NikolayKirilovStoitsov

Configuration, Control and Monitoring of a FlexRay Cluster via TCP/IP

Bachelotthesis based on the study regulations

for the Bachelor of Engineering degree programme
Information Engineering

at the Department of Information and Electrical Engineering
of the Faculty of Engineering and Computer Science

of the Hamburg University of fshied Sciences

Supervising examiner : Prof. Dr. Lutz Leutelt
Second Examiner : Prof. Dr. Ulrich Sauvagerd

Day of dévery 21. December 2017

Nikolay Kirilov Stoitsov

Title of Bachelor Thesis
Configuration, Control and Monitoring of a FlexRay Cluster via TCP/IP

Keywords
Automotive network, FlexRay, Ethernet, TCP/IP, Iwip, MicroZed, PC client, server node
software application

Abstract
This bachelor thesis describes the development and implementation design of a software
application, used to perform initial configuration, control and monitoring tasks of a FlexRay
node. The communicatiois realized byhard-wired cables andh network switch ands
based on the TCP/IP protocol.

Nikolay Kirilov Stoitsov

Thema der Bachelorthesis
Konfigurierung, Kontrolle und Uberwachuvmgn einem Cluster via TCP/IP

Stichworte
Automobil Netzwerk, FlexRay, Ethernet, TCPiMp, MicroZed, PC Klienervesnoten,
Softwareanwendung

Kurzzusammenfassung
Diese Bachelorarbeit beschreibt die Entwicklung und Implementierung einer
Softwareanwendung, dieluf die Erstkonfiguration, Steuerung und Uberwachung eines
FlexRayKnotensverwendet wird. Die Kommunikation erfolgiber festverdrahtete Kabel
und einen Netzwer8vitch und basiert auf dem TAP/Protokoll.

Table of contents

S o) T P SURSRT 5
I 0 N 1= o] = PSPPI 5
IR 11 Yo [T 1 o USSP 6
2. FUNOAIMENTAIS ...ttt eeee ettt e e s seee ettt et e e e e e e e e e e e e e s s amme e e e aeeeeeaaeasaannnnnnnes 8
2.1 INtroducCtion t0 BUS SYSTEIMS......cciiiiiiiiiiiiiiime ettt e e eensisns s e e e e e e e e e e e e eeeeannn s 8
2.2 OSIMOUEL....cci ittt e enenr bbbttt e e e e e e e e e e e ean 9
2.3 FIEXRAY ProtOCAL........cceieeiiiiiiiii ettt e e e e e e e e e e e e e eer e e e e e aeaaaeeeees 10
2.3.1 Communication CONrOIEE........coiiiieieeeiee e e e e e e e 10
2.3.2 FlexRay COmMMUNICALIQN.ccceeeieiiieiiieieees e e mmme e enn 14
2.3 3 B RAY ...ttt 19

2.4 CommMUNICALION PrOtOCOISuuiiiiiiiiieie e et e e e e e e eenes s e e e e e e e e e e e e e e eeeeeeesnnne e 28
2.4.1 Ethernet ProtOCOL.........ooiiiiiiiiteees sttt e e e e e e e e e e e e s smmreeeaeaeeas 28
2.4.2 TCP/IP PraiCOl SUITE......uuiiiiiiiiiiiiiiii ettt rmmee e eneeanes 30
2.4.3 LWIP ProtOCOI/RAW APRLL.....ccoiiiiieeeeeiieimmme et emen e e e e e e e e e e e e e eenas 32

2.5 Hardware Platform MicroZed BOatd..........coooeeeeiiiiiiieeeiii e eeeeeeeeeeeee e e 34
3. REQUIrEMENTS ANAIYSIS. .. .uttuuiiiiie e i e eeeeie ettt e e ettt eeee e e e e e e e e e e e e eesesa e mmmeeeeessnenes 36
3.1 General REQUITEIMEILS.uuuiiiiiiiiiiiii e eeeete ettt ettt e e e e e e e e e e e amme e e e e e e e e e e rnes e 36
3.2 DAta ODJECLS......coieeieiiiiiici e e e e e e e e e eeeer e e e e e e e e e e e e e e e e et ———eaeaaaaeeeeerarara———— 37
3.3 Software Features and StIUCLULEuuviiiii i 38
G V7= 11 = 11 o o AP PUPRPR 39
O o o[0T o PRSPPI 3
4.1 Configuration Data ODJECLS..........cooiiiiieeee e eeee bbb e e 41
g O R 1 1= 2SR @ (T o PRSP 41
4.1.2 FIleS SIrUCIUIE......cooei i eiiiieeeeeeeee ettt smmmenneennnnnnn A

4.2 Communication Data ODJECIS...........ooiiiiiiiiierer e eeenas b eeeeeeeeeeeeaan 50
4.3 SOTWAIE DBSIGIL. . .uiiiiiiiiiiiieee et eeeetttee ettt e e e e e e e e e s aast e et e e e e e e e e e e e e s e s s s s mnee e e e e s s s aannnnnes 53
4.3.1 Graphial User INterface.........coooiviiiiiii e reeee e e 53
4.3.2 Operation CoNLrol FIOW........oiiiiiiii et e e e e e e e e e e 54
4.3.3 Programming MOGEL..........ooeiiiiiiiiiii e 56

T (g o1 =T g L] a1 r= 11 o] o PP 58
o0 RO 1= o Y o o] o> [o 58
5.2 Server APPHCALION........uuueiiiiie et reee e e e e e e e eeeeeeeesebanmmmeeeeeeeesneens 62
B. EVAIUALION.... ..ottt s e e e e e e e e e e e enaea e e e e e e e e e e e e e e eeeaeeeerernnnas 63
48 O] [ox (1] o] o PSPPSR PP 65

(] o] [ToTe | =1 o] o) 2RSSR 66

Y o] o L= T [AN RSO 68
APPENTIX Bttt aeanh e e e e e ettt e e e e e e e e e ammr e 73
Application USer ManUAL.............coooiiiiiiiiiieee e eemnnnn e 87

List of Figures

Fig 1.1 Example of services provided in nowadays Vehicle...........cccoooiiiiieeciiiiiiiiiiie e, 6.
Fig 1.2 TCP/IP connection between a PC client and a FlexRay cluster via a netwotk switc.7
Fig 2.1 SYSEM DUS [L] ...eeeeeeiiiiiiiiieeee e e 8
Fig 2.2 Seven [ayer OSI MOABE]vvvureiiiii e eeee e e 9
Fig 2.3 Logical interfaces in a FlexRay node [7](P- 26)......ccoueeriiiiiiiiiiiee e 11
Fig 2.4 Conceptual architecture of the Controlling Host Interface [7] (Figtk®.9................... 11
Fig 2.5 Overall state diagram of a FlexRay communication controller [7] (p.37)................ 12
Fig 2.6 Timing hierarchy within the communication cycle ([7] p. 100)..........ccvvvvvvviviicmmneene. 14

Fig 2.7. (a) Communication cycle with no transmission in the dynamic segment; (b)
Communication cycle with several transmissions in the dynamic segment [10] (Figure.5.5)5

Fig 2.8 FlexRay frame format [7](P. 90)......uuuueiieiiiiiiiiii e 17
Fig 2.9 E-Ray block diagram [8](P. 15) .. ccceeeiiieeeeiiiiiiiieeeee e 20
Fig 2.1Q Configuration example of message buffers in the Message RAM [8](p.-.141)....... 21
Fig 2.11 Access to Transient Buffer RAMS [8] (FIQUre 14).........oouvvviiieiiiicceeeeeiiiinieeeeenn 22
Fig 2.12 Host access to Message RAM [8](FIQUIre.9)........couvviiiiiiiiiieemiiiieeeeeeeee e 23
Fig 2.13 Assignment of message buffers [8] (Figure.L)..........ooovvvviiiiiiccceeiieeeeeee e e 24
Fig 2.14. Possible FIFO states [8] (FIQUre.8).......ccoiiiiiiiiiiiieeee i 25
Fig 2.15 Transmit process via the Input Buffer [8] (Figure 10)..........cooovviiiiiiiiemne s 26
Fig 2.16 Receive procss via the Output Buffer [8] (Figure 12)........cccceeeeeeiieeieceeciiiieeeee e 27
Fig 2.17 The major Ethernet layers defined by IEEE [12] (P.13). ... uuvvvrrrmmmiiiiiieeniiiiiiiiieeee 28
Fig 2.18 DIX frame 8. IEEE 802.3 frame [12] (P. 4L)....ccoveeereeeiiiiiiiimmeeeeeniere e e e e e e 29
Fig 2.19 OSI Model vs. TCP/IP Model [6](P. 129).....ccuttiiiiiiiaiiiiiiie e 31
Fig 2.2Q MicroZed block diagram [22] (FIgBIL)..........ouvuuiiiiiiiiiie e aeeer e 34
Fig 2.21 Boot Mode Jumper Settings with Cascaded JTAG Chain [22] (Figure 8).............. 35
Fig 2.22 10/100/1000 Ethernet interface JAEIQUIE 5)....uuuuiiiiieiiieeeeeeeeeeeeee e 35
Fig 4.1 Possible transition routes eonfigstate................uueuiiiiiiiceceeee e 54
Fig 4.2 Configuration control flav (a) in the hands of the user; (b) embedded in the.code...55
Fig 4.3 ModelView-Controller design pattern............ccoooviiiiiiiieee e 56
Fig 5.1. Class diagram for the client application, based on the MVC model....................... 58
Fig 5.2. Activity diagram of the configuration proCess..........ccccoeeeeeiiiieeeiiiie e 60
Fig 5.3. Activity diagram of the monitoring ProCess............ooovvviiiiiiceee e | 61
Fig 7.1 Monitoring of data packets via WireSharkcccuuiimmmriiiiiiiiiieeee i 64
Fig A.L1 Protocol operation control conteXt [7](P. 32).....ccveeeiiiiiiiieiiiieeeeeeie e eeee 69
Fig A.2. Header section of a message buffer in the Header Partition of the message RAM{78]
Fig A.3. Data patrtition in the message RAM [8] (P. 148)......ccccoeiiiiiiiiiiiieeee e 73

List of Tables

Table 21 CHI commands summary ([B] 33)...ccooiiiiiiiiiiiiiiiiirees e ereee e 13
Table 22 Definition of cycle set [8] (Table Q).......cooouiiiiiiii e 18
Tale 51 Number of configuration JSONdis- advantages and disadvantages....................44
Table A1 Parameter prefixes [7] (P. L18). . srrmer e e e e e e e e e 68

1. Introduction

Automobiles have long become muunfore than just a mean of transporting people. Each vehicle
nowadays represents a system in its olRagardless of the brand or country of manufacyueach

car is equippedwith a variety of Electronic Component UnitsECY, which communicate
constantly agong as the engine is on and some of them continue even after it goes off. The role of
those ECUs are to support the drivingntrol by providing security and defence mechanisms in
critical situations, as well assaring comfort for the driver and hiellows (Fig 1.1)

Nowadaysthe averagemodern automobiles are supported by systems that are reliable for:

Breaks antilockbraking systenfABS)auto braking system, power brake booster
Electronic Stability Program (ESP)

Parkingg cameras, distance sensor

Lightsg light, rotary sensors

Dashboard, navigation systems, infotainment, etc.

Airbags, windows, mirrors, seats, heat control, etc.

= =4 8 -4 8 -9

Driver impairment

[s (" Colision ’ l Safetollowing |
| waming
Fig 11 Example of services provided in nowadays vehicle

The growth of demand for more exsaprovided in the car requires the invention of more and
more complex systenprotocols, able to supporthighrate but in the same time reliable
communication between increasing number of ECUs over a shared communication medium.
Parallel with that rises theeed of implementation of external starmlone software applications

that provide monitoring and controlling functionalities and testing ttegabilitiesof the system.

As a part of the Urban Mobility-by-Wire(less) projectintroduced by the HAW Hambufd], the
current project is focused on the development of such software application that represents a
platform for establishing a connectioand providing a bidirectional communication between a
computer and a microcontroller device. The microcontroller is assumed to be a part of a system,
exchanging data according to the FlexRay communication prof2csiandards.

FlexRay is one of tHatest communication standards used in automotive applications. It is popular
with its increased bandwidth (compared with its predecessors) and is used in applications that
require a reatime communication, combining both event and time triggerbtedia Acess
Control (MAC)nechanisms for better use case adaptability. FlexRay communication provides high
fault-tolerance implemented in dual channelling (the two channels are referred as Channel A and
Channel B). Every ECU, part of a FlexRay system, is redsreeciode and can be connected to
only one or both channels, depending on its purpose requirements. All Noge® 64)connected

to the same wire (bus) form a FlexRay cluster.

The current project aims to design and implement a software applicationethables sending and
receiving data to and fronfrlexRaynodes based on the TCP/IP communication standdrde
hardware connection between the computer and theodes of aFlexRayclusteris realizedwith

the help ofcables and a network switclpi3] (Fig 1.2) The switchis responsible for the correct
addressing of data packets the connectednodes without further hardware interventiond o
enable wider range of ECU types with differemthitecture ad manufacturer, the structure of
the communication data objecteas to be determined and standardized according to the project
requirements.

PC client

SWITCH
J L FlexRay cluster
E Node Node Node i
{ Channel A i
' Channel B |

Fig 12 TCP/IP connection betweerP&L client and a FlexRay cluster vianatworkswitch

The motivation for starting this project is provoked by the necessity of having a single software
application that besideperforming initial configuration, control and monitoring tasks represents
an evaluation tool for the microcontroller device capdlds and can be used as a benchmark for
testing the correct operation of an automotive network.

2. Fundamentals

This chapter represents atechnical overview of thefundamenta) for this project topics. The
discussios are based on a various scientifand public sources that can be found online or in the
library.

2.1 Introduction toBus Systems

In computing science a system bus is defined as a pathway that is used for data transfer between
the Central Processing Unit (CPU), the main memory and ottr@phzral componentg4]. It is
usually composed of cables and connecting units andefined regardinghe hardware system
specifications andlata exchangestandards established by the communidah protocol that is

being used in the systenthere are two types of system bumplementation¢ parallel and serial.
Theparallelbus (Fig 2.1 (a)) is advantageous in terms of speed but it requires more hardware as
for every group of data there is a septe line By the serial bus implementation (Fig 2.1 (b)) there

is only one line connecting the components but the data transmission time is increased.

Control bus 5

| a

Address bus E

v v v g3

| Data bus | &
(a) Parallel bus (b) Serial bus

Fig 2.1 System bu$4]

The bus system representq@asually)standardizednterfacethat linksthe hardware and software
interfacesof an electronic control unit (EC@hd provides mechanisms to establish and control
communication between té internal components of a system or between different systeihs
refers to the mechanical, electrical, functional and logical aspects of data transfer that includes
communication over diffenet mediums, linked in variousetwork topologies.Nowadays bus
systems are used in almost evandustry field and tempt to develop higher and more reliable
data rates for faster and secure communication.

