
Commonality-Based ABox RetrievalThomas Mantay�Abstra
tIn 
ommonality-based information retrieval, the 
ommonalities ofuser-spe
i�ed examples of desired information are used for informa-tion retrieval. As des
ribed in previous literature, su
h a retrievalme
hanism 
an be built using a 
ombination of des
ription logi
 rea-soning servi
es whi
h makes this retrieval te
hnique an interestingresear
h topi
 in the �eld of des
ription logi
 appli
ations. However,as will be shown in this arti
le, the existing te
hnique does not alwaysyield a desirable retrieval result. Therefore, we present a theoreti-
al framework useful for 
ommonality-based information retrieval andother des
ription logi
 appli
ations. Part of this framework is a formalde�nition of the notion of ABox subsumption using the standard se-manti
s for ABoxes and an algorithm for de
iding this problem. Basedon ABox subsumption, we will present an operation for determiningthe least 
ommon subsuming ABox of a set of ABoxes w.r.t. the ex-pressive des
ription logi
s ALENR and ALQ. As a by-produ
t, analgorithm for 
omputing the most spe
i�
 
on
ept of individuals o
-
urring in ABoxes w.r.t. the two mentioned des
ription logi
s will bedeveloped. We present soundness, 
ompleteness, and 
omplexity re-sults and show how the developed reasoning servi
es 
an be used fora variant of 
ommonality-based information retrieval whi
h we 
all
ommonality-based ABox retrieval.1 Introdu
tionTerminologi
al knowledge representation systems based on des
ription logi
shave proven to be a useful means for representing the knowledge of an ap-pli
ation domain in a stru
tured and formally well understood way [2℄. Theknowledge base as part of a terminologi
al knowledge representation system�Labor f�ur K�unstli
he Intelligenz, Universit�at Hamburg, Vogt-K�olln-Stra�e 30, D-22527Hamburg, mantay�informatik.uni-hamburg.de1



usually 
onsists of a terminologi
al and an assertional 
omponent. The ter-minologi
al 
omponent, also 
alled TBox, represents the vo
abulary used inthe assertional 
omponent referred to as the ABox. It 
ontains de�nitionsof 
on
epts whi
h des
ribe sets of individuals. Con
epts are built out ofatomi
 
omponents and roles (representing binary relations between individ-uals) using the 
on
ept 
onstru
tors provided by the underlying des
riptionlogi
 language. For example, the set of grandmothers 
an be des
ribed usingthe atomi
 
on
epts woman and parent and the role has-
hild:woman u (� 1 has-
hild parent):The ABox is a (partial) instantiation of the vo
abulary de�ned in the ter-minologi
al 
omponent and 
ontains assertions relating either individuals to
on
epts, or individuals to ea
h other via roles. For instan
e, it 
an be statedthat the individualMary is 
onsidered to be an instan
e of the 
on
ept motherand that she has a 
hild 
alled Tom:fMary : mother; (Mary;Tom) : has-
hildg:A 
entral feature of terminologi
al knowledge representation systems basedon des
ription logi
s is a set of reasoning servi
es with the ability to dedu
eimpli
it knowledge from expli
itly represented knowledge in the knowledgebase. For instan
e, the subsumption relation between two 
on
epts 
an bedetermined. Intuitively, a 
on
ept C subsumes a 
on
ept D if the set ofindividuals represented by C is a superset of the set of individuals representedby D, i.e. if C is more general than D. Determining the most spe
i�

on
ept (MSC) des
ribes the problem of 
omputing the most spe
i�
 
on
ept(from the in�nite spa
e of all 
on
epts in the des
ription logi
) of whi
ha given individual is an instan
e. For two 
on
epts C and D, the least
ommon subsumer (LCS) operation determines the most spe
i�
 
on
ept(from the des
ription logi
 language) whi
h subsumes C and D. Both theMSC of an individual and the LCS of 
on
epts depend on the underlyingdes
ription logi
 language. Also, reasoning servi
es 
on
erning ABoxes havebeen subje
t to resear
h. Algorithms for 
he
king the satis�ability of ABoxesare among the most prominent ABox reasoning servi
es intensively studiedso far. Intuitively speaking, an ABox is satis�able i� the 
onjun
tion of itsassertions does not lead to a 
ontradi
tion. Given an ABox indidivual and a
on
ept, instantiation des
ribes the problem of determining whether or notthe individual is an instan
e of the 
on
ept. An instantiation algorithm 
anbe used in order to solve the instan
e retrieval problem whi
h des
ribes thetask of 
omputing all instan
es of a given 
on
ept.2



The des
ribed reasoning servi
es 
an be used for 
ommonality-based in-formation retrieval whi
h is a relatively new appli
ation 
ontext for termino-logi
al knowledge representation systems 
iteMantay-TR-99. With this kindof information retrieval, the goal is to provide a user of an information systemwith an example-based query me
hanism. More spe
i�
ally, the \
ommonal-ities" of user-spe
i�ed examples of desired information are used as a retrieval�lter on an underlying database. The database is modeled as an ABox andthe set of database items is modeled by a subset of the set of individualsin the ABox. The 
on
eptual abstra
tions are represented by the MSCs ofthe sele
ted individuals and the notion of 
ommonality is formalized by theLCS operation. Eventually, information retrieval is performed by instan
eretrieval using the LCS 
on
ept.However, two problems o

ur when abstra
ting from ABox individuals to
on
epts by means of the MSC operation. The possible presen
e of ABox
y
les is the reason for the MSC to not exist for all individuals. This problem
an be 
ir
umvented by approximating the MSC of an individual by 
onsid-ering the 
onjun
tion of most spe
i�
 
on
epts in
luded in the TBox of whi
hthe individual is an instan
e. But there is another short
oming from a morepra
ti
al point of view. Due to the MSC abstra
tion, relevant information
on
erning individuals given by the user are �ltered out and thus, 
annot betaken into a

ount in the information retrieval pro
ess subsequently. In thispaper, we present new ABox inferen
e servi
es in order to 
ir
umvent thisproblem.For example, 
onsider a TV information system equipped with a 
ommo-nality-based retrieval me
hanism. In this 
ontext, let us assume the presen
eof a TBox 
ontaining the relevant vo
abulary of the TV world. Furthermore,let A be an ABox su
h thatfArmageddon : s
i�-movie; (Armageddon, Bru
e-Willis) : has-a
tor;Pulp-Fi
tion : a
tion-movie; (Pulp-Fi
tion, Bru
e-Willis) : has-a
tor;Bru
e-Willis : a
torg � A:In the given subset of A we state that Armageddon is an instan
e of the
on
ept s
i�-movie and Pulp-Fi
tion is an instan
e of a
tion-movie. In bothmovies, Bru
e-Willis is starring as an a
tor. The MSCs1 of Armageddon andPulp-Fi
tion are given byms
A(Armageddon) � s
i�-movie u 9 has-a
tor:a
tor andms
A(Pulp-Fi
tion) � a
tion-movie u 9 has-a
tor:a
tor;1In this example, ALENR is assumed to be the underlying des
ription logi
. Thelanguage will be formally introdu
ed later. 3



