
UNIVERSIT�AT HAMBURGF A C H B E R E I C HI N F O R M A T I K

V O G T - K �O L L N - S T R A S S E 30D - 2 2 5 2 7 H A M B U R G

Mitteilung Nr. 264CGPro V 1.0 {a Prolog Implementation of Conceptual GraphHeike Petermann, Roland SchirdewanLutz Euler, Kalina BontchevaFBI-HH-M-264/96

Fachbereich Informatik der Universit�at HamburgVogt-K�olln-Str. 30, D-22527 Hamburg / GermanyUniversity of Hamurg { Computer Science DepartmentMitteilung Nr. 264 / Memo No. 264CGPro V 1.0 {a PROLOG Implementation of ConceptualGraphsHeike PetermannRoland SchirdewanLutz EulerUniversity of HamburgComputer Science DepartmentNatural Language Systems Divisionpetermann@informatik.uni-hamburg.deroland@nats5.informatik.uni-hamburg.deKalina BontchevaUniversity of She�eldDepartment of Computer ScienceK.Bontcheva@dcs.shef.ac.ukFBI{HH{M{264 / 96October 1996

AbstractNatural language processing requires e�cient and powerful tools for representing and process-ing knowledge. This paper introduces the system CGPro which implements the ConceptualGraphs (CG) formalism. CGs are a logic-based formalism developed by John F. Sowa on thebasis of Charles S. Peirce's existential graphs and semantic networks. Conceptual structuresproved to be rather convenient as a semantic representation for natural language. CGPro isan e�cient and powerful implementation of the Conceptual Graphs knowledge representationformalism in Prolog and provides all the operations which are most useful for natural languageprocessing. Although CGPro was developed to satisfy the requirements of two NLP projectsit is designed in a more general way. CGPro provides "Abstract Data Types" for all parts ofthe internal representation which allows the users to implement their own operations. Thispaper introduces the functionality of CGPro and describes the motivation for design decisionsas well. ZusammenfassungDie Verarbeitung nat�urlicher Sprache erfordert leistungsf�ahige Werkzeuge zur Repr�asentationund Verarbeitung von Wissen. In diesem Papier wird das System CGPro vorgestellt, das denFormalimus der Conceptual Graphs (CGs) implementiert. CGs wurden von John F. Sowaauf der Grundlage der Existenzgraphen von Charles S. Peirce entwickelt. Conceptual Graphseignen sich besonders gut zur semantischen Repr�asentation nat�urlicher Sprache. CGPro re-alisiert eine e�ziente und m�achtige Repr�asentation von CGs in Prolog und liefert eine Im-plementierung der f�ur die maschinelle Sprachverarbeitung wichtigsten Operationen. ObwohlCGPro aus Anforderungen von zwei Projekten zur maschinellen Sprachverarbeitung entwick-elt wurde, liegt ein allgemeineres Konzept zugrunde. CGPro stellt Abstrakte Datentypenf�ur alle Teile der internen Repr�asentation zur Verf�ugung, die es dem Benutzer erm�oglichen,eigene Operationen zu implementieren. In diesem Papier wird sowohl die Funktionalt�at vonCGPro vorgestellt als auch die Motivation der Entwurfsentscheidungen dargelegt.

Contents1 Introduction 12 Note on the Version 13 Representing Conceptual Graphs in PROLOG 23.1 Graph representation . 23.2 Representation of the Concept's Referent Field 43.3 Representation of Individuals . 53.4 Type De�nitions . 63.5 Relation De�nitions . 63.6 Type Hierarchy . 73.7 Attribute Lists . 73.8 Other Prolog Representations . 73.8.1 Representing Conceptual Graphs as triples 73.8.2 Representing Conceptual Graphs as Concept and Relation lists 84 Overview about the Implemented Operations 104.1 Introduction to the Implementation . 104.1.1 Design Principles . 104.1.2 Programming Conventions . 114.1.3 Format of the Predicate Descriptions 114.2 Predicates and Operations on Conceptual Graphs { Abstract Data Types . . 124.2.1 ADT "Concept" { cgc/5 . 124.2.2 ADT "Graph" { cg/2 . 144.2.3 ADT "Type" { isa/2 . 184.2.4 ADT "Individual" { ind/3 . 204.2.5 ADT "Referent" . 214.2.6 Miscellaneous . 254.3 The four canonical formation rules . 264.4 Match, Projection and Maximal Join . 284.5 Type and Relation Expansion/Contraction1 295 Service Features 325.1 Attribute Lists . 325.2 Initializing and Saving the Knowledge Base 345.2.1 Loading, Saving and Restoring the Knowledge Base 345.2.2 Parsing Conceptual Graphs in Linear Notation 365.2.3 Printing the Knowledge Base . 366 Conclusion 39A Linear Form Grammar 40A.1 Meta-Language productions . 40A.2 Low Level Productions . 40A.3 Conceptual Graph Productions . 41A.4 Referent Field . 42

A.5 Extended Linear Forms . 43Index 44References 45

1 IntroductionThis paper describes in detail the Prolog representation of Conceptual Graphs (CGs) whichwas used for CGPro and all basic CG operations. With the introduced implementation weaimed at solving the problems associated with representing contexts and n-adic relations ofother existing systems.First, we introduce our representation of graphs, referent �elds, individuals and lambda ab-stractions. Afterwards, we compare it to other existing Prolog representations. Section 3contains a description of predicates implementing basic access functions for the data struc-tures de�ned in the previous section. Furthermore we outline the implementation of the"real\ CG operations { copy, restrict, join, simplify, maximal join, projection, and a special"extended\ projection algorithm.Special attention was paid to the representation of the referent �eld. For this purpose wehave chosen feature structures because they can be handled and compared easily. Thereforewe are able to obtain the resulting referent �eld of a join-operation by simple uni�cation ofthe feature structures.With CGPro, we satisfy the needs of two application projects { a project for knowledgeacquisition from natural language texts and a German-Bulgarian Machine Aided Translationproject2.2 Note on the VersionThis version of CGPro was developed by Heike Petermann and Roland Schirdewan. It isbased on the �rst version, documented by (Petermann, Euler, and Bontcheva1995).This CGPro contains the following new features:� reimplementation of the maximal join� parsing of the extended linear form� printing, dumping of graphs and generation of the linear formAlthough CGPro was revised completely, large parts remain on the �rst version. We thankLutz Euler and Kalina Bontcheva for their implementation and their ideas on the CG repre-sentation.2\DB-MAT", funded by Volkswagen Foundation for three years (7/1992-6/1995).1

3 Representing Conceptual Graphs in PROLOG3.1 Graph representationWith our representation, we want to ful�ll the postulates concerning features of a good CGrepresentation given in (Sowa and Way1986):� connectivity (traverse the entire graph starting from a concept)� generality (adequate representation of n-adic relations and several arcs pointing to orfrom a concept)� no priviledged nodes (each concept can be a head)� canonical formation rules (copy, restrict, join, simplify), which are e�ciently imple-mented for the selected representationAll known and available representations (see section 3.8) lack at least one of these features.Therefore, we propose the following representation satisfying all points mentioned above:cg(GraphID, RelationList).cgc(ConceptID, ContextFlag, ConceptName, ReferentField, AnnotationField).RelationList ::= [cgr(RelName, ArgList, Annotation), ...]ArgList ::= [ConceptID, ...]ContextFlag ::= normal j special.ConceptName ::= Specialname j Identi�er.Specialname ::= context j neg context j situation j statement j proposition.The basic building blocks in this representation are graphs and concepts. Both are representedas facts, namely cg/2 (\Conceptual Graph") and cgc/5 (\Conceptual Graph Concept").Every graph and concept has a unique identi�er (Id). Relations between concepts do nothave identi�ers and occur only as terms in cg/2 facts.GraphID and ConceptID are unique identi�ers for all graphs or concepts. Even thoughthe representation is unambiguos concerning the kind of identi�ers at each argument place,it is easier to handle only one sort of identi�ers for GraphIDs and ConceptIDs.ArgList is an ordered list of concepts, where the number of the arc corresponds to theconcept's place in this list. For an n-adic relation, the arcs are numbered from 1 to n, andthe outgoing arc is the last one. 2

