Energy Disaggregation using Deep Neural Networks on Household Appliances

URL
Dokumentart: Bachelor Thesis
Institut: Department Informations- und Elektrotechnik
Sprache: Deutsch
Erstellungsjahr: 2017
Publikationsdatum:
SWD-Schlagwörter: Energie
Freie Schlagwörter (Englisch): Energy Disaggregation, Deep Neural Networks
DDC-Sachgruppe: Elektrotechnik, Elektronik

Kurzfassung auf Deutsch:

-

Kurzfassung auf Englisch:

Diverse deep neural network (DNN) approaches have displayed high accuracy in the fields of pattern recognition and image classification but their potential has not been explored in the field of energy disaggregation. The aim of this thesis is to investigate the accuracy with which two DNN approaches classify active household appliances for energy disaggregation and compare the performance of DNN with other classification methods used in the field. The first approach used is the Multi-Layer Perceptron (MLP) approach which is one of the simplest DNN methods and it displays baseline accuracy of any DNN. The second approach is Convolutional Neural Networks (CNN), which is more advanced and improves upon the baseline accuracy. Both approaches are tested with various optimizers, activation functions and loss functions as performance measures. Open source data (REDD dataset) is used to train and test the neural networks. The dataset consists of 6 houses which are used for training and the testing 3 labelled appliances common among the houses (dishwasher, lighting and washer dryer) with the addition of unknown appliance data. When presented with real world data which included unknown devices in addition to the three labelled devices, CNN achieved an accuracy of 90.00% and MLP achieved an accuracy of 77.14%. When the experiment was repeated with data including only the known devices, CNN achieved an accuracy of 95.83% and MLP achieved 80.37%.

Hinweis zum Urheberrecht

Für Dokumente, die in elektronischer Form über Datenenetze angeboten werden, gilt uneingeschränkt das Urheberrechtsgesetz (UrhG). Insbesondere gilt:

Einzelne Vervielfältigungen, z.B. Kopien und Ausdrucke, dürfen nur zum privaten und sonstigen eigenen Gebrauch angefertigt werden (Paragraph 53 Urheberrecht). Die Herstellung und Verbreitung von weiteren Reproduktionen ist nur mit ausdrücklicher Genehmigung des Urhebers gestattet.

Der Benutzer ist für die Einhaltung der Rechtsvorschriften selbst verantwortlich und kann bei Mißbrauch haftbar gemacht werden.