respe
tively. Assuming movie to be the LCS of s
i�-movie and a
tion-movie,the LCS of the two MSCs,C := movie u 9 has-a
tor:a
toris used for instan
e retrieval on A yielding the set of movies with any a
-tor. The information that Bru
e-Willis is starring in both Armageddon andPulp-Fi
tion is no longer present in C sin
e this fa
t was \lost" in the MSC ab-stra
tion. However, this behavior is 
ertainly undesired for users who prefermovies with this a
tor.Therefore, in this arti
le we present new ABox inferen
e servi
es for
ommonality-based information retrieval where assertional knowledge is in-tegrated in the 
ommonality 
omputation. More spe
i�
ally, after formallyintrodu
ing some important de�nitions and notations in Se
tion 2, we givea de�nition of the notion of ABox subsumption in terms of the standardsemanti
s for ABoxes in Se
tion 3. We also provide an algorithm for de
id-ing ABox subsumption and prove its soundness and 
ompleteness. Based onABox subsumption, in Se
tion 4 we will introdu
e the least 
ommon subsum-ing ABox as an operation whi
h determines the most spe
i�
 ABox (w.r.t.ABox subsumption) whi
h subsumes the ABoxes to whi
h the operation isapplied. As a by-produ
t, an algorithm for 
omputing the MSC of individ-uals o

urring in ABoxes w.r.t. ALENR and ALQ will be developed. We
on
lude with a summary and an outlook on possible future resear
h topi
s.Due to the new ABox inferen
e servi
es, we adapt the 
ommonality-basedinformation retrieval s
enario outlined above. We assume that the databaseis given by a set of ABoxes where ea
h ABox models exa
tly one spe
i�
information item in the database. For instan
e, in the TV information sys-tem the database of TV broad
asts is represented by a set of ABoxes whereea
h ABox models exa
tly one broad
ast. The two movies Armageddon andPulp-Fi
tion 
ould be represented by the ABoxesA := fArmageddon : s
i�-movie; (Armageddon, Bru
e-Willis) :has-a
tor;Bru
e-Willis : a
torg andB := fPulp-Fi
tion : a
tion-movie; (Pulp-Fi
tion, Bru
e-Willis) :has-a
tor;Bru
e-Willis : a
torg;respe
tively. Now we des
ribe how to 
ompute the 
ommonalities of A andB by means of the least 
ommon subsuming ABox operation. In order tosimplify the task, we repla
e the individuals whi
h are subje
t to the LCSAoperation by a 
ommon \an
hor" whi
h formally is a new individual noto

urring in any of the database ABoxes. In our example, the an
hor is4



named Broad
ast and repla
es Armageddon in A, Pulp-Fi
tion in B, and the
orresponding broad
ast individuals in the other database ABoxes. Then,the least 
ommon subsuming ABox of A and B is given byfBroad
ast : movie; (Broad
ast, Bru
e-Willis) : has-a
tor;Bru
e-Willis : a
torg:Eventually, retrieval is performed by �ltering those ABoxes from the databasewhi
h are subsumed by the least 
ommon subsuming ABox. Thereby, theinformation that Bru
e-Willis is an a
tor in both movies 
an be 
onsideredsubsequently sin
e it is still present in the ABox used for retrieval.Whereas we 
onsidered a TV information system as an example, theretrieval me
hanism 
an be applied to a number of appli
ations, e.g. do
-ument retrieval and retrieval on pi
ture databases where the 
ontent of ado
ument/pi
ture is modeled by an ABox. These appli
ations are parti
u-larly interesting for 
ommonality-based ABox retrieval due to the typi
alo

urran
e of ABox individuals. As a pre
ondition for the des
ribed infor-mation retrieval me
hanism, we extend the unique name assumption usuallyadopted for individuals to sets of ABoxes, i.e. individuals with di�erentnames are interpreted as di�erent individuals, even if they o

ur in di�erentABoxes in the database. Also, we take for granted an open world assump-tion for ABoxes, i.e. the truth value of assertional knowledge not expli
itlyrepresented in the ABox is 
onsidered to be unknown. For instan
e, giventhe above ABox A, we 
annot 
on
lude that Bru
e-Willis is the only a
tor inArmageddon.2 PreliminariesIn the following two se
tions, let L be a des
ription logi
 whi
h in
ludes a
onstru
tor for full 
on
ept negation and for whi
h there exists an algorithmfor 
he
king satis�ability of ABoxes w.r.t. L. All 
on
epts and roles men-tioned in the sequel are 
on
epts and roles in L. We also assume that thereexists an interpretation I 
onsisting of a non-empty domain �I and an in-terpretation fun
tion �I for the interpretation of the 
on
epts and roles inL.De�nition 1 (Con
ept Relations) Let C and D be 
on
epts. Then weintrodu
e the following 
on
ept relations:� C is subsumed by D (C v D) i� CI � DI holds for all interpretationsI of C and D. 5



� C is stri
tly subsumed by D (C < D) i� CI � DI holds for allinterpretations I of C and D.� C is equivalent to D (C � D) i� both C v D and D v C hold. 2We will now introdu
e the assertional part of a knowledge base.De�nition 2 (ABox) Assume that there exists an alphabet of symbols, 
alledindividuals, disjoint from the sets of 
on
epts and roles of L. Then we saythat� a 
on
ept assertion is a synta
ti
 expression of the form a : C, and� a role assertion is a synta
ti
 expression of the form (a; b) : R,where a and b are individuals, C is a 
on
ept, and R is a role. An assertionis either a 
on
ept assertion or a role assertion. A �nite set of assertions is
alled an ABox. Ind(A) denotes the set of individuals and Roles(A) denotesthe set of roles o

urring in assertions of A. 2Given a role assertion (a; b) : R in an ABox A, we say that b is an R-su

essor of a in A. If it is 
lear from the 
ontext whi
h ABox is meant,we just say that b is an R-su

essor of a. Note that ; also quali�es for anABox. Now the standard semanti
s for ABoxes will be de�ned starting witha semanti
al 
hara
terization of individuals.De�nition 3 (Interpretation of Individuals) The interpretation fun
-tion �I of an interpretation I for 
on
epts of L is extended to individualsby mapping them to elements of �I su
h that aI 6= bI if a 6= b. 2We 
an now de�ne the semanti
s of ABoxes.De�nition 4 (Semanti
s of an ABox) Let a and b be individuals, C a
on
ept, and R a role. An interpretation I satis�es a 
on
ept assertion a : Ci� aI 2 CI and it satis�es a role assertion (a; b) : R i� (aI ; bI) 2 RI . Wesay that an interpretation I is a model of an assertion � i� I satis�es �. Aninterpretation I is a model of an ABox A i� I satis�es all assertions in A.2An (un-)satis�able ABox is also 
alled (in-)
onsistent. In the next se
tion,we will de�ne the notion of ABox subsumption and provide an algorithm forde
iding the ABox subsumption problem.6



