Isabell Schierhorn 10.06.1991 Hamburg 2099430

„Methoden der Prozessoptimierung der Produktion und die mögliche Anwendbarkeit auf indirekte Unternehmensbereiche“

10.08.2015

Frau Prof. Dr. Claudia Brumberg

Frau Prof. Dr. Marion Howe

Fakultät Wirtschaft und Soziales

Department Wirtschaft

Studiengang:

Logistik/Technische Betriebswirtschaftslehre
Inhaltsverzeichnis

I. Abkürzungsverzeichnis ... iv
Zusammenfassung .. v
1. Einleitung ... 1
 1.1 Problemstellung ... 1
 1.2 Aufbau der Arbeit ... 2
 1.3 Ziel der Arbeit ... 3
2. Grundlagen der Prozessoptimierung .. 4
 2.1 Der Prozessbegriff ... 4
 2.2 Erläuterung des Begriffes Geschäftsprozess ... 7
 2.3 Erläuterung des Produktionsprozesses .. 8
 2.4 Definition Prozessoptimierung .. 10
 2.5 Vorgehen bei der Optimierung von Prozessen .. 11
3. Methoden der Prozessoptimierung aus dem Produktionsbereich 12
 3.1 Six Sigma ... 12
 3.1.1 Die DMAIC Methode .. 14
 3.1.2 Six Sigma Toolbox ... 18
 3.1.3 Design for Six Sigma ... 19
 3.1.4 Auswirkungen Six Sigmas auf den Wettbewerb .. 21
 3.2 KAIZEN ... 23
 3.2.1 Vorschlagswesen ... 24
 3.2.2 Die sieben Qualitätswerkzeuge Q7 .. 25
 3.2.3 Die 5S Methode ... 25
 3.2.4 Die 6 W Hinterfragetechnik ... 26
 3.2.5 KVP ... 27
 3.3 Das Total Quality Management ... 28
 3.4 Prinzipien der Lean Production ... 29
 3.4.1 Die sieben Arten der Verschwendung .. 30
 3.4.2 Die fünf Prinzipien des Lean Thinkings ... 31
 3.4.3 Just-in-Time ... 31
 3.4.4 Kanban ... 32
 3.4.5 PokaYoke .. 32
I. Abkürzungsverzeichnis

CIP Continous Improvement Process
DfSS Design for Six Sigma
DICOV Define, Identify, Characterize, Optimize, Validate
DIN Deutsches Institut für Normung
DLZ Durchlaufzeit
DMAIC Define, Measure, Analyze, Improve, Control
DPMO Defects per Million Opportunities
EN Europäische Norm
Fed Ex Federal Express
IPA Institut für Produktionstechnik und Automatisierung
ISO International Organization for Standardization
JIT Just-in-Time
KVP Kontinuierlicher Verbesserungsprozess
MIT Massachusetts Institute of Technology
PC Projektcharter
SIPOC Supplier Input Process Output Customer
SWOT Strengths, Weaknesses, Opportunities, Threats
TQM Total Quality Management
VOC Voice of Customer
Zusammenfassung

In Zeiten der globalen Vernetzung steigt der Konkurrenzdruck für Unternehmen stetig. Um diesem weltweiten Wettbewerb standhalten zu können, bedarf es der Steigerung der Produktivität aller Bereiche eines Unternehmens. Wurde sich in früheren Zeiten auf die direkten Unternehmensbereiche beschränkt, wird aktuell das Verbesserungspotenzial indirekter Unternehmensbereiche immer deutlicher. Rund ein Drittel der Tätigkeiten im indirekten Unternehmensbereich sind nicht wertschöpfende Tätigkeiten, welche verbesserungswürdig sind.

Die Bewertung bzw. Gegenüberstellung der Methoden, sowie die Bedeutung im direkten und im indirekten Unternehmensbereich machen die Möglichkeit der Übertragbarkeit deutlich. Sowohl im indirekten, als auch im direkten Unternehmensbereich bestehen Prozesse. Folglich lassen sich Methoden der Prozessoptimierung, ganz gleich welchen Ursprung diese haben, auf jeden Bereich im Unternehmen, sofern dieser Prozesse beinhaltet, anwenden.

Eine Übertragbarkeit von Methoden der Prozessoptimierung der Produktion auf andere, indirekte Unternehmensbereiche ist somit durchaus möglich und wird bereits von Unternehmen durchgeführt.
1. Einleitung

In wirtschaftlich schwierigen Lagen und Zeiten der wachsenden Globalisierung, sind nationale Märkte nicht länger geschützt. Zwar steigen in Zeiten der globalen Vernetzung die Marktchancen, sowie die Möglichkeiten zur Erschließung neuer Märkte, aber auch der Konkurrenzdruck nimmt zu. Zahlreiche Unternehmen stehen in einem weltweiten Wettbewerb.\(^1\) Um diesem Druck stand halten zu können und sich im Markt entsprechend positionieren zu können, bedarf es vor allem der Steigerung der Produktivität aller Bereiche eines Unternehmens.

1.1 Problemstellung

Somit scheint an dieser Stelle der nächst logische Schritt die Ausweitung und Entwicklung von Optimierungsinstrumenten der Produktion, auf die indirekten Bereiche im Unternehmen zu adaptieren.\(^3\) Folglich gilt es die bewährten Methoden entsprechend dem Prozess anzupassen und auf den zu optimierenden Bereich im Unternehmen zu übertragen.

\(^1\) Vgl. Eschner, Christin, 2006, S. II
\(^3\) Vgl. Schneider, 2011, S. 24
1.2 Aufbau der Arbeit

Im Folgenden wird der Aufbau der Arbeit erläutert, sowie der Inhalt der einzelnen Kapitel dargestellt.

Im fünften Kapitel wird die Lean Office Studie der Fraunhofer IPA des Jahres 2010 näher betrachtet. Zunächst werden die Studieninhalte, sowie das Potenzial des indirekten Unternehmensbereiches vorgestellt. Folglich wird detailliert auf Studienschwerpunkte eingegangen.

Zwei Praxisbeispiele vom Unternehmen, welche diese Methoden anwenden, werden im sechsten Kapitel aufgezeigt.

Im siebten Kapitel wird die Übertragbarkeit der Prozessoptimierungsmethoden der Produktion auf andere Unternehmensbereiche bewertet. Dazu werden die
zusammengefassten Inhalte aller Methoden dargestellt, sowie die entsprechende Bedeutung für den direkten und indirekten Unternehmensbereich untersucht.

Abschließend folgt im achten Kapitel dieser Arbeit eine Schlussbetrachtung. An dieser Stelle werden die wichtigsten Erkenntnisse zusammengefasst und die gesamte Arbeit resumiert.

