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1. Introduction 

Automobiles have long become much more than just a mean of transporting people. Each vehicle 
nowadays represents a system in its own. Regardless of the brand or country of manufacture, each 
car is equipped with a variety of Electronic Component Units (ECU), which communicate 
constantly as long as the engine is on and some of them continue even after it goes off. The role of 
those ECUs are to support the driving control by providing security and defence mechanisms in 
critical situations, as well as insuring comfort for the driver and his fellows (Fig 1.1).  

Nowadays, the average modern automobiles are supported by systems that are reliable for: 

¶ Breaks - antilock braking system (ABS), auto braking system, power brake booster 

¶ Electronic Stability Program (ESP) 

¶ Parking ς cameras, distance sensors 

¶ Lights ς light, rotary sensors 

¶ Dashboard, navigation systems, infotainment, etc. 

¶ Airbags, windows, mirrors, seats, heat control, etc. 

 

 
Fig 1.1 Example of services provided in nowadays vehicle 

The growth of demand for more extras provided in the car requires the invention of more and 
more complex system protocols, able to support high-rate but in the same time reliable 
communication between increasing number of ECUs over a shared communication medium. 
Parallel with that rises the need of implementation of external stand-alone software applications 
that provide monitoring and controlling functionalities and testing the capabilities of the system. 
As a part of the Urban Mobility X-by-Wire(less) project, introduced by the HAW Hamburg [1], the 
current project is focused on the development of such software application that represents a 
platform for establishing a connection and providing a bidirectional communication between a 
computer and a microcontroller device. The microcontroller is assumed to be a part of a system, 
exchanging data according to the FlexRay communication protocol [2] standards.  
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FlexRay is one of the latest communication standards used in automotive applications. It is popular 
with its increased bandwidth (compared with its predecessors) and is used in applications that 
require a real-time communication, combining both event and time triggered Media Access 
Control (MAC) mechanisms for better use case adaptability. FlexRay communication provides high 
fault-tolerance implemented in dual channelling (the two channels are referred as Channel A and 
Channel B). Every ECU, part of a FlexRay system, is referred as a node and can be connected to 
only one or both channels, depending on its purpose requirements. All nodes (up to 64) connected 
to the same wire (bus) form a FlexRay cluster. 

The current project aims to design and implement a software application that enables sending and 
receiving data to and from FlexRay nodes, based on the TCP/IP communication standard. The 
hardware connection between the computer and the nodes of a FlexRay cluster is realized with 
the help of cables and a network switch [3] (Fig 1.2). The switch is responsible for the correct 
addressing of data packets to the connected nodes without further hardware interventions. To 
enable wider range of ECU types with different architecture and manufacturer, the structure of 
the communication data objects has to be determined and standardized according to the project 
requirements.  

 
Fig 1.2 TCP/IP connection between a PC client and a FlexRay cluster via a network switch 

The motivation for starting this project is provoked by the necessity of having a single software 

application that besides performing initial configuration, control and monitoring tasks represents 

an evaluation tool for the microcontroller device capabilities and can be used as a benchmark for 

testing the correct operation of an automotive network.  
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2. Fundamentals 

This chapter represents a technical overview of the fundamental, for this project, topics. The 
discussions are based on a various scientific and public sources that can be found online or in the 
library. 

2.1 Introduction to Bus Systems 

In computing science a system bus is defined as a pathway that is used for data transfer between 
the Central Processing Unit (CPU), the main memory and other peripheral components [4]. It is 
usually composed of cables and connecting units and is defined regarding the hardware system 
specifications and data exchange standards, established by the communication protocol that is 
being used in the system. There are two types of system bus implementation ς parallel and serial. 
The parallel bus (Fig 2.1 (a)) is advantageous in terms of speed but it requires more hardware as 
for every group of data there is a separate line. By the serial bus implementation (Fig 2.1 (b)) there 
is only one line connecting the components but the data transmission time is increased.    

  
(a) Parallel bus  (b) Serial bus 

Fig 2.1 System bus [4] 

The bus system represents a (usually) standardized interface that links the hardware and software 
interfaces of an electronic control unit (ECU) and provides mechanisms to establish and control 
communication between the internal components of a system or between different systems. It 
refers to the mechanical, electrical, functional and logical aspects of data transfer that includes 
communication over different mediums, linked in various network topologies. Nowadays bus 
systems are used in almost every industry field and tempt to develop higher and more reliable 
data rates for faster and secure communication. 

The use of bus systems for the automotive industry dates back to the early 80s when automobiles 
were first equipped with ECUs [5]. Since then the development of automotive electronics has 
rapidly increased, leading to the necessity of introducing different communication bus systems to 
serve various specific technical and economical requirements. Some of the most popular 
communication standards for the automotive technologies are: Controller Area Network (CAN), 
Local Interconnect Network (LIN), Media Oriented System Transport (MOST) and FlexRay. 

Bus systems can combine one or more network topologies and provide various interaction 
structures, like: client-server, master-slave, producer-consumer, multi-master, demand-based, 
time triggered and so on. Communication in a Client-Server communication system is 
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characterized by a strict differentiation between the service requester (Client) and the service 
provider (Server) [5]. 

Typically, bus systems are related to the physical and data link aspects of a communication process. 
Sometimes, depending on implementation, it can involve some application specific aspects. That 
means that it can be looked as an independent three-layered structure [6] that is best explained 
by the standardized 7-layered OSI model. 

2.2 OSI Model  

The Open Systems Interconnection (OSI) model is a networking standard, defined by the 
International Standards Organization (ISO) in 1984 [7], [8], [9]. It is designed to represent the 
networking framework as a hierarchical structure, separated in seven layers, depending on their 
relation with different software and hardware aspects of the communication process. The lower 
layers, from 1 to 4, are responsible to physically move the data around (Fig 2.2). They are also 
called data-flow layers. The upper layers, from 5 to 7, are related to the applications processing 
the data. Every data segment that is received or transmitted over the network passes through all 7 
layers in opposite directions. When transmitted, data goes from the 7th layer down to the 1st, 
where it is sent as physical impulses over the network medium. When received, those impulses 
are processed from the 1st up to the 7th layer, where they are represented in the desired by the 
application or end-user format.  

 

Fig 2.2 Seven layer OSI model [7] 

Every layer from 2 to 6 upgrades the preceding one and is a base for the next layer. To get a better 
understanding of the seven layer OSI networking model, each of its layers is discussed in details: 

1. Physical layer ς this layer refers to the hardware medium that provides the electrical and 
mechanical interface, such as wires, connectors, hubs, repeaters, etc. Its basic functions 
are related to handling the electrical voltage impulses, light or radio signals that represent 
the data bits on a physical level. 

2. Data Link layer ς the second OSI layer is responsible for linking the data from the physical 
layer into block units (packets, frames) and to perform flow and error control over the 
transmission links. It can be divided into two sub-layers ς Media Access Control (MAC) and 
Logical Link Control (LLC). 
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3. Network layer ς this layer establishes the route between transmitter and receiver. It is 
responsible for routing and forwarding the data, addressing (IP), error handling, congestion 
control and packet sequencing.  

4. Transport layer ς as the name supposes, this layer is responsible for the correct 
transportation of data over the network. It performs error checking and recovery and in 
cases of transmission error may request retransmission of packets. To this layer belong the 
Transmission Control Protocol (TCP) and User Datagram Protocol (UDP).  

5. Session layer ς the lowest application layer controls the start and end of transmission and 
provides mechanisms for managing the process of data exchange on the network. The 
three session categories are: simplex, half-duplex and full-duplex.  

6. Presentation layer ς at this layer data is encoded/decoded from raw data to the desired by 
the application format and vice versa. It is also called the syntax layer. 

7. Application layer ς the top OSI layer provides network services for the application software.  
The network services provide and request data to and from the Presentation layer. Typical 
Application layer examples are HTTP, FTP, Telnet, etc.  

 

2.3 FlexRay Protocol 

The FlexRay protocol is an automotive standard defined by the FlexRay consortium in 2005 that 
combines the event-driven paradigm of the Controller Area Network (CAN) bus and the time-
driven design of the Time-Triggered Protocol (TTP) in one protocol [10]. It is intended for 
applications with high requirements regarding determinism, reliability, synchronisation and 
bandwidth. The FlexRay system consists of at least two interconnected electronic control units 
(ECU) running the FlexRay protocol. Every ECU in a FlexRay system is referred as a node. Up to 64 
nodes, connected with one or two lines form a cluster. The network structure in a cluster can be 
based on bus topology, star topology or a mixture of both. 

FlexRay provides services related to the lowest two layers of the OSI model, which is a subject of 
the following two sub-sections, starting with the Physical Layer 1 (2.3.1 Communication Controller) 
and continuing with the Data Link Layer 2 (2.3.2 FlexRay Communication). In the third sub-section 
of this chapter (2.3.3 E-Ray) is introduced the developed by Bosch E-Ray [11], as a version of an IP 
module running the FlexRay protocol. 

2.3.1 Communication Controller 

Every FlexRay device (node) has a protocol engine component that implements the FlexRay 
protocol and an engine control unit, where the application software is running [10]. The latter is 
referred as a Host and it provides control and configuration data to the protocol engine, referred 
as Communication Controller (CC). The CC responds with status conditions and the received on 
the bus data (Fig 2.3). The Host also controls the operating modes of the bus driver and reads 
status and error conditions. 
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Fig 2.3 Logical interfaces in a FlexRay node ( [10] p. 26) 

The Host is separated from the FlexRay protocol engine via the Controlling Host Interface (CHI) 
[10]. The CHI provides means for the Host to operate the Protocol Operation Control (POC) in a 
structured manner, transparently to the operation of the protocol. It is product specific and its 
implementation depends on tƘŜ ƴƻŘŜΩǎ ŀǊŎƘƛǘŜŎǘǳǊŜΦ Lƴ ƎŜƴŜǊŀƭΣ ǘƘŜ /IL ǇǊƻǾƛŘŜǎ ǘǿƻ ƳŀƧƻǊ 
interface blocks ς protocol data interface (PDI) and message data interface (MDI). The PDI 
manages the configuration, control and status data of the protocol, while the MDI manages the 
message buffers and the configuration, control and status data related to them (Fig 2.4). 

 
Fig 2.4 Conceptual architecture of the Controlling Host Interface ( [10] Figure 9-1) 
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The purpose of the POC is to apply Host commands, invoke and react to model changes of the core 
protocol mechanisms1 and provide the Host with protocol status information in a synchronized 
manner. For a more detailed view of the relationship between CHI, POC and the core protocol 
mechanisms refer to Fig A.1 in Appendix A.  

The CC has to be in an established POC state to enable the execution of the POC processes [10]. 
The CC enters POC Operational2 power state once sufficient power supply is present or after reset. 
This state determines the operation of the POC. Its structure is based on the finite state machines 
(FSM) definition [12], where state transitions are internally or externally provoked by a certain 
control condition and entering a state is enabled only from other state that is logically connected 
to it. A high-level internal structure of the Operational state with all possible state transitions is 
shown on Fig 2.5. 

 
Fig 2.5 Overall state diagram of a FlexRay communication controller ( [10] p. 37) 

State transitions are typically caused by commands sent to the CC from the Host via the CHI or 

they are a consequence of completing a task or error condition, occurred by the protocol engine, 

product-specific built-in self test or sanity checks. The Host is allowed to apply a CHI command at 

any time but some commands are enabled only when the CC is in a certain state. Applying a 

command when the controller is in a non legal for that command state has no effect on the 

operation of the CC, however, the command vector in the specified register is reset and an error 

flag is raised. 
                                                 
1
 The primary FlexRay protocol principles are realized in four core mechanisms ï 1) coding and decoding; 2) media 

access protocol; 3) frame and symbol processing; 4) clock synchronisation [10] 
2
 In FlexRay signature standards state names are always preceded by POC abbreviation. For sake of simplicity it will be 

skipped in this text. POC states are written in green italic and CHI commands in CAPITALS.  
3
 For distinguishing between different types of parameters signature refer to Table A-1 in Appendix A 
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The Host may write configuration data to the CC registers only when the CC is in config state and 

its registers are locked for access. Transition to config state is only possible when the CC is in 

default config or ready state. The default config state is entered immediately on power up or after 

hardware reset. In this case the configuration and message buffers data is automatically cleared. 

However, when default config state is entered from halt state, clearing the message RAM has to 

be explicitly requested by the Host via applying the CLEAR_RAMS command. Both default config 

and config states are entered after applying command CONFIG when the CC is in legal for that 

transition state. Applying a command triggers a reaction in the POC immediately or at the end of 

the current cycle. All relevant FlexRay CHI commands and their allowed invocation states are 

shown in Table 2-1. 

CHI command Where processed (POC States) When 

processed 
ALL_SLOTS POC:normal active, POC:normal passive End of cycle 

ALLOW_COLDSTART All except POC:default config, POC:config, POC:halt Immediate 

CLEAR_RAMS POC:default config, POC:config Immediate 

CONFIG POC:default config, POC:ready Immediate 

DEFAULT_CONFIG POC:halt Immediate 

FREEZE All Immediate 

HALT POC:normal active, POC:normal passive End of cycle 

READY 
All except POC:default config, POC:config, POC:ready, 
POC:halt Immediate 

RUN POC:ready Immediate 

WAKEUP POC:ready Immediate 

Table 2-1 CHI commands summary ( [10] p. 33) 
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2.3.2 FlexRay Communication 

The nodes in a FlexRay cluster are connected with one or two channels, referred as channel A and 
channel B, each supporting data rates of up to 10 Mb/s [10], [13], [11]. The controller can send 
data on both channels simultaneously and independent on each other. A node can receive 
messages only via the channel(s) it is connected to. Received data is stored in the node message 
RAM, which structure is based on message buffers, dedicated to transmission (transmit buffers) or 
reception (receive buffers) process. Part of the receive buffers can be configured in a cyclic First-
In-First-Out (FIFO) buffer structure. 

Communication between nodes in a FlexRay cluster is based on the Time Division Multiple Access 
(TDMA) scheme, organized in communication cycles that are periodically executed. This scheme 
guarantees a collision-free communication as there is no competition over the channel access. 
Each communication cycle is divided in time slots. All nodes in a cluster are assigned time slots in 
which they are allowed to send data frames.  