3 ABox SubsumptionBased on the ABox semanti
s, we 
an de�ne the following ABox relations.De�nition 5 (Relations Con
erning ABoxes) Let A and B be ABoxes,a : C and b : D 
on
ept assertions, and (a; b) : R and (
; d) : S role assertions.Then we de�ne the following relations:� a : C is subsumed by b : D (a : C v b : D) i�, for all interpretationsI, I is a model of a : C implies that I is also a model of b : D.� (a; b) : R is subsumed by (
; d) : S [(a; b) : R v (
; d) : S℄ i�, for allinterpretations I, I is a model of (a; b) : R implies that I is also amodel of (
; d) : S.� a : C is equivalent to b : D (a : C � b : D) i� both a : C v b : D andb : D v a : C hold.� (a; b) : R is equivalent to (
; d) : S [(a; b) : R � (
; d) : S℄ i� both(a; b) : R v (
; d) : S and (
; d) : S v (a; b) : R hold.� A is subsumed by B (A v B) i�, for all interpretations I, I is a modelof A implies that I is also a model of B.� A is stri
tly subsumed by B (A < B) i� A v B holds and there existsa model of B whi
h is no model of A.� A is equivalent to B (A � B) i� both A v B and B v A hold. 2In De�nition 5 we use the same symbols for ABox subsumption, stri
tsubsumption, and equivalen
e as for the 
orresponding relations between
on
epts (see De�nition 1). It will be 
lear from the 
ontext whether theserelations refer to ABoxes or 
on
epts. From the pre
eding de�nition we 
animmediately derive the following observations.Proposition 1 Let A and B be ABoxes, a : C and b : D 
on
ept assertions,and (a; b) : R and (
; d) : S role assertions. Then(i) a : C v b : D i� a = b and C v D.(ii) (a; b) : R v (
; d) : S i� a = 
, b = d, and R is a subrole2 of S.2We assume the subrole relationship between two roles to be appropriately de�ned inthe interpretation of the 
on
ept language. 7



(iii) If A = ;, then B v A.(iv) If A is unsatis�able, then A v B.(v) A v A\ B.(vi) A [ B v A. 2The 
laims in Proposition 1 are trivial 
onsequen
es of De�nition 5 and willbe of use subsequently. Noti
e the meaning of (v) and (vi) in the propo-sition: Whereas the 
onjun
tion (disjun
tion) of 
on
epts leads to a morespe
i�
 (general) 
on
ept w.r.t. to 
on
ept subsumption, the 
orrespondingoperation for ABoxes, ABox interse
tion (union), leads to a more general(spe
i�
) ABox w.r.t. ABox subsumption.We will now present a 
al
ulus for de
iding ABox subsumption. Thede
ision pro
edure follows the ideas for de
iding the appli
ability of defaultrules on ABoxes as presented in [7℄. The ABox subsumption problem 
an beredu
ed to the ABox satis�ability problem. More spe
i�
ally, A subsumes Bi� the \negation of ea
h assertion �" in B added to the assertions inA leads toan unsatis�able ABox. Intuitively, the negation of a 
on
ept assertion a : Cwill be the 
on
ept assertion a : :C and the negation of a role assertion 
anbe expressed by an ABox 
onsisting of the two 
on
ept assertions a : 8 R:Aand b : :A where A is a new atomi
 
on
ept not already present in neitherA nor B. Thereby, the 
on
ept assertion a : :C is well-de�ned be
ause alanguage 
onstru
tor for full negation has been presumed to be present inthe underlying des
ription logi
 L.Lemma 1 Let a : C be a 
on
ept assertion, (a; b) : R a role assertion, Aan atomi
 
on
ept, � an assertion in whi
h A does not appear, and I aninterpretation. Then(i) I is a model of a : C i� I is not a model of a : :C.(ii) If I is a model of (a; b) : R, then I is not a model of fa : 8R:A; b : :Ag.(iii) If A = f�; a : 8 R:A; b : :Ag is unsatis�able, then � is of the form(a; b) : R.Proof. I is a model of a : C i� aI 2 CI i� aI =2 �I n CI = (:C)I whi
hproves (i). Now we will prove (ii) by 
ontradi
tion. Suppose I is a modelof (a; b) : R and also a model of fa : 8 R:A; b : :Ag. Sin
e I is a model ofa : 8 R:A and (aI; bI) 2 RI , it follows that bI 2 AI. However, sin
e I is8



also a model of b : :A, we have that bI 2 (:A)I \ AI = ; whi
h leads toa 
ontradi
tion. (iii) will also be proved by 
ontradi
tion. We �rst observethat fa : 8R:A; b : :Ag � A is satis�able. Suppose � is a 
on
ept assertionof the form 
 : C su
h that A does not o

ur as a subexpression in C. Then,there exists a model I of f
 : C; a : 8 R:A; b : :Ag for all 
 2 �I , whi
hagain 
ontradi
ts to our assumption. Now suppose � is a role assertion ofthe form (
; d) : S. If 
 6= a, then there obviously exists a model I off(
; d) : S; a : 8R:A; b : :Ag for all d 2 �I and roles S. Also, if d 6= b, thereexists a model I of f(
; d) : S; a : 8 R:A; b : :Ag for all 
 2 �I and roles S.Finally, if S 6= R, we 
an easily �nd a model I of f(
; d) : S; a : 8R:A; b : :Agfor all 
 2 �I and d 2 �I . This proves that 
 = a, d = b, and S = R and �is of the form (a; b) : R. 2Theorem 1 Let A and B be ABoxes. Then A v B i�, for all � 2 B, thefollowing 
onditions hold:(i) If � is of the form a : C, then A [ fa : :Cg is unsatis�able.(ii) If � is of the form (a; b) : R, then A[fa : 8R:A; b : :Ag is unsatis�able.Proof. We �rst prove \)" (
ompleteness). Suppose A v B. In 
ase B = ;,nothing has to be shown. Therefore, let a : C 2 B and I be a model ofA. Sin
e A v B, we have that I is also a model of B and of a : C be
ausea : C 2 B. By Lemma 1 (i) we know that I is not a model of a : :C andhen
e, I is not a model of A [ fa : :Cg. Now let (a; b) : R 2 B and Ibe a model of A. Sin
e A v B, I is also a model of B and of (a; b) : Rbe
ause (a; b) : R 2 B. A

