
1

Nikolay Kirilov Stoitsov

Configuration, Control and Monitoring of a FlexRay Cluster via TCP/IP

Bachelor thesis based on the study regulations
for the Bachelor of Engineering degree programme
Information Engineering
at the Department of Information and Electrical Engineering
of the Faculty of Engineering and Computer Science
of the Hamburg University of Applied Sciences

Supervising examiner : Prof. Dr. Lutz Leutelt
Second Examiner : Prof. Dr. Ulrich Sauvagerd

Day of delivery 21. December 2017

2

Nikolay Kirilov Stoitsov

Title of Bachelor Thesis
Configuration, Control and Monitoring of a FlexRay Cluster via TCP/IP

Keywords
Automotive network, FlexRay, Ethernet, TCP/IP, lwip, MicroZed, PC client, server node,
software application

Abstract
This bachelor thesis describes the development and implementation design of a software
application, used to perform initial configuration, control and monitoring tasks of a FlexRay
node. The communication is realized by hard-wired cables and a network switch and is
based on the TCP/IP protocol.

Nikolay Kirilov Stoitsov

Thema der Bachelorthesis
Konfigurierung, Kontrolle und Überwachung von einem Cluster via TCP/IP

Stichworte
Automobil Netzwerk, FlexRay, Ethernet, TCP/IP, lwip, MicroZed, PC Klient, Server-Knoten,
Softwareanwendung

Kurzzusammenfassung
Diese Bachelorarbeit beschreibt die Entwicklung und Implementierung einer
Softwareanwendung, die für die Erstkonfiguration, Steuerung und Überwachung eines
FlexRay-Knotens verwendet wird. Die Kommunikation erfolgt über festverdrahtete Kabel
und einen Netzwerk-Switch und basiert auf dem TCP/IP-Protokoll.

3

Table of contents

List of Figures .. 5

List of Tables ... 5

1. Introduction .. 6

2. Fundamentals ... 8

2.1 Introduction to Bus Systems .. 8

2.2 OSI Model .. 9

2.3 FlexRay Protocol.. 10

2.3.1 Communication Controller ... 10

2.3.2 FlexRay Communication .. 14

2.3.3 E-Ray .. 19

2.4 Communication Protocols .. 28

2.4.1 Ethernet Protocol... 28

2.4.2 TCP/IP Protocol Suite ... 30

2.4.3 LwIP Protocol/Raw API ... 32

2.5 Hardware Platform MicroZed Board ... 34

3. Requirements Analysis .. 36

3.1 General Requirements .. 36

3.2 Data Objects ... 37

3.3 Software Features and Structure .. 38

3.4 Evaluation .. 39

4. Concept ... 41

4.1 Configuration Data Objects ... 41

4.1.1 Files Content ... 41

4.1.2 Files Structure ... 44

4.2 Communication Data Objects .. 50

4.3 Software Design ... 53

4.3.1 Graphical User Interface ... 53

4.3.2 Operation Control Flow .. 54

4.3.3 Programming Model ... 56

5. Implementation .. 58

5.1 Client Application .. 58

5.2 Server Application ... 62

6. Evaluation ... 63

7. Conclusion... 65

4

Bibliography... 66

Appendix A .. 68

Appendix B .. 73

Application User Manual ... 87

5

List of Figures

Fig 1.1. Example of services provided in nowadays vehicle ... 6

Fig 1.2. TCP/IP connection between a PC client and a FlexRay cluster via a network switch 7

Fig 2.1. System bus [1] .. 8
Fig 2.2. Seven layer OSI model [4] ... 9

Fig 2.3. Logical interfaces in a FlexRay node [7](p. 26) ... 11
Fig 2.4. Conceptual architecture of the Controlling Host Interface [7] (Figure 9-1) 11
Fig 2.5. Overall state diagram of a FlexRay communication controller [7] (p. 37) 12
Fig 2.6. Timing hierarchy within the communication cycle ([7] p. 100) .. 14
Fig 2.7. (a) Communication cycle with no transmission in the dynamic segment; (b)

Communication cycle with several transmissions in the dynamic segment [10] (Figure 5.5) 15

Fig 2.8. FlexRay frame format [7](p. 90) .. 17

Fig 2.9. E-Ray block diagram [8](p. 15) .. 20
Fig 2.10. Configuration example of message buffers in the Message RAM [8](p. 141) 21
Fig 2.11. Access to Transient Buffer RAMs [8] (Figure 14) ... 22
Fig 2.12. Host access to Message RAM [8](Figure 9)... 23
Fig 2.13. Assignment of message buffers [8] (Figure 1) ... 24

Fig 2.14. Possible FIFO states [8] (Figure 8) ... 25
Fig 2.15. Transmit process via the Input Buffer [8] (Figure 10) ... 26

Fig 2.16. Receive process via the Output Buffer [8] (Figure 12) .. 27
Fig 2.17. The major Ethernet layers defined by IEEE [12] (p.13) ... 28

Fig 2.18. DIX frame vs. IEEE 802.3 frame [12] (p. 41) .. 29

Fig 2.19. OSI Model vs. TCP/IP Model [6](p. 129) .. 31

Fig 2.20. MicroZed block diagram [22] (Figure 1) .. 34
Fig 2.21. Boot Mode Jumper Settings with Cascaded JTAG Chain [22] (Figure 8) 35

Fig 2.22. 10/100/1000 Ethernet interface [22] (Figure 5) .. 35

Fig 4.1. Possible transition routes to config state ... 54
Fig 4.2. Configuration control flow (a) in the hands of the user; (b) embedded in the code 55

Fig 4.3. Model-View-Controller design pattern ... 56

Fig 5.1. Class diagram for the client application, based on the MVC model 58

Fig 5.2. Activity diagram of the configuration process ... 60
Fig 5.3. Activity diagram of the monitoring process ... 61

Fig 7.1 Monitoring of data packets via WireShark .. 64

Fig A.1. Protocol operation control context [7](p. 32) .. 69
Fig A.2. Header section of a message buffer in the Header Partition of the message RAM [8] 71
Fig A.3. Data partition in the message RAM [8] (p. 145) ... 73

List of Tables

Table 2-1 CHI commands summary ([7] p. 33) .. 13
Table 2-2 Definition of cycle set [8] (Table 9) .. 18

Table 5-1 Number of configuration JSON files - advantages and disadvantages 44

Table A-1 Parameter prefixes [7] (p. 18) ... 68

6

1. Introduction

Automobiles have long become much more than just a mean of transporting people. Each vehicle
nowadays represents a system in its own. Regardless of the brand or country of manufacture, each
car is equipped with a variety of Electronic Component Units (ECU), which communicate
constantly as long as the engine is on and some of them continue even after it goes off. The role of
those ECUs are to support the driving control by providing security and defence mechanisms in
critical situations, as well as insuring comfort for the driver and his fellows (Fig 1.1).

Nowadays, the average modern automobiles are supported by systems that are reliable for:

¶ Breaks - antilock braking system (ABS), auto braking system, power brake booster

¶ Electronic Stability Program (ESP)

¶ Parking ς cameras, distance sensors

¶ Lights ς light, rotary sensors

¶ Dashboard, navigation systems, infotainment, etc.

¶ Airbags, windows, mirrors, seats, heat control, etc.

Fig 1.1 Example of services provided in nowadays vehicle

The growth of demand for more extras provided in the car requires the invention of more and
more complex system protocols, able to support high-rate but in the same time reliable
communication between increasing number of ECUs over a shared communication medium.
Parallel with that rises the need of implementation of external stand-alone software applications
that provide monitoring and controlling functionalities and testing the capabilities of the system.
As a part of the Urban Mobility X-by-Wire(less) project, introduced by the HAW Hamburg [1], the
current project is focused on the development of such software application that represents a
platform for establishing a connection and providing a bidirectional communication between a
computer and a microcontroller device. The microcontroller is assumed to be a part of a system,
exchanging data according to the FlexRay communication protocol [2] standards.

7

FlexRay is one of the latest communication standards used in automotive applications. It is popular
with its increased bandwidth (compared with its predecessors) and is used in applications that
require a real-time communication, combining both event and time triggered Media Access
Control (MAC) mechanisms for better use case adaptability. FlexRay communication provides high
fault-tolerance implemented in dual channelling (the two channels are referred as Channel A and
Channel B). Every ECU, part of a FlexRay system, is referred as a node and can be connected to
only one or both channels, depending on its purpose requirements. All nodes (up to 64) connected
to the same wire (bus) form a FlexRay cluster.

The current project aims to design and implement a software application that enables sending and
receiving data to and from FlexRay nodes, based on the TCP/IP communication standard. The
hardware connection between the computer and the nodes of a FlexRay cluster is realized with
the help of cables and a network switch [3] (Fig 1.2). The switch is responsible for the correct
addressing of data packets to the connected nodes without further hardware interventions. To
enable wider range of ECU types with different architecture and manufacturer, the structure of
the communication data objects has to be determined and standardized according to the project
requirements.

Fig 1.2 TCP/IP connection between a PC client and a FlexRay cluster via a network switch

The motivation for starting this project is provoked by the necessity of having a single software

application that besides performing initial configuration, control and monitoring tasks represents

an evaluation tool for the microcontroller device capabilities and can be used as a benchmark for

testing the correct operation of an automotive network.

8

2. Fundamentals

This chapter represents a technical overview of the fundamental, for this project, topics. The
discussions are based on a various scientific and public sources that can be found online or in the
library.

2.1 Introduction to Bus Systems

In computing science a system bus is defined as a pathway that is used for data transfer between
the Central Processing Unit (CPU), the main memory and other peripheral components [4]. It is
usually composed of cables and connecting units and is defined regarding the hardware system
specifications and data exchange standards, established by the communication protocol that is
being used in the system. There are two types of system bus implementation ς parallel and serial.
The parallel bus (Fig 2.1 (a)) is advantageous in terms of speed but it requires more hardware as
for every group of data there is a separate line. By the serial bus implementation (Fig 2.1 (b)) there
is only one line connecting the components but the data transmission time is increased.

(a) Parallel bus (b) Serial bus

Fig 2.1 System bus [4]

The bus system represents a (usually) standardized interface that links the hardware and software
interfaces of an electronic control unit (ECU) and provides mechanisms to establish and control
communication between the internal components of a system or between different systems. It
refers to the mechanical, electrical, functional and logical aspects of data transfer that includes
communication over different mediums, linked in various network topologies. Nowadays bus
systems are used in almost every industry field and tempt to develop higher and more reliable
data rates for faster and secure communication.

The use of bus systems for the automotive industry dates back to the early 80s when automobiles
were first equipped with ECUs [5]. Since then the development of automotive electronics has
rapidly increased, leading to the necessity of introducing different communication bus systems to
serve various specific technical and economical requirements. Some of the most popular
communication standards for the automotive technologies are: Controller Area Network (CAN),
Local Interconnect Network (LIN), Media Oriented System Transport (MOST) and FlexRay.

Bus systems can combine one or more network topologies and provide various interaction
structures, like: client-server, master-slave, producer-consumer, multi-master, demand-based,
time triggered and so on. Communication in a Client-Server communication system is

9

characterized by a strict differentiation between the service requester (Client) and the service
provider (Server) [5].

Typically, bus systems are related to the physical and data link aspects of a communication process.
Sometimes, depending on implementation, it can involve some application specific aspects. That
means that it can be looked as an independent three-layered structure [6] that is best explained
by the standardized 7-layered OSI model.

2.2 OSI Model

The Open Systems Interconnection (OSI) model is a networking standard, defined by the
International Standards Organization (ISO) in 1984 [7], [8], [9]. It is designed to represent the
networking framework as a hierarchical structure, separated in seven layers, depending on their
relation with different software and hardware aspects of the communication process. The lower
layers, from 1 to 4, are responsible to physically move the data around (Fig 2.2). They are also
called data-flow layers. The upper layers, from 5 to 7, are related to the applications processing
the data. Every data segment that is received or transmitted over the network passes through all 7
layers in opposite directions. When transmitted, data goes from the 7th layer down to the 1st,
where it is sent as physical impulses over the network medium. When received, those impulses
are processed from the 1st up to the 7th layer, where they are represented in the desired by the
application or end-user format.

Fig 2.2 Seven layer OSI model [7]

Every layer from 2 to 6 upgrades the preceding one and is a base for the next layer. To get a better
understanding of the seven layer OSI networking model, each of its layers is discussed in details:

1. Physical layer ς this layer refers to the hardware medium that provides the electrical and
mechanical interface, such as wires, connectors, hubs, repeaters, etc. Its basic functions
are related to handling the electrical voltage impulses, light or radio signals that represent
the data bits on a physical level.

2. Data Link layer ς the second OSI layer is responsible for linking the data from the physical
layer into block units (packets, frames) and to perform flow and error control over the
transmission links. It can be divided into two sub-layers ς Media Access Control (MAC) and
Logical Link Control (LLC).

10

3. Network layer ς this layer establishes the route between transmitter and receiver. It is
responsible for routing and forwarding the data, addressing (IP), error handling, congestion
control and packet sequencing.

4. Transport layer ς as the name supposes, this layer is responsible for the correct
transportation of data over the network. It performs error checking and recovery and in
cases of transmission error may request retransmission of packets. To this layer belong the
Transmission Control Protocol (TCP) and User Datagram Protocol (UDP).

5. Session layer ς the lowest application layer controls the start and end of transmission and
provides mechanisms for managing the process of data exchange on the network. The
three session categories are: simplex, half-duplex and full-duplex.

6. Presentation layer ς at this layer data is encoded/decoded from raw data to the desired by
the application format and vice versa. It is also called the syntax layer.

7. Application layer ς the top OSI layer provides network services for the application software.
The network services provide and request data to and from the Presentation layer. Typical
Application layer examples are HTTP, FTP, Telnet, etc.

2.3 FlexRay Protocol

The FlexRay protocol is an automotive standard defined by the FlexRay consortium in 2005 that
combines the event-driven paradigm of the Controller Area Network (CAN) bus and the time-
driven design of the Time-Triggered Protocol (TTP) in one protocol [10]. It is intended for
applications with high requirements regarding determinism, reliability, synchronisation and
bandwidth. The FlexRay system consists of at least two interconnected electronic control units
(ECU) running the FlexRay protocol. Every ECU in a FlexRay system is referred as a node. Up to 64
nodes, connected with one or two lines form a cluster. The network structure in a cluster can be
based on bus topology, star topology or a mixture of both.