Communication Cyc le 

The media access control (MAC) mechanism in FlexRay is based on recurring communication 
cycles, that combine the time and event triggered data exchange between nodes [10], [13]. Each 
communication cycle consists of a static segment and a network idle time (NIT). Optionally, it can 
contain a dynamic segment and/or a symbol window. The structure of a FlexRay communication 
cycle is shown on Fig 2.6. 

 
Fig 2.6 Timing hierarchy within the communication cycle ( [10] p. 100) 

The static segment is based on a static TDMA scheme and is always present in a communication 
cycle. This scheme is realized in static time slots, which number and length is fixed and is the same 
for both channels in a cluster (Fig 2.6). The length of the static slots is derived from a predefined 
number of global clock ticks, referred as macroticks. The number of macroticks in the static slot is 
chosen to be big enough to ensure that the frame and any potential safety margins fit under 
worst-case assumptions. Each macrotick consists of an integer number of microticks that are 
derived from a local for the node clock (e.g. Host CPU), which number and duration can differ in 
every node. The macrotick boundary that determines the start of a frame transmission is referred 
as action point.  
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Contrary to static segments, dynamic segments are present only if the controller has data to send 
there. The data sent in the dynamic segments is priority and event driven and can be of varying 
lengths. The structure of the dynamic segment is based on a dynamic TDMA minislot scheme (Fig 
2.6). Similarly to the static slot the minislot is constituted of a predefined amount of macroticks. 
The number of minislots and their constituent macroticks is identical in every node of the cluster. 
The number of macroticks in a minislot is, however, smaller than in the static slot so that if no 
frame transmission takes place in the dynamic segment less bandwidth is wasted (Fig 2.7 (a)). If 
data is transmitted in the dynamic segment, the size of the minislot is expanded to fit the 
transmitted frame (Fig 2.7 (b)). In this case the minislot is referred as a dynamic slot and it consists 
of an integer number of minislots. The numbering sequence of the minislots is kept but their total 
number per dynamic segment is reduced. A frame is transmitted only if the remaining minislots 
are enough to fit it. That means that if a frame is assigned a large minislot number, it might have 
to wait for another communication cycle in order to be transmitted. Therefore, frames priority is 
dependable on the assigned minislot number.   

 
Fig 2.7 (a) Communication cycle with no transmission in the dynamic segment; (b) Communication 

cycle with several transmissions in the dynamic segment ( [13] Figure 5.5) 

The presence of a symbol window in a communication cycle is optional. Within the symbol 
window only one symbol can be sent and no arbitration between different senders is provided. Its 
size consists of an integer amount of macroticks that is the same for all nodes in a cluster.  

The NIT serves for clock correction and synchronization, as well as for implementation specific 
communication cycle related tasks. It contains the remaining macroticks that are not assigned to 
the other three components of the communication cycle.  
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Configuration Timing Constraints for  Communication Cycles  

This sub-section is intended to reveal the duration limitations for each of the communication cycle 
segments by introducing the related FlexRay constants and parameters ς their minimum and 
maximum values, according to the FlexRay protocol specifications v2.1 [10] and the hardware 
restrictions for each node (speed of processors, oscillators, etc).  

Communication is based on recurring communication cycles, which number is configured in the 
protocol constant3 cCycleCountMax and ranges between 0 and 63. The number of macroticks per 
communication cycle is between 10 and 16000 and is stored in the gMacroPerCycle parameter. 
The pMicroPerCycle parameter holds the number of microticks per communication cycle and its 
value is calculated for every node, depending on the duration of the microtick. 

The arbitration scheme for transmitting FlexRay frames is realized via unique assignment of frame 
IDs to the nodes in a cluster for each channel. The frame ID determines in which slot and 
respectively in which segment a frame shall be sent. Frame IDs range from 1 to the cSlotIDMax 
protocol constant, which value can be up to 2047. 

Each channel keeps track of the time slots (static and minislots) in its own variable vSlotCounter 
that starts from 1 in the beginning of every communication cycle and is incremented by 1 with 
every new slot. This slot counter is increased simultaneously for both channels in the static 
segment of the communication cycle, while in the dynamic segment both counters are 
incremented independently, according to the arbitration scheme used there.  

The number of static slots, composing the static segment, is stored in the gNumberOfStaticSlots 
parameter. It ranges between 2 and the value assigned to the cStaticSlotIDMax protocol constant, 
which maximum value is 1023. Static slot duration ranges between 4 and 661 macroticks and is 
stored in the gdStaticSlot parameter. The action point offset within the static slots is assigned to 
the gdActionPointOffset parameter and ranges between 1 and 63 macroticks.  

The presence of a dynamic segment in the communication cycle is optional and therefore the 
number of minislots can be 0 and up to 7986. It is stored in the gNumberOfMinislots parameter. 
The gdMinislot parameter keeps the duration of the minislot that ranges between 2 and 62 
macroticks. The number of macroticks, constituting the offset of the action point within a minislot 
is stored in the gdMinislotActionPointOffset parameter and has a value between 1 and 31. The 
number of the last minislot in which a transmission in the dynamic segment can be started is 
configured in pLatestTx node parameter.  

The symbol window duration can be up to 142 macroticks and is stored in the gdSymbolWindow 
parameter. Its value can be 0 if no symbol window is required. The action point offset is stored in 
the same parameter as for the static segment. The number of macroticks for the NIT is between 2 
and 805 and is stored in the gdNIT parameter.  

  

                                                 
3
 For distinguishing between different types of parameters signature refer to Table A-1 in Appendix A 
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Frame format  

A FlexRay frame consists of three segments: header, payload and trailer segment (Fig 2.8) [10], 
[13]. Header and trailer segments have a fixed length of 5 and 3 bytes respectively, while the 
payload segment length varies from 0 to maximum of 254 bytes. The frame is transmitted in the 
introduced segment order, starting always with the most significant bit (MSB) and followed by the 
subsequent bits. 

 

Fig 2.8 FlexRay frame format ( [10] p. 90) 

The frame is transmitted, starting from the header segment. The header MSB is reserved and has 
no relevance. It is followed by the payload preamble indicator (PPI) that indicates the presence of 
a network management (NM) vector (when frame is transmitted in the static segment) or message 
ID (when frame is transmitted in the dynamic segment) in the beginning of the payload. The null 
frame indicator bit signals whether the payload segment contains relevant data4. The sync frame 
indicator bit is used for clock synchronisation of all nodes in a cluster when set to 1. Accordingly, 
the startup frame indicator bit determines whether the frame is a startup frame. It is usually set to 
1 only when the sync frame indicator bit is also 1. In the following 11 bits is coded the frame ID, 
which determines the slot in which the frame shall be transmitted. It must be a unique number 
between 1 and 2047 for every channel in the cluster. The payload length is coded in the following 
7 bits, representing the number of 2-byte data words, i.e. the payload length number equals the 
actual payload length in bytes divided by 2. The sync frame indicator, startup frame indicator, 
frame ID and payload length are protected by an 11 bits cyclic redundancy check (CRC) code. For 
transmitted frames, the CRC code is not calculated by the transmitting CC but it is provided by 
means of configuration. The header CRC code is calculated by the CC only for received frames. The 
last 6 bits of the header section specify the value of the cycle counter at the time of frame 
transmission.  

The payload segment of a FlexRay frame contains the actual message payload, starting from the 
first data byte (MSB to LSB order) and followed by the subsequent data bytes. The product specific 
host interface maps the position of data bytes in the buffer with their position in the payload 

                                                 
4
 A null frame ƛǎ ŀ ŦǊŀƳŜ ǿƛǘƘ ƴǳƭƭ ŦǊŀƳŜ ƛƴŘƛŎŀǘƻǊ ōƛǘ ǎŜǘ ǘƻ ΨлΩ ŀƴŘ ŀ ǇŀȅƭƻŀŘ ƭŜƴƎǘƘ ŦƛŜƭŘ ǎŜǘ ŀƭǎƻ ǘƻ ΨлΩ [10] 
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segment of the frame. As the payload length field in the header segment holds the number of 2-
byte data words, the number of data bytes in the payload segment is always even. To achieve that, 
sometimes padding is applied.  

The last FlexRay frame segment is the trailer segment. It consists of 24 bits CRC code that covers 
all bits of the frame, including the header CRC and payload padded byte. Both channels use the 
same generator polynomial for the computation of the CRC but different initialization vectors ς 
0xFEDCBA for channel A and 0xABCDEF for channel B.  

Message filtering  

Message filtering is based on slot number, channel and optionally on one or more cycle numbers 
(cycle set) [11]. The filtering configuration data is part of the header section of the message buffers, 
which are discussed in RAM Configuration section in Appendix A.  

Every message buffer is assigned a slot number and one or two channels in which it is allowed to 
transmit or receive data. The slot number is encoded in the 11-bit message buffer frame ID field 
and needs to be greater than 0. The frame ID is compared against the slot counter variable of the 
corresponding channel(s). Every static slot belongs to only one node, regardless of whether cycle 
number filtering is provided or not.  

Channel filtering is provided via 2-bit field ς one bit for each channel. It serves as filtering 
mechanism for receive buffers and control mechanism for transmit buffers. Only for the static 
segment it is allowed both channels to be assigned. If both channels are assigned for the dynamic 
segment, then no frames are transmitted/received on any channel. It is equivalent as if no 
channels were assigned for the dynamic segment.  

The cycle set filtering is encoded in the 7-bit cycle count field of the message buffer header and is 
used to distinguish between different message buffers, belonging to the same node, that are 
assigned the same channel(s) and frame ID. The filter is passed every time a cycle number matches 
an element, belonging to the assigned cycle set (Table 2-2).  

 
Table 2-2 Definition of cycle set ( [11] Table 9) 

In order for a message buffer to be allowed to transmit or receive data, all filters must match. If 
more than one buffer is assigned the same frame ID, cycle number and channel, the message 
buffer with lowest message buffer number is chosen. The receive FIFO can be configured for 
further delimitation of the received messages via the FIFO Rejection Filter (FRF). Apart from 
filtering, based on frame ID, channel and cycle count, the FRF can be configured to reject/accept 
all messages in the static segment and/or null frames. In the FIFO Rejection Filter Mask (FRFM) are 
pointed those bits of the frame ID that are marked ŀǎ άŘƻƴΩǘ ŎŀǊŜέ ŦƻǊ ǘƘŜ CwCΦ  
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Transmit process  

A message can be transmitted in the static segment of a communication cycle on channel A, 
channel B or both channels simultaneously [10], [11]. If few messages are pending, the one with 
frame ID corresponding to the next time slot is sent next. When transmitted in the dynamic 
segment, a message can be sent on channel A or channel B only, thus allowing concurrent 
messages to be sent simultaneously on both channels. The message with highest priority (lowest 
frame ID) is sent next only if its length fits in the remaining minislots of the current cycle. 
Transmission takes place in every time slot of the static segment. If there is no assigned buffer 
with matching filter criteria for a given static slot or that buffer does not have its transmission 
ǊŜǉǳŜǎǘ ό¢·wύ ŦƭŀƎ ǎŜǘ όƛΦŜΦ ¢·w Ґ ΩлΩύΣ ŀ ƴǳƭƭ ŦǊŀƳŜ ƛǎ ǘǊŀƴǎƳƛǘǘŜŘΦ bǳƭƭ ŦǊŀƳŜǎ ŀǊŜ ƴƻǘ ǘǊŀƴǎƳƛǘǘŜŘ ƛƴ 
dynamic segments.  

Receive process 

Analogously to the transmit process, messages can be received on one or both channels, when 
transmitted in the static segment, or on only one channel, when transmitted in the dynamic 
segment of a communication cycle [10], [11]. If a received frame passes all filter criteria, it is saved 
in the designated receive buffer apart from its frame CRC field. In this case a flag is raised to 
inform the communication controller that the new message is ready to be processed. If a frame is 
not processed by the time a new frame, designated for the same message buffer arrives, that 
frame is overwritten and lost. A message lost (MLST) status flag is raised in such cases. If no frame, 
null frame or corrupted frame is received and has passed the filter criteria, it is not saved, however 
the buffer status data is updated. In cases where the payload data length of the received frame is 
larger than the length, configured for that buffer, the received payload is truncated to the 
configured length.  

 

2.3.3 E-Ray 

[11] E-Ray is an electronic device that has an IP module installed and performs communication 
according to the FlexRay protocol specification v2.1 [10]. It supports the provided by FlexRay data 
rates of up to 10 MB/s on each channel. E-Ray registers can be directly accessed by an external 
Host via the controlling host interface (CHI) to directly perform configuration, control and 
monitoring tasks. An additional bus driver hardware is required for connection to the physical 
layer. 

The E-Ray module is provided with 8kB configurable message RAM consisting of maximum 128 
message buffers that can be configured to hold up to 254 bytes of data5 (Fig 2.9) [11]. Message 
buffers can be configured as static or static + dynamic buffers, dedicated to transmit or receive 
process. Part of the receive buffers can be organized in a cyclic First-In-First-Out (FIFO) structure. 
Message RAM is accessed by the Host via the provided Input Buffer (IBF), for write access, and 
Output Buffer (OBF) for read access. Access to the Physical Layer is under the control of Channel 
Protocol Controller (PTR A/B) and supported by transient buffers (TBF A/B) for intermediate 
message storage. All functions regarding handling of messages are implemented in the Message 
Handler. E-Ray is supported by an 8/16/32-bit generic CPU interface that enables compatibility 
with a wide range of customer-specific Host CPUs. 

                                                 
5
 128 message buffers with max of 48 bytes data section or up to 30 message buffers with 254 bytes data section [11] (p. 

14) 
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Fig 2.9 E-Ray block diagram ( [11] Figure 1) 

The FlexRay channel protocol controllers (PRT A and PRT B) represent interfaces for controlling the 
transmission and reception of FlexRay frames and symbols between the internal device memory 
and the connected channel(s) [11]. They consist of shift registers and FlexRay protocol FSM and 
perform functionalities for control of the bit timing, generation of the frame CRC and check of the 
received header and frame CRC codes. The FlexRay channel protocol controllers have interfaces to: 

¶ Physical Layer (bus driver) 

¶ Transient Buffer RAM (TBF A/B) ς stores the data section of two complete messages. 

¶ Message Handler ς controls data transfer between IBF/OBF and message RAM and 
between TBF A/B and message RAM. 

