</tr>
<tr>
<td>IFA</td>
<td>Immunfluoreszenzassay</td>
</tr>
<tr>
<td>IgG</td>
<td>Immunoglobulin G</td>
</tr>
<tr>
<td>IPTG</td>
<td>Isopropyl-β-D-thiogalactopyranosid</td>
</tr>
<tr>
<td>Lac</td>
<td>Lactose</td>
</tr>
<tr>
<td>LB</td>
<td>Lysogeny broth</td>
</tr>
<tr>
<td>LG</td>
<td>Laborgruppe</td>
</tr>
<tr>
<td>M.</td>
<td>Malaria</td>
</tr>
<tr>
<td>MFS</td>
<td>Malaria Freezing Solution</td>
</tr>
<tr>
<td>MS</td>
<td>Maurer’sche Spalten</td>
</tr>
<tr>
<td>MTS</td>
<td>Malaria Thawing Solution</td>
</tr>
<tr>
<td>NTA</td>
<td>Nitrilotriacetic acid</td>
</tr>
<tr>
<td>NTS</td>
<td>N-terminales Segment</td>
</tr>
<tr>
<td>OD</td>
<td>Optische Dichte</td>
</tr>
<tr>
<td>P.</td>
<td>Plasmodium</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate Buffered Saline</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase- Kettenreaktion (Polymerase chain reaction)</td>
</tr>
<tr>
<td>PECAM-1</td>
<td>Platelet/endothelial cell adhesion molecule-1</td>
</tr>
<tr>
<td>PEG</td>
<td>Polyethyenglycol</td>
</tr>
<tr>
<td>PEXEL</td>
<td>Plasmodium export element</td>
</tr>
<tr>
<td>PfEMP1</td>
<td>Plasmodium falciparum Erythrocyte Membrane Protein 1</td>
</tr>
<tr>
<td>pH</td>
<td>pondus hydrogenii (Wasserstoffanteil)</td>
</tr>
<tr>
<td>PM</td>
<td>Parasitenmembran</td>
</tr>
<tr>
<td>POI</td>
<td>Protein of interest</td>
</tr>
<tr>
<td>PV</td>
<td>Parasitophore Vakuole</td>
</tr>
<tr>
<td>PVM</td>
<td>Parasitophore Vakuolenmembran</td>
</tr>
<tr>
<td>Pwo</td>
<td>Pyrococcus woesei</td>
</tr>
<tr>
<td>RKI</td>
<td>Robert Koch-Institut</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic acid</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Deutscher Begriff/Englischer Begriff</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>rP</td>
<td>Rekombinantes Protein</td>
</tr>
<tr>
<td>s.</td>
<td>siehe</td>
</tr>
<tr>
<td>SBP1</td>
<td>Skeleton binding protein 1</td>
</tr>
<tr>
<td>SDS</td>
<td>Sodium dodecyl sulfate</td>
</tr>
<tr>
<td>spp</td>
<td>species pluralis</td>
</tr>
<tr>
<td>T</td>
<td>Thymin</td>
</tr>
<tr>
<td>TAE</td>
<td>TRIS-Acetat-EDTA-Puffer</td>
</tr>
<tr>
<td>Taq</td>
<td>Thermus aquatic</td>
</tr>
<tr>
<td>TBS</td>
<td>TRIS-Borat-EDTA-Puffer</td>
</tr>
<tr>
<td>TE</td>
<td>TRIS-EDTA-Puffer</td>
</tr>
<tr>
<td>TEMED</td>
<td>Tetramethylethyldiamin</td>
</tr>
<tr>
<td>TM</td>
<td>Transmembrandomäne</td>
</tr>
<tr>
<td>TRIS</td>
<td>Tris(hydroxymethyl)-aminomethan</td>
</tr>
<tr>
<td>u.A.</td>
<td>Unter Anderem</td>
</tr>
<tr>
<td>u.U.</td>
<td>Unter Umständen</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolette Licht</td>
</tr>
<tr>
<td>ÜS</td>
<td>Überstand</td>
</tr>
<tr>
<td>var</td>
<td>Variant gene in P. falciparum</td>
</tr>
<tr>
<td>vir</td>
<td>(variant interspersed repeats) Variant gene in P. vivax</td>
</tr>
<tr>
<td>WB</td>
<td>Western Blot</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organisation</td>
</tr>
<tr>
<td>X-Gal</td>
<td>5-Brom-4-chlor-3-indoxyl-β-D-galactopyranosid</td>
</tr>
</tbody>
</table>
II. Einheiten, Maßeinheiten und Symbole

Ampere
Dalton
Gramm
Stunde(n)
Liter
molare Masse in g/mol
Meter
Minute(n)
Mol
Sekunde(n)
Volt
Multipliziert mit der Erdbeschleunigung (gravity)
Winkelgrad
Grad Celsius
Prozent
unendlich

Kilo 10^3
Mili 10^{-3}
Mikro 10^{-6}
Nano 10^{-9}
1. Einleitung

Abbildung 1: Globale Lage der Malaria-Gebiete mit hohem Infektionsrisiko. 3,3 Milliarden Menschen leben in Malaria-endemischen Gebieten, 1,2 Milliarden in Ländern mit hohem Infektionsrisiko. (http://worldmalariareport.org/map?color=657&circle=707#)

1.1. Krankheitsbild der Malaria

1. Einleitung

1.2. Lebenszyklus von *P. falciparum* und *P. vivax*

Der Lebenszyklus der Plasmodien (s. Abbildung 2) sieht vor, dass sich die Protozoen im Menschen als Zwischenwirt vermehren und heranreifen und in der Mücke als Endwirt fortpflanzen. Die asexuelle Phase im Menschen, auch Schizogonie genannt, beginnt mit dem Stich der Mücke, die hunderte Sporozoiten ins Blut abgibt. Mit dem Blutstrom wandern die Einzeller in die Leber und infizieren die Hepatozyten. Dabei formt der Parasit aus der Plasmamembran der Wirtszelle eine parasitophore Vakuole (PV), die zusätzlich mit Proteinen und Lipiden vom Parasiten modifiziert wird (Sturm, et al., 2006).

Das Besondere im *P. vivax*-Zyklus ist, dass ein Teil der Merosomen als Hypnozoiten in den Hepatozyten verbleiben kann. In diesem Ruhe Stadium kann der Parasit über Wochen und Jahre im Wirtsorganismus überdauern und eine erneute Malariaerkrankung hervorrufen. Es ist bis heute nicht bekannt was das Signal zur erneuten Vermehrung gibt, es wird aber vermutet, dass es mit Umweltbedingungen in Zusammenhang steht. Dies könnte die erhöhte Wahr scheinlichkeit sein, eine Stechmücke zu infizieren durch die beispielsweise jahreszeitliche Veränderung vom Winter zum Sommer (Barnwell, et al., 2007).

Nach der ersten Vermehrung in den IE äußert sich die Krankheit mit den ersten Symptomen wie starkem Fieber. *P. vivax* zeichnet sich durch hohe Synchronität der Plasmodien aus, was sich hier in den typischen dreitägern rhyth mischen Fieberschüben zeigt. *P. falciparum* grenzt sich mit einer deutlich höheren Parasitämie und ohne erkennbare Synchronität ab.
Im asexuellen Kreislauf entwickeln sich einige Merozoiten zu Gametozyten, der Geschlechtsform der Plasmodien, und können bei einer erneuten Blutmahlzeit einer Mücke von dieser aufgenommen werden. Dort beginnt die ca. 8-16 Tage dauernde sexuelle Phase, auch Sporogonie genannt. Im Darm der Stechmücke entwickeln sich die Gametozyten zu Gameten.

Die männliche Mikrogamete verschmilzt mit der weiblichen Makrogamete und es entsteht eine diploide Zygote, die durch das Darmepithel transmigriert und dabei zum Ookineten heranreift. Im weiteren Verlauf lagert sich der Ookinet an der Basalmembran der Darmwand an und differenziert sich zur Oozyste, die aus den Gewebeschichten herausragt. So werden die darin neu gebildeten Sporozoiten durch Aufplatzen ins Coelom freigesetzt und wandern in die Speicheldrüse der Stechmücke. Bei der nächsten Blutmahlzeit können so bis zu tausend neue Sporozoiten abgegeben werden und einen neuen Menschen infizieren (Sturm, et al., 2006; Miller, Baruch, Marsh, & Doumbo, 2002; Lindner, Miller, & Kappe, 2012).

1.3. Zytoadhäsion durch variable Oberflächenantigene an humane Endothelrezeptoren

Als Trophozoiten im intraerythrozytären Stadium exprimieren Plasmodien Proteine, die über die Maurer’schen Spalten (MS), einem tubulären Netzwerk, das sich von der parasitophoren Vakuolenmembran (PVM) bis zur EM ausbreitet, auf die Wirtszellenoberfläche transportiert werden. Mit Hilfe der Oberflächenproteine, die wie Liganden an den Endothelrezeptoren wirken, adhären die IE an Endothelrezeptoren der Blutgefäße und vermeiden so die Eliminierung durch die Milz (Miller, Baruch, Marsh, & Doumbo, 2002; Hinterberg, et al., 1994).

Neben der Zytoadhäsion treten Fälle auf, in denen die IE mit nicht infizierten Erythrozyten (Rosettenbildung, rosetting) oder mit anderen IE (Agglutination) Klumpen bilden (s. Abbildung 3). Das Auftreten der Rosettenbildung und Agglutination ist noch nicht genau erforscht und die Ursachen und Gründe unklar, jedoch werden alle drei Adhäsionen mit schwerer Malaria in signifikanten Zusammenhang gebracht (Miller, Baruch, Marsh, & Doumbo, 2002).

Eine Schlüsselrolle in der Fähigkeit zur Zytoadhäsion wird in den Multigenfamilien var (variant gene) in P. falciparum und vir (variant interspersed repeats) in P. vivax gesehen. Diese sind wie in den meisten anderen Plasmodium spp. hochgradig unterschiedlich, dienen aber vermutlich dem gleichen Ziel, dem Immunsystem des Wirtsorganismus zu entgehen (Singh, Gupta, & Pande, 2014; Miller, Baruch, Marsh, & Doumbo, 2002).

\textbf{Abbildung 4:} Schematische Darstellung der \textit{PfEMP1}-Präsentation vom IE an Wirtszellrezeptoren (Rowe, Claessens, Corrigan, & Arman, 2009). NTS= N-terminales Segment, DBL= Duffy-binding-like Domäne mit den vier Typen (α, β, γ, δ), CIDR= Cystein-rich-interdomain-region mit den drei Typen (α, β, γ), TM= Transmembrandomäne.

1.4. Zielsetzung

Im ersten Projekt werden Bindungsdomänen von PfEMP1-Proteinen, die in vorangegangenen Studien als putative Bindungsbereiche identifiziert und deren Aufbau in Domänen klassifiziert wurde, rekombinant exprimiert. Diese als IT4var2 und MAL6P1.252 bezeichneten PfEMP1-Proteine, konnten als Interaktionspartner für CD9 und P-Selektin nachgewiesen werden (Tilly, Metwally, & Bruchhaus, unveröffentlichte Daten; Tilly, Dissertation, 2015). Da noch unklar ist welche der spezifischen Domänen für die Bindungen verantwortlich sind, sollen diese in Inhibitionsstudien charakterisiert werden. Dabei wird der Fokus auf den humanen Endothelrezeptor CD9, welcher u. A. in Blutgefäßen des Gehirns lokalisiert ist, gelegt.

Im zweiten Projekt soll untersucht werden, ob und welche VIR-Proteine auf die Wirtszeloberfläche transportiert werden und somit u.U. eine Rolle in der Zytoadhäsion von *P. vivax* einnimmt. Dafür werden ausgewählte VIR-Proteine einerseits rekombinant exprimiert und andererseits in *P. falciparum* exprimiert. Mittels der rekombinant exprimierten Proteine werden Antikörper generiert, die auf Blutausstrichen von *P. vivax*-Patienten Proteine auf den Oberflächen der IE detektieren sollen. Die in *P. falciparum* exprimierten Proteine sollen in einer Zeitreihe mittels Immunfluoreszenzassays (IFAs) nachverfolgt und der Transportweg aufgezeichnet werden.
2. Material und Methoden

Im Verlauf der Projektbearbeitung wurden viele verschiedene Methoden erlernt und angewendet. Die verwendeten Materialien werden im Folgenden aufgeführt und die Methoden nach ihrem Schwerpunkt unterteilt und erläutert.

2.1. Materialien

Die Liste aller verwendeter Geräte mit der Software (s. Anhang VI.e), sowie der Chemikalien und Reagenzien (s. Anhang VI.d) und Gebrauchsmaterialien und Reaktionskits (s. Anhang VI.c) sind dem Anhang zu entnehmen.

2.1.1. *P. falciparum*-Stämme

2.1.2. CHO-Zelllinie

Bei den in dieser Arbeit verwendeten CHO (Chinese Hamster Ovary)-Zelllinien handelt es sich um transfizierte CHO-745 vom Wildtyp ATCC (American Type Culture Collection) No. CRL-2242.

Die adhärierenden Zellen exprimieren extrazellulär spezifische humane Endothelrezeptoren und intrazellulär GFP (Grün-fluoreszierendes Protein). Die mock-Zelllinie wurde mit dem gleichen Vektor transfiziert, exprimiert aber nur cytosolisches GFP und dient als Negativkontrolle.

<table>
<thead>
<tr>
<th>Tabelle 1: Verwendete CHO-Zelllinien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bezeichnung</td>
</tr>
<tr>
<td>CHO-745 (mock)</td>
</tr>
<tr>
<td>CHO-745-CD36</td>
</tr>
<tr>
<td>CHO-745-CD9</td>
</tr>
</tbody>
</table>
2.1.3. Oligonukleotide

Aufgelistet sind die verwendeten Oligonukleotide für die Amplifizierung vier verschiedener vir- Gene von *P. vivax*, sowie Oligonukleotide für fünf Domänen des *PfEMP1*-Proteins MAL6P1.252 aus *P. falciparum*.

Die Herstellung erfolgte extern durch die Firma Eurofins Genomics.

Tabelle 2: Liste der Oligonukleotide für die Amplifizierung verschiedener vir- und MAL6P1.252-Moleküle.

<table>
<thead>
<tr>
<th>BNI-Nr.</th>
<th>Bezeichnung</th>
<th>Sequenz (5’->3’)</th>
<th>bp</th>
</tr>
</thead>
<tbody>
<tr>
<td>2254</td>
<td>vir 14_F</td>
<td>GAGA GGATCC AAGCGTGGTTATGATTTAAA</td>
<td>30</td>
</tr>
<tr>
<td>2256</td>
<td>vir 14-R2</td>
<td>GAGA GAATTC TCTTTGTTTAAGGATTTCAACAT</td>
<td>36</td>
</tr>
<tr>
<td>2257</td>
<td>vir 9-F</td>
<td>GAGA GGATCC TGTAATACCTAAACTACTTTGTT</td>
<td>33</td>
</tr>
<tr>
<td>2258</td>
<td>vir 9-R</td>
<td>GAGA GAATTC TCTAAATCTCTAGTGCTTACAAT</td>
<td>39</td>
</tr>
<tr>
<td>2259</td>
<td>vir 30-F</td>
<td>GAGA GGATCC TGAGTACCTTTCTAGTG</td>
<td>30</td>
</tr>
<tr>
<td>2260</td>
<td>vir 30-R</td>
<td>GAGA GAATTC TTA AAGTTTACTATAGTTCTGATATAAC</td>
<td>39</td>
</tr>
<tr>
<td>2263</td>
<td>vir 5-F2</td>
<td>GAGA GGATCC TATAAAAGGCGTGGAAAAATG</td>
<td>33</td>
</tr>
<tr>
<td>2264</td>
<td>vir 5-R2</td>
<td>GAGA GAATTC TTA TATTTGGGAGCTGATGCTGG</td>
<td>36</td>
</tr>
<tr>
<td>2265</td>
<td>D1_B_F30</td>
<td>GAGA GGATCC ACATACAGTATGCGCAAGGA</td>
<td>30</td>
</tr>
<tr>
<td>2266</td>
<td>D1_E_R33</td>
<td>GAGA GAATTC TTA CACTCCACACCAAGGCAAG</td>
<td>33</td>
</tr>
<tr>
<td>2267</td>
<td>D2_B_F30</td>
<td>GAGA GGATCC GTAAGAGATACTTGATAT</td>
<td>30</td>
</tr>
<tr>
<td>2268</td>
<td>D2_E_R35</td>
<td>GAGA GAATTC TTA ATCCCGGTGTAAAGACGACCT</td>
<td>35</td>
</tr>
<tr>
<td>2269</td>
<td>D3_B_F30</td>
<td>GAGA GGATCC AAGAAACAATGCGGTAGTAG</td>
<td>30</td>
</tr>
<tr>
<td>2270</td>
<td>D3_E_R33</td>
<td>GAGA GAATTC TTA AAAGGAATTTATCTCTG</td>
<td>33</td>
</tr>
<tr>
<td>2271</td>
<td>D4_B_F30</td>
<td>GAGA GGATCC GGTGAAAAAGTTGCTGATAA</td>
<td>30</td>
</tr>
<tr>
<td>2272</td>
<td>D4_F_R33</td>
<td>GAGA GAATTC TTA TTTACACTCAGCCGAAT</td>
<td>33</td>
</tr>
<tr>
<td>2273</td>
<td>D5_B_F30</td>
<td>GAGA GGATCC GATGTTAATGAGTGTGTTAT</td>
<td>30</td>
</tr>
<tr>
<td>2274</td>
<td>D5_E_R33</td>
<td>GAGA GAATTC TTA TGACTCATATTCTGTTGACT</td>
<td>33</td>
</tr>
</tbody>
</table>

Die Oligonukleotide wurden mit den Schnittstellen für *Eco*RI und *Bam*HI ausgestattet. Die gesamten Sequenzen und Nukleotidabgleiche sind dem Anhang unter VI.a und VI.b zu entnehmen.

Alle Oligonukleotide werden mit 1xTE auf eine Konzentration von 100 pmol/µl eingestellt, mit HPLC-Wasser 1:10 verdünnt und bei -20°C gelagert.
2.1.4. Antikörper

Antikörper wurden sowohl beim Westernblot (WB), als auch bei IFAs verwendet.

Tabelle 3: Primäre Antikörper für Westernblot (WB) und Immunfluoreszenzassay (IFA) mit den ange-wendeten Verdünnungen. Für den WB werden die Antikörper in 5% Milchpulver verdünnt.

<table>
<thead>
<tr>
<th>Antikörper</th>
<th>Hersteller</th>
<th>WB</th>
<th>IFA</th>
<th>Organismus</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-His</td>
<td>Invitrogen</td>
<td>1:5000</td>
<td>-</td>
<td>Maus (monoklonal)</td>
</tr>
<tr>
<td>α-GFP</td>
<td>Roche</td>
<td>1:1000</td>
<td>-</td>
<td>Maus</td>
</tr>
<tr>
<td>Alexa Fluor 594 α-HA</td>
<td>BioLegend</td>
<td>1:1000</td>
<td>-</td>
<td>Maus</td>
</tr>
<tr>
<td>α-HA</td>
<td>Dianova</td>
<td>1:3000</td>
<td>-</td>
<td>Kaninchen</td>
</tr>
<tr>
<td>α-HA, High Affinity</td>
<td>Roche</td>
<td>1:500</td>
<td>1:50</td>
<td>Ratte (monoklonal)</td>
</tr>
<tr>
<td>α-GFP</td>
<td>BNITM (AG Spielmann)</td>
<td>-</td>
<td>1:100</td>
<td>Ratte</td>
</tr>
<tr>
<td>α-ETRAMP</td>
<td>BNITM (AG Spielmann)</td>
<td>1:400</td>
<td></td>
<td>Maus</td>
</tr>
<tr>
<td>α-SBP1</td>
<td>BNITM (AG Spielmann)</td>
<td>1:1000</td>
<td></td>
<td>Maus</td>
</tr>
<tr>
<td>α-Spektrin</td>
<td>BNITM (AG Spielmann)</td>
<td>1:200</td>
<td></td>
<td>Kaninchen</td>
</tr>
</tbody>
</table>

Tabelle 4: Sekundäre Antikörper für Westernblot (WB) und Immunfluoreszenzassay (IFA) mit den einge-setzten Verdünnungen. Für den WB werden die Antikörper in 5% Milchpulver verdünnt.