Sowa distinguishes between simple and compound graphs. Simple graphs are those withoutnested contexts and lines of identity3. In this case, the RelationList contains the list of therelations of the simple graph, or, if the graph consists of only one concept and thus of norelation, a one-element list with the special relation name norel. In the latter case, ArgListis a list of only one element.A compound graph consists of one or more `toplevel' simple graphs that may contain nestedgraphs. These toplevel graphs need not be connected directly, but in this case they mustcontain nested graphs that are connected by a line of identity. In a compound graph theRelationList contains the list of all of the relations of the toplevel graphs. It is not dis-tinguished which toplevel graph a relation belongs to. Each of the relations may again be anorel relation if the corresponding graph consists of only one concept.Graph nesting is implemented as follows: A context is established as a special kind of conceptwhose referent �eld contains a list of the Ids of the nested graphs.Coreferent concepts in a graph (i.e. those that share the same variable in the linear form orthose that belong to the same line of identity) are represented internally in the referent �eldby the same value of the feature varname.Concepts are represented as 5-Tupels. ContextFlag is a ag which is set if the concept isof a special type e.g. context, situation, proposition, and so on. In this case, ContextFlaghas the value special , otherwise it is normal. ConceptName is a typename or the name ofa special context, respectively. For description of the ReferentField, see section 3.2 below.Since the possible applications of the AnnotationField are not clearly de�ned, all givenexamples contain empty annotation �elds.An example of a simple conceptual graph containing a situation is given in �gure 1 in graphicalnotation, in �gure 2 in linear form and in �gure 3 in the internal representation.SITUATION: CHASE�������)�
 �	AGNT HHHHHj�
 �	PTNT?CAT ?MOUSE -�
 �	PTIM - EVENINGFigure 1: A simple conceptual graph with a situation in graphical form3Note that a line of identity is only a way to show concept equivalence when a concept occurs in multiplecontexts and thus is never needed for simple graphs. 3

[SITUATION: [CAT] <-(AGNT) <-[CHASE]->(PTNT)->[MOUSE]]-> (PTIM) -> [EVENING].Figure 2: The same simple conceptual graph in linear formcg(513, [cgr(ptim, [25, 26],)]).cg(514, [cgr(agnt, [27, 28],), cgr(ptnt, [27, 29],)]).cgc(25, special, situation, [514],).cgc(26, normal, evening, [fs(num,sing)],).cgc(27, normal, chase, [fs(num,sing)],).cgc(28, normal, cat, [fs(num,sing)],).cgc(29, normal, mouse, [fs(num,sing)],).Figure 3: The given simple conceptual graph in our representation3.2 Representation of the Concept's Referent FieldIn the basic conceptual graph notation only three kinds of referent �elds are permitted {generic (existential), individual marker, and literal. Measures, sets, names, and quanti�ersare extended referents, i.e. they are the result of some contraction operation. In our systemwe want to support all these extended referents, especially the four kinds of set referents {collective, distributive, cumulative and disjunctive (see (Sowa1984, Sowa1992)). Therefore weintroduce the following representation for the referent �eld.Table 1: Examples of the Concept's Referent FieldReferent NL Example RepresentationField Type translationGeneric a book [BOOK: *] [num:sing]Individual lexicon entry [PERSON: #123] [num:sing,type:def,refID:123]Individual John [PERSON:John] [num:sing,name:'John']Individual John [PERSON:John#1] [num:sing,type:def,refID:1,name:'John']De�nite ref. the book [BOOK: #] [num:sing, type:def]Set John and Mary [PERSON: [num:plural,type:def,fJohn,Maryg] name:['John', 'Mary']]Partial Set John,Mary [PERSON: [num:plural,and others fJohn,Mary,*g] name:['John', 'Mary']]Generic Set books [BOOK: f*g] [num:plural]Counted Set three books [BOOK: f*g@3] [num:plural, type:meas, quant:3]Quanti�ers every book [BOOK: every] [num:sing, quant:every]Question which book [BOOK: ?] [num:sing,type:quest]Plural quest. which books [BOOK: f*g?] [num:plural,type:quest]Variable [BOOK: *x] [quant:lambda,varname:x]4

In table 1 there is a summary of the most frequently used kinds of referent �elds togetherwith an example, its natural language reading and the corresponding representation.4Referent ::= "[" RefNumber ["," RefType] ["," RefQuant]["," RefID] ["," RefName] ["," QuantScope]["," VarName] "]"RefNumber ::= "num :" ReferentNumberRefType ::= "type :" ReferentTypeRefQuant ::= "quant :" QuantTypeRefID ::= "refID :" IndivIDRefName ::= "name :" MarkerQuantScope ::= "scope :" ScopeVarName ::= "varname :" VNameReferentNumber ::= "sing" j "plural"ReferentType ::= "def" j "meas" j "quest"QuantType ::= "every" j "lambda" j NumberScope ::= "disjunct" j "dist" j "col" j "cum"VName ::= SmallLetterMarker ::= IndName j RefSetIndivID ::= NumberIndName ::= " ' " UpperLetterjSmallLetter ... " ' "RefSet ::= "[" IndName ["," IndName]... "]"Figure 4: A BNF grammar of the referent �eld structureFigure 4 contains a BNF grammar specifying the possible attributes and their values.The argument value pairs in the feature structures are represented in the Prolog implementa-tion as binary structurs (fs/2). The referent �eld is represented as Prolog list of those fs/2terms: [fs(F1,V1), fs(F2,V2), ...]Note: Predicates operating on the referent �eld are described in section 4.2.5.3.3 Representation of IndividualsIndividuals are represented as ternary relations in the knowledge base:ind(IndId,Name,Type)IndId must be provided by the user in the referent �eld of concepts. Name is the name of theindividual and Type is a type of the type hierarchy. Example:[CAT: TOM #123] ind(123, TOM, CAT)[CAT: TOM #] is not an individual as the user has not de�ned an Id4Most of the examples are taken from (Sowa1993).5

3.4 Type De�nitionsIn the conceptual graph formalism new concept types are introduced by type de�nitions.The operations acting upon them are type expansion and type contraction. Following Sowa'sde�nition (Sowa1984, pp.106 { 112), type de�nitions are represented as binary relations:typedef(TypeName, lambda(VarList, GraphId))A linear form of type de�nitions will be interpreted by the linear form parser (see section 5.2.2)according to the following format:TypeDef ::= "type" <TypeName>"("<VarList>")" "is" < Graph >typedef/2 andGraph will be asserted in the knowledge base and its GraphId will be includedin the typedef/2 relation. VarList is a regular Prolog list of all arguments of the de�nedtype. Example:type POSITIVE(x) is [NUMBER: *x] -> (">") -> [NUMBER: 0]will be asserted in the knowledge base in the following relations:cg(1,[cgr("<",[2,3])])cgc(2,normal,'NUMBER',[quant:lambda],_)cgc(3,normal,'NUMBER',[type:meas,name:0],_)typedef('POSITIVE', lambda([x],1))Note: Type de�nitions do not expand the type hierarchy automatically. The useris responsible for providing the corresponding isa/2 relations.3.5 Relation De�nitionsRelation de�nitions are supported similarly to type de�nitions. They will be represented inthe knowledge base as binary relations:reldef(RelName, lambda(VarList, GraphId))This relation is a result of parsing input in the following linear format:RelDef ::= "relation" <RelName>"("<VarList>")" "is" < Graph >reldef/2 and Graph are asserted into the knowledge base by the parser.6