¶ Global Time Unit (GTU) ς performs generation of micro and macroticks; fault tolerant clock 
synchronization and support of external clock correction; timing control of static and 
dynamic segments; cycle counter.  

¶ System Universal Control (SUC) ς provides control over: configuration, wakeup, startup, 
normal operation, passive operation and monitor mode. 

¶ Frame and Symbol Processing (FSP) - checks the correct timing of frames and symbols; 
tests the syntactical and semantical correctness of received frames; sets the slot status 
flags. 

¶ Network Management (NEM) ς handles the network management vector. 

¶ Interrupt Control (INT) ς provides error and status interrupt flags; enables/disables 
interrupt sources and module interrupt lines; assigns interrupt sources to one of the two 
module interrupt lines; manages the two interrupt timers; captures the stop watch time. 
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The message RAM in E-Ray is structured in 2048 words of 33 bits6, making a total of 67 584 bits 
memory space [11]. It provides support for 8 and 16-bit accesses and is able to store up to 128 
message buffers, depending on the configured payload length, as the data bytes in the FlexRay 
frame can vary between 0 and 254. In order to achieve a better flexibility, the message RAM is 
divided in Header and Data partitions and has the structure shown in Fig 2.10. 

 
Fig 2.10 Configuration example of message buffers in the Message RAM ( [11] Figure 15) 

The Header Partition holds the header sections of the configured message buffers. The header 
section of each message buffer consists of four 32+1 byte words starting with the first word in the 
message RAM for message buffer 0. The Data Partition starts after the last word, occupied by the 
Header Partition. Its minimal allowed position is: (the number of last configured buffer + 1) * 4. In 
the Data Partition is stored the data section of each message buffer. For a detailed view of the 
header and data sections, refer to Message RAM section in Appendix A. 

The E-Ray Message Handler is an interface that provides functionalities for controlling the data 
transfers between the Host and the message RAM (via the Input and Output Buffers) and between 
the PRTs and the message RAM (via the Transient buffers). Those functionalities include the 
acceptance filtering of received messages, the maintaining of the transmission schedule, as well as 
the providing of message status information. 

  

                                                 
6
 32 bit word plus 1 parity bit 



22 

 

Channel protocol controller access to message RAM  

The FlexRay channel protocol controllers (PRT A/B) are connected to the transient buffer RAMs 
(TBF A/B) and to the physical layer via the bus driver [11]. The TBF is used as an intermediate 
storage, able to store two complete FlexRay messages. It is built-up as a double buffer ς one 
assigned to the corresponding PRT and the other accessible by the Message Handler (Fig 2.11).  

 
Fig 2.11 Access to Transient Buffer RAMs ( [11] Figure 14) 

Receiving/transmitting a FlexRay message to/from the message RAM is possible via the TBFs. The 
Message Handler writes the message to be transmitted to the TBF Tx of the corresponding 
channel (Fig 2.11). The PRT writes the received on the channel message to the corresponding TBF 
Rx. During transmission of the message stored in the TBF Tx the Message Handler transfers the 
last received message from TBF Rx to the message RAM (if it passes the acceptance filtering). 
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Host access to message RAM 

The Host accesses the message buffers in the message RAM via intermediate buffers and the help 
of the Message Handler [11]. Read access is done via the Output Buffer (OBF) and write access via 
the Input Buffer (IBF). Similarly to the Transient Buffer (TBF) the IBF and OBF have double buffer 
structure ς one half accessed by the Host (IBF Host/OBF Host) and the other half accessed by the 
Message Handler (IBF Shadow/OBF Shadow). The Host writes the number of the target buffer in 
the message RAM to the corresponding intermediate buffer, together with other configuration 
data (header and/or message data), and the Message Handler proceeds its request by providing 
the requested access (Fig 2.12).  

 
Fig 2.12 Host access to Message RAM ( [11] Figure 9) 
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RAM Configurat ion  

Message RAM can be configured into three groups of message buffers via the Message RAM 

Configuration (MRC) register, only when the CC is in config or default_config state (Fig 2.13) [11]. 

The first group is dedicated to messages sent in the static segment of a communication cycle. 

Specifying the number of the First Dynamic Buffer (FDB) determines the number of static message 

buffers. As the maximum allowed number of message buffers in the message RAM is 128, any 

number assigned to FDB greater or equal to 128 will assign all message buffers to the static 

segment. Following the same logic, the First FIFO Buffer (FFB) holds the number of the first FIFO 

message buffer. The last message buffer number is configured in the Last Configured Buffer (LCB) 

field of the MRC register. 

 л Җ C5. Җ CC. Җ [/. Җ мнт 
Fig 2.13 Assignment of message buffers ( [11] Table 1) 

A message buffer can be configured as receive or transmit buffer by configuring the CFG bit in its 
header section. Every transmit buffer can be configured to operate in single-shot or continuous 
mode by setting the appropriate value to the transmission mode (TXM) flag, also part of its header 
section. Part of the receive message buffers can be configured as a cyclic FIFO buffer. Every 
message, passing the FIFO Rejection Filter (FRF) is stored, starting with the first and proceeding 
with every next message buffer assigned to the FIFO. When the last buffer, belonging to the FIFO 
is reached, the receive process starts again with the first buffer and so on. 

There are two index registers associated with the FIFO. The PUT Index Register (PIDX) points to the 
next message buffer to be used for receiving a frame. It is incremented every time a new message 
passes the FIFO filters and is saved there. The GET Index Register (GIDX) points to the next 
message to be processed and incremented after read access. The GIDX shall never reach the PIDX 
when the FIFO is in non-empty state, otherwise a FIFO overrun is observed ς the message stored 
on that buffer index is overwritten and both indexes are incremented. In this case an error flag is 
raised and an interrupt is generated.  
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The possible FIFO states are shown on Fig 2.14. 

 
Fig 2.14 Possible FIFO states ( [11] Figure 8) 

An important constraint is that all buffers, belonging to the FIFO must be configured with the 
same payload and data section length. The programmer shall take care of correct input as the CC 
does not check for erroneous configuration ( [11] p. 72). 

Depending on its configuration, the first message buffer (with index 0) of the message RAM can 

hold the startup frame, sync frame or designated single slot frame. This ensures that each buffer 

can transmit only one startup or sync frame per communication cycle. The configuration of the 0th 

message buffer is possible only during configuration time when the CC is in default_config or 

config state but not during runtime. If enabled by the programmer in the MRC register, 

reconfiguration of all other message buffers is possible during runtime via the Input Buffer (IBF). 

However, it shall be noted that due to the data partition, reconfiguration of the payload length 

may lead to memory corruption and erroneous outcome. 
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Host Write Access via Input Buffer  
The Host can request write access to one message buffer at a time via the IBF. If reconfiguration is 
desired, the Host writes the configuration data to the three header registers (WRHS1...3) of the 
IBF [11]Φ ¢ƘŜ ŀŎǘǳŀƭ ƳŜǎǎŀƎŜ ƛǎ ǿǊƛǘǘŜƴ ǘƻ ǘƘŜ L.C Řŀǘŀ ǊŜƎƛǎǘŜǊǎ ό²w5{ƴ ǿƛǘƘ ƴ Ґ мΧспύΦ ¢ƘŜ 
option whether to update only the header, only the data, or both sections of the targeted 
message buffer in message RAM is specified via the Input Buffer Command Mask (IBCM) register. 
Lastly, the target buffer number is written to the Input Buffer Command Request (IBCR) register 
that triggers the swap of the IBF Host and IBF Shadow (Fig 2.15). 

 
Fig 2.15 Transmit process via the Input Buffer [11] (Figure 10) 

Once the IBF Host and IBF Shadow sections are swapped, the Message Handler starts the transfer 
of the header and/or7 data section to the targeted buffer in the message RAM [11]. While the 
transfer takes place, an Input Buffer Busy Shadow (IBSYS) flag is raised, however, in the meanwhile 
the Host may write the data for the next message buffer to the IBF. After the transfer is finished, 
the IBSYS flag is reset and the Host may request the next transfer by writing the target buffer 
number in the IBCR register. If the Host writes to the IBCR register while the IBSYS flag is still on, 
an Input Buffer Busy Host (IBSYH) flag is raised and the last transfer request is pending until the 
current transfer is finished. A further attempt for the Host to write to IBCR register, while both 
flags are raised, has no effect but an error flag is raised. 

The procedure to configure/update the n-th message buffer is as follows: ( [11] p. 127, 136) 
1. Wait until IBSYH flag is reset 
2. Write data section to WRDSn 
3. ²ǊƛǘŜ ƘŜŀŘŜǊ ǎŜŎǘƛƻƴ ǘƻ ²wI{мΧо 
4. Write command mask configuration to IBCM 
5. Write target message buffer to IBCR to demand message transfer 
6. Check whether the message buffer has been transmitted by checking the respective 

TXR bit ό¢·w Ґ ΩлΩύ ƛƴ ǘƘŜ ¢w·vмκнκоκп ǊŜƎƛǎǘŜǊǎ όǎƛƴƎƭŜ-shot mode only). 

If the designated transmit message buffer is configured to operate in single-shot mode, after the 
transmission is completed, the CC clears the respective transmission request (TXR) flag and the 
Host may update the buffer. In continuous mode, this flag is not cleared by the CC and message is 
transmitted every time it matches the filter criteria. The TXR flag is reset by the Host when 
executing step 5 from the update procedure described above.  

                                                 
7
 Depending on the configuration of the IBCM the message Handler updates only header, only data or both sections of 

the target buffer in the message RAM [11] 
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Host Read Access via Output Buffer  

The Host can request contents and status of a message buffer in the message RAM via writing the 
message buffer number in the Output Buffer Command Request (OBCR) register [11]. The desired 
contents (header, data or both) are specified via the Output Buffer Command Mask (OBCM) 
register. The Host triggers the transfer of the buffer contents from message RAM to the OBF 
{ƘŀŘƻǿ ōȅ ǿǊƛǘƛƴƎ ΨмΩ ǘƻ ǘƘŜ w9v ōƛǘΣ ŀƭǎƻ ǇŀǊǘ ƻŦ ǘƘŜ h./w ǊŜƎƛǎǘŜǊΦ ²ǊƛǘƛƴƎ ΨмΩ ǘƻ ǘƘŜ ±L9² ōƛǘ ƻŦ 
the OBCR register swaps the contents of OBF Host and OBF Shadow and the Host can read the 
ƳŜǎǎŀƎŜ ōǳŦŦŜǊ Řŀǘŀ Ǿƛŀ ǘƘŜ h.C ƘŜŀŘŜǊ ǊŜƎƛǎǘŜǊǎ όw5I{мΧоύ ŀƴŘ h.C Řŀǘŀ ǊŜƎƛǎǘŜǊǎ όw55{ƴΣ 
n=1Χспύ όCƛƎ 2.16). The message buffer status is accessible via the message buffer status (MBS) 
register.  

 
Fig 2.16 Receive process via the Output Buffer [11] (Figure 12) 

During the transfer of message buffer contents from the message RAM to the OBF Shadow, the 
OBF Busy Shadow (OBSYS) flag is set. In the meantime, the Host may access the contents of the 
OBF Host or write the next message buffer number to OBCR register but the REQ and VIEW bits 
cannot be set until the OBSYS flag is reset. If REQ and VIEW bits are set with the same write access, 
ǿƘƛƭŜ h.{¸{ ƛǎ ΨлΩΣ ǘƘŜ h.C Iƻǎǘ ŀƴŘ h.C {ƘŀŘƻǿ ŀǊŜ ǎǿŀǇǇŜŘ ŦƛǊǎǘ ŀƴŘ ǘƘŜƴ ǘƘŜ ƴŜǿ ǘǊŀƴǎŦŜǊ ƻŦ 
message buffer data from message RAM to OBF Shadow is triggered.  

¢ƘŜ ǇǊƻŎŜŘǳǊŜ ƻŦ ǊŜǉǳŜǎǘƛƴƎ ƻƴŜ ƻǊ ƳƻǊŜ ƳŜǎǎŀƎŜ ōǳŦŦŜǊǎΩ ŎƻƴǘŜƴǘ ƛǎ ŀǎ ŦƻƭƭƻǿǎΥ ( [11] p. 138-139) 

1. Wait until OBSYS is reset 
2. Write command mask configuration to OBCM 
3. Write target messaƎŜ ōǳŦŦŜǊ ƴǳƳōŜǊ ǘƻ h./w ŀƴŘ ΨмΩ ǘƻ h./wΦw9v ōƛǘ 
4. Wait until OBSYS is reset 
5. If no further message buffer is requested ς proceed to 9  

Otherwise write command mask configuration to OBCM for the next message buffer 
6. Toggle OBF Host and OBF Shadow and start transfer of next message buffer contents to 
h.C {ƘŀŘƻǿ ǎƛƳǳƭǘŀƴŜƻǳǎƭȅ ōȅ ǿǊƛǘƛƴƎ ǘƘŜ ōǳŦŦŜǊ ƴǳƳōŜǊ ǘƻ h./w ŀƴŘ ΨмΩ ǘƻ h./wΦw9v 
and OBCR.VIEW bits 

7. wŜŀŘ ƻǳǘ ǘƘŜ ǇǊŜǾƛƻǳǎ ƳŜǎǎŀƎŜ ōǳŦŦŜǊ Ǿƛŀ w5I{мΧоΣ w55{ƴ ŀƴŘ a.{ ǊŜƎƛǎǘŜǊǎ  
8. Wait until OBSYS is reset 
9. Demand accesǎ ǘƻ ƭŀǎǘ ƳŜǎǎŀƎŜ ōǳŦŦŜǊ ŎƻƴǘŜƴǘǎ ōȅ ǿǊƛǘƛƴƎ ΨмΩ ǘƻ h./wΦ±L9² ōƛǘ 
10. wŜŀŘ ƻǳǘ ƭŀǎǘ ǘǊŀƴǎŦŜǊǊŜŘ ƳŜǎǎŀƎŜ ōǳŦŦŜǊ Ǿƛŀ w5I{мΧоΣ w55{ƴ ŀƴŘ a.{ ǊŜƎƛǎǘŜǊǎ  
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2.4 Communication Protocols 

In the following subchapters are described the hardware and software aspects of the 
communication protocols used for data exchange between the PC client and the FlexRay server 
node, according to the 7-layered OSI model. For this project this is the Ethernet protocol and the 
network protocols that run over it ς the TCP/IP protocol suite and its lightweight version for 
embedded systems the lwIP.   