ording to Lemma 1 (ii), I is not a model offa : 8R:A; b : :Ag and hen
e, I is not a model ofA[fa : 8R:A; b : :Ag. Now\(" (soundness) will be proved. If B = ;, the 
laim follows by Proposition1 (iii). Otherwise, let a : C 2 B, A [ fa : :Cg be unsatis�able, and I be amodel of A. If A[fa : :Cg is unsatis�able and I is a model of A, it followsthat I is not a model of a : :C. By Lemma 1 (i) this means that I is amodel of a : C. Now let (a; b) : R 2 B and let A [ fa : 8 R:A; b : :Ag beunsatis�able. Then I is no model of A [ fa : 8 R:A; b : :Ag. Sin
e A is anatomi
 
on
ept whi
h does not appear in A, we have that, for all � 2 A, theABoxes f�; a : 8 R:Ag and f�; b : :Ag are satis�able. But this implies thatthere exists an � 2 A su
h that f�; a : 8 R:A; b : :Ag is unsatis�able. ByLemma 1 (iii) it follows that � is of the form (a; b) : R. Hen
e, I is also amodel of (a; b) : R, whi
h 
ompletes the proof. 2The fun
tion abox-subsumes implements an ABox subsumption test givenABoxes A and B w.r.t. L . 9



Algorithm 1 abox-subsumes(A;B)for all � 2 B doif � is of the form a : C thennot(abox-satisfiable(A [ fa : :Cg))else if � is of the form (a; b) : R then// let A be a new atomi
 
on
ept o

urring neither in A nor in Bnot(abox-satisfiable(A [ fa : 8 R:A; b : :Ag))end ifend forTheorem 2 Let A and B be ABoxes w.r.t. L. Then abox-subsumes(A;B)terminates and returns true i� B v A.Proof. The termination of abox-subsumes follows from the termination ofthe fun
tion abox-satis�able, whi
h implements the ABox satis�ability test.In Algorithm 1 we 
he
k, for every 
on
ept assertion a : C (role assertion(a; b) : R) in B, whether the ABox A[ fa : :Cg (A[ fa : 8R:A; b : :Ag) isunsatis�able. Hen
e, the 
laim is a 
onsequen
e of Theorem 1. 2Theorem 3 The subsumption problem for ABoxes w.r.t. L is at most as
omplex as ABox satis�ability 
he
king for ABoxes w.r.t. L.Proof. A

ording to Theorem 1, it 
an be de
ided by jBj ABox satis�abil-ity tests if A is subsumed by B. Hen
e, the number of satis�ability tests ispolynomial in the length of B. This shows that the 
omplexity of the ABoxsubsumption problem only depends on the 
omplexity of de
iding ABox sat-is�ability of ABoxes w.r.t. L. 2The ABox satis�ability problem has been studied for a variety of des
rip-tion logi
 languages. For ALCNR [1℄ and ALCQ [4℄, algorithmus usingexponential spa
e in the size of the ABox were proposed. In [3℄, an algo-rithm for 
he
king satis�ability of ABoxes w.r.t. ALCNHR+ is presentedusing exponential spa
e in the size of the ABox as well. Prominent featuresof the des
ription logi
 ALCNHR+ are number restri
tions, role hierar
hies,transitively 
losed roles, and generalized 
on
ept in
lusions. For ABoxesw.r.t. the same des
ription logi
 language augmented by inverse roles andquali�ed number restri
tions, ALCHQIR+ , Horro
ks, Sattler, and Tobies [5℄showed that satis�ability 
he
king is de
idable however they do not give alower bound 
omplexity. Presumably, due to the existen
e of role hierar
hies,ABox satis�ability 
he
king for ALCNHR+ and ALCHQIR+ is no longer inPspa
e but in Exptime. 10



In this se
tion, we de�ned the notion of ABox subsumption for ABoxesw.r.t. to a des
ription logi
 L and provided an algorithm to de
ide this prob-lem. Thereby, only two requirements are imposed on L: A 
onstru
tor forfull 
on
ept negation must be present and a sound and 
omplete algorithmfor 
he
king ABox satis�ability must be available for ABoxes w.r.t. L. In-stead of the expli
it presen
e of a full negation operation, it suÆ
es if L isa sublanguage of another des
ription logi
 ful�lling the two requirements.Subsequently, we will make use of this property. We also proved soundnessand 
ompleteness of the ABox subsumption algorithm and proved that, eventhough ABox subsumption 
an be redu
ed to ABox satis�ablity 
he
king,the problem does not be
ome more 
omplex. Subsequently, the results ofthis se
tion will play an important role in the de�nition and 
omputation ofa least 
ommon subsuming ABox operation.4 Least Common Subsuming ABoxIn this se
tion, we are interested in the inferen
e task of 
omputing the LCSAof ABoxes w.r.t. a des
ription logi
 L. As will be dis
ussed in more detailthroughout this se
tion, the algorithm for LCSA 
omputation presented hererequires the presen
e of an LCS algorithm for 
on
epts of L. Sin
e ALENRand ALQ are two of the most expressive des
ription logi
s for whi
h anLCS operation has been presented [6℄, we restri
t the presentation of theLCSA operation to ABoxes w.r.t. ALENR and ALQ. The des
ription logi
ALENR (ALQ) is a sublanguage of ALCNR (ALCQ) whi
h both in
ludea full 
on
ept negation operation. Moreover, Bu
hheit, Donini, and S
haerfshowed in [1℄ that ABox satis�ability 
he
king for ABoxes w.r.t. ALCNRis a de
idable problem. Hollunder and Baader proved the same result forALCQ [4℄. Let us �rst formally introdu
e syntax and semanti
s of these twodes
ription logi
s.De�nition 6 (Syntax of ALENR) Let C be a set of atomi
 
on
epts andR a set of atomi
 roles disjoint from C. ALENR 
on
epts are re
ursivelyde�ned as follows:� The symbols > and ? are ALENR 
on
epts (top 
on
ept, bottom 
on-
ept).� A and :A are ALENR 
on
epts for ea
h A 2 C (atomi
 
on
ept,negated atomi
 
on
ept).� Let C and D be ALENR 
on
epts, R 2 R an atomi
 role, and n 2IN [ f0g. Then 11