FlexRay provides services related to the lowest two layers of the OSI model, which is a subject of
the following two sub-sections, starting with the Physical Layer 1 (2.3.1 Communication Controller)
and continuing with the Data Link Layer 2 (2.3.2 FlexRay Communication). In the third sub-section
of this chapter (2.3.3 E-Ray) is introduced the developed by Bosch E-Ray [11], as a version of an IP
module running the FlexRay protocol.

2.3.1 Communication Controller

Every FlexRay device (node) has a protocol engine component that implements the FlexRay
protocol and an engine control unit, where the application software is running [10]. The latter is
referred as a Host and it provides control and configuration data to the protocol engine, referred
as Communication Controller (CC). The CC responds with status conditions and the received on
the bus data (Fig 2.3). The Host also controls the operating modes of the bus driver and reads
status and error conditions.

11

Fig 2.3 Logical interfaces in a FlexRay node ([10] p. 26)

The Host is separated from the FlexRay protocol engine via the Controlling Host Interface (CHI)
[10]. The CHI provides means for the Host to operate the Protocol Operation Control (POC) in a
structured manner, transparently to the operation of the protocol. It is product specific and its
implementation depends on tƘŜ ƴƻŘŜΩǎ ŀǊŎƘƛǘŜŎǘǳǊŜΦ Lƴ ƎŜƴŜǊŀƭΣ ǘƘŜ /IL ǇǊƻǾƛŘŜǎ ǘǿƻ ƳŀƧƻǊ
interface blocks ς protocol data interface (PDI) and message data interface (MDI). The PDI
manages the configuration, control and status data of the protocol, while the MDI manages the
message buffers and the configuration, control and status data related to them (Fig 2.4).

Fig 2.4 Conceptual architecture of the Controlling Host Interface ([10] Figure 9-1)

12

The purpose of the POC is to apply Host commands, invoke and react to model changes of the core
protocol mechanisms1 and provide the Host with protocol status information in a synchronized
manner. For a more detailed view of the relationship between CHI, POC and the core protocol
mechanisms refer to Fig A.1 in Appendix A.

The CC has to be in an established POC state to enable the execution of the POC processes [10].
The CC enters POC Operational2 power state once sufficient power supply is present or after reset.
This state determines the operation of the POC. Its structure is based on the finite state machines
(FSM) definition [12], where state transitions are internally or externally provoked by a certain
control condition and entering a state is enabled only from other state that is logically connected
to it. A high-level internal structure of the Operational state with all possible state transitions is
shown on Fig 2.5.

Fig 2.5 Overall state diagram of a FlexRay communication controller ([10] p. 37)

State transitions are typically caused by commands sent to the CC from the Host via the CHI or

they are a consequence of completing a task or error condition, occurred by the protocol engine,

product-specific built-in self test or sanity checks. The Host is allowed to apply a CHI command at

any time but some commands are enabled only when the CC is in a certain state. Applying a

command when the controller is in a non legal for that command state has no effect on the

operation of the CC, however, the command vector in the specified register is reset and an error

flag is raised.

1
 The primary FlexRay protocol principles are realized in four core mechanisms ï 1) coding and decoding; 2) media

access protocol; 3) frame and symbol processing; 4) clock synchronisation [10]
2
 In FlexRay signature standards state names are always preceded by POC abbreviation. For sake of simplicity it will be

skipped in this text. POC states are written in green italic and CHI commands in CAPITALS.
3
 For distinguishing between different types of parameters signature refer to Table A-1 in Appendix A

13

The Host may write configuration data to the CC registers only when the CC is in config state and

its registers are locked for access. Transition to config state is only possible when the CC is in

default config or ready state. The default config state is entered immediately on power up or after

hardware reset. In this case the configuration and message buffers data is automatically cleared.

However, when default config state is entered from halt state, clearing the message RAM has to

be explicitly requested by the Host via applying the CLEAR_RAMS command. Both default config

and config states are entered after applying command CONFIG when the CC is in legal for that

transition state. Applying a command triggers a reaction in the POC immediately or at the end of

the current cycle. All relevant FlexRay CHI commands and their allowed invocation states are

shown in Table 2-1.

CHI command Where processed (POC States) When

processed
ALL_SLOTS POC:normal active, POC:normal passive End of cycle

ALLOW_COLDSTART All except POC:default config, POC:config, POC:halt Immediate

CLEAR_RAMS POC:default config, POC:config Immediate

CONFIG POC:default config, POC:ready Immediate

DEFAULT_CONFIG POC:halt Immediate

FREEZE All Immediate

HALT POC:normal active, POC:normal passive End of cycle

READY
All except POC:default config, POC:config, POC:ready,
POC:halt Immediate

RUN POC:ready Immediate

WAKEUP POC:ready Immediate

Table 2-1 CHI commands summary ([10] p. 33)

14

2.3.2 FlexRay Communication

The nodes in a FlexRay cluster are connected with one or two channels, referred as channel A and
channel B, each supporting data rates of up to 10 Mb/s [10], [13], [11]. The controller can send
data on both channels simultaneously and independent on each other. A node can receive
messages only via the channel(s) it is connected to. Received data is stored in the node message
RAM, which structure is based on message buffers, dedicated to transmission (transmit buffers) or
reception (receive buffers) process. Part of the receive buffers can be configured in a cyclic First-
In-First-Out (FIFO) buffer structure.

Communication between nodes in a FlexRay cluster is based on the Time Division Multiple Access
(TDMA) scheme, organized in communication cycles that are periodically executed. This scheme
guarantees a collision-free communication as there is no competition over the channel access.
Each communication cycle is divided in time slots. All nodes in a cluster are assigned time slots in
which they are allowed to send data frames.

Communication Cyc le

The media access control (MAC) mechanism in FlexRay is based on recurring communication
cycles, that combine the time and event triggered data exchange between nodes [10], [13]. Each
communication cycle consists of a static segment and a network idle time (NIT). Optionally, it can
contain a dynamic segment and/or a symbol window. The structure of a FlexRay communication
cycle is shown on Fig 2.6.

Fig 2.6 Timing hierarchy within the communication cycle ([10] p. 100)

The static segment is based on a static TDMA scheme and is always present in a communication
cycle. This scheme is realized in static time slots, which number and length is fixed and is the same
for both channels in a cluster (Fig 2.6). The length of the static slots is derived from a predefined
number of global clock ticks, referred as macroticks. The number of macroticks in the static slot is
chosen to be big enough to ensure that the frame and any potential safety margins fit under
worst-case assumptions. Each macrotick consists of an integer number of microticks that are
derived from a local for the node clock (e.g. Host CPU), which number and duration can differ in
every node. The macrotick boundary that determines the start of a frame transmission is referred
as action point.

15

Contrary to static segments, dynamic segments are present only if the controller has data to send
there. The data sent in the dynamic segments is priority and event driven and can be of varying
lengths. The structure of the dynamic segment is based on a dynamic TDMA minislot scheme (Fig
2.6). Similarly to the static slot the minislot is constituted of a predefined amount of macroticks.
The number of minislots and their constituent macroticks is identical in every node of the cluster.
The number of macroticks in a minislot is, however, smaller than in the static slot so that if no
frame transmission takes place in the dynamic segment less bandwidth is wasted (Fig 2.7 (a)). If
data is transmitted in the dynamic segment, the size of the minislot is expanded to fit the
transmitted frame (Fig 2.7 (b)). In this case the minislot is referred as a dynamic slot and it consists
of an integer number of minislots. The numbering sequence of the minislots is kept but their total
number per dynamic segment is reduced. A frame is transmitted only if the remaining minislots
are enough to fit it. That means that if a frame is assigned a large minislot number, it might have
to wait for another communication cycle in order to be transmitted. Therefore, frames priority is
dependable on the assigned minislot number.

Fig 2.7 (a) Communication cycle with no transmission in the dynamic segment; (b) Communication

cycle with several transmissions in the dynamic segment ([13] Figure 5.5)

The presence of a symbol window in a communication cycle is optional. Within the symbol
window only one symbol can be sent and no arbitration between different senders is provided. Its
size consists of an integer amount of macroticks that is the same for all nodes in a cluster.

The NIT serves for clock correction and synchronization, as well as for implementation specific
communication cycle related tasks. It contains the remaining macroticks that are not assigned to
the other three components of the communication cycle.

16

Configuration Timing Constraints for Communication Cycles

This sub-section is intended to reveal the duration limitations for each of the communication cycle
segments by introducing the related FlexRay constants and parameters ς their minimum and
maximum values, according to the FlexRay protocol specifications v2.1 [10] and the hardware
restrictions for each node (speed of processors, oscillators, etc).

Communication is based on recurring communication cycles, which number is configured in the
protocol constant3 cCycleCountMax and ranges between 0 and 63. The number of macroticks per
communication cycle is between 10 and 16000 and is stored in the gMacroPerCycle parameter.
The pMicroPerCycle parameter holds the number of microticks per communication cycle and its
value is calculated for every node, depending on the duration of the microtick.

The arbitration scheme for transmitting FlexRay frames is realized via unique assignment of frame
IDs to the nodes in a cluster for each channel. The frame ID determines in which slot and
respectively in which segment a frame shall be sent. Frame IDs range from 1 to the cSlotIDMax
protocol constant, which value can be up to 2047.

Each channel keeps track of the time slots (static and minislots) in its own variable vSlotCounter
that starts from 1 in the beginning of every communication cycle and is incremented by 1 with
every new slot. This slot counter is increased simultaneously for both channels in the static
segment of the communication cycle, while in the dynamic segment both counters are
incremented independently, according to the arbitration scheme used there.

The number of static slots, composing the static segment, is stored in the gNumberOfStaticSlots
parameter. It ranges between 2 and the value assigned to the cStaticSlotIDMax protocol constant,
which maximum value is 1023. Static slot duration ranges between 4 and 661 macroticks and is
stored in the gdStaticSlot parameter. The action point offset within the static slots is assigned to
the gdActionPointOffset parameter and ranges between 1 and 63 macroticks.

The presence of a dynamic segment in the communication cycle is optional and therefore the
number of minislots can be 0 and up to 7986. It is stored in the gNumberOfMinislots parameter.
The gdMinislot parameter keeps the duration of the minislot that ranges between 2 and 62
macroticks. The number of macroticks, constituting the offset of the action point within a minislot
is stored in the gdMinislotActionPointOffset parameter and has a value between 1 and 31. The
number of the last minislot in which a transmission in the dynamic segment can be started is
configured in pLatestTx node parameter.

The symbol window duration can be up to 142 macroticks and is stored in the gdSymbolWindow
parameter. Its value can be 0 if no symbol window is required. The action point offset is stored in
the same parameter as for the static segment. The number of macroticks for the NIT is between 2
and 805 and is stored in the gdNIT parameter.

3
 For distinguishing between different types of parameters signature refer to Table A-1 in Appendix A

17

Frame format

A FlexRay frame consists of three segments: header, payload and trailer segment (Fig 2.8) [10],
[13]. Header and trailer segments have a fixed length of 5 and 3 bytes respectively, while the
payload segment length varies from 0 to maximum of 254 bytes. The frame is transmitted in the
introduced segment order, starting always with the most significant bit (MSB) and followed by the
subsequent bits.

Fig 2.8 FlexRay frame format ([10] p. 90)

The frame is transmitted, starting from the header segment. The header MSB is reserved and has
no relevance. It is followed by the payload preamble indicator (PPI) that indicates the presence of
a network management (NM) vector (when frame is transmitted in the static segment) or message
ID (when frame is transmitted in the dynamic segment) in the beginning of the payload. The null
frame indicator bit signals whether the payload segment contains relevant data4. The sync frame
indicator bit is used for clock synchronisation of all nodes in a cluster when set to 1. Accordingly,
the startup frame indicator bit determines whether the frame is a startup frame. It is usually set to
1 only when the sync frame indicator bit is also 1. In the following 11 bits is coded the frame ID,
which determines the slot in which the frame shall be transmitted. It must be a unique number
between 1 and 2047 for every channel in the cluster. The payload length is coded in the following
7 bits, representing the number of 2-byte data words, i.e. the payload length number equals the
actual payload length in bytes divided by 2. The sync frame indicator, startup frame indicator,
frame ID and payload length are protected by an 11 bits cyclic redundancy check (CRC) code. For
transmitted frames, the CRC code is not calculated by the transmitting CC but it is provided by
means of configuration. The header CRC code is calculated by the CC only for received frames. The
last 6 bits of the header section specify the value of the cycle counter at the time of frame
transmission.

The payload segment of a FlexRay frame contains the actual message payload, starting from the
first data byte (MSB to LSB order) and followed by the subsequent data bytes. The product specific
host interface maps the position of data bytes in the buffer with their position in the payload

4
 A null frame ƛǎ ŀ ŦǊŀƳŜ ǿƛǘƘ ƴǳƭƭ ŦǊŀƳŜ ƛƴŘƛŎŀǘƻǊ ōƛǘ ǎŜǘ ǘƻ ΨлΩ ŀƴŘ ŀ ǇŀȅƭƻŀŘ ƭŜƴƎǘƘ ŦƛŜƭŘ ǎŜǘ ŀƭǎƻ ǘƻ ΨлΩ [10]

18

segment of the frame. As the payload length field in the header segment holds the number of 2-
byte data words, the number of data bytes in the payload segment is always even. To achieve that,
sometimes padding is applied.

The last FlexRay frame segment is the trailer segment. It consists of 24 bits CRC code that covers
all bits of the frame, including the header CRC and payload padded byte. Both channels use the
same generator polynomial for the computation of the CRC but different initialization vectors ς
0xFEDCBA for channel A and 0xABCDEF for channel B.

Message filtering

Message filtering is based on slot number, channel and optionally on one or more cycle numbers
(cycle set) [11]. The filtering configuration data is part of the header section of the message buffers,
which are discussed in RAM Configuration section in Appendix A.

Every message buffer is assigned a slot number and one or two channels in which it is allowed to
transmit or receive data. The slot number is encoded in the 11-bit message buffer frame ID field
and needs to be greater than 0. The frame ID is compared against the slot counter variable of the
corresponding channel(s). Every static slot belongs to only one node, regardless of whether cycle
number filtering is provided or not.

Channel filtering is provided via 2-bit field ς one bit for each channel. It serves as filtering
mechanism for receive buffers and control mechanism for transmit buffers. Only for the static
segment it is allowed both channels to be assigned. If both channels are assigned for the dynamic
segment, then no frames are transmitted/received on any channel. It is equivalent as if no
channels were assigned for the dynamic segment.

The cycle set filtering is encoded in the 7-bit cycle count field of the message buffer header and is
used to distinguish between different message buffers, belonging to the same node, that are
assigned the same channel(s) and frame ID. The filter is passed every time a cycle number matches
an element, belonging to the assigned cycle set (Table 2-2).