2.4.1 Ethernet Protocol 

Ethernet is a network interface that provides high speed connectivity, widely used in local (LAN) or 
metropolitan (MAN) area networks [14]. It is standardised by the Institute of Electro and 
Electronics Engineers (IEEE) and known as the IEEE 802.3 standard. Commonly used 
communication mediums are twisted pair and fiber optic links (together with repeaters, hubs, 
switches, etc.), providing data rates from 10 Mb/s to 100 Gb/s.  

According to the 7-layer OSI model, Ethernet relates to the bottom two layers ς Physical and Data 
Link [15]. According to the IEEE 802.3 standard [16] these two OSI layers are additionally divided 
into sub-layers to present a finer structure (Fig 2.17). At physical layer, the IEEE sub-layers depend 
on whether 10, 100 or 1000 Mb/s Ethernet standard is used. The MAC and LLC layers are above 
the layers that define the physical and media specifications and do not depend on them. The LLC is 
not bounded to the Ethernet standard but is intended to serve all LAN systems. Therefore, the LLC 
layer is not formally part of the IEEE 802.3 system specifications. 

 
Fig 2.17 The major Ethernet layers defined by IEEE ( [15] p.13) 

The physical Ethernet specifications are separated into two basic groups of hardware components 
ς signalling and media components [15]. The signalling components represent an Ethernet 
hardware interface that is used to send and receive signals over the physical medium. The media 
hardware components are used to build the physical medium where signals are transferred ς 
twisted-pair or fiber optic cables, transceivers, repeaters, etc. 
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Ethernet can operate in half-duplex and full-duplex mode. In half-duplex mode the media access is 
based on the Carrier Sense Multiple Access with Collision Detection (CSMA/CD) media access 
control (MAC) protocol. This protocol represents a set of instructions that arbitrate the access to 
the shared channel. In full-duplex mode the CDMA/CS is not necessary and therefore it is switched 
off.  

Data is transmitted over the Ethernet in frames ( [17] p. 155-169). The frame is a standardized 
sequence of bits that besides the actual payload data, it carries additional information ς source 
and destination address, payload length, checksum, etc. On Fig 2.18 is shown the frame 
composition of DIX8 and IEEE 802.3 frame standards. Although very similar, these standards have 
some minor differences that make them incompatible with one another, unless hardware that 
supports both frame formats is used. Nowadays, IEEE 802.3 is the established standard for the 
majority of vendors. 

 
Fig 2.18 DIX frame vs. IEEE 802.3 frame ( [15] p. 41) 

The similarity in both Ethernet frame specifications allows their structure to be investigated in 
parallel, highlighting their differences:  

¶ The 64 most significant bits (MSB) are used for channel awakening and clock 
synchronization and so to prevent some potential data loss9. In the IEEE 802.3 variant, the 
last 8 bits are called Start of Frame Delimiter (SFD) and are used to signal the start of the 
frame transmission.  

¶ The 48 bit field that follows holds the destination address. In both frame formats, the MSB 
of this field reveals whether the frame is designated to one (individual, physical, MAC, 

                                                 
8
 DIX is abbreviation of DEC-Intel-Xerox consortium that first standardises the Ethernet frame. [15](p.5-7) 

9
 The Preamble bits play a role in 10 Mb Ethernet only. In Fast and Gigabit Ethernet the Preamble bits have constant 

values because due to other technologies used for coding the signal, they are not really needed. Nevertheless, being part 

of the Ethernet frame standard, they are still being sent. [15](p.41-42) 
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unicast address) or multiple (group, multicast address) receivers. The IEEE notation gives 
significance and to the second MSB of that field to distinguish between locally and globally 
administered addresses. DIX addresses are always globally administered.  

¶ The next bit field also consists of 48 bits where the Ethernet MAC (EMAC) address of the 
transmitting source is coded. This address has no significance for the EMAC protocol but it 
is provided for the higher-layer protocols.  

¶ The payload length and/or the type of the high-level network protocol that is used (e.g. 
TCP/IP) are coded in the next 16 bits. In DIX (and initially in IEEE) standard, this field is used 
only as high-level protocol identifier. In IEEE 802.3 version, however, this field was assigned 
a dual interpretation, depending on the value that it holds. The logic is as follows ς if the 
coded decimal value is less or equal to 1500 (which is the maximum transfer unit (MTU) of 
data in bytes), then this value represents the length of the actual message, contained in 
the following Data field; otherwise, if that decimal value is greater than the MTU, it is 
interpreted as the specified in DIX standard high-level protocol type identifier. 

¶ The actual payload is stored in the Data field and must be between 46 to 1500 bytes. If the 
minimum amount of payload data is less than 46 bytes, padding is used to increase the size. 
In the IEEE 802.3 standard, a Logical Link Control (LLC) protocol may also reside in the Data 
field to provide control information or be used as a high-level protocol identifier in case the 
previous field is used as a Length field. 

¶ The least significant 32 bits of the frame holds the cyclic redundancy checksum (CRC) which 
tests the data for errors that might have occurred during transmission. 

The high-level protocol information that is embedded in the Ethernet frame is what actually 
establishes the successful communication between connected nodes. In order to achieve higher 
speeds, the purpose of Ethernet is limited to simply forwarding the frames to their destination, 
ōŀǎŜŘ ƻƴ ǘƘŜ άōŜǎǘ ŜŦŦƻǊǘέ ŘŜǎƛƎƴΦ ¢Ƙŀǘ ƳŜŀns that if retransmission request time-out occurs, the 
frame is discarded. Ethernet frames are standardized but the information that they carry can differ, 
i.e. Ethernet does not depend on the higher-level protocols. Therefore, Ethernet does not provide 
any guarantee for successful data delivery. The correct delivery acknowledgement and order are 
guaranteed by protocols of higher levels. One of these protocols is the TCP/IP protocol suite that is 
the topic of the next chapter. 

2.4.2 TCP/IP Protocol Suite 

Transmission Control Protocol (TCP) and Internet Protocol (IP) are networking protocols which 
together form one of the most common networking protocol suites that is used in the end-to-end 
communication, known as the TCP/IP [9], [18]. It is standardized in a multi-layer stack, similarly to 

the OSI 7 layers model (2.2 OSI Model). TCP/IP precedes the OSI model with around a decade 

but their structures are identical. That is why it is common to explain the one with the other. The 
two models differ in the number of their layers ς 7 in OSI model and 4 in TCP/IP model. Their 
functional definition and hierarchical sequence, however, are very similar (Fig 2.19).  
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Fig 2.19 OSI Model vs. TCP/IP Model ( [9] p. 129) 

¶ Network Interface is the bottom TCP/IP model layer. According to some sources it merges 
the first two OSI layers [18](p. 7-8), while to others, the Physical OSI layer is excluded from 
the TCP/IP model [9](p.128-129).    

¶ Internet layer refers to the network operations like: addressing, routing, data packaging, 
etc. The IP protocol resides in this layer.  

¶ Transport layer corresponds to the OSI Transport layer and part of the Session layer. The 
key protocols for this layer are the TCP and UDP (User Datagram Protocol).  

¶ Application layer is the top layer in TCP/IP model. It combines layers 5, 6 and 7 from the 
OSI model, due to their similar nature.  

IP is a connectionless protocol that simply provides addressing and routing methods to deliver 
transmitted messages to their destination [9], [18]. It does not provide reliability, flow control, or 
error checks. The basic unit of data in an IP network is called datagram. There are two IP versions 
ς IPv4 and IPv6. 

TCP is connection oriented, bi-directional protocol, that guarantees packet deliveries in the correct 
order [18], [19]. It provides error checking and recovery mechanisms and requests retransmission 
of erroneous or lost data packets. TCP handles congestion and flow control and provides 
handshaking sequences10 for establishing a connection. It is used in applications that require high 
transmission reliability. Some of the most common application protocols that use TCP are HTTP, 
FTP, Telnet, SMTP, etc. 

UDP is simpler, connectionless, one-directional protocol, where data packets are broadcasted by 
the transmitting source but there is no guarantee whether these packets are successfully received 
[18], [19]. Unlike TCP, UDP keeps no track on the data packets and in case of errors, erroneous 

                                                 
10

 TCP requires three packets to set up a socket connection, before any user data can be sent. [19] 
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data packets are simply discarded. It is more lightweight and faster than TCP11. UDP is used in 
cases where transmission and processing speed is of higher importance for the application than 
guaranteeing correctness of each data packet, like video and audio streaming, games and so on. 
Common protocols that use UDP are DNS, DSCP, TFTP and so on. 

DHCP (Dynamic Host Configuration Protocol) is a protocol based on the UDP protocol12 that is 
used to provide configuration data to an IP host [18], [20]. It assigns the host with a unique IP 
address and provides other network information depending on the allocation mechanism that is 
used. It supports three mechanisms of IP allocation ς automatic, dynamic and manual. Dynamic 
allocation is the only one that supports automatic reuse of an IP address that is no more in use by 
the host. 

The key concept of the TCP/IP protocol suite is in the Client-Server communication notation ( [9] 
p.126). Clients and servers can be synonyms in the context of a TCP/IP connection and this can 
sometimes be confusing. In order to distinguish their roles for this project, the client is the one 
that initiates the connection and sends the provoked by the user requests to the server. The 
server responds to these client requests by providing the requested service and data. 

2.4.3 LwIP Protocol/Raw API 

Lightweight Internet Protocol (LwIP) is a lightweight version of the TCP/IP protocol suite, designed 
by Adam Dunkels at the Swedish Institute of Computer Science [21]. It is intended to provide a full 
scale TCP with less resource requirements. It requires only a few tens of kilobytes of free RAM and 
around 40 kB of ROM code to run which makes it the best solution for embedded applications 
with limited resources. 

[ǿLt ǇǊƻǾƛŘŜǎ ǘƘǊŜŜ !ǇǇƭƛŎŀǘƛƻƴ tǊƻƎǊŀƳΩǎ LƴǘŜǊŦŀŎŜǎ ό!tLύ ǘƻ ŜƴŀōƭŜ ǇǊƻƎǊŀƳ ŎƻƳƳǳƴƛŎŀǘƛƻƴ ǿƛǘƘ 
the TCP/IP code: 

¶ Socket API 

¶ Netconn API 

¶ Raw (native) API 

The first two are considered high-level APIs, while the Raw (also called Native) API is a low-level 
API as it does not require an operating system to run [22]. The Raw API is designed as a set of 
callback functions that are triggered on certain events, like: new data available, data ready to be 
sent, data transmitted, errors, connection loss and so on. These callback functions have to be 
properly registered at start-up (via tcpip_init_callback()) or at run time (via tcpip_callback()). They 
can only be called from the main thread (tcpip_thread) and are not protected from concurrent 
accesses in multithreading environment [23]. 

The LwIP raw API provides access to protocols of all TCP/IP layers but the one of interest for this 
project is the TCP. The TCP network design is based on the raw API event-driven callback 
mechanism. Before making a call to any of the TCP functions, the lwip has to be initialized (via 
lwip_init()). A TCP connection is identified by a Protocol Control Block (PCB).  

 

                                                 
11

 TCP header size is 20 bytes; UDP header size is 8 bytes. [19] 
12

 More particularly DHCP is based on the Bootstrap Protocol (BOOTP) that is based on the UDP protocol. [20] 
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To setup an active PCB connection the following steps are required: 

1. Call tcp_new() to create a PCB. 
2. Optionally call tcp_arg() to associate an application-specific value with the PCB. 
3. Optionally call tcp_bind() to specify the local IP address and port. 
4. Call tcp_connect(). 

 To send data over a TCP connection: 

1. Call tcp_sent() to specify a callback function for acknowledgements. 
2. Call tcp_sndbuf() to find the maximum amount of data that can be sent. 
3. Call tcp_write() to enqueue the data. 
4. Call tcp_output() to force the data to be sent. 

Receiving data over the TCP connection is callback based: 

1. Call tcp_recv() to set the callback function that will process the received data.   
2. Call tcp_recved() when data has been processed and the application is ready to receive 

more.  

The maximum size of the receiving window is configured via parameter TCP_WND in lwipopts.h 
header file. 

LwIP is based on polling [23]. When connection is idle, LwIP polls it by calling a callback function 
every predefined period of time. The polling time interval and the callback function are set via 
function tcp_poll(). The interval is specified in number of TCP coarse grained timer shots, which 
typically occurs twice a second. 

Connection is closed by calling function tcp_close() which will also deallocate the PCB. If there is 
insufficient memory for performing closing process, call to tcp_abort() never fails. It aborts the 
connection by sending a reset segment to the remote host and deallocates the PCB. 
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2.5 Hardware Platform MicroZed Board 

MicroZed is a low-cost evaluation board from the Xilinx Zed board family [24], [25]. It provides 
features that allow it to be used as a stand-alone evaluation board or extended as an embeddable 
system-on-module (SOM). It is equipped with Zynq XC7Z010-1CLG400C or Zynq XC7Z020-
1CLG400C AP SoC, both part of the Xilinx Zynq®-7000 All Programmable SoC family (Fig 2.20). 
These products are supplied with ARM Cortex-A9 CPU, which provides an on-chip and external 
memory interfaces and a variety of peripheral connectivity interfaces.  

 

Fig 2.20 MicroZed block diagram ( [25] Figure 1) 

The Xilinx MicroZed board, used for this project as an example of a FlexRay node, is equipped with 
Zynq XC7Z020-1CLG400 AP SoC. The most essential for the project features that are provided are: 

¶ 1GB DDR3 RAM 

¶ JTAG connectivity 

¶ 10/100/1000 Ethernet PHY 
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The Dynamic Memory Interface provides a 1 GB of address space that uses a single rank 
configuration of 8-bit, 16-bit or 32-bit DRAM memories. It includes a dynamic memory controller 
and static memory interface modules. The DDR memory controller is multi-ported which allows 
the processing system (PS) and the programmable logic (PL) to have shared access to a common 
memory.  

The Zynq-7000 AP SoC devices support three different boot modes ς JTAG, QSPI and SD card. The 
desired mode is configurable via the boot mode jumpers (Fig 2.21). When the boot mode is 
configured on JTAG, an external JTAG cable is needed. MicroZed is designed with a Platform Cable 
JTAG connector ς 2x7, 2mm, shrouded, polarized header. It is compatible with Xilinx Platform 
Cables and Digilent JTAG HS1 or HS2 Programming Cables.  