3.6 Type HierarchyThe type hierarchy is represented as binary relations:isa(SubType,SuperType)isa/2 relations can be loaded directly from a �le with loadKBase/1. The linear form parser(see 5.2.2) can also translate input of the following form into isa/2 relations:SuperConcept " > " List of SubConcepts"."SubConcept " < " List of SuperConcepts"."List of SuperConcepts " > " SubConcept"."List of SubConcepts " < " SuperConcept"."Note: No check for a proper lattice will be done during parsing. The user has toguarantee the validity of the input.3.7 Attribute ListsIt is very important for the user developing a real world application that there is a possibilityfor organizing graphs in groups. For this reason, the system supports a mechanism for markinggraphs with attributes. Some useful attributes might be: 'canonical', 'typedefs', 'reldefs','temp'. For this purpose, attribute lists are provided:attrList(Name,GraphId)In principle the user should take care of managing these lists. The system provides somepredicates for this (see section 5.1). All operations changing the knowledge base workwith the current attribute list. This variable can be handled with setCurAttrList/1 andgetCurAttrList/1.3.8 Other Prolog RepresentationsThis section gives a short overview about other Prolog represenations for Conceptual Graphswhich had some inuence on the representation developed for CGPro.3.8.1 Representing Conceptual Graphs as triplesIn the representation of (Hook and Ahmad1992), each conceptual graph is decomposed intocanonical graphs5 consisting of two concepts linked by a relation. The investigation made by5Here the term `canonical' is used in its general meaning. Thus these `canonical graphs' are not Sowa's`canonical graphs', but simply a normalized form of a graph representation.7

the authors of (Hook and Ahmad1992) proved that all relations in a Terminology KnowledgeBase (TKB) are binary, i.e. connecting exactly two concepts. Their conceptual graph TKBconsists of a set of canonical graphs and a type hierarchy. All canonical graphs are stored as:is canonical graph('emission control device' : type : 'catalytic converter').Each conceptual graph is represented as a Prolog list of triples:concept : relation : conceptIn (Hook and Ahmad1992) the type hierarchy is generalized to a set of conceptual graphscontaining the type relation. Due to the fact that the inheritance mechanism depends on thetype hierarchy, the type relation is of particular importance.This representation handles very simple conceptual graphs. They are suitable mainly forknowledge bases in very speci�c domains, where all relations are binary. Another problemof that approach is the redundant information. Each concept participating in more than onerelation occurs more than once in the list. When specialization is performed, the list shouldbe searched completely for all occurences of a certain concept (the one to be restricted).3.8.2 Representing Conceptual Graphs as Concept and Relation lists(Sowa and Way1986) proposed a more structured representation:cg(<ConceptList>, <RelationList>)ConceptList := [cgc(<ConceptNo>, <ConceptName>, <Referent>), ...]RelationList := [cgr(<ConceptNo>, <RelationName>, <ConceptNo>), ...]Although one graph is represented as only one data structure, e.g. graph traversing will beeasier than in (Hook and Ahmad1992), we do encounter the following problems:1. Graph referents: [PROPOSITION: Graph] is transformed into[PROPOSITION] -> (STMT) -> GraphThe same holds for STATE, SITUATION and CONTEXT.2. 3-adic relation representation. Let's take BETW for example. Using the above repre-sentation, we are forced to have 2 or 3 entries in the RelationList for one relation. Apartfrom that, we do not have a clearly de�ned order of the relation arcs, which contradictsto the fact that the arcs should be numbered for all n-adic relations (n � 3).8

3. There is redundant information in the cgc-structure. If we have the same concepts indi�erent CGs then all that information is included in every cgc-structure. Representingall concepts into a separate concept table avoids this kind of redundancy. Additionally,garbage collection techniques can be applied in order to abandon all concepts not usedin the knowledge base.

9

4 Overview about the Implemented OperationsAlthough our internal representation handles complex graphs properly, some of the operationsare implemented only for simple graphs with situations, propositions, and statements. Ourfurther goal will be to extend our algorithms for complex graphs.4.1 Introduction to the Implementation4.1.1 Design PrinciplesThe following sections contain a structured description of our Prolog implementation withpredicate names, arguments and brief explanations. First we introduce some Abstract DataTypes (ADTs) - concepts (see 4.2.1), conceptual graphs (see 4.2.2), types (see 4.2.3), individuals(see 4.2.4) and referents (see 4.2.5). A set of standard operations belongs to all Abstract DataTypes (ADTs) { contructors, destructors, accessors, copy and equality test. Additionally, eachADT has some speci�c operations (eg. subConcept, minComSuperType), and their semanticsis taken from the CG theory.6 Since we rely on the reader's knowledge of conceptual graphs,we have ommited all functionality details of implemented operations.The ADTs comprise a basis which the four canonical formation rules and some other CGoperations are built upon. All CG operations have both destructive and non-destructiveversions. Section 4.3 contains the de�nitions of copy, restrict, simplify and join. Match,projection andmaximal join are introduced in section 4.4. Apart from the standard projectionalgorithm we have implemented an extended projection (see 4.4) that has proven to be ratheruseful for some Natural Language (NL) applications. Type and relation expansion/contractionoperations (see 4.5) enable the active use of new types and relations.In order to distinguish between various kinds of graphs, we have introduced attribute lists(see 5.1). They are used to group the graphs according to their semantics (eg. canonical,situations, type de�nitions, etc.). The system always deals with the current attribute list.Finally, we introduce some predicates for handling the Knowledge Base (KB) - load, load withconvert, save and restore (see 5.2.1). For initializing the knowledge base, we have implementeda linear notation parser which converts �les containing graphs in linear notation into theinternal representation (see 5.2.2).6For a short introduction see (Sowa1992). 10

4.1.2 Programming ConventionsFor the building of names concerning uppercase vs. lowercase and the use of underscores,predicate and variable names we have used the following conventions:predicateName(VarName, ...):Underscores are never used except of course as identi�er for the anonymous variable.All predicates obey the following rules concerning the order of arguments:� Relational binary predicates have their arguments in the order that renders identifyingthe relation as an in�x naturally. Example: isa(V1, V2) means V1 isa V2.� Data structure accessors have the output argument in the last position.� Functional predicates have the output argument in the last position.join(G1,G2,G3) joins G1 and G2 to yield G3.� Destructive operations have the input/output argument in the �rst position.join(G1,G2) joins G1 with G2 and returns the modi�ed G1.4.1.3 Format of the Predicate DescriptionsBelow, the predicates are described in the following format:predicate(Argument1, . . .)Description textArguments:Argument1 Type of Argument1... ...In the �rst line the argument's names are preceded by one of three mode speci�ers: + meansthe argument must be instantiated, - means it must be free, and ? means it can be anything.Note that Id arguments of objects that are modi�ed by the operation have mode + becausethe Id is not changed. 11