Table 2-2 Definition of cycle set ([11] Table 9)

In order for a message buffer to be allowed to transmit or receive data, all filters must match. If
more than one buffer is assigned the same frame ID, cycle number and channel, the message
buffer with lowest message buffer number is chosen. The receive FIFO can be configured for
further delimitation of the received messages via the FIFO Rejection Filter (FRF). Apart from
filtering, based on frame ID, channel and cycle count, the FRF can be configured to reject/accept
all messages in the static segment and/or null frames. In the FIFO Rejection Filter Mask (FRFM) are
pointed those bits of the frame ID that are marked ŀǎ άŘƻƴΩǘ ŎŀǊŜέ ŦƻǊ ǘƘŜ CwCΦ

19

Transmit process

A message can be transmitted in the static segment of a communication cycle on channel A,
channel B or both channels simultaneously [10], [11]. If few messages are pending, the one with
frame ID corresponding to the next time slot is sent next. When transmitted in the dynamic
segment, a message can be sent on channel A or channel B only, thus allowing concurrent
messages to be sent simultaneously on both channels. The message with highest priority (lowest
frame ID) is sent next only if its length fits in the remaining minislots of the current cycle.
Transmission takes place in every time slot of the static segment. If there is no assigned buffer
with matching filter criteria for a given static slot or that buffer does not have its transmission
ǊŜǉǳŜǎǘ ό¢·wύ ŦƭŀƎ ǎŜǘ όƛΦŜΦ ¢·w Ґ ΩлΩύΣ ŀ ƴǳƭƭ ŦǊŀƳŜ ƛǎ ǘǊŀƴǎƳƛǘǘŜŘΦ bǳƭƭ ŦǊŀƳŜǎ ŀǊŜ ƴƻǘ ǘǊŀƴǎƳƛǘǘŜŘ ƛƴ
dynamic segments.

Receive process

Analogously to the transmit process, messages can be received on one or both channels, when
transmitted in the static segment, or on only one channel, when transmitted in the dynamic
segment of a communication cycle [10], [11]. If a received frame passes all filter criteria, it is saved
in the designated receive buffer apart from its frame CRC field. In this case a flag is raised to
inform the communication controller that the new message is ready to be processed. If a frame is
not processed by the time a new frame, designated for the same message buffer arrives, that
frame is overwritten and lost. A message lost (MLST) status flag is raised in such cases. If no frame,
null frame or corrupted frame is received and has passed the filter criteria, it is not saved, however
the buffer status data is updated. In cases where the payload data length of the received frame is
larger than the length, configured for that buffer, the received payload is truncated to the
configured length.

2.3.3 E-Ray

[11] E-Ray is an electronic device that has an IP module installed and performs communication
according to the FlexRay protocol specification v2.1 [10]. It supports the provided by FlexRay data
rates of up to 10 MB/s on each channel. E-Ray registers can be directly accessed by an external
Host via the controlling host interface (CHI) to directly perform configuration, control and
monitoring tasks. An additional bus driver hardware is required for connection to the physical
layer.

The E-Ray module is provided with 8kB configurable message RAM consisting of maximum 128
message buffers that can be configured to hold up to 254 bytes of data5 (Fig 2.9) [11]. Message
buffers can be configured as static or static + dynamic buffers, dedicated to transmit or receive
process. Part of the receive buffers can be organized in a cyclic First-In-First-Out (FIFO) structure.
Message RAM is accessed by the Host via the provided Input Buffer (IBF), for write access, and
Output Buffer (OBF) for read access. Access to the Physical Layer is under the control of Channel
Protocol Controller (PTR A/B) and supported by transient buffers (TBF A/B) for intermediate
message storage. All functions regarding handling of messages are implemented in the Message
Handler. E-Ray is supported by an 8/16/32-bit generic CPU interface that enables compatibility
with a wide range of customer-specific Host CPUs.

5
 128 message buffers with max of 48 bytes data section or up to 30 message buffers with 254 bytes data section [11] (p.

14)

20

Fig 2.9 E-Ray block diagram ([11] Figure 1)

The FlexRay channel protocol controllers (PRT A and PRT B) represent interfaces for controlling the
transmission and reception of FlexRay frames and symbols between the internal device memory
and the connected channel(s) [11]. They consist of shift registers and FlexRay protocol FSM and
perform functionalities for control of the bit timing, generation of the frame CRC and check of the
received header and frame CRC codes. The FlexRay channel protocol controllers have interfaces to:

¶ Physical Layer (bus driver)

¶ Transient Buffer RAM (TBF A/B) ς stores the data section of two complete messages.

¶ Message Handler ς controls data transfer between IBF/OBF and message RAM and
between TBF A/B and message RAM.

¶ Global Time Unit (GTU) ς performs generation of micro and macroticks; fault tolerant clock
synchronization and support of external clock correction; timing control of static and
dynamic segments; cycle counter.

¶ System Universal Control (SUC) ς provides control over: configuration, wakeup, startup,
normal operation, passive operation and monitor mode.

¶ Frame and Symbol Processing (FSP) - checks the correct timing of frames and symbols;
tests the syntactical and semantical correctness of received frames; sets the slot status
flags.

¶ Network Management (NEM) ς handles the network management vector.

¶ Interrupt Control (INT) ς provides error and status interrupt flags; enables/disables
interrupt sources and module interrupt lines; assigns interrupt sources to one of the two
module interrupt lines; manages the two interrupt timers; captures the stop watch time.

21

The message RAM in E-Ray is structured in 2048 words of 33 bits6, making a total of 67 584 bits
memory space [11]. It provides support for 8 and 16-bit accesses and is able to store up to 128
message buffers, depending on the configured payload length, as the data bytes in the FlexRay
frame can vary between 0 and 254. In order to achieve a better flexibility, the message RAM is
divided in Header and Data partitions and has the structure shown in Fig 2.10.

Fig 2.10 Configuration example of message buffers in the Message RAM ([11] Figure 15)

The Header Partition holds the header sections of the configured message buffers. The header
section of each message buffer consists of four 32+1 byte words starting with the first word in the
message RAM for message buffer 0. The Data Partition starts after the last word, occupied by the
Header Partition. Its minimal allowed position is: (the number of last configured buffer + 1) * 4. In
the Data Partition is stored the data section of each message buffer. For a detailed view of the
header and data sections, refer to Message RAM section in Appendix A.

The E-Ray Message Handler is an interface that provides functionalities for controlling the data
transfers between the Host and the message RAM (via the Input and Output Buffers) and between
the PRTs and the message RAM (via the Transient buffers). Those functionalities include the
acceptance filtering of received messages, the maintaining of the transmission schedule, as well as
the providing of message status information.

6
 32 bit word plus 1 parity bit

22

Channel protocol controller access to message RAM

The FlexRay channel protocol controllers (PRT A/B) are connected to the transient buffer RAMs
(TBF A/B) and to the physical layer via the bus driver [11]. The TBF is used as an intermediate
storage, able to store two complete FlexRay messages. It is built-up as a double buffer ς one
assigned to the corresponding PRT and the other accessible by the Message Handler (Fig 2.11).

Fig 2.11 Access to Transient Buffer RAMs ([11] Figure 14)

Receiving/transmitting a FlexRay message to/from the message RAM is possible via the TBFs. The
Message Handler writes the message to be transmitted to the TBF Tx of the corresponding
channel (Fig 2.11). The PRT writes the received on the channel message to the corresponding TBF
Rx. During transmission of the message stored in the TBF Tx the Message Handler transfers the
last received message from TBF Rx to the message RAM (if it passes the acceptance filtering).

23

Host access to message RAM

The Host accesses the message buffers in the message RAM via intermediate buffers and the help
of the Message Handler [11]. Read access is done via the Output Buffer (OBF) and write access via
the Input Buffer (IBF). Similarly to the Transient Buffer (TBF) the IBF and OBF have double buffer
structure ς one half accessed by the Host (IBF Host/OBF Host) and the other half accessed by the
Message Handler (IBF Shadow/OBF Shadow). The Host writes the number of the target buffer in
the message RAM to the corresponding intermediate buffer, together with other configuration
data (header and/or message data), and the Message Handler proceeds its request by providing
the requested access (Fig 2.12).

Fig 2.12 Host access to Message RAM ([11] Figure 9)

24

RAM Configurat ion

Message RAM can be configured into three groups of message buffers via the Message RAM

Configuration (MRC) register, only when the CC is in config or default_config state (Fig 2.13) [11].

The first group is dedicated to messages sent in the static segment of a communication cycle.

Specifying the number of the First Dynamic Buffer (FDB) determines the number of static message

buffers. As the maximum allowed number of message buffers in the message RAM is 128, any

number assigned to FDB greater or equal to 128 will assign all message buffers to the static

segment. Following the same logic, the First FIFO Buffer (FFB) holds the number of the first FIFO

message buffer. The last message buffer number is configured in the Last Configured Buffer (LCB)

field of the MRC register.

 л Җ C5. Җ CC. Җ [/. Җ мнт
Fig 2.13 Assignment of message buffers ([11] Table 1)

A message buffer can be configured as receive or transmit buffer by configuring the CFG bit in its
header section. Every transmit buffer can be configured to operate in single-shot or continuous
mode by setting the appropriate value to the transmission mode (TXM) flag, also part of its header
section. Part of the receive message buffers can be configured as a cyclic FIFO buffer. Every
message, passing the FIFO Rejection Filter (FRF) is stored, starting with the first and proceeding
with every next message buffer assigned to the FIFO. When the last buffer, belonging to the FIFO
is reached, the receive process starts again with the first buffer and so on.

There are two index registers associated with the FIFO. The PUT Index Register (PIDX) points to the
next message buffer to be used for receiving a frame. It is incremented every time a new message
passes the FIFO filters and is saved there. The GET Index Register (GIDX) points to the next
message to be processed and incremented after read access. The GIDX shall never reach the PIDX
when the FIFO is in non-empty state, otherwise a FIFO overrun is observed ς the message stored
on that buffer index is overwritten and both indexes are incremented. In this case an error flag is
raised and an interrupt is generated.

25

The possible FIFO states are shown on Fig 2.14.

Fig 2.14 Possible FIFO states ([11] Figure 8)

An important constraint is that all buffers, belonging to the FIFO must be configured with the
same payload and data section length. The programmer shall take care of correct input as the CC
does not check for erroneous configuration ([11] p. 72).

Depending on its configuration, the first message buffer (with index 0) of the message RAM can

hold the startup frame, sync frame or designated single slot frame. This ensures that each buffer

can transmit only one startup or sync frame per communication cycle. The configuration of the 0th

message buffer is possible only during configuration time when the CC is in default_config or

config state but not during runtime. If enabled by the programmer in the MRC register,

reconfiguration of all other message buffers is possible during runtime via the Input Buffer (IBF).

However, it shall be noted that due to the data partition, reconfiguration of the payload length

may lead to memory corruption and erroneous outcome.

26

Host Write Access via Input Buffer
The Host can request write access to one message buffer at a time via the IBF. If reconfiguration is
desired, the Host writes the configuration data to the three header registers (WRHS1...3) of the
IBF [11]Φ ¢ƘŜ ŀŎǘǳŀƭ ƳŜǎǎŀƎŜ ƛǎ ǿǊƛǘǘŜƴ ǘƻ ǘƘŜ L.C Řŀǘŀ ǊŜƎƛǎǘŜǊǎ ό²w5{ƴ ǿƛǘƘ ƴ Ґ мΧспύΦ ¢ƘŜ
option whether to update only the header, only the data, or both sections of the targeted
message buffer in message RAM is specified via the Input Buffer Command Mask (IBCM) register.
Lastly, the target buffer number is written to the Input Buffer Command Request (IBCR) register
that triggers the swap of the IBF Host and IBF Shadow (Fig 2.15).

Fig 2.15 Transmit process via the Input Buffer [11] (Figure 10)

Once the IBF Host and IBF Shadow sections are swapped, the Message Handler starts the transfer
of the header and/or7 data section to the targeted buffer in the message RAM [11]. While the
transfer takes place, an Input Buffer Busy Shadow (IBSYS) flag is raised, however, in the meanwhile
the Host may write the data for the next message buffer to the IBF. After the transfer is finished,
the IBSYS flag is reset and the Host may request the next transfer by writing the target buffer
number in the IBCR register. If the Host writes to the IBCR register while the IBSYS flag is still on,
an Input Buffer Busy Host (IBSYH) flag is raised and the last transfer request is pending until the
current transfer is finished. A further attempt for the Host to write to IBCR register, while both
flags are raised, has no effect but an error flag is raised.

The procedure to configure/update the n-th message buffer is as follows: ([11] p. 127, 136)
1. Wait until IBSYH flag is reset
2. Write data section to WRDSn
3. ²ǊƛǘŜ ƘŜŀŘŜǊ ǎŜŎǘƛƻƴ ǘƻ ²wI{мΧо
4. Write command mask configuration to IBCM
5. Write target message buffer to IBCR to demand message transfer
6. Check whether the message buffer has been transmitted by checking the respective

TXR bit ό¢·w Ґ ΩлΩύ ƛƴ ǘƘŜ ¢w·vмκнκоκп ǊŜƎƛǎǘŜǊǎ όǎƛƴƎƭŜ-shot mode only).

If the designated transmit message buffer is configured to operate in single-shot mode, after the
transmission is completed, the CC clears the respective transmission request (TXR) flag and the
Host may update the buffer. In continuous mode, this flag is not cleared by the CC and message is
transmitted every time it matches the filter criteria. The TXR flag is reset by the Host when
executing step 5 from the update procedure described above.

7
 Depending on the configuration of the IBCM the message Handler updates only header, only data or both sections of

the target buffer in the message RAM [11]

27

Host Read Access via Output Buffer

The Host can request contents and status of a message buffer in the message RAM via writing the
message buffer number in the Output Buffer Command Request (OBCR) register [11]. The desired
contents (header, data or both) are specified via the Output Buffer Command Mask (OBCM)
register. The Host triggers the transfer of the buffer contents from message RAM to the OBF
{ƘŀŘƻǿ ōȅ ǿǊƛǘƛƴƎ ΨмΩ ǘƻ ǘƘŜ w9v ōƛǘΣ ŀƭǎƻ ǇŀǊǘ ƻŦ ǘƘŜ h./w ǊŜƎƛǎǘŜǊΦ ²ǊƛǘƛƴƎ ΨмΩ ǘƻ ǘƘŜ ±L9² ōƛǘ ƻŦ
the OBCR register swaps the contents of OBF Host and OBF Shadow and the Host can read the
ƳŜǎǎŀƎŜ ōǳŦŦŜǊ Řŀǘŀ Ǿƛŀ ǘƘŜ h.C ƘŜŀŘŜǊ ǊŜƎƛǎǘŜǊǎ όw5I{мΧоύ ŀƴŘ h.C Řŀǘŀ ǊŜƎƛǎǘŜǊǎ όw55{ƴΣ
n=1Χспύ όCƛƎ 2.16). The message buffer status is accessible via the message buffer status (MBS)
register.