<table>
<thead>
<tr>
<th>Antikörper</th>
<th>Hersteller</th>
<th>WB</th>
<th>IFA</th>
<th>Organismus</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-Maus, IgG/ HRP</td>
<td>Dako</td>
<td>1:7500</td>
<td>-</td>
<td>Kaninchen (polyklonal)</td>
</tr>
<tr>
<td>α-Ratte</td>
<td>Dianova</td>
<td>1:3000</td>
<td>-</td>
<td>Ziege</td>
</tr>
<tr>
<td>α-Maus</td>
<td>Dianova</td>
<td>1:3000</td>
<td>-</td>
<td>Ziege</td>
</tr>
<tr>
<td>α-Kaninchen, IgG/ HRP</td>
<td>Dako</td>
<td>1:3000</td>
<td>-</td>
<td>Schwein (polyklonal)</td>
</tr>
<tr>
<td>Alexa Fluor 488 α-Ratte IgG (H+L) 2 mg/ml</td>
<td>Invitrogen</td>
<td>-</td>
<td>1:200</td>
<td>Kaninchen (polyklonal)</td>
</tr>
<tr>
<td>Alexa Fluor 488 α-Maus IgG (H+L) 2 mg/ml</td>
<td>Invitrogen</td>
<td>-</td>
<td>1:400</td>
<td>Ziege (polyklonal)</td>
</tr>
<tr>
<td>Alexa Fluor 594 α-Kaninchen IgG (H+L) 2 mg/ml</td>
<td>Invitrogen</td>
<td>-</td>
<td>1:400</td>
<td>Ziege (polyklonal)</td>
</tr>
<tr>
<td>Alexa Fluor 594 α-Maus IgG (H+L) 2 mg/ml</td>
<td>Invitrogen</td>
<td>-</td>
<td>1:400</td>
<td>Ziege (polyklonal)</td>
</tr>
</tbody>
</table>
2.1.5. Enzyme und Vektoren
Im Folgenden sind alle verwendeten Restriktionsenzyme, Klonierungs- und Expressionsvektoren aufgeführt.

Tabelle 5: Verwendete Restriktionsenzyme, Klonierungs- und Expressionsvektoren

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Schnittsequenz</th>
<th>Referenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>EcoRI</td>
<td>5'-G↓AATTC-3' 3'-CTTAA↑G-5'</td>
<td>Thermo Fischer Scientific</td>
</tr>
<tr>
<td>BamHI</td>
<td>5'-G↓GATCC-3' 3'-CCTAG↑G-5'</td>
<td>Thermo Fischer Scientific</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Verwendung</th>
<th>Referenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOPO®-Vektor</td>
<td>Klonierung</td>
<td>Invitrogen</td>
</tr>
<tr>
<td>pRSET®-Vektor</td>
<td>Expression</td>
<td>Thermo Fischer Scientific</td>
</tr>
</tbody>
</table>

2.1.6. Puffer, Lösungen, Medien und Zusätze
Die Puffer und Lösungen wurden mit destilliertem Wasser angesetzt. Anschließend wurden sie entweder autoklaviert (20 min, 121°C und 1,2 bar) oder über 0,2 µm steril filtriert.

Puffer A, pH 8,0, steril filtriert
10 mM TRIS HCl
100 mM Na₂HPO₄

Grundpuffer, steril filtriert
500 mM NaCl
20 mM TRIS-HCl (pH 7,9)

Puffer B, pH 8,0, steril filtriert
10 mM TRIS HCl
100 mM Na₂HPO₄
8 M Harnstoff

Puffer C, pH 6,3, steril filtriert
10 mM TRIS HCl
100 mM Na₂HPO₄
8 M Harnstoff

LB-Agar mit Amp, Antibiotika nach dem Autoklavieren hinzufügen
35 g/l LB-Agar (Lennox)
1000 µl/l Ampicillin

3x Gelpuffer für Tricin-Gele, pH 8,45, mit A. dest auffüllen, autoklavieren
363 g/l TRIS base
3 g/l SDS

1% Agarose, mit 1xTAE-Puffer auffüllen
10 g/l Agarose

LB-Medium, autoklaviert
20 g/l LB-Medium (Lennox)
2. Material und Methoden

10x Kathodenpuffer, pH 8,25, autoklaviert
- 1 M TRIS base
- 1 M Tricin
- 1% (w/v) SDS

50x TAE, pH 8,3, 1l
- 242 g TRIS
- 57,1 ml Essigsäure
- 100 ml 0,5 M EDTA

10x Anodenpuffer, pH 8,9, autoklaviert
- 2 M Tris base

0,1% Coomassie-Färbelösung
- 1 g Coomassie Brilliantblau
- 450 ml A. dest.
- 450 ml Methanol
- 100 ml Essigsäure

Coomassie-Entfärbelösung
- 100 ml Essigsäure
- 450 ml Methanol
- 450 ml A. dest.

4x Laemmlipuffer
- 0,5 M TRIS-HCl (pH 6,8)
- 10% SDS
- 1 ml Glycerin
- 1 Spatelspitze Bromphenolblau
- 10% β-Mercaptoethanol
- 1,25 ml A. dest

6x Loading Dye
- 10 mM TRIS-HCl
- 0,03% Bromphenolblau
- 0,03 % Xylenecyanol FF
- 60% Glycerol
- 60 mM EDTA

10x TBS
- 87,66 g/l NaCl
- 12,11 g/l TRIS pure (pH 7,5)

1x TE
- 10 mM TRIS (pH 8,0)
- 1 mM EDTA

Weiser-Puffer, pH 7,0; autoklaviert
- 1,09 g/l Na₂HPO₄
- 0,49 g/l KH₂PO₄

Transferpuffer, pH 8,3- 8,7
- 2,9 g/l Glycin
- 5,8 g/l TRIS
- 200 ml Methanol
- 0,37 g/l SDS

3% BSA/1x PBS, 0,1 l; steril filtriert
- 3 g BSA
- 0,1 l 10x PBS
2. Material und Methoden

10x CHO-PBS, pH 7,4; autoklaviert
- 1,37 M NaCl
- 27 mM KCl
- 101 mM Na₂HPO₄ wasserfrei
- 18 mM KH₂PO₄

10x Plasmodium-PBS, pH 7,4; autoklaviert
- 1,37 M NaCl
- 26,8 mM KCl
- 80,6 mM Na₂HPO₄
- 14,7 mM KH₂PO₄

Bindungsmedium, pH 7,2, steril filtriert
- 16,4 g/l RPMI 1640
- 2% Glukose

5% Sorbitollösung, steril filtriert
- 50 g/l D-Sorbitol

Malaria Freezing Solution (MFS), steril filtriert
- 30 g/l D-Sorbitol
- 6,5 g/l NaCl
- 28 ml Glycerol (autoklaviert)

Malaria Thawing Solution (MTS), steril filtriert
- 35 g/l NaCl

RPMI + HS (Human serum), 1l, steril filtriert
- 16,4 g/l RPMI 1640
- 0,05 g/l Hypoxanthine
- 100 ml Inaktiviertes humanes Serum
 (Inaktivierung: 2x Inkubation bei 56°C für 30 min)
- 30 ml NaHCO₃
- 250 µl Gentamycine

CHO-Kulturmedium, steril filtriert
- 500 ml Ham's F12 mit L-Glutamin und 25 mM HEPES
- 50 ml Inaktiviertes FCS (Inaktivierung: Inkubation bei 56°C für 45 min)
- 5 ml Penicillin/Streptomycin Mix (100x)
2. Material und Methoden

2.1.7. Patientenproben
Die in dieser Arbeit bearbeiteten Patientenproben wurden direkt den in das Bernhard-Nocht-Institut für Tropenmedizin (BNITM) eingewiesenen Patienten mit Verdacht auf Malaria tertiana abgenommen und in der diagnostischen Abteilung analysiert. Bei Vorliegen der Erkrankung mit *P. vivax* wurden 0,5-1 ml Patientenblut der LG Bruchhaus zur weiteren Bearbeitung zur Verfügung gestellt.

Dabei werden zunächst wie unter 2.2.2 beschrieben die infizierten Erythrozyten mittels Dichtegradientenzentrifugation von den restlichen Blutbestandteilen getrennt. Es werden 7 ml Ficoll-Lösung, die in einem 15 ml Reaktionsgefäß vorgelegt werden, mit 1 ml Patientenprobe, die zuvor mit 6 ml RPMI + HS-Medium (37°C) verdünnt wurde, vorsichtig überschichtet.

Nach der Zentrifugation werden 10 Ausstriche der Patientenprobe angefertigt (s. 2.2.1). Das restliche Sediment wird mit 4 ml TRIzol® (auf 37°C erwärmt) vermischt. Um für spätere DNA- oder RNA-Isolationen verwendet werden zu können, wird das denaturierende Reagenz gleichmäßig verteilt und zusätzlich 5 min im Wasserbad bei 37°C inkubiert. Die Reaktionsgefäße werden bei -80°C gelagert.

2.2. Zellbiologische Methoden
In der Zellkultur wurde sowohl mit *Plasmodium*, als auch mit CHO-Zellen gearbeitet. Die verwendeten Medien und Lösungen sind dem Kapitel 2.1.6 zu entnehmen.

2.2.1. *In vitro* Kultivierung von *P. falciparum*

Die Kultivierung erfolgt in Petrischalen (92 x 16 mm) mit 10 ml RPMI + HS-Medium und einem Hämatokrit von 5%. Dabei wird spätestens jeden dritten Tag die Parasitämie bestimmt und die Kultur entsprechend verdünnt oder das Medium gewechselt.

Um die Parasitämie der entsprechenden Kultur zu bestimmen, werden 7 µl der Probe auf einem Objekträger platziert und gemäß Abbildung 5 ausgestrichen. Nach Trocknung an der Luft, wird der Ausstrich für 2 min in Methanol fixiert und anschließend für 10 min
Material und Methoden

2. Material und Methoden

2.1. Stimmung der Erythrozyten

Die Erythrozyten werden in Giemsa-Lösung (1:10) gefärbt. Unter dem Mikroskop werden die gesunden und die infizierten Erythrozyten (IE) ausgezählt und der prozentuale Anteil der IE berechnet.

Durch Kippen der Petrischale kann das alte Medium abgenommen und die sedimentierten Erythrozyten in frischem Medium resuspendiert werden. Wenn die Kultur verdünnt werden soll, wird die Parasitämie auf 0,2% (über das Wochenende auf 0,1%) eingestellt.

Die Kulturen werden in speziellen Vakuumbehältern mit einem Gasgemisch von 1% O₂, 5% CO₂ und 94% N₂ bei 37°C im Brutschrank aufbewahrt.

Das Verfahren bei Transfektanten ist, bis auf die Zugabe von 1,5 µl WR99210 in 10 ml Kulturmedium, analog. Damit wird das Schlüsselenzym im Zellmetabolismus, Dihydrofolatreduktase (DHFR) inhibiert, was zur Störung der DNA- bzw. Proteinsynthese führt (Hastings & Hopkins Sibley, 2002).

2.2. Separation von Zellen mittels Dichtegradientenzentrifugation (Ficoll)

Da *P. falciparum* Erythrozyten als Wirtszellen verwendet, kann eine Trennung der IE von anderen Blutbestandteilen bzw. anderen Zellen über die spezifische Sedimentationsgeschwindigkeit erfolgen.

Die *Plasmodium*-Kultur wird durch Kippen der Petrischale aufgenommen, in ein 15 ml Reaktionsgefäß überführt und für 5 min bei 800 x g zentrifugiert. Das Sediment wird in 7 ml RPMI + HS-Medium (37°C) resuspendiert und auf 7 ml Ficoll-Lösung vorsichtig aufgeschichtet. Wie in Abbildung 6 (links) zu sehen, muss sich ein Gradient bilden. Das Reaktionsgefäß wird daraufhin für 20 min bei 1300 x g zentrifugiert (ohne Bremse).

Die Erythrozyten sammeln sich aufgrund der hohen Dichte als Sediment am Boden des Reaktionsgefässes und der Überstand kann abgenommen und verworfen werden.

Abbildung 6: Ficoll-Dichtegradient (Zhonghua Lin, 2014)
Nachfolgend wird das Erythrozyten-Sediment 2-mal gewaschen, indem es in 7 ml *Plasmodium*-Medium resuspendiert und 5 min bei 800 x g zentrifugiert wird. Anschließend können die IE weiterbearbeitet werden.

2.2.3. Anfertigen von Stabilaten einer *Plasmodium*-Kultur

Durch Kippen der Petrischale wird das Medium abgenommen und die sedimentierten Erythrozyten in 5 ml frischem Medium resuspendiert und in ein 15 ml Reaktionsgefäβ überführt. Nach einer Zentrifugation von 5 min bei 800 x g wird das Erythrozyten-Sediment im fünffachen Volumen mit *Malaria Freezing Solution* (MFS) aufgenommen und in ein Cryoröhrchen überführt.

Über Nacht werden die Stabilate bei -80°C im Einfrierbehälter gelagert und anschließend in einen Behälter mit flüssigem Stickstoff überführt.

2.2.4. Auftauen von *Plasmodium*-Stabilaten

Die Stabilate werden im Wasserbad bei 37°C und leichtem Schütteln aufgetaut. Die Kultur, sowie das äquivalente Volumen an *Malaria Thawing Solution* (MTS) werden in ein 15 ml-Reaktionsgefäβ gegeben und 5 min bei 800 x g zentrifugiert. Der Waschschritt wird wiederholt, bis der Überstand klar ist und somit alle lysierten Erythrozyten entfernt wurden.

Die Kultur wird, wie bereits unter 2.2.1 beschrieben, in eine Petrischale mit Medium und Blut der Gruppe 0⁺ gegeben und im Vakuumbehälter kultiviert.

2.2.5. Synchronisieren von *Plasmodium*-Kulturen mittels Sorbitol

Um die Parasiten im gleichen Entwicklungsstadium zu untersuchen, werden sie synchronisiert. Dafür wird mittels 5% D-Sorbitol das Ringstadium der Parasiten angereichert (Lambros & Vanderberg, 1979).

Im parasitären Zyklus vom Ring über den Trophozoiten zum Schizonten entwickelt sich ein durchlässiges Kanalsystem in der Wirtszelle. Das Sorbitol dringt darin ein und führt zur osmotischen Lyse. Da im Ringstadium diese Permeabilität noch nicht ausgebildet ist, kann auf diese Weise die Kultur synchronisiert werden.
Dafür wird die Kultur für 5 min bei 800 x g zentrifugiert und das Sediment in 2 ml 5% Sorbitol für 5 min bei 37°C im Wasserbad, mit regelmäßigem Schütteln, inkubiert. Nach erneutem Zentrifugieren, werden die Erythrozyten mit Medium gewaschen und in Kultur genommen (s. 2.2.1).

2.2.6. Aufnahme einer Zeitreihe
Es sollten 3 Zeitpunkte im intraerythrozytären Lebenszyklus der Transfektanten aufgenommen werden. Frühe Trophozoiten (Vergleich 26 hpi in Abbildung 7), späte Trophozoiten (Vergleich 34 hpi in Abbildung 7) und Schizonten (Vergleich 42 hpi in Abbildung 7). Bei der Aufnahme einer Zeitreihe sollte die Parasitämie ≥ 5% sein.

Die Kulturen wurden im Abstand von 4 h doppelt synchronisiert, um zu gewährleisten, dass sich alle Parasiten im gleichen Entwicklungsstadium befinden. Anschließend wurden alle 2 h Kontrollausstriche angefertigt, um die beabsichtigten parasitären Phasen zu erhalten.

Die Durchführung der IFA-Ausstriche ist unter 2.5.2 einzusehen.
2. Material und Methoden

2.2.7. *In vitro* Kultivierung von CHO-Zellen

Die in dieser Arbeit verwendeten CHO-Zelllinien lagen bereits im Labor Bruchhaus vor. Die Kultivierung der CHO-Zellen erfolgte in 5 ml- bzw. 15 ml-Zellkulturflaschen (25 cm² bzw. 75 cm²) bei 37°C und 5% CO₂ im Brutschrank.

Spätestens an jedem dritten Tag wird die Konfluenz am inversen Fluoreszenzmikroskop bestimmt und die CHO-Zellen entsprechend verdünnt (1/2 bis 1/30) oder das Medium gewechselt. Das Medium wird abgesaugt und die adhärenten Zellen in der Kulturflasche mit CHO-PBS-Puffer gewaschen. Anschließend wird Accutase (300 µl bei 25 cm² bzw. 1000 µl bei 75 cm²) zum Trypsinisieren der Zellen zugegeben und für 5 min bei 37°C und 5% CO₂ inkubiert.

Zum vollständigen Ablösen der Zellen werden die Kulturflaschen vorsichtig geklopft. Es wird frisches CHO-Kulturmedium aufgegeben und u.U. ein Teil in eine neue Zellkulturflasche überführt. Zur Selektion der CHO-Transfektanten, die entsprechende humane Rezeptoren auf ihrer Zellmembran exprimieren, wird Neomycin als Selektionsmarker in der Endkonzentration von 0,7 mg/ml zugefügt.

2.2.8. Zellzahlbestimmung und -einstellung

Für die Ermittlung der CHO-Zellzahl wird die Neubauer-Zählkammer mit 5 µl CHO-Kultur, die zuvor trypsinisiert und resuspendiert wurde, befüllt. Unter dem Mikroskop werden 4 Großquadrate je Zelllinie ausgezählt und der Mittelwert gebildet.

Zum Einstellen der benötigten Zellzahl, wird diese durch die ausgezählte Zellzahl dividiert und mit dem benötigten Volumen multipliziert.

2.2.9. Anreicherung von IE an einen bestimmten Receptor (*Panning*)

Um die Bindung von *P. falciparum* an spezielle humane Endothelrezeptoren zu untersuchen, werden die Parasiten bezüglich dieser Bindungseigenschaft angereichert.

Beim *Panning* werden die infizierten Erythrozyten auf die entsprechenden CHO-Zelllinien aufgegeben und weiter *in vitro* kultiviert. Dafür werden die CHO-Zellen 48 h vorher in eine frische Zellkulturflasche (T75) ausgesät. Am Tag der Durchführung sollten sie eine Konfluenz von 80%–90% aufweisen und werden 1-mal mit CHO-PBS-Puffer gewaschen.

Die *P. falciparum*-Kultur wird 24 h vorher synchronisiert (s. 2.2.5), sodass die Anreicherung im Trophozoitenstadium (28 h–30 hpi) durchgeführt werden kann. Die Parasitämie sollte am Tag der Durchführung bei mind. 5% liegen. Die Parasitenkultur wird 5 min bei 800 x g zentrifugiert und das Erythrozyten-Sediment in 15 ml Bindungsmedium resuspendiert.
2. Material und Methoden

Die IE werden auf die CHO-Zellen gegeben und für 1,5 h bei 37°C und 5% CO₂ inkubiert. Um unspezifische Bindungen so gering wie möglich zu halten, wird die Flasche alle 15 min leicht geschüttelt. Nach der Inkubation werden die nicht gebundenen IE durch 5-maliges Waschen mit Bindungsmedium entfernt.