The use of bus systemarfthe autanotive industry dates back to the early 80s when automobiles
were first equippel with ECU45]. Since then the development @utomotive electronics has
rapidly increased, leading to the necessity of introducing different communication bus systems to
serve various specific thoical and economical requirements. Some of the most popular
communication standards for the automotive technologies are: Controller Area Network (CAN),
Local Interconnect Network (LIN), Media Oriented System Transport (MOST) and FlexRay

Bus systems canombine one or more network topologies and provide various interaction
structures, like: clienserver, mastesslave, produceconsumer, multmaster, demanebased,
time triggered and so on.Communication in a Clief8erver communication systenis

characteized by a strict differentiation between the service requester (Client) and the service
provider (Server]5].

Typically, bus systems are related to the physical and data link aspects of a contronmpoacess.
Sometimes, depending on implementation, it can involve some application specific aspects. That
means that it can be looked as an independent thi@gered structurg6] that is bestexplained

by the standardized-fayered OSI model

2.2 OSModel

The Open Systems Interconnection (OSI) model is a networking standard, defined by the
International Standards Organization (ISO) in 1P84[8], [9]. It is designed to represent the
networking framework as a hierarchical structure, separated in seven layepgnding on their
relation with different software and hardware aspects of the communication process. The lower
layers, from 1 to 4, are responsible to physically move the data ard&ig2.2). They are also
called dataflow layers. The upperjers, fom 5 to 7, are related to the applications processing
the data. Every dataegmentthat is receivedr transmitted over the network passes through all 7
layers in opposite directions. Whemansmitted, data goes from the "7 layer down to the T

where itis sent as physical impulses over the network medium. When received, those impulses
are processed from the*lup to the 7" layer, where they are represented in the desired by the
application or enéuser format.

7|

Application HTTP, FTP, SMTP
Upper { | Presentation JPEG, GIF, MPEG
Layers | |
‘ Session AppleTalk, WinSock
M -
(Transport TCP, UDP, SPX
IP, ICMP, IPX
Lower Network router
Layers) : Ethemet, ATM
Data Link switch, bridge
. Ethemet, Token Ring
PhYS|Ca| hub, repeater

Fig 2.2 Sevenlayer OSI mode]7]

Every layer from 2 to 6 upgrades the preceding one and is a base for the next layer. To get a better
understanding of the seven layer OSI networking model, eacls &yers is discussed in details:

1. Physicallayer ¢ this layer refers to the hardware medium that provides the electrical and
mechanical interface, such as wires, connectors, hubs, repeaters, etc. Its basic functions
are related to handling the electricabltage impulses, light or radio signals that represent
the data bits on a physical level.

2. Data Linklayer¢ the second OSI layer is responsible for linking the data from the physical
layer into block units (packets, frames) and to perform flow and errattrob over the
transmission links. It can be divided into two dalers¢ Media Access Control (MAC) and
Logical Link Control (LLC).

3. Network layer ¢ this layer establishes the route between transmitter and receiver. It is
responsible for routing and forweing the data, addressing (IP), error handling, congestion
control and packet sequencing.

4. Transport layer ¢ as the name supposes, this layer is responsible for the correct
transportation of data over the network. It performs error checking and recovadia
cases of transmission error may request retransmission of packets. To this layer belong the
Transmission Control Protocol (TCP) and User Datagram Protocol (UDP).

5. Sessionayer ¢ the lowest application layer controls the start and end of transmissiaoh
provides mechanisms for managing the process of data exchange on the network. The
three session categories are: simplex, falplex and fulduplex.

6. Presentationlayer¢ at this layer data is encoded/decoded from raw data to the desired by
the applcation format and vice versa. It is also called the syntax layer.

7. Applicationlayer¢ the top OSI layer provides network services for the application software.
The network services provide and request data to and from the Presentation layer. Typical
Application layer examples are HTTP, FTP, Telnet, etc.

2.3 FlexRayProtocol

The FlexRay protoc@ an automotive standardefined by the FlexRay consortium in 200at
combines the eventriven paradigmof the Controller Area NetworKCAN bus andthe time-
driven design ofthe TimeTriggered Protocol (TTR) one protocol[10]. It is intendedfor
applications with high requirements regarding determinism, reliability, synchronisation and
bandwidth. The FlgRay system consists of at least two interconnected electronic control units
(ECU) running the FlexRay protocol. Every ECU in a FlexRay system is refenadeablp to 64
nodes, connected with one or two lines fornchster. The network structure in eluster can be
based on bus topology, star topology or a mixture of both.

FlexRay provides services related to the lowest two layers of the OSI,mddeh is a subject of
the following two subsections, starting witlhe PhysicalLayer 1(2.3.1 Communication Controller)
and continuing withthe Data Link Layer 2 2.3.2 HexRay Communication). In the third subsection
of this chapter 2.3.3 ERay) is introduced the developed by BosciRay[11], as a version of an IP
module running the FlexRay protocol

2.3.1 Communication Controller

Every FlexRay devicao(de) has aprotocol engine component that implements the FlexRay
protocol and anengine control unit, where the application software is runn[ag]. The latteris
referred asa Host and it provides control and configurath data to theprotocol engine, referred

as Communication Controlle(CC). fie CC responds with status conditions and the received on
the bus data (Fig 2.3). The Host also controls the operating modes of the bus driver and reads
status and error conditions

10

Communication Data
Host < o= Communication Controller
Configuration Data &
Status Information _
A '3
(1]
I
= c 2
= = —_ a
o 2 o
w *3; = E
=] £ o *3!
= = B £
LQ} = t 3
5 3 E
L © ° E
Y o
Bus Driver v ¥
= o
Control Data &
Status Information
|- =
Power Supply - Control Signals (optional)
|

Fig 2.3 Logical interfaces in a FlexRay no@§L0] p. 26)

The Host is separated from the FlexRay protocol engine vi&€tmdrolling Host InterfacgCHI)

[10]. The CHI provides means for the Host to operateRhatocol Operation Contro(POC) in a
structured manner, transparently to the operation of the protocol. It is product specific and its
implementation depends ontS Yy 2RSQa | NOKAGSOUdz2NBEd® Ly 3ISyS|
interface blocksg protocol data interface (PDI) and message data interface (MDI). The PDI
manages the configuration, control and status data of the protocol, while the MDI manages the
messagéuffers and the configuration, control and status data related to them (Fig 2.4).

host processor
.-"h""-\.

JL

host processor interface

(S —) S—— g — —(—

protocol] protocal N protocol H ~message o MEsSage | message

- . message buffer bufier buffer

CHI Services cnrlﬁclI;;E'Ilnn cgng} mEE' bufers configuration control status

| N 4] od N data B data M data

1[[] | - P - =] [Ers

4 L <4 - | | J4 L - = < L

protocol engine interface

N

protocol engine

Fig 2.4 Conceptual architecture of the Controlling Host Interfaded) Figure 91)

11

The purmse of the POC is to apply Host commands, invoke and react to model changes of the core
protocol mechanismsand provide the Host with protocol status informatidgm a synchronized
manner.For a more detailed view ohe relationship between CHI, POC ahe tore protocol
mechanismsefer to Fig A.1in Appendix A

The CC has to be in an established POC state to enable the execution of the POC pb@esses
The CC enter8OC Operationapower state orce sufficient power supply is present or after reset.
This state determines the operation of the POC. Its structure is based on the finite state machines
(FSM) definition12], where state transitins are internally or externally provoked by a certain
control condition and entering a state is enabled only from other state that is logically connected
to it. A highlevel internal structure of theéDperationalstate with all possible state transitions is
shown on Fig 2.5.

POCOperational)

I'-,L__ |
S SN
ll. wakeup I,l l. startup ,|—H: active | I naD;;-iI:L |
S NP2 N, N)
p. L/

Fig 2.5 Overall state diagram of a FlexRay communication contro[l&@](p. 37)

State transitions are typically caused by commands serthe CC from theéHostvia the CHI or

they are a consequence of completing a task or error condition, occurred by the protocol engine,
productspecific builtin self test or sanity checks. The Host is allowed to apply a CHI command at
any time but some commands are enabledly when the CC is in a certain state. Applying a
command when the controller is in a non legal for that command state has no effect on the
operation of the CC, however, the command vector in the specified register is reset and an error
flag is raised.

! The primary FlexRay protocol principles are realized in four core mechahigjinsoding and decoding; 2) media
access protocol; 3) frame and symbol processing; 4) clock syrishtion[10]

ZIn FlexRay signature standards state namealagys preceded ByOC abbreviation. For sake of simplicity it will be
skipped in this text. POC states are writtegiieen italicand CHlcommands in CAPITALS.

3 For distinguishing between different types of parameters signature r&febl® A1 in Appendix A

12

The Host may write configuration data to the CC registers only when the CCaisfigstate and

its registers are locked for access. Transitiorctofig state is only possible when the CC is in
default configor readystate. Thedefault configstate is etered immediately on power up or after
hardware reset. In this case the configuration and message buffers data is automatically cleared.
However, whendefault configstate is entered fronhalt state, clearing the message RAM has to

be explicitly requestedby the Host via applying the CLEAR_RAMSBmand. Bothdefault config

and config states are entered after applying command CONFIG when the CC is in legal for that
transition state.Applying a command triggers a reaction in the POC immediately or at thefend

the current cycle. All relevant FlexRay CHI commands and their allowed invocation states are

shown in Table 4.

CHI command Where processed (POC States) When
ALL_SLOTS POC:normal actiy@OC:normal passive End of cycle
ALLOW_COLDSTA AllexceptPOC:default confii®OC:configPOC:halt Immediate
CLEAR_RAMS POC:default config?OCconfig Immediate
CONFIG POC:default config?OC:ready Immediate
DEFAULT_CONFIQ POC:halt Immediate
FREEZE All Immediate
HALT POC:normal activ®OC:normal passe End of cycle
All exceptPOC:default confid?OC:configPOC:ready

READY POC:halt Immediate
RUN POC:ready Immediate
WAKEUP POC:ready Immediate

Table2-1 CHI commands summaiy[10] p. 33)

13

2.3.2 FlexRayCommunication

The nodes in a FlexRay cluster are connected with one or two channels, refealedna®e| Aand
channel B eachsupporting data rates of up to 10 MbJ40], [13], [11]. The controllercan send

data on both channels simultaneously and independent on each otAenode can receive
messages dg via the channel(s) it is connected ®eceived data istored in the node message
RAM, which structure is based on message buffers, dedicated to transmission (transmit buffers) or
reception (receive buffers) process. Part of the receive buffers cazobgured in acyclicFirst
In-FirstOut (FIFObuffer structure.

Communication between nodes in a FlexRay cluster is based on the Time Division Multiple Access
(TDMA) scheme, organized @emmunication cyclethat are periodically executed. This scheme
guarantees a collisicfree communication as there is no competition over the channel access.
Each communication cycle is divided in time slots. All nodes in a cluster are assigned time slots in
which they are allowed to send data frames.

Communication Cycle

The media access contr@MAC) mechanism in FlexRay is based on recurring communication
cycles, that combine the time and event triggered data exchange between hd@e§l3]. Each
communication cycle consists of a static segment and a network idle time (NIT). Optionally, it can
contain a dynamic segment and/or a symbol window. The structure of a FlexRay oacatian

cycle is shown on FRJ6.

communication |

cycle level
/ static segment dynamm segment symbol wmdow network
idle tlme

arbitration

grid level

static slot statlc slo m|n|5|0t mlnlslot
‘L—— action point *—— actlon point t—- arc:tlc-n point
macroftick
v =0T -1 Dj - zr
macrotick
microtick __é
level
microtick

Fig 2.6 Timing hierarchy within the communication cy¢lgL0] p. 100)

The static segmenis based on a static TDMA scheme and is always present in a communication
cycle. his scheme is realized in static time slots, which number and length is fixed and is the same
for both channels in a cluster (F&6). The length of the static slots is derived from a predefined
number of global clock ticks, referred mmcroticks The number of macroticks in the static slot is
chosen to be big enough to ensure that the frame and any potential safety margins fit under
worst-case assumptions. Each macrotick consists of an integer numbencobticksthat are
derived from a local for the e clock (e.g. Host CPU), which number and duration can differ in
every node. The macrotick boundary that determines the start of a frame transmissieferred

as action point.

14

Contrary to static segmentgynamic segmentare present only if the contiler has datao send
there. The data sent in the dynamic segments is priority and event driven and can be of varying
lengths. The structure of the dynamic segment is based on a dynamic hiditlotscheme (Fig

2.6). Similarly to the static slot the msiot is constituted of a predefined amount of macroticks.
The number of minislots and their constituent macroticks is identical in every node of the cluster.
The number of macroticks in a minislot is, however, smaller than in the static slot so that if no
frame transmission takes place in the dynamic segment less bandwidth is wasté7(t&y). If

data is transmitted in the dynamic segment, the size of the minislot is expanddd tbe
transmitted frame (Fi@.7 (b)). In this case the minislot is refed as adynamic sloand it consists

of an integer number of minislots. The numbering sequence of the minislots is kept but their total
number per dynamic segment is reduced. A frame is transmitted only if the remaining minislots
are enough to fit it. Thameans that if a frame is assigned a large minislot number, it might have
to wait for another communication cycle in order to be transmitted. Therefore, frames priority is
dependable on the assigned minislot number.

Static segment Dynamic segment Swin [NIT
Sl()l 1 2 3 +|5|6)7 |89 fiop1p2 ll+15l’.617|8l9:0'l22?31+25:6:718:¥ jopipapapaspehvpsl O 0 1
al. RN E U HANHARNEEHAAH AU REHEEHE | I
©
<
c
(]
=
O
. Al m E 1 L 5 L L S
(a) Latest dynamic
Transmission start
Static segment Dynamic segment SwinINIT
Slot 1 2 3 4 5(6 7 8 [oodip2pahahsherzpshol O 0|1
O S e
©
=
=
<
=
@)
OEEE

Fig 2.7 () Communication cycle with no transmission in the dynamic segment; (b) Communication
cycle with several transmissions in the dynamic segindr§ Figure 5.5)

The presence of gymbol windowin a @mmunication cycle is optional. Within the symbol
window only one symbol can be sent and no arbitration between different senders is provided. Its
size consists of an integer amount of macroticks that is the same for all nodes in a cluster.

The NIT servesfor clock correction and synchronization, as well as for implementation specific
communication cycle related tasks. It contains the remaining macroticks that are not assigned to
the other three components of the communication cycle.

15

Configuration Timing Constraints for Communication Cycles

This subsection is intended to reveal thaguration limitationsfor each of the communication cycle
segmentsby introducing the related FlexRay constants and parameteteir minimum and
maximum values, according tithe FlexRay protocol specifications vP10] and the hardware
restrictions for each node (speed of processors, oscillators, etc).

Communication is based on recurring communication cycles, which numtlmmfigured in the
protocol constant cCycleCountMax and ranges between 0 and 6Bhe number of macroticks per
communication cycle is between 10 and 16000 and is stored imyltteeroPerCycle parameter.
The pMicroPerCycle parameter holds the number of mroticks per communication cycle and its
value is calculated for every nodgepending on the duration of the microtick.