4.2 Predicates and Operations on Conceptual Graphs { Abstract DataTypesGenerally, the operations on compound objects comprise constructors (that build a new objectfrom its parts), destructors, accessors (that return the parts of a given object), a copy oper-ation and an equality test. The name of the constructor for datatype object is newObject, ofthe destructor deleteObject and of the accessors objectSlot. The copy operation is namedcopyObject and the equality test equalObject.In general, all objects are referred to by their Ids, e.g. when being passed as arguments. Thisholds for graphs, concepts and individals. Some operations on these data structures workdestructively. This means that the data structure pointed to by the Id changes while the Idof the input and the result is the same. A nondestructive operation returns a new Id for thesekinds of objects.All operations on graphs take care of creating new concepts where necessary to ensure thatany concept is contained in at least one graph. For instance the destructive \join" operation{ that modi�es one of the input graphs { copies the other input graph so that only newconcepts are joined to the �rst graph.4.2.1 ADT "Concept" { cgc/5Concepts are represented as 5-tupels:cgc(ConceptID, ContextFlag, ConceptName, ReferentField, AnnotationField)newConcept(+Category, +Type, ?Referent, ?Annotation, ?Concept)The predicate newConcept/5 creates a new concept given its category, type, referent andannotation. It returns the Identi�er of the new concept. For special concepts the referent isa graph Id. If Concept is ground instantiated it is used as the Id of the concept, else a newId is acquired and returned.Arguments:Category normal or specialType AtomReferent Term or list of graph IdsAnnotation Term orConcept Concept Id 12

deleteConcept(+Concept)The predicate deleteConcept deletes the Concept. The user is responsible for assuring thatthere are no references to this concept left.Arguments:Concept Concept IdconceptSlots(+Concept, -Category, -Type, -Referent, -Annotation)The predicate conceptSlots/5 returns the parts of Concept.Arguments:Concept Concept IdCategory normal or specialType AtomReferent Term or list of graph IdsAnnotation Term orcopyConcept(+ConceptIn, -ConceptOut)The predicate copyConcept copies a concept. In case this is a special concept, the contentsof the referent �eld are copied recursively. Returns the Id of the copy.Arguments:ConceptIn Concept IdConceptOut Concept IdequalConcept(+Concept1, +Concept2)The predicate equalConcept succeeds if the two concepts are equal. This is the case if theirtypes and referents are equal. In case of special concepts the nested graphs are comparedrecursively.Arguments:Concept1 Concept IdConcept2 Concept IdconceptCategory(+Concept, -Category)The predicate conceptCategory/2 returns the category of a concept.Arguments:Concept Concept IdCategory normal or special 13

conceptType(+Concept, -Type)The predicate conceptType/2 returns the type (from the hierarchy) of a concept.Arguments:Concept Concept IdType AtomconceptReferent(+Concept, -Referent)The predicate conceptReferent/2 returns the referent �eld of a concept.Arguments:Concept Concept IdReferent Term or list of graph Ids4.2.2 ADT "Graph" { cg/2Graphs are represented as binary Prolog facts:cg(GraphID, RelationList)newGraph(+Relations, ?Graph)The predicate newGraph/2 creates a new graph consisting only of the relation list Relations.The new graph is added to the current attribute list. If Graph is ground instantiated it isused as the Id of the graph, else a new Id is acquired and returned.Arguments:Relations List of terms cgr/3Graph Graph IdnewGraph(?Graph)The predicate newGraph/1 creates a new empty graph. The new graph is put on the currentattribute list.Arguments:Graph Graph Id 14

deleteGraph(+Graph)The predicate deleteGraph/1 deletes the Graph. This does not delete the concepts containedin the graph. The user is responsible to assure that there are no more references to the graph.The graph is removed from all attribute lists it is on.Arguments:Graph Graph IddeleteWholeGraph(+Graph)The predicate deleteWholeGraph/1 deletes the graph Graph. In contrast to deleteGraph/1this predicate deletes all objects belonging to this graph. The user has to assure that thereare no references to this graph are still needed. This can be guaranteed if the user does notuse destructive operations like join/2.Arguments:Graph Graph IdequalGraph(+Graph1, +Graph2)The predicate equalGraph/2 succeeds if the two graphs are equal. This is checked recursivelyfor all nested subgraphs.Arguments:Graph1 Graph IdGraph2 Graph IdgraphConcept(+Graph, -Concept)Given Graph, the predicate graphConcept/2 succeeds once for each Concept that occurs inthe graph. If Graph contains nested graphs, the concepts in these graphs are neglected.Arguments:Graph Graph IdConcept Concept Id
15

graphConcepts(+Graph, -ConceptList)graphConcepts(+Graph, +Depth, -ConceptList)The predicates graphConcepts/2/3 unify ConceptList with the list of concept identi�erscontained in Graph. Depth determines the depth of the nested graphs which has to be con-sidered. Depth = 0 indicates all nested graphs, Depth = 1 means just the toplevel graph.graphConcepts/2 has the same functionality as graphConcepts/3 with Depth = 1.Arguments:Graph Graph IdDepth IntegerConceptList List of concept IdsgraphRelations(+Graph, -Relations)graphRelations(+Graph, +Depth, -Relations)The predicates graphRelations/2/3 return the relations of a graph. Depth indicates thelevel of nested graphs. Depth = 0 indicates all nested graphs, Depth = 1 means the toplevelgraph. The predicate graphRelations/2 returns the relation list of the toplevel graph.Arguments:Graph Graph IdDepth IntegerRelations List of relations, i.e. terms with functor cgrmodifyGraphRelations(+Graph, +NewRelations)The predicate modifyGraphRelations/2modi�es the Graph to consist of the relations in thelist NewRelations.Arguments:Graph Graph IdRelations List of terms cgr/3addGraphRelation(+Graph, +RelName, +Concepts, +Annotation)The predicate addGraphRelation/4 inserts an n-ary relation with name RelName in the Graphon the concepts from the list Concepts. The concepts are ordered and the last one belongsto the outgoing arc. It annotates the relation with Annotation. The graph is modi�ed.Arguments:Graph Graph IdRelName AtomConcepts List of Concept IdsAnnotation Atom 16

deleteGraphRelation(+Graph, +RelName, +Concepts)The predicate deleteGraphRelation/3 deletes the relation with name RelName connectingthe Concepts from the Graph. Fails if there is no such relation.Arguments:Graph GraphIdRelName AtomConcepts List of Concept IdscopyGraph(+GraphIn, -GraphOut)The predicate copyGraph/2 copies a graph.Arguments:GraphIn Graph IdGraphOut Graph IdcopyGraph(+GraphOrig, -GraphCopy, -MapOut)The predicate copyGraph/3 copies GraphOrig and recursively graphs nested in it yieldingGraphCopy. The mapping of old concepts and graphs onto the new ones is returned inMapOut. This can be used to trace concepts and subgraphs through the process of copying.Arguments:GraphOrig Graph IdGraphCopy Graph IdMapOut Term map/2The graph copy operation is actually already one of Sowa's CG operations. It is neverthelessde�ned here because it is needed for completeness of the ADT.Automatic Management of Attribute ListsThe newGraph operation puts the new graph on the current attribute list. Some operations,e.g. join, use temporary graphs that are deleted in the course of the operation. This isaccomplished by using the predicate deleteGraph which besides deleting the graph alsoremoves it from all attribute lists. As an additional way to delete graphs there is the predicatedeleteAllGraphs that deletes all graphs that are on a given attribute list and clears this list.This way the implementation takes care that no attribute list contains a reference to a deletedgraph and that every graph is at least on one attribute list.17

4.2.3 ADT "Type" { isa/2The type hierarchy is represented as:isa(SubType,SuperType)typeList(-Types)The predicate typeList/1 returns a list of all types. These include top, bottom and thespecial types like context etc. The list is topologically sorted in ascending order.Arguments:Types List of typesThe following operations are undirected binary Prolog relations. `Undirected' means they canbe used both for checking and for generation.equalType(+Type1, +Type2)The predicate equalType/2 succeeds if Type1 and Type2 are of the same type name.Arguments:Type1 TypeType2 Typeisa(?SubType, ?SuperType)The predicate isa/2 succeeds if SubType is an immediate subtype of SuperType.Arguments:SubType TypeSuperType TypesubType(?SubType, ?SuperType)The predicate subType/2 succeeds if SubType is a subtype of SuperType.Arguments:SubType TypeSuperType Type 18