Nach der mikroskopischen Kontrolle werden 12 ml RPMI + HS und 500 µl Blut in die Zellkulturflasche gegeben. Die Inkubation erfolgt über Nacht im Vakuumbehälter mit einem Gasgemisch von 1% O₂, 5% CO₂ und 94% N₂ bei 37°C. In dieser Zeit sollten sich die Parasiten zu Schizonten weiterentwickeln und beim Platzen neue Merozoiten freisetzen, die die frischen Erythrozyten infizieren.

Am nächsten Tag kann die Ernte des Ringstadiums mittels Ficoll-Dichtegradienten erfolgen (s. 2.2.2). Dies ist notwendig, um abgelöste CHO-Zellen zu entfernen, da diese inhibitorisch auf das Wachstum der Erythrozyten wirken können. Das Erythrozyten-Sediment wird in frischem RPMI + HS-Medium resuspendiert und in Petrischalen überführt (s. 2.2.1).

2.2.10. Statistischer Bindungsassay für P. falciparum

Zur Vorbereitung werden die CHO-Zellen 48 h vor der Durchführung des statistischen Bindungsassays auf cover slips ausgesät. Dafür werden die Deckplättchen (Ø 13 mm) in jede Kavität einer 24-Well-Platte gelegt und mit jeweils 500 µl 1% Gelatine in PBS beschichtet. Nach der Inkubation bei 37°C für 30 min wird die Gelatine abgesaugt und 3 x 10⁴ CHO-Zellen/ml je Vertiefung ausgesät (s. 2.2.8). Jede Zelllinie wird im Dreifachansatz untersucht. Die CHO-Zellen werden bis zum Versuchsbeginn bei 37°C und 5% CO₂ inkubiert.

Für das Bindungsexperiment werden Trophozoiten benötigt, sodass die Plasmodium-Kulturen 24 h vorher auf das Ringstadium synchronisiert werden müssen (s. 2.2.5). Am Tag der Versuchsdurchführung werden die 28 h bis 32 h alten P. falciparum auf eine Parasitätie von 5% und Hämatokrit von 1% eingestellt.

Die eingestellten IE werden 5 min bei 800 x g zentrifugiert und das Erythrozyten-Sediment in der benötigten Menge Bindungsmedium resuspendiert und für 30 min bei 37°C inkubiert. Da pro Well 500 µl IE zugegeben werden müssen, berechnet sich das Volumen abhängig von der Zahl der Ansätze.

Zeitgleich werden CHO-mock-Zellen zur Prä-Absorption vorbereitet, indem diese 5 min bei 37°C mit Bindungsmedium inkubiert werden. Die infizierten Erythrozyten werden zusammen mit den CHO-mock-Zellen für 60 min bei 37°C inkubiert, mit kurzen Schüttelintervallen alle 15 min. In diesem Prä-Absorptionsschritt sollen alle unspezifisch bindenden IE entfernt werden.
Die ausgesäten CHO-Zellen in der 24-Well-Platte werden mit Bindungsmedium gewaschen und anschließend 5 min bei 37°C ebenfalls in Bindungsmedium inkubiert. Als nächstes werden 500 µl IE pro Well aufgetragen und für 60 min bei 37°C und Schüttelintervallen alle 15 min inkubiert.

Die cover slips werden einzeln mit einer spitzen Pinzette 2-mal in Bindungsmedium gewaschen und in eine neue 24-Well-Platte, mit der beschichteten Seite nach unten (face down) gelegt. Jede Vertiefung enthält jeweils 500 µl Bindungsmedium und die Platte wird für 60 min bei Raumtemperatur mit einer Ausrichtung von 45° aufgestellt. Dies unterstützt das Ablösen der ungebundenen Erythrozyten.

Es folgt die Fixierung in 1% Glutaraldehyd in PBS in einer neuen 24-Well-Platte mit der Zellseite nach oben (face up) für 30 min bei Raumtemperatur. Das Glutaraldehyd wird verworfen und Giemsa-Färbelösung (1:10 in Weiser-Puffer, Faltenfilter filtriert) mit 300 µl pro Well aufgetragen. Nach 15 min Inkubation bei Raumtemperatur werden die Deckplättchen zweifach in Wasser gewaschen und für 10 min an der Luft getrocknet.

Die cover slips werden face down im Dreifachansatz auf einem Objektträger mit Leica CV Mount Medium eingedeckelt und über Nacht getrocknet. Zur Auswertung werden je Deckplättchen 500 CHO-Zellen sowie die daran gebundenen IEs ausgezählt.

2.3. Molekularbiologische Methoden

Die verwendete gDNA wurde bereits von früheren Mitarbeitern der Arbeitsgruppe isoliert und bei -20°C gelagert. Für P. vivax wurden Blutproben von Patienten des BNITM (s. 2.1.7), für P. falciparum wurde die Isolate FCR3 und 3D7 verwendet (s. 2.1.1).

2.3.1. PCR aus isolierter gDNA

Bei der exponentiellen DNA-Vervielfältigung wird ein Gemisch aus der hitzestabilen Taq-Polymerase, die aus dem Bakterium Thermus aquaticus isoliert wird, und der Pwo-Polymerase mit Korrekturlese-Funktion, die aus dem Archaeabakterium Pyrococcus woesei stammt, verwendet.
Die Amplifikation erfolgt, indem die doppelsträngige DNA zunächst durch Hitzezufuhr denaturiert wird und sich so die Oligonukleotide komplementär anlagern können (primer annealing). Es werden forward- und revers-Primer verwendet, damit beide Stränge als Matrize genutzt werden können, da die Taq-Polymerase nur in 5'-3'-Richtung arbeitet. Die Oligonukleotide besitzen ein freies 3'-Hydroxyende, das die DNA-Polymerase zum Anlagern benötigt. Bei der Elongation verwendet die DNA-Polymerase die im Überschuss vorhandenen dNTPs (Desoxy-Nukleosidtriphosphate) und katalysiert die Zusammensetzung des komplementären DNA-Strangs nach den Regeln der Basenpaarung. Die Elongationszeit wird von der Länge der DNA-Matrize bestimmt, dabei wird mit 500 Basenpaaren pro 30 Sekunden gerechnet. Mit dem Ende des ersten Zyklus sollte jeder DNA-Einzelstrang dupliziert worden sein und kann so im folgenden Zyklus ebenfalls als Matrize fungieren.

Tabelle 6: PCR-Ansatz für 20 µl Gesamt-Volumen

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Volumen in µl</th>
<th>Finale Konzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>5x Green Go Taq Flexi Buffer</td>
<td>4,00</td>
<td>1x</td>
</tr>
<tr>
<td>MgCl₂ (25 mM)</td>
<td>2,00</td>
<td>1,5 mM</td>
</tr>
<tr>
<td>Forward Primer (10 pmol/µl)</td>
<td>2,00</td>
<td>1,00 µM</td>
</tr>
<tr>
<td>Revers Primer (10 pmol/µl)</td>
<td>2,00</td>
<td>1,00 µM</td>
</tr>
<tr>
<td>dNTPs (jede 10 mM)</td>
<td>2,00</td>
<td>jede 2,5 mM</td>
</tr>
<tr>
<td>DNA-Template</td>
<td>1,00</td>
<td></td>
</tr>
<tr>
<td>Taq-Polymerase & Pwo-Polymerase im Verhältnis 20:1</td>
<td>0,20</td>
<td></td>
</tr>
<tr>
<td>H₂O</td>
<td>6,80</td>
<td></td>
</tr>
<tr>
<td>Gesamt-Volumen</td>
<td>20,00</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 7: PCR-Programm. *Wird von der Größe der zu erwartenden Sequenz bestimmt, pro 500 bp/ 30 s

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Temperatur in °C</th>
<th>Zeit in min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initiere Denaturierung</td>
<td>95</td>
<td>2</td>
</tr>
<tr>
<td>Denaturierung</td>
<td>95</td>
<td>0,5</td>
</tr>
<tr>
<td>Annealing</td>
<td>45</td>
<td>0,5</td>
</tr>
<tr>
<td>Elongation</td>
<td>68</td>
<td>1*</td>
</tr>
<tr>
<td>Finale Elongation</td>
<td>68</td>
<td>10</td>
</tr>
<tr>
<td>Ende</td>
<td>4</td>
<td>∞</td>
</tr>
</tbody>
</table>

30 Zyklen
2.3.2. Reinigung von Nukleinsäuren

Die DNA wird auf ein 1% bis 2%iges Agarose-Gel, das mit 0,001%igem Ethidiumbromid versetzt ist, aufgetragen. Bei Agarose handelt es sich um ein Polysaccharid, dessen lange Zuckerketten nach dem Aufkochen in einem feinen Netzwerk erhärteten.

Das Gel befindet sich in einer ionischen 1x TAE-Lösung, wodurch die Spannung geleitet wird. Bei kleinen Gelen werden für ca. 30 min 90 V, bei großen für ca. 60 min 120 V angelegt.

Durch gleichzeitiges Mitführen eines definierten DNA-Markers (s. Abbildung 8), können durch Vergleich der Banden die Größen der DNA-Amplifikate ermittelt werden. Ethidiumbromid wirkt als DNA-Interkalator, der die Nukleinsäuren unter UV-Licht (312 nm) fluoreszieren lässt.

An der Größe können die zu untersuchenden DNA-Sequenzen ermittelt, auf dem UV-Tisch mit einem Skalpell aus dem Gel ausgeschnitten und in einzelne Reaktionsgefäße gegeben werden.

Die Reinigung der Nukleinsäuren wird mit dem NucleoSpin Gel and PCR Clean-up-Kits von Macherey-Nagel gemäß des beiliegenden Protokolls durchgeführt (s. Anhang VI.f).

Im Anschluss wird zur Kontrolle, dass die DNA im Reinigungsprozess nicht verloren wurde, eine weitere Agarose-Gelelektrophorese durchgeführt.

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Volumen in µl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loading Dye (6x DNA)</td>
<td>1,00</td>
</tr>
<tr>
<td>DNA-Probe</td>
<td>1,00</td>
</tr>
<tr>
<td>A. dest.</td>
<td>4,00</td>
</tr>
<tr>
<td>Gesamtvolumen</td>
<td>6,00</td>
</tr>
</tbody>
</table>
2. Material und Methoden

2.3.3. Herstellung kompetenter Zellen

Bakterielle Kompetenz bezeichnet die Fähigkeit freie DNA aus der Umgebung aufnehmen zu können. Im Rahmen dieser Arbeit wurde mit zwei unterschiedlichen kompetenten *Escherichia coli*-Stämmen gearbeitet.

Bei den SHuffle®-Zellen handelt es sich um einen speziellen Expressionsstamm, der besonders bei Proteinen mit Disulfidbrücken Anwendung findet. Sie sollen durch die Generierung der Disulfidbrücken die korrekte Faltung der Proteine unterstützen. Beide *E. coli*-Stämme werden nach der Kultivierung im Schüttelkolben bis zu einer OD$_{600}$ von 0,3-0,5 in einem Verhältnis von 10:1 mit Calciumchlorid behandelt.

Die Schüttelkolbenkultur wird dabei pro Ansatz in 500 ml LB-Medium bei 37°C kultiviert und anschließend 15 min bei 2400 x g und 4°C zentrifugiert. Das Bakterien-Sediment wird in 10 ml 50 mM CaCl$_2$ gelöst und 40 min auf Eis inkubiert. Nach der zweiten Zentrifugation, unter den gleichen Bedingungen, wird das Sediment mit dem halben Volumen an CaCl$_2$ gelöst und mit 20%igem Glycerin in Aliquots schockgefroren.

2.3.4. Klonierung

Bei der klassischen Ligation werden sowohl Fremd-DNA, als auch die Plasmid-DNA mit den gleichen Restriktionsenzymen geschnitten, um so die linearisierten Segmente mit dem Ligase-Enzym zu verbinden.

Bei der TOPO®-Ligation bindet die Topoisomerase, die aus dem *Vaccinia Virus* isoliert wird, an das PCR-Produkt. Dieses besitzt den erforderlichen 3'-T-Überhang aufgrund der Taq-Amplifizierung (s. Abbildung 9). Der TOPO®-Vektor dient als Transportmittel, um das DNA-Konstrukt in die Top10-Zellen zu transformieren.
Das TOPO®-TA Cloning-Kit wird in den Mengen wie in Tabelle 9 angewandt. Nach 5minütiger Inkubation bei Raumtemperatur und anschließenden 5 min auf Eis, werden 2 µl des Ligationsansatzes auf 100 µl Top10-Zellen gegeben.

Tabelle 9: TOPO®-Ligationsansatz

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Volumen in µl</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOPO®-Vektor</td>
<td>0,50</td>
</tr>
<tr>
<td>Salt solution</td>
<td>1,00</td>
</tr>
<tr>
<td>H₂O</td>
<td>2,50</td>
</tr>
<tr>
<td>Insert</td>
<td>2,00</td>
</tr>
<tr>
<td>Gesamtvolumen</td>
<td>6,00</td>
</tr>
</tbody>
</table>

Um die Effizienz der Transformation der Vektor-Insert-Konstrukte zu erhöhen, erfolgt nach einer 5minütigen Inkubation auf Eis, ein Hitzeschock für 30 s bei 42°C mit anschließenden weiteren 5 min auf Eis. Abschließend werden 250 µl LB-Medium hinzugefügt und die Zellen bei 37°C und 65 x g auf dem Thermocycler für 1 h kultiviert.

2. Material und Methoden

Pro Platte werden vier weiße Klone gepickt und in LB-Medium mit Amp über Nacht bei 37°C und 0,4 x g kultiviert.

2.3.5. Isolierung der Plasmid-DNA aus kompetenten Zellen und Sequenzierung
Um die identisch vervielfachte Plasmid-DNA aus den Top10-Zellen zu isolieren, wird die DNA mit Hilfe des Fast Plasmid MiniKit von 5-Prime isoliert.

Die Flüssigkulturen werden für 1 min bei 18200 x g zentrifugiert und das Bakterien-Sediment in *lysis solution* wieder resuspendiert. Das Lysat wird über eine Säule 60 s bei 15700 x g gewaschen und anschließend mit 50 µl für 60 s bei 15700 x g eluiert.

Die Insert-DNA in TOPO® wird auf beiden Seiten durch die EcoRI-Schnittstelle flankiert. Das erfordert der Einfachheit halber dein Einsatz von nur einem Restriktionsenzym für den anschließenden Kontrollverdau. Auf dem Agarose-Gel sollten nur noch der TOPO®-Vektor und die korrekte Insert-Sequenz als Banden zu sehen sein.

Tabelle 10: Ansatz für Kontrollverdau mit EcoRI

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Volumen in µl</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA-Eluat</td>
<td>5,00</td>
</tr>
<tr>
<td>Fast Digest Buffer (green)</td>
<td>2,00</td>
</tr>
<tr>
<td>H₂O</td>
<td>12,00</td>
</tr>
<tr>
<td>EcoRI</td>
<td>1,00</td>
</tr>
<tr>
<td>Gesamtvolumen</td>
<td>20,00</td>
</tr>
</tbody>
</table>

Die Sequenzierung bei der die genaue Nukleotid-Abfolge im DNA-Fragment ermittelt wird, erfolgt extern über die Firma Seqlab.

Mit Hilfe der Software *MacVector with Assembler 12.5.1* wird dann die DNA mit der ursprünglichen Sequenz von http://www.plasmodb.org auf Fehler abgeglichen.
2.3.6. Umklonierung und Herstellung von Dauerkulturen
Da das Ziel die Proteinexpression der zu untersuchenden *Plasmodium*-Gene ist, müssen die Konstrukte aus TOPO® in den pRSET®-Expressionsvektor umkloniert werden. Dieser enthält zudem einen 6xHis-Tag, was eine spätere Protein-Aufreinigung über eine Nickel-Agarose-Säule ermöglicht.

Abbildung 10: pRSET®-Vektor (ThermoFischer)

Für die Umklonierung werden die beiden Restriktionenzyme *EcoRI* und *BamHI* verwendet, die als Oligonukleotide in der PCR die Enden der DNA-Fragmente auszeichnen. Ebenso verfügt pRSET® über diese Schnittstellen (s. Abbildung 10).

Tabelle 11: Insertverdau mit *EcoRI* und *BamHI* zur Umklonierung

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Volumen in µl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fast Digest Buffer (green)</td>
<td>5,00</td>
</tr>
<tr>
<td>EcoRI</td>
<td>1,00</td>
</tr>
<tr>
<td>BamHI</td>
<td>1,00</td>
</tr>
<tr>
<td>DNA-Eluat</td>
<td>43,00</td>
</tr>
<tr>
<td>H₂O (u. U. auffüllen)</td>
<td>x</td>
</tr>
<tr>
<td>Gesamtvolumen</td>
<td>50,00</td>
</tr>
</tbody>
</table>
2. Material und Methoden

Tabelle 12: pRSET®-Vektorverdau mit EcoRI und BamHI zur Umklonierung

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Volumen in µl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fast Digest Buffer (green)</td>
<td>5,00</td>
</tr>
<tr>
<td>EcoRI</td>
<td>2,00</td>
</tr>
<tr>
<td>BamHI</td>
<td>2,00</td>
</tr>
<tr>
<td>pRSET®-Vektor</td>
<td>5,00</td>
</tr>
<tr>
<td>H₂O (u. U. auffüllen)</td>
<td>36,00</td>
</tr>
<tr>
<td>Gesamtvolumen</td>
<td>50,00</td>
</tr>
</tbody>
</table>

Die Inkubation erfolgt für 30 min bei 37°C. Anschließend werden die gesamten Ansätze auf ein Agarose-Gel aufgetragen und sowohl die Insert-, als auch die Vektor-Banden ausgeschnitten und mit Hilfe des NucleoSpin Gel and PCR Clean-up-Kits von Macherey-Nagel gereinigt (s. 2.3.2).

Die Ligation in den Expressionsvektor wird mit der T4-Ligase durchgeführt. Um ein ausreichendes Insert-Vektor-Verhältnis zu erhalten, sollte die DNA-Menge auf dem Agarose-Gel abgeschätzt werden. Hier wurde immer ein Verhältnis von 3:1 gewählt.

Tabelle 13: Ligationsansatz für pRSET®. Insert-Vektor Verhältnis (x:y) von 3:1

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Volumen in µl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ligationspuffer</td>
<td>1,50</td>
</tr>
<tr>
<td>T4-Ligase</td>
<td>1,00</td>
</tr>
<tr>
<td>ATP (10 mM)</td>
<td>2,50</td>
</tr>
<tr>
<td>pRSET®-Vektor</td>
<td>y</td>
</tr>
<tr>
<td>Insert</td>
<td>x</td>
</tr>
<tr>
<td>H₂O</td>
<td>4,50</td>
</tr>
<tr>
<td>Gesamtvolumen</td>
<td>15,00</td>
</tr>
</tbody>
</table>

Wie bereits unter 2.3.4 beschrieben, werden die Konstrukte in Top10-Zellen transformiert, nach Vermehrung der Bakterien die DNA isoliert und in einen anschließenden Kontrollverdau mit beiden Restriktionsenzymen eingesetzt. Die Sequenzierung erfolgt wieder über die Firma Seqlab.

2.4. **Proteinbiochemische Methoden**

Zur Charakterisierung der Proteine werden diese mit den hier beschriebenen Methoden aus den Zellen freigesetzt, aufgeregnet und analysiert.

2.4.1. Rekombinante Proteinexpression

Zum Transformieren werden die 200 µl SHuffle®-Aliquots langsam auf Eis aufgetaut und mit 2 µl der Plasmid-DNA (nach Fast Plasmid MiniKit) vermengt. Da pro 500 ml Expressionsvolumen ein Aliquot verwendet wird, wurden hier je Konstrukt 3 Ansätze parallel durchgeführt.

Die Zellen werden für 30 min auf Eis mit den Plasmiden inkubiert und anschließend für 30 s bei 42°C hitzegeschockt. Nach weiteren 5 min auf Eis werden je 1,5 ml Reaktionsgefäß 250 µl LB-Medium hinzugefügt und für 1 h bei 37°C und 65 x g inkubiert. Anschließend werden die Ansätze auf LB-Amp-Platten ausplattiert und über Nacht bei 37°C bebrütet.