The arbitration scheme for transmitting FlexRay frames is realized via unique assignment of frame
IDs to the nodes in a cluster for dachannel. The frame ID determines in which slot and
respectively in which segment a frame shall be sent. Frame IDs range from 1 d¢8léhiBMax
protocol constant, which value can be up to 2047.

Each channel keeps track of the time slots (static andshoits) in its own variableSlotCounter

that starts from 1 in the beginning of every communication cycle and is incremented by 1 with
every new slot. This slot counter is increased simultaneously for both channels in the static
segment of the communicatiorcycle, while in the dynamic segment both counters are
incremented independently, according to the arbitration scheme used there.

The number of static slots, composing the static segment, is stored igNh@berOfStaticSlots
parameter. It ranges betweed and the value assigned to tlkstaticSlotiDMax protocol constant,
which maximum value is 1028tatic slot duration ranges between 4 and 661 macroticks and is
stored in thegdStaticSlot parameter.The action point offset within the static slots is assino

the gdActionPointOffset parameter and ranges between 1 and 63 macroticks.

The presence of a dynamic segment in the communication cycle is optional and therefore the
number of minislots can be 0 and up to 79&6is stored in thegNumberOfMinislots parameter.

The gdMinislot parameter keeps the duration of the minislot that ranges between 2 and 62
macroticks.The number of macroticks, constituting the offset of the action point within a minislot
is stored in thegdMinislotActionPointOffset parameter aad has a value between 1 and .3lIhe
number of the last minislot in which a transmission in the dynamic segment can be started is
configured inpLatestTx node parameter.

The symbol window duration can be up to 142 macroticks and is stored ipdthenbolWindow
parameter. Its value can be 0 if no symbol window is required. The action point offset is stored in
the same parameter as for the static segmerte number of macroticks for the NIT is between 2
and 805 and is stored in thgINIT parameter.

3 For distinguishing between different types of parameters signature rdfable A1 in Appendix A

16

Frame format

A FlexRay frame consists of three segments: headsipad and trailer segment (F&8) [10],

[13]. Header and trailer segments haveigetl length of 5 and 3 bytes respectively, while the
payload segment length varies from 0 to maximum of 254 byfes. frame is transmitted in the
introduced segment order, starting always with the most significant bit (MSB) and followed by the
subsequenbits.

-
8 "
5 £
E » 8§ ®
g 53¢z
. £zl
o B < w©w g
- o E E =
: 3 8<%
8 = = g ¢t
e @ 3 = =
x o Z W
Header CRC
Covered Area
Head
Frame D [F2Vond] FERE" | coen | Data 0 | Data 1 | Data2 Datan| cRC | crc | cre
11 bits 7 bits 11 bits | 6 bits 0 ... 254 bytes 24 bits
—> * - e >l > >
11111 Header Segment Payload Segment Trailer Segment
FlexRay Frame 5+ (0 ... 254) + 3 bytes

Fig 2.8 FlexRay frame format[10] p. 90)

The frame is transmitted, starting from thieeader segmentThe header MSB is reserved and has
no relevance It is followed bythe payload preamble indicatqiPPI) that indicates the presence of

a network management (NM) vector (when frame is transmitted in the static segment) or message
ID (when frame is transmitted in the dynamic segment) in the beginning of the payloacdulhe
frame indicatorbit signals whether the payload segment contains relevant tatae sync frame
indicatorbit is used for clock synchronisation of all nodes in a cluster when set to 1. Accordingly,
the startup frame indicatobit determines whether thdrame is a startup frame. It is usually set to

1 only when the sync frame indicator bit is also 1. In the following 11 bits is coddcathe 1D

which determines the slot in which the frame shall be transmitted. It must be a unique number
between 1 and @47 for every channel in the cluster. Thayload lengths coded in the following

7 bits, representing the number oft®/te data words, i.e. the payload length number equals the
actual payload length in bytes divided by 2. The sync frame indicator, gt&dme indicator,
frame ID and payload length are protected by an 11 djtslic redundancy che¢€RC) code. For
transmitted frames, the CRC code is not calculated by the transmitting CC but it is provided by
means of configurationThe header CRC codecalculated by the CC only for received frames. The
last 6 bits of the header section specify the value of tyele counterat the time of frame
transmission.

Thepayload segmenbf a FlexRay frame contains the actual message payload, starting from the
first data byte (MSB to LSB order) and followed by the subsequent data bytes. The product specific
host interface maps the position of data bytes in the buffer with their position in the payload

“Anullframer & F FNI YS G6AGK ydzZ f FNIYS AyRIOR G2NIIGAtiE 2 Sii2 (@n G

17

segment of the frame. As the payload length field in the legaskgment holds the number of 2
byte data words, the number of data bytes in the payload segment is always even. To achieve that,
sometimes padding is applied.

The last FlexRay frame segment is tfaler segment It consists of 24 bits CRC code thaters

all bits of the frame, including the header CRC and payload padded byte. Both channels use the
same generator polynomial for the computation of the CRC but different initialization vegtors
OXxFEDCBA for channel A and OXxABCDEF for channel B.

Messagefiltering

Message filtering is basezh slot number channeland optionally on one or moreycle numbers
(cycle sex[11]. The filtering configuration data is part of the header section of the ngpséaffers
which are discussed RAMConfiguration section in Appendix A

Every message buffer is assigned a slot number and one or two channels in which it is allowed to
transmit or receive data. The slot number is encoded in théilinessage buffeframe ID field

and needs to be greater than 0. The frame ID is compared against the slot counter variable of the
corresponding channel(s). Every static slot belongs to only one node, regardless of whether cycle
number filtering is provided or not.

Channelfiltering is provided via -Dit field ¢ one bit for each channel. It serves as filtering
mechanism for receive buffers and control mechanism for transmit buffers. Only for the static
segment it is allowed both channels to be assigned. If both channebssamgned for the dynamic
segment, then no frames are transmitted/received on any channel. It is equivalent as if no
channels were assigned for the dynamic segment.

The cycle set filtering is encoded in théit cycle count field of the message bufferdaer and is

used to distinguish between different message buffers, belonging to the same node, that are
assigned the same channel(s) and frame ID. The filter is passed every time a cycle number matches
an element, belonging to the assigned cycle set (T2l2e

Cycle Code Matching Cycle Counter Values

0Ob000000x all Cycles

0b000001c every second Cycle t (Cycle Count)mod2 =c
Ob00001cc every fourth Cycle t (Cycle Count)mod4 =cCC
0b0001cce every eighth Cycle t (Cycle Count)mod8 =cco
0b001ccec every sixteenth Cycle at (Cycle Count)mod16 = cccc
0b01ccece every thirty-second Cycle t (Cycle Count)ymod32 = cceccc
Ob1ccecce every sixty-fourth Cycle t (Cycle Count)ymod64 = cceccce

Table2-2 Definition of cycle set {11] Table 9)

In orderfor a message buffer to be allowed to transmit or receive data, all filters must match. If
more than ame buffer is assigned the same frame ID, cycle number and channel, the message
buffer with lowest message buffer number is chosdime receive FIFO can be configured for
further delimitation of the received messages via the FIFO Rejection Filter (FRE)froma
filtering, based on frame ID, channel and cycle cotim® FRF can be configured to reject/accept

all messages in the static segment and/or null franheshe FIFO Rejection Filter Mask (FRFM) are
pointed those bits of the frame ID thatare markedd G R2y Qi OF NB¢ F2NJ KS

18

Transmit process

A message can be transmitted in the static segment of a communication cycle on channel A,
channel B or both channels simultaneougl{], [11]. If few messages are pending, the one with

frame ID corresponding to the next time slot is sent next. When transmitted in the dynamic
segment, a message can be sent on channel A or channel B only, thusm@liooncurrent
messages to be sent simultaneously on both channels. The message with highest priority (lowest
frame ID) is sent next only if its length fits in the remaining minislots of the current cycle.
Transmission takes place in every time slot of sh&ic segment. If there is no assigned buffer

with matching filter criteria for a given static slot trat buffer does not have its transmission
NBIljdzSadG o6¢-wo FEF3 aSG 6AdSd ¢-w I' QnQOXT | yd:
dynamic segments.

Receive process

Analogously to the transmit process, messagas be receivean one or both channels, when
transmitted in the static segmenbr on only one channel, when transmitted in the dynamic
segment of a communication cydl&Q], [11]. If a received frame passes all filter criteria, it is saved
in the designated receive buffer apart froits frame CRGield. In this case dlag is raised to
inform the communication controller that the new message is ready to be procedsgdrame is

not processed by the time a new frame, designated for the same message buffer arrives, that
frame is overwritten and lost. A message lost 8V status flag is raised in such cases. If no frame,
null frame or corrupted frame is received and has passed the filter criteria, it is not,Jawmedver

the buffer status data is updated. In cases where the payload data length of the reéeiveslis
larger thanthe length, configured for that buffer, the received payload is truncated to the
configured length.

2.3.3 ERay

[11] ERay is & electronicdevice that has an IP module installed aretfprms communication
according to the FlexRay protocol specification y2(. It supportsthe provided by FlexRajata
rates ofup to 10 MB/s on each channel-Ray registers can be directly accesggdan external
Host via the controlling host interface GH) to directly perform configuration, control and
monitoring tasks.An additional bus driver hardware is required for connection to the physical
layer.

The ERay module is provided with 8kB confighle message RAM consisting of maximum 128
message buffers that can be configured to hold up to 254 bytes of Gig2.9) [11]. Message

buffers can be configured as static or static + dynamitebs, dedicated to transmit or receive
process. Part of the receive buffers can be organized in a cyclidri-ifsstOut (FIFO) structure.
Message RAM is accessed by the Host via the provided Input Buffer (IBF), for write access, and
Output Buffer (OBFfor read access. Access to the Physical Layer is under the control of Channel
Protocol Controller (PTR A/B) and supported by transient buffers (TBFféx/B)termediate
message storage. All functions regarding handling of messages are implementedMiedbage
Handler. ERay is supported by an 8/16/3#t generic CPU interface that enables combpitity

with a wide range of customespecific Host CPUSs.

® 128 message buffers with max of 48 bytes data section or up to 30 message buffers with 254 bytes dta]sgction
14)

19

Rx_A -
L T - PRTA =P TBFA
ysica A
Layer Control <= o
Rx_B -
Tx B < PRTE <= TBFB
suc
S
Data 41 |\&|>—P| IBF v FSP
Host Addr m=ip (1O —|'>
CPU Control ole Message Handler
—> Els NEM
Interrupt ——-—— = 5‘_ OBF
3@
Message RAM INT

Fig 2.9 E-Ray block diagranf[11] Figure J

The FlexRaghannel protocol controlle®RT A and PRT iBpresent interfaces for controlling the
transmission and reception of FlexRay frames and symbols between the internal device memory
and the connected channel(§)1]. They consist of shift registers and FlexRay protocol FSM and
perform functionalities for control of the bit timing, generation of the frame CRC and check of the
received header and frame CRC codé® HlexRay channel protocardrollers have interfaces to:

1 Physical Layer (bus driver)

1 Transient Buffer RANTBF A/B§ stores the data section of two complete messages.

1 Message Handleg controls data transfer between IBF/OBF and message RAM and
betweenTBF A/B and message RAM.

1 Global Time UnifGTU)X performs generation of micro and macroticks; fault tolerant clock
synchronization and support of external clock correction; timing control of static and
dynamic segments; cycle counter.

1 System Universal @tol (SUC)X provides control over: configuration, wakeup, startup,
normal operation, passive operation and monitor mode.

1 Frame and Symbol ProcessiffeSP) checks the correct timing of frames and symbols;

tests the syntactical and semantical correctnedsreceived frames; sets the slot status

flags

Network Managemen{NEM)¢ handles the network management vector.

Interrupt Control (INT) ¢ provides error and status interrupt flags; enables/disables

interrupt sources and module interrupt lines; assignteirupt sources to one of the two

module interrupt lines; manages the two interrupt timers; captures the stop watch time.

= =

20

The message RAM inR&y is structured in 2048 words of 33 Ritmaking a total of 67 584 bits
memory spacgl11l]. It provides support for 8 and UGt accesses and is able to store up to 128
message buffers, depending on the configured payload length, as the data bytes in the FlexRay
frame can vary between 0 and 254. In orderachieve a better flexibility, the message RAM is
divided in Header and Data partitions and has the structure shown a Hig

Message RAM

A Header MBO
Header MB1
. Header Partition

Header MBn

unused

2048 Data MBn
words

. Data Partition

Data MB1

' Data MBO

- L
33 bit

Fig 2.10 Configuration example of message buffers in the Message RAN Figure 15

The Header Partitiorholds the header sections of the configured message buffers. The header
section of each message buffer consists of four 32+1 byte words starting with the first word in the
message RAM fanessage buffer 0. THeata Partitionstarts after the last word, occupied by the
Header Partition. Its minimal allowed position is: (the number of last configured buffer + 1) * 4. In
the Data Partition is stored the data section of each message buffera Betailed view of the
header and data sections, refer Message RAM section Appendix A.

The ERayMessage Handleis an interface that provides functionalities foontroling the data

transfers between thédostandthe message RANVia the Input andOutput Buffersland between
the PRTs and the message RAN& the Transient buffejs Those functioalities include the

acceptance filterin@f received messagethe maintainingof the transmission schedulas well as
the providingof message status infmation.

€32 bit word plus 1 parity bit

21

Channel protocol controller access to message RAM

The FlexRay channel protocol controllers (PRT A/B) are connected tmattsgent bufferRAMs
(TBF A/B) and to the physical layer via the bus dii¥&}. The TBF is used as an intermediate
storage, able to store two complete FlexRay messages. It isupudis a double buffeg one
assigned to the corresponding PRT and the other accessible by the Message Han8l&t)(Fig

eray_rxd1 eray_txd1 eray rxd2 eray_txd2
FlexRay PRT A FlexRay PRT B
- Shift Register - Shift Register
= Control Control =
Y y:
A

Transient Buffer Rx Transient Buffer Rx

TEBF B

TEBF A

Transient Buffer Tx Transient Buffer Tx

—" Address-Decoder

Data[31:0]|
Data[31:0]}

H
:
ﬁ

Fig 2.11 Access to Transient Buffer RAMd11] Figurel4)

Address
Address

Yy

Message Handler

Receiving/transmitting a FlexRay message to/from the message RAM is possible via the TBFs. The
Message Handler writes the nege to be transmitted to the TBF Tx of the corresponding
channel(Fig2.11). The PRT writes the received on the channel message to the corresponding TBF
Rx. During transmission of the message stored in the TBF Tx the Message Handler transfers the
last re@ived message from TBF Rx to the message RAM (if it passes the acceptance filtering).

22

Host access to message RAM

The Host accesses the message buffers in the message RAM via intermediate buffers and the help
of the Message Handlg¢f1]. Read access is done via the Output Buffer (OBF) and write access via
the Input Buffer (IBF). Similarly to the Transient Buffer (TBF) the IBF and OBF have double buffer
structure ¢ one half accessed by the Host (IBFtHOBF Host) and the other half accessed by the
Message Handler (IBF Shadow/OBF Shadow). The Host writes the number of the target buffer in
the message RAM to the corresponding intermediate buffer, together with other configuration
data (header and/or mesgje data), and the Message Handler proceeds its request by providing
the requested access (FdL2).