subType(+SubType, +SuperType, -List)The predicate subType/3 succeeds if SubType is a subtype of SuperType. List will be uni�edwith the path between Type1 and Type2.Arguments:SubType TypeSuperType TypeList List of TypesmaxComSubType(+Type1, +Type2, -Type3)The predicate maxComSubType/3 calculates the maximal common subtype Type3 of Type1and Type2.Arguments:Type1 TypeType2 TypeType3 TypemaxComSubType(+Type1, +Type2, -Type3, -PathList1, -PathList2)The predicate maxComSubType/5 calculates the maximal common subtype Type3 of Type1 andType2. PathList1 will be uni�ed with the path between Type1 and Type3, and PathList2will be uni�ed with the path between Type2 and Type3.Arguments:Type1 TypeType2 TypeType3 TypePathList1 List of TypesPathList2 List of TypesminComSuperType(+Type1, +Type2, -Type3)The predicate minComSuperType/3 calculates the minimal common supertype Type3 of Type1and Type2.Arguments:Type1 TypeType2 TypeType3 Type 19

minComSuperType(+Type1, +Type2, -Type3,-PathList1, -PathList2, -PathList3)The predicate minComSuperType/6 calculates the minimal common supertype Type3 of Type1and Type2. PathList1 will be uni�ed with the path between Type1 and Type3, PathList2will be uni�ed with the path between Type2 and Type3 and PathList3 will be uni�ed withthe path between Type3 and univ.Arguments:Type1 TypeType2 TypeType3 TypePathList1 List of TypesPathList2 List of TypesPathList3 List of TypestypeDe�nition(+Type, -De�nition)The predicate typeDefinition/2 returns the type de�nition (a term lambda/2) of Type.Arguments:Type TypeDe�nition Type de�nition4.2.4 ADT "Individual" { ind/3Individuals are represented as: ind(IndId,Name,Type)The conformity relation must be de�ned. It has a type and an individual as arguments.The type is the smallest one the individual conforms to. Individuals are refered to by theirId. This is always provided by the user as a number { it is never automatically generatedby the system. When parsing a conceptual graph, new individuals occuring inside it areautomatically asserted. Additionally, there is a predicate to assert them manually.newIndividual(+Id, +Type, ?Name)The predicate newIndividual/3 creates a new Individual. Arguments are the Id, the smallestconforming type Type and optionally the name Name. The new individual is asserted to theknowledge base.Arguments:Id NumberType TypeName Atom or anonymous variable 20

deleteIndividual(+Individual)The predicate deleteIndividual/1 deletes the Individual. The user is responsible forassuring that there are no references to the individual left.Arguments:Individual Individual IdindividualType(+Individual, -Type)The predicate individualType/2 returns the type Type of the individual Individual, i.e.the smallest type that individual conforms to.Arguments:Individual Individual IdType TypeindividualName(+Individual, -Name)The predicate individualName/2 returns the name Name of the individual Individual.Arguments:Individual Individual IdName Atom or4.2.5 ADT "Referent"Referents are represented as feature structures (see 3.2).setRefNumber(+ReferentIn, +Number, -ReferentOut)The predicate setRefNumber/3 changes the num-Feature in ReferentIn and returns the resultas ReferentOut.Arguments:ReferentIn ReferentNumber AtomReferentOut Referent 21

getRefNumber(+Referent, -Number)The predicate getRefNumber/2 uni�es Number with the value of the num-Feature in Referent.Arguments:ReferentIn ReferentNumber AtomsetRefType(+ReferentIn, +Type, -ReferentOut)If type does not exist as a feature in ReferentIn, then the predicate setRefType/3 adds thefeature type with value Type to ReferentIn. Otherwise, setRefType changes the value oftype to Type in ReferentIn. The result will be uni�ed with ReferentOut.Arguments:ReferentIn ReferentType AtomReferentOut ReferentgetRefType(+Referent, -Type)The predicate getRefType/2 uni�es Type with the value of the type-Feature in Referent.Arguments:ReferentIn ReferentType AtomsetRefQuant(+ReferentIn, +Quant, -ReferentOut)If quant does not exist as a feature in ReferentIn, then the predicate setRefQuant/3 addsthe feature quant with value Quant to ReferentIn. Otherwise, setRefQuant changes thevalue of quant to Quant in ReferentIn. The result will be uni�ed with ReferentOut.Arguments:ReferentIn ReferentQuant AtomReferentOut Referent 22

getRefQuant(+Referent, -Quant)The predicate getRefQuant/2 uni�es Quant with the value of the quant-Feature in Referent.Arguments:ReferentIn ReferentQuant AtomsetRefId(+ReferentIn, +Id, -ReferentOut)If refID does not exist as a feature in ReferentIn, then the predicate setRefId/3 adds thefeature refID with value Id to ReferentIn. Otherwise, setRefId changes the value of refIDto Id in ReferentIn. The result will be uni�ed with ReferentOut.Arguments:ReferentIn ReferentId AtomReferentOut ReferentgetRefId(+Referent, -Id)The predicate getRefId/2 uni�es Id with the value of the refID-Feature in Referent.Arguments:ReferentIn ReferentId AtomsetRefName(+ReferentIn, +Name, -ReferentOut)If name does not exists as a feature in ReferentIn, then the predicate setRefName/3 addsthe feature name with value Name to ReferentIn. Otherwise, setRefName changes the valueof name to Name in ReferentIn. The result will be uni�ed with ReferentOut.Arguments:ReferentIn ReferentName AtomReferentOut ReferentgetRefName(+Referent, -Name)The predicate getRefName/2 uni�es Name with the value of the name-Feature in Referent.Arguments:ReferentIn ReferentName Atom 23

setRefScope(+ReferentIn, +Scope, -ReferentOut)If scope does not exists as a feature in ReferentIn, then the predicate setRefScope/3 addsthe feature scope with value Scope to ReferentIn. Otherwise, setRefScope changes thevalue of scope to Scope in ReferentIn. The result will be uni�ed with ReferentOut.Arguments:ReferentIn ReferentScope AtomReferentOut ReferentgetRefScope(+Referent, -Scope)The predicate getRefScope/2 uni�es Scope with the value of the scope-Feature in Referent.Arguments:ReferentIn ReferentScope AtomequalReferent(+Referent1, +Referent2)The predicate equalReferent/2 succeeds if Referent1 and Referent2 are equal.Arguments:Referent1 ReferentReferent2 Referent
24

matchReferent(+Referent1, +Referent2, -Referent3)The predicate matchReferent/3 matches the two referents Referent1 and Referent2 andreturns the result in Referent3. The following rules are applied in this order:1. Given that Referent1 represents a variable then it matches everything if the rest of thereferent �eld is unifyable with the Referent2. In this case, Referent3 is the result ofthe uni�cation. Otherwise the predicate fails.2. If rule 1 was not successful and Referent1 represents a question, then is matches ev-erything if the rest of the referent �eld is unifyable with Referent2. Referent3 is theresult of the uni�cation. Otherwise the predicate fails.3. If rule 1 and 2 were not successful, Referent1 is generic or a partial set and Referent2is of type measure, then the match succeeds if the number of elements of the set inReferent1 is less than the number of elements in Referent2 and the feature structuresare unifyable.4. If none of the rules above were successful, then Referent3 is the result of featurestructure uni�cation of Referent1 and Referent2.5. Else, try to succeed matchReferent(Referent2, Referent1, Referent3).This predicate will be used in join, maximal join and projection.Arguments:Referent1 ReferentReferent2 ReferentReferent3 ReferentNote: This predicate is one of the most controversal one since the implemen-tation depends on the semantics of the application domain. Especially,the semantics of referent sets in relation with uni�cation operation, e.g.maximalJoin/3 and projection/3 in not de�ned clearly.4.2.6 MiscellaneousrelationDe�nition(+Relation, -De�nition)The predicate relationDefinition/2 returns the relation de�nition (a term lambda/2) ofthe Relation.Arguments:Relation RelationDe�nition Relation de�nition 25