Der Zellrasen auf den Platten wird mit LB-Medium abgeschwämt und in jeweils 0,5 l LB-Amp-Medium kultiviert. Damit eine hohe Zelldichte erreicht wird, werden die Kolben im Wasserbad bei 37°C und 0,4 x g inkubiert. Bei einer OD₆₀₀ von 0,3-0,5 erfolgt die Induktion mit einer Endkonzentration von 1 mM IPTG pro Kolben.

Das IPTG wirkt dabei wie ein Schalter, der die Expression des GOI (gene of interest) aktiviert, indem es die Bindung des Repressorproteins am Operator inhibiert. Das Repressorprotein wird vom lacI-Gen codiert, dieses ist Bestandteil des Lac-Operon und bindet an vorhandene Lac-Operatoren. Als Konsequenz hieraus wird die Transkription der folgenden Gensequenzen inhibiert.
2. Material und Methoden

Im Anschluss an die Expression über Nacht bei 21°C und 0,4 x g, erfolgt der Zellaufschluss, um die produzierten Proteine zu gewinnen.

2.4.2. Zellaufschluss

Die Expressionssuspension wird für 15 min bei 4400 x g und 4°C zentrifugiert, um die Bakterienzellen zu sedimentieren und das Medium zu verwerfen. Das Bakterien-Sediment wird in maximal 30 ml Puffer A (ohne GuHCl) komplett gelöst.

Der Sonifier 250 mit Flachkopfspitze zerstört durch impulsartige Ultraschallbeschallung (4 x 1 min mit jeweils 1 min Pause, 50% Duty Cycle, 5-6 Outputcontrol) die Zellwand der Bakterien, sodass die Proteine frei in der Lösung vorliegen.

Nach erneuter Zentrifugation für 30 min mit 16000 x g bei 4°C, befinden sich vorwiegend lösliche Proteine im Überstand. Der Überstand wird separiert und im Folgenden als ÜSI bezeichnet.

Das erneut entstandene Sediment wird in maximal 15 ml Puffer A (mit 1 M GuHCl) vollständig gelöst und für 10 min im Ultraschallbad beschallt. Wieder wird die Suspension zentrifugiert (15 min, 16000 x g, 4°C) und der Überstand als ÜSII abgenommen.

Erneut wird das Sediment in maximal 15 ml Puffer A (mit 4 M GuHCl) resuspendiert. Im Ultraschallbad werden die restlichen unlöslichen Proteine gelöst und durch zentrifugieren (15 min, 16000 x g, 4°C) im ÜSIII gewonnen.

Die Überstände können bei -20°C gelagert werden.

2.4.3. Immundetektion im Westernblot

2. Material und Methoden

Tabelle 15: Ansatz für ein 12% SDS-Gel. In der Elektrophorese werden je Gel 20 mA für 15 min für das Sammelgel angelegt. Anschließend wird für jedes Trenngel auf 40 mA für weitere 40 min hochgestellt.

<table>
<thead>
<tr>
<th>Reagenz</th>
<th>Trenngel</th>
<th>Sammelgel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acrylamid (30%)</td>
<td>3,0 ml</td>
<td>0,65 ml</td>
</tr>
<tr>
<td>Tris-HCl/SDS, pH 8,8</td>
<td>1,88 ml</td>
<td>-</td>
</tr>
<tr>
<td>Tris-HCl/SDS, pH 6,8</td>
<td>-</td>
<td>1,25 ml</td>
</tr>
<tr>
<td>H₂O</td>
<td>2,6 ml</td>
<td>3,05 ml</td>
</tr>
<tr>
<td>25% APS</td>
<td>25 µl</td>
<td>25 µl</td>
</tr>
<tr>
<td>TEMED</td>
<td>5 µl</td>
<td>5 µl</td>
</tr>
</tbody>
</table>

Tabelle 16: Ansatz für Tricin-Gel. In der Elektrophorese werden je Gel 20 mA für 30 min für das Sammelgel angelegt. Anschließend wird für jedes Trenngel auf 50 mA für weitere 120 min hochgestellt.

<table>
<thead>
<tr>
<th>Reagenz</th>
<th>Trenngel</th>
<th>Sammelgel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glycerin (99%)</td>
<td>2,6 ml</td>
<td>-</td>
</tr>
<tr>
<td>Acrylamid (40%), 4K</td>
<td>5,0 ml</td>
<td>-</td>
</tr>
<tr>
<td>Acrylamid (30%), 4K</td>
<td>-</td>
<td>1,0 ml</td>
</tr>
<tr>
<td>Gelpuffer</td>
<td>4,5 ml</td>
<td>2,25 ml</td>
</tr>
<tr>
<td>H₂O</td>
<td>2,9 ml</td>
<td>6,75 ml</td>
</tr>
<tr>
<td>25% APS</td>
<td>25,6 µl</td>
<td>24,0 µl</td>
</tr>
<tr>
<td>TEMED</td>
<td>7,5 µl</td>
<td>7,5 µl</td>
</tr>
</tbody>
</table>

Das Prinzip ist bei beiden Gelarten gleich. Die netzartige Matrix wird durch Erhärtung des Polyacrylamids hergestellt. Durch Zugabe des SDS-Detergent (sodium dodecyl sulfate) werden die Proteine negativ geladen, diese sind durch vorheriges Aufkochen denaturiert und somit linearisiert.

Beim Anlegen einer Spannung sammeln sich die Proteine zunächst im oberen Sammelgel, wandern anschließend durch das Trenngel zur Anode und werden dabei ihrer Molekülmasse nach in Proteinbanden aufgetrennt. Durch mitführen eines Proteinmarkers (s. Abbildung 11) kann anschließend die Größe der Proteine abgeschätzt werden.

Die Acrylamid-Gelelektrophorese wird immer im Doppelansatz durchgeführt. Ein Gel wird anschließend mit einer Coomassie-Lösung angefärbt, um die einzelnen Proteinbanden einsehen zu können. Das andere Gel wird für die Immundetektion verwendet.
2. Material und Methoden

Im Westernblot werden die Proteinbanden aus dem Trenngel mittels Elektrophorese (400 mA, 60 min) auf eine Nitrocellulose-Membran übertragen. Durch mehrere Waschschritte (2x 10 min mit TBS/Tween, 1x 10 min mit TBS) wird das SDS-Detergenz entfernt und die Proteine falten sich in ihre nativen Tertiärstrukturen zurück.

Auf der Membran erfolgt schließlich die Antigen-Antikörper-Bindung. Die oberflächlich aufgelagerten Proteine wirken als Antigene für die aufzutragenden Primärantikörper. Die Inkubation erfolgt über Nacht bei 4°C auf einem Schüttler. Unspezifisch gebundene Antikörper werden durch dreifaches Waschen (2x 10 min mit TBS/Tween, 1x 10 min mit TBS) entfernt.

Nach 30 min Blocken der Bindungen in 5% Milchpulver werden die Sekundärantikörper für 2 h aufgetragen. Diese erhöhen die Spezifität und binden nur an den Fc-Teil der Primärantikörper. An den Dreifachwaschschritt folgt die Chemilumineszenz- Färbung.

Tabelle 17: Ansatz für ECL-Lösung und der einzelnen Komponenten

<table>
<thead>
<tr>
<th>Volumen/ Einwaage</th>
<th>Reagenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lösung A</td>
<td>200 ml 0,1 M Tris-HCl (pH 8,6)</td>
</tr>
<tr>
<td>50 mg</td>
<td>Luminol</td>
</tr>
<tr>
<td>Lösung B</td>
<td>10 ml DMSO</td>
</tr>
<tr>
<td>11 mg</td>
<td>p-Hydroxycoumarinsäure</td>
</tr>
<tr>
<td>ECL-Lösung</td>
<td>5 ml Lösung A</td>
</tr>
<tr>
<td>500 µl</td>
<td>Lösung B</td>
</tr>
<tr>
<td>1,5 µl</td>
<td>H₂O₂ (35%)</td>
</tr>
</tbody>
</table>

In der Dunkelkammer wird ECL-Lösung auf die Membran gegeben und 2 min inkubiert. Da die verwendeten Sekundärantikörper HRP (Meerrettichperoxidase) gekoppelt sind, wird die Luminol-Umsetzung katalysiert und die Proteinbanden emittieren bei 425 nm. Durch p-Hydroxycoumarinsäure als Verstärker hält die Emission für mehrere Minuten an und es kann ein Film belichtet und entwickelt werden.

Der Film gibt Aufschluss, ob der spezifische Antikörper am POI gebunden hat.

2.4.4. Proteinaufreinigung

Das Aufreinigungsverfahren unterscheidet sich für lösliche und unlösliche Proteine hauptsächlich in den verwendeten Puffern bzw. der Verwendung von GuHCl. Das chaotrope Guanidinhydrochlorid wird eingesetzt, um unlösliche Proteine zu denaturieren und somit in Lösung zu bringen.
Eine Aufreinigung ist erforderlich, da die POI nicht allein in der aufgeschlossenen Zellsuspension vorliegen. Sie können aber selektiv von den anderen abgetrennt werden, indem sie an einem Säulenbett immobilisiert und die restlichen weggespült werden. Dafür wird der vom Expressionsvektor pRSET® hineinklonierte Polyhistidin-Tag genutzt. Dabei handelt es sich um 6 aufeinanderfolgende Histidine (His), die eine Affinität zu Nickel haben.

Bei der Ni-NTA-Affinitätschromatographie besteht das Säulenbett aus Nickel-Agarose und bindet den His-Tag selektiv durch Bildung eines Chelatkomplexes. Zur Äquilibrierung werden 0,5-1 ml Ni-NTA-Agarose für 20 min in Puffer A geschüttelt. Nach der Zentrifugation bei 150 x g für 20 min wird der Überstand verworfen und die Nickel-Agarose zu der Proteinsuspension gegeben.

Nach einer Inkubation über Nacht bei 4°C und unter Schütteln, sollten alle His-Tags Chelatkomplexe mit dem Nickel gebildet haben und die Suspension kann in eine Säule gegeben werden. Zunächst werden mit Waschpuffern die nicht gebundenen Proteine ausgespült und anschließend mit steigender Imidazolkonzentration die POI eluiert. Imidazol funktioniert als Antimetabolit vom Histidin und kann die selektive Bindung ans Säulenbett lösen.

Tabelle 18: Schrittweise Reinigung über die Ni-NTA-Agarosesäule für lösliche und unlösliche Proteine

<table>
<thead>
<tr>
<th>Lösliche Proteine (ÜSI)</th>
<th>Unlösliche Proteine (ÜSII + ÜSIII)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Puffer</td>
<td>Volumen</td>
</tr>
<tr>
<td>Puffer A</td>
<td>30 ml</td>
</tr>
<tr>
<td>Grundpuffer + 20 mM Imidazol</td>
<td>60 ml</td>
</tr>
<tr>
<td>Grundpuffer + 60 mM Imidazol</td>
<td>60 ml</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Eluat wird in 2 ml-Fraktionen gesammelt</td>
<td></td>
</tr>
<tr>
<td>Grundpuffer + 200 mM Imidazol</td>
<td>30 ml</td>
</tr>
<tr>
<td>Grundpuffer + 1 M Imidazol</td>
<td>20 ml</td>
</tr>
</tbody>
</table>

Zum Abschluss werden die Fraktionen auf Acrylamid-Gele aufgetragen, um zum einen den Erfolg der Reinigung zu bestätigen und zum anderen die Fraktionen zu verwerfen, die kein eluiertes Protein enthalten.
2. Material und Methoden

2.4.5. Einengung und Entsalzung
Eine Wanne wird mit PEG 20000 (Polyethylenglycol mit Molekülmasse von 20000) gefüllt und die vereinigten Proteinfraktionen in einem Dialyseschlauch (4-6 kDa) hineingelegt. Das hygroskopische Polymer nimmt das Wasser aus dem Schlauch auf, die Proteine verbleiben im Schlauch, da sie zu groß zum Durchwandern der Schlauchporen sind. Es wird auf bis zu 2 ml Restvolumen eingeengt.

Die konzentrierte Proteinlösung wird aus dem Dialyseschlauch pipettiert und auf eine PD-10 Säule gegeben. Dabei handelt es sich um eine Größenausschlusschromatographie. Das Säulen-Bett besteht aus Sephadex-Kugeln, die von kleinen Kanälen netzwerkartig durchzogen sind. Die aufgetragene Suspension besteht zum einen aus Proteinen, die zu groß sind, um die Kanäle zu durchwandern und so nur an den Sephadex-Kugeln vorbeikommen. Zum anderen enthält die Suspension Salze, die die Kanäle durchwandern können und so eine längere Strecke zurücklegen. Es kommt zu einer Größentrennung, wobei die großen Moleküle vor den kleinen eluieren.

Sobald die Proteinsuspension komplett ins Säulenbett eingedrungen ist, werden 3,5 ml *Plasmodium*-PBS-Puffer aufgetragen. Das Eluat wird in 2 ml Reaktionsgefäßen aufgefangen und die Säule anschließend mit A. dest. gewaschen und in 20% Ethanol gelagert.

Die erfolgreiche Einengung und Entsalzung wird mit Hilfe der Acrylamid-Elektrophorese überprüft.

2.4.6. Konzentrationsbestimmung mittels BCA-Reaktion

Während der 30minütigen Inkubation bei 37°C reagieren die zweiwertigen Kupferionen mit den Proteinen und werden einwertig. So können sie mit dem BCA einen violettfarbenen Komplex bilden, der bei 562 nm photometrisch quantitativ ermittelt werden kann. Als Kalibrierreihe wird eine 2 mg/ml BSA-Stocksolution (*bovine serum albumin*) in folgenden Schritten verdünnt und aufgetragen: 2 mg/ml, 1 mg/ml, 0,5 mg/ml, 0,25 mg/ml, 0,125 mg/ml, 0,063 mg/ml, 0,032 mg/ml.
2. Material und Methoden

2.5. Immunologische Methoden
Es wird die Immunantwort von Versuchstieren genutzt, um Antikörper zu gewinnen. Die Arbeit mit den Tieren wurde durch das Tierhaus des BNITM durchgeführt.

2.5.1. Immunisierung
Pro Protein werden 3 Tiere 3-mal in zweiwöchigen Abständen immunisiert. Dafür werden pro POI 250 µl des löslichen Proteins (ÜSI) mit 250 µl des unlöslichen Proteins (ÜSII+ÜSIII) vermischt und mit einer Spritze aufgenommen. Mit 500 µl Freund’s Adjuvant wird über ein Eckventil eine Wasser/Öl-Emulsion hergestellt.

In der ersten Immunisierung wird komplettes Freund’s Adjuvant verwendet. Dieses enthält abgetötete Mykobakterien (Mycobacterium tuberculosis) um eine starke Immunantwort zu generieren. Die beiden nachfolgenden Immunisierungen erfolgen mit inkomplettes Freund’s Adjuvant, welches die Immunantwort verstärken soll, aber keine Mikroorganismen enthält.

Pro Immunisierung werden den Mäusen ca. 100 µl der Suspension intramuskulär injiziert.

2.5.2. Immunfluoreszenzassay (IFA)
Aus der in vitro Plasmodium-Kultur werden 500 µl entnommen, dabei sollte so wenig Medium und so viel Blut wie möglich aufgenommen werden, damit die verbleibende Kultur weiterkultiviert werden kann. Dieses wird für 5 min bei 800 x g zentrifugiert und das Erythrozyten-Sediment in Plasmodium-PBS-Puffer resuspendiert. Nach erneuter Zentrifugation wird das Erythrozyten-Sediment bis zu einer Hämatokrit-Konzentration von 2% mit PBS-Puffer verdünnt. Für die Ausstriche sollte die Parasitämie nicht weniger als 5% betragen.

Die eingestellte Suspension wird auf Objektträger mit 10 Vertiefungen aufgetragen. Dabei wird die gesamte Kavität mit der Kultur gefüllt und direkt mit der Pipette wieder abgesaugt. Es verbleibt ein dünner Film auf dem Objektträger, der an der Luft getrocknet wird. Anschließend erfolgt die Fixierung.

Für die Methanol-Fixierung wurden die Objektträger für 5 min in eiskalten Methanol gelagert, an der Luft getrocknet und in Alufolie bei -20°C aufbewahrt.

Zum Rehydrieren werden die Objektträger für 5 min mit Plasmodium-PBS-Puffer benetzt und anschließend 3-mal mit 50 µl je Kavität gewaschen. Die Primärantikörper werden mit 3% BSA/PBS entsprechend verdünnt und mit 1:1000 Ampicillin (100 mg/ml) vermischt. Je Kavität werden 50 µl aufgetragen und für 1 h in einer Feuchtkekskammer inkubiert.

Nach 5-maligem Waschen der Objektträger wird der Sekundärantikörper ebenfalls mit 3% BSA/PBS, 1:1000 Ampicillin (100 mg/ml) und 1:1000 Kernfarbstoff Hoechst vorbereitet und mit
2. Material und Methoden

50 µl pro Well aufgetragen. Die Inkubation erfolgt für 1 h in einer Feuchtkammer im Dunkeln. Final wird wieder 5-mal gewaschen und mit *mounting media* ein Deckgläschen aufgelegt. Die fertigen Objekträger können in Alufolie bei -20°C gelagert werden.

Ausgewertet wird durch die Auszählung von 50 infizierten Erythrozyten pro Zeitpunkt und Stamm mit der Anmerkung der lokalisierten Färbung. Es werden die Negativkontrollen ohne Inkubation mit dem Primärantikörper ebenfalls kontrolliert.
3. Ergebnisse

3.1. Rekombinante Proteinexpression und Charakterisierung

Es wurden sowohl die PfEMP- als auch die VIR-Proteine erfolgreich rekombinant exprimiert. Von *P. vivax* wurden die 4 Moleküle vir5, vir9, vir14 und vir30 aus gDNA-Isolaten mittels spezieller Oligonukleotide amplifiziert. Aus *P. falciparum* 3D7 wurde die DNA für 5 protein-codierende Sequenzen aus MAL6P1.252 (DBLa0.21, CIDRa2.1, DBLb4, DBLD1, CIDRb1) mit Oligonukleotiden mittels der PCR amplifiziert.

Die anschließende Immundetektion der Proteine wird im Westernblot mit einem α-His-Antikörper durchgeführt. Diese zeigt, dass die exprimierten Proteine die gewünschte Antigen-Antikörper-Bindung aufweisen. Aufgrund der geringen Molmasse der VIR-Proteine, werden diese auf Tricin-Gelen aufgetragen, die größeren MAL6P1.252 auf 12% SDS-Gelen.

Durch den C-terminal eingebauten His-Tag werden die löslichen und unlöslichen Proteine nach dem jeweiligen Protokoll über eine Nickel-NTA-Affinitätschromatographie gereinigt und in Fraktionen gesammelt. Zusätzlich wurden hier bereits rekombinant exprimierte IT4var2-Proteine aus *P. falciparum* FCR3 mitbearbeitet.

Die löslichen Proteine werden darüber hinaus noch im Dialyse verschneidung in PEG 20000 eingeleitet und mit einer Größenausschlusschromatographie entsalzt, damit die Gefahr der falschen Rückfaltung und Denaturierung durch zu hohe Salzkonzentrationen minimiert wird. Sowohl die gereinigten Fraktionen, als auch die eingeengten und entsalzten Proteine werden nochmals in SDS-Gelen kontrolliert und schließlich deren Konzentration mittels BCA-Reaktion bestimmt.
Hier zeigt sich, dass von den insgesamt 20 rekombinanten Proteinen 3 im Aufreinigungsprozess verloren wurden. Diese konnten weder im Acrylamidgel, noch mittels BCA-Reaktion nachgewiesen werden. Ferner liegen 5 der rekombinanten Proteine in sehr geringen Konzentrationen vor, was vermutlich ebenfalls dem Aufreinigungsprozess zugrunde liegt.