 

Fig 2.21 Boot Mode Jumper Settings with Cascaded JTAG Chain ( [25] Figure 8) 

The MicroZed is equipped with Marvell 88E1512 PHY for 10/100/1000 Ethernet network 
connection that operates at 1.8V. On Fig 2.22 is shown a high-level block diagram of the Ethernet 
module. The RJ45 connector is shared with the USB-Host interface and 2 LEDs for traffic and valid 
link state indication are provided.  

  

Fig 2.22 10/100/1000 Ethernet interface ( [25] Figure 5) 
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3. Requirements Analysis 

The following requirements analysis is separated in four main topics. The first one refers to the 

requirements, set with the project assignment, based on previous researches in this field. The rest 

are related to the problems that arise within the different use cases, regarding the structure and 

contents of the data objects and the software architecture, as well as testing and evaluation of the 

software features. The conceptual decisions and solutions of these problems are discussed in 

Chapter 4. 

3.1 General Requirements 

This project assignment is an extension of a similar task that was accomplished by previous thesis 

in the context of Urban Mobility X-by-Wire(less) project [26]. That allows some of the base 

requirements that were analyzed in the previous project to be taken as granted:  

¶ The service interface for configuration, control and message data transfer between the PC 

and the nodes in a FlexRay cluster shall be implemented via Ethernet standard (2.4.1 

Ethernet Protocol), Cat6 Ethernet cables and an unmanaged Ethernet switch  

¶ For ISO/OSI network and transport layers (2.2 OSI Model) the TCP/IP protocol (2.4.2 TCP/IP 

Protocol Suite) shall be used 

¶ The TCP/IP stack shall be implemented by its lightweight version for embedded systems 

(LwIP) (2.4.3 LwIP Protocol/Raw API) 

¶ Ethernet communication shall support 1Gb/s data rate 

¶ Configuration, Control and Message data objects shall be structured based on the 

JavaScript Object Notation (JSON) format [27] 

¶ Programming language for the PC client application shall be Java; for the microcontroller 

server application shall be C 

For a more detailed discussion of previous requirements refer to [26]. 

As another predefined requirement for this project, the Xilinx MicroZed board shall be used as a 

prototype FlexRay node, in contrast to the Texas Instruments Hercules TMS570 board, used for 

the previous project assignment [26]. MicroZed has a Gigabit Ethernet interface installed that 

allows interfacing to a FlexRay controller (not integrated) and gives the possibility of integrating 

new communication modules in its on-board FPGA fabric. In addition, there are known 

integrations of the lwip stack, which allow receiving and transmitting data from and to the 

microcontroller in the defined by the project requirements way.  

After the task requirements that have been set with the project assignment are revealed, the next 

step is to analyze those aspects of the current project implementation that open a field for 

discussion. The first aspect that should be considered is the internal JSON structure of the data 

objects, their purposes and contents. Having this done, leads to the next aspect ς how is that JSON 

data going to be processed and sent over the TCP/IP network. That, from another hand, raises the 
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question of how are the configuration, control and monitoring processes going to be implemented. 

As we can see, each answer leads to a new potential question. Once solutions for all these 

questions are found, summing them up should give the premises for foundation of a user interface 

that best fulfils the established project requirements. 

3.2 Data Objects 

Data objects are text objects that contain information needed for applying a correct operation of 

the configuration, monitoring and control processes of a FlexRay cluster. There are two main 

groups of data objects. The first one ς configuration data objects ς refers to data related to the 

FlexRay protocol constraints and the device specific hardware architecture. This data is needed for 

the correct configuration of the controller node and shall be provided when required by the 

application. Therefore, it shall be stored in a text file in the system. Such file shall exist for each 

distinct node and shall be maintained by a programmer. The second group of data objects is 

communication data objects. This group refers to text objects used for data transfer between the 

PC client and the participants in the FlexRay cluster. Communication data objects shall be 

generated by the application during runtime and their content shall depend on the current 

request. It shall contain as less overhead as possible, in order to maintain higher communication 

speeds. 

The structure of each group of data objects shall be based on the JSON format notation [27]. The 

reasons for choosing file format JSON in the previous [26] and current project is that it contains a 

small amount of overhead, is easy to read by both humans and machines, maintains a hierarchical 

structure and has a wide support of libraries. Those features of the JSON format shall be used 

when defining a suitable internal JSON structure of each of the data objects. A good internal JSON 

structure shall be expressed by a well organized JSON hierarchy, established with respect to 

maintainability by humans, low memory and processing requirements, data reuse and adaptability. 

Relation of data to the different FlexRay protocol and hardware aspects, as well as the different 

use cases involved, shall also be taken into account. 

The heterogeneous character of the FlexRay configuration data enables to distinguish separate 

data categories, according to their relation to different FlexRay protocol (e.g. constants, global 

(cluster) parameters, local (node) parameters, variables, etc) and hardware aspects (e.g. register-

address map). This property shall be used when estimating the most appropriate internal JSON 

structure of the configuration file. In order to ease the process of reading, editing and parsing that 

information, separating the configuration data into multiple files should also be considered. 

Configuration is a process where a device is brought into a default or start-up state and is typically 

executed after a reset or at power up [28]. It is, in general, based on writing predefined data to 

specific memory address registers of the configured device. This configuration process follows a 

defined flow of actions and sometimes requires time delays between consecutive register write 

accesses. A mean of providing this information to the ƴƻŘŜΩǎ Controller Host Interface (2.3.1 

Communication Controller) shall be determined. 
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Hexadecimal representation of values shall be supported by the configuration files. Optionally, 

support for other number format representations should also be implemented. Although the 

current project is intended to relate only to systems running the FlexRay protocol, the 

configuration file structure shall be specified to enable the integration of other protocols in the 

future with minimum amount of effort.  

3.3 Software Features and Structure 

The software implementation is divided into two parts. It consists of one client application, 

programmed in Java, and one server application, programmed in C (according to the general 

requirements). The workload of both applications shall be shared in a way that the resource 

power of the PC client is maintained. Therefore, the main decision taking and logic algorithms shall 

be executed on the PC. The client application shall compose and transmit data objects, containing 

only relevant for the requested access data in the desired request order. The purpose of the server 

application should be limited to parsing the received data objects, processing the read/write 

access to registers13 in the defined by the client order and composing and sending response data 

objects back to the client. Eventually, these two applications shall work with each other in a 

synchronized manner under the control of the user.  

The client application shall be based on a graphical user interface (GUI) that shall be intuitive in 

use to enable less experienced users to work with it. That implies that a compromise between 

usability and complexity should be agreed. The GUI shall be designed to accept user requests and 

display usable information, where all the program logic is executed in the background. Its purpose 

shall include some basic debugging functionalities to inform the user for error conditions by error 

and warning messages. 

The application shall enable the user to browse through the system memory for a configuration 

file. A parsing algorithm shall be implemented that parses the JSON data from the specified file in 

the application memory. As JSON format has popularity and support among programmers, the use 

of standardized, well-approved and widely used libraries shall be considered. Suitable parsing 

algorithms shall be developed for both server and client applications.  

The user shall be able to connect to a desired node by addressing its assigned IP address and port 

number. For this project, simultaneous connection to FlexRay nodes shall be limited to one node 

at a time. Once a TCP/IP connection between the PC client and the FlexRay server node is 

established, the user shall be able to perform the three fundamental processes ς initial 

configuration, control and monitoring of the message buffers of a FlexRay node. 

The limited memory resource on the FlexRay node (e.g. buffer of TCP/IP stack and FlexRay 

input/output buffers) as wells as the limited processing speed for parsing and access to the (mock-

up) FlexRay module shall be taken into account when designing the application algorithms. An 

appropriate TCP/IP stack, specially designed for resource limited embedded systems, is already set 

                                                 
13

 Due to the lack of a FlexRay module for the MicroZed board, the register space is mimicked. See Section 3.4  
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by the general project requirements. However, it shall be investigated whether it is supported by 

the MicroZed board, which is the example FlexRay node for this project. The application design 

shall be aimed to ensure no buffer overflows and correct execution of the requested processes 

and shall give status feedbacks for success, failure, warnings and so on. 

Requesting node status and message buffers content is the essence of the monitoring process. 

That involves heavy data traffic between the server and the client. Therefore, the implementation 

of the software algorithms shall be targeted towards the speed of data processing. Once 

requested, the monitoring process shall be maintained until further user request or connection 

loss. The requested FlexRay message buffer content shall be displayed in a GUI text field(s). As this 

information is of high interest for the user, the software should offer the opportunity to save this 

data on a text log file. Optionally, other status related information should be displayed for user 

reference. 

As a part of the control process, the user shall be able to send CHI commands (2.3.1 

Communication Controller) and retrieve current node states. Additionally, requesting a read or 

write access to a selected node register shall also be supported. For this purpose, all node 

registers shall be presented in a list. 

As the current project is intended to be continued in the future, good programming practices shall 

be followed. The code shall be structured in functional blocks, so that it should be possible to 

update each block independently on the others. In order to ease the process of reading, method 

and variable names should be self-describing and accompanied by comments. 

3.4 Evaluation 

For proper evaluation of the software features, at least two microcontrollers (representing FlexRay 

server nodes) having Ethernet and FlexRay modules installed shall be available. For each distinct 

microcontroller the FlexRay register-address macro shall be present. The PC client shall have 

Telnet enabled and Java version 1.7 or 1.8 installed. For installing and running the server code, the 

Vivado 2014.4 IDE, including Software Development Kit (SDK) tool, shall be installed and the board 

definition files for the MicroZed board shall be included14. An Ethernet switch and Cat6 Ethernet 

cables shall be used for the connection between the PC client and the FlexRay server nodes. 

For this project there is only one MicroZed board available and no FlexRay module nor FlexRay 

register-address header file are present. Therefore, the evaluation of the project shall be based on 

investigation of the correct communication between the PC client and the server node. The server 

register space shall be mimicked by a global array of 32-bit integer values and the client R/W 

access request shall be performed on that array. 

                                                 
14

 The board definition files for the MicroZed board for Vivado IDE can be downloaded from [35]. The installation 

procedure is described in Install Avnet Board Definition Files in Vivado 2014.2 v1.3.pdf file included in the download 

package.   
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In most cases the evaluation of the correct operation of the developed software application shall 

be performed manually by the user. Having the available information from the configuration JSON 

data objects (which design is still to be established), the user shall predict the outcome and 

compare it to the result of the application algorithm for a given use case. That includes the 

following use cases: 

¶ Parsing and composing of JSON data objects by both client and server applications 

¶ Composition and decomposition of register values based on the available information ς 

FlexRay parameter/status values, bit ranges and offsets  

¶ Encoding/decoding of transmit/receive FlexRay messages 

¶ R/W access ǘƻ ǘƘŜ Ǝƭƻōŀƭ ΨǊŜƎƛǎǘŜǊ ǎǇŀŎŜΩ ŀǊǊŀȅ 

The evaluation of the TCP/IP communication shall be investigated with the help of suitable 

software (e.g. WireShark). That includes investigation of the sizes of the ƳƛŎǊƻŎƻƴǘǊƻƭƭŜǊΩǎ ǊŜŎŜƛǾŜ 

message buffer and the transmitted JSON objects. For that purpose the implementation of a small 

test local server application shall be considered to mimic a second FlexRay node and provide 

additional testing opportunities.   
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4. Concept 

This chapter describes the options that were taken into account in attempt to find the solutions 
that best correspond to the project requirements established in Chapter 3 Requirements Analysis. 
That includes a detailed discussion over the considered approaches, their advantages and 
disadvantages. 

4.1 Configuration Data Objects 

According to the general requirements the format of the configuration data objects is JSON. A 

JSON structure consists of objects which bodies are defined by braces [27]. The first open brace 

and its corresponding closing brace determine the root JSON object. The root object represents 

the parent object of all nested JSON objects, referred as child objects. The internal JSON object 

structure is based on key-value pairs, referred as tokens, which are separated by comma. The key 

must be a unique in the scope of its parent object string, while the value can be one of the 

following formats: string, number, boolean, null, array or another object. 

The determined requirements regarding the internal JSON structure of the configuration data 

object aim to ease the process of maintaining that object by humans, while in the same time a 

significant amount of heterogeneous data to be contained there. Hence, a compromise between 

complexity of the ƻōƧŜŎǘΩǎ internal JSON structure and ease of processing it needs to be made.  

4.1.1 Files Content 

The first subject of discussion is whether all the data to be present in one file or to be spread 

across multiple files. FlexRay parameters are divided into two groups: cluster specific and node 

specific15. Cluster specific are those parameters that have the same value in all nodes belonging to 

that cluster. They are also referred as global parameters. An example for global parameters are 

the number of macroticks in a communication cycle, duration of a static slot, duration of a minislot, 

header CRC, etc. (2.3 FlexRay Protocol). Node specific parameters are local for the node and 

can have different values in each node (e.g. number of samples per microtick, number of 

microticks per macrotick, connected channel, etc.). Both groups are part of the FlexRay protocol 

specification. Register names and their corresponding addresses are device specific, i.e. they 

depend on the device architecture but not on the FlexRay protocol. Separating the configuration 

data into three distinguishable groups grants the opportunity to implement a more appropriate 

structure of the JSON configuration file. 

First, let us consider having all cluster configuration information in one root JSON object (Example 

5-1). The global cluster data, as well as the local and device specific data for each node, are 

enclosed in a separate child JSON object. The advantage is that there is only one file in the system 

for each cluster that is shared between the nodes, belonging to that cluster, and the amount of 

redundant information is small. However, the overall size of data in this file is big and requires a 

                                                 
15

 For more information about the different types of FlexRay parameters and variables refer to Table A-1 in Appendix 
A. 
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complex internal structure of each node JSON object. This increases the complexity of parsing 

algorithms and decreases the readability and possibility of data reuse. On the other hand, having 

all data in a single file is disadvantageous in terms of security ς damaging one file leads to loss of 

big amount of information. 