4.3 The four canonical formation rulescopy(+GraphIn, -GraphOut)The predicate copy/2 copies the conceptual graph GraphIn and returns the graph Id ofGraphOut.Arguments:GraphIn Graph IdGraphOut Graph Idrestrict(+Concept, +Type, +Referent)restrict(+GraphIn, +Concept, +Type, +Referent, -GraphOut)The predicates restrict/3/5 restrict a concept to a more speci�c type and/or individual.The predicate restrict/3 resticts a concept without copying this concept. If the user wantsto have a copy he/she may use restrict/5 which copies the whole graph and restricts aspecial concept of the copied graph. restrict changes the type or/and the referent byrestricting them further. This is allowed only if the conformity relation still holds after theoperation. The type may be restricted by replacing it by a subtype. The referent may berestricted by replacing a generic marker by an individual, conforming to the (new) type. Inthis case there must be an ind/3 relation which allows to retrict this individual to this type.Arguments:Concept Concept IdType TypeReferent ReferentGraphIn Graph IdGraphOut Graph Id
26

join(+Graph1, +Graph2)join(+Graph1, +Graph2, -GraphOut)join(+Graph1, +Concept1, +Graph2, +Concept2)join(+Graph1, +Concept1, +Graph2, +Concept2,-GraphOut, -ConceptOut)The predicates join/2/3/4/6 join Graph1 and Graph2. The four versions di�er in two aspects,namely whether they modify Graph1 or not and whether the concepts on which to join thegraphs are provided explicitly. In the �rst two versions the concepts are not provided. Theydeliver all possible joins on backtracking. In the last two versions Concept1 is the concept inGraph1 and Concept2 is the concept in Graph2 on which to join the graphs. Both conceptsmust be equal, otherwise the join will fail. To achieve a join on compatible concepts thatare not equal the input concepts must be made equal by restricting (prestict/3/5 themin advance. The resulting concept is provided in ConceptOut. The �rst and third versionmodify Graph1 and the second and fourth version provide the result in a new graph GraphOut.Graph2 is always copied in advance and never modi�ed.Arguments:Graph1 Graph IdGraph2 Graph IdGraphOut Graph IdConcept1 Concept IdConcept2 Concept IdConceptOut Concept Idsimplify(+Graph)simplify(+GraphIn, -GraphOut)The predicates simplify/1/2 simplify a graph by deleting all duplicate relations in it. The�rst version modi�es Graph, the second one returns the simpli�ed GraphIn as GraphOut andleaves GraphIn as it was.Arguments:Graph Graph IdGraphIn Graph IdGraphOut Graph Id
27

4.4 Match, Projection and Maximal Joinmatch(+Graph1, Graph2)The predicate match/2 succeeds if Graph1 is a generalization of Graph2. Comparing conceptstakes into account the type hierarchy and will match the referents (compare matchReferent/3).Arguments:Graph1 Graph IdGraph2 Graph IdmaximalJoin(+Graph1, +Graph2, -Graph3)The predicate maximalJoin/3 realizes the maximal join operation for conceptual graphs. Forthe de�nition refer to (Sowa1984, p.104). maximalJoin/3 will take into account the typehierarchy and will match the referents (compare matchReferent/3).Arguments:Graph1 Graph IdGraph2 Graph IdGraph3 Graph Idprojection(+Graph1, +Graph2, -Graph3)The predicate projection/3 calculates the projection of Graph1 in Graph2. The resultingGraph3 is not empty if and only if Graph2 is a specialization of Graph1. The projection oper-ation is type, relation and structure preserving. For the respective algorithm see (Sowa1984,p.99).Arguments:Graph1 Graph IdGraph2 Graph IdGraph3 Graph Id
28

extendedProjection(+Graph1, +Graph2, -Graph3)The predicate extendedProjection/3 calculates Graph3 which is the extended projectionof Graph2 (the query graph) on Graph1. The most important feature is that Graph2 containsat least one uninstantiated concept (corresponding to a question referent). In a NL applicationthis graph might be created as a semantic representation of a user's question. The resultinggraph is obtained by �nding the projection of Graph2 on Graph1 and adding all conceptsdirectly linked to an uninstantiated concept from the query graph. Let us consider thefollowing graphs:Graph1: [CAT] -> (ON) -> [?]Graph2: [CAT] -> (ON) -> [MAT] -> (ATTR) -> [RED]The result of the normal projection algorithm is:[CAT] -> (ON) -> [MAT]The result of the extended projection algorithm is the whole Graph2:[CAT] -> (ON) -> [MAT] -> (ATTR) -> [RED]Possible modi�cation of this algorithm includes a parameter for the depth of the extension,i.e. for depth n add all concepts, being n relations 'far' from an uninstantiated concept inthe query graph. This parameter can be also dependent on the relation types in the querygraph.7Arguments:Graph1 Graph IdGraph2 Graph IdGraph3 Graph Id4.5 Type and Relation Expansion/Contraction8Since we support both type and relation de�nitions (i.e. give a mechanism for de�ning newtypes and relations), we also provide expansion and contraction operations. In our imple-mentation we stick to the algorithms described in (Sowa1984, pp. 107-109, p.115). It isrecommended to apply these operations on canonical graphs, since Sowa has proved that theresult is also a canonical graph (i.e. in this case the operations are truth-preserving).7For some other ideas about extending the projection operation see (Velardi, Pazienza, and Giovanetti1988).8These predicates are not yet implemented. 29

All four operations take as input a graph Id (the graph to be expanded/contracted), an Idof a di�erentia graph (type de�nition) or a relator graph (relation de�nition). The outputgraph is always the last argument.typeExpansion(+Graph1, +Graph2)typeExpansion(+Graph1, +Graph2, -Graph3)The predicates typeExpansion/2/3 realize the type expansion operation on conceptual graphs.Graph1 is a graph, Graph2 is the di�erentia of a type de�nition and Graph3 is the resultinggraph. The two versions di�er in modifying Graph1; typeExpansion/2modi�es Graph1 whichis the result of this operation.Arguments:Graph1 Graph IdGraph2 Graph IdGraph3 Graph IdtypeContraction(+Graph1, +Graph2)typeContraction(+Graph1, +Graph2, -Graph3)The predicates typeExpansion/2/3 realize the type contraction operation. Graph1 is a graph,Graph2 is the di�erentia of a type de�nition and Graph3 is the resulting graph from which asubgraph has been deleted and replaced by a single concept (the genus of the type de�nition).The two versions di�er in modifying Graph1; typeContraction/2 modi�es Graph1 which isthe result of this operation.Arguments:Graph1 Graph IdGraph2 Graph IdGraph3 Graph IdrelationExpansion(+Graph1, +Graph2)relationExpansion(+Graph1, +Graph2, -Graph3)The predicates typeExpansion/2/3 realize the relation expansion operation on conceptualgraphs. Graph1 is a graph, Graph2 is the relator of a relation de�nition. Graph3 is theresulting graph obtained from Graph1 after a conceptual relation, and its attached conceptsare replaced with Graph2.The two versions di�er in modifying Graph1; relationExpansion/2 modi�es Graph1, whichis the result of this operation.Arguments:Graph1 Graph IdGraph2 Graph IdGraph3 Graph Id 30

relationContraction(+Graph1, +Graph2)relationContraction(+Graph1, +Graph2, -Graph3)The predicates relationContraction/2/3 realize the relation contraction operation on con-ceptual graphs. Graph1 is a graph, Graph2 is a subgraph of Graph1 and the relator of arelation de�nition. Graph3 is the resulting graph obtained from Graph1 after the subgraphGraph2 is replaced by a single conceptual relation de�ned by the relation de�nition.The two versions di�er in modifying Graph1; relationContraction/2 modi�es Graph1,which is the result of this operation.Arguments:Graph1 Graph IdGraph2 Graph IdGraph3 Graph Id