Abbildung 12: DNA-Amplifikate der **vir**-Moleküle **vir**5, **vir**9, **vir**14 und **vir**30 aus *P. vivax*. M= 1 kb DNA-Marker.
A: DNA-Amplifikate nach der PCR aus gDNA-Isolaten. Die roten Pfeile markieren die Bande der zu untersuchenden DNA. **vir**5 mit 315 bp, **vir**9 mit 348 bp, **vir**14 mit 318 bp und **vir**30 mit 357 bp. B: DNA nach Kontrollverdau mit EcoRI im TOPO®-Vektor mit 3,9 kb (grüner Pfeil). C: DNA nach Kontrollverdau mit EcoRI und BamHI in pRSET® mit 2,9 kb (blauer Pfeil).

Unter A in Abbildung 12 sind bei allen 4 Amplifikaten die Banden auf der zu erwartenden Höhe zu erkennen. Unter B und C sieht man jeweils 2 Banden nach dem Kontrollverdau aus dem 3,9 kb großen TOPO®-Vektor bzw. dem 2,9 kb großen pRSET®-Vektor. Bei **vir**5 und **vir**14 kann keine eindeutige Bande auf der erwarteten Höhe erkannt werden. Jedoch bestätigte die Sequenzierung die Korrektheit aller 4 Moleküle.
Die rekombinanten Proteine (rP) der vir-Moleküle erhielten folgende Nummerierung: \(\text{vir}_5 \rightarrow \text{rP}_55, \text{vir}_9 \rightarrow \text{rP}_52, \text{vir}_14 \rightarrow \text{rP}_54, \text{vir}_30 \rightarrow \text{rP}_53. \)

Ein analoges Verfahren wurde mit MAL6P1.252 durchgeführt. Dort wurden die 5 Domänen aus Abbildung 13 untersucht.

Abbildung 13: Die 5 untersuchten MAL6P1.252-Domänen aus \textit{P. falciparum} 3D7 mit der Nummerierung der rekombinanten Proteine.

Abbildung 14: DNA-Amplifikate der MAL6P1.252-Domänen aus \textit{P. falciparum} 3D7. M= 1 kb DNA-Marker. A: DNA-Amplifikate nach PCR aus gDNA-Isolaten. Die roten Pfeile markieren die Bande der zu untersuchenden DNA. DBLa0.21 mit 1380 bp, CIDRa2.1 mit 696 bp, DBLb4 mit 1236 bp, DBLd1 mit 1317 bp und CIDRb1 mit 519 bp. B: DNA nach Kontrollverdau mit EcoRI im TOPO®-Vektor mit 3,9 kb (grüner Pfeil). C: DNA nach Kontrollverdau mit EcoRI und BamHI in pRSET® mit 2,9 kb (blauer Pfeil).
Auch hier sind unter A in Abbildung 14 bei allen 5 Amplifikaten die Banden auf der zu erwartenden Höhe zu erkennen. Bei den kleineren Banden handelt es sich vermutlich um DNA-Fragmente, die aber nicht weiter untersucht wurden. In B und C sind wieder jeweils 2 Banden zu erkennen, wobei es sich bei der kleineren um das jeweilige zu untersuchende DNA-Molekül und der größeren um vermutlich den jeweiligen Vektor handelt.

Wie bereits oben beschrieben wird ein Zellaufschluss durch Ultraschall durchgeführt und dabei die löslichen Proteine (ÜSI) von den unlöslichen (ÜSII und ÜSIII) getrennt. Die rekombinanten Proteine werden sowohl im Polyacrylamidgel als auch im Westernblot analysiert.

3. Ergebnisse

Abbildung 16: MAL6P1.252-Proteine im 12% SDS-Gel und im Westernblot mit α-His-Tag.
C = Coomassie-Färbung, WB = Westernblot, ÜSI = lösliches Protein, ÜSII & ÜSIII = unlösliches Protein. Die roten Pfeile markieren die jeweilige Protein-höhe. In einigen Fällen erkennt man die Trimere, Dimere und Monomere der Protein-komplexe. RP56 mit 51 kDa, rP57 mit 26 kDa, rP58 mit 46 kDa, rP59 mit 49 kDa und rP60 mit 19 kDa.

Um die unspezifischen Proteine von den POI zu trennen, werden die Proteinüberstände über eine Affinitätschromatographie aufgereinigt. Anschließend werden die POI in Fraktionen eluiert, wobei dasselbe Verfahren bezüglich der löslichen und unlöslichen Proteine verwendet wird, jedoch mit unterschiedlichem Puffereinsatz (s. 2.4.4). Die Fraktionen werden wieder auf SDS- bzw. Tricin-Gele aufgetragen.

Abbildung 17: Aufgereinigte Fraktionen von VIR-Proteinen.
A= lösliches rP (ÜSI), B= unlösliches rP (ÜSII+ÜSIII). Dargestellt ist pro rP die stärkste Bande aus dem Gel. Es wurden Tricin-Gele verwendet.
3. Ergebnisse

Abbildung 18: Aufgereinigte Fraktionen von MAL6P1.252-Proteinen. A = lösliches rP (ÜSI), B = unlösliches rP (ÜSII+ÜSIII). Dargestellt ist pro rP die stärkste Bande aus dem Gel. Es wurden 12% SDS-Gele verwendet.

Die rekombinanten Proteine von IT4var2 waren bereits exprimiert und die Proteine wurden mit den anderen hier in Abbildung 19 aufgeführten rekombinanten Proteinen weiter bearbeitet.

Abbildung 19: Die untersuchten IT4var2-Domänen aus *P. falciparum* FCR3 mit der Nummerierung der rekombinanten Proteine.
3. Ergebnisse

Abbildung 20: Aufgereinigte Fraktionen von unlöslichen (ÜSII+ÜSIII) IT4var2-Proteinen. Dargestellt ist pro rP die stärkste Bande aus dem 12% SDS-Gel.
3. Ergebnisse

Abbildung 22: Lösliche IT4var2-Proteine, eingeengt und entsalzt. Es wurden 12% SDS-Gele verwendet.

Abbildung 23: Lösliche MAL6P1.252-Proteine, eingeengt und entsalzt. Es wurden 12% SDS-Gele verwendet.
3. Ergebnisse

Die Abbildung 21- Abbildung 23 zeigen, dass die rekombinanten Proteine rP42, rP53, rP54, rP56, rP57 und rP59 nicht mehr vorhanden sind. Eine Erklärung wäre, dass beim Einengen der Proteinsuspension ein großer Teil an der Innenwand des Dialyseschlauchs adsorbierte und somit nicht entnommen werden konnte. Um die genaue Menge der vorliegenden Proteine zu bestimmen, wurde eine Konzentrationsmessung mittels BCA-Reaktion durchgeführt.

Tabelle 19: Konzentrationsbestimmung mittels BCA-Reaktion der rekombinanten Proteine (rP) nach Einengung und Entsalzung.

<table>
<thead>
<tr>
<th>rP</th>
<th>Konzentration [mg/ml]</th>
<th>rP</th>
<th>Konzentration [mg/ml]</th>
</tr>
</thead>
<tbody>
<tr>
<td>41</td>
<td>0,227</td>
<td>53</td>
<td>0,045</td>
</tr>
<tr>
<td>42</td>
<td>0,076</td>
<td>54</td>
<td>0,053</td>
</tr>
<tr>
<td>43</td>
<td>0,107</td>
<td>55</td>
<td>0,063</td>
</tr>
<tr>
<td>44</td>
<td>0,739</td>
<td>56</td>
<td>0</td>
</tr>
<tr>
<td>46</td>
<td>1,357</td>
<td>57</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>3,53</td>
<td>58</td>
<td>0,315</td>
</tr>
<tr>
<td>51</td>
<td>1,804</td>
<td>59</td>
<td>0</td>
</tr>
<tr>
<td>52</td>
<td>0,08</td>
<td>60</td>
<td>0,83</td>
</tr>
</tbody>
</table>

Die Konzentrationsbestimmung bestätigt, dass kein Protein von rP56, rP57 und rP59 mehr vorliegt. Von rP42, rP52, rP53, rP54 und rP55 liegt nur sehr wenig Protein vor und von den restlichen Proteinen sind ausreichende Mengen für die Immunisierung der Mäuse und Gewinnung der Antikörper vorhanden. Die Funktionalität der generierten Antikörper von rP52-rP55 (VIR-Proteine) können anschließend auf den Ausstrichen der P. vivax-Patienten getestet werden (s. 2.1.7). Insgesamt wurden 14 Ausstriche im Bearbeitungszeitraum dieser Arbeit angefertigt.

3.2. Inhibitionsstudien mittels Static Binding Assay

Es sollte die Interaktion von infizierten Erythrozyten an humanen Endothelrezeptoren charakterisiert werden. Insbesondere sind die Bereiche der PfEMP1-Proteine, über die diese Interaktion vermittelt wird, größtenteils unbekannt. Daher sollte mit Hilfe der rekombinanten Proteine, die verschiedene Bereiche spezifischer PfEMP1-Moleküle abdecken, in statischen Bindungsstudien (Static Binding Assays), die Bindungsdomänen kartiert werden.

Dafür wurde die unter 2.2.10 beschriebene Methode des statistischen Bindungsassays abgewandelt. Bevor IE zu den CHO-Zellen in der 24-Well-Platte hinzugefügt werden, erfolgt ein Inhibitionsschritt mittels rekombinanter Proteine. Diese werden mit 100 µg Protein in 500 µl Puffer pro Kavität auf die CHO-Zellen aufgetragen und für 60 min bei 37°C inkubiert. Diese sollen mögliche Bindungsstellen der PfEMP1-Moleküle eingrenzen.
3. Ergebnisse

Da sich die rekombinanten Proteine in Plasmodium-PBS befinden, der Bindungsassay jedoch mit CHO-PBS durchgeführt wird, sollte im ersten Versuch untersucht werden, ob die leichten Konzentrationsabweichungen im Salzgehalt des Plasmodium-Puffers einen Einfluss auf die CHO-Zellen und somit auf das Bindungsergebnis haben.

Als zu untersuchender Rezeptor wurde CD9 ausgewählt und CD36 diente als Positivkontrolle. CHO-GFP wurde verwendet, um unspezifische Bindungen messen zu können. *P. falciparum* FCR3 wurde 1-mal Angereichert (s. 2.2.9) und wies zum Zeitpunkt der Versuchsdurchführung eine Parasitämie von 8% auf. Abbildung 24 zeigt die IE nach einem Panning mit CHO-CD9.

Abbildung 24: FCR3-CD9 nach einer Anreicherung an CHO-Zellen. Vergrößerung 10 x 40, Maßstab 100 µm. Zu erkennen sind die kleinen dunklen infizierten Erythrozyten, die an die großen CHO-CD9-Zellen gebunden haben.

3.3. IFAs von Transfektanten

Es wurden 3 vir-Moleküle vir5-, vir9- und vir14 ausgewählt, die 3 P. vivax VIR-Unterfamilien abdecken und in P. falciparum 3D7 exprimiert. Es sollte durch Aufnahme einer Zeitreihe, die den Transportweg eines Proteins während der parasitären Entwicklung zeigt, untersucht werden, wohin die exprimierten VIR-Proteine transportiert werden.

Die Transfektanten wurden bis zu einer Parasitämie von ca. 5% kultiviert (s. 2.2.1), 2-mal synchronisiert, zur Gewährleistung des gleichen Entwicklungsstadiums (s. 2.2.5) und Ausstriche von 3 Zeitpunkten mit frühen Trophozoiten (26 hpi), späten Trophozoiten (34 hpi) und Schizonten (46 hpi) angefertigt (s. Abbildung 25).

Abbildung 25: Aufnahme der Zeitreihe

Das entsprechende VIR-Protein wird als Fusionsprotein gekoppelt an einen HA-Tag vom Plasmodium synthetisiert. Somit kann das VIR-Protein mit Hilfe eines gegen den HA-Tag gerichteten Antikörpers detektiert werden. Durch Verwendung eines zweiten Primärantikörpers, der gegen spezifische Zellbestandteile gerichtet ist, kann eine Kolokalisation unter dem Fluoreszenzmikroskop ermittelt werden (s. 2.1.4). Dadurch kann die Position des angefärbten Proteins in der Zelle im IFA analysiert werden.

Um den Transportweg des Proteins im Erythrozyten nachverfolgen zu können, wurden die PVM mit α-ETRAMP, die MS mit α-SPB1 und die EM mit α-Spektrin lokalisier. Die Färbung der EM hat aus unbekannten Gründen in allen Ausstrichen nicht funktioniert, die Färbung der PVM und MS nur teilweise. Dadurch konnte nicht immer eine bestätigung Kolokalisation ausgewertet werden.
3. Ergebnisse

Abbildung 26: IFAs der Transfektantenzeitreihe von vir5, vir9 und vir14. 100x/1.4 Öl mit Immersionslinse. Standardkultivierung für P. falciparum 3D7 mit Verwendung von WR99210 für Transfektanten. Primärantikörper waren α-HA (1:100; 488 nm), α-ETRAMP (1:400; 559 nm), α-SBP1 (1:1000; 559 nm) und α-Spektrin (1:200; 559 nm), die Kernfärbung erfolgte mit Hoechst (1:1000; 408 nm). Links: Darstellung der IE mit spezifischer Immunfluoreszenzfärbung, DNA-Färbung sowie Durchlicht und die Überlagerung der konfokalen und fluoreszierenden Aufnahmen. Rechts: Quantitative Angabe der 50 ausgezählten IE. Nicht mit α-HA detektierten Zellen wurden von der Auszählung ausgeschlossen. EM= Erythrozyten Membran, MS= Maurer’sche Spalten, PM/PVM= Parasitophore Vakuole/Parasitophore Vakuolenmembran.
Es wird ein Proteintransport vermutet, der im Parasiten beginnt und im frühen Trophozoiten in der PV/PVM (α-ETRAMP) lokalisiert wird. Im weiteren Verlauf soll das Protein im späten Trophozoiten in den MS (α-SPB1) oder sogar schon an der EM (α-Spektrin) zu lokalisieren sein. Spätestens im Schizonten sollten die rekombinanten Proteine auf der EM präsentiert werden. Da die Kolokalisation nicht immer funktioniert hat, konnte nicht immer eindeutig erkannt werden, wo das Protein genau lokalisiert ist. Besonders die Differentiation zwischen den MS und der EM ist ohne Kolokalisation sehr schwierig.

Die vir5-Transfektante zeigt im frühen Trophozoitenstadium hauptsächlich eine Proteinlokalisierung im Parasiten, die später in den MS zu erkennen ist. Dies sieht man sehr deutlich in der oberen Abbildung 26 in der Kolokalisation von α-HA und α-SPB1. Die Färbung im Schizonten zeigt ebenfalls eine Kolokalisation in den MS. Dies legt die Vermutung nahe, dass das Protein nicht nach Außen transportiert wird, jedoch würde eine Kolokalisation mit α-Spektrin mehr Aufschluss darüber geben. Die Quantifizierung zeigt in der zeitlichen Abfolge ein Absinken der VIR5-positiven Signale im Parasiten und ein Ansteigen in den MS sowie eine Verdreifachung in der PV/PVM. Dies könnte als erfolgreicher Proteintransport vom Parasiten über die PVM bis in die MS ausgewertet werden.

VIR14 zeigt im frühen Trophozoitenstadium eine eindeutige Proteinlokalisierung im Parasiten, im späten Trophozoiten lokalisiert VIR14 in der PV/PVM. In den Schizonten zeigt sich eine drastische Verschiebung des lokalisierten Proteins in die MS. Hier sieht man in der Abbildung, dass das typische MS-Muster mit α-HA zu erkennen ist, jedoch keine Kolokalisation mit α-SPB1 vorliegt, das Protein sich also nicht in den mit α-SPB1 lokalisierten MS befindet. Dies legt die Vermutung nahe, dass es u.U. an die EM transportiert wurde, jedoch fehlt eine Bestätigung mit α-Spektrin an dieser Stelle.
4. Diskussion

In dieser Arbeit wurden zwei Projekte parallel bearbeitet. Im Ersten sollten zwei Bereiche der PfEMP1-Proteine rekombinant exprimiert und die Bindungsfähigkeit der einzelnen Domänen an CD9 kartiert werden. Im zweiten Projekt wurden einerseits, mittels rekombinanter VIR-Proteine Antikörper generiert, um in Bindungsstudien charakterisiert zu werden und andererseits vir-Genome in P. falciparum exprimiert, um den Proteintransport im IE durch Aufnahme einer Zeitreihe nachverfolgen zu können.

4.1. Rekombinante PfEMP1-Proteine

Die Schritte bis zur Proteinexpression zeigen, dass die amplifizierten DNA-Abschnitte erfolgreich sowohl in den TOPO®- als auch anschließend in den pRSET®-Vektor kloniert wurden. Ferner identifiziert die Immundetektion mittels Westernblot die erfolgreich rekombinant exprimierten MAL6P1.252-Proteine.

Beim Aufbereiten der Proteine zur Antikörpergenerierung konnten nach den Schritten der Aufreinigung, Einengung und Entsalzung 3 der MAL6P1.252-Proteine weder im Gel, noch mittels BCA-Reaktion detektiert werden. Zur Kontrolle der Aufreinigung mittels Affinitätschromatographie wurden die gewonnenen Proteinfraktionen auf SDS-Gele aufgetragen. Dort konnte die Anwesenheit aller 5 MAL6P1.252-Proteine nachgewiesen werden.

Die anschließende Einengung im Dialyse schlauch diente als Zwischenschritt zur Entsalzung mittels Größenausschlusschromatographie. Die Proteinsuspensionen wurden gemäß des Entsalzungsprotokolls (s. VI.f) auf ein Volumen von ≤ 2,5 ml eingeengt und direkt auf die PD-10-Säule gegeben. Erst im Anschluss an die Entsalzung wurden wieder die gewonnenen Proteinfraktionen in SDS-Gelen kontrolliert. Dort konnten nur noch 2 MAL6P1.252-Proteine detektiert werden.
Zur Kontrolle wurde der Durchfluss nach der Säulenreinigung ebenfalls auf ein SDS-Gel aufgetragen, was keine Anwesenheit von Proteinen zeigte. Damit konnte ausgeschlossen werden, dass sich die Proteine noch im Säulenbett befanden. Somit wurden die Proteine vermutlich im Einengungsschritt mittels Dialyseschlauch verloren.

4. Diskussion

4.2. Rekombinante VIR-Proteine

Es wird angenommen, dass einige der 346 *vir*-Gene Proteine exprimieren, die an die Oberfläche der IE transportiert werden, um eine Schlüsselrolle bei der Zytoadhäsion der Schizonten einnehmen zu können (Lopes, et al., 2014). Jedoch ist über die Funktionen der exprimierten VIR-Proteine noch nicht viel bekannt (Singh, Gupta, & Pande, 2014).

Da eine *in vitro*-Kultivierung von *P. vivax* nicht auf Dauer möglich ist, wurde diese Annahme bis jetzt nur mittels *P. falciparum*-Transfektanten, die spezifische VIR-Proteine exprimieren, untersucht (Udomsangpetch, Kaneko, Chotivanich, & Sattabongkot, 2008; Bernabeu, et al., 2012). Allerdings sind diese Modelle nicht vorbehaltlos auf natürliche *P. vivax*-Infektionen übertragbar und es ist bis heute nicht bekannt welche Proteine von *P. vivax* tatsächlich an die Oberfläche der IE transportiert werden.