Fig 2.16 Receive process via the Output Buffer [11] (Figure 12)

During the transfer of message buffer contents from the message RAM to the OBF Shadow, the
OBF Busy Shadow (OBSYS) flag is set. In the meantime, the Host may access the contents of the
OBF Host or write the next message buffer number to OBCR register but the REQ and VIEW bits
cannot be set until the OBSYS flag is reset. If REQ and VIEW bits are set with the same write access,
ǿƘƛƭŜ h.{¸{ ƛǎ ΨлΩΣ ǘƘŜ h.C Iƻǎǘ ŀƴŘ h.C {ƘŀŘƻǿ ŀǊŜ ǎǿŀǇǇŜŘ ŦƛǊǎǘ ŀƴŘ ǘƘŜƴ ǘƘŜ ƴŜǿ ǘǊŀƴǎŦŜǊ ƻŦ
message buffer data from message RAM to OBF Shadow is triggered.

¢ƘŜ ǇǊƻŎŜŘǳǊŜ ƻŦ ǊŜǉǳŜǎǘƛƴƎ ƻƴŜ ƻǊ ƳƻǊŜ ƳŜǎǎŀƎŜ ōǳŦŦŜǊǎΩ ŎƻƴǘŜƴǘ ƛǎ ŀǎ ŦƻƭƭƻǿǎΥ ([11] p. 138-139)

1. Wait until OBSYS is reset
2. Write command mask configuration to OBCM
3. Write target messaƎŜ ōǳŦŦŜǊ ƴǳƳōŜǊ ǘƻ h./w ŀƴŘ ΨмΩ ǘƻ h./wΦw9v ōƛǘ
4. Wait until OBSYS is reset
5. If no further message buffer is requested ς proceed to 9

Otherwise write command mask configuration to OBCM for the next message buffer
6. Toggle OBF Host and OBF Shadow and start transfer of next message buffer contents to
h.C {ƘŀŘƻǿ ǎƛƳǳƭǘŀƴŜƻǳǎƭȅ ōȅ ǿǊƛǘƛƴƎ ǘƘŜ ōǳŦŦŜǊ ƴǳƳōŜǊ ǘƻ h./w ŀƴŘ ΨмΩ ǘƻ h./wΦw9v
and OBCR.VIEW bits

7. wŜŀŘ ƻǳǘ ǘƘŜ ǇǊŜǾƛƻǳǎ ƳŜǎǎŀƎŜ ōǳŦŦŜǊ Ǿƛŀ w5I{мΧоΣ w55{ƴ ŀƴŘ a.{ ǊŜƎƛǎǘŜǊǎ
8. Wait until OBSYS is reset
9. Demand accesǎ ǘƻ ƭŀǎǘ ƳŜǎǎŀƎŜ ōǳŦŦŜǊ ŎƻƴǘŜƴǘǎ ōȅ ǿǊƛǘƛƴƎ ΨмΩ ǘƻ h./wΦ±L9² ōƛǘ
10. wŜŀŘ ƻǳǘ ƭŀǎǘ ǘǊŀƴǎŦŜǊǊŜŘ ƳŜǎǎŀƎŜ ōǳŦŦŜǊ Ǿƛŀ w5I{мΧоΣ w55{ƴ ŀƴŘ a.{ ǊŜƎƛǎǘŜǊǎ

28

2.4 Communication Protocols

In the following subchapters are described the hardware and software aspects of the
communication protocols used for data exchange between the PC client and the FlexRay server
node, according to the 7-layered OSI model. For this project this is the Ethernet protocol and the
network protocols that run over it ς the TCP/IP protocol suite and its lightweight version for
embedded systems the lwIP.

2.4.1 Ethernet Protocol

Ethernet is a network interface that provides high speed connectivity, widely used in local (LAN) or
metropolitan (MAN) area networks [14]. It is standardised by the Institute of Electro and
Electronics Engineers (IEEE) and known as the IEEE 802.3 standard. Commonly used
communication mediums are twisted pair and fiber optic links (together with repeaters, hubs,
switches, etc.), providing data rates from 10 Mb/s to 100 Gb/s.

According to the 7-layer OSI model, Ethernet relates to the bottom two layers ς Physical and Data
Link [15]. According to the IEEE 802.3 standard [16] these two OSI layers are additionally divided
into sub-layers to present a finer structure (Fig 2.17). At physical layer, the IEEE sub-layers depend
on whether 10, 100 or 1000 Mb/s Ethernet standard is used. The MAC and LLC layers are above
the layers that define the physical and media specifications and do not depend on them. The LLC is
not bounded to the Ethernet standard but is intended to serve all LAN systems. Therefore, the LLC
layer is not formally part of the IEEE 802.3 system specifications.

Fig 2.17 The major Ethernet layers defined by IEEE ([15] p.13)

The physical Ethernet specifications are separated into two basic groups of hardware components
ς signalling and media components [15]. The signalling components represent an Ethernet
hardware interface that is used to send and receive signals over the physical medium. The media
hardware components are used to build the physical medium where signals are transferred ς
twisted-pair or fiber optic cables, transceivers, repeaters, etc.

29

Ethernet can operate in half-duplex and full-duplex mode. In half-duplex mode the media access is
based on the Carrier Sense Multiple Access with Collision Detection (CSMA/CD) media access
control (MAC) protocol. This protocol represents a set of instructions that arbitrate the access to
the shared channel. In full-duplex mode the CDMA/CS is not necessary and therefore it is switched
off.

Data is transmitted over the Ethernet in frames ([17] p. 155-169). The frame is a standardized
sequence of bits that besides the actual payload data, it carries additional information ς source
and destination address, payload length, checksum, etc. On Fig 2.18 is shown the frame
composition of DIX8 and IEEE 802.3 frame standards. Although very similar, these standards have
some minor differences that make them incompatible with one another, unless hardware that
supports both frame formats is used. Nowadays, IEEE 802.3 is the established standard for the
majority of vendors.

Fig 2.18 DIX frame vs. IEEE 802.3 frame ([15] p. 41)

The similarity in both Ethernet frame specifications allows their structure to be investigated in
parallel, highlighting their differences:

¶ The 64 most significant bits (MSB) are used for channel awakening and clock
synchronization and so to prevent some potential data loss9. In the IEEE 802.3 variant, the
last 8 bits are called Start of Frame Delimiter (SFD) and are used to signal the start of the
frame transmission.

¶ The 48 bit field that follows holds the destination address. In both frame formats, the MSB
of this field reveals whether the frame is designated to one (individual, physical, MAC,

8
 DIX is abbreviation of DEC-Intel-Xerox consortium that first standardises the Ethernet frame. [15](p.5-7)

9
 The Preamble bits play a role in 10 Mb Ethernet only. In Fast and Gigabit Ethernet the Preamble bits have constant

values because due to other technologies used for coding the signal, they are not really needed. Nevertheless, being part

of the Ethernet frame standard, they are still being sent. [15](p.41-42)

30

unicast address) or multiple (group, multicast address) receivers. The IEEE notation gives
significance and to the second MSB of that field to distinguish between locally and globally
administered addresses. DIX addresses are always globally administered.

¶ The next bit field also consists of 48 bits where the Ethernet MAC (EMAC) address of the
transmitting source is coded. This address has no significance for the EMAC protocol but it
is provided for the higher-layer protocols.

¶ The payload length and/or the type of the high-level network protocol that is used (e.g.
TCP/IP) are coded in the next 16 bits. In DIX (and initially in IEEE) standard, this field is used
only as high-level protocol identifier. In IEEE 802.3 version, however, this field was assigned
a dual interpretation, depending on the value that it holds. The logic is as follows ς if the
coded decimal value is less or equal to 1500 (which is the maximum transfer unit (MTU) of
data in bytes), then this value represents the length of the actual message, contained in
the following Data field; otherwise, if that decimal value is greater than the MTU, it is
interpreted as the specified in DIX standard high-level protocol type identifier.

¶ The actual payload is stored in the Data field and must be between 46 to 1500 bytes. If the
minimum amount of payload data is less than 46 bytes, padding is used to increase the size.
In the IEEE 802.3 standard, a Logical Link Control (LLC) protocol may also reside in the Data
field to provide control information or be used as a high-level protocol identifier in case the
previous field is used as a Length field.

¶ The least significant 32 bits of the frame holds the cyclic redundancy checksum (CRC) which
tests the data for errors that might have occurred during transmission.

The high-level protocol information that is embedded in the Ethernet frame is what actually
establishes the successful communication between connected nodes. In order to achieve higher
speeds, the purpose of Ethernet is limited to simply forwarding the frames to their destination,
ōŀǎŜŘ ƻƴ ǘƘŜ άōŜǎǘ ŜŦŦƻǊǘέ ŘŜǎƛƎƴΦ ¢Ƙŀǘ ƳŜŀns that if retransmission request time-out occurs, the
frame is discarded. Ethernet frames are standardized but the information that they carry can differ,
i.e. Ethernet does not depend on the higher-level protocols. Therefore, Ethernet does not provide
any guarantee for successful data delivery. The correct delivery acknowledgement and order are
guaranteed by protocols of higher levels. One of these protocols is the TCP/IP protocol suite that is
the topic of the next chapter.

2.4.2 TCP/IP Protocol Suite

Transmission Control Protocol (TCP) and Internet Protocol (IP) are networking protocols which
together form one of the most common networking protocol suites that is used in the end-to-end
communication, known as the TCP/IP [9], [18]. It is standardized in a multi-layer stack, similarly to

the OSI 7 layers model (2.2 OSI Model). TCP/IP precedes the OSI model with around a decade

but their structures are identical. That is why it is common to explain the one with the other. The
two models differ in the number of their layers ς 7 in OSI model and 4 in TCP/IP model. Their
functional definition and hierarchical sequence, however, are very similar (Fig 2.19).

31

Fig 2.19 OSI Model vs. TCP/IP Model ([9] p. 129)

¶ Network Interface is the bottom TCP/IP model layer. According to some sources it merges
the first two OSI layers [18](p. 7-8), while to others, the Physical OSI layer is excluded from
the TCP/IP model [9](p.128-129).

¶ Internet layer refers to the network operations like: addressing, routing, data packaging,
etc. The IP protocol resides in this layer.

¶ Transport layer corresponds to the OSI Transport layer and part of the Session layer. The
key protocols for this layer are the TCP and UDP (User Datagram Protocol).

¶ Application layer is the top layer in TCP/IP model. It combines layers 5, 6 and 7 from the
OSI model, due to their similar nature.

IP is a connectionless protocol that simply provides addressing and routing methods to deliver
transmitted messages to their destination [9], [18]. It does not provide reliability, flow control, or
error checks. The basic unit of data in an IP network is called datagram. There are two IP versions
ς IPv4 and IPv6.

TCP is connection oriented, bi-directional protocol, that guarantees packet deliveries in the correct
order [18], [19]. It provides error checking and recovery mechanisms and requests retransmission
of erroneous or lost data packets. TCP handles congestion and flow control and provides
handshaking sequences10 for establishing a connection. It is used in applications that require high
transmission reliability. Some of the most common application protocols that use TCP are HTTP,
FTP, Telnet, SMTP, etc.

UDP is simpler, connectionless, one-directional protocol, where data packets are broadcasted by
the transmitting source but there is no guarantee whether these packets are successfully received
[18], [19]. Unlike TCP, UDP keeps no track on the data packets and in case of errors, erroneous

10

 TCP requires three packets to set up a socket connection, before any user data can be sent. [19]

32

data packets are simply discarded. It is more lightweight and faster than TCP11. UDP is used in
cases where transmission and processing speed is of higher importance for the application than
guaranteeing correctness of each data packet, like video and audio streaming, games and so on.
Common protocols that use UDP are DNS, DSCP, TFTP and so on.

DHCP (Dynamic Host Configuration Protocol) is a protocol based on the UDP protocol12 that is
used to provide configuration data to an IP host [18], [20]. It assigns the host with a unique IP
address and provides other network information depending on the allocation mechanism that is
used. It supports three mechanisms of IP allocation ς automatic, dynamic and manual. Dynamic
allocation is the only one that supports automatic reuse of an IP address that is no more in use by
the host.

The key concept of the TCP/IP protocol suite is in the Client-Server communication notation ([9]
p.126). Clients and servers can be synonyms in the context of a TCP/IP connection and this can
sometimes be confusing. In order to distinguish their roles for this project, the client is the one
that initiates the connection and sends the provoked by the user requests to the server. The
server responds to these client requests by providing the requested service and data.

2.4.3 LwIP Protocol/Raw API

Lightweight Internet Protocol (LwIP) is a lightweight version of the TCP/IP protocol suite, designed
by Adam Dunkels at the Swedish Institute of Computer Science [21]. It is intended to provide a full
scale TCP with less resource requirements. It requires only a few tens of kilobytes of free RAM and
around 40 kB of ROM code to run which makes it the best solution for embedded applications
with limited resources.

[ǿLt ǇǊƻǾƛŘŜǎ ǘƘǊŜŜ !ǇǇƭƛŎŀǘƛƻƴ tǊƻƎǊŀƳΩǎ LƴǘŜǊŦŀŎŜǎ ό!tLύ ǘƻ ŜƴŀōƭŜ ǇǊƻƎǊŀƳ ŎƻƳƳǳƴƛŎŀǘƛƻƴ ǿƛǘƘ
the TCP/IP code:

¶ Socket API

¶ Netconn API

¶ Raw (native) API

The first two are considered high-level APIs, while the Raw (also called Native) API is a low-level
API as it does not require an operating system to run [22]. The Raw API is designed as a set of
callback functions that are triggered on certain events, like: new data available, data ready to be
sent, data transmitted, errors, connection loss and so on. These callback functions have to be
properly registered at start-up (via tcpip_init_callback()) or at run time (via tcpip_callback()). They
can only be called from the main thread (tcpip_thread) and are not protected from concurrent
accesses in multithreading environment [23].

The LwIP raw API provides access to protocols of all TCP/IP layers but the one of interest for this
project is the TCP. The TCP network design is based on the raw API event-driven callback
mechanism. Before making a call to any of the TCP functions, the lwip has to be initialized (via
lwip_init()). A TCP connection is identified by a Protocol Control Block (PCB).