Host

Data[31:0]
Address

Address-
Input Buffer Decoder Output Buffer

[Shadow] & Control [Shadow]

i

‘ Message Handler

Addmess
Control

Data[31:0]
Data[31:0]

[patafz1:01
Address

Header Partition

Data Partition

Message RAM
Fig 2.12 Host access to Message RANL1] Figure 9

23

RAM Configuration

Message RAM can be configured into three groups of message buffers via the Message RAM
Configuration (MRC) register, only when the CC imiriigor default configstate (Fig2.13) [11].

The frst group is dedicated to messages sent in the static segment of a communication cycle.
Specifying the number of the First Dynamic Buffer (FDB) determines the number of static message
buffers. As the maximum allowed number of message buffers in the me$gAdkis 128, any
number assigned to FDB greater or equal to 128 will assign all message buffers to the static
segment. Following the same logic, the First FIFO Buffer (FFB) holds the number of the first FIFO
message buffer. The last message buffer numberonfigured in the Last Configured Buffer (LCB)
field of the MRC register

Message Buffer 0 I Static Buffers
Message Buffer 1

|} Static + Dynamic | = FDB
Buffers

L FIFO = FFB

Message Buffer N-1
Message Buffer N = LCB

n X C5. X CC. X [/[/.
Fig 2.13 Assignment of message bufférgl1] Tablel)

A message buffer can be configured as receive or transmit buffer by configuring the @F@sbit
header section. Every transmit buffer can be configured to operatarigleshot or continuous

mode by setting the appropriate value to the transmission mode (TXM) flag, also part of its header
section. Part of the receive message buffers can befigored as a cyclic FIFO buffer. Every
message, passing the FIFO Rejection Filter (FRF) is stored, starting with the first and proceeding
with every nextmessage buffer assigned to the FIFO. When the last buffer, belonging to the FIFO
is reached, the redee process starts again with the first buffer and so on

There are two index registers associated with the FIFO. The PUT Index Register (PIDX) points to the
next message buffer to be used for receiving a frame. It is incremented every time a new message
passes the FIFO filters and is saved there. The GET Index Register (GIDX) points to the next
message to be processed and incremented after read access. The GIDX shall never reach the PIDX
when the FIFO is in neempty state, otherwise a FIFO overrun is alse ¢ the message stored

on that buffer index is overwritten and both indexes are incremented. In this case an error flag is
raised and an interrupt is generated.

24

The possible FIFO states are shown or2 By

FIFO empty FIFQ not empty FIFO overrun
PIDX PIDX PIDX
(store next) (store next) (store next)
e é@@ ot EI__!LE s
Messages - Messages Messages ,X B C
D
(‘IDX (“IDX GIDX
(read oldest) (read oldest) (read oldest)

» PIDX incremented last

* Next received message
will be stored into buffer 1

= If buffer 1 has not been read
before message A is lost

Fig 2.14 Possibé FIFO state§[11] Figure 8)

An important constraint is that all buffers, belonging to the FIFO must be configured with the
same payload and data section lengithe programmer shall take care @drrect input as the CC
does not check for erroneous configurati6fiLl] p. 72)

Depending on its configurationhe first message buffer (with index 0) of the message RAM can
hold the startup frane, sync frame or designated single slot frame. This ensures that each buffer
can transmit only one startup or sync frame per communication cycle. The configuration df the 0
message buffer is possible only during configuration time when the CCdisfanit config or

config state but not during runtime. If enabled by the programmer in the MRC register,
reconfiguration of all other message buffers is possible during runtime via the Input Buffer (IBF).
However, it shall be noted that due to the data partitjoreconfiguration of the payload length
may lead to memory corruption and erroneous outcome.

25

Host Write Accessvia Input Buffer

The Host can request write access to one message buffer at a time via the IBF. If reconfiguration is
desired, the Host writeshie configuration data to the three header registers (WRHSL1...3) of the
IBF[1l]® ¢KS | Oddzrf YSaalr3aS Aa gNAGGSY G2 GKS L.
option whether to update only theheader, only the data, or both sections of the targeted
message buffer in message RAM is specified via the Input Buffer Command Mask (IBCM) register.
Lastly, the target buffer number is written to the Input Buffer Command Request (IBCR) register
that triggers the swap of th IBF Host and IBF Shadow &ig).

E-Ray

dow

iBF [~ 7| IBF Message
S | — Host | g Sha | |E===)| " gam

IBF = Input Buffer
Fig 2.15 Transmit process via the Input Buffdrl] (Figure 10)

Once the IBF Host and IBF Shadow sections are sdafipe Message Handler starts the transfer

of the header and/ofdata section to the targeted buffer in the message REM]. While the
transfer takes place, an Input Buffer Busy Shadow (IBSY$) fEised, however, in the meanwhile

the Host may write the data for the next message buffer to the IBF. After the transfer is finished,
the IBSYS flag is reset and the Host may request the next transfer by writing the target buffer
number in the IBCR gester. If the Host writes to the IBCR register while the IBSYS flag is still on,
an Input Buffer Busy Host (IBSYH) flag is raised and the last transfer request is pending until the
current transfer is finished. A further attempt for the Host to write BCIR register, while both

flags are raised, has no effect but an error flag is raised.

The procedure to configure/update theth message buffer is as followd11] p. 127, 136)
1. Wait until IBSYIflagis reset
Write data section toWRDSn
2NRAGS KSIFRSNI aSOiGA2y (2 2wl {mMXo
Write commandmaskconfiguration tolBCM
Write target message buffer tiBCRo demand message transfer
Check whether the message buffer has been transmitted by checking the regpectiv
TXRbiD ¢ - w ' QnQ0 Ay GKS &hotmodeonyk ok n NBIA &GS

ook wn

If the designated transmit message buffer is configured to operate in ssgiemode, after the
transmission is completed, the CC clears the respective transmission requestlagxatyd the

Host may update the buffer. In continuous mode, this flag is not cleared by the CC and message is
transmitted every time it matches the filter criteria. The TXR flag is reset by the Host when
executing step 5 from the update procedure desedlabove.

" Depending on the configuration of the IBCM the message Handler updates only header, only data or both sections of
the target buffer in the message RAM]

26

Host Read Accessvia Output Buffer

The Host can request contents and status of a message buffer in the message RAM via writing the
message buffer number in the Output Buffer Command Request (OBCR) rElfistdine desired
contents (header, data or both) are specified via @eatput Buffer Command Mask (OBCM)
register. The Host triggers the transfer of the buffer contents from message RAM to the OBF
{KIFR2g o0& ogNAGAyBammQ N2 ZKSIWSvh oAWINBEIA&ZGSN
the OBCR register swaps the contents of OBF Host and OBF Shadow and the Host can read the
YSaar3aS o0dzFFSNI RFGFE @Al GKS h.C KSFRSN) NB3IAaA
n=1X c n 0 2.16)CAh& message buffer status is accessible via the message buffer status (MBS)
register.

E-Ray
OBF |~ | QBF Message
Host [{ | | st -y S{I:L:a:r =3 rAM
OBF = Output Buffer

Fig 2.16 Receive process via the Output Bufféet] (Figure 12)

During the transfer of message buffer contents from the message RAM to the OBF Shadow, the
OBF Busy Shadow (OBSYS) flag is set. In the meantime, the Host may access the contents of the
OBF Host or write the next message buffer number to OBCR register but the REQ\&nity1E
cannot be set until the OBSYS flag is reset. If REQ and VIEW bits are set with the same write access,
gKAES h.{,{ Aada WwnQs GKS h.C 124G YR h.C {KIF
message buffer data from message RAM to OBF Shadiniggered.

¢KS LINRPOSRdAzNBE 2F NBI|jdzSadGAy3a 2yS 2 N1Ip2IBA39Y Sa il

Wait until OBSYS is reset

Write command mask configuration to OBCM

Write targetmess8S 0 dzZF FSNJ ydzYoSNJ 42 h./w YR W¥mQ
Wait until OBSYS is reset

If no further message buffer is requestegroceed to 9

Otherwise write command mask configuration to OBCM for the next message buffer

Toggle OBF Host and OBF Shadow and starsfea of next message buffer contents to

h.C {KIFIR2¢ aAyvydzZ GlyS2dzate o6& oNAGAYy3T (GKS ¢
and OBCR.VIEW bits

wWSIR 2dzi G0KS LINB@A2dza YSaal3aS o6dzZFFSNI GAlL w
Wait until OBSYS is reset

. Demandacces G2 f1 a4 YSaalr3asS o0dzFFSNI O2yi(iSyia oeé
OwWSFR 2dzi fFad GNXY¥yaFTFSNNBR YSaal3dS o0dzFFSNI O

arwdE

o

27

2.4 Communication Protocols

In the following subchaptersare describedthe hardware and software aspects dhe
communication protocols used for data exchange between the PC client and the FlexRay server
node, according tahe 7-layered OSI modelFor this project tis is the Ethernet protocobnd the
network protocols that run over it the TCP/IP protocol sa@tand its lightweight version for
embedded systems the IwIP

2.4.1 EthernetProtocol

Ethernet is a network interface that provides high speed connectivity, widely used in local (LAN) or
metropolitan (MAN) area network¢$14]. It is standardised by the Institute of Electro and
Electronics Engineers (IEEE) and known as the IEEE 802.3 sta@dandnonly used
communication mediums are twisted pair and fiber optic links (together with repeaters, hubs,
switches, etc.), providing data rates from 10 Mb/s to 100 Gb/s.

According to the dayer OSI model, Ethernet relates to the bottom two layeRhysical and Data
Link[15]. According to thdEEEB023 standard[16] these two OSI layemsre additionally divided

into sublayers topresent a finer structure (Fig17). At physical layer, the IEEE dalgers depend

on whether 10, 100 or 1000 Mb/sthernet standard is used. The MA@d LLCayers are above

the layers that define the physical and medigecifications and doot depend on themThe LLC is

not bounded to the Ethernet standard but is intended to serve all LAN systems. ThereforeCthe LL
layer is not formally part of the IEEE 802.3 system specifications

m I:l Ethernet-specific

Layer 7 Application

Layer 6 Presentation Logical Link Control
--------------------------- sublayer (LLC)

Layer 5 Session | 0/ beceeeemeee oo
--------------------------- Media Access Control

Layer 4 Transport sublayer (MAC)

Layer 3 Network Physical signaling
___________________________ sublayers

Layer 2 Datalink | .~~~ = e
_________________________ Media specifications

Layer 1 Physical P

Fig 2.17 The major Ethernet layers defined by IEER5] p.13)

The physical Ethernet specificatioae separated into two basic groups of hardware components
¢ signalling and media componen{d5]. The ggnalling componentsepresent an Ethernet
hardware interfacehat is used to send and receiva@gnals over the plsjcal mediumThe media
hardware components are used to build the physical medium where signals are transterred
twisted-pair or fiber optic cabledransceivers, repeaters, etc.

28

Ethernet can operate in hatfuplex and fulduplex mock. In haltduplex mode he media access is

based on the Carrier Sense Multiple Access with Collision Detection (CSMA/CD) media access
control (MAC) protocolThis protocol represents a set of instructions that arbitrate the access to

the shared channel. Ifull-duplex mode the CDMA/CS is not necesseny therefore it is switched

off.

Data is transmittecbver the Ethernetin frames ([17] p. 155169) Theframe is astandardized
sequenceof bits tha besides the actual payload daté,carries additional informatiorg source

and destination address payload length checksum, etcOn Fig 2.18 is shown the frame
composition ofDIX and IEEE 802fBame standards.Although very similar, these standartave

some minor differences that make them incompatible with one another, unless hardware that
supports both frame formats is used. Nowadays, IEEE 802.3 is the established standard for the
majority ofvendors

64 bits 48bits : 48bits | 16bits | 46to 1500 bytes = 32 hits
Frame
Preamhle Destination Source Type Data Check
Address Address Sequence
'\ Individual/group address bit
DIX frame
8 . .
56 bils bits | 48 bits : 48bits : 16bits : 46 to 1500 byles 32 hits
g Frame
Preamble| F Destination| Source Length or Data/LLC Check
D Address Address Type Sequence

\ Globally/locally administered bit
Individual/group address bit

IEEE 802.3 frame
Fig 2.18 DIX framevs. IEEE 802.3 framg[15] p. 41)

The similarity in both Ethernet frame specifications allows their structure to be investigated in
parallel, highlighting their differences:

1 The 64 most sigficart bits (MSB) are used for channel awakeniagd clock
synchronizatiorand so to prevent some potential data I8sk the IEEE 802.3 variant, the
last 8 bitsare called Start of Frame Delimiter (SFD) arelused to signal the start of the
frametransmisson.

1 The48 bit field that follows holds the destination addre&s both frame formats, the MSB
of this field reveals whether the frame is designated to omedividual physical MAG

8 DIX is abbreviation of DE@ntel-Xerox consortium that firsstandardisethe Ethernet framg15](p.5-7)

° The Preamble bits play a role in 10 Mb Ethernet omiyzast and Gigabit Ethernet theeBmble bits have constant
values because due to other technologies usembéting the signalthey are not really needed. Nevertheless, being part
of the Ethernet frame standard, they are still being §&5(p.41-42)

29

unicastaddress) or multiplegroup, multicastaddress) receiverslhe IEEE notation gives
significance and to the second MSB of that field to distinguish betesailyand globally
administered addresse®IX addresses are always globally administered.

1 The next bit field also consists of 48 bits where the Ethernet MMA(address of the
transmitting source is coded. This address has no significance for the EMAC protocol but it
is provided for the higherlayer protocols

1 The payload length ardr the type of the highlevel network protocokhat is used(e.qg.
TCP/IPare coded in the next 16 bitsn DIX (and initially in IEEEandard, thsfield isused
only ashightlevel protocolidentifier. In IEEE 802.3 version, however, this field was assigned
a dual interpretation, depending on the value that it holds. The Iagy&s follows; if the
coded decimal value is less or equal to 1500 (which is the maximum transfer unit (MTU) of
data in bytes), then this value represents the length of the actual message, contained in
the following Data field; otherwise, if that decimaalue isgreater than the MTU, it is
interpreted asthe specified in DIX standard hitgvel protocol type identifier.

1 The actual payloads stored in the Data field and must between 46 to 1500 bytes. tihe
minimum amount of payload datia less than @ bytes padding is usetb increase the size
In the IEEE 802.3 standard, a Logical Link Control (LLC) protocol may also reside in the Data
field to provide control information or be used as a highel protocol identifier in case the
previous field is sed as a Length field.

1 The least significant 32 bits of the frame holds the cyclic redundancy checksunwGetC)
tests the data for errors that might have occurred during transmission.

