Erkennung von täglichen Verbrauchsmustern aus Energieverbrauchsdaten häuslicher Fahrzeugladestationen zur Bestimmung der Wirkungsweise dynamischer Preisberechnung

URL
Dokumentart: Bachelor Thesis
Institut: Department Informatik
Sprache: Deutsch
Erstellungsjahr: 2018
Publikationsdatum:
SWD-Schlagwörter: Energieverbrauch
Freie Schlagwörter (Englisch): Elektrische Fahrzeuge, Häusliche Ladestation, Clustering, Data Mining, CRISP-DM, Unüberwachtes Lernen, Klassifizierung, Verbrauchsmuster
DDC-Sachgruppe: Informatik

Kurzfassung auf Deutsch:

Aktuell beruht der Treibstoff für den Transportsektor größtenteils auf fossilen Brennstoffen und ist deshalb für einen signifikanten Anteil der Treibhausgase verantwortlich. Sowohl rein elektrische - als auch teilelektrische Fahrzeuge (Hybridfahrzeuge) können diese Treibhausgase drastisch reduzieren und werden in Zukunft einen hohen Stellenwert für die Gesellschaft einnehmen. Elektrische Fahrzeuge können im Gegensatz zu konventionellen Fahrzeugen auch in häuslichen Umgebungen durch entsprechende Ladestationen aufgeladen werden. Aus einem hohen Durchdringungsniveau durch elektrische Fahrzeuge in Verbindung mit einem unkontrollierten Konsumverhalten resultiert ein starker Anstieg des Spitzenlastbedarfes. Dieser kann resultierend durch einen Ausbau der Stromversorgung zu höheren Strompreisen oder Ausfällen in der Energieversorgung führen. Ziel dieser Arbeit ist es herauszufinden, ob eine dynamische Preisberechnung einen positiven Einfluss auf das Ladeverhalten der Autofahrer hat. Hierfür werden anfallende Daten gesammelt und anschließend durch Data Mining verarbeitet und analysiert. Durch die Erkennung von Verbrauchsmustern auf Basis täglicher Zeitreihen kann der Einfluss einer dynamischen Preisberechnung auf das Nutzungsverhalten überprüft werden. Diese Arbeit kommt zu dem Schluss, dass Verbraucher, die an einer dynamischen Preisberechnung partizipieren, deutlich geringere relative Häufigkeiten an Verbrauchsmustern zu Spitzenlastzeiten aufweisen. Es ist deshalb von einem positiven Einfluss durch dynamische Preisberechnung auf das Nutzungsverhalten auszugehen.

Kurzfassung auf Englisch:

Currently the fuel for the transport sector is largely based on fossil fuels and therefore accounts for a significant part of greenhouse emissions. Both pure electric and partially electric vehicles (hybrid vehicles) can drastically reduce these greenhouse gases and will have a high value for the society in the future. In contrast to conventional vehicles, electric vehicles can also be charged by charging stations in residential environments. A high level of penetration by electric vehicles combined with uncontrolled consumption behavior results in a sharp increase in the peak load demand. This can result in a buildout in the power supply at higher current prices or could create shortages of electric power. The aim of this thesis is to determine, whether dynamic pricing has a positive influence on the charging behavior of drivers. For this purpose, accumulated data are collected and then processed and analysed by data mining. Through the recognition of consumption patterns on the basis of daily time series, the influence of dynamic pricing on the consumption behaviour can be examined. This work concludes that consumers who participate in a dynamic pricing trial have significantly lower relative frequencies of consumption patterns at peak load times. Therefore a positive influence of dynamic pricing on the consumption behaviour must be assumed.

Hinweis zum Urheberrecht

Für Dokumente, die in elektronischer Form über Datenenetze angeboten werden, gilt uneingeschränkt das Urheberrechtsgesetz (UrhG). Insbesondere gilt:

Einzelne Vervielfältigungen, z.B. Kopien und Ausdrucke, dürfen nur zum privaten und sonstigen eigenen Gebrauch angefertigt werden (Paragraph 53 Urheberrecht). Die Herstellung und Verbreitung von weiteren Reproduktionen ist nur mit ausdrücklicher Genehmigung des Urhebers gestattet.

Der Benutzer ist für die Einhaltung der Rechtsvorschriften selbst verantwortlich und kann bei Mißbrauch haftbar gemacht werden.