11

 TCP header size is 20 bytes; UDP header size is 8 bytes. [19]
12

 More particularly DHCP is based on the Bootstrap Protocol (BOOTP) that is based on the UDP protocol. [20]

33

To setup an active PCB connection the following steps are required:

1. Call tcp_new() to create a PCB.
2. Optionally call tcp_arg() to associate an application-specific value with the PCB.
3. Optionally call tcp_bind() to specify the local IP address and port.
4. Call tcp_connect().

 To send data over a TCP connection:

1. Call tcp_sent() to specify a callback function for acknowledgements.
2. Call tcp_sndbuf() to find the maximum amount of data that can be sent.
3. Call tcp_write() to enqueue the data.
4. Call tcp_output() to force the data to be sent.

Receiving data over the TCP connection is callback based:

1. Call tcp_recv() to set the callback function that will process the received data.
2. Call tcp_recved() when data has been processed and the application is ready to receive

more.

The maximum size of the receiving window is configured via parameter TCP_WND in lwipopts.h
header file.

LwIP is based on polling [23]. When connection is idle, LwIP polls it by calling a callback function
every predefined period of time. The polling time interval and the callback function are set via
function tcp_poll(). The interval is specified in number of TCP coarse grained timer shots, which
typically occurs twice a second.

Connection is closed by calling function tcp_close() which will also deallocate the PCB. If there is
insufficient memory for performing closing process, call to tcp_abort() never fails. It aborts the
connection by sending a reset segment to the remote host and deallocates the PCB.

34

2.5 Hardware Platform MicroZed Board

MicroZed is a low-cost evaluation board from the Xilinx Zed board family [24], [25]. It provides
features that allow it to be used as a stand-alone evaluation board or extended as an embeddable
system-on-module (SOM). It is equipped with Zynq XC7Z010-1CLG400C or Zynq XC7Z020-
1CLG400C AP SoC, both part of the Xilinx Zynq®-7000 All Programmable SoC family (Fig 2.20).
These products are supplied with ARM Cortex-A9 CPU, which provides an on-chip and external
memory interfaces and a variety of peripheral connectivity interfaces.

Fig 2.20 MicroZed block diagram ([25] Figure 1)

The Xilinx MicroZed board, used for this project as an example of a FlexRay node, is equipped with
Zynq XC7Z020-1CLG400 AP SoC. The most essential for the project features that are provided are:

¶ 1GB DDR3 RAM

¶ JTAG connectivity

¶ 10/100/1000 Ethernet PHY

35

The Dynamic Memory Interface provides a 1 GB of address space that uses a single rank
configuration of 8-bit, 16-bit or 32-bit DRAM memories. It includes a dynamic memory controller
and static memory interface modules. The DDR memory controller is multi-ported which allows
the processing system (PS) and the programmable logic (PL) to have shared access to a common
memory.

The Zynq-7000 AP SoC devices support three different boot modes ς JTAG, QSPI and SD card. The
desired mode is configurable via the boot mode jumpers (Fig 2.21). When the boot mode is
configured on JTAG, an external JTAG cable is needed. MicroZed is designed with a Platform Cable
JTAG connector ς 2x7, 2mm, shrouded, polarized header. It is compatible with Xilinx Platform
Cables and Digilent JTAG HS1 or HS2 Programming Cables.

Fig 2.21 Boot Mode Jumper Settings with Cascaded JTAG Chain ([25] Figure 8)

The MicroZed is equipped with Marvell 88E1512 PHY for 10/100/1000 Ethernet network
connection that operates at 1.8V. On Fig 2.22 is shown a high-level block diagram of the Ethernet
module. The RJ45 connector is shared with the USB-Host interface and 2 LEDs for traffic and valid
link state indication are provided.

Fig 2.22 10/100/1000 Ethernet interface ([25] Figure 5)

36

3. Requirements Analysis

The following requirements analysis is separated in four main topics. The first one refers to the

requirements, set with the project assignment, based on previous researches in this field. The rest

are related to the problems that arise within the different use cases, regarding the structure and

contents of the data objects and the software architecture, as well as testing and evaluation of the

software features. The conceptual decisions and solutions of these problems are discussed in

Chapter 4.

3.1 General Requirements

This project assignment is an extension of a similar task that was accomplished by previous thesis

in the context of Urban Mobility X-by-Wire(less) project [26]. That allows some of the base

requirements that were analyzed in the previous project to be taken as granted:

¶ The service interface for configuration, control and message data transfer between the PC

and the nodes in a FlexRay cluster shall be implemented via Ethernet standard (2.4.1

Ethernet Protocol), Cat6 Ethernet cables and an unmanaged Ethernet switch

¶ For ISO/OSI network and transport layers (2.2 OSI Model) the TCP/IP protocol (2.4.2 TCP/IP

Protocol Suite) shall be used

¶ The TCP/IP stack shall be implemented by its lightweight version for embedded systems

(LwIP) (2.4.3 LwIP Protocol/Raw API)

¶ Ethernet communication shall support 1Gb/s data rate

¶ Configuration, Control and Message data objects shall be structured based on the

JavaScript Object Notation (JSON) format [27]

¶ Programming language for the PC client application shall be Java; for the microcontroller

server application shall be C

For a more detailed discussion of previous requirements refer to [26].

As another predefined requirement for this project, the Xilinx MicroZed board shall be used as a

prototype FlexRay node, in contrast to the Texas Instruments Hercules TMS570 board, used for

the previous project assignment [26]. MicroZed has a Gigabit Ethernet interface installed that

allows interfacing to a FlexRay controller (not integrated) and gives the possibility of integrating

new communication modules in its on-board FPGA fabric. In addition, there are known

integrations of the lwip stack, which allow receiving and transmitting data from and to the

microcontroller in the defined by the project requirements way.

After the task requirements that have been set with the project assignment are revealed, the next

step is to analyze those aspects of the current project implementation that open a field for

discussion. The first aspect that should be considered is the internal JSON structure of the data

objects, their purposes and contents. Having this done, leads to the next aspect ς how is that JSON

data going to be processed and sent over the TCP/IP network. That, from another hand, raises the

37

question of how are the configuration, control and monitoring processes going to be implemented.

As we can see, each answer leads to a new potential question. Once solutions for all these

questions are found, summing them up should give the premises for foundation of a user interface

that best fulfils the established project requirements.

3.2 Data Objects

Data objects are text objects that contain information needed for applying a correct operation of

the configuration, monitoring and control processes of a FlexRay cluster. There are two main

groups of data objects. The first one ς configuration data objects ς refers to data related to the

FlexRay protocol constraints and the device specific hardware architecture. This data is needed for

the correct configuration of the controller node and shall be provided when required by the

application. Therefore, it shall be stored in a text file in the system. Such file shall exist for each

distinct node and shall be maintained by a programmer. The second group of data objects is

communication data objects. This group refers to text objects used for data transfer between the

PC client and the participants in the FlexRay cluster. Communication data objects shall be

generated by the application during runtime and their content shall depend on the current

request. It shall contain as less overhead as possible, in order to maintain higher communication

speeds.

The structure of each group of data objects shall be based on the JSON format notation [27]. The

reasons for choosing file format JSON in the previous [26] and current project is that it contains a

small amount of overhead, is easy to read by both humans and machines, maintains a hierarchical

structure and has a wide support of libraries. Those features of the JSON format shall be used

when defining a suitable internal JSON structure of each of the data objects. A good internal JSON

structure shall be expressed by a well organized JSON hierarchy, established with respect to

maintainability by humans, low memory and processing requirements, data reuse and adaptability.

Relation of data to the different FlexRay protocol and hardware aspects, as well as the different

use cases involved, shall also be taken into account.

The heterogeneous character of the FlexRay configuration data enables to distinguish separate

data categories, according to their relation to different FlexRay protocol (e.g. constants, global

(cluster) parameters, local (node) parameters, variables, etc) and hardware aspects (e.g. register-

address map). This property shall be used when estimating the most appropriate internal JSON

structure of the configuration file. In order to ease the process of reading, editing and parsing that

information, separating the configuration data into multiple files should also be considered.

Configuration is a process where a device is brought into a default or start-up state and is typically

executed after a reset or at power up [28]. It is, in general, based on writing predefined data to

specific memory address registers of the configured device. This configuration process follows a

defined flow of actions and sometimes requires time delays between consecutive register write

accesses. A mean of providing this information to the ƴƻŘŜΩǎ Controller Host Interface (2.3.1

Communication Controller) shall be determined.

38

Hexadecimal representation of values shall be supported by the configuration files. Optionally,

support for other number format representations should also be implemented. Although the

current project is intended to relate only to systems running the FlexRay protocol, the

configuration file structure shall be specified to enable the integration of other protocols in the

future with minimum amount of effort.

3.3 Software Features and Structure

The software implementation is divided into two parts. It consists of one client application,

programmed in Java, and one server application, programmed in C (according to the general

requirements). The workload of both applications shall be shared in a way that the resource

power of the PC client is maintained. Therefore, the main decision taking and logic algorithms shall

be executed on the PC. The client application shall compose and transmit data objects, containing

only relevant for the requested access data in the desired request order. The purpose of the server

application should be limited to parsing the received data objects, processing the read/write

access to registers13 in the defined by the client order and composing and sending response data

objects back to the client. Eventually, these two applications shall work with each other in a

synchronized manner under the control of the user.

The client application shall be based on a graphical user interface (GUI) that shall be intuitive in

use to enable less experienced users to work with it. That implies that a compromise between

usability and complexity should be agreed. The GUI shall be designed to accept user requests and

display usable information, where all the program logic is executed in the background. Its purpose

shall include some basic debugging functionalities to inform the user for error conditions by error

and warning messages.

The application shall enable the user to browse through the system memory for a configuration

file. A parsing algorithm shall be implemented that parses the JSON data from the specified file in

the application memory. As JSON format has popularity and support among programmers, the use

of standardized, well-approved and widely used libraries shall be considered. Suitable parsing

algorithms shall be developed for both server and client applications.

The user shall be able to connect to a desired node by addressing its assigned IP address and port

number. For this project, simultaneous connection to FlexRay nodes shall be limited to one node

at a time. Once a TCP/IP connection between the PC client and the FlexRay server node is

established, the user shall be able to perform the three fundamental processes ς initial

configuration, control and monitoring of the message buffers of a FlexRay node.

The limited memory resource on the FlexRay node (e.g. buffer of TCP/IP stack and FlexRay

input/output buffers) as wells as the limited processing speed for parsing and access to the (mock-

up) FlexRay module shall be taken into account when designing the application algorithms. An

appropriate TCP/IP stack, specially designed for resource limited embedded systems, is already set

13

 Due to the lack of a FlexRay module for the MicroZed board, the register space is mimicked. See Section 3.4

39

by the general project requirements. However, it shall be investigated whether it is supported by

the MicroZed board, which is the example FlexRay node for this project. The application design

shall be aimed to ensure no buffer overflows and correct execution of the requested processes

and shall give status feedbacks for success, failure, warnings and so on.

Requesting node status and message buffers content is the essence of the monitoring process.

That involves heavy data traffic between the server and the client. Therefore, the implementation

of the software algorithms shall be targeted towards the speed of data processing. Once

requested, the monitoring process shall be maintained until further user request or connection

loss. The requested FlexRay message buffer content shall be displayed in a GUI text field(s). As this

information is of high interest for the user, the software should offer the opportunity to save this

data on a text log file. Optionally, other status related information should be displayed for user

reference.

As a part of the control process, the user shall be able to send CHI commands (2.3.1

Communication Controller) and retrieve current node states. Additionally, requesting a read or

write access to a selected node register shall also be supported. For this purpose, all node

registers shall be presented in a list.

As the current project is intended to be continued in the future, good programming practices shall

be followed. The code shall be structured in functional blocks, so that it should be possible to

update each block independently on the others. In order to ease the process of reading, method

and variable names should be self-describing and accompanied by comments.

3.4 Evaluation

For proper evaluation of the software features, at least two microcontrollers (representing FlexRay

server nodes) having Ethernet and FlexRay modules installed shall be available. For each distinct

microcontroller the FlexRay register-address macro shall be present. The PC client shall have

Telnet enabled and Java version 1.7 or 1.8 installed. For installing and running the server code, the

Vivado 2014.4 IDE, including Software Development Kit (SDK) tool, shall be installed and the board

definition files for the MicroZed board shall be included14. An Ethernet switch and Cat6 Ethernet

cables shall be used for the connection between the PC client and the FlexRay server nodes.

For this project there is only one MicroZed board available and no FlexRay module nor FlexRay

register-address header file are present. Therefore, the evaluation of the project shall be based on

investigation of the correct communication between the PC client and the server node. The server

register space shall be mimicked by a global array of 32-bit integer values and the client R/W

access request shall be performed on that array.

14

 The board definition files for the MicroZed board for Vivado IDE can be downloaded from [35]. The installation

procedure is described in Install Avnet Board Definition Files in Vivado 2014.2 v1.3.pdf file included in the download

package.

40

In most cases the evaluation of the correct operation of the developed software application shall

be performed manually by the user. Having the available information from the configuration JSON

data objects (which design is still to be established), the user shall predict the outcome and

compare it to the result of the application algorithm for a given use case. That includes the

following use cases:

¶ Parsing and composing of JSON data objects by both client and server applications

¶ Composition and decomposition of register values based on the available information ς

FlexRay parameter/status values, bit ranges and offsets

¶ Encoding/decoding of transmit/receive FlexRay messages

¶ R/W access ǘƻ ǘƘŜ Ǝƭƻōŀƭ ΨǊŜƎƛǎǘŜǊ ǎǇŀŎŜΩ ŀǊǊŀȅ

The evaluation of the TCP/IP communication shall be investigated with the help of suitable

software (e.g. WireShark). That includes investigation of the sizes of the ƳƛŎǊƻŎƻƴǘǊƻƭƭŜǊΩǎ ǊŜŎŜƛǾŜ

message buffer and the transmitted JSON objects. For that purpose the implementation of a small

test local server application shall be considered to mimic a second FlexRay node and provide

additional testing opportunities.

41

4. Concept

This chapter describes the options that were taken into account in attempt to find the solutions
that best correspond to the project requirements established in Chapter 3 Requirements Analysis.
That includes a detailed discussion over the considered approaches, their advantages and
disadvantages.