The highlevel protocol information that is embedded in the Etherrfehme is what actually
establishes the successful communication between connected nodes. In tor@dehieve higher
speeds the purpose of Ethernet is limited wimply forwardng the frames to their destination,
oFaSR 2y GKS a&o Sa i nsSHatTf 2eNdngmissos sedudsy/tideuttoscurs] ther S |
frame is discardedethernet frames are standardized but the information that they carry can differ
i.e. Ethernet does not depend on thagher-level protocols Therefore,Ethernet does not provide
any guarantee for successful data delivefe correct delivery acknowledgement and ordee
guaranteed by protocols of higher levels. One of these protoctf®i$ @/IP protocol suit¢hat is

the topic of thenext chapter.

2.4.2 TCP/IPProtocol Qiite

Transmission Control Protocol (TCP) and Internet Protocol (IPhetweorking protocols which
together form one of the most common networking protocol suites that is used in thet@wead

communication, known as the TCP[®®, [18]. It is standardized in a multhyer stacksimilarly to
the OSI 7 layers mod€.2 OSIModel). TCP/IP precedes the OSI model with aroandecade
but their structures are identicallhat is why it is common to expldine one with the other.The

two models differ in the number of thelayers¢ 7 in OSI model and 4 in TCP/IP modakir

functional definition anchierarchical sequengéowever,arevery similarFig2.19).

30

7 Application

6 Presentation Application

D Session

OS| Model TCP/IP Model
Fig 2.19 0S| Model vs. TCP/IP ModdI[9] p. 129)

1 Network Interfaceis the bottom TCP/Iitnodellayer. According tasome sources it mesg
the first two OSI layergl8|(p. 7-8), whileto others, the Physical OSI layer is excluded from
the TCP/IP mod¢f](p.128129).

1 Internet layer refers to the network operations like: addressing, routing, data packaging,
etc. The IP protocol resides in this layer.

1 Transportlayer correspona to the OSI Transport layer and part of the Session layer. The
key protocols for this layer are ¢hTCP and UDP (User Datagram Protocol)

1 Application layer is the top layemi TCP/IP modelt combineslayers 5, 6 and 7 frorthe
OSI model, du#o their similar nature

IP is aconnectionlessrotocol that simply provides addressing and routing methddsdeliver
transmitted messages to their destinati¢f], [18]. It does not provide reliability, flow control, or
error checks The basic nit of data in an IP network is calleidtagram There aretwo IP versions
¢ IPv4 and IPv6.

TCHs connection oriented, bilirectional protocol, that guarantees packet deliveries in the correct
order [18], [19]. It provides error checking and recovery mechanisms and requests retransmission
of erroneous or lost data packetd CP handles congestion and flow control gombvides
handshaking sequees® for establishing a connectioft is used in applications that require high
transmission reliabilitySome of the most common application protocols that use TE€FHA TP,
FTP, Telnet, SMTP, etc.

UDPIis simpler, connectionless, oftirectional protocd, where data packets are broadcastby
the transmitting source but there 130 guaranteewvhetherthesepackets aresuccessfuly received
[18], [19]. Unlike TCP, UDP keeps no track on the data packetsnacase of errors, erroneous

2 TCP requires three packets to set up a socket connection, before any user data cafilBe sent.

31

data packets are simply discarddtl.is more lightweight and faster than T&PUDPis used in
caseswhere transmissiorand processingpeed is of higér importance for the application than
guaranteeingcorrectness of each data packéike video and audio streaming, games and so on.
Common protocols that use WDare DNS, DSCP, TFTP and so on.

DHCP(Dynamic Host Configuration Protocol) is a protocol based on P fotocof that is
used to provide configuration data to an IP h¢$8], [20]. It assigns the host with a unique IP
address and provides loér network information depending on the allocation mechanism that is
used. It supports three mechanisms of IP allocatipmutomatic, dynamic and manual. Dynamic
allocation is the only one that supporéaitomatic reuse of an IP addregt is no more iruse by
the host.

The key concept of the TCP/IP protocol suite is in@ent-Server communication notatior [9]
p.126) Clients and servers can be synonyms in the context of a TCP/IP connedidhiscan
sometimesbe confusing. In order to distinguish their roles for this prajéice dient is the one
that initiates the connection and sends th@ovokel by the userrequests to the server. The
server responds to these client requests by prawgihe requestederviceand data.

2.4.3 LwIPProtocol/Raw API

Lightweight Internet Protocol (LwlIP)adightweight version of the TCP/IP protocol suilesigned
by Adam Dunkels at the Swedish Institute of Computer Scigigelt isintendedto provide a full
scale TCRith less resource requirementft requires only a few tens of kilobytesfoée RAMand
around 40 kB of ROM code to run which makeshi¢é best solutionfor embedded applications
with limited resources

[6Lt LINRPGARSE GKNBS ! LI AOFGAZ2Y t NRINFYQa Ly
the TCP/IP code:

1 Socket API
f Netconn API
1 Raw (native) API

The first two are considered highvel APIs, while the Raw (also called Ngti&PI is a lovevel
API as it does not require an operating system to j2#|. The Raw APIs designed as a set of
callback functions that areriggered oncertain events like: new data avaitde, data ready to be
sent, data transmitted, errors, connection loss and so Bhese callback functionsave to be
properly registered at stastip (viatcpip_init_callbacK) or at run time (viacpip_callback). They
canonly be called from the main ttead (cpip_thread and are not protected from concurrent
accessef multithreading environmenf23].

The LwIP raw API provides access to protocols of all TCP/IPDay¢ine oneof interest fa this
project is the TCP The TCHetwork designis based on the raw API eveditiven callback
mechanism. Before making a call to any of the TCP functions, the Iwip has to be iniabzed
Iwip_init()). A TCP connection is identified &#rotocol Conl Block (PCB)

1 TCP header size is 20 bytes; UDP header size is 8 hy@s.
2 More particularly DHCP is based on the Bootstrap Protocol (BOOTP) that is based on the UDP p2gfocol.

32

To setup aractivePCBconnectionthe following steps are required:

1. Calltcp_new()to createa PCB.

2. Optionally caltcp_arg()to associate an applicatiespecific value with th&®CB
3. Optionally caltcp_bind()to specify the local IP adelss and port.

4. Calltcp_connect().

Tosend dataovera TCP connection:

Calltcp_sent(Xo specify a callback function for acknowledgements.
Calltcp_sndbuf(}o find the maximum amount of data that can be sent.
Calltcp_write()to enqueue the data.

Calltcp_output()to force the data to be sent.

HwnNPE

Receiving dataver the TCP connectios callbak based:

1. Calltcp_recv()o set the callbackunctionthat will process the received data
2. Call tcp_recved(when data has been processed and the application #&lyeto receive
more.

The maximum size of the receiving window is configured via parameter TCP_\Whipojts.h
header file.

LwlIP is based on pollifg3]. When connection is idle, Lw[Rllsit by calling a callback function
every predefined period of time. The polling time interval and the callback function are set via
function tcp_poll().The interval is specified in number of TCP coarse grained timer shots, which
typically occurs twice a secdn

Connection ilosedby calling function tcp_close() which will also deallocate the KGBere is
insufficient memory for performing closing process, call to tcp_abort() never fails. It aborts the
connection by sending a reset segment to the rematstrand deallocates the PCB.

33

2.5 Hardware PlatformMicroZedBoard

MicroZed is a loveost evaluation board from the Xilinx Zed board fani#], [25]. It provides
features that allow it to be used as a staalbne evaluation board or extended as an embeddable
systemon-module (SOM).It is equipped withZynqg XC7Z010CLG400C or Zynq XC7Z020
1CLG400C AP Sdtdth part of theXilinx Zynq®&000 All Programmable Sofamily (Fig 2.20).
These products aresupplied withARM CortexA9 CPU, which provides an-ohip and external
memory interfaces and a variety of peripheral connectivity interfaces.

QSPl 4—7—» QSPI

128Mb
Flash

B8P <ser Select> -}

Gbit E ey |«1 oa ENET/

Enet EI * MDio

USB [:_:_I PHY |<.m.> USB Host
Host Q

usD }f?—h usb

usB USE o ; » USBUART . @
UART [—tiCont)] .§
= @
1LED. (5 +—— Ps_aPi0 o o < 11o0—p-| 2
—.r'l—h' o
=
- 112
1Gbyte - ©
DDR3 (x32) |“"_"’ b Q
il
(O
Resel [@] —* PS_RST % <
- b]
samhz (@) ———> Pk
-, -
ZYNQ XC7Z0x0-CLG400

Fig 2.20 MicroZed block dagram([25] Figure 1)

The Xilinx MicroZed board, used for this project as an example of a FlexRaysremlepped with
Zyng XC7Z020CLG400 AP SoC. Thest essential for the projedeatures thd are providedare:

1 1GB DDR3 RAM
1 JTAGonnectivity
1 10/100/1000 Ethernet PHY

34

The Byrnamic Memory Interface provides a 1 GB of address space that uses a single rank
configuration of 8pit, 16-bit or 32bit DRAM memoriedt includes a dynamic memory contralle

and static memory interface modules. The DDR memory controller is-purted which allows

the processing system (PS) and the programmable logic (PL) to have shared access to a common
memory.

TheZyng7000 AP SoC devicegpport three different boot mdes¢ JTAG, QSPI and SD card. The
desired mode is configurableia the boot mode jumpers (Fig21). When the boot mode is
configured on JTAG, an external JTAG cable is needed. MicroZed is designed with a Platform Cable
JTAG connectog 2x7, 2mm, shroudedpolarized header. It is compatible with Xilinx Platform
Cables andigilent JTAG HS1 or HS2 Programming Cables

JTAG QSPI SD Card

CAFE

Fig 2.21 Boot Mode Jumper Settings with Cascaded JTAG Chglh] Figure 8)

The MicroZed is equipped wittMarvell 88E1512 PHYor 10/100/1000 Ethernet network
connection that operates at 1.8\0n Fig2.22 is shown a higlkevel block diagram of the Ethernet
module. The RJ45 connector is shared with the-H8&interface and 2 LEDs for traffic and valid
link state indication are provided.

Marvell 88E1512 PHY

» data_tx[3:0]
Ele clk_tx
z . .
E control_tx To_P i EE - §
gtxclk TON T S e 4 33
v RD_P g5 K3
RD_N w2 o
XCTZ0xD data_rx[3:0]
2
g clk_rx
control_rx
LEDs
Oscillator
phy_reset » X 25Mhz

Fig 2.2210/100/1000 Ethernet interfa¢cg25] Figure 5)

35

3. RequirementsAnalysis

The fdlowing requirements analysis separated irfour main topics The first one refers to the
requirements set with the project assignment, based on previous researches in this field. The rest
are relatedto the problems that arise within the different usaases, regarding thstructure and
contents of thedata objectsand the softwarearchitecture as well as testing and evaluatiohthe
software features The conceptual decisions and solutions of these problemsdm®issedn
Chapter 4

3.1 General Requements

This project assignment &1 extensiorof a similar task that waaccomplishedy previous thesis
in the context of Urban Mobility -Ky-Wire(less) project26]. That allowssome of the bas
requirementsthat were analyzed in the previous projdotbe takenas granted

1 The service interface for configuration, control and message data transfer between the PC
and the nodes in a FlexRay clustdrall beimplemented via Ethernestandard (2.4.1
EthernetProtocol), Cat6 Ethernetables and m unmanaged Ethernet switch

1 For ISO/OSI network and transport lay&< OSI| Modgithe TCP/IRrotocol (2.4.2 TCP/IP
Protocol Quite) shall be used

1 The T@/IP stackshall be implemented bits lightweight version for embedded systems
(LwiIP)2.4.3 LwIPProtocol/Raw ABI

1 Ethernetcommunication shall suppoftGb/sdata rate

1 Configuration Control and Messagelata objects shall be structured based on the
JavaScript Object Notation (JSG@dijnat [27]

1 Programming language for theCclient applicationshall beJava; forthe microcontroller
server applicatiorshall beC

For a moe detailed discussion of previous requirements refefag|.

As anotherpredefined requirement fothis project the Xilinx MicroZed boarghall be useds a
prototype FlexRay nodein contrast tothe Texas Instruments Hercules TMS570 bpakd for
the previous project assignmerj26]. MicroZedhas aGigabit Ethernet interfacénstalled that
allows interfacing to a FlexRay controller (notegrated) and gives the possibility of integrating
new communication modules in its éward FPGA fabric. In addition, there akmown
integrations ofthe Iwip stack which allow receiving and transmitting data from and to the
microcontrollerin the defined by the projectrequirementsway.

After thetaskrequirements that have been setith the project assignment are revealeithe next
step is to analyzeéhose aspects othe current project implementatiorthat open a field for
discussionThe first aspecthat should beconsideredis the internal JSON structure of tldata
objects their purposesand contents. Having this done, leads to the next aspdwiw is that JSON
data going to be processed and sever the TCP/IP netork. That, from another handaises the

36

guestion of howare the configuration control and monitoringprocesgsgoing to be implemented
As we can see, each answeads toa new potential question. Once solutions for all these
guestions are found, summing them up should giveghemises forfoundation of a user interface
that best fulfisthe established project requirements

3.2 Data Objects

Data objects are text objects that contaimformation needed for applying a correct operation of
the configuration, monitoring and contrgbrocessesof a FlexRayluster There are two main
groups of data objects. The first ogeconfiguration data objects; refersto data related to the
FlexRay protocol constraingsd the device specific hardware architectuféiis data imeeded for
the correct configuration of thecontroller node and shall be provided whemequired by the
application Therefore,it shall be stored in a text file in the syste®@uch fileshall existfor each
distinct nodeand shall be maintained by a programmdre second gup of data objectss
communication data objectsThis groupefersto text objects used for data transfer between the
PC client and the participants in the FlexRay clusBymmunication data objectshall be
generated by the applicatiomuring runtime awl their content shalldepend on the current
request It shall contain as less overhead as possible, in order to maintain higher communication
speeds.

The structure okach group oflata objects shall be based on the JSON format notd&@h The
reasons for choosing file format JSON in the prevj@6sand current project is that it contains a
small amount of overhead, is easy to read lmghbhumans and machines, maintains a hierarchical
structure and has a wide support of librarieghose features of the JSON format shall be used
when defining a suitable internal JISON structure of each of the data obfegmod internal JISON
structure slall be expressed by well organizedJSON hierarchyestablishedwith respect to
maintainability by humans, low memory and processing requiremeatdta reuse and adaptability.
Relation of data to thedifferent FlexRay protocol and hardware aspects, ad agthe different
use casesvolved shall also be taken into account

The heterogeneous character of thElexRay configuration datanablesto distinguishseparate
data categories according totheir relation to different fexRay protocol (e.g. constarg, global
(cluster) parameters, local (node) parameters, variables, atd) hardwareaspects(e.g. register
address map)This property shall be used when estimating the nmeggpropriate internal JSON
structure of the configuration file. In order to eaiee process of reading, editing and parsthgt
information, separating the configuration data into multiple files should also be considered.