31

5 Service FeaturesFor a more convenient use of the system, we added some service features described in thissection. Attribute lists are provided for graph organization. File operations help saving andrestoring the knowledge base.5.1 Attribute ListsIn this chapter, predicates for managing attribute lists are described. The system provides thisfeature for the user to organize the graphs in groups and to assign attributes to them. Someuseful attributes could be canonical, typedef, temporary. The user is fully responsible formanaging these lists. The system supports a current attribute list, and all newly createdgraphs are inserted there automatically. Therefore the system provides some predicates formanaging the current attribute list. All existing attribute lists are saved and restored togetherwith the rest of the KB (see 5.2.1).getCurAttrList(-Name)The predicate getCurAttrList/1 uni�es Name with the name of the current attribute list.Arguments:Name AtomsetCurAttrList(+Name)The predicate setCurAttrList/1 sets the current attribute list to Name.Arguments:Name AtomaddAttrList(+Name, +Graph)The predicate addAttrList/2 adds Graph to the attribute list named Name. If there is nosuch attribute list, it will be created.Arguments:Name AtomGraph Graph ID 32

deleteAttrList(?Name, ?Graph)The predicate deleteAttrList/2 removes the Graph from the attribute list named Name.The Graph itself is not deleted. If one or both arguments are variables, during backtrackingall matching pairs of Name and Graph are deleted.Arguments:Name AtomGraph Graph IDgetAttrList(?Name, ?Graph)The predicate getAttrList/2 succeeds if Name is the name of an attribute list Graph iscontained in. If one or both arguments are variables on backtracking all matching pairs arefound. This allows �nding all graphs on a given attribute list or all attribute lists of a givengraph.Arguments:Name AtomGraph Graph IDdeleteAllGraphs(+Name)The predicate deleteAllGraphs/1 deletes all graphs from the knowledge base that are onthe attribute list named Name, and the list is emptied. Name must be completely bound toavoid deleting all graphs on all lists accidentally.Arguments:Name AtomdeleteAllAttrLists(+Graph)The predicate deleteAllAttrLists/1 removes Graph from all attribute lists it is on. It isnot deleted itself. Graph must be completely bound to avoid accidentally deleting all graphson all lists.Arguments:Graph Graph ID 33

5.2 Initializing and Saving the Knowledge Base5.2.1 Loading, Saving and Restoring the Knowledge BaseloadKBase(+File)The predicate loadKBase/1 will load and parse a �le, containing the following relations inprolog syntax.� cg(CG) - CG is a conceptual graph satisfying the linear form, including type and relationde�nitions.� isa(Subtype, Supertype)The current attribute list is initialized with the value defaultAttrList.Arguments:File AtomloadKBasewithconvert(+File)The predicate loadKBasewithconvert/1 reads a �le and converts its content. The user givesthe rules for converting Term1 into Term2:convert(+Term1, +Term2) :- <converting rules>.It is possible to have more then one converting rule but only one rule per Term1. Example:convert(lex(Word,Graph),plex(Word,ID)) :-parseCG(ID,Graph).The current attribute list is initialized with the value defaultAttrList.Arguments:File Atom
34

Working with the system it is important to be able to save and restore sessions. Thereforethe system o�ers two predicates. Saving and restoring includes all parts of the knowledgebase: Table 2: Parts of the Knowldege Base to be saved with saveKBase/1conceptual graphs cg/2cgc/5type hierarchy isa/2type de�nitions typedef/2relation de�nitions relationdef/2individuals ind/3attribute lists attrList/2name of current attribut list curAttrList (global variable)current identi�er nextId (global variable)For the exact format of relations in table 2 see section 3.saveKBase(+File)The predicate saveKBase/1 saves all parts of the knowledge base in File. If File does notexist the system will search for �le 'File.cg'.Arguments:File AtomrestoreKBase(+File)The predicate restoreKBase/1 restores the conceptual graph knowledge base from File. IfFile does not exist the system will search for �le 'File.cg'. It is important that File is a�le that has been created by saveKBase.Arguments:File Atom
35

5.2.2 Parsing Conceptual Graphs in Linear NotationThe system provides a parser which converts the linear form to our internal representation(see section 3). The parser accepts conceptual graphs in linear notation as it is speci�ed inappendix A.parseCG(+LGraph, -GraphID)The predicate parseCG/2 parses the �rst argument LGraph. The identi�er of the parsedgraph will be uni�ed with GraphID and the graph and all concepts will be asserted into theknowledge base. The graph will be added to the current attribute list (if existing).Arguments:LGraph Atom; CG in linear formGraphID Atom5.2.3 Printing the Knowledge BaseThe CGPro system o�ers some predicates for printing the content of the knowledge base. Thepredicates could be class�ed into two categories. The �rst one prints the graphs in internalrepresentation. The other one generates the linear form of the graphs (see appendix A). Forall predicates it is possible to specify the direction of the output by an additional argument(�le name or stream). There is the possibility to direct the output of serveral predicate call tothe same �le, if a stream is given as an argument, which has been open by the user explicitly inan append-mode. Otherwise, the �le will be opened and closed before and after the operation.dumpDBdumpDB(+Stream)The predicates dumpDB/0/1 dump the whole knowledge base as prolog predicates on thecurrent output stream. The di�erent parts of the knowledge base are sorted in the followingorder:� type de�nitions,� relation de�nitions,� graphs� type hierachy de�nition.Arguments:Stream stream or �le name 36

printDBprintDB(+Stream)The predicates printDB/0/1 generate the linear representation of the whole content of theknowledge base. The parts are sorted in the follwing order:� type de�nitions� relation de�nitions� graphs� type hierachyArguments:Stream stream or �le namedumpCG(+Name or ID)dumpCG(+Stream,+Name or ID)The predicates dumpCG/1/2 dump graphs, concepts, type and relation de�nitions in internalrepresentation as prolog predicates. If a graph is part of a type/relation-de�nition then thewhole de�nition will be printed.Note: This is not useful for saving the knowledge base. For this purpose usesaveKBase/1.Arguments:Name or ID GraphId j ConceptId j type de�nition name jrelation de�nition nameStream stream or �le nameprintCG(+Name or ID)printCG(+Stream,+Name or ID)The predicates printCG/1/2 print graphs, concepts, type and relation de�nitions in linearnotation. If a graph is part of a type/relation-de�nition then the whole de�nition will beprinted.Arguments:Name or ID GraphId j ConceptId j type de�nition name jrelation de�nition nameStream stream or �le name 37

dumpTypeH(+Type)dumpTypeH(+Id,+Stream)The predicates dumpTypeH/1/2 dump the type hierarchy as prolog predicates. The conceptidenti�ed by Type is the top of the hierarchy.Arguments:Type type nameStream stream or �le nameprintTypeH(+Type)printTypeH(+Stream,+Type)The predicates printTypeH/0/1/2 print the type hierarchy in extended linear notation. Theconcept identi�ed by Type is the root of the hierarchy. The predicate printTypeH/0 printsthe whole type hierarchy.Arguments:Type type nameStream stream or �le name

38

6 ConclusionThis paper has given a thorough description of a CG representation in Prolog and the basicgraph operations. We have described abstract data types (ADTs) for concepts, graphs, types,referents and individuals. For each ADT, a list of operations has been provided. These datatypes have been used as building blocks for the implementation of all basic CG operations(e.g. copy, maximal join, etc.).A running implementation exists both for SNI and Quintus Prolog. Porting the code to LPA orany other prolog systems will be easy. There are some algorithms that need further re�nement,but the main part is completed. Additional work aims at the development of new algorithmsfor proper handling of complex graphs, and the type and relation expansion/contractionoperations.Although we still have a lot of ideas concerning the environment of CGPro it is already nowa useful tool for comparing and joining graphs as well as dealing with the type hierarchy.Acknowledgement We would like to thank Martin Glockemann and Sven Kr�oger for theirhelpful hints and testing the software.