1.3 Ziel der Arbeit

Ziel dieser Arbeit soll es sein, anhand der in der Ausarbeitung dargestellten Methoden der Prozessoptimierung aus dem direkten Unternehmensbereich, die Möglichkeit einer Adaption auf den indirekten Bereich im Unternehmen aufzuzeigen.

Dazu werden zunächst die dargestellten Methoden verglichen und deren Vorgehen und Zielsetzungen zusammengefasst. Im Weiteren werden dann diese Ziele auf den indirekten Unternehmensbereich analog übertragen, um abschließend eine Bewertung vornehmen zu können.

Schließlich soll die Frage beantwortet werden, ob sich die Prozessoptimierungsmethoden, welche ihren Ursprung im direkten Unternehmensbereich haben, auf indirekte Unternehmensbereiche übertragen lassen.
2. Grundlagen der Prozessoptimierung

2.1 Der Prozessbegriff

Allerdings gilt es zu sagen, das die Literatur keine eindeutige Definition hergibt. Teilaspekte lassen sich hingegen wiederfinden. Beispielhaft sind in der Tabelle eins Definitionen des Prozessbegriffes aufgeführt, um die Beliebigkeit der Verwendung des Begriffes aufzuzeigen. Dabei werden aktuelle, aber auch Definitionen, welche bereits in der Vergangenheit entwickelt wurden, aufgezeigt.

\(^4\) Vgl. Beckmann, 2004, S. 1
\(^5\) Vgl. Stefan März, 2005, S. 3
\(^6\) Nils Hagen et. al 2006, S. 25
Ein Prozess ist eine sich regelmäßig wiederholende Tätigkeit mit einem definierten Beginn und Ende. Er verarbeitet Informationen (Input) zu zielführenden Ergebnissen (Output) und ist in der Regel arbeitsteilig organisiert.

<table>
<thead>
<tr>
<th>Autor</th>
<th>Prozessdefinition</th>
</tr>
</thead>
</table>
| Gadatsch, 2015, S. 3 | "Ein Prozess ist eine sich regelmäßig wiederholende Tätigkeit mit einem definierten Beginn und Ende. Er verarbeitet Informationen (Input) zu zielführenden Ergebnissen (Output) und ist in der Regel arbeitsteilig organisiert."

<table>
<thead>
<tr>
<th>Schmidt, 2012, S. 1</th>
<th>"Ein Prozess transformiert Input, häufig über mehrere Stufen, in Output"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Becker und Kahn, 2000, S.4</td>
<td>"Ein Prozess ist die inhaltlich abgeschlossene, zeitliche und sachlogische Folge von Aktivitäten, die zur Bearbeitung eines prozessprägenden betriebswirtschaftlichen Objektes notwendig sind."</td>
</tr>
<tr>
<td>Elgass und Krcmar, 1993, S.42</td>
<td>"Ein Prozess ist eine Folge von Aktivitäten, die in einem logischen Zusammenhang zueinander stehen und inhaltlich abgeschlossen sind, so das sie von vor-, neben- oder nachgelagerten Vorgängen isoliert betrachtet werden können."</td>
</tr>
</tbody>
</table>

Tab. 1: Übersicht über Prozessdefinitionen (eigene Darstellung in Anlehnung an Hagen, S. 26, 2006)

Anhand dieser Übersicht lassen sich dennoch gemeinsame Aspekte der Definition ermitteln. So steht die Transformation einer Information bzw. eines Inputs in ein Ergebnis oder aber Output im Vordergrund. Weiterhin wird die Zielorientierung in Hinblick auf den Kunde deutlich.

7 Gadatsch, 2015, S. 3
8 Schmidt, 2012, S. 1
9 Becker et al., 2000, S.4
10 Hammer, 1997, S. 16
11 Elgass und Krcmar, 1993, S.42

Abb. 1: Prozessstruktur (eigene Darstellung in Anlehnung an Hagen, 2006, S. 27)

12 Vgl. Hagen, 2006, S. 25

2.2 Erläuterung des Begriffes Geschäftsprozess

14 Vgl. Arndt, 2015, S. 41
15 Vgl. Saatkamp, 2002 S. 63
16 Vgl. Zeiller 2003, S.41
17 Eiff et al., 2003, S. 7
18 Siegle, 1994, S. 166
19 Vgl. Turowski 1996, S. 24
20 Vgl. Staud, 2006, S. 5
21 Vgl. Hirzel, 2005, S. 15

2.3 Erläuterung des Produktionsprozesses

Um den Prozess der Produktion zu verdeutlichen, wird der Produktionsbegriff, sowie die Ziele der Produktion definiert.

22 Vgl. Koch, 2015, S. 4
23 Schwalbach, 2014, S. 5
24 Vgl. ebd., S. 2 ff.
Abb. 2: Ziele der Produktion (eigene Darstellung in Anlehnung an Erlach, 2010, S. 21)

Das Ziel der Qualität beinhaltet die Steigerung der Liefertreue, sowie Lieferfähigkeit und der Produktqualität. Weiterhin gilt es die Termintreue zu erhöhen. Dabei muss bezüglich der Qualität zwischen der Produktqualität und der logistischen Qualität unterschieden werden. Erstere Form der Qualität zeigt sich am Ergebnis bzw. am Produkt selbst. Die logistische Qualität lässt sich an der Termineinhaltung messen. Bezüglich der Geschwindigkeit gilt es die Lieferzeiten, sowie die Durchlaufzeiten zu senken. Auch der Bestand und die Wiederbeschaffungszeiten sollten möglichst minimiert werden.25 Wobei die Durchlaufzeiten eines der wichtigsten Indikatoren für die Leistungsfähigkeit eines Unternehmens am Markt sind. 26

Erfolgsfaktor auf der Marktseite ist der Preis, diesen gilt es zu senken. Weiterhin gilt es bezüglich der Wirtschaftlichkeit die Auslastung, sowie die Produktivität zu steigern. Materialkosten hingegen müssen minimiert werden. Das in Abbildung zwei aufgezeigte Dreieck wird in seltenen Fällen durch ein viertes Ziel, der Variabilität, zu einem Quadrat ergänzt. Dabei bezieht sich die Variabilität auf das Produktionspektrum, somit auf die Flexibilität und Wandelbarkeit der Produktion. Die Variabilität bemisst folglich welcher Kundenwunsch erfüllbar ist.27 Dabei stehen diese Ziele in einem Zielkonfliktverhältnis zueinander. So lassen sich einige Ziele leichter erreichen als andere. Einige Ziele sind nur bedingt miteinander zu vereinbaren, wo hingegen andere Ziele nicht miteinander