Andererseits ist die Parasitämie in *P. vivax*-Patienten durch die selektive Infizierung von Retikulozyten in den meisten Fällen nicht sehr hoch (Miller, Baruch, Marsh, & Doumbo, 2002). Dazu kommt, dass *P. vivax* synchron verläuft und die meisten Patienten in der Fieberphase

Es ist somit nicht klar, welche Daten und Ergebnisse aus diesem Projekt gewonnen werden können. Jedoch wäre es ein großer Fortschritt einen Hinweis zu erhalten ob eines der 4 VIR-Proteine auf die Zelloberfläche des IE transportiert wird und so u.U. eine Rolle in der Zytoadhäsion einnehmen könnte.

4.3. Rekombinante ViR-Proteine aus *P. falciparum*-Transfektanten

Bis heute konnte keine in vitro-Kultivierungsmethode für *P. vivax* etabliert werden, die eine Kultivierungsdauer ermöglicht, um eine hohe und bearbeitungsfähige Parasitätämie zu erhalten (Udomsangpetch, Kaneko, Chotivanich, & Sattabongkot, 2008). Um untersuchen zu können, ob und welche ViR-Proteine an die Zelloberfläche transportiert werden, gibt es die Möglichkeit die ausgewählten *vir*-Gene in *P. falciparum* exprimieren zu lassen (Bernabeu, et al., 2012).

Der gesamte Versuch wurde an Bernabeu et al. angelehnt, in dem *vir*-Genome in *P. falciparum* 3D7 transfiziert wurden. Dort konnte gezeigt werden, dass ViR14 in Schizonten an der EM lokalisiert wurde. Interessanterweise wurde das Protein aber nicht wie üblich mittels SBP1 über die MS auf die Zelloberfläche transportiert. Vielmehr wurde vermutet, dass der Transport durch die in *vir14* enthaltene J-Domäne vermittelt wird. Deren Proteine sind in der Lage unabhängig von den MS Proteine im IE zu transportieren. Die Lokalisation von ViR14 auf der EM wurde mittels Immunelektronen Mikroskop und Bindungsstudien bestätigt (Bernabeu, et al., 2012).

Im Labor Bruchhaus wurden 3 *P. falciparum*-Transfektanten hergestellt, die über die gleichen *vir*-Gene verfügten, wie die rekombinant exprimierten ViR-Proteine. Die 3 ausgewählten Proteine ViR5, ViR9 und ViR14 wurden in *P. falciparum* 3D7 exprimiert und deren Transportweg im IE mittels IFAs nachverfolgt.

Eine Ursache für die nicht auswertbare Färbung kann nur in unsachgemäß ausgeführten Waschschriften bei der Anfertigung der IFAs vermutet werden. Da die eingesetzten Antikörper bereits mehrfach in den hier angegebenen Konzentrationen getestet und verwendet wurden (Bachmann, et al., 2015).

Die Kolokalisation von α-HA und α-SBP1 in VIR5 zeigt, dass das Protein in die MS, aber nicht auf die Zelloberfläche transportiert wird. Da das MS-Protein SBP1 eine wichtige Rolle im Proteintransport in den IE auf die Zelloberfläche einnimmt (Cooke, et al., 2006) aber nicht bekannt ist ob VIR5 tatsächlich auf der EM präsentiert wird, ist unklar ob der Transport korrekt abgelaufen ist. Allerdings könnte u.U. eine Wiederholung des Versuchs das Ergebnis reproduzieren und somit die Korrektheit bestätigen.

Durch einen Vergleich beider Methoden könnten so auch Rückschlüsse auf das *P. falciparum*-Transfektantenmodel gezogen werden. Denn es ist noch unklar ob beide *Plasmodium*-Arten über gleichartige Transportwege verfügen und ob diese übertragbar sind. Denn es könnte ein denkbares Problem sein, dass die Expression von VIR-Proteinen in *P. falciparum* anders verläuft und somit nicht mit natürlichen *P. vivax*-Infektionen verglichen werden kann.

Zusammenfassung

Die Pathogenität des Malariaerregers *Plasmodium falciparum* beruht unter anderem auf dessen Fähigkeit zur Zytoadhäsion. Durch die Expression parasitärer Proteine in den infizierten Erythrozyten (IE) und deren Transport an die Wirtszytoadhesion ist er in der Lage an humanen Endothelrezeptoren der Blutgefäße zu binden und so der Eliminierung über die Milz zu umgehen. Die Fähigkeit zur Zytoadhäsion der weniger letalen humanpathogenen Art *Plasmodium vivax* wird erst seit kurzer Zeit angenommen und ist noch kaum untersucht.

Zusammenfassung

Durch die Charakterisierung der VIR-Proteine können erste Hinweise auf den Proteintransport im IE erlangt und somit ein Fundament zur bislang kaum untersuchten Zytoadhäsion von *P. vivax* gelegt werden. Ebenso ergänzt die Kartierung der PfEMP1- Bindungsdomänen die bislang gewonnenen Erkenntnisse und kann so zu einem besseren Verständnis der Pathogenität von *P. falciparum* beitragen.
Danksagung

Besonders bedanken möchte ich mich bei Herrn Professor Dr. Jörg Andrä für die Unterstützung und die Betreuung dieser Arbeit, sowie Frau Professor Dr. Iris Bruchhaus für ihre Bereitschaft diese Bachelorarbeit zu ermöglichen und ihre unermüdliche Hilfestellung bei technischen und wissenschaftlichen Problemen. An dieser Stelle möchte ich mich ebenfalls für die gute Zusammenarbeit im Projekt und die unerschöpfliche Geduld im Rahmen der zahlreichen konstruktiven Gesprächen bedanken. Durch die Bearbeitung des Projekts habe ich nicht nur reichlich an Wissen hinzugewonnen, sondern auch mein Interesse an der molekularen Parasitologie erheblich verstärkt.

Herrn Professor Dr. Egbert Tannich danke ich für die Bereitstellung der Räumlichkeiten und Materialien am Bernhard-Nocht-Institut für Tropenmedizin, sowie die ein oder andere Anregung, bestimmte Ergebnisse zu hinterfragen und in einem anderen Licht zu betrachten.

Bei sämtlichen Mitarbeitern der Labore 4, 5 und 6 bedanke ich mich für die Hilfsbereitschaft. Besonders hervorheben möchte ich Susann Ofori, die mit mir ihre Materialien und zahlreichen Methoden geteilt hat, sowie Pedro Lubiana und Nahla Metwally, ohne die die äußerst lehrreiche Schlacht um und an der Zellkulturbank nur halb so viel Spaß gemacht hätte. Mein herzlicher Dank geht an das Labor 4, besonders an Dr. Jenny Matthiesen für die kreativen und konstruktiven Gespräche und ihre Art zu einer entspannten und amüsanten Atmosphäre im Labor beizutragen, Martin Meyer für das stets offene Ohr, den einen oder anderen running gag und das Initiieren kollegialer Abende, sowie Michael Dörpinghaus für das anfängliche an die Hand nehmen.

Für die Geduld und die Unterstützung möchte ich mich bei allen bedanken, die im privaten Bereich von dieser Arbeit betroffen waren. Insbesondere bedanke ich mich bei meiner Familie und meinen Eltern, die mich immer in allem, was ich machen wollte, unterstützt haben.
III. Literaturverzeichnis

Smith, J. D. (2014). *The role of PfEMP1 adhesion domain classification in Plasmodium falciparum pathogenesis research.* Molecular & Biochemical Parasitology.

X

IV. Abbildungsverzeichnis

Abbildung 1: Globale Lage der Malaria-Gebiete mit hohem Infektionsrisiko 1
Abbildung 2: Lebenszyklus von Plasmodium (Levinson, 2012) ... 4
Abbildung 3: Adhäsion von mit P. falciparum IE an humanen Zellen (Rowe, Claessens, Corrigan, & Arman, 2009) ... 5
Abbildung 4: Schematische Darstellung von der EMP1-Präsentation vom IE an Wirtszellrezeptoren (Rowe, Claessens, Corrigan, & Arman, 2009) 6
Abbildung 5: Anfertigen von Blutausstrichen .. 15
Abbildung 6: Ficoll- Dichtegradient (Zhonghua Lin, 2014) .. 16
Abbildung 7: Giemsa-Färbung des intraerythrozytären Lebenszyklus von P. falciparum (Radfar, et al., 2009) ... 18
Abbildung 8: GeneRuler 1 kb DNA Ladder für Agarose-Gele .. 23
Abbildung 9: Sequenz-Karte des TOPO®-Vektors ... 25
Abbildung 10: pRSET®-Vektor ... 27
Abbildung 11: PAGE-Ruler für SDS-Gele und Blots .. 31
Abbildung 12: DNA-Amplifikate der vir-Moleküle vir5, vir9, vir14 und vir30 aus P. vivax 38
Abbildung 13: Die fünf untersuchten MAL6P1.252-Domänen aus P. falciparum 3D7 mit der Nummerierung der rekombinanten Proteine .. 39
Abbildung 14: DNA-Amplifikate der MAL6P1.252-Domänen aus P. falciparum 3D7 39
Abbildung 15: VIR-Proteine im Tricin-Gel und im Westernblot mit α-His-Tag 40
Abbildung 16: MAL6P1.252-Proteine im 12% SDS-Gel und im Westernblot mit α-His-Tag ... 41
Abbildung 17: Aufgereinigte Fraktionen von VIR-Proteinen ... 42
Abbildung 18: Aufgereinigte Fraktionen von MAL6P1.252-Proteinen 43
Abbildung 19: Die untersuchten IT4var2-Domänen aus P. falciparum FCR3 mit der Nummerierung der rekombinanten Proteine .. 43
Abbildung 20: Aufgereinigte Fraktionen von unlöslichen (ÜSII+ÜSIII) IT4var2-Proteinen 44
Abbildung 21: VIR-Proteine, eingeengt und entsalzt .. 45
Abbildung 22: Lösliche IT4var2-Proteine, eingeengt und entsalzt ... 45
Abbildung 23: Lösliche MAL6P1.252-Proteine, eingeengt und entsalzt 45
Abbildung 24: FCR3-CD9 nach einer Anreicherung an CHO-Zellen 47
Abbildung 25: Aufnahme der Zeitreihe .. 48
Abbildung 26: IFAs der Transfektantenzeitreihe von vir5, vir9 und vir14 49
V. Tabellenverzeichnis

Tabelle 1: Verwendete CHO-Zelllinien ... 9
Tabelle 2: Liste der Oligonukleotide für die Amplifizierung verschiedener vir- und MAL6P1.252-
Moleküle .. 10
Tabelle 3: Primäre Antikörper für Westernblot (WB) und Immunfluoreszenzassay (IFA) mit den
angewendeten Verdünnungen .. 11
Tabelle 4: Sekundäre Antikörper für Westernblot (WB) und Immunfluoreszenzassay (IFA) mit
den eingesetzten Verdünnungen .. 11
Tabelle 5: Verwendete Restriktionsenzyme, Klonierungs- und Expressionsvektoren 12
Tabelle 6: PCR-Ansatz für 20 µl Gesamt-Volumen ... 22
Tabelle 7: PCR-Programm .. 22
Tabelle 8: Probenvorbereitung der Kontroll-Agarose-Gelelektrophorese 23
Tabelle 9: TOPO®-Ligationsansatz ... 25
Tabelle 10: Ansatz für Kontrollverdau mit EcoRI ... 26
Tabelle 11: Insertverdau mit EcoRI und BamHI zur Umklonierung 27
Tabelle 12: pRSET®-Vektorverdau mit EcoRI und BamHI zur Umklonierung 28
Tabelle 13: Ligationsansatz für pRSET® ... 28
Tabelle 14: Kontrollverdau mit EcoRI und BamHI ... 29
Tabelle 15: Ansatz für ein 12% SDS-Gel .. 31
Tabelle 16: Ansatz für Tricin-Gel .. 31
Tabelle 17: Ansatz für ECL-Lösung und der einzelnen Komponenten 32
Tabelle 18: Schrittweise Reinigung über die Ni-NTA-Agarosesäule für lösliche und unlösliche
Proteine ... 33
Tabelle 19: Konzentrationsbestimmung mittels BCA-Reaktion der rekombinanten Proteine (rP)
nach Einengung und Entsalzung .. 46
VI. Anhang

a. Sequenzen

<table>
<thead>
<tr>
<th>Sequenz</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAGA</td>
<td>→ Spacer</td>
</tr>
<tr>
<td>GGATCC bzw. GAATTC</td>
<td>→ Schnittstelle BamHI bzw. EcoRI</td>
</tr>
<tr>
<td>TTA</td>
<td>→ Übergangssequenz</td>
</tr>
</tbody>
</table>

i. *P. vivax* Transfektanten

Vir14 (PVX_108770) / Unterfamilie C - (UPC 3.1.2.1)

Vir14_for

```
GAGAGGATCC AAGCGTTGTTATGTATTTTTAAA (57,2 °C) 30 bp
```

Vir14_rev

```
GAGAGAATTGTTA ACAAGAGTCTCTCCATGTGTAAT (56,9 °C) 36 bp
```

Alternative:

Vir14_rev

```
GAGAGAATTGTTA TCTTTGTTTAAGGTATTTCAACAT (56,0 °C) 36 bp
```

DNA-Sequenz (Introns in rot und Oligonukleotide in blau); Länge 1525 bp:

```
ATGTTCGATCTGGAAGGAGGCG GGACACAAGTAGAGGCAGATGATGAAACCATATCGG
AAAGTACTATACAA GTATGGTTATTAGATAGTTTTTTTTTTTTTTAGTAATCCCTTACTGGAATTTTATA
TGAACATTCTATGGGATAATAAGGAAACAATAATTTTTATGTATCAACCAATGTGTATTTCTAT
AATAATGTTATATTTTTTTAAAAACTTTTTTAAAGGTCACGTAATCTAGTTCTGAACATCTACCTGCA
TACATATTTGAACAAAGGCTGAGAGGAGATGCAAAGGTAATTTTTAGCGGATATTAC
AATGTAGTAAAGCATATCATCATCGTGAACGGTTATGAGTGGGGCAATGATTTATTCAAGAAACTC
AGTAGAAATATATCATTTGTTGGACAGATAGTTTATATTGAGAGGAGACATCTAATAGA
AAGCGTTGTTATGTTAAA TTATTGCTTATATGATAATGTATATAAATCTTGAAATCATCAAA
TACAAATGATACCGATTATTTTTAAAAAGATATATTCTACAAAGGCTTCAAGGATATGGGAAAAAT
ATTGTGATAATGAGTTTTAAAGATAGACCTATACGTGTTTACCTGCCGATAAAAGAACCTACAT
TTAACAGGCTTTTTATACGAAAAGGATTTTTATTGTTTTTATTGCTAAAAGAAATTAGTAAAGAA
ATGAAAAAGGAAATATTGGCAGATACCTCTTCTGTTCATGTCGTAGAATATTTGTTAGATGAGATT
AATGGGAAAGAATATTGGCAGATACCTCTTCTGTTCATGTCGTAGAATGTTGAAATACCTTA
AACAAAAA ATGTTGAAATACCTTA AACAAAAA ATGTTGAAATACCTTA AACAAAAA ATGTTGAAATACCTTA
```

XIV
VI. Anhang

TATATTGCTGTACATAACTGACGATATCACCACCTTCGTGCTAGGTATAGTGGGTACACT
ACTAATTITITITGGCCTTTGTATAAGGTAATATATAAAATTTCAGTTAAGGATATGGAAT
TTATGCTTTTAAGTTAATACACTATTATAAAAAATTGCTATATATAATGATTACATAATGTTG
TTATGCTTTTTTTTTTTAGTTTACGCCTTTTAAACGGTTGCGACGCACACAGGAAAA
GGTAAGGAAACGAATTAGACCAAAACATTATATATGATGATTAAGTTATATATGGAAGT
GAAGAATCTTTCAAGCAGCAGCAGAGATCTTTGATATTATAATAATGATTATGATAATGATT
ATGATAATGATGATTATATGATGATGATGATGATGATTATAGTGATAGTAATAGTTGCTGATA
TTATTTTACCTTCACATT

Vir9 (PVX_000020) / Unterfamilie J *** - (UPC 1.1.1)

Vir9_for: GAGAGGATCC TGTAAATACCTAAACTACTTGT (56,2 °C) 33 bp
Vir9_rev: GAGAGAATTCTTA TCTAAATCTTTCTAGGTTCACAAT (58,1 °C) 39 bp

DNA-Sequenz (Introns in rot und Oligonukleotide in blau); Länge 970 bp:

ATGCTAAATTTTTTTATGTTTTTTTTCTACTATTTTTTTCTCCATAGTATAATTTTTGTAA
GTACGTATTCTAAATTATAAGACATAATTATGACAGAAGCTACAGTGAAACTTCTATTAA
TGATATATGCGGAGACTACATTTCATCTCACTTTCAACATGATGTGTTAGACGGGTTAGCCA
AGAATGTTTATAGGAAGGTGTGTTCAAAAGTTAAGGAACATACTTTAAATTATGATAAAGTAAAT
TCTGAATCCCTTGATATACAAACTTAACATACAGGATTTTGATACATATAAAG
CAATTTAATTTTACCTTTCTGTTACACTATATTACACTGACATGATAATTTG
TATGATGAGCATATTTTCGATTTTGTATATATGTAGACGATAAAGAGGACGTTAATTAT
GAAACTTAAAAACCTTAATAGAACTAATTACCTACATACAGGATTTTGATACATAAAG
CATCAAGTGATCCAAAGAGAAATAATGGAATATGTTGTTGGAAATGTGCACAAATT
ATATGAACTACATAAACATTTTAAGTGAATATGTTGTTGGAAATGTGCACAAATT
ATATGCAAAAGTGAAGATGAGATGACACTCAACAAAGTAGATGATAATTTTATAGTAAAGTAT
GCTGTTATTTTAAATATTATAATTTTCTTTTTTTTTTTTTGAATTAT
AATTATAATTATTATGAAAAAAATTTTATATTACGTTTTTATCATAAAAAATTATGATTATAAT
TGGCTGTTATTTTAAATAAATTATTTTCTTTTACTATTAGTTTACTACAGTTGCTTCATGC
ATAATGCTCAAAAGGGAGAGAAATAATTGAAAAAGGGAAGTTTTAAAA
VI. Anhang

Vir30 (PVX_042690) / Unterfamilie K - (UPC 4.1.1)

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence</th>
<th>Tm (°C)</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vir30_for</td>
<td>GAGAGGATCCGTGATTCCTTTTCTAGTGC</td>
<td>59.9</td>
<td>30</td>
</tr>
<tr>
<td>Vir30_rev</td>
<td>GAGAGAATTATTAAGTTTACTATAGTTCTGATATAAAC</td>
<td>54.6</td>
<td>39</td>
</tr>
</tbody>
</table>