{ C uD (
on
ept 
onjun
tion),{ 9R:C (existential role quanti�
ation),{ 8R:C (universal role quanti�
ation),{ (� n R) (�-restri
tion), and{ (� n R) (�-restri
tion)are also ALENR 
on
epts.� If R and S are roles, then RuS is a role in ALENR (role 
onjun
tion).2De�nition 7 (Syntax of ALQ) Let C be a set of atomi
 
on
epts and R aset of roles disjoint from C. ALQ 
on
epts are re
ursively de�ned as follows:� The symbols > and ? are ALQ 
on
epts (top 
on
ept, bottom 
on
ept).� A and :A are ALQ 
on
epts for ea
h A 2 C (atomi
 
on
ept, negatedatomi
 
on
ept).� Let C and D be ALQ 
on
epts, R 2 R a role, and n 2 IN[ f0g. Then{ C uD (
on
ept 
onjun
tion),{ (� n R C) (quali�ed �-restri
tion), and{ (� n R C) (quali�ed �-restri
tion)are also ALQ 
on
epts. 2The languages ALENR and ALQ 
an be extended to ALCNR andALCQ by adding a 
onstru
tor for full 
on
ept negation: :C. The semanti
sof ALENR and ALQ 
on
epts is de�ned in terms of an interpretation.De�nition 8 (Interpretation, Model, Satis�ability) An interpretationI = (�I ; �I) of an ALENR or ALQ 
on
ept 
onsists of a non-empty set�I (the domain of I) and an interpretation fun
tion �I. The interpretationfun
tion maps every atomi
 
on
ept A to a subset AI � �I and every roleR to a subset RI � �I � �I . The interpretation fun
tion is re
ursivelyextended to a 
omplex ALENR or ALQ 
on
ept as follows. Assume thatCI ; DI and RI ; SI are already given and n 2 IN [ f0g. Then� >I := �I,� ?I := ;, 12



� (:A)I := �I nAI ,� (C uD)I := CI \DI,� (R u S)I := RI \ SI,� 9 R:CI := fa 2 �Ij9b : (a; b) 2 RI ^ b 2 CIg;� 8 R:CI := fa 2 �Ij8b : (a; b) 2 RI ) b 2 CIg;� (� n R)I := fa 2 �Ij℄fbj(a; b) 2 RIg � ng,� (� n R)I := fa 2 �Ij℄fbj(a; b) 2 RIg � ng,� (� n R C)I := fa 2 �Ij℄faRI \ CIg � ng, and� (� n R C)I := fa 2 �Ij℄faRI \ CIg � ng,where aRI := fb 2 �I j(a; b) 2 RIg. An interpretation I is a model of anALENR or ALQ 
on
ept C i� CI 6= ;. If C has a model, C is 
alledsatis�able (or 
onsistent). 2Note that the 
onstru
tor > 
an be expressed by (� 0 R) in ALENRand by (� 0 R >) in ALQ. The 
on
ept ? is expressible by A u :A inboth des
ription logi
 languages. The semanti
s 
an be extended to the
onstru
tor for full 
on
ept negation by de�ning (:C)I := �I n CI.For some explanations of the algorithms presented subsequently, we in-trodu
e the 
on
ept depth.De�nition 9 (Depth) Let C be either an ALENR or ALQ 
on
ept. Thenthe depth of C is re
ursively de�ned over its stru
ture.� If C = 9R:C 0, C = 8R:C 0, C = (� nR C 0), or C = (� nRC 0), thendepth(C) = 1 + depth(C 0).� If C = C1 u � � � u Cn, then depth(C) = max(fdepth(Ci)j1 � i � ng).� In all other 
ases, depth(C) = 0. 2With these preparations, we will now de�ne the least 
ommon subsumingABox of A1; : : : ;An as the most spe
i�
 ABox (w.r.t. ABox subsumption)whi
h subsumes A1; : : : ;An. 13



De�nition 10 (Least Common Subsuming ABox) Let A1; : : : ;An; n �1; be ABoxes. Then we de�ne the least 
ommon subsuming ABox (LCSA)of A1; : : : ;An asl
sa(A1; : : : ;An) := fA j A1 v A ^ � � � ^ An v A^8A0 : A1 v A0 ^ � � � ^ An v A0 )A v A0g:2From De�nition 10 it follows that l
sa is an asso
iative and 
ommutativefun
tion and l
sa(A1; : : : ;An) is equivalent to l
sa(A1; l
sa(A2; : : : l
sa(An�1;An) : : : )).Therefore, we will restri
t the attention to the problem of 
omputing theLCSA of two ABoxes sin
e the LCSA of n > 2 ABoxes 
an be obtained byn � 1 iterated appli
ations of the binary LCSA operation. In addition, we
an derive the following 
onsequen
es.Proposition 2 Let A1;A2;B1; : : : ;Bn be ABoxes. Then(i) If A2 v A1, then l
sa(A1;A2) � A1.(ii) 8B;B0 2 l
sa(B1; : : : ;Bn) : B � B0.Proof. (i) is an obvious 
onsequen
e of De�nition 10. To see (ii), supposeB;B0 2 l
sa(B1; : : : ;Bn) with B 6� B0. Then, a

ording to Proposition 1(vi), B [ B0 is a more spe
i�
 subsumer of B1; : : : ;Bn than both B and B0and hen
e, B (resp. B0) 
annot be an LCSA of B1; : : : ;Bn whi
h leads to a
ontradi
tion. 2Proposition 2 (ii) states a uniqueness property similar to the one for theLCS. If the LCSA is not empty, all pairs of its elements are equivalent. There-fore, if it is 
onvenient, we will 
onsider l
sa(A1; : : : ;An) as a fun
tion whi
hreturns an ABox rather than a set of ABoxes in the following. Sometimes,the LCSA is given by the empty set of ABoxes. In this 
ase we will say thatLCSA is unde�ned. We will postpone the treatment of an unde�ned LCSAand �rst deal with the problem of how to 
ompute the LCSA in the 
ase thatit exists.Before starting our analysis, it will be 
onvenient to de�ne the LCS ofC1; : : : ; Cn whi
h are all either ALENR or ALQ 
on
epts as the most spe-
i�
 
on
ept whi
h subsumes C1; : : : ; Cn.De�nition 11 (Least Common Subsumer) Let C1; : : : ; Cn; n � 1; be alleither ALENR or ALQ 
on
epts. Then we de�ne the set of least 
ommonsubsumers of C1; : : : ; Cn as:l
s(C1; : : : ; Cn) := fE j C1 v E ^ � � � ^ Cn v E ^8E 0 : C1 v E 0 ^ � � � ^ Cn v E 0 ) E v E 0g: 214