Configuration is a process where a device is brought into a default origiastate and is typically
executed &ter a reset or at power up28]. It is, in general, based on writing predefined data to
specific memory address registers of the configured devites configuration procesgollows a
defined flowof actionsand sometimes requires time delays between consecutive register write
accessesA mean of providinghis informationto the y 2 R &Mtéoller Host Interface @.3.1
Communication Controll@shall be determined

37

Hexadedmal representation of values shdle supported by the configuration fileptionally,
support for other number format representations should also be implementéithough he
current project is intended to relate only to syste running the FlexRay puaxol, the
configuration file structure shall be specified to enablestintegrationof other protocols in the
future with minimum amount of effort.

3.3 SoftwareFeatures and Structure

The software implementations divided o two parts. It consists of e client application,
programmed in Javaand one server application, programmed in(&cording to the general
requirements) The workload ofooth applicationsshall beshaed in a way thatthe resource
power of the PC cliens maintained. Thereforeéhe maindecision takingnd logic algorithms shall
be executedon the PCThe client applicatioishall compose and transmit data objects, containing
only relevant for the requested access data in the desired request ofthepurpose of theserver
application should be limitedto parsng the receiveddata objects processing the read/write
accesdo registerd®in the defined by the client ordeand compoig and senihg responsedata
objects back to the client Eventually, these two applications shall woskth each other in a
synchronized manner under the control of the user.

The client applicatiorshallbe based ora graphical user interface (GUhat shall be intuitive in
use to enable less experienced users to work withlitat implies that a comprorse between
usability and complexitghouldbe agreed.The GUI shall be designed to accept usguestsand
displayusable information, where all the program logic is executed in the backgrdtspurpose
shall include some basic debugging functionaitie inform the user for error conditions by error
and warning messages.

The applicationshallenable the useto browse through the system memory farconfiguration
file. A parsing algorithm shall be implementdtat parseshe JSON datérom the specifedfile in
the application memoryAs JSON format has popularity and supporbagiprogrammersthe use
of standardized, welapproved and widely used libraries shb# considered.Suitable parsing
algorithms shall be developetbr both server and clierapplications

The usershall be abldéo connect to a desired node by addressing its assigReaddressnd port
number. For this projectsimultaneousconnection toFlexRayodes shallbe limited to one node

at a time. Once a TCP/IP connection betweeretRC client and the FlexRay server node is
established, the user shall be able to perform the three fundarakrgrocessesg initial
configuration control and monitoring of the message buffers of a FlexRay node.

The limited memory resource on the FlexRayd@ (e.g. buffer of TCP/IP stack and FlexRay
input/output buffers) as wells as the limited processing speed for parsing and access(toable

up) FlexRay modulshall be taken into account when designing the application algorithdns
appropriate TCP/IBtack, specially designed for resource limited embedded systsmateady set

3 Due to the lack of a FlexRay module for té&eroZed board, the register space is mimickse Section 3.4

38

by the general project requirementsiowever, itshall be investigated whether it is supported by
the MicroZed board, which is thexampleFlexRaynode for this project The ajlication design
shallbe aimed toensureno buffer overflowsand correct execution of therequestedproceses
andshallgive statufeedbacks for succesiilure, warnings and so on

Requestingnode status andnessage buffers content the essence of th monitoring process.
That involvesheavy data traffibetweenthe server andhe client. Therefore, theimplementation

of the software algorithms shall be targeted towards the speed of data processi@gce
requested, the monitoring process shall be mained until further user request or connection
loss.The requestedrlexRaynessage buffecontentshall be displayed ia GUltext field(s) As this
information is of high interest for the usethe software should offer the opportunity to save this
data a a text log file. Optionally, other status related information should be displayed for user
reference.

As a part of the control process, the user shall be able to send CHI comnfadds
Communication Controllgrand retrieve current node states. Additionally,requesing a read or
write access to a selected node registdnall also be supportedror this purpose, all node
registers shall be presented in a list.

As the current project is intended to be continued in the futugeod programming practices shall
be followed. The code shall bestructured in functional blocksso that it should be possible to
update each block independently on the others order to ease the process of readimgethod
and variable names should be sd#scribing and accompanied by comments.

3.4 Evaluation

Forproperevaluation of thesoftwarefeatures at least two microcontrollergrepresenting FlexRay
server nodeshaving Ethernet and FlexRay modules insth#ihall be available. For each distinct
microcontroller the FlexRay registemddressmacro shall be present. The P@ient shall have
Telnet enabled anda¥a version 1.7 at.8 installed For installing and running the server code, the
Vivado 2014.4 IDE, including Software Development Kit (®blK¥hall be installed and theoard
definition files for the MicroZed board shall be includfed\n Ethernet switch and Cat6 Ethernet
cables shall be used for the connection between the PC client and the FlexRay server nodes.

For this project there i®nly one MicroZed board available and no FlexRay modoleFlexRay
regiser-addres header file are presentherefore, theevaluation of the projecshallbe based on
investigation ofthe correctcommunication between the PC client and the server ndtke sever
register space shall be mimicked by a global aohg2-bit integer values andhe client R/W
access request shall be performed on that array.

4 The board definition files for the MicroZed board for Vivado IDE can be downloaded 88T he installation
procedure is descrd inInstall Avnet Board Definition Files in Vivado 2014.2 vpdEfile included in the download
package.

39

In most cases the evaluation of the correct operation of the developed software applicatidn shal
be performed manually by the useHaving the available information from the configuration JSON
data objects Which design isstill to be established), the user shall predict the outcome and
compare it to the result of the application algorithm for a given use cdswt includes the
following use cases:

1 Parsingand composin@f JSONlata objects by both client and servapplications

1 Compositionand decompositiorof register valuedased onthe available informationg
FlexRay parametéstatus values, bit ranges anoffsets

1 Encoding/decoding of transmitéceive FlexRay messages

T RWacces§ 2 (GKS 3Ff20lf WNBIAAGSNI aLI OSQ | NNJI &

The evaluation of theTCP/IPcommunication shall be imstigated with the help D suitable

software (e.g. WirBhark). That includes investigaii of the sizes of th A ONR2 O2 y (i NB f f SN
message buffer and the transmitted JSON objdéts.that purposehe implementation ofa small

test local server application shall ®nsideredto mimic a second FlexRay node and provide
additional testingopportunities.

40

4, Concept

This chapter describebe options that weretaken into accounin attempt to find the solutions
that best correspond tehe project requirements established @hapter 3 Requirements Analysis.
That includes a detailedliscusion over the considered approaches, theadvantages and
disadvantages.

4.1 ConfigurationData Objects

According to the general requirementbea format of the configuratiordata objectsis JSONA
JSON structureonsists of objects which bodiese defined by braceg27]. Thefirst open brace
and its corresponding closing bradeterminethe root JSON objecfThe root object represents
the parent objectof all nested JSON objects, referredcisld objects The internal JSONbject
structureis based on keyalue pairsreferred asokens which areseparated by comma. The key
must be a unique in the scope of its parent object strindpile the value can be one of the
following formats: string, nutmer, boolean, null, array or another object.

The determined requirementsregarding the internal JSON structure of thenfiguration data
object aim to ease the process ahaintaining that object by humansyhile in the same timea
significant amount oheterogeneous datdo be contained thereHence a compromisebetween
complexity ofthe 2 6 2 Snfein& ASON structurand ease ofprocessingt needs to benade

4.1.1Hles Content

The first subject of discussion is whether all the data to be presenhéfile or to be spread
across multiple filesFlexRayparameters are divided into two groupstuster specificand node
specifi¢>. Cluster specific are those parameters ti@ve the same value in all nodes belonging to
that cluster. They are also refed as global parametergsn example for global parameters are
the number of macroticks in a communication cycle, duration of a static slot, duration of a minislot,
header CRC, etc23 FlexRayProtocol). Node specific parameterare local for the node and
can have different values in each node.g. number of samples per microtick, number of
microticks per macrotick, connected channel, etByth groups are part of the FlexRay protocol
specification.Register names and their cesponding addresses amevice specific i.e. they
depend on the devicarchitecturebut not on the FlexRayrotocol. Separating the configuration
data irto three distinguishablegroupsgrants the opportunity to implement a more appropriate
structure of the JSON configuration file.

First, let us consider having all cluster configuration information inrone JSON object (Example
5-1). The global cluster dateas well asthe local and device specific data for each nodee
enclosed in a separatehild JSO object. The advantage is that there is only one file in the system
for each cluster that is shared between thedes, belonging to that cluster, and the amount of
redundant information is small. Howevehe overallsize ofdata in this fileis bigand requires a

15 For more information about the different types of FlexRayapaeters and variables refer to TablelAn Appendix
A.

41

complex internal structure of eachode JSON objectThis increases the complexity of parsing
algorithms and decreases the readabiltyd possibility of data reuse. On the other hand, having
all data in a single file is disadvantageous in teaisecurity¢ damaging one file leads to loss of

big amount of information.

"Cluster™ {
}:
"MNode 1" {

.

"Node 2" {

L
-

Example 5L. ExampledSOMtructure of configuration file

Another consideration is to have a separate configuration file for each fBgdemple £). The
advantage is thatthe amount of data in each file is significantly reduced, which improves
readability and the possibility of data reusehe process of parsing the JSON data is also improved
as only theneededfile is loaded to the application memoryowever,the bottlenecls of the
parser algorithm desigeome from the internal structure of the node JSON objebige to the
heterogeneous type of data containetthere (protocol and device specificits internal JSON
structure remains complex whiclloes not bring much of impr@ment in the design of the
parsing algorithmcompared with the previous cas@n the other hand, redundant information is
present as theJSONluster object is the same in eacltonfiguration filerelated to that cluster.
From that follows that changing aingle cluster parameter value requires update of every
configurationfile referring to a node of that cluster.

{ {
"Cluster": { "Cluster" { "Cluster" {
. . J.
"Node 1" { "Node 2" { "Node 3" {

. . :
b b b

Example 2. Example JSON structure of configuration files

42

A third consideration is to separate the configuration diaeach noden three JSONiles, based

on the three parameter groups that were distinguished cluster, node anddevice specific
(Example 8). One file contains only cluster (global) parameters and is shared between all nodes
belonging to the same cluster. For each node ¢hex one file, containing local parameteasd

status variables and another file containing the device specific informafioa.disadvantage with

this approach is that the overatumber of files per cluster is increased. However, the separation
of data egarding different FlexRay protocol and hardware aspects significantly decreases the
complexity of the inner JSON structure and amount of data in each file. That leads to simplification
of the parser algorithms and increases the ability of data reuse @mdriaintenanceThere is
minimum amount of redundant data andaeh file can be modified by the programmer
independently on the other§ and be reused for another FlexRagplication

"Cluster": {
}
1
(
"Mode 1" { "Mode 2" { ! "Mode N" {
} } |l
I I | I
"Device 1" { "Device 2" { : "Device N"- {
y) |
1 1 b

Example 83. Example JSON structure of configuration files

'8 1n fact there are certaidependencies, for example when a new node is added to a cluster its ID has to be added in
the Cluster file or in cases where a certain node parameter value is directly related to a cluster parameter value or vice
versa, e.ggdBit = cSamplesPerBit * gdSampleClockPeriod [us] (for details see [10] (Appendix A and B))

43

In Tables-1 are summarizedhe advantagesanddisadvantagesf each of the discussed cases:

o | Number of

@ | configurati

O | onJSON

files

1 Only one file to work with 1 Big amount of data concentratec
1 Less number of files in system in one file

1 1 file per 9 Small amount of redundant da 1 Complex file structure

cluster 1 Complex parser algorithm
1 Hard to read/modify by human
1 Low possibility of reuse
Compared to Case 1 Compared to Case 1

1 Less amount of data per file 1 More number of files in system
1 Less data loaded in application 1 Internal JSON object structure

5| 1 file per memory complexity remains

node i Fasterexecution of parsing 1 Parser algorithm complexity
process remains
1 Better readability 9 Data redundancy
1 Increased possibility of data reus| § Hard to updte
Compared taCase 1 anfase 2 Compared to Case 1 and Case 2
1 Less amount of data per file 1 Increased omber of files inthe
. 9 Betterinternal JSONtructure system
3 files per . .

3 node 1 Simplerparser algorithm
1 Small amount ofedundant data
i Easier to read/update/modify
1 Reusability

Table 51. Number of configuration JSON filegdvantages and disadvantages

After summing up the advantages and disadvantages for each of the three cases, shiaintein
5-1, it isclearthat Case 3esponds best to the project requirements established in Chapter

4.1.2 Files Sructure

The previous sectionvas engageavith the conceptual decision of separating the dateguired

for the configuration, control and monitoring processes, across thiles.fThe currentsection is
related to thedifferent approaches and decisions that were considered regarding the internal
JSON structure of each of these fildhat includes discussion on the structural regulations and
constraints that has to be takentmaccountwhen creating the files.

The fact that JSON format supports nesting of JSON olpiEgtgives more options when defining

a suitable internal structure for each fjlas a response tohe set project requirements. good
internal JSON structure is expressed in a well defined hierarchical structure, depending on the
level of relation of data to different protocol or hardware aspecike three data categories
specifiedq cluster, node andlevice specifi¢4.1.1 Hles) ¢ determine the content of each of the
three files referredin generalasCluster Node and Devicefiles.

44

As next, the structural definition of each of these files is discussed. That includedayd¢owiew
of the constituentJSON objects and discussion on some structural constraints. For more detailed
examples of the Cluster, Node and Device JSON files cefggendix B

Cluster file

The globaFlexRay parametersan be subdivided into two gups¢ system constantand cluster
configurationparameters([10] Appendix A and B)lhe system constants refer to thogdexRay

protocol relatedparameters that must have the same value in every elust a FlexRay system.
blYSa 2F CtSEwl & 02y a i foyfll dist ai prefirédieferstd Takle i iKS WO
Appendix A Gobal cluster parametégr N3 A RSY G A FTASR ovaluedirdust bdlJINB T
identical in the scope of the dter. The feature of the FlexRay data to be subdivided into more
specific groups allows us to introduce a hierarchical structure that better corresponds to the
project requirements. It is implemented in separating the data into-380N objects (child
objects), which naming relates to the data they contéiixample 5).

Apart from FlexRay related data, some additional information

{ "general: { intended for the user and the operation of thgarsingapplication
::::?rl*;tgi:ol"z — is embedded inside each file. It is referred general nformation
"node_ids: [1,....n]. YR GKS W{hb 2062S0(¢KSN{Exahple A a

}'ﬁonstants“' : 5-4). Thestructure of thed 3 Sy S NJ Y ig each ofgh&tdek file
"name™ value. types is identical but its content differs. An example for such type of
data, contained in Cluster files ithe cluster 1B (assigned by the
iharameters“:{ user for differentiation), a list of node IDs part of that cluster
"name”: value, (discussed later) and name of the communication protocol (based
} on the requirement for future integration of other than FlexRay
} protocols).

Example 54. Quster file structure

An advantagef grouping the datas thatat the end it is presentedimplyas chunks of keyalue
pairs which significantlysimplifies the parser algorithmrlhe key of each JSON obje¢bken
representsa hame which can be definedccording to the FlexRay protocol specification v2.1
notation [10] or by the programmer When the token name is defined or modified by the
programmer it has to be accordingly updated in theftware appication. The JSON format
guarantees no order of tokerj27] so their order in the Cluster JSON file is not relevant.