DNA-Sequenz (Introns in rot und Oligonukleotide in blau); Länge 1288 bp:

```plaintext
ATGAATAGTCTATATCTTTGTATAAAACACACACATATATGTATGTTCATATTCATTATT
TTTTCATCTTATTAAGTTCAATAAAAGCAAAAATGGCTGTGCCTGAAAATAGAGGATTATA
GCGTATATTTTCTATTAAATTAAACAAATTTTCTATTATATCATATTATATTATATTATAT
ACATATCATATATTATTATTATTATTTACCTGTCTTCTAGTAATAATAAAAATATATGT
ATTTTTAGTATGACTTTTTCCGACAAATATTAGTAATATTATAGAAAAGATGAAAAGTATTG
AGATACTGTTAGATCGGCCTTGAAGCATCAATATTATTTGAAAATATATATATATATAT
ATCTCAATTAGGAGATAAGAAAATGCAAATAATATATATGAAATATTACAAACTATGT
AACATTCTCCCCAAATTGTAAAAACAAAGAACAGGATACACTAGTTATAAACAAAATTTGT
GGCTGTAAATTATTGTTAAAATGAAATTTGACGATAGATAAAATTTAATGGAAAAACATGTG
TTTAGAAATCGAAAATACTATACAGAGTCAGTGTTCGATATATTCAATTTTCA
TTTCAATTTATTACGACATAAAGGAAAGAAGACATTTCTATAAATGAAAATATTATATAATAT
ATGTATACAACTTATAATTATATATATATATATATATATATATATATATATATATATAT
TATGACTTTTCTATTAAATTAAACAAATTTTCTATTATATCATATTATATTATATTATAT
ACATATCATATATTATTATTATTATTTACCTGTCTTCTAGTAATAATAAAAATATATGT
ATTTTTAGTATGACTTTTTCCGACAAATATTAGTAATATTATAGAAAAGATGAAAAGTATTG
AGATACTGTTAGATCGGCCTTGAAGCATCAATATTATTTGAAAATATATATATATATATAT
ATCTCAATTAGGAGATAAGAAAATGCAAATAATATATATGAAATATTACAAACTATGT
AACATTCTCCCCAAATTGTAAAAACAAAGAACAGGATACACTAGTTATAAACAAAATTTGT
GGCTGTAAATTATTGTTAAAATGAAATTTGACGATAGATAAAATTTAATGGAAAAACATGTG
TTTAGAAATCGAAAATACTATACAGAGTCAGTGTTCGATATATTCAATTTTCA
TTTCAATTTATTACGACATAAAGGAAAGAAGACATTTCTATAAATGAAAATATTATATAATAT
ATGTATACAACTTATAATTATATATATATATATATATATATATATATATATATATATAT
TATGACTTTTCTATTAAATTAAACAAATTTTCTATTATATCATATTATATTATATTATAT
ACATATCATATATTATTATTATTATTTACCTGTCTTCTAGTAATAATAAAAATATATGT
ATTTTTAGTATGACTTTTTCCGACAAATATTAGTAATATTATAGAAAAGATGAAAAGTATTG
AGATACTGTTAGATCGGCCTTGAAGCATCAATATTATTTGAAAATATATATATATATATAT
ATCTCAATTAGGAGATAAGAAAATGCAAATAATATATATGAAATATTACAAACTATGT
AACATTCTCCCCAAATTGTAAAAACAAAGAACAGGATACACTAGTTATAAACAAAATTTGT
GGCTGTAAATTATTGTTAAAATGAAATTTGACGATAGATAAAATTTAATGGAAAAACATGTG
TTTAGAAATCGAAAATACTATACAGAGTCAGTGTTCGATATATTCAATTTTCA
TTTCAATTTATTACGACATAAAGGAAAGAAGACATTTCTATAAATGAAAATATTATATAATAT
ATGTATACAACTTATAATTATATATATATATATATATATATATATATATATATATATAT
TATGACTTTTCTATTAAATTAAACAAATTTTCTATTATATCATATTATATTATATTATAT
ACATATCATATATTATTATTATTATTTACCTGTCTTCTAGTAATAATAAAAATATATGT
ATTTTTAGTATGACTTTTTCCGACAAATATTAGTAATATTATAGAAAAGATGAAAAGTATTG
AGATACTGTTAGATCGGCCTTGAAGCATCAATATTATTTGAAAATATATATATATATATAT
ATCTCAATTAGGAGATAAGAAAATGCAAATAATATATATGAAATATTACAAACTATGT
AACATTCTCCCCAAATTGTAAAAACAAAGAACAGGATACACTAGTTATAAACAAAATTTGT
GGCTGTAAATTATTGTTAAAATGAAATTTGACGATAGATAAAATTTAATGGAAAAACATGTG
TTTAGAAATCGAAAATACTATACAGAGTCAGTGTTCGATATATTCAATTTTCA
TTTCAATTTATTACGACATAAAGGAAAGAAGACATTTCTATAAATGAAAATATTATATAATAT
ATGTATACAACTTATAATTATATATATATATATATATATATATATATATATATATATAT
TATGACTTTTCTATTAAATTAAACAAATTTTCTATTATATCATATTATATTATATTATAT
ACATATCATATATTATTATTATTATTTACCTGTCTTCTAGTAATAATAAAAATATATGT
```

XVI
VI. Anhang

Vir5 (PVX_093715) / Unterfamilie, not clustered - (UPC 3.1.5.1)

Vir5_for: GAGAGGATCC TTCTTGAACTACTGGTT (57,6 °C) 27 bp
Vir5_rev: GAGAGAATTTGTATACATTTTCCAGCCCCCTATTAT (59,8 °C) 36 bp

Alternative:
Vir5_for: GAGAGGATCC TATAATAAGGGGCTGAAAAATG (59,6 °C) 33 bp
Vir5_rev: GAGAGAATTTGTATACATTTTCCAGCCCCCTATTAT (61,0 °C) 36 bp

DNA-Sequenz (Introns in rot und Oligonukleotide in blau); Länge 1906 bp:

ATGTCACACGAACCGGAC GTAAGGGCCACAAGTCGCGGTATTTAAATATGCGTTGATGAG
CTTTTACTTCTACTATTCTCGACGGCCTCTGGAATTTGCTCGCTTTTACATTTCCTAC
TCCCCCGTTTAAACGCTTCTTTTCTCCACACCTCTATAGTGAGAAATCTTTCCAAACCTTGAGC
GAGTACCGAAAAATAGGAGGCTCATCAGATTGAGGAAAGTAGCACACAGCGGAAGACTCTCTCT
CTCGCGTGTCCAGATTCTACCCTTTGAAAGTTCAAAATCTTCGCTTTTCTTCCTAC
TTCTTACTACCTGAAAGCAGCCTACGATAAGTTAAAAAGGCAAATACAAATTAACCGGACC
ATTCCACCCCCGTTACTTTCTAGCGCCACCCCCAAACACGCAGCTTCTTTGAAAC
TACCTGTTAATACCTCTTCGGAAGCCACTGCTGAAAGATCTGATATTCTCCTTGCTAG
AGGAGATGAGGGGTGTGTTCTGAAAGCTTCTCCAGAAGCTCAAGGATAAT
GTTTATAGGAAATCGCTCTCTCTCTTCGAGCCCTGCTCACAATAAAACGTCCTTTCT
TGTGCCAGAAATAGCAGATCCTCAGTTACCCCAAGAGGAGTAACTGCGGGAACCTCCTAAA
TAGGGGTTGACTTATGGCCGAGAACAGCAGCTCACCACATCTCCCCAAATA
GTGTCGAGACGTGTATTCTCATCATTTTTTTTACAACAATAACAAAAAATATTGTGACAG
CATCATTACATTCTTTTACAAACGCTGCTAGACCCCCCACCACATCCTCTTCTCAGAACATG
CATCACAATGAGACACATATTATTTACCCCAACACACCCCCCTCTCTCTCTTAGTACCCCAACC
TGTATAAGGCTCTACTTCTGCAATACACTTTCCCTTTTTGAGTACGACCGAGGAGAAGGATAA
AAAAACCTTAATGGAGGTTCTGACAGAATTTTTCTTTAATATTTCAATCTGAACTCAGAGGA
ATTCCACGCGTGGATTTTTATATGAGAATTTTTCTTACGAGATATTAAAAACAAAAGAGGA
GGAAATGAAATATACTACCGGAAATGGTCTCACCACAAAAACACGCTCTCCTACTCCGCAA
GGTGGGTACTATAGTGTAACAGCAGCTGAGGGCCTCTTTTTCCACAAAGAGGATGTG
TTGCAGATCTTGAGGAGACAGCTGAGGGGACCCCCTTTCTCAGAGATGGCACC
TTGCACTACTTGGAGGACAAAAAAGCTGACTATGACACAGCGCCCTTTCTGGAATCCC
CCAACCTGAAACAGAGATGCATAAATAATTGAGAAGGGTTTCTGCTTTTATATTACACAGATTTC

XVII
VI. Anhang

GCGATCGTGCTCACAGTGATAGGAGTGGGGGCTTTTCTTTCTATTCTCTATATAGAGTTTGT
AAAAATTGCCTTTAAAAATGTATATACTTTTGTGTGCATGTTTTAAAACGGTTGGTGTGAGA
TTGTTCCTCCAAAGGGATGGTCACGAAAAGGACACTTTCTAATCGATTGACTTTTTTTTTT
TTCTTTTTCCAGTTCCACCCCTTGGGATGCTGGTTCCGAAGAAAATTCAACAAGACCAAA
CGGGTTGCTTTATAATTTTTACATGCAACAGATTGGTTATATAATGGAAATGAAAAATTCTCCAT
TTGAGGATGTTAGGCTGGATAGCAGGGGAAGCCAAACATAGGCTACCAATCCACG
ii. MAL6P1.252

Aminosäuresequenz

MGAPRAPTT FLYSAKDDLDIGESVQKEAKKQALGRSESVLHGLLSNATIKGVKNTKATPI
OLEYEYHTNVTGGFDFKNNPCANRLDVRFSIDYGGQCTDNKINNDDETTGGTOPLRRLLFLGC
DQHLHSHMKEGNINNTDNLLELLVEALAKYEGDSIIIINYPDNDKDKKEGICTALARSFADIGDIIRG
KDLFLGYYTKKDEKEEKVQKNLRKFIFNEYKYMOPAKSHYSGGDSDDFYYKLEDWALNNRK
LWVKAITCKAKNDMAYFRKKDSDGKHSVQVNCKCVDGDPNLDYVPPHRLWFEDEWSEL
FEBK8KDQLKISLEKCRGKNKDKYCSLNGCNCKTTVRGKKEFYQEQCNDDCLVACDPEVEP
WIDNEKDELKKDKKNEIKEREPKTTKSHGTINNMYAKEFYLETKEHRTVDHTKLLENEE
KECKNHPEVGECKKTFIDNDNIEIETSHFETIEPCPWCPGYKPGPPKDNIDSCGKKEISF
SDKDTIDISLSTDRAKKNLQKLENCRDTEHINHIWKCHEYINTDNCDIOLNENTGSEKQ
KMPFDADFFFLWTLQMLDSDIEWKRRKKTINNEKTPNCRIGCKKPCEFERWVECEEEW
JEKHFKDQRODISEEEERYITELYLENNFMDKIEKAYGEKSKELKELKSNKKGHIIRDTEHSO
DAIKILLEHELEDAAKCTETHINDEKCKEQUEEQSSGGRSLNPDQEDDEEDTNVENPACAVGK
KLTKTVKQIARQMQHAAKKQLSSSSRALKAHALGTKHKTNKKDFDFTICKTKDHSNATH
NYQPGCPCHKNKDKNDKFTEEGWKPGNQNINMNDEYAFMPPPROHFTCSNLEYLETEDRT
LNGreddPNVLHSFLGDVLLAEFEADIFIKEYKNEQNSMYKDFSTICRAMKYSADLGDIJKG
TDLWDKNGQEGQKTQGKLEFIIKFKNKLPEDIQKYNIDDKNKSPQYKILLREDWWEANKEV
WRAMTCATTSGKIPCSIVTPDLDIIPQRLRWMTESEWSEFCKEGSKLYGELVKKDCASKK
GKEKCTQGDNDCPDDCKKCEYGGKIRTWDQWTKMDGIYQMLYAQATTARNAAGDTKAK
DNPNDQYVIDFKKKLQKANGDNFQVNTSPYFTPAGYIHQEARVECEVQHIFCNNNOMQ
DKYSRERQOYDHEECAACCKKNTKAPEKKKEETPPAGPVPCEIVKDLFEDDTTPHAACQKY
INGHEKFPNWVKCVTPSSEKSGDKGAIACVPPPRRLYIHDLOSLEDKPSDTALRDFWVKSA
A VETFFLWHRYKQKEKKQKEPQGSELLGSTSSLQFOISDLGDEOPPEQEKAQIDDFROM
FYTLGQYRIDCICIDENVIKTLYSGKDDEMIKOEIQEKIAVFPTSGTSHVPPDGKPGALSROGD
WWEQHKGDWHMGICALTYKETSGSGEGKEGEKTITITDQGTKLDALLDDDGKPKPDRYQITS
VTLEKEDSGKAANVPVAEEPTTLADFRTPPMAYFRWLEEGDGFGREKKLRQAIKDCYE
DGGTGEKOYQSYGEAODRTNTSNEGASADLEGPSASCNSSSYRKWIERKUYMKQOEKAY
GGQOKONCKKERKAAESNDNKQFCGTPETCTNEAFLQLNLSGCKKYNGEKKKIFENTEE
TFKPAIDCEPCSEFVKGLEKCNCGSDAKGNTCTTGGITAENFENKTDVNEVWMNDES
GFKGDLKSSCENAHIFEGIKENKWCRNVCGYIVCKLEEVMGEKNGKILLIRALTVWV
NDLQDYNNIKKKLNTCMNSSDATPCIKGCVDWKIILKDEEEEIIPKPYLEQKYNGYENYV
KTIKLFQDQPOFKEFKAIAPICTPDLAFESKOCNATKESSEKGBKINGKSYVIDCLLQEEKLQOEK
AKKCHDQHSNPOQKECDDPHPDEPDEEDLLLSEEENTANSAEICKDVIKAPPQKEEKGCC
EPASPLEPEEEVEETEASVPDGSEPEADKGPVKPAELPKPKPRNNKRPQKLYFTPALQNAME
LSNTIMWTIGFAASISYFFLKKKTKSTIDLLRINIPKGDYGIPTMKSNRYVYPKSYQNGKK
XIX
VI. Anhang

XX

Domain 1_DBLalpha0.21

D1_B_F30 GAGA GGATCC ACATACAGTAGTGCCAAGGA

D1_E_R33 GAGA GAATTC TTA

DNA-Sequenz (Oligonukleotide in blau); Länge 1380 bp:

ACATACAGTAGTGCCAAGGA CTTTTTGGGAAAGACATTGGGAGAAAGTGTGCAGAAAGAAC
AAAAAGCAAGCTCTTTGGAAGACGTAGTGAGAGTGGTTTGCATGGCCTCTGGTCAAATGCAA
CAATTAAGGTGTGAAAAACAAAAGGCGAAAAACAACTCATTAAATGAAATCGCTGAAAAAG
CTGCTGGCAGCTGGCTCTCCATAGGAGGGTTCTTCTATGTGACATTGGAGAAGTTAAAGTTAA
AAAGAATATTCAATGAAATATATAAAAAATGCAAGATCCTGCAAATCTCATTATAGTGG
TGATTCTCAGATTCTACATAAACACTAAGAGATGTTGGCAGACTTATGAAAGAGAGGT
ATGGAAGCCTATCAGATGGACAAAAATGATATTTTATTTTATTTTATAAAAAAAATAGCT
GATGGGAAACATTGGCTCTGGCTAATAATGGCAAAATGCGTTGATTACATCTCATCA
CTAGACTACGTTCCACACATTACGTTGAGCTGCTGATTGAAAAGATAAAAATATGCA
AACCTACAAAAACATCAATGAGACAAAATATGAAAAATTAATGAAGAAAAAAGACGT
ACCTACAAAAACATCAATGAGACAAAATATGAAAAATTAATGAAGAAAAAAGACGT
ACCTACAAAAACATCAATGAGACAAAATATGAAAAATTAATGAAGAAAAAAGACGT
VI. Anhang

Domain 2_CIDRalpha2.1

D2_B_F30 **GAGA GGATCC** GATAAAGATACTACTGATAT
D2_E_R35 **GAGA GAATTC** TTA ATCCGGGTTTAAAGAGCGACCT

DNA-Sequenz (Oligonukleotide in blau); Länge 696 bp:

```
GATAAAGATACTACTGATATATCAATACCTCCACTGATAGAGCAAAAAAAAAATATTTTAC
AAAAATTAGAAATTTTTTGCAAGAGATACTGAGCATATTTAATCGATATTTTGGAAATGTCA
TTATGAGAAATCTGATAATGATAATTGCATAACTACAAAATGAGACACCGGCTAGAGAAAA
ACAAAAATTATGCCCCTTTGATGCATTTTTTTTTTTCTTTTGCTAACACAAATGTTAGATGAT
TCTATAGAATGGAGAAAAAACCTAAACCTGTATAAAATATGAAAAAAACCAACTAATTGTA
TACGGGGTTGTAAAGCCCTGCGAATGTTTTGAAAGATGGGTGCTAGACAAAAAGAGAAA
GAATGGGATTTCAATTGAAAAACATTATTGACAACAAAAAGAGATATATCAAGAAGAAGACGT
TATATAACACTTTGAAATATATTTTGAAATGAAAAATTTGGAATGAAAAATGATGGGCTTATGG
AATAGAAAAATCAAAGGAATAAAGGGAGAAATTAAAATCAAATAAAGGTGACGGAGATTATA
AGAGATACAGAACATTCACAGGGATGCAATAAAATATTGCTAGAACATGAGATTAGAAGAT
GCAAAAAATGCACAGAAAACCCTATAATGATGAAAAATGTAAAGAAAGAAGAAGAAGAGCGG
AGGTCGCTCTTTAAAACCCGGATCCAGAATCC
```
Domain 3_DBLbeta4

D3_B_F30 GAGA GGATCC AAGAAACAATTTGGGTAGTAG
D3_E_R33 GAGA GAATTC TTATAAAGGAATTTGGT

DNA-Sequenz (Oligonukleotide in blau); Länge 1236 bp:

AAGAAACAATTTGGGTAGTAGTAGTAGTAGTAGGGCATTGAAGGCTCATGCACATCTAGGAAC
ATATAAACATACCAATAAACCGCAGATGATTCTAAAACAATATGTAAATAAACGAAGGATCAT
TCCAATGTCTACCCATAACTATCCGCAGAAAGGACCATGTCTATGGAAGAAAAATACGATAATCT
ATGTTTAAGACAGAAGAGGTTGGAAACCTGGGAACCAGATAATATGGAAGCGAATA
CGCTCTTATGCCTCCTCGACGTCAACATTTTTGTACATGCATTATTTAGAAAC
GGGTGACAGAAACACTTAAATGTGTTTTGAGCAGATCTTAATGTCTCTATATCGATTTTTTA
GGGTGATGTTTCTGCTCGCAGCAAAAGTTTGAAGGCAGATTTCTCAAAGAGAGAGTATAATGA
GCAATCTAATATAAGGAATTTTCAACTCATATTGTAGAGCAATGAAAAATATAGTTTTGCGGA
CTTGGAGATATAATTTAGGAACAGATTATTTGAGTAGAATGAGTTGGCAACAAAACTT
CACAAGGAAAAGTTGGGAAAAATATTCTGTAATATTTAAAAACACTTCTGGAAGATATCC
AAGAAAAATATATCAATGATGACAAAAATTCACCCCAATATAAAAAATTACGAGAAGATTTG
GTGGGAGGCAAACAGAAAAAGGAGTTTGGAGAGCTGCTGTAATGACTGTTGGCAGCAGTTGGA
AAAATCCCATGCAGATTTGCTACACCCACTTTAGTATACATTTCTCAAAGAGATACGTTGGA
ATGACTGAATGGTCCGAAATGTTTTTCAAGAGACGCTGAAAACCTGTATGGGAGAGTTTTG
GAAGATTGTGCAGATTTGTAAGAAAAAGGTAAGAAAAATGTACACAAGGCGATAATG
ACTGTACACCAGTGTGATAAAAAATGTAAAGAATAATGGAAGAAAAAAATAAAGAACATGGGAAG
ATCAATGGCAAAAAATGGATGGAATATACCAAAATGTATACCTACCAAGCACAACACTACTG
CTCCTGATAAGCTGTTGTAATCTCTTATTTTGGTAAAATACGATCTGATTTTTCTT
CAAAAAATTACAAAAAAAGCAATATGGTGAATAAATTTTGGTTGTAACACCTCCCCTCCT
CACCCCAGCAGGGTACATCCACCAGGAGGCAGCTGTAGGTGAATGCGAAGCTACAAAA
CATTCTTTGTAATATAACGCGCACCAGGATAATTATCTCCTT
Domain 4_DBL_delta1