4.1 Configuration Data Objects

According to the general requirements the format of the configuration data objects is JSON. A

JSON structure consists of objects which bodies are defined by braces [27]. The first open brace

and its corresponding closing brace determine the root JSON object. The root object represents

the parent object of all nested JSON objects, referred as child objects. The internal JSON object

structure is based on key-value pairs, referred as tokens, which are separated by comma. The key

must be a unique in the scope of its parent object string, while the value can be one of the

following formats: string, number, boolean, null, array or another object.

The determined requirements regarding the internal JSON structure of the configuration data

object aim to ease the process of maintaining that object by humans, while in the same time a

significant amount of heterogeneous data to be contained there. Hence, a compromise between

complexity of the ƻōƧŜŎǘΩǎ internal JSON structure and ease of processing it needs to be made.

4.1.1 Files Content

The first subject of discussion is whether all the data to be present in one file or to be spread

across multiple files. FlexRay parameters are divided into two groups: cluster specific and node

specific15. Cluster specific are those parameters that have the same value in all nodes belonging to

that cluster. They are also referred as global parameters. An example for global parameters are

the number of macroticks in a communication cycle, duration of a static slot, duration of a minislot,

header CRC, etc. (2.3 FlexRay Protocol). Node specific parameters are local for the node and

can have different values in each node (e.g. number of samples per microtick, number of

microticks per macrotick, connected channel, etc.). Both groups are part of the FlexRay protocol

specification. Register names and their corresponding addresses are device specific, i.e. they

depend on the device architecture but not on the FlexRay protocol. Separating the configuration

data into three distinguishable groups grants the opportunity to implement a more appropriate

structure of the JSON configuration file.

First, let us consider having all cluster configuration information in one root JSON object (Example

5-1). The global cluster data, as well as the local and device specific data for each node, are

enclosed in a separate child JSON object. The advantage is that there is only one file in the system

for each cluster that is shared between the nodes, belonging to that cluster, and the amount of

redundant information is small. However, the overall size of data in this file is big and requires a

15

 For more information about the different types of FlexRay parameters and variables refer to Table A-1 in Appendix
A.

42

complex internal structure of each node JSON object. This increases the complexity of parsing

algorithms and decreases the readability and possibility of data reuse. On the other hand, having

all data in a single file is disadvantageous in terms of security ς damaging one file leads to loss of

big amount of information.

Example 5-1. Example JSON structure of configuration file

Another consideration is to have a separate configuration file for each node (Example 5-2). The

advantage is that the amount of data in each file is significantly reduced, which improves

readability and the possibility of data reuse. The process of parsing the JSON data is also improved

as only the needed file is loaded to the application memory. However, the bottlenecks of the

parser algorithm design come from the internal structure of the node JSON objects. Due to the

heterogeneous type of data contained there (protocol and device specific), its internal JSON

structure remains complex which does not bring much of improvement in the design of the

parsing algorithm, compared with the previous case. On the other hand, redundant information is

present as the JSON cluster object is the same in each configuration file related to that cluster.

From that follows that changing a single cluster parameter value requires update of every

configuration file referring to a node of that cluster.

Example 5-2. Example JSON structure of configuration files

43

A third consideration is to separate the configuration data for each node in three JSON files, based

on the three parameter groups that were distinguished ς cluster, node and device specific

(Example 5-3). One file contains only cluster (global) parameters and is shared between all nodes

belonging to the same cluster. For each node there is one file, containing local parameters and

status variables and another file containing the device specific information. The disadvantage with

this approach is that the overall number of files per cluster is increased. However, the separation

of data regarding different FlexRay protocol and hardware aspects significantly decreases the

complexity of the inner JSON structure and amount of data in each file. That leads to simplification

of the parser algorithms and increases the ability of data reuse and file maintenance. There is

minimum amount of redundant data and each file can be modified by the programmer

independently on the others16 and be reused for another FlexRay application.

Example 5-3. Example JSON structure of configuration files

16

 In fact there are certain dependencies, for example when a new node is added to a cluster its ID has to be added in
the Cluster file or in cases where a certain node parameter value is directly related to a cluster parameter value or vice
versa, e.g. gdBit = cSamplesPerBit * gdSampleClockPeriod [µs] (for details see [10] (Appendix A and B))

44

In Table 5-1 are summarized the advantages and disadvantages of each of the discussed cases:
C

a
se

 Number of
configurati
on JSON

files

Advantages Disadvantages

1
1 file per
cluster

¶ Only one file to work with

¶ Less number of files in system

¶ Small amount of redundant data

¶ Big amount of data concentrated
in one file

¶ Complex file structure

¶ Complex parser algorithm

¶ Hard to read/modify by human

¶ Low possibility of reuse

2
1 file per

node

Compared to Case 1:

¶ Less amount of data per file

¶ Less data loaded in application
memory

¶ Faster execution of parsing
process

¶ Better readability

¶ Increased possibility of data reuse

Compared to Case 1:

¶ More number of files in system

¶ Internal JSON object structure
complexity remains

¶ Parser algorithm complexity
remains

¶ Data redundancy

¶ Hard to update

3
3 files per

node

Compared to Case 1 and Case 2:

¶ Less amount of data per file

¶ Better internal JSON structure

¶ Simpler parser algorithm

¶ Small amount of redundant data

¶ Easier to read/update/modify

¶ Reusability

Compared to Case 1 and Case 2:

¶ Increased number of files in the
system

Table 5-1. Number of configuration JSON files - advantages and disadvantages

After summing up the advantages and disadvantages for each of the three cases, shown in Table

5-1, it is clear that Case 3 responds best to the project requirements established in Chapter 3.

4.1.2 Files Structure

The previous section was engaged with the conceptual decision of separating the data, required

for the configuration, control and monitoring processes, across three files. The current section is

related to the different approaches and decisions that were considered regarding the internal

JSON structure of each of these files. That includes discussion on the structural regulations and

constraints that has to be taken into account when creating the files.

The fact that JSON format supports nesting of JSON objects [27] gives more options when defining

a suitable internal structure for each file, as a response to the set project requirements. A good

internal JSON structure is expressed in a well defined hierarchical structure, depending on the

level of relation of data to different protocol or hardware aspects. The three data categories

specified ς cluster, node and device specific (4.1.1 Files) ς determine the content of each of the

three files, referred in general as Cluster, Node and Device files.

45

As next, the structural definition of each of these files is discussed. That includes a top layer view

of the constituent JSON objects and discussion on some structural constraints. For more detailed

examples of the Cluster, Node and Device JSON files refer to Appendix B.

Cluster file

The global FlexRay parameters can be subdivided into two groups ς system constants and cluster

configuration parameters ([10] Appendix A and B). The system constants refer to those FlexRay

protocol related parameters that must have the same value in every cluster of a FlexRay system.

bŀƳŜǎ ƻŦ CƭŜȄwŀȅ Ŏƻƴǎǘŀƴǘǎ ǎǘŀǊǘ ǿƛǘƘ ǘƘŜ ΨŎΩ ǇǊŜŦƛȄ όfor full list of prefixes refer to Table A-1 in

Appendix A). Global cluster parameterǎ ŀǊŜ ƛŘŜƴǘƛŦƛŜŘ ōȅ ǘƘŜ ǇǊŜŦƛȄ ΨƎΩ ŀƴŘ ǘƘŜƛǊ values must be

identical in the scope of the cluster. The feature of the FlexRay data to be subdivided into more

specific groups allows us to introduce a hierarchical structure that better corresponds to the

project requirements. It is implemented in separating the data into sub-JSON objects (child

objects), which naming relates to the data they contain (Example 5-4).

Apart from FlexRay related data, some additional information,

intended for the user and the operation of the parsing application,

is embedded inside each file. It is referred as general information

ŀƴŘ ǘƘŜ W{hb ƻōƧŜŎǘ ǿƘŜǊŜ ƛǘ ƛǎ ǇƭŀŎŜŘ ƛǎ ŎŀƭƭŜŘ άƎŜƴŜǊŀƭέ (Example

5-4). The structure of the άƎŜƴŜǊŀƭέ ƻōƧŜŎǘ17 in each of the three file

types is identical but its content differs. An example for such type of

data, contained in Cluster file, is the cluster ID18 (assigned by the

user for differentiation), a list of node IDs part of that cluster

(discussed later) and name of the communication protocol (based

on the requirement for future integration of other than FlexRay

protocols).

Example 5-4. Cluster file structure

An advantage of grouping the data is that at the end it is presented simply as chunks of key-value

pairs, which significantly simplifies the parser algorithm. The key of each JSON object token

represents a name, which can be defined according to the FlexRay protocol specification v2.1

notation [10] or by the programmer. When the token name is defined or modified by the

programmer it has to be accordingly updated in the software application. The JSON format

guarantees no order of tokens [27] so their order in the Cluster JSON file is not relevant.

One of the set requirements regarding the structure and contents of JSON data objects is the

hexadecimal representation of constant/parameter/variable values. In information engineering

the hexadecimal format is preferred as it contains information for the position and value of each

17

 In the text the naming of JSON objects is based on the name of the ļkeyĽ that corresponds to the object value.
18

 Each of the three file types is assigned an ID used for file differentiation. It is assigned by the programmer and is used

by the application to link the three files corresponding to a node. The IDs shall be unique so that for every node there is

only one possible combination of files.

46

bit. Therefore, hexadecimal format is supported by the application. However, as JSON notation

does not support hexadecimal numbers, the value must be presented as a string, i.e. surrounded

by quotesΦ CƻǊ ǳǎŜǊΩǎ ŎƻƳŦƻǊǘ decimal representation is also allowed by the parser algorithm.

Therefore, the user is free to choose the number format representation of constant/parameter

values.

Node file

The FlexRay protocol data that may differ in each node of a cluster is stored in the Node JSON file.

Unlike the Cluster file, where the data is separated according to its relation to the FlexRay protocol,

in the Node file data is structured, depending on the purpose and relation of data to different

register sections (Example 5-5). The reason is the better relation to the Device file, where data is

organized according to register grouping (see next section).

Lƴ ǘƘŜ άƎŜƴŜǊŀƭέ W{hb ƻōƧŜŎǘ ƛǎ ǇƭŀŎŜŘ ǘƘŜ ƎŜƴŜǊŀƭ

information about the node. That includes an ID that is used

for differentiation of the Node files. It is assigned by the

programmer who decides whether it shall be unique in the

scope of the current cluster or in the whole FlexRay system

(if more than one cluster is present). Every node is assigned

an IP address that is unique in the scope of the FlexRay

ƴŜǘǿƻǊƪΦ ¢ƘŜ ƭŀǎǘ ǘƻƪŜƴ ƻŦ ǘƘŜ άƎŜƴŜǊŀƭέ ƻōƧŜŎǘ ƛǎ ǘƘŜ ID

assigned to the corresponding Device file (discussed later).

The άŎƻƴǘǊƻƭέ W{hb ƻōƧŜŎǘ ƘƻƭŘǎ ǘƘŜ part of the FlexRay

protocol data, which is related to the configuration of the

control registers for the Communication Controller (CC)

(2.3.1 Communication Controller) and message buffers in

message RAM (2.3.3 E-Ray). Lƴ ǘƘŜ ǎŀƳŜ ǎŜƴǎŜΣ ǘƘŜ άǎǘŀǘǳǎέ

object relates to the status variables for the CC and the

message RAM buffers. Every message buffer is configured

via the Input Buffer. The configuration data for each buffer

ƛǎ ǇƭŀŎŜŘ ƛƴǎƛŘŜ ǘƘŜ άƳŜǎǎŀƎŜψōǳŦŦŜǊǎέ W{hb ƻōƧŜŎǘΦ

Example 5-5. Node file structure

The italics notation of token keys means that in the file those keys are replaced with an

appropriate naming19Φ Lƴ ǘƘƛǎ ŎŀǎŜ ǘƘŜ άfirst_mb_numberέ is ǎƛƳǇƭȅ άлέΣ ǘƘŜ άsecond_mb_numberέ

άмέ ŀƴŘ ǎƻ ƻƴΦ !ǎ ǘƻƪŜƴ ƪŜȅǎ Ƴǳǎǘ ōŜ ǎǘǊƛƴƎǎΣ ǘƘŜȅ ŀǊŜ ŀƭǿŀȅǎ ǎǳǊǊƻǳƴŘŜŘ ōȅ quotes. FlexRay

commands are ǇƭŀŎŜŘ ƛƴǎƛŘŜ ǘƘŜ άŎƻƳƳŀƴŘέ W{hb ƻōƧŜŎǘΦ The command names are standard for

the FlexRay protocol but their corresponding values might differ among the variety of node types.

19

 This is valid for all following examples from this section.

47

The last JSON token of the Node file does not have a JSON object as a corresponding value but an

array containing the values required for unlocking the registers after the configuration process has

finished ([11] p. 24). These values are placed in an array for the reason that their order must

match a defined sequence of write accesses to the Lock register.

¢ƘŜ ǎǘǊǳŎǘǳǊŜ ƻŦ ǘƘŜ άŎƻƴǘǊƻƭέ ŀƴŘ άƳŜǎǎŀƎŜψōǳŦŦŜǊǎέ ŎƘƛƭŘ ƻōƧŜŎǘǎΣ ŀǎ ǿŜƭƭ ŀǎ ǘƘŜ άŎƻƳƳŀƴŘέ

object, is based on key-value tokens. The key is the name of a FlexRay parameter/command and

its corresponding value can be presented as a hexadecimal string or decimal integer. Unlike them,

ǘƘŜ άǎǘŀǘǳǎέ ŎƘƛƭŘ W{hb ƻōƧŜŎǘǎ ŀǊŜ structured differently. The values of status variables are

represented as JSON objects, containing the possible status conditions related to that variable

(Listing 4.1). As the value determines the status, the key-ǾŀƭǳŜ ǇŀƛǊ ƛǎ ōŀǎŜŘ ƻƴ άǾŀƭǳŜέ-άǎǘŀǘǳǎέ

notation, where regardless whether the value is represented in hexadecimal or decimal format, it

must be surrounded by quotes as it corresponds to the key of the token.

άƳōψǎǘŀǘǳǎέΥ ϑ

"vSS!ValidFrameA": {

 "0x00": "No valid frame received on channel A",

 "1": "Valid frame received on channel A"

},

Χ

}

Listing 4.1. JSON structure of a status variable object

Device file

The purpose of the Device file is to provide a link between the FlexRay protocol data, contained in

the Cluster and Node files, and the hardware dependant register space. In response to the

requirement that most of the algorithm logic shall be done on the richer in resources PC client, the

Device file has to provide all the information needed by the application for composing data objects

that contain minimum amount of overhead and are in ΨǊŜŀŘȅ-to-ǳǎŜΩ ōȅ ǘƘŜ FlexRay server

application form (still to be determined). That includes:

¶ Register-address map

¶ Position of each FlexRay parameter/variable inside the register

¶ Sequence of register accesses

The ƴƻŘŜΩǎ ƳŜƳƻǊȅ ǎǇŀŎŜ is hardware specific and the link between the register names and their

corresponding addresses has to be included in the Device file. However, this map already exists in

one of the device header files. Therefore, this information is automatically extracted by the

application. This increases the algorithm complexity but the only additional data that is included in

the Device file is the name of that header file.