  
Example 5-1. Example JSON structure of configuration file   

Another consideration is to have a separate configuration file for each node (Example 5-2). The 

advantage is that the amount of data in each file is significantly reduced, which improves 

readability and the possibility of data reuse. The process of parsing the JSON data is also improved 

as only the needed file is loaded to the application memory. However, the bottlenecks of the 

parser algorithm design come from the internal structure of the node JSON objects. Due to the 

heterogeneous type of data contained there (protocol and device specific), its internal JSON 

structure remains complex which does not bring much of improvement in the design of the 

parsing algorithm, compared with the previous case. On the other hand, redundant information is 

present as the JSON cluster object is the same in each configuration file related to that cluster. 

From that follows that changing a single cluster parameter value requires update of every 

configuration file referring to a node of that cluster. 

 
Example 5-2. Example JSON structure of configuration files 
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A third consideration is to separate the configuration data for each node in three JSON files, based 

on the three parameter groups that were distinguished ς cluster, node and device specific 

(Example 5-3). One file contains only cluster (global) parameters and is shared between all nodes 

belonging to the same cluster. For each node there is one file, containing local parameters and 

status variables and another file containing the device specific information. The disadvantage with 

this approach is that the overall number of files per cluster is increased. However, the separation 

of data regarding different FlexRay protocol and hardware aspects significantly decreases the 

complexity of the inner JSON structure and amount of data in each file. That leads to simplification 

of the parser algorithms and increases the ability of data reuse and file maintenance. There is 

minimum amount of redundant data and each file can be modified by the programmer 

independently on the others16 and be reused for another FlexRay application. 

 
Example 5-3. Example JSON structure of configuration files 

  

                                                 
16

 In fact there are certain dependencies, for example when a new node is added to a cluster its ID has to be added in 
the Cluster file or in cases where a certain node parameter value is directly related to a cluster parameter value or vice 
versa, e.g. gdBit = cSamplesPerBit * gdSampleClockPeriod [µs] (for details see [10] (Appendix A and B)) 
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In Table 5-1 are summarized the advantages and disadvantages of each of the discussed cases: 
C

a
se

 Number of 
configurati
on JSON 

files 

Advantages Disadvantages 

1 
1 file per 
cluster 

¶ Only one file to work with 

¶ Less number of files in system 

¶ Small amount of redundant data 

¶ Big amount of data concentrated 
in one file 

¶ Complex file structure 

¶ Complex parser algorithm 

¶ Hard to read/modify by human 

¶ Low possibility of reuse 

2 
1 file per 

node 

Compared to Case 1: 

¶ Less amount of data per file  

¶ Less data loaded in application 
memory 

¶ Faster execution of parsing 
process 

¶ Better readability 

¶ Increased possibility of data reuse 

Compared to Case 1: 

¶ More number of files in system 

¶ Internal JSON object structure 
complexity remains 

¶ Parser algorithm complexity 
remains 

¶ Data redundancy 

¶ Hard to update 

3 
3 files per 

node 

Compared to Case 1 and Case 2: 

¶ Less amount of data per file 

¶ Better internal JSON structure 

¶ Simpler parser algorithm 

¶ Small amount of redundant data 

¶ Easier to read/update/modify 

¶ Reusability 

Compared to Case 1 and Case 2: 

¶ Increased number of files in the 
system  

Table 5-1. Number of configuration JSON files - advantages and disadvantages 

After summing up the advantages and disadvantages for each of the three cases, shown in Table 

5-1, it is clear that Case 3 responds best to the project requirements established in Chapter 3. 

4.1.2 Files Structure 

The previous section was engaged with the conceptual decision of separating the data, required 

for the configuration, control and monitoring processes, across three files. The current section is 

related to the different approaches and decisions that were considered regarding the internal 

JSON structure of each of these files. That includes discussion on the structural regulations and 

constraints that has to be taken into account when creating the files. 

The fact that JSON format supports nesting of JSON objects [27] gives more options when defining 

a suitable internal structure for each file, as a response to the set project requirements. A good 

internal JSON structure is expressed in a well defined hierarchical structure, depending on the 

level of relation of data to different protocol or hardware aspects. The three data categories 

specified ς cluster, node and device specific (4.1.1 Files) ς determine the content of each of the 

three files, referred in general as Cluster, Node and Device files.  
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As next, the structural definition of each of these files is discussed. That includes a top layer view 

of the constituent JSON objects and discussion on some structural constraints. For more detailed 

examples of the Cluster, Node and Device JSON files refer to Appendix B.  

Cluster file  

The global FlexRay parameters can be subdivided into two groups ς system constants and cluster 

configuration parameters ( [10] Appendix A and B). The system constants refer to those FlexRay 

protocol related parameters that must have the same value in every cluster of a FlexRay system. 

bŀƳŜǎ ƻŦ CƭŜȄwŀȅ Ŏƻƴǎǘŀƴǘǎ ǎǘŀǊǘ ǿƛǘƘ ǘƘŜ ΨŎΩ ǇǊŜŦƛȄ όfor full list of prefixes refer to Table A-1 in 

Appendix A). Global cluster parameterǎ ŀǊŜ ƛŘŜƴǘƛŦƛŜŘ ōȅ ǘƘŜ ǇǊŜŦƛȄ ΨƎΩ ŀƴŘ ǘƘŜƛǊ values must be 

identical in the scope of the cluster. The feature of the FlexRay data to be subdivided into more 

specific groups allows us to introduce a hierarchical structure that better corresponds to the 

project requirements. It is implemented in separating the data into sub-JSON objects (child 

objects), which naming relates to the data they contain (Example 5-4).  

Apart from FlexRay related data, some additional information, 

intended for the user and the operation of the parsing application, 

is embedded inside each file. It is referred as general information 

ŀƴŘ ǘƘŜ W{hb ƻōƧŜŎǘ ǿƘŜǊŜ ƛǘ ƛǎ ǇƭŀŎŜŘ ƛǎ ŎŀƭƭŜŘ άƎŜƴŜǊŀƭέ (Example 

5-4). The structure of the άƎŜƴŜǊŀƭέ ƻōƧŜŎǘ17 in each of the three file 

types is identical but its content differs. An example for such type of 

data, contained in Cluster file, is the cluster ID18 (assigned by the 

user for differentiation), a list of node IDs part of that cluster 

(discussed later) and name of the communication protocol (based 

on the requirement for future integration of other than FlexRay 

protocols). 

Example 5-4. Cluster file structure 

An advantage of grouping the data is that at the end it is presented simply as chunks of key-value 

pairs, which significantly simplifies the parser algorithm. The key of each JSON object token 

represents a name, which can be defined according to the FlexRay protocol specification v2.1 

notation [10] or by the programmer. When the token name is defined or modified by the 

programmer it has to be accordingly updated in the software application. The JSON format 

guarantees no order of tokens [27] so their order in the Cluster JSON file is not relevant. 

One of the set requirements regarding the structure and contents of JSON data objects is the 

hexadecimal representation of constant/parameter/variable values. In information engineering 

the hexadecimal format is preferred as it contains information for the position and value of each 

                                                 
17

 In the text the naming of JSON objects is based on the name of the ļkeyĽ that corresponds to the object value. 
18

 Each of the three file types is assigned an ID used for file differentiation. It is assigned by the programmer and is used 

by the application to link the three files corresponding to a node. The IDs shall be unique so that for every node there is 

only one possible combination of files. 
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bit. Therefore, hexadecimal format is supported by the application. However, as JSON notation 

does not support hexadecimal numbers, the value must be presented as a string, i.e. surrounded 

by quotesΦ CƻǊ ǳǎŜǊΩǎ ŎƻƳŦƻǊǘ decimal representation is also allowed by the parser algorithm. 

Therefore, the user is free to choose the number format representation of constant/parameter 

values.  

Node file  

The FlexRay protocol data that may differ in each node of a cluster is stored in the Node JSON file. 

Unlike the Cluster file, where the data is separated according to its relation to the FlexRay protocol, 

in the Node file data is structured, depending on the purpose and relation of data to different 

register sections (Example 5-5). The reason is the better relation to the Device file, where data is 

organized according to register grouping (see next section). 

Lƴ ǘƘŜ άƎŜƴŜǊŀƭέ W{hb ƻōƧŜŎǘ ƛǎ ǇƭŀŎŜŘ ǘƘŜ ƎŜƴŜǊŀƭ 

information about the node. That includes an ID that is used 

for differentiation of the Node files. It is assigned by the 

programmer who decides whether it shall be unique in the 

scope of the current cluster or in the whole FlexRay system 

(if more than one cluster is present). Every node is assigned 

an IP address that is unique in the scope of the FlexRay 

ƴŜǘǿƻǊƪΦ ¢ƘŜ ƭŀǎǘ ǘƻƪŜƴ ƻŦ ǘƘŜ άƎŜƴŜǊŀƭέ ƻōƧŜŎǘ ƛǎ ǘƘŜ ID 

assigned to the corresponding Device file (discussed later).  

The άŎƻƴǘǊƻƭέ W{hb ƻōƧŜŎǘ ƘƻƭŘǎ ǘƘŜ part of the FlexRay 

protocol data, which is related to the configuration of the 

control registers for the Communication Controller (CC) 

(2.3.1 Communication Controller) and message buffers in 

message RAM (2.3.3 E-Ray). Lƴ ǘƘŜ ǎŀƳŜ ǎŜƴǎŜΣ ǘƘŜ άǎǘŀǘǳǎέ 

object relates to the status variables for the CC and the 

message RAM buffers. Every message buffer is configured 

via the Input Buffer. The configuration data for each buffer 

ƛǎ ǇƭŀŎŜŘ ƛƴǎƛŘŜ ǘƘŜ άƳŜǎǎŀƎŜψōǳŦŦŜǊǎέ W{hb ƻōƧŜŎǘΦ  

Example 5-5. Node file structure 

 

The italics notation of token keys means that in the file those keys are replaced with an 

appropriate naming19Φ Lƴ ǘƘƛǎ ŎŀǎŜ ǘƘŜ άfirst_mb_numberέ is ǎƛƳǇƭȅ άлέΣ ǘƘŜ άsecond_mb_numberέ 

άмέ ŀƴŘ ǎƻ ƻƴΦ !ǎ ǘƻƪŜƴ ƪŜȅǎ Ƴǳǎǘ ōŜ ǎǘǊƛƴƎǎΣ ǘƘŜȅ ŀǊŜ ŀƭǿŀȅǎ ǎǳǊǊƻǳƴŘŜŘ ōȅ quotes. FlexRay 

commands are ǇƭŀŎŜŘ ƛƴǎƛŘŜ ǘƘŜ άŎƻƳƳŀƴŘέ W{hb ƻōƧŜŎǘΦ The command names are standard for 

the FlexRay protocol but their corresponding values might differ among the variety of node types. 

                                                 
19

 This is valid for all following examples from this section. 
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The last JSON token of the Node file does not have a JSON object as a corresponding value but an 

array containing the values required for unlocking the registers after the configuration process has 

finished ( [11] p. 24). These values are placed in an array for the reason that their order must 

match a defined sequence of write accesses to the Lock register. 

¢ƘŜ ǎǘǊǳŎǘǳǊŜ ƻŦ ǘƘŜ άŎƻƴǘǊƻƭέ ŀƴŘ άƳŜǎǎŀƎŜψōǳŦŦŜǊǎέ ŎƘƛƭŘ ƻōƧŜŎǘǎΣ ŀǎ ǿŜƭƭ ŀǎ ǘƘŜ άŎƻƳƳŀƴŘέ 

object, is based on key-value tokens. The key is the name of a FlexRay parameter/command and 

its corresponding value can be presented as a hexadecimal string or decimal integer. Unlike them, 

ǘƘŜ άǎǘŀǘǳǎέ ŎƘƛƭŘ W{hb ƻōƧŜŎǘǎ ŀǊŜ structured differently. The values of status variables are 

represented as JSON objects, containing the possible status conditions related to that variable 

(Listing 4.1). As the value determines the status, the key-ǾŀƭǳŜ ǇŀƛǊ ƛǎ ōŀǎŜŘ ƻƴ άǾŀƭǳŜέ-άǎǘŀǘǳǎέ 

notation, where regardless whether the value is represented in hexadecimal or decimal format, it 

must be surrounded by quotes as it corresponds to the key of the token.  

άƳōψǎǘŀǘǳǎέΥ ϑ 

"vSS!ValidFrameA": { 

  "0x00": "No valid frame received on channel A", 

 "1": "Valid frame received on channel A" 

}, 

Χ 

} 

Listing 4.1. JSON structure of a status variable object  

Device file  

The purpose of the Device file is to provide a link between the FlexRay protocol data, contained in 

the Cluster and Node files, and the hardware dependant register space. In response to the 

requirement that most of the algorithm logic shall be done on the richer in resources PC client, the 

Device file has to provide all the information needed by the application for composing data objects 

that contain minimum amount of overhead and are in ΨǊŜŀŘȅ-to-ǳǎŜΩ ōȅ ǘƘŜ FlexRay server 

application form (still to be determined). That includes: 

¶ Register-address map 

¶ Position of each FlexRay parameter/variable inside the register 

¶ Sequence of register accesses  

The ƴƻŘŜΩǎ ƳŜƳƻǊȅ ǎǇŀŎŜ is hardware specific and the link between the register names and their 

corresponding addresses has to be included in the Device file. However, this map already exists in 

one of the device header files. Therefore, this information is automatically extracted by the 

application. This increases the algorithm complexity but the only additional data that is included in 

the Device file is the name of that header file.  
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The position of each FlexRay parameter/variable inside its corresponding register is defined via 

specifying the allowed for that 

parameter/variable bit range and the offset 

of the base register address.  

As JSON format represents an unordered 

set of tokens it does not guarantee any 

sequential order. Therefore, for defining a 

certain order of sequential register 

accesses two approaches are considered. 

The first approach is to add indexing inside 

the JSON objects. The disadvantage is that 

this adds an additional payload and 

complexity in the parser algorithm and the 

designing of the Device file as changing one 

index is followed by changes in the 

subsequent indexes, too. The second 

approach is to use a notation that 

guarantees sequential order. In JSON 

format the only element that guarantees 

order is the array. This adds only a minor 

amount of additional payload (two brackets) 

but the main advantage is that editing the 

array does not affect the rest of its 

elements. This array notation is required 

only for JSON objects related to more than 

one register. 