\section*{2.4 Definition Prozessoptimierung}

28 Vgl. Schwalbach, 2010, S. 24 ff.
29 Vgl. Arndt, 2015, S. 37 f.
2.5 Vorgehen bei der Optimierung von Prozessen

30 Vgl. Arndt, 2015, S. 38
3. Methoden der Prozessoptimierung aus dem Produktionsbereich

3.1 Six Sigma

Der Begriff Six Sigma stammt aus der Statistik und wird von der Standardabweichung Sigma (σ) abgeleitet. Dies bezeichnet die Verteilung oder Streuung um einen Mittelwert eines Prozesses oder eines Produktmerkmals. Six Sigma bedeutet folglich sechs Mal die Standardabweichung. Bezogen auf Geschäfts- und Produktionsprozesse ist Sigma eine Maßeinheit für die Leistung eines Prozesses. Es beschreibt die Fähigkeit einer fehlerfreien Durchführung des Prozesses. Wobei als Fehler alles was zur Unzufriedenheit des Kunden führt, bezeichnet wird.32

Bezogen auf einen Prozess und unter der Betrachtung der Gauß’schen Normalverteilung bedeutet Six Sigma ein Qualitätsniveau von 99,99966%. Der Durchschnittswert deutscher Industrien liegt bei einem Sigma Wert von 3,8 σ, was einem Qualitätsniveau von 99,0% entspricht.33 Bezieht man den Durchschnittswert auf eine Millionen Vorgänge, bedeutet dies eine Anzahl von 10.724 (Defects Per Million Opportunities - DPMO) fehlerhaften Produkten oder Leistungen. Die Tabelle zwei zeigt

31 Vgl. Bergbauer, 2008, S. 1
32 Vgl. ebd., S.1f.
33 Vgl. Töpfer, 2003, S. 1
das Verhältnis von Fehlern zur Ausbeute und zum entsprechenden Sigma Wert bei einer Millionen Vorgänge.

<table>
<thead>
<tr>
<th>Fehler pro Mio. Vorgänge</th>
<th>Ausbeute</th>
<th>Sigma Wert</th>
<th>Qualitätskosten</th>
</tr>
</thead>
<tbody>
<tr>
<td>691.462</td>
<td>30,85375%</td>
<td>1</td>
<td>Nicht akzeptabel</td>
</tr>
<tr>
<td>308.537</td>
<td>69,14625%</td>
<td>2</td>
<td>Nicht akzeptabel</td>
</tr>
<tr>
<td>66.807</td>
<td>93,31928%</td>
<td>3</td>
<td>25 - 40% vom Umsatz</td>
</tr>
<tr>
<td>6.210</td>
<td>99,37903%</td>
<td>4</td>
<td>15 - 25% vom Umsatz</td>
</tr>
<tr>
<td>233</td>
<td>99,97673%</td>
<td>5</td>
<td>5 - 15% vom Umsatz</td>
</tr>
<tr>
<td>3,4</td>
<td>99,99966%</td>
<td>6</td>
<td><1% vom Umsatz</td>
</tr>
</tbody>
</table>

Deutlich erkennbar ist, dass jede Erhöhung des Sigma Wertes um eins, eine Senkung der Qualitätskosten um 10% vom Umsatz schafft.

\(^{34}\) Vgl. Bergbauer, 2008, S. 5
\(^{35}\) Vgl. Koch, 2011, S. 175

![Rollenverteilung innerhalb eines Six Sigma Projektes](image)

3.1.1 Die DMAIC Methode

Innerhalb der Six Sigma Methodik wird zwischen zwei Vorgehensweisen zur Verbesserung von Prozessen unterschieden. Zum einen wird die DMAIC-Cycle (Define, Measure, Analyse, Improve, Control) für die Verbesserung bereits bestehender Prozesse genutzt. Zum anderen werden mit Hilfe des DfSS (Design for Six Sigma) neue Prozesse gestaltet. Die Implementierung von Six Sigma Projekten wird in drei Phasen unterteilt. Die Start-up Phase, die Assessment Phase, sowie die

37 Vgl. ebd.
Implementierungsphase, wobei die ersten beiden Phasen vor der Define Phase geschehen.\(^{38}\)

Die zweite Phase des DMAIC Kreises ist die s.g. Measure Phase. In dieser geht es vor allem darum, Eingangs-, also den Input, sowie Ausgangsgrößen, also den Output zu bemessen. Auch Größen des Prozesses selbst gilt es zu messen. Die Measure Phase dient demnach der Quantifizierung des entsprechenden Problems, welches in der ersten Phase definiert wurde. Entscheidungen, welche innerhalb der Six Sigma Methodik getroffen werden, müssen auf Zahlen und Daten basieren. Dabei gilt es sich auf die wichtigsten Messgrößen aus Kunden- und Prozesssicht zu fokussieren. Um die

\(^{38}\) Vgl. Koch, 2011, S.175

41 Vgl. ebd., S. 47 ff.

Den jeweiligen Phasen sind entsprechende Fragestellungen zugeordnet, welche in Abbildung vier dargestellt sind.

43 Vgl. Bergbauer, 2008, S.73ff.
44 Vgl. ebd., S. 91 ff.
3.1.2 Six Sigma Toolbox

<table>
<thead>
<tr>
<th>Designwerkzeuge</th>
<th>Statistikwerkzeuge</th>
<th>Projektwerkzeuge</th>
<th>Schlankheitswerkzeuge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robustes Design</td>
<td>Faktorielle Versuche</td>
<td>Netzplan</td>
<td>Standardisierung</td>
</tr>
<tr>
<td>Quality Function</td>
<td>Prozessfähigkeitsanalyse</td>
<td>Projektbeschreibung</td>
<td>Verschwendungsanalyse</td>
</tr>
<tr>
<td>Deployment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRIZ</td>
<td>Regressionsanalyse</td>
<td>CTQ- Analyse</td>
<td>Engpassanalyse</td>
</tr>
<tr>
<td>Konzeptanalyse</td>
<td>Multivariate Analyse</td>
<td>Baumdiagramm</td>
<td>Flussdiagramm</td>
</tr>
<tr>
<td>FMEA</td>
<td>Statistische Testverfahren</td>
<td>Fähigkeitsanalyse</td>
<td>Supply- Chain Matrix/</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Versorgungskettenmatrix</td>
</tr>
<tr>
<td>Fehlerbaumanalyse</td>
<td>Wahrscheinlichkeitsplot</td>
<td>Kosten- Nutzen-Analyse</td>
<td>Rüstzeitanalyse</td>
</tr>
<tr>
<td>Toleranzdesign</td>
<td>R&R- Analyse</td>
<td>Regelkarte</td>
<td>Red-Tag Analyse</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kundenwerkzeuge</th>
<th>Quality Control Werkzeuge</th>
<th>Managementwerkzeuge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kano-Modell</td>
<td>Prüfformulare</td>
<td>Entscheidungsbaum</td>
</tr>
<tr>
<td>House of Quality</td>
<td>Histogramm</td>
<td>Affinitätsdiagramm</td>
</tr>
<tr>
<td>Kundeninterview</td>
<td>Pareto- Diagramm</td>
<td>Beziehungsdiagramm</td>
</tr>
<tr>
<td>Kundenfragebogen</td>
<td>Ursache-Wirkungsdiagramm</td>
<td>Baumdiagramm</td>
</tr>
<tr>
<td>Anforderungsstrukturierung</td>
<td>Grafischer Vergleich</td>
<td>Matrixdiagramm</td>
</tr>
<tr>
<td>Verlustfunktion nach Tageuchi</td>
<td>Relationendiagramm</td>
<td>Matrix- Daten- Analyse</td>
</tr>
<tr>
<td>Cojoint- Analyse</td>
<td>Regelkarten</td>
<td>Netzplantechnik</td>
</tr>
</tbody>
</table>