In [6℄, we provide an algorithm for 
omputing the LCS of C1; : : : ; Cn. Itwill also prove helpful to introdu
e an operation for the most spe
i�
 role ofroles R1; : : : ; Rn.De�nition 12 (Most Spe
i�
 Role) Let R1; : : : ; Rn be roles in eitherALENR or ALQ. Then we de�ne the most spe
i�
 superrole (MSS) ofR1; : : : ; Rn as:mss(R1; : : : ; Rn) := fR j R1 v R ^ � � � ^ Rn v R ^8R0 : R1 v R0 ^ � � � ^Rn v R0 ) R v R0g: 2From this de�nition we 
an derive a simple method for 
omputing theMSS of a number of roles.Proposition 3 Let R1; : : : ; Rn be roles in ALENR with Ri := Ri1 u � � � uRimi and Ri := fRi1; : : : ; Rimig for all i 2 f1; : : : ; ng. Thenmss(R1; : : : ; Rn) := (uR2R1\���\RnR if R1 \ � � � \Rn 6= ;; andunde�ned otherwise. 2Obviously, for roles R1; : : : ; Rn in ALQ, mss(R1; : : : ; Rn) is given by R1i� all pairs Ri and Rj are identi
al and unde�ned otherwise. This is truebe
ause there exists no role forming 
onstru
tor in ALQ. In the sequel, wewill provide an algorithm for 
omputing the LCSA of ABoxes A and B. Theidea is based on the following fa
ts. Given � 2 A and � 2 B where � and �are both either 
on
ept assertions or role assertions, we 
an 
ompute a newassertion 
 su
h that 
 is the most spe
i�
 assertion (w.r.t. the subsumptionde�nition for assertions in De�nition 5) whi
h subsumes � and �. In general,su
h a 
 may not exist. If it exists, it is 
onvenient to transform A andB into a form su
h that 
 
an easily be determined by pairwise 
omparing
ompatible assertions to one another. Thereby, two assertions are 
ompatibleto ea
h other if both assertions are either 
on
ept assertions whi
h involvethe same individual or role assertions whi
h involve the same individuals,and the MSS of the involved roles is de�ned. In su
h a 
ase, we will say thatthe new assertion 
 emerges from � and � by appli
ation of the LCSA rules.The following proposition summarizes these observations.Proposition 4 Let a : C and a : D be 
on
ept assertions and (a; b) : R and(a; b) : S be role assertions su
h that mss(R; S) is de�ned. Then:(i) a : C v a : l
s(C;D), a : D v a : l
s(C;D), and, for all assertions 
with a : C v 
 and a : D v 
, we have that a : l
s(C;D) v 
.15



(ii) (a; b) : R v (a; b) : mss(R; S), (a; b) : S v (a; b) : mss(R; S), and, forall assertions 
 with (a; b) : R v 
 and (a; b) : S v 
, we have that(a; b) : mss(R; S) v 
. 2The two observations are immediate 
onsequen
es of the de�nition ofABox subsumption (De�nition 5), the de�nition of LCS (De�nition 11) andthe de�nition of MSS (De�nition 12).Following the line des
ribed above, we apply the LCSA rules to everypair of 
ompatible assertions � 2 A and � 2 B and obtain a set of newassertions forming an ABox whi
h is equivalent to the LCSA of A and B.Let us illustrate this idea by an example.Example 1 LetA := fa : A u A0; (a; b) : (R u S); (
; d) : (R u S)g andB := fa : A u A00; (a; b) : (R u S 0); b : A u A0g:Then, for the 
ompatible 
on
ept assertions a : AuA0 2 A and a : AuA00 2 B,we set 
1 := a : l
s(A u A0; A u A00). Furthermore, given the 
ompatible roleassertions (a; b) : (R u S) 2 A and (a; b) : (R u S 0) 2 B, we set 
2 :=(a; b) : mss(R u S;R u S 0). All other pairs of assertions are in
ompatible toea
h other. Hen
e, we yield the ABox f
1; 
2g � fa : A; (a; b) : Rg whi
h isequivalent to l
sa(A;B).For the ABoxes A and B 
onsidered in Example 1, it is possible to 
om-pute l
sa(A;B) in the des
ribed way. However, as the following exampleshows, simply applying the LCSA rules does not solve the problem in gen-eral.Example 2 Let A := fa : 9R:Ag andB := f(a; b) : (R u S)g:Then, applying the LCSA rules to A and B yields the empty ABox. However,the LCSA of A and B is equivalent to the ABox fa : 9R:>g whi
h is stri
tlysubsumed by ;. This problem 
an be 
ir
umvented by adding the 
on
eptassertion a : 9 (R u S):> to B yielding B0. Obviously, the new 
on
eptassertion is a logi
al 
onsequen
e of B and hen
e, the transformation from Bto B0 is semanti
s-preserving. Now the LCSA of A and B 
an be determinedby applying the LCSA rules to A and B0 in the usual way.16



In Example 2, the 
on
ept appearing in the added assertion a : 9(RuS):>is the most spe
i�
 
on
ept of the individual a w.r.t. B. Generalizing thedes
ribed idea, before applying the LCSA rules, we add to A (B) the mostspe
i�
 
on
ept of a (b) for all individuals a (b) o

urring in A (B).De�nition 13 Let A be an ABox, a 2 Ind(A), and C a 
on
ept. Then wesay that a is an instan
e of C i� aI 2 CI holds for all models I of A.The notion of instan
es of 
on
epts 
an now be used to de�ne the mostspe
i�
 
on
ept of an ABox individual.De�nition 14 (Most Spe
i�
 Con
ept) Let L be a des
ription logi
, Aan ABox w.r.t. L, and a 2 Ind(A). Then we de�ne the most spe
i�
 
on
ept(MSC) of a w.r.t. A asms
A(a) := fC 2 L j a is an instan
e of C ^8C 0 2 L : a is an instan
e of C 0 ) C v C 0g: 2From De�nition 14 we 
an derive two important properties of the MSC.One of them refers to so 
alled 
y
li
 ABoxes whi
h will be introdu
ed now.De�nition 15 (Path and Cy
le) Let A be an ABox and n 2 IN. Thenwe introdu
e the following terms:� A subset A0 � A is 
alled a path of length n of A i� A0 is of theform f(a0; a1) : R0; : : : ; (an�1; an) : Rn�1g where, for i; j 2 f0; : : : ; ng,ai 6= aj holds whenever i 6= j.� A0 � A is 
alled a 
y
le of length n of A i� A0 is of the form f(a0; a1) :R0; : : : ; (an�2; an�1) : Rn�2; (an�1; a0) : Rn�1g. If A 
ontains a 
y
le,we also say that A is 
y
li
, otherwise A is non-
y
li
.� A has maximal 
y
le (path) length n i� A 
ontains a 
y
le (path) oflength n and all other 
y
les (paths) in A are of length smaller than orequal to n.� By default, we set the maximal 
y
le (path) length of A to 0 in 
ase Ais non-
y
li
 (has no path). 2
17