One of the set requirements regarding the structure and contents of JSON dpetois the
hexadecimal representation of constant/parameter/variable valuks.information engineering
the hexadecimal format is preferred as it contains information for the position and value of each

n the text the naming of JSON objects is based on the namelofiénd’ that corresponds to the object value.

18 Each of the three file pes is assigned an ID used for file differentiation. It is assigned by the programmer and is used
by the application to link the three files corresponding to a node. The IDs shall be unique so that for every node there is
only onepossiblecombination of ifes.

45

bit. Therefore, hexadecimal format is supported ttne application.However, as JSOhbtation

does not support hexadecimal numbers, the value must be presented as a string, i.e. surrounded
by quotesP C2 NJ dza Sdediral repraserfafioNds also allowed by the parser algorithm.
Therefore, the user isrdée to choose the number format representation of constant/parameter
values.

Node file

The FlexRagrotocol data that may differ in each node of a cluster is stored in the Node JSON file.
Unlikethe Cluster filewhere the data is separated accordingtorelation to the FlexRay protocol,

in the Node filedata is structured, depending othe purpose andrelation of datato different
register sections (Example3). The reason is the better relation to the Device file, where data is
organized accordingtregister groupingsee next section)

{ Ly GKS &3aISySNIrfé¢ W hb 206250
"general”: { information about the nodeThat includes an ID that is used
"™ 3, for differentiation of the Node files. It is assigned by the
"IP™ "192.168.0.10",
"device_id- 123 programmer who decides whether it shall beique in the
2 scope of the current cluster or in the whole FlexRggtem
"control™: { . . : .
"cc_control™ (if more than one cluster is presengvery node is assigned
“mb_control": {} an IP address that is unique in the scope of the FlexRay
atus ¢ ySGs2Nl ® ¢KS flad G218y ID2F 0F
"cc_status": {}, assiged tothe corresponding Device file (discussed later).
"mb_status": {}
}_ X -~ y — A 1 S
"message_buffers™ { Thea O2y UNRt €« W{ hb pa2 ofedhe GlexRak 2 { R a
"first_mb_number": 1, protocol datg whichis related to the configuration of the
"second_mb_number: 3. control registers for the Communication Controller (CC)
y (2.3.1 Communication Controller) and message buffers in
"command": { .< A x 1L A . A -y A
vcommand 1 value. mgssage RANR.3.3ERay). L Y .u KS alFyYS asyass:
"command 2" value. object relates to the status variables for the CC and the

message RAM buffers. Eyemessage buffer is configured
E'Dck..: [first value, _n'h value] via the Input I%uffevr. The configlvjrz%tion'datai for eacrl buffer)
1 Ada LIXFOSR AYyaARS UKS a4aySaal 3sy
Example 5. Node file structure

The italics notation of token keys means that in the file those keys arelasgd with an
appropriatenaming®® Ly (i K Xist_n® Indndef iS X S Y 100 & cxegordImb inéntbér

GmMé YR a2 2yo a G21Sy 1Seéa Ydza quoteSFlexRaWNA y 3 2
commandgarelLJt OSR AYyAaARS (KS ThOdAmmandyianes aw{starilardfar 2 S O i
the FlexRay protocol but thetorresponding vimes might diffeamongthe variety ofnodetypes.

¥ This is valid for all following examples from this section.

46

The last JSOteéken of the Node filedoes not have a JSON object as a corresponding value but an
array containingthe valuesrequiredfor unlocking the registers after the configuration process has
finished ([11] p. 24). These valuesare placed in an arrafor the reason thattheir order must
matcha definedsequence ofvrite accesseto the Lock register

¢KS &0GNHz2OGdzNBE 2F (GKS aO2yiNRté¢ YR avySaal 3aSuy
object, is based on keyalue tokens. The key is the name of a FlexRay parameter/command and

its corresponding value can begsented as a hexadecimal string or decimal integelike them

GKS aGadl dzaé OK sttuBuretifierbntly 2Thee &ldes &f statdsBrariables are
represented as JSON objects, containing the possible status conditions related to that variable
(Listing4.1). As the value determines the status, the K&y} f dzS LJ- A NJ A &a &0l [aiSdRa é2
notation, whereregardless whether the value is representechexadecimabr decimal format, it

must be surrounded by quotes as it corresponds to the kehetoken.

ayowadidl ddzaéy 9
"vSS!ValidFrameA": {
"0x00": "No valid frame received on channel A",
"1": "Valid frame received on channel A"

12
X

}

Listing4.1. JSON structure of a status variable object

Device file

The purpose of the Device file is toopide a link between the FlexRay protocol data, contained in
the Cluster and Node filegnd the hardware dependant registespace In response to the
requirement that most of the algorithm log&hall bedone on the richer in resources PC client, the
Devce file has to provide all the information needed by the application for composing data objects
that contain minimum amount of overhead and aie W NBio-Bz8 S Q FléxRaiskrser
application form ¢till to be determinedl. That includes:

1 Registeraddress map
1 Position of each FlexRay parameter/variable inside the register
1 Sequenceof register access

They 2 RS Qa Y S Yspaikvaraispdcifiaid the link between the register names and their
corresponding addressd®s to be included in the Device file. However, thep already exists in

one of the device header files. Therefore, this information is automatically extracted by the
application.This increases the algorithm complexity bhoé only additional data that is included in
the Device file is the name of that header file.

47

The position of each FlexRay parameter/variable inside its corresponding register is defined via

{

}

}

}

}

"general™ {
"id" 123,
"name": "MicroZed",
"type: "ZYNC",
"wersion": "XC7Z020"
"neader™ "header_file h"
control™ {
"cc_control™ {,
"mb_control": {}
status™ |

"cc_status™ [},
"mb_status™ }

}
"input_buffer”: {

"neader™ {,
"command_mask"™ {},
"command_request” [
"busy_control": {}
"data™ ["register?”, "registeri']

}:
"output_buffer™ {

"neader™ [,
"command_mask"™ {},
"command_request” [
"busy_control": £},
"data™ ["register?”, "registeri']

"command": {},
"state": [},
"lock": {3,
"new _data". ["registert”,...."registeri"],
"mb_status_changed: ["registert"”,..

registerid']

Example 5. Device file structure

specifying the allowed for that
parameter/variable bit range anthe offset
of the base register address.

As JSON format represents an unordered
set of tokens it does not guarantee any
sequential order. Therefore, for defining a
certain order of sequential register
accesses two approaches are considered.
The first approae is to add indexingnside
the JSON objects. The disadvantage is that
this adds an additional payload and
complexity in the parser algorithm and the
designing of the Device file as changing one
index is followed by changes in the
subsequent indexes, too.The second
approach is to use a notation that
guarantees sequential order. In JSON
format the only element thatguarantees
order is the array. Thisddsonly a minor
amount ofadditionalpayload (two brackets)
but the main advantage is thaditing the
array does not affect the rest of its
elements This array notation isrequired
only for JSON objectglated to more than
one register.

Theregistersin the Device filare grouped according to therelation to differentHexRayprotocol

aspects(Example %). ¢ K S

2yt 8

SEOSLIiAz2ya A& ola o0& GKS

object, which holds the device specific informatiand the name of the header file that defines
the macros for the register addressof the FlekRay moduleThe purpose of thassigned by the
programmer ID is for file differentiation and provides a link to the corresponding Nodel8)e (
For a full view of an example Device file, refeAppendix B.

Those JSON objects that are related to only one register have the notation shown in Listing 4.2.

¢CKFG A&a GKS Ol as
G Ay Lddzd ¢ o dzF F S NE

oobjectt Y B

ORegistee Y JY

}

by R

GAOGKY aO2YYlIYyRéEZT aqaadlaSés
G 2 dzi-@)Jddzi o dzZF FSNE 2062S00Ga 09

Listing 4.2. JSON structure of an object related to one register

48

JSON objectsontaining more than one registeshall follow an array signature that implements
the sequential registeaccessorder. That array holdgshe JSON objecterdered in their desired
order of access (Listing4).

object": [{
"Registerl": {}
}1

{
"Register2": {}

12
X

{
"RegistelN": {}

1
Listing4.4. Arraystructure ofa JSON object related to multiple registers

This array notation is valid only for JSON objeltsontaining more than one register object
(Example 5):

T a00yPO2yiGNRfté YR aYoupO2yiNRfé 262S00a LI NI
T a@@dlddzaé FyR aYoypadaladzag 202S806Ga LINI 27
f GKSI RSNET 202\510dz0 ¢ 6 dzF T SNE 2168 Odi & dei LIdzi ¢ o dzF FS

The relation between the register and all parameters/variables that are part of that register,
together with their bit range and offégis hierarchically structured as shown in Listing 4.3. The
register name is a parent object of its related parameters. The order of parameters inside that
object has no relevance but in their corresponding array values the bit range comes first and then
GKS 2FFaSio ¢KS 2yte | OOSLINISR ydzYoSNJ F2N¥YI O 7

ORegistet Y O
Ooparameter £ Yangg offsef],
oparameter 3 Yangg offset],
dparameter £ Yangg offsef],
X

}
Listing 4.3. JSON structure of a register obje

¢ KS a&raytholds the data registersfor the Input and Output Buffer$2.3.3 E-Ray). The
Gy S ¢ Y Riray teférs to the registers dedicated to inform the Ho&3(1 Communication
Controlle) that new data is available for processing. Th¥ 6 @ & 0 I (dzGaetKak thieR R £
a change in the message buffer status.

2 As the value, corresponding to the key is an array but not an object, it is not fully correct to call them objects.
Nevertheless, for consistency they are still referred as JSON obgeitts array notation is added as a response to a
project requirement.

49

All FlexRay parameters and variables that are present in the Cluster and Node files l&hould
matched to theircorresponding registens the Devicefile. Their naming must be the santaking

into account case sensitivity. There are some variables, however, that are presenOe\tioefile

but do not exist in the other two files. The reason is that these végllo not have any
predefined status condition related to them but the valueeifsis of interest for the useg for
example time duration, slot counter, cycle counter, ditDevicefile, these variable names are
preceded by an asteriske.g. "*vRemainngColdstartAttempts). This notation isused by the
applicationalgorithm to distinguish between the different type of variables, as welloasuser
referencewhen maintaining the fileln cases where the variable name has no relevance for the
applicatin, its name can beustom orjust an asteriskised as a placeholdér ¢ f € 0 ®

4.2 CommunicationData Objects

Communication data objects are used for transmitting data between the PC client and the
participants in the FlexRay networKkccording to the genergiroject requirements, thig design

shall be based on the JSON format notatiBri General Requirements). Theyare composed by
both client and serveapplicatiors during runtimeand depending on theeommunication direction

with respect to the request invoker (clierdye differentiatedrequest(transmit) data objectsand
response(receive)data objects The request data objects can be further differentiatectording

to the requested by the client register accdsswrite requestobjectsandread requestobjects

In the current chapter are discussed the different approaches consigdesgdrding the structure
and contents of the R/W request and response data objects in attempt to maximally fulfil the set
project requirements.

Oneof the establishedequiremens, regarding the structure and contents of the communication

data objectsaimsto maintain higher communication spegdby providing the data with minimum

amount of overheadThatimplies that theJSONlata objects shall contain only relevant for the
desired register access datawhere to read/write (register address) anghat to write (register

value) (Listing45)® ! & GKS NBIFIR NBIljdzSad 202SO00actull2z y2i
constraints arepresentedonly according to the write request object®nce asuitablestructural

standard that best responds to the project requirements defined for the write request objects,

a discussion on thdesign of theread request andesponse data objects will be made.

{
daddressle Yvalgelé X~
caddres2¢ vEluegE X~
X

}

Listing4.5 JSONwvrite requestobject containing only addresslue pairs

All the information neededrom the client applicatia to compo% the shownin Listing 4.5equest
JSON objeds contained in theCluster, Node and Device filgg1.1 Gonfiguration Data Objects).
The register address is defined by the macros in the register headewfiile the register vdue is

50

automatically calculated by the client applicatidoy superposing all related to that register
parameter values on their defingabsitions inside the register

The exposed approachegarding tle design of the communication data objecfkisting4.5),

tempts to have a minimum amount of overhead. There is, however, an issue with this approach
According to one of the project requirements, amajor scripting and decision taking procedures
shallbe avoidedon the FlexRay server applicatiofherefore, the client shall pass the data to the

& SN S NJ Aotdza S Q¥ MaighNRMEhis ccase it does) and in the desired sequential access
order. And here comes the problegithis JSON structurdoes notguarantee that the tokens will

0SS SEGNIOGSR Ay (GKS alYS 2NRSNJoeé (GKS NBOSAQS

In order to design dSONMtructurethat guarantees order, a similar to the construction of some of
the Device file JSON objedapproach is takenAn array structure is embedded inside the root
JSON object (Listing.6). Each of the tokens is satmded by braces and representm
independent JSON obje¢as arrays cannot hold JSON tokens as valdek S WihS éox 2 F
token can be any custom defined name (in Lisdng A & dseréed as ia lhcéholdeFhat
approach adds some additional overhead uarantees that the JSON tokens will be extracted in
their sequential array order.

{
GF €Y@
SaddressléY ¢ A¢ Y HzS
{éaddres2¢ Y 2P f dzS
X
]
}

Listing4.6 JSON write request objeatith embedded array structure

Whenimplementing the parsing algorithm for the server application with the help of an external
JSON librar (discussed ifection 5.2), some disadvantages regarding this structure were realized.
¢KS YIFIAY RAAFRGIYy(dFr3asS A& GKIFIG GNY @SNBAY3I GKS
easier to implement. Inthisc§s (1 K2aS WwW{SeaQ INB | RRNKSaasSa Iy
Therefore, the final version of the structure of a communicatiB®ONdata object is the one

shown in Listing 4. Addresses and their corresponding values are placed at the same index in the
two arrays, orderechccordingtai KSANJ RSaAANBR | 00Saa adHdS yrGRy W
6aidlyR FT2N W RRNBaatBti&ey choseiRandvard knalz® ByCboth client and
server applicationsThis way the wmentioned disadvantage is meoved

{
@ €Y wl RRNBaam®» I KBRNBaanw I RRNB3aa
G+xEé€Y 0@l f dzSwm= X8 f dzSH X @I £ dzS
}
Listing 4.7 Final structure ofrite requestJSON data object

51

The established JSON structure for thiete request data objectsan be easily integratedtthe

read requestata objects The difference is in the conten&s ¥ (1 KS W f deSFa B KISNNil+
contains valueg write those values to the addresséem thed | ¢ [(whiNdeghiesttf AT (KS
array is empty fill it with the values readrbm the addresseffom theda ! ¢ [rdddNdegiiest)
Therefore, theresponsedata object will have the same structure as the&rite request object
(Listing4.8).