Example 5-6. Device file structure 

The registers in the Device file are grouped according to their relation to different FlexRay protocol 

aspects (Example 5-6). ¢ƘŜ ƻƴƭȅ ŜȄŎŜǇǘƛƻƴǎ ƛǎ όŀǎ ōȅ ǘƘŜ /ƭǳǎǘŜǊ ŀƴŘ bƻŘŜ ŦƛƭŜǎύ ǘƘŜ άƎŜƴŜǊŀƭέ 

object, which holds the device specific information and the name of the header file that defines 

the macros for the register addresses of the FlexRay module. The purpose of the assigned by the 

programmer ID is for file differentiation and provides a link to the corresponding Node file (18). 

For a full view of an example Device file, refer to Appendix B. 

Those JSON objects that are related to only one register have the notation shown in Listing 4.2. 

¢Ƙŀǘ ƛǎ ǘƘŜ ŎŀǎŜ ǿƛǘƘΥ άŎƻƳƳŀƴŘέΣ άǎǘŀǘŜέΣ άƭƻŎƪέ ŀƴŘ ŀƭƭ ŜȄŎŜǇǘ άƘŜŀŘŜǊέ ƻōƧŜŎǘ ŦǊƻƳ 

άƛƴǇǳǘψōǳŦŦŜǊέ ŀƴŘ άƻǳǘǇǳǘψōǳŦŦŜǊέ ƻōƧŜŎǘǎ ό9ȄŀƳǇƭŜ р-6). 

άobjectέΥ ϑ 
        άRegisterέΥ ϑϒ 
     } 

Listing 4.2. JSON structure of an object related to one register 
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JSON objects, containing more than one register, shall follow an array signature that implements 

the sequential register access order. That array holds the JSON objects ordered in their desired 

order of access (Listing 4.4).  

 "object": [{ 
           "Register 1": {} 
                                }, 
        { 
           "Register 2": {} 
        }, 
        Χ 
        { 
           "Register N": {} 
        }] 
Listing 4.4. Array structure of a JSON object related to multiple registers 

This array notation is valid only for JSON objects20 containing more than one register object 

(Example 5-6):   

¶ άŎŎψŎƻƴǘǊƻƭέ ŀƴŘ άƳōψŎƻƴǘǊƻƭέ ƻōƧŜŎǘǎ ǇŀǊǘ ƻŦ άŎƻƴǘǊƻƭέ ƻōƧŜŎǘΤ  

¶ άŎŎψǎǘŀǘǳǎέ ŀƴŘ άƳōψǎǘŀǘǳǎέ ƻōƧŜŎǘǎ ǇŀǊǘ ƻŦ άǎǘŀǘǳǎέ ƻōƧŜŎǘ; 

¶  άƘŜŀŘŜǊέ ƻōƧŜŎt ƻŦ άƛƴǇǳǘψōǳŦŦŜǊέ ŀƴŘ άƻǳǘǇǳǘψōǳŦŦŜǊέ ƻōƧŜŎǘǎΦ 

The relation between the register and all parameters/variables that are part of that register, 

together with their bit range and offset, is hierarchically structured as shown in Listing 4.3. The 

register name is a parent object of its related parameters. The order of parameters inside that 

object has no relevance but in their corresponding array values the bit range comes first and then 

ǘƘŜ ƻŦŦǎŜǘΦ ¢ƘŜ ƻƴƭȅ ŀŎŎŜǇǘŜŘ ƴǳƳōŜǊ ŦƻǊƳŀǘ ŦƻǊ ǘƘŜ ΨǊŀƴƎŜΩ ŀƴŘ ΨƻŦŦǎŜǘΩ ƛǎ ŘŜŎƛƳŀƭΦ 

 άRegisterέΥ ϑ 

  άparameter 2έΥ ώrange, offset], 

  άparameter 3έΥ ώrange, offset],  

  άparameter 1έΥ ώrange, offset], 

  Χ 

 } 

Listing 4.3. JSON structure of a register object 

¢ƘŜ άŘŀǘŀέ array holds the data registers for the Input and Output Buffers (2.3.3 E-Ray). The 

άƴŜǿψŘŀǘŀέ array refers to the registers dedicated to inform the Host (2.3.1 Communication 

Controller) that new data is available for processing. The άƳōψǎǘŀǘǳǎψŎƘŀƴƎŜŘέ array that there is 

a change in the message buffer status. 

                                                 
20

 As the value, corresponding to the key is an array but not an object, it is not fully correct to call them objects. 

Nevertheless, for consistency they are still referred as JSON objects as the array notation is added as a response to a 

project requirement. 
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All FlexRay parameters and variables that are present in the Cluster and Node files should be 

matched to their corresponding registers in the Device file. Their naming must be the same, taking 

into account case sensitivity. There are some variables, however, that are present in the Device file 

but do not exist in the other two files. The reason is that these variables do not have any 

predefined status condition related to them but the value itself is of interest for the user ς for 

example time duration, slot counter, cycle counter, etc. In Device file, these variable names are 

preceded by an asterisk (e.g. "*vRemainingColdstartAttempts"). This notation is used by the 

application algorithm to distinguish between the different type of variables, as well as for user 

reference when maintaining the file. In cases where the variable name has no relevance for the 

application, its name can be custom or just an asterisk used as a placeholder όάϝέύΦ  

4.2 Communication Data Objects 

Communication data objects are used for transmitting data between the PC client and the 

participants in the FlexRay network. According to the general project requirements, their design 

shall be based on the JSON format notation (3.1 General Requirements). They are composed by 

both client and server applications during runtime and depending on the communication direction 

with respect to the request invoker (client) are differentiated request (transmit) data objects and 

response (receive) data objects. The request data objects can be further differentiated according 

to the requested by the client register access to write request objects and read request objects.  

In the current chapter are discussed the different approaches considered, regarding the structure 

and contents of the R/W request and response data objects in attempt to maximally fulfil the set 

project requirements.  

One of the established requirements, regarding the structure and contents of the communication 

data objects, aims to maintain higher communication speeds by providing the data with minimum 

amount of overhead. That implies that the JSON data objects shall contain only relevant for the 

desired register access data ς where to read/write (register address) and what to write (register 

value) (Listing 4.5)Φ !ǎ ǘƘŜ ǊŜŀŘ ǊŜǉǳŜǎǘ ƻōƧŜŎǘǎ Řƻ ƴƻǘ ƘŀǾŜ ǘƘŜ ΨǿƘŀǘΩ ǇŀǊǘΣ ǘƘŜ ǎǘǊǳctural 

constraints are presented only according to the write request objects. Once a suitable structural 

standard, that best responds to the project requirements, is defined for the write request objects, 

a discussion on the design of the read request and response data objects will be made.  

{                       
 άaddress 1έΥ έ value 1έΣ 
            άaddress 2έ Υ άvalue 2έΣ 
 Χ 
} 
Listing 4.5 JSON write request object containing only address-value pairs 

All the information needed from the client application to compose the shown in Listing 4.5 request 

JSON object is contained in the Cluster, Node and Device files (4.1.1 Configuration Data Objects). 

The register address is defined by the macros in the register header file, while the register value is 
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automatically calculated by the client application by superposing all related to that register 

parameter values on their defined positions inside the register. 

The exposed approach regarding the design of the communication data objects (Listing 4.5), 

tempts to have a minimum amount of overhead. There is, however, an issue with this approach. 

According to one of the project requirements, any major scripting and decision taking procedures 

shall be avoided on the FlexRay server application. Therefore, the client shall pass the data to the 

ǎŜǊǾŜǊ ƛƴ ŀ ΨǊŜŀŘȅ-to-ǳǎŜΩ ŦƻǊƳ όwhich in this case it does) and in the desired sequential access 

order. And here comes the problem ς this JSON structure does not guarantee that the tokens will 

ōŜ ŜȄǘǊŀŎǘŜŘ ƛƴ ǘƘŜ ǎŀƳŜ ƻǊŘŜǊ ōȅ ǘƘŜ ǊŜŎŜƛǾŜǊΩǎ ǇŀǊǎŜǊ.  

In order to design a JSON structure that guarantees order, a similar to the construction of some of 

the Device file JSON objects approach is taken. An array structure is embedded inside the root 

JSON object (Listing 4.6). Each of the tokens is surrounded by braces and represents an 

independent JSON object (as arrays cannot hold JSON tokens as values). ¢ƘŜ ΨƪŜȅΩ ƻŦ the root 

token can be any custom defined name (in Listing 4.с ƛǎ άϝέύ ǘƘŀǘ serves as a placeholder. That 

approach adds some additional overhead but guarantees that the JSON tokens will be extracted in 

their sequential array order. 

{         
    άϝέΥώ 
 ϑάaddress 1έ Υ έǾŀƭǳŜ 1έϒΣ 
             {άaddress 2έ Υ άǾŀƭǳŜ 2έ}, 
 Χ 
           ] 
} 
Listing 4.6 JSON write request object with embedded array structure 

When implementing the parsing algorithm for the server application with the help of an external 

JSON library (discussed in Section 5.2), some disadvantages regarding this structure were realized. 

¢ƘŜ Ƴŀƛƴ ŘƛǎŀŘǾŀƴǘŀƎŜ ƛǎ ǘƘŀǘ ǘǊŀǾŜǊǎƛƴƎ ǘƘŜ ǘƻƪŜƴǎ ōȅ ΨƪŜȅΩ ƛǎ ǎǳǇǇƻǊǘŜŘ ōȅ ǘƘŜ ƭƛōǊŀǊȅ ŀƴŘ ƳǳŎƘ 

easier to implement. In this casŜ ǘƘƻǎŜ ΨƪŜȅǎΩ ŀǊŜ ŀŘŘǊŜǎǎŜǎ ŀƴŘ Ŏŀƴƴƻǘ ōŜ ƪƴƻǿƴ ƛƴ ŀŘǾŀƴŎŜΦ 

Therefore, the final version of the structure of a communication JSON data object is the one 

shown in Listing 4.7. Addresses and their corresponding values are placed at the same index in the 

two arrays, ordered according to ǘƘŜƛǊ ŘŜǎƛǊŜŘ ŀŎŎŜǎǎ ǎŜǉǳŜƴŎŜΦ ¢ƘŜ W{hb ΨƪŜȅΩ ƴŀƳŜǎ ς Ψ!Ω ŀƴŘ Ψ±Ω 

όǎǘŀƴŘ ŦƻǊ Ψ!ŘŘǊŜǎǎŜǎΩ ŀƴŘ Ψ±ŀƭǳŜǎΩύ ς are intuitively chosen and are known by both client and 

server applications. This way the up-mentioned disadvantage is removed. 

{  

        ά!έΥ ώŀŘŘǊŜǎǎмΣ ŀŘŘǊŜǎǎнΣ ŀŘŘǊŜǎǎоΣ ΧϐΣ 

        ά±έΥ ώǾŀƭǳŜмΣ ǾŀƭǳŜнΣ ǾŀƭǳŜоΣ Χϐ 

} 

Listing 4.7 Final structure of write request JSON data object  
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The established JSON structure for the write request data objects can be easily integrated to the 

read request data objects. The difference is in the contents ƻŦ ǘƘŜ Ψ±ŀƭǳŜǎΩ ŀǊǊŀȅΥ  ƛŦ ǘƘŜ ά±έ ŀǊǊŀȅ 

contains values ς write those values to the addresses from the ά!έ ŀǊǊŀȅ (write request)Τ ƛŦ ǘƘŜ ά±έ 

array is empty ς fill it with the values read from the addresses from the ά!έ ŀǊǊŀȅ (read request). 

Therefore, the response data object will have the same structure as the write request object 

(Listing 4.8).   

Read request JSON object Write request/Response JSON object 

{ { 

 ά!έΥώŀŘŘǊŜǎǎмΣ ŀŘŘǊŜǎǎнΣ ŀŘŘress3],  ά!έΥώŀŘŘǊŜǎǎмΣ ŀŘŘǊŜǎǎнΣ ŀŘŘǊŜǎǎоϐΣ 

 ά±έΥώϐ  ά±έΥώ value1, value2, value3] 

}  } 

Listing 4.8 JSON structure of R/W request and response data objects 

If an error has occurred during the process of parsing/composing the request/response JSON 

object, an error object is returned (Listing 4.9). It has the agreed JSON structure but no values in 

either array. 

 ϑ ά!έΥώϐΣέ±έΥώϐϒ 

Listing 4.9 Error JSON object contains no values in its arrays 

After a JSON structure for the communication data objects is established, the next step is to 

discuss the representation format of the register addresses and values. As defined by the project 

requirements, the number format representation is hexadecimal. In this case both addresses and 

ǘƘŜ ǾŀƭǳŜǎ ŀǊŜ ǊŜǇǊŜǎŜƴǘŜŘ ŀǎ ΨǎǘǊƛƴƎΩΣ ŀǎ W{hb ŦƻǊƳŀǘ ŘƻŜǎ ƴƻǘ ǎǳǇǇƻǊǘ ƘŜȄŀŘŜŎƛƳŀƭ 

representation of numbers [27]. The software application takes care for the correct parsing and 

composing of the hexadecimal strings.   

Configuration data may be too big for the receive buffer if sent in one JSON object. That 

contradicts with the requirement that the algorithm implementation shall ensure no receiver 

buffer overflows during transmission. On the other hand, in some cases time delays between 

consecutive write accesses during configuration are required. Therefore, a request-response 

communication design is considered. Instead of sending the configuration data over to the node 

in one go, the client composes and transmits a JSON object containing one register address and 

one register value and waits for a response from the server before sending the next data object. 

This procedure is repeated in the background without further user interaction until all 

configuration data is sent. This method increases the overall configuration time but due to the fast 

Ethernet speed of 1 Gbit/s it is barely noticeable. However, the advantages are that relatively 

small JSON objects are transmitted over the network that guarantees no buffer overflows, and 

time delays between consecutive write accesses are provided.   
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4.3 Software Design 

In this section are discussed the conceptual decisions that were taken, regarding the design of a 

software application that best responds to the set project requirements. That involves discussion 

on the ŦŜŀǘǳǊŜǎ ŀƴŘ ǘƘŜ ƻǳǘƭƻƻƪ ƻŦ ŀ ΨǳǎŜǊ ŦǊƛŜƴŘƭȅΩ ƎǊŀǇƘƛŎŀƭ ǳǎŜǊ ƛƴǘŜǊŦŀŎŜ όD¦LύΣ together with 

the programming design practices that are implemented in the client and server application.  