Note that, a

ording to De�nition 15, loops are also 
onsidered as 
y
les.For example, the ABox f(a; a) : Rg is 
y
li
 with maximal 
y
le length of 1.For a given ABox A, it is easy to 
ompute A's maximal 
y
le and path lengthby an algorithm. We omit the te
hni
al details here. From De�nitions 14and 15 we 
an derive important properties of the MSC. It is easy to see thatms
A(a) = ; if A is unsatis�able. Consequently, for 
omputing the MSCof an individual in A, we expe
t A to be at least satis�able. The followingproposition shows however that this is not the only reason for the MSC tobe the empty set.Proposition 5 Let A be an ABox and a 2 Ind(A). Then,(i) for all individuals a 2 Ind(A) and all C;C 0 2 ms
A(a), C and C 0 areequivalent, and(ii) ms
A(a) does not exist i� A is unsatis�able or there exist a1; : : : ; am;am+1; : : : ; an�1 2 Ind(A) and R0; : : : ; Rm; Rm+1; : : : ; Rn�1 su
h thatf(a; a1) : R0; : : : ; (am; am+1) : Rm; : : : ; (an�1; am) : Rn�1g � A.Proof. We prove (i) by 
ontradi
tion. If A is unsatis�able, then ms
A(a) = ;and nothing needs to be shown. Otherwise, let C;C 0 2 ms
A(a) and supposeC 6� C 0. Then, a is an instan
e of CuC 0 and both CuC 0 < C and CuC 0 < C 0hold, whi
h is a 
ontradi
tion to C;C 0 2 ms
A(a). Now we prove \(" of(ii) by 
ontradi
tion. If A is unsatis�able, it is obvious that ms
A(a) doesnot exist. Otherwise, let f(a; a1) : R0; : : : ; (am; am+1) : Rm; : : : ; (an�1; am) :Rn�1g � A and suppose ms
A(a) exists. Obviously, we have that ms
A(am)exists if ms
A(a) exists. We will now show that ms
A(am) does not exist.In order to simplify the proof, we de�ne bi := am+i and Ti := Rm+i, fori 2 f0; : : : ; n �m � 1g. Assume that there exists a 
on
ept C 2 ms
A(b0).Then we re
ursively de�ne a series of 
on
epts Ci; i = 0; 1; 2; : : : ; as follows:C0 := ms
A(b0); and (1)Ci+1 := ms
A(b(i mod (n�m))) u 9 T(i mod (n�m)):Ci: (2)The 
on
epts Ci are well-de�ned sin
e, for every individual b(i mod (n�m)) o
-
urring in (1) and (2), ms
A(b(i mod (n�m))) is de�ned (be
ause there is a pathfrom a to b(i mod (n�m)) and ms
A(a) is de�ned a

ording to our assumption).The sets Ci; i = 0; 1; 2; : : : ; are 
onstru
ted in su
h a way that, for all i 2 IN,a is an instan
e of Ci and Ci+1 < Ci. Therefore, there exists an i 2 IN su
hthat b0 is an instan
e of Ci and depth(Ci) > depth(C). But this implies thatC 6v Ci in 
ontradi
tion to the assumption that C 2 ms
A(b0). Now we willprove \)" by 
ontradi
tion. Suppose ms
A(a) does not exist and let A be18



a satis�able ABox su
h that there exists no f(a; a1) : R0; : : : ; (am; am+1) :Rm; : : : ; (an�1; am) : Rn�1g � A. Consequently, there are obviously onlypaths emerging from a. Let p be the length of the longest of these pathsand let A0 be the prepro
essing 
omplete3 version of A in whi
h no pair ofidenti
al role assertions is present. If A is an ABox w.r.t. ALENR, then,for b 2 Ind(A0) and i 2 IN, we re
ursively de�ne a fun
tion f(b; i) as follows:f(b; 0) := > u ub:C2A0C andf(b; i+ 1) := f(b; 0) u uR2Roles(A0)(> u (� jf(b; 
) : R 2 AgjR)):From this de�nition it follows that, for all i 2 f1; : : : ; pg, f(a; i) is well-de�ned (sin
e no 
y
les 
an be rea
hed by any path emerging from a), a isan instan
e of f(a; p), and the 
on
ept f(a; p) is the most spe
i�
 
on
eptwith this property. Hen
e, f(a; p) is equivalent to ms
A(a) in 
ontradi
tionto our assumption. In the 
ase that A is an ABox w.r.t. ALQ, we de�nef(b; 0) := > u ub:C2A0C andf(b; i+ 1) := f(b; 0) u uR2Roles(A0)(> u uf(b;
1):R1;::: ;(b;
q):Rq jRi=Rg�A0(� q Rl
s(f(
1; i); : : : ; f(
q; i)))):Again, for all i 2 f1; : : : ; pg, f(a; i) is well-de�ned, a is an instan
e of f(a; p),and the 
on
ept f(a; p) is the most spe
i�
 
on
ept with this property. Hen
e,f(a; p) is equivalent to ms
A(a), whi
h again 
ontradi
ts to our assumption.2Proposition 5 (i) states a similar uniqueness 
riteria for the MSC as forthe LCSA for ABoxes. From the se
ond part of the proposition it followsthat, for an individual a, ms
A(a) does not exist if either A is unsatis�ableor there emerges some path from a whi
h terminates in any of A's 
y
les.These properties of the MSC lead to the following two 
onsequen
es. Dueto (i), we will 
onsider the MSC of an individual a o

urring in A to be a
on
ept rather than a set of 
on
epts if ms
A(a) 6= ;. On the other hand, we
onsider ms
A(a) to be unde�ned if ms
A(a) = ;. As another 
onsequen
e,the above des
ribed idea for 
omputing the LCSA of ABoxes does not workin all 
ases. We will now illustrate with an example how to 
ir
umvent thisproblem.3In the prepro
essing 
omplete version of an ABox A, the 
on
epts C whi
h appearin 
on
ept assertions of the form a : 9 R:C; a : 8 R:C; a : (� n R C), and (� n R C)are spread over a's R-su

essors, and 
on
ept and role 
onjun
tions are de
omposed. Theprepro
essing 
ompletion will be formally de�ned in De�nition 19.19