Tab. 3: Six Sigma Toolbox (eigene Darstellung, in Anlehnung an Magnusson et al., 2004, S. 58)
3.1.3 Design for Six Sigma

Produktfähigkeit bestätigt und überwacht. Weiterhin werden Ergebnisse dokumentiert und diese aus Nachhaltigkeitsgründen standardisiert.

3.1.4 Auswirkungen Six Sigmas auf den Wettbewerb

Ziel der Implementierung von Six Sigma in Unternehmen ist neben der Steigerung des Qualitätsniveaus, dem weiter steigenden, internationalem Wettbewerb standhalten zu können. Folglich muss die benannte Methode einen positiven Einfluss auf die in Abbildung fünf dargestellten Anforderungen im Wettbewerb haben.

47 Vgl. Gamweger, 2009, S. 3
Abb. 5: Die vier zentralen Anforderungen im Wettbewerb (eigene Darstellung in Anlehnung an Töpfer, 2003, S. 9)

Wird dieses abgebildete Dreieck von einem Unternehmen beherrscht, lassen sich Innovationen, mit den entsprechenden Kundenanforderungen über effiziente Prozesse schnell und kostengünstig in den Markt einführen. Die entsprechend eingeführte Methode soll sich demnach positiv auf die Qualität, die Kosten, die Zeit, sowie die Innovationen auswirken. Diese Abbildung verdeutlicht, dass eine Steigerung der Qualität nach Außen, also dem Kunden, sichtbar wird. Eine Senkung der Durchlaufzeiten wird durch Wettbewerber erkannt. Zudem wirkt sich eine Senkung der Kosten positiv auf das Unternehmen selbst aus.48

So führen Six Sigma Projekte zur Verbesserung von Prozessen und bezwecken die Reduzierungen der Durchlaufzeiten, sowie der damit verbundenen Kosten. Die Beseitigung von Fehlern führt zur Steigerung der Qualität, sowie zur Senkung von Fehlerkosten. Folglich hat die Six Sigma Philosophie einen positiven Einfluss auf Qualität, Zeit, Kosten, sowie Innovationen. Somit kann ein Unternehmen mit Hilfe von Six Sigma besser, schlanker und schneller werden als seine Wettbewerber.49

48 Vgl. Töpfer, 2003, S. 9
49 Vgl. ebd., S. 8 f.
3.2 KAIZEN

\[Vgl.\ ebd.,\ S.\ 11\]

\[Vgl.\ Brüggemann,\ 2015,\ S.\ 185\]
3.2.1 Vorschlagswesen

Das Vorschlagswesen ist eine KAIZEN-Technik, bei der sich jeder Mitarbeiter aktiv an Vorschlägen der Prozessverbesserungen im Unternehmen beteiligen kann. Dabei werden die Mitarbeiter geschult und motiviert Vorschläge zu machen. Diese betreffen die Bereiche Arbeitserleichterung, Ressourceneinsparungen, Erhöhung der Arbeitssicherheit, Produktivitätserhöhung, Qualitätsverbesserungen, sowie die Einsparungen von Zeit und Kosten. Rund 3/4 aller Mitarbeiter beteiligen sich am betrieblichen Vorschlagswesen. In Japan werden beispielsweise 80% der Mitarbeitervorschläge vom Unternehmen umgesetzt. Dabei wird das Potenzial aller Mitarbeiter eines Unternehmens genutzt. \(^{52}\)

3.2.2 Die sieben Qualitätswerkzeuge Q7

3.2.3 Die 5S Methode

shisuke, soll Selbstdisziplin erlernt werden. Um den Standard zu erhalten, gilt es den Arbeitsplatz hinsichtlich der 5S regelmäßig zu kontrollieren und zu überprüfen.

3.2.4 Die 6 W Hinterfragetechnik

Diese Technik dient der gründlichen Hinterfragung eines Prozesses und führt schließlich zum Kern des Problems. Die Technik beruht auf der Annahme, dass jedes Problem mehrere Ursachen hat. Somit soll durch systematisches Hinterfragen die Hauptursache aufgedeckt werden. Dabei werden sechs Mal die sechs W Fragen, somit 36 Fragen gestellt. Die sechs W Fragen bestehen aus, was, wer, wo, wann, warum und wie. Wobei sich jede sechste Frage auf die Vermeidung der drei Mu’s bezieht. Diese sind zum einen Muda, die Verschwendung, was die Ursache für die Entstehung von Verlusten beschreibt. Das zweite Mu, Muri, beschreibt die Überlastung von Mensch und Maschine. Wobei der Mensch sowohl geistig, als auch körperlich überlastet sein kann. Eine Überlastung der Maschine entsteht aufgrund von Planungsfehlern. Das dritte Mu, Mura, beschreibt die Unausgeglichenheit, welche durch fehlerhafte Harmonisierung ausgelöst wird.

55 Vgl. ebd., S. 22 f.
56 Vgl. ebd., S. 65
3.2.5 KVP

Durch KAIZEN Aktivitäten sollen somit in kleinen Schritten, langfristige und andauernde Verbesserungen geschaffen werden. Der KAIZEN Gedanke beruht auf der Überlegung, dass große, radikale Veränderungen auf Abwehr bei den Mitarbeitern stoßen. Somit führt KAIZEN zu keiner radikalen Reform, sondern vielmehr zur Verbesserung in kleinen, kontinuierlichen Schritten.

58 Vgl. ebd.
59 Vgl. ebd., S. 26 ff.

Dabei steht Total für die Einbeziehung aller an der Produktion beteiligten Gruppen, wie Mitarbeiter, aber auch Zulieferer und Abnehmer. Quality bezeichnet die konsequente Orientierung aller betrieblichen Aktivitäten an den Qualitätsanforderungen. Management soll dabei aufzeigen, dass das TQM nach dem top-down Prinzip ins Unternehmen implementiert wird.