4.3.1 Graphical User Interface 

According to the established project requirements, regarding the design of a graphical user 

interface (GUI), it shall provide the user with control functionalities and be a helping tool for 

performing the following services:  

¶ Provide the configuration data contained in the config files to the application  

¶ Connect to a particular node without hardware interventions 

¶ Perform initial node configuration 

¶ Control the ƴƻŘŜΩǎ Communication Controller by sending FlexRay commands 

¶ Monitor nodeΩǎ message buffers  

¶ Display message buffer contents and save it to file 

The first considered option is to create a simple GUI based on a command prompt design. The user 

enters text commands that are translated into computer commands and executed in the 

background by the client application. The advantage with this approach is that it requires less time 

invested in the implementation of the GUI, as it contains only a few components, most important 

of which are: one text field for command input, one button to send the command to node and 

another text field for displaying the received content. However, although being so simple in design, 

it requires deeper knowledge of the FlexRay protocol as the user has to know the purpose and 

syntax of every FlexRay command. Also, besides the standard FlexRay commands, this approach 

requires the implementation of some custom user defined commands for the different use cases, 

like: connecting to a node, loading configuration data, save data to file and so on. Considering the 

variety of use cases, the amount and complexity of these commands may arise. Therefore, this 

approach contradicts with the project requirement that this software shall offer a platform that is 

easy and simple to work with, not targeted only to a qualified audience. Another inconsistency 

with the project requirements is that accepting user input is usually accompanied by validating 

algorithms that adds an additional load over the complexity of the parsing algorithm design. 

The second option is the front end of the user interface to be based on a user-friendly button-

controlled design that enables the user to perform complex operations with a simple button click. 

That adds complexity in the GUI design but eases the operation of the software and hence enables 

a wider range of users to work with it, which corresponds better to the project requirements. In 

addition to that, the possibilities of user control input are limited to selections of pre-coded 

command definitions (Lists, checkboxes, buttons), which reduces the needs for implementation of 

input validation algorithms. That is the chosen for this project GUI design. 
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4.3.2 Operation Control Flow 

Operation control flow represents a defined pathway for sequential execution of individual 
requests, instructions, statements and so on [29]. All three fundamental, for this project, 
processes of initial configuration of the FlexRay registers of a node, control ƻŦ ǘƘŜ ƴƻŘŜΩǎ 
Communication Controller (CC) and monitoring of the FlexRay message buffers, follow a 
predefined control flow. According to the project requirements and the established design of the 
GUI (discussed in the previous section), each of these processes shall be executed in the 
background after user initiation. Therefore, their control flow shall be embedded in the code by 
the programmer or be guided by the user via button clicks, selections and so on. 

The possibility of implementing some scripting procedure in the FlexRay server application 

algorithm, determining the flow of actions, contradicts with the established project requirements 

for maintaining the resource power of the PC client. Therefore, the client is the one to determine 

the control flow of all three processes.  

Configuration  and Control  processes 

Configuration is a process that follows a certain control flow that shall be accompanied by time 
delays between consequent register write accesses [28]. In general, for any FlexRay node, the 
overall configuration process can be divided in three steps: 

1. Pre-configuration process ς ōǊƛƴƎƛƴƎ ǘƘŜ ƴƻŘŜΩǎ // ƛƴǘƻ ǘƘŜ config state and clearing the 
message RAMs. 

2. Configuration process ς consequential execution of write accesses to the FlexRay registers. 
3. Post-configuration process ς execution of procedure for unlocking the FlexRay registers for 

access and transition to ready state. 

Step 1 is part of the overall control process, 
ǿƘƛŎƘ ƛǎ ŜȄǇǊŜǎǎŜŘ ƛƴ ŎƻƴǘǊƻƭ ƻŦ ǘƘŜ ƴƻŘŜΩǎ // 
via FlexRay CHI21 commands. In general there 
are two possible routes to take in order to get 
the node into the config state without the need 
of a hard reset. The first route is via ready state 
and the second route is via halt and default 
config states (Fig 4.1). Step 2 represents writing 
generated by the application or defined by the 
user values to the respective register addresses, 
based on the data provided in the node 
configuration files. Step 3 is based on 
sequential write accesses to a dedicated lock 
register and transition to ready state. 

 

Fig 4.1 Possible transition routes to config state 

 

                                                 
21

 Controller Host Interface (2.3.1 Communication Controller) 
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There are two options considered, regarding the implementation of the control flow in the 

software operation. The first option is to grant the control flow in the hands of the user (Fig 4.2 

(a)). For that purpose the GUI provides possibility for the user to request write access to registers 

and control the CC by sending FlexRay CHI commands and acquiring the current CC state. This way 

it is the user who decides which route (Fig 4.1) to take and access to which register to request next. 

The other option is the control flow to be embedded in the client application algorithm (Fig 4.2 

(b)). That increases the required implementation time and complexity but eases the operation 

process. As both approaches have their advantages and complement each other, both are 

implemented in the software. 

  
(a) (b) 

Fig 4.2 Configuration control flow (a) in the hands of the user; (b) embedded in the code 

 

Monitoring process  

The monitoring process is expressed in acquiring data from particular message buffers, for which 

ǘƘŜǊŜ ƛǎ ŀ ΨƴŜǿ ŘŀǘŀΩ ŦƭŀƎ ǊŀƛǎŜŘ ƛƴ ǘƘŜ ŘŜŘƛŎŀǘŜŘ ŦƻǊ ǘƘŀǘ ǇǳǊǇƻǎŜ ΨbŜǿ 5ŀǘŀΩ ǊŜƎƛǎǘŜǊǎ [11]. As it 

can be predicted neither by the user, nor by the programmer when new data is received by the 

FlexRay node, the only option considered, regarding the implementation of the monitoring 

process, is the control flow to be embedded in the application code. Once a connection between 

the PC client and the FlexRay node is established, the control of process initiation and abortion, as 

well as saving of data to files, is provided by the user, while the flow of instructions for acquiring 

message buffer data is accomplished due to the procedure described in Host Read Access via 

Output Buffer.  
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4.3.3 Programming Model 

According to the project requirements, due to the lack of a real FlexRay system, this project is 

intended to be extended and finalized in the future by someone else. Therefore, good 

programming techniques are required, in order to ease the process of reading and understanding 

the code. In this section are discussed the different approaches considered, regarding the 

structure and implementation of the client and server applications.  

For the client application the Model-View-Controller (MVC) design pattern is used [30]. MVC is a 

software engineering pattern where the user interactions are strictly separated from the algorithm 

logic. The View is a static component, typically a GUI that accepts user commands and passes 

them to the Controller. The Controller requests data to and from the Model and updates the View. 

Here is where the algorithm logic and decision taking is done. The Model executes the Controller 

requests and provides data that could be read from a file, result of calculations, measurements, 

enumeration and so on.  

 

 

Fig 4.3. Model-View-Controller design pattern 

From a programming point of view, separating the program code into three interconnected parts 

gives a structure that increases the code readability and results in easier modifications of each 

part without affecting the other two. Each part is independent and therefore can be reused in 

other applications.  

One of the reasons for choosing JSON, as the established data format for communication between 

the PC client and the FlexRay network participants, is that it has a wide support of tested and open 

sourced libraries in various programming languages. Referring to an external library that is 

approved and tested by other programmers, saves us time as it decreases the complexity in the 

development of the algorithms for processing the JSON data objects. 
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There are various JSON libraries written in Java language that have proven abilities in processing 

JSON data and can be freely used. Some of the most popular among the programmers and hence 

considered as possible candidates are: JSON.simple, GSON, Jackson and JSONP [31]. Each of these 

libraries has some advantages over the others in different use cases and environments. The 

criterion, for choosing the best for the client application JSON library, lies in the project 

requirements. For our project the chosen library is expected to be able to process JSON data of 

different sizes equally good in terms of speed and convenience. The size of the JSON data objects 

may vary from just a few bytes to tens and hundreds of kilobytes (for the configuration files). 

Comparing the four candidate libraries shows that JSON.simple performs equally well for different 

sizes of JSON data [31]. Besides that it is lightweight, flexible and has no dependencies on other 

external libraries [32]. That makes JSON.simple the most appropriate option for our project. 

In addition to the criterions for selecting the most appropriate JSON library, set for the client 

application, for the server application an important requirement is the lightweight. Here the 

choice is eased by the fact that such a research was already made in a previous project assignment 

[26]. It has shown that the library that corresponds best to the project requirements ƛǎ ǘƘŜ ΨƧǎƳƴΩ 

(proƴƻǳƴŎŜŘ ƭƛƪŜ ΨƧŀǎƳƛƴŜΩύ ƭƛōǊŀǊȅΦ  

The jsmn library [33] is written in C language by Serge Zaitsev and is specially designed for 

resource limited embedded system environments. It is highly portable as it involves no external or 

non standard C libraries. It uses no memory allocation and contains no token data but holds only 

the token boundaries and the number of child objects for each JSON object, which allows 

traversing to the token of interest. It is designed to work even with erroneous data which makes is 

robust against data losses that can occur during the transmission. 
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5. Implementation 

The implementation of a software application refers to the realization of the software 

requirements on a programming level and its detailed discussion might include the necessity of a 

deeper knowledge of the programming language used. This will significantly overload the section 

ǿƛǘƘ ƛƴŦƻǊƳŀǘƛƻƴ ǘƘŀǘ ƛǎ ōŀǊŜƭȅ ƻǊ ƴƻǘ ŀǘ ŀƭƭ ǊŜƭŀǘŜŘ ǘƻ ǘƘŜ ǇǊƻƧŜŎǘΩǎ ǘƻǇƛŎΦ Therefore, in this chapter 

are discussed more general overviews of the overall code structure and design of both client and 

server applications and the sequential flow of some of the most fundamental for this project use 

cases ς establishing a TCP/IP connection between the PC client and the FlexRay server, 

configuration of the FlexRay node and monitoring of its message buffers. For more details, 

regarding the implemented procedures and functions, refer to the comments provided in the 

programming code.   

5.1 Client Application 

Following the concept decision that is made, regarding the implementation of the client 

application, the structure and relation of Java classes is according to the Model-View-Controller 

(MVC) design pattern and is visualized in Fig 5.1. 

 
Fig 5.1. Class diagram for the client application, based on the MVC model 

The Controller part of the MVC model plays the role of a mediator between the user interactions 

and the services executed in the background. Its code and complexity arises having in mind the 

complex nature of the project. Therefore, the Controller functionalities are separated among 

multiple controller classes. Each of these sub-controllers manages a certain part of the Model 

under the guidance of a main Controller class. Inside the main Controller class there are two inner 
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classes ς Input Buffer and Output Buffer (not shown on the figure). Their purpose is to further 

improve code structure, as they hold only functions that are directly related to requesting read 

and write access to the message buffers of the nodeΩǎ ƳŜǎǎŀƎŜ w!a.  

The purpose of the Model part is to provide the requested by the Controller data and services. The 

Cluster, Node and Device classes contain functions related to the parsing of the JSON data 

contained in the three configuration JSON files, established in Section 4.1. The content of each file 

is loaded in the application memory and broken down into its constituent JSON objects. That 

necessitaǘŜǎ ǘƘŜ ǎǘŀƴŘŀǊŘƛǎŀǘƛƻƴ ƻŦ ǘƘŜ W{hb ƻōƧŜŎǘ ΨƪŜȅΩ ƴŀƳŜǎΣ ŀǎ per their definition established 

in 4.1.2 Files Structure, and providing them to the application via the Keys enumeration. That 

implementation occupies more memory but increases the speed when traversing for the JSON 

token values. This approach is a consequence to the requirement that the program 

implementation shall be targeted to the speed of execution of the parsing algorithms.  

The Parser and Composer classes are dedicated to functionalities, related to the parsing and 

composing of communication JSON data objects (4.2 Communication Data Objects). The TCP 

Connect class is responsible for establishing a connection between the PC and the desired node. 

All file manipulations are managed by the Files Manager class. The file directories have to also be 

provided to the application and are hard coded in the File Directories enumeration.  

Use cases 

Connection 

After selecting the desired node ID (provided in a list of IDs), its IP address and port number, it is 

bounded to, are automatically displayed in text fields.  The user can then request a connection to 

the FlexRay node ōȅ ǇǊŜǎǎƛƴƎ ǘƘŜ Ψ/ƻƴƴŜŎǘΩ ōǳǘǘƻƴ ǇǊƻǾƛŘŜŘ ōȅ ǘƘŜ D¦LΦ LŦ ŎƻƴƴŜŎǘƛƻƴ is successful, 

the  icon is displayed next to the button. When the connection is terminated the icon 

disappears as soon as the client attempts to send data. 

In order to expand the testing possibilities, a small local server application is implemented. It 

basically does the following: opens a TCP/IP socket on the local server with IP address 127.0.0.1 on 

an assigned by the programmer port, listens and accepts messages, modifies them depending on 

the test case and sends those modified messages back. The purpose of this application is to mimic 

a second FlexRay node in order to test the functionality of the software to successfully disconnect 

from one node and connect to another. Another useful purpose is to create some additional 

testing opportunities by making use of the provided Java functions. 

Configuration  

In 4.3.2 Operation Control Flow are introduced two possibilities of performing initial configuration 

of the FlexRay registers of a node. The first one is directed by the user and is realized in requesting 

write and read accesses to registers specified by the user. In the second option the whole 

configuration process is embedded and once requested, it is automatically performed by the 
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application in the background. The user is being informed via status messages whether the 

operation was successful or not. Fig 5.2 depicts that automated process for initial node 

configuration.  

 
Fig 5.2. Activity diagram of the configuration process 

The pre-configuration process is expressed in ŀǘǘŜƳǇǘ ǘƻ ŜǎǘŀōƭƛǎƘ ǘƘŜ ƴƻŘŜΩǎ ŎƻƳƳǳƴƛŎŀǘƛƻƴ 

controller (CC) into the config state (2.3.1 Communication Controller). If the node is not set into 

that state an error message is displayed and the process exits. However, if the node has entered 

config state, the client starts sending configuration data in the order specified in the Device JSON 

file (Device file). When all configuration data has been sent and written into ǘƘŜ ƴƻŘŜΩǎ CƭŜȄwŀȅ 

registers, the procedure of exiting config and entering ready state is started. It is expressed in a 

sequential writing of predefined values to a dedicated Lock register (for details see [11] p. 24). 

Depending on whether the CC has entered ready state the appropriate message is displayed and 

the process is exited. 
























