D4_B_F30 GAGA GGATCC GGTGAAAAAAGTGGTGATAA
D4_F_R33 GAGA GAATTC TTTAGCATA CTCCCCGCAAT

DNA-Sequenz (Oligonukleotid in blau); Länge 1317 bp:

GGTGAAAAAAGTGGTGATAA GGGTGC CATATGTGCTGCACCCAGGAGGCAGGCTACTAT
ACATACAGATT TTACAATC ACTAGACGAAGAGCCAGACATTACCGCTACGTGATTGG
TTTGTGAAAAAGTGGCCCGGGTTGAGACGTTTTTTCTATGCCATAGATACAAAAACAAAA
GAAAAAGAAACCACAGGAGGGTCACTACTTTCCGGGTCGAACACTACTTTAGCAGTTAG
CATAGACCTCGTGTGATGAGGAACAGCCAGCCCCCGGAAAAACATTTGCTGTTGGGCAAATA
CCTGATGATTTTTCTGCGCAAAAGTGGGACACTATAGGATAGATATGCGAAACACATGGTAAA
GATATATGGCATGGAATTTTCGGCTTTA AACTTAAAAGAGACAAGTGGTAGTGCCGA
AAAAGGGTGA AAAACAACACTATTACC AGATGTGACTCTGAAAGATGCACTTTTTGGATAC
CGACGGCAA AAAAACGATTGCACTACCAATACACAGTGTCACACTTTAAGAGATG
ATAGTGGA AAAAAAGCCGGCAATGTCCGGCAAAGGTGAACCCACTACCTGCGCCGA
CTTCACGC GC CCCAGGCTACTTCCCCGTGGGAGAAGGGGCGGCGGCGTTCTCG
TCGAGAAGGAA AACACGATTGCGCAAAATTTAAAAAGATTTGCTACGAAGACGGGAAA
CAGGTGAAAAAAACATACACGGGTATTGGAAGCGTGTTGACAAATTACATCAAAT
GAAGGAGCTTCTGCTGATT TTAGAAGGTCGAAGGTATTTGCAAATCTTTGAGTTTATAGA
AAATGGTAGAGAAAAATACGGAATTTAAAAAAACAGGAA GCCGATATTGCGGAAA
AAAACAAACTGCAAAGAAGGAGTAAAGTGGCTGAAAGTGAATGAATGAAAAAATT
TGCGGAACACCAGAAAAACATGCATACAGTGCAAGCATTCTTACAAAATTAGGATAC
TGAAAAGTATAATGGGAGGGTTTAAAATTTTTTGGAGAAATACAGAGGAAACATTAAA
CCTGCAAT CGATTGCGAACCATGT TTCTGAAATTTAAAGTTAGAAAGGTGTAATTGC
GGGAGTGATGCTAAA
VI. Anhang

Domain 5_CIDRbeta1

D5_B_F30 GAGA GGATCC GATGTTAATGAAGTTGTTAT
D5_E_R33 GAGA GAATTC TTA TGCATTACATTGTTTGACT

DNA-Sequenz (Oligonukleotide in blau); Länge 519 bp:

GATGTTAATGAAGTTGTTATGCGTGTTAGTGATAACGCTGAAAGTTGTTTTAAAGGTGATTTGTTAAGAGTTCTTGTGAAAACGCACATATTTTGGAAGGTATATTAAAGAAAATAATGGAAAAATGCTGAAACTGGGAAGATCAGAATGTTACTGGAGAAAAAGATAATGGTAAAAATTTTATTTAATTAGAGCACCTTGTGTCTACACATTTGGGTAGATAATTTTTTACAATGGTAAAAATTTAATTTAAAAAAAAATTTAATACATGATGATAGTAGATGATGCAACCCCCAAGACGCCTTTACCTTTGAACATATATATGCTATGGAGAAAATTACAATGTGAAAAATTATTTTGGAGAAATTTCAAGATCAACCTGAATTTAAAAATCTATAGGACCTTGTCCAACTTAGATGCTTTTCGAGAAGTCAAAACAATGTAATGCA
b. Nukleotidabgleich

i. Vir-Sequenzen
ii. MAL6P1.252-Sequenzen
<table>
<thead>
<tr>
<th>D3 08</th>
<th>MAL6P1.252_03</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>A</td>
<td>G</td>
</tr>
<tr>
<td>C</td>
<td>G</td>
</tr>
<tr>
<td>T</td>
<td>G</td>
</tr>
<tr>
<td>G</td>
<td>A</td>
</tr>
<tr>
<td>A</td>
<td>G</td>
</tr>
<tr>
<td>C</td>
<td>G</td>
</tr>
<tr>
<td>T</td>
<td>G</td>
</tr>
<tr>
<td>G</td>
<td>A</td>
</tr>
<tr>
<td>A</td>
<td>G</td>
</tr>
<tr>
<td>C</td>
<td>G</td>
</tr>
<tr>
<td>T</td>
<td>G</td>
</tr>
<tr>
<td>G</td>
<td>A</td>
</tr>
<tr>
<td>A</td>
<td>G</td>
</tr>
<tr>
<td>C</td>
<td>G</td>
</tr>
<tr>
<td>T</td>
<td>G</td>
</tr>
<tr>
<td>G</td>
<td>A</td>
</tr>
<tr>
<td>A</td>
<td>G</td>
</tr>
<tr>
<td>C</td>
<td>G</td>
</tr>
<tr>
<td>T</td>
<td>G</td>
</tr>
</tbody>
</table>

VI. Anhang

XXIX
c. Gebrauchsmaterialien und Reaktionskits

<table>
<thead>
<tr>
<th>Material</th>
<th>Hersteller/Firma</th>
</tr>
</thead>
<tbody>
<tr>
<td>FastPlasmid Mini Kit – 250 Preps</td>
<td>5 Prime</td>
</tr>
<tr>
<td>NucleoSpin Gel and PCR Clean-up (250 preps)</td>
<td>Macherey-Nagel</td>
</tr>
<tr>
<td>Filmcasette</td>
<td>Rego</td>
</tr>
<tr>
<td>High performance chemiluminescence Film</td>
<td>GE Healthcare</td>
</tr>
<tr>
<td>Gel Elektrophorese</td>
<td>Peqlab</td>
</tr>
<tr>
<td>Blot Membran BA 83</td>
<td>GE Healthcare</td>
</tr>
<tr>
<td>SDS Casetten</td>
<td>Novex</td>
</tr>
<tr>
<td>Cellophanfolie</td>
<td>Roth</td>
</tr>
<tr>
<td>Amersham Hyperfilm ECL</td>
<td>GE Healthcare</td>
</tr>
<tr>
<td>Objekttträger mit Vertiefungen</td>
<td>Thermo Scientific</td>
</tr>
<tr>
<td>Deckgläser für Mikroskopie (24 x 55 mm); Stärke 1</td>
<td>Engelbrecht</td>
</tr>
<tr>
<td>Discofix Drei-Wege-Hahn</td>
<td>B. Braun Aesculab</td>
</tr>
<tr>
<td>Einmalspritzn Injekt®; steril (10 ml)</td>
<td>B. Braun Aesculab</td>
</tr>
<tr>
<td>Objekttträger, geschnitten (Mattrand); 76 x 26 mm</td>
<td>Engelbrecht</td>
</tr>
<tr>
<td>Petrischalen 92 x 16 mm</td>
<td>Sarstedt</td>
</tr>
<tr>
<td>Safe-Lock-Tubes (1,5 ml; 2,0 ml)</td>
<td>Eppendorf</td>
</tr>
<tr>
<td>Sterican Einmal-Injektions-Kanül; Größe 1 (Ø 0,9 x 40 mm)</td>
<td>B. Braun Aesculab</td>
</tr>
<tr>
<td>Zellkulturschalen (50 ml, 25 cm², PS, mit Filterschraubverschluss)</td>
<td>Greiner Bio-One</td>
</tr>
<tr>
<td>Zellkulturschalen (250 ml, 75 cm², PS, mit Filterschraubverschluss)</td>
<td>Greiner Bio-One</td>
</tr>
<tr>
<td>Objekttträger mit Vertiefung</td>
<td>Thermo Scientific</td>
</tr>
<tr>
<td>Pierce BCA Protein Assay Kit</td>
<td>Thermo Scientific</td>
</tr>
<tr>
<td>Tissue Culture Coverslips 13 mm (Plastic)</td>
<td>Sarstedt</td>
</tr>
<tr>
<td>TC- Platte 24 Well, Standard F</td>
<td>Sarstedt</td>
</tr>
<tr>
<td>TC- Platte 96 Well, Standard F</td>
<td>Sarstedt</td>
</tr>
<tr>
<td>GP Millipore Express™ PLUS Membrane (0,22 µm)</td>
<td>Millipore</td>
</tr>
<tr>
<td>Konisches Röhrchen, 15 ml, besonders klar, PP (17 x 120 mm)</td>
<td>BD Falcon</td>
</tr>
<tr>
<td>Konisches Röhrchen, 50 ml, PP (30 x 115 mm)</td>
<td>BD Falcon</td>
</tr>
<tr>
<td>Mikro-Schraubröhre (2 ml), PP</td>
<td>Sarstedt</td>
</tr>
</tbody>
</table>
d. Chemikalien und Reagenzien

<table>
<thead>
<tr>
<th>Chemikalien & Reagenzien</th>
<th>Hersteller/Firma</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRIS-HCl</td>
<td>Roth</td>
</tr>
<tr>
<td>Na₃HPO₄</td>
<td>AppliChem</td>
</tr>
<tr>
<td>Imidazol</td>
<td>Roth</td>
</tr>
<tr>
<td>Harnstoff</td>
<td>Roth</td>
</tr>
<tr>
<td>Acrylamid-Lösung (30%) – Mix 37,5:1</td>
<td>AppliChem</td>
</tr>
<tr>
<td>Acrylamid 4K-Lösung (40%) – Mix 49:1</td>
<td>AppliChem</td>
</tr>
<tr>
<td>Acrylamid 2K-Lösung (30%) – Mix 32:1</td>
<td>AppliChem</td>
</tr>
<tr>
<td>TEMED</td>
<td>AppliChem</td>
</tr>
<tr>
<td>Page Ruler Prestained Protein Ladder</td>
<td>Thermo Scientific</td>
</tr>
<tr>
<td>DDT</td>
<td>Sigma Aldrich</td>
</tr>
<tr>
<td>Ammoniumpersulfat (APS)</td>
<td>AppliChem</td>
</tr>
<tr>
<td>Methanol</td>
<td>Roth</td>
</tr>
<tr>
<td>Essigsäure</td>
<td>Roth</td>
</tr>
<tr>
<td>Ni-NTA Agarose</td>
<td>MN</td>
</tr>
<tr>
<td>5x Green GoTaq Flexi Buffer</td>
<td>Promega</td>
</tr>
<tr>
<td>GoTaq G2 Flexi DNA Polymerase (5 u/µl)</td>
<td>Promega</td>
</tr>
<tr>
<td>MgCl₂ (25 mM)</td>
<td>Promega</td>
</tr>
<tr>
<td>Pwo DNA Polymerase (5 u/µl)</td>
<td>Promega</td>
</tr>
<tr>
<td>Glycerin (≥ 99,5%)</td>
<td>Roth</td>
</tr>
<tr>
<td>Ethanol</td>
<td>Merck</td>
</tr>
<tr>
<td>Giemsa’s Azur- Eosin- Methylenblaulösung</td>
<td>Merck</td>
</tr>
<tr>
<td>GeneRuler 1 kb DNA Ladder 0,5 µg/µl</td>
<td>Fermentas</td>
</tr>
<tr>
<td>Isopropanol</td>
<td>Roth</td>
</tr>
<tr>
<td>SDS</td>
<td>Biomol</td>
</tr>
<tr>
<td>TRIS base</td>
<td>Roth</td>
</tr>
<tr>
<td>TRIS-HCl</td>
<td>Roth</td>
</tr>
<tr>
<td>Agarose</td>
<td>Invitrogen</td>
</tr>
<tr>
<td>DMSO</td>
<td>Roth</td>
</tr>
<tr>
<td>Tween 20</td>
<td>Merck</td>
</tr>
<tr>
<td>Milchpulver</td>
<td>Roth</td>
</tr>
<tr>
<td>Luminol</td>
<td>Sigma</td>
</tr>
<tr>
<td>Hydroxicoumarinsäure</td>
<td>Sigma</td>
</tr>
<tr>
<td>H₂O₂ (30%)</td>
<td>Merck</td>
</tr>
<tr>
<td>Immersol 518 N</td>
<td>Zeiss</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Dako Fluorescence Mounting Medium</td>
<td>Dako</td>
</tr>
<tr>
<td>TRIzol®</td>
<td>Ambion/ Life technologies</td>
</tr>
<tr>
<td>Ham’s F12</td>
<td>PAA bzw. PAN Biotech</td>
</tr>
<tr>
<td>Accutase</td>
<td>PAA bzw. PAN Biotech</td>
</tr>
<tr>
<td>G418 (Neomycin) (50 mg/ml)</td>
<td>Biochrom</td>
</tr>
<tr>
<td>Dako Fluorescence Mounting Medium</td>
<td>Dako</td>
</tr>
<tr>
<td>RPMI-1640 + L-Glutamin</td>
<td>AppliChem</td>
</tr>
<tr>
<td>HEPES</td>
<td>AppliChem</td>
</tr>
<tr>
<td>Fötales Kälberserum (fetal calf serum; FCS)</td>
<td>PAA</td>
</tr>
<tr>
<td>D-Sorbitol</td>
<td>Sigma Aldrich</td>
</tr>
<tr>
<td>Gentamicin 40</td>
<td>Hexal</td>
</tr>
<tr>
<td>Penicillin/Streptomycin (100x)</td>
<td>PAA bzw. PAN Biotech</td>
</tr>
<tr>
<td>Glutaraldehyde</td>
<td>Merck</td>
</tr>
<tr>
<td>Hoechst- 33342</td>
<td>Life Technologies</td>
</tr>
</tbody>
</table>
e. Geräte und Software

<table>
<thead>
<tr>
<th>Gerät</th>
<th>Hersteller/Firma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laborwaage precision plus</td>
<td>Ohaus</td>
</tr>
<tr>
<td>Elektrophoresis Power Supply EPS 301</td>
<td>Amersham pharmacia biotech</td>
</tr>
<tr>
<td>Tischschüttler PMR-30</td>
<td>Grant bio</td>
</tr>
<tr>
<td>Magnettrührer</td>
<td>Janke & Kunkel IKA - Labortechnik</td>
</tr>
<tr>
<td>Thermomixer compact</td>
<td>Eppendorf</td>
</tr>
<tr>
<td>Centrifuge 5415D</td>
<td>Eppendorf</td>
</tr>
<tr>
<td>Centrifuge 5427R</td>
<td>Eppendorf</td>
</tr>
<tr>
<td>Centrifuge 5810R</td>
<td>Eppendorf</td>
</tr>
<tr>
<td>Vortexer</td>
<td>Janke & Kunkel IKA - Labortechnik</td>
</tr>
<tr>
<td>Scanner Epson perfection V700 Photo</td>
<td>Epson</td>
</tr>
<tr>
<td>LaminarAir HB 2448 (Labor 7)</td>
<td>Hareus Instrument</td>
</tr>
<tr>
<td>GeneAmp PCR System 9700</td>
<td>PE Applied Biosystem</td>
</tr>
<tr>
<td>Wasserbad 3047</td>
<td>Köttermann</td>
</tr>
<tr>
<td>See-raw rockers SSL4</td>
<td>Stuart</td>
</tr>
<tr>
<td>GPKR Centrifuge</td>
<td>Beckman</td>
</tr>
<tr>
<td>J2-21 Centrifuge</td>
<td>Beckman</td>
</tr>
<tr>
<td>J2-HS Centrifuge</td>
<td>Beckman</td>
</tr>
<tr>
<td>Sonorex super</td>
<td>Baadelin</td>
</tr>
<tr>
<td>Sonifier 250</td>
<td>Branson</td>
</tr>
<tr>
<td>Certomat HK</td>
<td>B Braun Biotech International</td>
</tr>
<tr>
<td>pH-Meter CG840</td>
<td>Schott</td>
</tr>
<tr>
<td>Wasserbad</td>
<td>GFL</td>
</tr>
<tr>
<td>EVOS x1 – transmitted light microscope</td>
<td>AMG</td>
</tr>
<tr>
<td>Horizontal-Elektrophoresekammern</td>
<td>peqlab</td>
</tr>
<tr>
<td>Innova 4200</td>
<td>Brunswick Scientific</td>
</tr>
<tr>
<td>Innova 4230 Incubator Shaker</td>
<td>Brunswick Scientific</td>
</tr>
<tr>
<td>BioPhotometer</td>
<td>Eppendorf</td>
</tr>
<tr>
<td>Mini-PROTEAN Tetra System</td>
<td>BioRad</td>
</tr>
<tr>
<td>Axio Imager.M1</td>
<td>Zeiss</td>
</tr>
<tr>
<td>Axio Imager.M2</td>
<td>Zeiss</td>
</tr>
<tr>
<td>Axioskop pus (Mikroskop)</td>
<td>Zeiss</td>
</tr>
<tr>
<td>CX31 (Mikroskop)</td>
<td>Olympus</td>
</tr>
<tr>
<td>Eclipse TS100 (inverses Mikroskop)</td>
<td>Nikon</td>
</tr>
</tbody>
</table>

XXXV
VI. Anhang

FluoView FV1000 FL
IX81
Function Line (Brutschrank mit CO₂)
M20 LAUDA (Wasserbad)
Neubauer- Zählkammer
SW 20 (Wasserbad)
The Belly Dancer

Software

Mac Vector with Assembler Version 12.5.1	Accelrys
Adobe Photoshop CC 2015 64 Bit	Adobe
Axio Vision Rel. 4.7	Zeiss
FLUOVIEW Ver 4.1a	Olympus
f. Herstellerprotokolle

<table>
<thead>
<tr>
<th></th>
<th>PCR clean-up</th>
<th>Gel extraction</th>
<th>DNA clean-up (with SDS)</th>
<th>Single stranded DNA clean-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PCR clean-up
DNA clean-up or single stranded DNA clean-up:
Adjust binding condition
Gel extraction:
Excise DNA fragment / solubilize gel slice</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>200 μL NTI/100 μL PCR</td>
<td>200 μL NTI/100 mg gel</td>
<td>50°C 5–10 min</td>
<td>500 μL NTB/100 μL sample</td>
</tr>
<tr>
<td>2</td>
<td>Blind DNA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>11,000 x g 30 s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Wash silica membrane</td>
<td></td>
<td>700 μL NT3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>11,000 x g 30 s</td>
<td>700 μL NT3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recommended:
2nd wash</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Dry silica membrane</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>11,000 x g 1 min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Elute DNA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>15–30 μL NE
RT 1 min</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>11,000 x g 1 min</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5 Gravity protocol

1 PD-10 Desalting column preparation
 • Remove the top cap and pour off the column storage solution.
 • Cut the sealed end of the column at notch.

2 Column equilibration
 • Fill up the column with equilibration buffer and allow the equilibration buffer to enter the packed bed completely.
 • Repeat 4 times.
 • Discard the flow-through.
 Note: About 25 ml equilibration buffer should be used in total for all three steps.

3 Sample application
 • Add maximum 2.5 ml of sample to the column.
 • For sample volumes less than 2.5 ml, add equilibration buffer to adjust the volume up to 2.5 ml after the sample has entered the packed bed completely.
 • Let the sample or equilibration buffer enter the packed bed completely.
 • Discard the flow-through.

4 Elution
 • Place a test tube for sample collection under the column.
 • Elute with 3.5 ml buffer and collect the eluate. A typical elution profile is shown in Fig 2.
Eidesstattliche Versicherung

Hiermit erkläre ich, Elena Baron, an Eides statt, dass ich die vorliegende Bachelorarbeit selbst verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe.

Hamburg, 14. Dezember 2015

Elena Baron