61 Brüggemann, 2015, S. 179
62 Vgl. ebd.

3.4 Prinzipien der Lean Production

63 Vgl. Piontek, 2002, S. 48
64 Vgl. Brüggemann, 2015, S. 183 f.
3.4.1 Die sieben Arten der Verschwendung

Weitere Störfaktoren der Produktion sind Variabilität bzw. Unausgeglichenheit, welche auch als Mura bezeichnet wird. Mura entsteht vor allem aufgrund von Unregelmäßigkeiten, infolge interner Probleme. Weiterhin gilt es Inflexibilität bzw. Überbelastung zu eliminieren, diese wird als Muri bezeichnet. Muri beschreibt eine Überlastung von Mitarbeiter und Maschine, was eine schnelle Reaktion auf sich verändernde Kundennachfragen blockiert. Folglich bildet ein Grundsatz der Lean Production die Eliminierung der genannten drei Mu´s.68

3.4.2 Die fünf Prinzipien des Lean Thinkings

3.4.3 Just-in-Time

3.4.4 Kanban

3.4.5 PokaYoke

Prozess vergessen, so darf der Folgeprozess nicht beginnen. Weiterhin muss der Aufbau des Arbeitsplatzes die Selbstprüfung unterstützen.72

Folglich beziehen sich die Prinzipien der Lean Production auf die isolierte Betrachtung des Produktionsbereiches eines Unternehmens. Eine analoge Betrachtung, bzw. Ausweitung auf das ganze Unternehmens beschreibt das Lean Management. Somit ist das Lean Management als eine offene Sichtweise der Lean Production zu beschreiben und berücksichtigt das Gesamtsystem.73 Die Prinzipien des Lean Managements werden im folgenden Absatz näher erläutert.

\textbf{3.4.6 Lean Management}

Basierend auf den Grundlagen der Lean Production entwickelte sich das Lean Management. Ab dem Jahre 1979 führte das Massachusetts Institute of Technology (MIT) Untersuchungen in der internationalen Automobilindustrie durch, um verschiedene Formen der Produktion zu untersuchen. Dabei war ein deutlicher Vorsprung der japanischen Industrie ersichtlich. Im Unterschied zu anderen Industrien setzten die japanischen Unternehmen auf die Reduktion von Verschwendungen, das Einbeziehen der Mitarbeiter, sowie die Standardisierung unternehmensinterner, sowie -externer Mitarbeiter. Folglich wurden auch Zulieferer und Händler berücksichtigt und miteinbezogen. Die westlichen Industrien griffen daraufhin Dezentralisierungen, sowie Zusammenarbeiten mit externen Mitarbeitern auf. Daraus resultierte der Managementansatz des Lean Managements.74

Aus den Untersuchungen des MIT entwickelten sich schließlich die fünf Maxime des Lean Managements. Zum Einen das proaktive Denken, bei dem das zukünftige Handeln ebenfalls geplant und strukturiert wird. Zum Zweiten das sensitive Denken, hier gilt es die Umwelt zu beobachten, sowie sich ändernden Gegebenheiten anzupassen. Eine weitere Maxime des Lean Managements ist das ganzheitliche Denken, bei dem das

72 Vgl. Dickmann, 2007, S. 40 ff.
73 Vgl. Tegel, 2012, S. 12
74 Vgl. Koch, 2011, S. 132 f.
Unternehmen als Ganzes betrachtet wird. Bei dem Potenzial Gedanken gilt es alle zur Verfügung stehenden Ressourcen zu nutzen. Und schließlich das ökonomische Denken, bei dem Verschwendungen vermieden werden sollen.75 Folglich wurden die Lean Prinzipien der Produktion auf andere Unternehmensbereiche ausgeweitet.

3.5 Zusammenfassung

Um eine abschließende Übersicht über die Methoden zu erhalten, werden die Methoden und deren Hauptinhalte in Tabelle vier zusammengefasst und verglichen.

<table>
<thead>
<tr>
<th>Ausgangspunkt</th>
<th>Lean</th>
<th>KAIIZEN</th>
<th>TQM</th>
<th>Six Sigma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mitarbeiter</td>
<td>Mitarbeiter</td>
<td>Kunde und Mitarbeiter</td>
<td>Kunde</td>
<td></td>
</tr>
<tr>
<td>Verbesserungs-prozess</td>
<td>kontinuierlich</td>
<td>Kontinuierlich, in kleinen Schritten</td>
<td>Ständige Verbesserungen</td>
<td>Unternehmens-übergreifend, projektbezogen</td>
</tr>
<tr>
<td>Ansatzpunkt / Ziele</td>
<td>Verschwendungen vermeiden</td>
<td>Vermeidung der drei Mu´s</td>
<td>Verbesserung der Qualität</td>
<td>Schnittstellen/ Prozesse verbessern</td>
</tr>
<tr>
<td>Wirkrichtung des Managements</td>
<td>bottom-up (top-down)</td>
<td>bottom-up</td>
<td>top-down</td>
<td>top-down (bottom-up)</td>
</tr>
</tbody>
</table>

75 Vgl. Dahm et al., 2009, S. 57
<table>
<thead>
<tr>
<th>Verständlichkeit, Akzeptanz</th>
<th>Lean</th>
<th>KAIZEN</th>
<th>TQM</th>
<th>Six Sigma</th>
</tr>
</thead>
<tbody>
<tr>
<td>auf Wertschätzung und Vertrauen aufgebaut, einfache Verständlichkeit</td>
<td>Leicht verständlich, hohe und schnelle Akzeptanz</td>
<td>Emotionalentwicklung erforderlich, schwer verständlich</td>
<td>Schwer verständlich, ständige Unterstützung nötig, Gefahr der geringen Akzeptanz</td>
<td></td>
</tr>
</tbody>
</table>

4. Anforderungen der Methoden der Prozessoptimierung der Produktion auf indirekte Unternehmensbereiche

4.1 Abgrenzung zwischen direkten und indirekten Unternehmensbereichen

Bezüglich der Produktion eines physischen Produktes, können produzierende Unternehmen in direkte und indirekte Unternehmensbereiche untergliedert werden. 77

Direkte Unternehmensbereiche beschäftigen sich mit den „produzierenden Tätigkeiten, also Aktivitäten, die die Merkmale des jeweiligen Materials verändern.“ 78 Weiterhin umfasst der direkte Unternehmensbereich alle „logistischen Tätigkeiten, die der Handhabung, dem Transport, der Lagerung, der Bereitstellung und der Kommissionierung dienen.“ 79 Dabei sind diese Unternehmensbereiche unmittelbar an der betrieblichen Leistungserstellung beteiligt.