39

A Linear Form GrammarThe following grammar describes the syntax of the linear form of Conceptual Graphs as it isaccepted by the linear form parser in CGPro. The grammar was developed by the "LinearNotation Group" and published by Michel Wermelinger by an email from 25/09/1994 to theCG mailing list. For further information refer to (Esch et al.1994), however this version di�ersslightly from the grammar realized in CGPro.This section contains extended BNF productions de�ning a grammar for Conceptual GraphLinear Forms and some Extended Linear Forms. The case of letters is only signi�cant withinliterals and symbols (productions 436 and 290).A.1 Meta-Language productionsAlternative ::= Sequence ["j" Sequence]...Sequence ::= Repetition...Repetition ::= Option "..."Option ::= "[" Alternative "]" j ItemItem ::= Terminal j NonTerminal j Description j GroupGroup ::= "f" Alternative "g"Terminal ::= " " " <character>... " " "NonTerminal ::= <identi�er>Description ::= "<" <character>... ">"A.2 Low Level ProductionsStartLiteral ::= " ' "EndLiteral ::= " ' "StartSymbol ::= " " " j " " "EndSymbol ::= " " " j " " "StartLinks ::= "-"EndLinks ::= ","LinkSep ::= "j" j "n"StartConcept ::= "["EndConcept ::= "]"StartRelation ::= "("EndRelation ::= ")" 40

FieldSep ::= ":"StartSet ::= "f"EndSet ::= "g"StartList ::= "<"EndList ::= ">"RefSep ::= ","LeftArc ::= "<-"RightArc ::= "->"LeftArrow ::= "<="RightArrow ::= "=>"Forall ::= "@every"Lambda ::= "@lambda"EndStatement ::= "."StartAnnotation ::= ";"Variable ::= "*"[Identi�er]Not ::= "�"Number ::= Digit [Digit]...Digit ::= "0" j "1" j "2" j "3" j "4" j "5" j "6" j "7" j "8" j "9"Name ::= Identi�er j Number jStartSymbol <any character>... EndSymbolIdenti�er ::= fLetter j " "g [Letter j Digit j "-" j " "]...Letter ::= <character set dependent>A.3 Conceptual Graph ProductionsThe following rules de�ne the linear notation for conceptual graphs (the referent �eld ispresented in the next section). 41

Graph ::= ConceptNode j Relation fConceptLink j ConceptList gConceptNode ::= Concept [RelationLink j RelationList]RelationNode ::= Relation [ConceptLink j ConceptList]ConceptLink ::= Arc ConceptNodeRelationLink ::= Arc RelationNodeConceptList ::= StartLinks ConceptLink [LinkSep ConceptLink]... EndLinksRelationList ::= StartLinks RelationLink [LinkSep RelationLink]... EndLinksConcept ::= [Not] StartConcept TypeField[FieldSep ReferentField] [Annotation] EndConceptRelation ::= StartRelation TypeLabel [Annotation] EndRelationArc ::= [Number] f LeftArc j RightArc j LeftArrow j RightArrow gTypeField ::= TypeLabelTypeLabel ::= SymbolAnnotation ::= StartAnnotation<any character except EndConcept and EndRelation>...A.4 Referent FieldReferentField ::= [Quanti�er] ReferentQuanti�er ::= Forall j Lambda[Number]Referent ::= Description... j CollectionDescription ::= Icon j Index j SymbolCollection ::= Set j ListIcon ::= LiteralIndex ::= "#"[Name] j Variable42

Symbol ::= Graph j NameLiteral ::= StartLiteral <any character>... EndLiteralSet ::= StartSet Referent [RefSep Referent]... EndSetList ::= StartList Referent [RefSep Referent]... EndListA.5 Extended Linear FormsInput ::= Statement...Statement ::= f Graph j TypeDef j RelationDef g EndStatementTypeDef ::= "type" TypeLabel Arg "is" Graph...RelationDef ::= "relation" TypeLabel Args "is" Graph...Arg ::= "(" Variable ")"Args ::= "(" Variable ["," Variable]... ")"

43

IndexaddAttrList/2, 32addGraphRelation/4, 16conceptCategory/2, 13conceptReferent/2, 14conceptSlots/5, 13conceptType/2, 14copy/2, 26copyConcept/2, 13copyGraph/2, 17copyGraph/3, 17deleteAllAttrLists/1, 33deleteAllGraphs/1, 33deleteAttrList/2, 33deleteConcept/1, 13deleteGraph/1, 15deleteGraphRelation/3, 17deleteIndividual/1, 21deleteWholeGraph/1, 15dumpCG/1/2, 37dumpDB/0/1, 36dumpTypeH/1/2, 38equalConcept/2, 13equalGraph/2, 15equalReferent/2, 24equalType/2, 18extendedProjection/3, 29getAttrList/2, 33getCurAttrList/1, 32getRefId/2, 23getRefName/2, 23getRefNumber/2, 22getRefQuant/2, 23getRefScope/2, 24getRefType/2, 22graphConcept/2, 15graphConcepts/2/3, 16graphRelations/2/3, 16individualName/2, 21individualType/2, 21isa/2, 18

join/2/3/4/6, 27loadKBase/1, 34loadKBasewithconvert/1, 34match/2, 28matchReferent/3, 25maxComSubType/3, 19maxComSubType/5, 19maximalJoin/3, 28minComSuperType/3, 19minComSuperType/6, 20modifyGraphRelations/2, 16newConcept/5, 12newGraph/1, 14newGraph/2, 14newIndividual/3, 20parseCG/2, 36printCG/1/2, 37printDB/0/1, 37printTypeH/0/1/2, 38projection/3, 28relationContraction/2/3, 31relationDe�nition/2, 25relationExpansion/2/3, 30restoreKBase/1, 35restrict/3/5, 26saveKBase/1, 35setCurAttrList/1, 32setRefId/3, 23setRefName/3, 23setRefNumber/3, 21setRefQuant/3, 22setRefScope/3, 24setRefType/3, 22simplify/1/2, 27subType/2, 18subType/3, 19typeContraction/2/3, 30typeDe�nition/2, 20typeExpansion/2/3, 30typeList/1, 1844

ReferencesEsch, John, Maurice Pagnucco, Michel Wermelinger, and Heather Pfei�er. 1994. Linear- linear notation interface. In Gerard Ellis and Robert Levinson, editors, ICCS'94 ThirdPEIRCE Workshop: A Conceptual Graph Workbench, pages 45{52, College Park, MD,USA. University of Maryland.Hook, S. and K. Ahmad. 1992. Conceptual graphs and term elaboration: Explicating(terminological) knowledge. Translator's Workbench Project ESPRIT II No. 2315 10, Uni-versity of Surrey, July.Petermann, Heike, Lutz Euler, and Kalina Bontcheva. 1995. CGPro { a PROLOG im-plementation of conceptual graphs. Technical Report FBI{HH{M{252/95, University ofHamburg, October.Sowa, John F. 1984. Conceptual Structures Information Processing in Mind and Machine.Addison-Wesley Publishing Company.Sowa, John F. 1992. Conceptual graphs summary. In Timothy E. Nagle, Janice A. Nagle,Laurie L. Gerholz, and Peter W. Eklund, editors, Conceptual Structures current researchand practice. Ellis Horwood, chapter I 1, pages 3{51.Sowa, John F. 1993. Relating diagrams to logic. In Guy W. Mineau, Bernard Moulin, andJohn F. Sowa, editors, Conceptual Graphs for Knowledge Representation; First Interna-tional Conference on Conceptual Structures, ICCS'93; Quebec City, Canada, August 4-7,1993; Proceedings, pages 1{35. Springer-Verlag, August.Sowa, John F. and Eileen C. Way. 1986. Implementing a semantic interpreter usingconceptual graphs. IBM Journal of Research and Development, 30(1):57{69, Jan.Velardi, Paola, Maria Teresa Pazienza, and Mario De' Giovanetti. 1988. Conceptual graphsfor the analysis and generation of sentences. IBM J. Res. Develop., 32(2):251{267, March.
45