Readrequest JSON object Write requestResponselSON object

{ {
G! ¢ Yol RRNB & anmess3],l RRNE 3 &H 2 YIORRRNBaamsE F RRNBa
axtéYwo a + &aluel, value2, valug3

Listing4.8 JSON structure of R/Yé¢questand response databjects

If an error has occurred during the process of parsing/composing the request/response JSON
object, an error objectis returned (Listing 9). It has the agreed JSON struetdrut no values in
either array

9 a! €EYwBZEXEYwWBY
Listing 49 Error JSON object contains no values in its arrays

After a JSON structure for the communication data objects is eshkedulj the next step is to

discuss the representation format of the register addresses and vafiseedefined by the project
requirements, the number format representation is hexadecimal. In this case both addresses and
GKS @Ffdz2Sa NBE NBIINBHSYWSHRbD | B2 NWd liINARASE y 2
representation of number$27]. The software application takes care for the correct parsing and
composing of the hexadecimal strings.

Configurationdata may be too big for the receive buffer if sent in one JSON object. That
contradicts with the requirement that the algorithm implementation shall ensure no receiver
buffer overflows during transmission. On the other hand, in some cases time delaysdretw
consecutive write accesses during configuration are required. Therefonegaestresponse
communication designs considered. Instead of sending the configuration data over to the node
in one go, the client composes and transmits a JSON object nomgaone register address and
one register value and waits for a response from the server before sending the next data object.
This procedure is repeated in the background without further user interaction until all
configuration data is sent. This methattreases the overall configuration time but due to the fast
Ethernet speed of 1 Ghbit/s it is barely noticeable. However, the advantages are that relatively
small JSON objects are transmitted over the network that guarantees no buffer overflows, and
time ddays between consecutive write accesses are provided.

52

4.3 SoftwareDesign

In this sectionare discussedhe conceptualdecisions that were taken, regarding the design of a
software application that best responds to the set project requirements. Thatvasaliscussion

onthe FSIF GdzZNBa |yR GKS 2dzit221 27F | WagetSadith NA Sy |
the programmingdesignpractices that are implementeih the client and server application.

4.3.1 GaphicalUser Interface

According to theestablishedproject requirements regarding the design of a graphical user
interface (GU), it shall provide the user with control functionalitieand be a helping toolfor
performing the following services:

Providethe configuration data contained in theonfig filesto the application
Connect to a particular nodeithout hardware interventions

Perform initial node configuration

Control they 2 R Sofd@unicationController by sending-lexRagommands
Monitor nodeQ @essage buffers

Display message buffeontents andsave it to file

= =4 =4 4 A A

The firstconsideredoption is to create a simple GUI based on a command prompt design. The user
enters text commands that are translated into computer commands and execurtethe
background by the client application. The adtzge with thisapproach ighat it requires less time
invested in the implementation of the GUI, as it contains only a few components, most important
of which are: one text field for command input, one button to send the command to node and
another text feld for displaying the received conteiowever,although being so simpia design,

it requires deeper knowledge of the FlexRay protocol as the user has to know the purpose and
syntax of every FlexRay command. Also, besides the standard FlexRay comimanaisproach
requires the implementation of some custom user defined commands for the different use cases,
like: connecting to a node, loading configuration data, save data to file and domsidering the
variety of use cases, the amount and comptgxof these commands may aris€herefore this
approachcontradicts with theprojectrequirement that this software shatiffer a platform that is

easy and simple to work witmot targeted only toa qualified audienceAnother inconsistency

with the progect requirements is that accepting user input is usually accompanied by validating
algorithms that adds aadditional load over the complexity of the parsing algorithm design.

The second option is the front end of the useterface to be based on a uséiendly button
controlled design thaenablesthe user to performcomplex operations with a simple button click.
That adds complexity in th@UI design but eases the operation of the software and hence enables
a wider range of users to work with, #vhichcorresponds better to the project requirementi
addition to that, the possibilities of usesontrol input are limited to selections of preoded
command definitions (Lists, checkboxes, buttons), which reduces the needs for implementation of
input validaion algorithms.That is the chosen for this projeGUldesign.

53

4.3.2 Operation Control Flow

Operation control flow represents a defined pathway for sequential execution of individual
requests, instructions, statements and so ¢29]. All three fundamental, for this project,
processes ofinitial configuration of the FlexRay registers of a nodegntrol 2 ¥ (G KS y 2R
Communication Controller (CC) andonitoring of the FlexRay message buffer®llow a
predefined control flowAccording to the project requirements and the established design of the

GUI (discussed in the previous section), each of these processes shall be executed in the
baclground after user initiation Therefore, their control flow siiabe embedded in the code by

the programmer or bguided by the user via button clicks, selections and so on.

The possibility of implementing some scripting procedimethe FlexRay server application
algorithm, determining the flow of actions, contradicwvith the established project requirements
for maintaining the resource power of the PC cliefiherefore, the client is the one to determine
the control flow of all three processes.

Configuration and Control processes

Configuration is a process that limlvs a certain control flow that shall be accompanied by time
delays between consequent register write accesgad. In general, for any FlexRay node, the
overallconfigurationprocesscan be divied inthree steps

1. Preconfiguration procesg 6 NA Y I3Ay 3 (1 KS @R St@aand/cléaring thél 2 K
message RAMs

2. Configuration process consequential execution of write accesses to the FlexRay registers

3. Postconfiguration process execution ofprocedure for unlocking the FlexRay registers for
accessand transition toreadystate.

Sep 1is part of the overall control process,
GKAOK Aa SELINBaaSR Ay 02
via FlexRay CHcommands.In general here

are two possible routes toake in order to get
the node into theconfigstate without the need

of a hard reset. The first route is viaadystate

and the second route is viaalt and default
configstates (Figt.1). Step 2 represerstwriting
generated by the application or definday the
user values to the respective register addresses,
based on the data provided in the node
configuration files. Step 3 is based on
sequential write accesses to a dedicated lock
register and transition toeadystate.

Dther states

Fig4.1 Possible transition routes toonfigstate

2L Controller Host Interface2(3.1 Communication Controllgr

54

There are two options considered, regarding thmeplementation of the control flow in the
software operation.The first option is tayrantthe control flow in the hands of the uséFig4.2
(a)) For that purposehe GUI provides possibility for the userrequest write access toegisters
and control the CC bgendng FlexRayCHIcommandsand acquiingthe current CC state. This way
it is the user who decides which route (Big) to takeand access to which regger to request next
The other option is the control flow to be embedded in the client application algorithig4.2
(b)). That increases the required implementation tiraad complexitybut eases the operation
process.As both approaches have their adwages and complement each otherboth are
implemented in the software.

- Command
COMFIG - Send
rState

State COMNFIG

r Reqgisters

|5UCC1 - | D30 Startup Configuration

OX[4b7e76f3 | D 1266579187 | Preconfigure | | Configure | | unlock |
(a) (b)

Fig4.2 Configuration control flow (a) in the hands of the user; (b) embedded in the code

Monitoring process

The monitoring process expressed in aagring datafrom particular message buffergor which
GKSNBE A& | WySg RIFEGFEQ Ffl3 NFrAaSR AyY[11i kSt RSR
can be predicted neither by the user, nby the programmer when new data is received by the
FlexRay node, the only option considereégardingthe implementation of the monitoring
process,s the control flowto be embedded in the application cod®nce a connection between

the PC client and thElexRay node is establishebetcontrol ofprocessnitiation and abortion as

well as saving of data to files, is provided by the user, while the flow of instructions for acquiring
message buffer data is accomplished due to the procedure describétbshReadAccessvia

Output Buffer

55

4.3.3 ProgrammingModel

According to the project requirements, due tbe lack of a real FlexRay systdins projectis
intended to be extendedand finalizedin the future by soreone else. Therefore, good
programming techniques aneequired in order to ease the process of reading amilerstanding

the code In this section are discussed the different approaches considered, regarding the
structure and implementation of the clie@nd server applications.

For the client application the ModéViewController (MVC) design pattern is usig@f]. MVC is a
software engineering pattern where the user interactions are strictly sepdrfteam the algorithm
logic. The View is aaic component, typically a Gltat acceptsuser commands angasses
them tothe Controller. The Controller requests dataandfrom the Model andupdatesthe View.
Here is where the algorithm logand decisia takingis done. The Modetxecutesthe Controller
requests and providedata that could be read from a file, result of calculatiomseasurements
enumerationand so on.

Fig4.3. Model-View-Controller design pattern

Froma programming point of view, separating the program code into three interconnected parts
givesa structure that increases thecode readability and results in easier modifications of each
part without affecting the other two. Each part is independent a&hdrefore can be reused in
other applications.

One of the reasons for choosing JS@dtheestablished datdormat for communication between
the PC client and the FlexRay network participaisthat ithasa wide support ofested and open
sourced libraries in various programming languageBeferring to an external library that is
approved and tested by otherrpgrammers, saves us tines itdecreases thecomplexityin the

developmentof the algorithmdor processing the JSON data objects

56

There are various JSON libraries written in Java language that have proven abilities in processing
JSON data and can be freely used. Some of the most popular among the programmers and hence
considered as possible candidatare: JSON.simple, GSON, Jackson and JSONFPach of these
libraries has some advantages over the others in different use casesmritbnments The
criterion, for choming the bestfor the client application JSON library, lies in the project
requirements. For our project the chosen library is expected to be able to process JSON data of
different sizes equally good in terms of speed and convenientee size of thdSONlata objects

may vary from just a few bytes to tens and hundreds of kilobyfes the configuration files)
Comparing the four candidate libraries shows tA8ION.simpleerforms equally welldr different

sizes of JSON daf3dl]. Besides that it is lightweight, flexible and has no dependencies on other
external librarieg32]. That makes JSON.simple the most apprdpraption for our project.

In addition to thecriterions for selecting the most appropriate JSON library, set for the client
application, for the server application an importargquirementis the lightweight. Here the

choiceis eased by the fact thatucha research waalreadymadein a previous project assignment

[26]. It has shown thathe library thatcorrespondsbestto the project requirementsh & (G KS W2 &
(proy 2dzy OSR fA1S W2l aAaYAYSQ0 fAONINEO®

The jsmn library[33] is written in C languageby Serge Zaitseand is specially designed for
resource limited embedded system environments. It is highly portable as it involves no external
non standard Qibraries It uses no memory allocation and contains no token data but holds only
the token boundaries and the number of child objects for each JSON object, which allows
traversing to the token of interest. It is designed to work even with eeaus data which makes is
robust against data losses that can occur during the transmission.

57

5. Implementation

The implementation of a software application refers to the realization of the software
requirements on a programming level and detailed disussionmight include the necessity of a
deeper knowledge of the programming language usEus will significantly overload the section
GAGK AYTF2NXIGA2Y GKIFG A& 0 NBf Ehergfd, iythigichaptér | £ €
are discussednore general overviews of the overall code structure and design of both client and
server applications and the sequential flow of some of the most fundamental for this project use
cases ¢ establishing a TCP/IP connection between the PC client and the alflesé#ver,
configuration of the FlexRay noda@and monitoring of its message buffers. For more details
regarding the implemented procedures and functipmsfer to the comments provided in the
programming code.

5.1 dient Application

Following the concept decision that is maderegarding the implementation of the client
application,the structure and relation of Java classssaccording to theModelViewController
(MVC) design pattern and is visualized in Fig 5.1.

Config Files
Controller

E ' Device

i Files Manager
GuI

i Parser

Controller

File Directories

Composer

Controller Composer

Connect

Controller TCP Connect

Fig5.1. Clas diagram for the client application, based on the MVC model

The Controllerpart of the MVC modeplays the role of a mediator between the user interactions
and theservicesexecuted in the backgroundts code and complexity arises having in mind the
compex nature of the project. Therefore, th€ontroller functionalities are separatedamong
multiple controllerclasss. Each of these sutontrollers manages a certain part of tidodel
under the guidance of a mairo@troller class Inside the main Controlteclassthere are two inner

58

classes; Input Buffer and Output Buffer (not shown on the figur&heir purpose is to further
improve code structure, ashey holdonly functions that are directly related to requestingad
and write access tthe message biérs of the nod®a Y Sa al IS w! a

The purpose of thdlodelpart is to provide the requested by theontrollerdata and serviced he

Cluster, Node and Device classes contain functions related top#nsing of the J$N data
contained in the threeconfigurationJSONiles, established irgection 4.1. The content of each file

is loaded in the application memory and broken down into its constituent JSON obJéetts.
necessithi Sa GUKS aidlyRINRAAI GA2Y @iFtheid defBhitiongstablishedo 2 S O
in 4.1.2 Files Sructure, and providing them to the applicationia the Keys enumeration. That
implementation occupies more memory but neases the speed when traversing for the JSON
token values. This approach is a consequence to the requirement that the program
implementation shall be targeted to the speed of execution of the parsing algorithms.

The Parser and Composer classes are dasticto functionalities, related to the parsing and
composing of communication JSON data objedt2 Communication Data Objects). The TCP
Connect class is responsible for establishing a connection between the PC and the ded&ed no
All file manipulations are managed by the Files Managss Thefile directorieshave to also be
provided to the application andre hard coded irthe File Directorieenumeration.

Use cases

Connection

After selecting the desired node ID (provideda list of IDs)its IP address and port numbgit is
bounded tq are automatically displayed in text fields. The user can then request a connection to
the FlexRaynodé &€ LINSAdAaAy3d (GKS W 2yySOiGQ 0 dissucgssiulINE O A

the W& icon is displayed next to the button. When trennection isterminated the icon
disappearsas soon as the client attempts to send data

In order to expand the testing possibilities, a small local server application is implemented. It
basically doeghe following: opens a TCP/IP socket on the local server with IP address 12@r0.0.1
an assigned by the programmer pplistens and accepts messages, modifies them depending on
the test case and sends those modified messages back. The purpose of {fgatappis to mimic

a second FlexRay node in ordertést the functionality of the software to successfully disconnect
from one node and connect to another. Another useful purpose is to create some additional
testing opportunities by making use of thegwided Java functions.

Configuration

In 4.3.2 Operation Control Floware introduced two possibilities of performing initial configuration
of the FlexRay redixrs of a node. The first one is directed by the user and is realizedjuresting
write and read accesses to registespecified by the userin the second option the whole
configuration process is embedded amtice requested, it issutomatically performed by the

59

application in the background. The user is being informed st@dus messages whether the
operation was successful or not. Fig 5.2 depicts that automated process for initial node
configuration.

Fig5.2. Activity diagram of the configuration process

The preconfiguration process is expressén | G G SYLJG G2 SadlrofAakK GKS
controller (CC) into theonfig state €.3.1 Communication Controller). If the node is not set into

that state an error message is displayed and the process élatsever, if the node has entered

config state, the client starts sending configuration data in the order specified irDéndgce JSON

file (Device fil. When all configuration data has been sent and written it S y 2 RS Q& Cf
registers, the procedure of exitingpnfigand enteringready state is started. It is expressed in a
sequential writing of predefined values to a dedicated Lock register (for detail§ldge. 24).
Depending on whether the CC has entereddy state the appropriate message is displayed and

the process is exited.

60