77 Vgl. Westkämper, 2006, S. 197
78 Erlach, 2007, S. 11
79 ebd.
80 ebd.
4.2 Anforderung der Prozessoptimierungsmethoden auf den indirekten Bereich

Die bisher benannten Methoden der Prozessoptimierung beziehen sich größten Teils auf den Prozess der Produktion und haben auch in diesem Bereich ihren Ursprung. Doch stellt sich an dieser Stelle der Arbeit die Frage, ob sich diese Methoden zudem auf andere, indirekte Unternehmensbereiche anwenden lassen. Um die benannten Methoden der Prozessoptimierung der Produktion und die mögliche Adaptierbarkeit auf andere Bereiche im Unternehmen abschließend bewerten zu können, bedarf es der Festlegung der Anforderung auf den indirekten Bereich.

5. Lean Office Studie des Fraunhofer Instituts des Jahres 2010

5.1 Lean Office

\[\text{Vgl. Fraunhofer-Gesellschaft, o.J.}\]
\[\text{Vgl. VDI, 1992, S. 4 ff.}\]
werden. Lean Administration kann sowohl im produzierendem, als auch im nicht produzierendem Bereich bzw. im Dienstleistungssektor angewendet werden.84

5.2 Grundlagen der Lean Office Studie

Diese Studie 2010 wurde im Zeitraum von Oktober 2009 bis Februar 2010 als anonymisierte Onlineumfrage durchgeführt. Dabei entstanden 352 anwendbare Ergebnisse, wobei 90\% der Ergebnisse aus Unternehmen aus dem deutschsprachigen Raum stammen. Ziel dieser Studie ist es, den Leistungsstand im administrativen Bereich aufzuzeigen und zu quantifizieren.85

84 Vgl. Wirtschaftsförderung im Ammerland, o.J., S. 4
85 Vgl. Schneider, 2011, S. 16 f.
86 Vgl. ebd. S. 18
5.3 Erscheinungsformen von Lean in indirekten Unternehmensbereichen

5.4 Potenzial der indirekten Unternehmensbereiche

![Verschwendungsanteil der Administration 2006 und 2010](image)

Abb. 7: Verwendungsanteil der Administration 2006 und 2010 (Quelle: Schneider et al., 2011, S. 28, Wittenstein et al., 2006, S.5)

88 Vgl. Wittenstein, 2006, S. 6
89 Vgl. ebd., S. 6ff
Studie in vielen indirekten Unternehmensbereichen keine Kenntnis über nachgelagerte Prozessschritte, sowie Ausmaße von Konsequenzen. Folglich gilt es ein Problembewusstsein, sowie Transparenz in den entsprechenden Prozessen zu schaffen.90 Aus der Studie geht weiterhin hervor, dass die Höhe der Verschwendung von der Unternehmensgröße abhängt. Je größer das Unternehmen, desto höher der Grad der Verschwendung. So liegt dieser bei einer Unternehmensgröße von 5000 Mitarbeitern bei rund 29,5%. Bei einer Unternehmensgröße von weniger als 50 Mitarbeitern, liegt der Verschwendungsanteil bei 22,5%. Weiterhin ist die Unternehmensposition des Teilnehmers entscheidend. So wird deutlich, je höher der Befragte in der Unternehmenshierarchie angesiedelt, desto geringer der Grad der Verschwendung in der entsprechenden Position. Der Wirtschaftszweig hingegen ist für die Höhe der Verschwendung unerheblich, an dieser Stelle gibt es nur geringe Abweichungen.91

\textbf{5.5 Motivation für eine Implementierung von Lean Initiativen in indirekten Unternehmensbereichen}

90 Vgl. Schneider, 2010, S. 10
91 Vgl. ebd., S. 28 f.
92 Vgl. ebd., S. 31 f.
teilnehmenden Unternehmen setzten die Lean Initiativen in der Standardisierung der Arbeitsumgebung an.

5.6 Erfolgsfaktoren von Lean Aktivitäten

Der entscheidendste Erfolgsfaktor von Lean Aktivitäten, sowie die nachhaltige Verankerung der Lean Prinzipien, sind die Mitarbeiter des Unternehmens. Für diese Mitarbeiter muss dazu ausreichend Freiraum für Verbesserungsinitiativen geschaffen werden. Weiterhin erfordert das Einbeziehen der Mitarbeiter die entsprechende Qualifizierung, sowie die Bereitstellung der Arbeitszeit. Folglich dient der Mitarbeiter als Mitgestalter der Lean Initiativen.

93 Vgl Schneider, 2011 S. 43f.
94 Vgl. ebd., S. 61ff.
6. Methoden der Prozessoptimierung der Produktion im indirekten Unternehmensbereich

6.1 Praxisbeispiel eines Unternehmens aus dem Klein- bzw. Mittelstand am Beispiel der L-Druck GmbH

Da das Unternehmen zwei Standorte hat, wurden zunächst diese Schnittstellen, sowie der Angebotsprozess analysiert. Dabei wurden Schnittstellenprobleme, sowie Schwierigkeiten im analysierten Prozess erkannt. Zusätzlich wurde festgestellt, dass sich Probleme des Informationsflusses direkt und negativ auf die Produktion und die entsprechenden Kosten auswirken.

Weiterhin wurden Ziele und Messgrößen definiert. Um das Marktumfeld analysieren zu können, wurde eine SWOT-Analyse am entsprechenden Markt durchgeführt.96 SWOT steht für Strengths, Weaknesses, Opportunities, sowie Threats und dient der internen und externen Situationsanalyse. Dabei ist die SWOT-Analyse eine Kombination aus einer Umweltanalyse, mit einer Ressourcenanalyse.97

Zusätzlich wurde eine Dummyauftrag entwickelt, um den Ablauf eines Auftrages für jeden Mitarbeiter transparent zu gestalten und diesen zu visualisieren. Mit Hilfe dieses Auftrages konnte die DLZ bemessen werden. Weiterhin wurden die Mitarbeiter über Methoden des Lean Managements, sowie der Lean Administration geschult.

97 Vgl. Bruhn, et al., 2012, S. 166
6.2 Six Sigma im indirekten Unternehmensbereich

100 Vgl. ebd., S. 141
Six Sigma wird bereits in indirekten Unternehmensbereichen zur Verbesserung der Qualität und der Kundenzufriedenheit angewendet. Ein Beispiel aus der Praxis eines Unternehmens, welches Six Sigma verwendet, ist Federal Express. Fed Ex ist eines der weltweit größten Express-Transportunternehmen. Aktuell transportiert das Unternehmen rund 3,6 Millionen Sendungen in 220 Länder und Regionen täglich.\(^{101}\)

\(^{101}\) Vgl. FedEx: Unternehmensinformationen, o.J.
\(^{102}\) Vgl. Töpfer, 2003, S. 139

103 Vgl. FedEx: Unsere Lösungen, o.J.
7. Bewertung

In diesem Kapitel gilt es die Bewertung der Methoden, hinsichtlich der Übertragbarkeit aus der Produktion in andere, indirekte Unternehmensbereiche, durchzuführen. Hierzu werden die sieben Verschwendungsarten, die Lean Prinzipien, sowie die Inhalte von Six Sigma Projekten auf indirekte Unternehmensbereiche übertragen und abschließend bewertet. Schließlich soll mit Hilfe dieser Bewertung die Frage beantwortet werden, ob sich die Methoden der Prozessoptimierung auf indirekte Unternehmensbereiche übertragen lassen.