48

The position of each FlexRay parameter/variable inside its corresponding register is defined via

specifying the allowed for that

parameter/variable bit range and the offset

of the base register address.

As JSON format represents an unordered

set of tokens it does not guarantee any

sequential order. Therefore, for defining a

certain order of sequential register

accesses two approaches are considered.

The first approach is to add indexing inside

the JSON objects. The disadvantage is that

this adds an additional payload and

complexity in the parser algorithm and the

designing of the Device file as changing one

index is followed by changes in the

subsequent indexes, too. The second

approach is to use a notation that

guarantees sequential order. In JSON

format the only element that guarantees

order is the array. This adds only a minor

amount of additional payload (two brackets)

but the main advantage is that editing the

array does not affect the rest of its

elements. This array notation is required

only for JSON objects related to more than

one register.

Example 5-6. Device file structure

The registers in the Device file are grouped according to their relation to different FlexRay protocol

aspects (Example 5-6). ¢ƘŜ ƻƴƭȅ ŜȄŎŜǇǘƛƻƴǎ ƛǎ όŀǎ ōȅ ǘƘŜ /ƭǳǎǘŜǊ ŀƴŘ bƻŘŜ ŦƛƭŜǎύ ǘƘŜ άƎŜƴŜǊŀƭέ

object, which holds the device specific information and the name of the header file that defines

the macros for the register addresses of the FlexRay module. The purpose of the assigned by the

programmer ID is for file differentiation and provides a link to the corresponding Node file (18).

For a full view of an example Device file, refer to Appendix B.

Those JSON objects that are related to only one register have the notation shown in Listing 4.2.

¢Ƙŀǘ ƛǎ ǘƘŜ ŎŀǎŜ ǿƛǘƘΥ άŎƻƳƳŀƴŘέΣ άǎǘŀǘŜέΣ άƭƻŎƪέ ŀƴŘ ŀƭƭ ŜȄŎŜǇǘ άƘŜŀŘŜǊέ ƻōƧŜŎǘ ŦǊƻƳ

άƛƴǇǳǘψōǳŦŦŜǊέ ŀƴŘ άƻǳǘǇǳǘψōǳŦŦŜǊέ ƻōƧŜŎǘǎ ό9ȄŀƳǇƭŜ р-6).

άobjectέΥ ϑ
 άRegisterέΥ ϑϒ
 }

Listing 4.2. JSON structure of an object related to one register

49

JSON objects, containing more than one register, shall follow an array signature that implements

the sequential register access order. That array holds the JSON objects ordered in their desired

order of access (Listing 4.4).

 "object": [{
 "Register 1": {}
 },
 {
 "Register 2": {}
 },
 Χ
 {
 "Register N": {}
 }]
Listing 4.4. Array structure of a JSON object related to multiple registers

This array notation is valid only for JSON objects20 containing more than one register object

(Example 5-6):

¶ άŎŎψŎƻƴǘǊƻƭέ ŀƴŘ άƳōψŎƻƴǘǊƻƭέ ƻōƧŜŎǘǎ ǇŀǊǘ ƻŦ άŎƻƴǘǊƻƭέ ƻōƧŜŎǘΤ

¶ άŎŎψǎǘŀǘǳǎέ ŀƴŘ άƳōψǎǘŀǘǳǎέ ƻōƧŜŎǘǎ ǇŀǊǘ ƻŦ άǎǘŀǘǳǎέ ƻōƧŜŎǘ;

¶ άƘŜŀŘŜǊέ ƻōƧŜŎt ƻŦ άƛƴǇǳǘψōǳŦŦŜǊέ ŀƴŘ άƻǳǘǇǳǘψōǳŦŦŜǊέ ƻōƧŜŎǘǎΦ

The relation between the register and all parameters/variables that are part of that register,

together with their bit range and offset, is hierarchically structured as shown in Listing 4.3. The

register name is a parent object of its related parameters. The order of parameters inside that

object has no relevance but in their corresponding array values the bit range comes first and then

ǘƘŜ ƻŦŦǎŜǘΦ ¢ƘŜ ƻƴƭȅ ŀŎŎŜǇǘŜŘ ƴǳƳōŜǊ ŦƻǊƳŀǘ ŦƻǊ ǘƘŜ ΨǊŀƴƎŜΩ ŀƴŘ ΨƻŦŦǎŜǘΩ ƛǎ ŘŜŎƛƳŀƭΦ

 άRegisterέΥ ϑ

 άparameter 2έΥ ώrange, offset],

 άparameter 3έΥ ώrange, offset],

 άparameter 1έΥ ώrange, offset],

 Χ

 }

Listing 4.3. JSON structure of a register object

¢ƘŜ άŘŀǘŀέ array holds the data registers for the Input and Output Buffers (2.3.3 E-Ray). The

άƴŜǿψŘŀǘŀέ array refers to the registers dedicated to inform the Host (2.3.1 Communication

Controller) that new data is available for processing. The άƳōψǎǘŀǘǳǎψŎƘŀƴƎŜŘέ array that there is

a change in the message buffer status.

20

 As the value, corresponding to the key is an array but not an object, it is not fully correct to call them objects.

Nevertheless, for consistency they are still referred as JSON objects as the array notation is added as a response to a

project requirement.

50

All FlexRay parameters and variables that are present in the Cluster and Node files should be

matched to their corresponding registers in the Device file. Their naming must be the same, taking

into account case sensitivity. There are some variables, however, that are present in the Device file

but do not exist in the other two files. The reason is that these variables do not have any

predefined status condition related to them but the value itself is of interest for the user ς for

example time duration, slot counter, cycle counter, etc. In Device file, these variable names are

preceded by an asterisk (e.g. "*vRemainingColdstartAttempts"). This notation is used by the

application algorithm to distinguish between the different type of variables, as well as for user

reference when maintaining the file. In cases where the variable name has no relevance for the

application, its name can be custom or just an asterisk used as a placeholder όάϝέύΦ

4.2 Communication Data Objects

Communication data objects are used for transmitting data between the PC client and the

participants in the FlexRay network. According to the general project requirements, their design

shall be based on the JSON format notation (3.1 General Requirements). They are composed by

both client and server applications during runtime and depending on the communication direction

with respect to the request invoker (client) are differentiated request (transmit) data objects and

response (receive) data objects. The request data objects can be further differentiated according

to the requested by the client register access to write request objects and read request objects.

In the current chapter are discussed the different approaches considered, regarding the structure

and contents of the R/W request and response data objects in attempt to maximally fulfil the set

project requirements.

One of the established requirements, regarding the structure and contents of the communication

data objects, aims to maintain higher communication speeds by providing the data with minimum

amount of overhead. That implies that the JSON data objects shall contain only relevant for the

desired register access data ς where to read/write (register address) and what to write (register

value) (Listing 4.5)Φ !ǎ ǘƘŜ ǊŜŀŘ ǊŜǉǳŜǎǘ ƻōƧŜŎǘǎ Řƻ ƴƻǘ ƘŀǾŜ ǘƘŜ ΨǿƘŀǘΩ ǇŀǊǘΣ ǘƘŜ ǎǘǊǳctural

constraints are presented only according to the write request objects. Once a suitable structural

standard, that best responds to the project requirements, is defined for the write request objects,

a discussion on the design of the read request and response data objects will be made.

{
 άaddress 1έΥ έ value 1έΣ
 άaddress 2έ Υ άvalue 2έΣ
 Χ
}
Listing 4.5 JSON write request object containing only address-value pairs

All the information needed from the client application to compose the shown in Listing 4.5 request

JSON object is contained in the Cluster, Node and Device files (4.1.1 Configuration Data Objects).

The register address is defined by the macros in the register header file, while the register value is

51

automatically calculated by the client application by superposing all related to that register

parameter values on their defined positions inside the register.

The exposed approach regarding the design of the communication data objects (Listing 4.5),

tempts to have a minimum amount of overhead. There is, however, an issue with this approach.

According to one of the project requirements, any major scripting and decision taking procedures

shall be avoided on the FlexRay server application. Therefore, the client shall pass the data to the

ǎŜǊǾŜǊ ƛƴ ŀ ΨǊŜŀŘȅ-to-ǳǎŜΩ ŦƻǊƳ όwhich in this case it does) and in the desired sequential access

order. And here comes the problem ς this JSON structure does not guarantee that the tokens will

ōŜ ŜȄǘǊŀŎǘŜŘ ƛƴ ǘƘŜ ǎŀƳŜ ƻǊŘŜǊ ōȅ ǘƘŜ ǊŜŎŜƛǾŜǊΩǎ ǇŀǊǎŜǊ.

In order to design a JSON structure that guarantees order, a similar to the construction of some of

the Device file JSON objects approach is taken. An array structure is embedded inside the root

JSON object (Listing 4.6). Each of the tokens is surrounded by braces and represents an

independent JSON object (as arrays cannot hold JSON tokens as values). ¢ƘŜ ΨƪŜȅΩ ƻŦ the root

token can be any custom defined name (in Listing 4.с ƛǎ άϝέύ ǘƘŀǘ serves as a placeholder. That

approach adds some additional overhead but guarantees that the JSON tokens will be extracted in

their sequential array order.

{
 άϝέΥώ
 ϑάaddress 1έ Υ έǾŀƭǳŜ 1έϒΣ
 {άaddress 2έ Υ άǾŀƭǳŜ 2έ},
 Χ
]
}
Listing 4.6 JSON write request object with embedded array structure

When implementing the parsing algorithm for the server application with the help of an external

JSON library (discussed in Section 5.2), some disadvantages regarding this structure were realized.

¢ƘŜ Ƴŀƛƴ ŘƛǎŀŘǾŀƴǘŀƎŜ ƛǎ ǘƘŀǘ ǘǊŀǾŜǊǎƛƴƎ ǘƘŜ ǘƻƪŜƴǎ ōȅ ΨƪŜȅΩ ƛǎ ǎǳǇǇƻǊǘŜŘ ōȅ ǘƘŜ ƭƛōǊŀǊȅ ŀƴŘ ƳǳŎƘ

easier to implement. In this casŜ ǘƘƻǎŜ ΨƪŜȅǎΩ ŀǊŜ ŀŘŘǊŜǎǎŜǎ ŀƴŘ Ŏŀƴƴƻǘ ōŜ ƪƴƻǿƴ ƛƴ ŀŘǾŀƴŎŜΦ

Therefore, the final version of the structure of a communication JSON data object is the one

shown in Listing 4.7. Addresses and their corresponding values are placed at the same index in the

two arrays, ordered according to ǘƘŜƛǊ ŘŜǎƛǊŜŘ ŀŎŎŜǎǎ ǎŜǉǳŜƴŎŜΦ ¢ƘŜ W{hb ΨƪŜȅΩ ƴŀƳŜǎ ς Ψ!Ω ŀƴŘ Ψ±Ω

όǎǘŀƴŘ ŦƻǊ Ψ!ŘŘǊŜǎǎŜǎΩ ŀƴŘ Ψ±ŀƭǳŜǎΩύ ς are intuitively chosen and are known by both client and

server applications. This way the up-mentioned disadvantage is removed.

{

 ά!έΥ ώŀŘŘǊŜǎǎмΣ ŀŘŘǊŜǎǎнΣ ŀŘŘǊŜǎǎоΣ ΧϐΣ

 ά±έΥ ώǾŀƭǳŜмΣ ǾŀƭǳŜнΣ ǾŀƭǳŜоΣ Χϐ

}

Listing 4.7 Final structure of write request JSON data object

52

The established JSON structure for the write request data objects can be easily integrated to the

read request data objects. The difference is in the contents ƻŦ ǘƘŜ Ψ±ŀƭǳŜǎΩ ŀǊǊŀȅΥ ƛŦ ǘƘŜ ά±έ ŀǊǊŀȅ

contains values ς write those values to the addresses from the ά!έ ŀǊǊŀȅ (write request)Τ ƛŦ ǘƘŜ ά±έ

array is empty ς fill it with the values read from the addresses from the ά!έ ŀǊǊŀȅ (read request).

Therefore, the response data object will have the same structure as the write request object

(Listing 4.8).

Read request JSON object Write request/Response JSON object

{ {

 ά!έΥώŀŘŘǊŜǎǎмΣ ŀŘŘǊŜǎǎнΣ ŀŘŘress3], ά!έΥώŀŘŘǊŜǎǎмΣ ŀŘŘǊŜǎǎнΣ ŀŘŘǊŜǎǎоϐΣ

 ά±έΥώϐ ά±έΥώ value1, value2, value3]

} }

Listing 4.8 JSON structure of R/W request and response data objects

If an error has occurred during the process of parsing/composing the request/response JSON

object, an error object is returned (Listing 4.9). It has the agreed JSON structure but no values in

either array.

 ϑ ά!έΥώϐΣέ±έΥώϐϒ

Listing 4.9 Error JSON object contains no values in its arrays

After a JSON structure for the communication data objects is established, the next step is to

discuss the representation format of the register addresses and values. As defined by the project

requirements, the number format representation is hexadecimal. In this case both addresses and

ǘƘŜ ǾŀƭǳŜǎ ŀǊŜ ǊŜǇǊŜǎŜƴǘŜŘ ŀǎ ΨǎǘǊƛƴƎΩΣ ŀǎ W{hb ŦƻǊƳŀǘ ŘƻŜǎ ƴƻǘ ǎǳǇǇƻǊǘ ƘŜȄŀŘŜŎƛƳŀƭ

representation of numbers [27]. The software application takes care for the correct parsing and

composing of the hexadecimal strings.

Configuration data may be too big for the receive buffer if sent in one JSON object. That

contradicts with the requirement that the algorithm implementation shall ensure no receiver

buffer overflows during transmission. On the other hand, in some cases time delays between

consecutive write accesses during configuration are required. Therefore, a request-response

communication design is considered. Instead of sending the configuration data over to the node

in one go, the client composes and transmits a JSON object containing one register address and

one register value and waits for a response from the server before sending the next data object.

This procedure is repeated in the background without further user interaction until all

configuration data is sent. This method increases the overall configuration time but due to the fast

Ethernet speed of 1 Gbit/s it is barely noticeable. However, the advantages are that relatively

small JSON objects are transmitted over the network that guarantees no buffer overflows, and

time delays between consecutive write accesses are provided.

