Image Representation Learning with Generative Adversarial Networks

Image Representation Learning with Generative Adversarial Networks

URL
Dokumentart: Bachelor Thesis
Institut: Department Informatik
Sprache: Englisch
Erstellungsjahr: 2018
Publikationsdatum:
SWD-Schlagwörter: Maschinelles Lernen , Bildverarbeitung , Automation
DDC-Sachgruppe: Informatik

Kurzfassung auf Englisch:

Generative machine learning models make it possible to derive new data from a dataset. There are many applications in image processing, such as super-resolution and image completion. But they also find application in engineering and in other machine learning algorithms. A generative adversarial network (GAN) is trained by pitting a neural net that generates data out of a noise input, against an adversary, that tries to discriminate between fake and real data. This thesis is about the theory of GAN’s and their application on the datasets MNIST and CIFAR10 in an unsupervised and semi-supervised fashion. A state of the art and fully automated implementation is used to achieve high quality image generation.

Kurzfassung auf Deutsch:

Mit generierenden Machine Learning - Modellen ist es möglich, neue Daten aus einem Datensatz zu gewinnen. Es gibt viele Anwendungen in der Bildverarbeitung, wie zum Beispiel Auflösungserhöhung und Bildvervollständigung. Aber auch in der Medizin oder in anderen Machine Learning - Algorithmen finden sie Anwendung. Ein generative adversarial network (GAN) wird trainiert, indem ein neuronales Netz, welches Daten aus einem zufälligen Rauschen generiert, gegen einen Gegner ausgespielt wird. Dieser versucht dann, falsche von echten Daten zu unterscheiden. Die Arbeit handelt von der Theorie der GAN’s und deren Anwendung auf die Datensätze MNIST und CIFAR10 in sowohl unüberwachter als auch halb-überwachter Weise. Eine dem Stand der Technik entsprechende und vollautomatisierte Implementierung wird verwendet um hochqualitative Bilder zu generieren.

Hinweis zum Urheberrecht

Für Dokumente, die in elektronischer Form über Datenenetze angeboten werden, gilt uneingeschränkt das Urheberrechtsgesetz (UrhG). Insbesondere gilt:

Einzelne Vervielfältigungen, z.B. Kopien und Ausdrucke, dürfen nur zum privaten und sonstigen eigenen Gebrauch angefertigt werden (Paragraph 53 Urheberrecht). Die Herstellung und Verbreitung von weiteren Reproduktionen ist nur mit ausdrücklicher Genehmigung des Urhebers gestattet.

Der Benutzer ist für die Einhaltung der Rechtsvorschriften selbst verantwortlich und kann bei Mißbrauch haftbar gemacht werden.