Gemäß der bereits beschriebenen Methoden der Prozessoptimierung lässt sich sagen, dass alle genannten Methoden das Ziel der Vermeidung von Verschwendungen haben. Folglich soll die Qualität der Produkte verbessert werden.

7.1 Übertragbarkeit der sieben Verschwendungsarten auf indirekte Unternehmensbereiche

<table>
<thead>
<tr>
<th>Verschwendungsart</th>
<th>Produktion</th>
<th>Indirekter Unternehmensbereich</th>
</tr>
</thead>
<tbody>
<tr>
<td>Überproduktion</td>
<td>von Produkten, welche keine Kundenauftrag entstammen.</td>
<td>von Informationen oder Formularen, welche keinen Ausblick auf Durchführung haben.</td>
</tr>
<tr>
<td>Bestände</td>
<td>welche durch Überproduktion entstehen und zu Kapitalbindungskosten führen.</td>
<td>an gesammelten Daten, welche keine Relevanz aufweisen.</td>
</tr>
<tr>
<td>Fehler/ Nacharbeit</td>
<td>führen zur Erhöhung der Produktionskosten, wobei der Wert den der Kunde bereit ist zu zahlen bestehen bleibt.</td>
<td>durch nicht vollständig bearbeitete Formulare.</td>
</tr>
<tr>
<td>Bewegung</td>
<td>durch nicht ergonomische Gestaltung des Arbeitsplatzes, Verschmutzung oder schlechte Organisation der Werkzeuge.</td>
<td>der Mitarbeiter um Materialien zu erreichen.</td>
</tr>
<tr>
<td>Herstellung</td>
<td>über instabile Prozesse führen zu Schleifen.</td>
<td>durch ungenutzte IT-technische Möglichkeiten.</td>
</tr>
<tr>
<td>Warten</td>
<td>auf Material binden Kapazitäten.</td>
<td>auf Vorgänge erhöht die Durchlaufzeit.</td>
</tr>
<tr>
<td>Transport</td>
<td>führt zu Kosten, ohne den Wert für den Kunden zu steigern.</td>
<td>von Materialien von einem Ort zum anderen.</td>
</tr>
</tbody>
</table>

Tab. 5: Verschwendungsarten der Produktion und der Administration (Quelle: Schneider et al., 2011, S. 27)
Folglich lassen sich die sieben Verschwendungsarten sowohl auf direkte, als auch auf indirekte Unternehmensbereiche anwenden. Grundsätzlich lassen sich somit die Methoden der Prozessoptimierung, welche diese Arten der Verschwendungen minimieren, ebenfalls auf andere Unternehmensbereiche anwenden.

7.2 Übertragbarkeit der fünf Lean Prinzipien auf indirekte Unternehmensbereiche

Im Folgenden werden die fünf Prinzipien der Lean Production auf indirekte Unternehmensbereiche übertragen und bewertet. Dies stellt die folglich abgebildete Tabelle sechs dar. Dabei werden die entsprechenden Bedeutungen für direkte und indirekte Unternehmensbereiche aufgezeigt.

<table>
<thead>
<tr>
<th>Lean Prinzip</th>
<th>Bedeutung im direkten Unternehmensbereich</th>
<th>Bedeutung im indirekten Unternehmensbereich</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wert</td>
<td>Klar definierter Prozess, hohe Transparenz des Prozesses, Kundenorientiert</td>
<td>Wenig transparente Prozesse, Kundenorientiert</td>
</tr>
<tr>
<td>Wertschöpfungsstrom</td>
<td>Material und Information</td>
<td>Information und Wissen</td>
</tr>
<tr>
<td>Fluss</td>
<td>Wiederholungen führen zu Verschwendungen, Wiederholungen vermeiden, kontinuierliche Flussorientierung</td>
<td>Geplante Wiederholungen</td>
</tr>
<tr>
<td>Pull</td>
<td>Taktzeiten, Kundenorientierung</td>
<td>Unternehmensziele als Orientierung, termingerechtes Arbeiten, Kundenorientierung</td>
</tr>
<tr>
<td>Perfektion</td>
<td>Fehlerfreie Prozesse und Produkte</td>
<td>Fehlerfreie Prozesse</td>
</tr>
</tbody>
</table>

Tab. 6: Die Bedeutung der Lean Prinzipien im direkten und indirekten Unternehmensbereich (Quelle: Fehr, 2010, S.4)

Folglich lassen sich zudem die fünf Lean Prinzipien des direkten Unternehmensbereiches auf den indirekten Unternehmensbereich übertragen. Die Prinzipien der Lean Production lassen sich somit im indirekten Unternehmensbereich analog anwenden. Wie bereits erwähnt gibt es bereits Modelle bzw. Prinzipien der Lean Production, wie das Lean Management oder das Lean Office bzw. Lean Administration, welche sich in anderen Unternehmensbereichen anwenden lassen. Lean Prinzipien lassen sich somit auch im indirekten Unternehmensbereich implementieren und verwenden.
Übertragbarkeit von Six Sigma Projekten auf indirekte Unternehmensbereiche

Die Tabelle sieben verdeutlicht die Inhalte von Six Sigma Projekten. Diese stellt die Bedeutung Six Sigmas für direkte und indirekte Unternehmensbereiche dar.

<table>
<thead>
<tr>
<th>Inhalte Six Sigmas</th>
<th>Direkter Unternehmensbereich</th>
<th>Indirekter Unternehmensbereich</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ziele</td>
<td>Standardisierung von Teilen und Materialien, Verkürzung der DLZ der Produktion, Verringerung von Nacharbeiten, geringe Anzahl von Defekten</td>
<td>Standardisierung von Prozessen, Verkürzung der DLZ der Administration, Verringerung von Nachfragen, geringe Anzahl von Fehlern</td>
</tr>
<tr>
<td>Fehler</td>
<td>Durch Kunden definiert, alles was zur Kundenunzufriedenheit führt</td>
<td>Durch Kunden definiert, alles was zur Kundenunzufriedenheit führt</td>
</tr>
<tr>
<td>Auswirkungen von Fehlern</td>
<td>Unzufriedenheit von Kunden, Abwanderung von Kunden</td>
<td>Negative Mund-zu-Mund Kommunikation, weniger neue Kunden</td>
</tr>
<tr>
<td>Qualität</td>
<td>Vom Prozess und den Materialien abhängig</td>
<td>Von den im Prozess integrierten Menschen abhängig</td>
</tr>
<tr>
<td>Verbesserung</td>
<td>Mit DMAIC und den entsprechenden Tools</td>
<td>Mit DMAIC und den entsprechenden Tools</td>
</tr>
<tr>
<td>Entwicklung</td>
<td>Mit DfSS und den entsprechenden Tools</td>
<td>Mit DfSS und den entsprechenden Tools</td>
</tr>
</tbody>
</table>