53

4.3 Software Design

In this section are discussed the conceptual decisions that were taken, regarding the design of a

software application that best responds to the set project requirements. That involves discussion

on the ŦŜŀǘǳǊŜǎ ŀƴŘ ǘƘŜ ƻǳǘƭƻƻƪ ƻŦ ŀ ΨǳǎŜǊ ŦǊƛŜƴŘƭȅΩ ƎǊŀǇƘƛŎŀƭ ǳǎŜǊ ƛƴǘŜǊŦŀŎŜ όD¦LύΣ together with

the programming design practices that are implemented in the client and server application.

4.3.1 Graphical User Interface

According to the established project requirements, regarding the design of a graphical user

interface (GUI), it shall provide the user with control functionalities and be a helping tool for

performing the following services:

¶ Provide the configuration data contained in the config files to the application

¶ Connect to a particular node without hardware interventions

¶ Perform initial node configuration

¶ Control the ƴƻŘŜΩǎ Communication Controller by sending FlexRay commands

¶ Monitor nodeΩǎ message buffers

¶ Display message buffer contents and save it to file

The first considered option is to create a simple GUI based on a command prompt design. The user

enters text commands that are translated into computer commands and executed in the

background by the client application. The advantage with this approach is that it requires less time

invested in the implementation of the GUI, as it contains only a few components, most important

of which are: one text field for command input, one button to send the command to node and

another text field for displaying the received content. However, although being so simple in design,

it requires deeper knowledge of the FlexRay protocol as the user has to know the purpose and

syntax of every FlexRay command. Also, besides the standard FlexRay commands, this approach

requires the implementation of some custom user defined commands for the different use cases,

like: connecting to a node, loading configuration data, save data to file and so on. Considering the

variety of use cases, the amount and complexity of these commands may arise. Therefore, this

approach contradicts with the project requirement that this software shall offer a platform that is

easy and simple to work with, not targeted only to a qualified audience. Another inconsistency

with the project requirements is that accepting user input is usually accompanied by validating

algorithms that adds an additional load over the complexity of the parsing algorithm design.

The second option is the front end of the user interface to be based on a user-friendly button-

controlled design that enables the user to perform complex operations with a simple button click.

That adds complexity in the GUI design but eases the operation of the software and hence enables

a wider range of users to work with it, which corresponds better to the project requirements. In

addition to that, the possibilities of user control input are limited to selections of pre-coded

command definitions (Lists, checkboxes, buttons), which reduces the needs for implementation of

input validation algorithms. That is the chosen for this project GUI design.

54

4.3.2 Operation Control Flow

Operation control flow represents a defined pathway for sequential execution of individual
requests, instructions, statements and so on [29]. All three fundamental, for this project,
processes of initial configuration of the FlexRay registers of a node, control ƻŦ ǘƘŜ ƴƻŘŜΩǎ
Communication Controller (CC) and monitoring of the FlexRay message buffers, follow a
predefined control flow. According to the project requirements and the established design of the
GUI (discussed in the previous section), each of these processes shall be executed in the
background after user initiation. Therefore, their control flow shall be embedded in the code by
the programmer or be guided by the user via button clicks, selections and so on.

The possibility of implementing some scripting procedure in the FlexRay server application

algorithm, determining the flow of actions, contradicts with the established project requirements

for maintaining the resource power of the PC client. Therefore, the client is the one to determine

the control flow of all three processes.

Configuration and Control processes

Configuration is a process that follows a certain control flow that shall be accompanied by time
delays between consequent register write accesses [28]. In general, for any FlexRay node, the
overall configuration process can be divided in three steps:

1. Pre-configuration process ς ōǊƛƴƎƛƴƎ ǘƘŜ ƴƻŘŜΩǎ // ƛƴǘƻ ǘƘŜ config state and clearing the
message RAMs.

2. Configuration process ς consequential execution of write accesses to the FlexRay registers.
3. Post-configuration process ς execution of procedure for unlocking the FlexRay registers for

access and transition to ready state.

Step 1 is part of the overall control process,
ǿƘƛŎƘ ƛǎ ŜȄǇǊŜǎǎŜŘ ƛƴ ŎƻƴǘǊƻƭ ƻŦ ǘƘŜ ƴƻŘŜΩǎ //
via FlexRay CHI21 commands. In general there
are two possible routes to take in order to get
the node into the config state without the need
of a hard reset. The first route is via ready state
and the second route is via halt and default
config states (Fig 4.1). Step 2 represents writing
generated by the application or defined by the
user values to the respective register addresses,
based on the data provided in the node
configuration files. Step 3 is based on
sequential write accesses to a dedicated lock
register and transition to ready state.

Fig 4.1 Possible transition routes to config state

21

 Controller Host Interface (2.3.1 Communication Controller)

55

There are two options considered, regarding the implementation of the control flow in the

software operation. The first option is to grant the control flow in the hands of the user (Fig 4.2

(a)). For that purpose the GUI provides possibility for the user to request write access to registers

and control the CC by sending FlexRay CHI commands and acquiring the current CC state. This way

it is the user who decides which route (Fig 4.1) to take and access to which register to request next.

The other option is the control flow to be embedded in the client application algorithm (Fig 4.2

(b)). That increases the required implementation time and complexity but eases the operation

process. As both approaches have their advantages and complement each other, both are

implemented in the software.

(a) (b)

Fig 4.2 Configuration control flow (a) in the hands of the user; (b) embedded in the code

Monitoring process

The monitoring process is expressed in acquiring data from particular message buffers, for which

ǘƘŜǊŜ ƛǎ ŀ ΨƴŜǿ ŘŀǘŀΩ ŦƭŀƎ ǊŀƛǎŜŘ ƛƴ ǘƘŜ ŘŜŘƛŎŀǘŜŘ ŦƻǊ ǘƘŀǘ ǇǳǊǇƻǎŜ ΨbŜǿ 5ŀǘŀΩ ǊŜƎƛǎǘŜǊǎ [11]. As it

can be predicted neither by the user, nor by the programmer when new data is received by the

FlexRay node, the only option considered, regarding the implementation of the monitoring

process, is the control flow to be embedded in the application code. Once a connection between

the PC client and the FlexRay node is established, the control of process initiation and abortion, as

well as saving of data to files, is provided by the user, while the flow of instructions for acquiring

message buffer data is accomplished due to the procedure described in Host Read Access via

Output Buffer.

56

4.3.3 Programming Model

According to the project requirements, due to the lack of a real FlexRay system, this project is

intended to be extended and finalized in the future by someone else. Therefore, good

programming techniques are required, in order to ease the process of reading and understanding

the code. In this section are discussed the different approaches considered, regarding the

structure and implementation of the client and server applications.

For the client application the Model-View-Controller (MVC) design pattern is used [30]. MVC is a

software engineering pattern where the user interactions are strictly separated from the algorithm

logic. The View is a static component, typically a GUI that accepts user commands and passes

them to the Controller. The Controller requests data to and from the Model and updates the View.

Here is where the algorithm logic and decision taking is done. The Model executes the Controller

requests and provides data that could be read from a file, result of calculations, measurements,

enumeration and so on.

Fig 4.3. Model-View-Controller design pattern

From a programming point of view, separating the program code into three interconnected parts

gives a structure that increases the code readability and results in easier modifications of each

part without affecting the other two. Each part is independent and therefore can be reused in

other applications.

One of the reasons for choosing JSON, as the established data format for communication between

the PC client and the FlexRay network participants, is that it has a wide support of tested and open

sourced libraries in various programming languages. Referring to an external library that is

approved and tested by other programmers, saves us time as it decreases the complexity in the

development of the algorithms for processing the JSON data objects.

57

There are various JSON libraries written in Java language that have proven abilities in processing

JSON data and can be freely used. Some of the most popular among the programmers and hence

considered as possible candidates are: JSON.simple, GSON, Jackson and JSONP [31]. Each of these

libraries has some advantages over the others in different use cases and environments. The

criterion, for choosing the best for the client application JSON library, lies in the project

requirements. For our project the chosen library is expected to be able to process JSON data of

different sizes equally good in terms of speed and convenience. The size of the JSON data objects

may vary from just a few bytes to tens and hundreds of kilobytes (for the configuration files).

Comparing the four candidate libraries shows that JSON.simple performs equally well for different

sizes of JSON data [31]. Besides that it is lightweight, flexible and has no dependencies on other

external libraries [32]. That makes JSON.simple the most appropriate option for our project.

In addition to the criterions for selecting the most appropriate JSON library, set for the client

application, for the server application an important requirement is the lightweight. Here the

choice is eased by the fact that such a research was already made in a previous project assignment

[26]. It has shown that the library that corresponds best to the project requirements ƛǎ ǘƘŜ ΨƧǎƳƴΩ

(proƴƻǳƴŎŜŘ ƭƛƪŜ ΨƧŀǎƳƛƴŜΩύ ƭƛōǊŀǊȅΦ

The jsmn library [33] is written in C language by Serge Zaitsev and is specially designed for

resource limited embedded system environments. It is highly portable as it involves no external or

non standard C libraries. It uses no memory allocation and contains no token data but holds only

the token boundaries and the number of child objects for each JSON object, which allows

traversing to the token of interest. It is designed to work even with erroneous data which makes is

robust against data losses that can occur during the transmission.

58

5. Implementation

The implementation of a software application refers to the realization of the software

requirements on a programming level and its detailed discussion might include the necessity of a

deeper knowledge of the programming language used. This will significantly overload the section

ǿƛǘƘ ƛƴŦƻǊƳŀǘƛƻƴ ǘƘŀǘ ƛǎ ōŀǊŜƭȅ ƻǊ ƴƻǘ ŀǘ ŀƭƭ ǊŜƭŀǘŜŘ ǘƻ ǘƘŜ ǇǊƻƧŜŎǘΩǎ ǘƻǇƛŎΦ Therefore, in this chapter

are discussed more general overviews of the overall code structure and design of both client and

server applications and the sequential flow of some of the most fundamental for this project use

cases ς establishing a TCP/IP connection between the PC client and the FlexRay server,

configuration of the FlexRay node and monitoring of its message buffers. For more details,

regarding the implemented procedures and functions, refer to the comments provided in the

programming code.

5.1 Client Application

Following the concept decision that is made, regarding the implementation of the client

application, the structure and relation of Java classes is according to the Model-View-Controller

(MVC) design pattern and is visualized in Fig 5.1.

Fig 5.1. Class diagram for the client application, based on the MVC model

The Controller part of the MVC model plays the role of a mediator between the user interactions

and the services executed in the background. Its code and complexity arises having in mind the

complex nature of the project. Therefore, the Controller functionalities are separated among

multiple controller classes. Each of these sub-controllers manages a certain part of the Model

under the guidance of a main Controller class. Inside the main Controller class there are two inner

59

classes ς Input Buffer and Output Buffer (not shown on the figure). Their purpose is to further

improve code structure, as they hold only functions that are directly related to requesting read

and write access to the message buffers of the nodeΩǎ ƳŜǎǎŀƎŜ w!a.

The purpose of the Model part is to provide the requested by the Controller data and services. The

Cluster, Node and Device classes contain functions related to the parsing of the JSON data

contained in the three configuration JSON files, established in Section 4.1. The content of each file

is loaded in the application memory and broken down into its constituent JSON objects. That

necessitaǘŜǎ ǘƘŜ ǎǘŀƴŘŀǊŘƛǎŀǘƛƻƴ ƻŦ ǘƘŜ W{hb ƻōƧŜŎǘ ΨƪŜȅΩ ƴŀƳŜǎΣ ŀǎ per their definition established

in 4.1.2 Files Structure, and providing them to the application via the Keys enumeration. That

implementation occupies more memory but increases the speed when traversing for the JSON

token values. This approach is a consequence to the requirement that the program

implementation shall be targeted to the speed of execution of the parsing algorithms.

The Parser and Composer classes are dedicated to functionalities, related to the parsing and

composing of communication JSON data objects (4.2 Communication Data Objects). The TCP

Connect class is responsible for establishing a connection between the PC and the desired node.

All file manipulations are managed by the Files Manager class. The file directories have to also be

provided to the application and are hard coded in the File Directories enumeration.

Use cases

Connection

After selecting the desired node ID (provided in a list of IDs), its IP address and port number, it is

bounded to, are automatically displayed in text fields. The user can then request a connection to

the FlexRay node ōȅ ǇǊŜǎǎƛƴƎ ǘƘŜ Ψ/ƻƴƴŜŎǘΩ ōǳǘǘƻƴ ǇǊƻǾƛŘŜŘ ōȅ ǘƘŜ D¦LΦ LŦ ŎƻƴƴŜŎǘƛƻƴ is successful,

the icon is displayed next to the button. When the connection is terminated the icon

disappears as soon as the client attempts to send data.

In order to expand the testing possibilities, a small local server application is implemented. It

basically does the following: opens a TCP/IP socket on the local server with IP address 127.0.0.1 on

an assigned by the programmer port, listens and accepts messages, modifies them depending on

the test case and sends those modified messages back. The purpose of this application is to mimic

a second FlexRay node in order to test the functionality of the software to successfully disconnect

from one node and connect to another. Another useful purpose is to create some additional

testing opportunities by making use of the provided Java functions.

Configuration

In 4.3.2 Operation Control Flow are introduced two possibilities of performing initial configuration

of the FlexRay registers of a node. The first one is directed by the user and is realized in requesting

write and read accesses to registers specified by the user. In the second option the whole

configuration process is embedded and once requested, it is automatically performed by the

60

application in the background. The user is being informed via status messages whether the

operation was successful or not. Fig 5.2 depicts that automated process for initial node

configuration.

Fig 5.2. Activity diagram of the configuration process

The pre-configuration process is expressed in ŀǘǘŜƳǇǘ ǘƻ ŜǎǘŀōƭƛǎƘ ǘƘŜ ƴƻŘŜΩǎ ŎƻƳƳǳƴƛŎŀǘƛƻƴ

controller (CC) into the config state (2.3.1 Communication Controller). If the node is not set into

that state an error message is displayed and the process exits. However, if the node has entered

config state, the client starts sending configuration data in the order specified in the Device JSON

file (Device file). When all configuration data has been sent and written into ǘƘŜ ƴƻŘŜΩǎ CƭŜȄwŀȅ

registers, the procedure of exiting config and entering ready state is started. It is expressed in a

sequential writing of predefined values to a dedicated Lock register (for details see [11] p. 24).

Depending on whether the CC has entered ready state the appropriate message is displayed and

the process is exited.