8. Schlussbetrachtung

II. Abbildungsverzeichnis

Abb. 1: Prozessstruktur.. 6
Abb. 2: Ziele der Produktion... 9
Abb. 3: Rollenverteilung innerhalb eines Six Sigma Projektes.................. 14
Abb. 4: Phasen des DMAIC und die Fragestellung der entsprechenden Phase 18
Abb. 5: Die vier zentralen Anforderungen im Wettbewerb 22
Abb. 6: KAIZEN Schirm .. 24
Abb. 7: Verwendungsanteil der Administration 2006 und 2010 42
III. Tabellenverzeichnis

Tab. 1: Übersicht über Prozessdefinitionen.. 5
Tab. 2: Verhältnis von Fehlern zur Ausbeute und zum Sigma Wert bei einer Mio. Vorgänge13
Tab. 3: Six Sigma Toolbox ..19
Tab. 4: Methodenvergleich...35
Tab. 5: Verschwendungsarten der Produktion und der Administration ...51
Tab. 6: Die Bedeutung der Lean Prinzipien im direkten und indirekten Unternehmensbereich..53
Tab. 7: Bedeutung Six Sigmas im direkten und indirekten Unternehmensbereich.................................55
IV. Literaturverzeichnis

Bücher

Arndt, Holger: Logistikmanagement, Studienwissen kompakt, Wiesbaden (Springer), 2015

Becker, Jörg; Kugeler, Martin; Rosemann, Michael (Hrsg.): Prozessmanagement, Ein Leitfaden zur prozessorientierten Organisationsgestaltung, Berlin (Springer), 2008

Beckmann, Holger: Supply Chain Management: Grundlagen, Konzepte und Strategien, Berlin (Springer) 2004

Bergbauer, Axel K.; Kleemann, Bernhard; Raake, Dieter: Six Sigma in der Praxis, Das Programm für nachhaltige Prozessverbesserungen und Ertragssteigerungen, Renningen (Expert Verlag), 2004

Bruhn, Manfred; Meffert, Heribert: Handbuch Dienstleistungsmarketing, Wiesbaden (Gabler), 2012

Brüggemann, Holger; Bremer, P.: Grundlagen Qualitätsmanagement, Von den Werkzeugen über Methoden zum TQM, Wiesbaden (Springer Fachmedien), 2015

Dahm, Markus H.; Haindl, Christoph: Lean Management und Six Sigma: Qualität und Wirtschaftlichkeit in der Wettbewerbsstrategie, Berlin (Schmidt Erich), 2009

Dickmann, Philipp: Schlanker Materialfluss mit Lean Production, Kanban und Innovationen, Berlin (Springer), 2007

Eschner, Christin: Betriebswirtschaftliche Aspekte bei der Geschäftsprozessoptimierung mit Hilfe moderner Informationstechnologie, Hamburg (Diplomica), 2006

Erlach, Klaus: Wertstromdesign, Der Weg zur schlanken Fabrik, Berlin (Springer), 2010

Gadatsch, Andreas: Geschäftsprozesse analysieren und optimieren, Wiesbaden (Springer), 2015

Gamweger, Jürgen; et al.: Design for Six Sigma Kundenorientierte Produkte und Prozesse fehlerfrei entwickeln, München (Carl Hanser), 2009

Grundlach, C., Jochem, R. Praxishandbuch Six Sigma: Fehler vermeiden, Prozesse verbessern, Kosten senken, Düsseldorf (Symposion), 2008

Hagen, Nils; et al.: Prozessmanagement in der Wertschöpfungskette, Bern (Haupt), 2006

Hammer, Michael: Das prozessorientierte Unternehmen, Die Arbeitswelt nach dem Reengineering, Frankfurt (Campus), 1997

Magnusson, K.; Koslid, D.; Bergmann, B.: Six Sigma umsetzen – Die neue Qualitätsstrategie für Unternehmen, München (Hanser), 2004

Masaaki, Imai: KAIZEN - der Schlüssel zum Erfolg der Japaner im Wettbewerb, München (Langen), 1992

März, Stefan: Überblick über die DIN EN ISO 9001:2000, München (GRIN), 2005

Piontek, Jochem: Produktion, Stuttgart (Kohlhammer), 2002
Reznicek, Leonhard: Lean Management für die öffentliche Verwaltung? Eine Analyse anhand der aktuellen Berliner Verwaltungsreform, Berlin (Berlin Verlag), 1996

Saatkamp, Jörg: Business Process Reengineering von Marketingprozessen, Theoretischer Bezugsrahmen und explorative empirische Untersuchung, Nürnberg (GIM), 2002

Schmidt, Günther: Prozessmanagement, Modelle und Methoden, Berlin (Springer), 2012

Schneider, Ralph; et al.: Lean Office 2010, Erfolgsfaktoren der Lean Implementierung in indirekte Unternehmensbereiche, Stuttgart (Fraunhofer), 2011

Schwalbach, Joachim: Produktionstheorie, München (Vahlen), 2014

Tegel, A.: Analyse und Optimierung der Produktionsglättung für Mehrprodukt-Fließlinien, Wiesbaden (Gabler), 2012

Töpfer, Armin: Six Sigma, Konzeption und Erfolgsbeispiele, Berlin (Springer), 2003

Töpfer, Armin: Lean Management und Six Sigma: Die wirkungsvolle Kombination von zwei Konzepten für schnelle Prozesse und fehlerfreie Qualität, Berlin (Springer), 2009

Verein Deutscher Ingenieure: Lean Office, Neue Ansätze zur besseren Produktivität im Büro, Düsseldorf (VDI Verlag), 1992

Zellner, Gregor: Leistungsprozesse im Kundenbeziehungsmanagement – Identifizierung und Modellierung für ausgewählte Kundentypen, St. Gallen (St. Gallen), 2003

Elektronische Quellen

Zeitschriften

V. Erklärung

V.I Erklärung – Einverständnis

Ich erkläre mich damit

 o einverstanden,

 o nicht einverstanden

dass ein Exemplar meiner Bachelor-Thesis in die Bibliothek des Fachbereichs aufgenommen wird; Rechte Dritter werden dadurch nicht verletzt. (Wenn das Unternehmen Bedenken gegen die Veröffentlichung der Bachelor-Thesis hat, ist eine schriftliche Begründung der Firma erforderlich).

Hamburg, den

(Unterschrift der/des Studierenden)