Example 3 LetA := f(a0; a1) : R0; (a1; a2) : R1; (a2; a0) : R2g andB1 := f(a0; a1) : R0; (a1; a0) : R1g:Then both A and B1 are 
y
li
 and ms
A(a) does not exist for all a 2fa0; : : : ; a2g and ms
B1(a) does not exist for all b 2 fa0; a1g. Despite,l
sa(A;B1) is given by an ABox equivalent to fa1 : 9 R1:>; (a0; a1) : R0g.For determining l
sa(A;B1), we 
an \approximate" the MSC of ea
h indi-vidual in Ind(A) [ Ind(B1) up to a depth whi
h is equal to the sum of thelengths of the longest 
y
le in A and the one of B. Sin
e the maximal lengthof A's 
y
les is 3 and the maximal length of B's 
y
les is 2, we de�ne:A0 := fa0 : 9 R0:(9 R1:(9 R2:(9R0:(9R1:>))));a1 : 9R1:(9R2:(9 R0:(9 R1:(9 R2:>))));a2 : 9R2:(9R0:(9 R1:(9 R2:(9 R0:>))))g [ A andB01 := fa0 : 9 R0:(9 R1:(9 R0:(9R1:(9R0:>))));a1 : 9R1:(9R0:(9 R1:(9 R0:(9 R1:>))))g [ B:Sin
e the additional 
on
ept assertions in A0 (B01) are logi
al 
onsequen
es ofA (B1), the transformation is semanti
s-preserving and A0 � A (B01 � B1)is guaranteed. Now l
sa(A;B1) 
an be 
omputed by applying the LCSA rulesto A0 and B01 in the usual way.Example 3 shows that, if the LCSA of two satis�able ABoxes exists, butthe MSC of an individual a does not exist, the MSC 
an be repla
ed by anMSC approximation. More spe
i�
ally, given an ABox A (B) with maximal
y
le length n (m), maximal path length p (q), and r (s) as the maximum
on
ept depth over all 
on
epts o

urring in 
on
ept assertions in A (B), forall individuals in A (B), we add a : C to A (B) where C is the most spe
i�

on
ept of depth n +m + p+ q + r + s of whi
h a is an instan
e. However,the following example shows that there is another ex
eption to be 
onsideredin the LCSA determination.Example 4 (Example 3 
ontinued) Let A be de�ned as in Example 3and B2 := fa0 : 9R0:(9R1:(9 R2:(9 R0:>)))g:Again, the sum of the lengths of the maximal 
y
le length of both ABoxes is3 (be
ause A's maximal 
y
le length is 3 and B2 is non-
y
li
) and thus, we20




an de�ne A0 := fa0 : 9R0:(9 R1:(9 R2:>));a1 : 9 R1:(9R2:(9R0:>));a2 : 9 R2:(9R0:(9R1:>))g [ Aand apply the LCSA rules to A0 and B2 yielding an ABox equivalent toC := fa0 : 9R0:(9R1:(9R2:>))g:The ABox C is a subsumer of both A and B2, but it is not the most spe
i�
one. The LCSA of A and B2 is given byl
sa(A;B2) � B2where B2 < C. The reason for this undesired result is due to the fa
t that theonly 
on
ept assertion in B2 involves a 
on
ept of depth four whi
h is largerthan the sum of the lengths of the longest 
y
le in A and the one in B2, andthis has an e�e
t on determining the LCSA. If we approximate ms
A(a0),ms
A(a1), and ms
A(a2) up to a 
on
ept of depth four, we getA00 := fa0 : 9R0:(9 R1:(9 R2:(9 R0:>)));a1 : 9 R1:(9R2:(9R0:(9R2:>)));a2 : 9 R2:(9R0:(9R1:(9R2:>)))g [ A:As in Example 3, semanti
s preservation is guaranteed by the transformationand thus, A00 � A holds. Now we 
an easily 
ompute l
sa(A;B2) by applyingthe known LCSA rules to A00 and B2 yielding an ABox equivalent to B2 asdesired.The examples suggest the following algorithm for 
omputing the LCSAof two ABoxes A and B. For all a 2 Ind(A) and b 2 Ind(B), we add to A Bthe additional 
on
ept assertions a : ms
A(a) [b : ms
B(b)℄ if a : ms
A(a) [b :ms
B(b)℄ exists. Otherwise, we add to A (B) the MSC approximation of a (b)des
ribed in Example 4. As argued before, this transformation is semanti
s-preserving and thus, equivalen
e between A (B) and its transformed ABox A0(B0) is guaranteed. Finally, we apply the LCSA rules to A0 and B0 obtainingthe LCSA of A and B. We will now formalize our idea to whi
h degree theMSC needs to be approximated.De�nition 16 (ABox depth) Let A be an ABox, 
A be A's maximal 
y
lelength, and pA the length of the longest path in A. Then we de�ne the depthof A as: depth(A) := 
A + pA +max(fdepth(C)ja : C 2 Ag): 221



Intuitively, the depth of an ABox A is given by the sum of the followingnumeri
al values: its maximal 
y
le length (
A), the length of the longestpath o

urring inA (pA), and the value of the largest depth over the 
on
eptsinvolved in A's 
on
ept assertions.De�nition 17 (Most Spe
i�
 Con
ept Approximation) Let L be ei-ther the des
ription logi
 ALENR or ALQ, A an ABox w.r.t. L, a 2Ind(A), and d 2 IN. Then we de�ne the most spe
i�
 
on
ept approxima-tion (MSC approximation) of a w.r.t. A and d asms
-approxA;d(a) := fC 2 L j depth(C) � d ^ a is an instan
e of C ^8C 0 2 L : depth(C 0) � depth(C) ^ a isan instan
e of C 0 ) C v C 0g: 2Intuitively, the MSC approximation of an individual a o

urring in anABox A is the set of most spe
i�
 
on
epts of whi
h a is an instan
e, wherethe depth of the 
on
epts is less than or equal to d. Sin
e all pairs of 
on
eptsofms
-approxA;d(a) are equivalent as in the 
ase of the MSC, we will 
onsiderms
-approxA;d(a) as a 
on
ept rather than a set of 
on
epts. Obviously, ford = depth(A), ms
-approxA;d(a) 
oin
ides with ms
A(a) if ms
A(a) exists.The following example shows that it is 
onvenient to put an ABox into aspe
i�
 form before 
omputing the MSC or the MSC approximation of itsindividuals.Example 5 Let A := f(a; b) : R; 8R:A; b : Bg:Then, ms
A(b) is equivalent to A u B. This result follows sin
e b is an R-su

essor of a in A and, due to a : 8 R:A, b has the property A u B. If weadd the 
on
ept assertion b : A to A, ms
A(b) 
an easily be determined.Example 5 shows that before applying the pro
edure for 
omputing theMSC of an individual a 2 Ind(A), we have to transform A into a form su
hthat relevant information regarding a is \transported" to a. We will nowpresent a simple method for transforming an ABox into an equivalent ABoxall of whose individuals have this property. The idea is to introdu
e prepro-
essing rules similar to the rules presented in [4℄ for obtaining a prepro
essing
omplete ABox.De�nition 18 (Prepro
essing Rules) For an ABoxA w.r.t. either ALENRor ALQ, we de�ne the prepro
essing rules as follows:22



1. A!u fa : C1; a : C2g [ A if(i) a : C1 u C2 2 A and(ii) fa : C1; a : C2g 6� A,2. A!9 fb : Dg [ A if(i) fa : 9 R:C; (a; b) : Rg � A,(ii) neither b : C 2 A nor there exists an E 2 ALENR su
h thatb : E 2 A and E � :C,(iii) A [ fb : Dg is satis�able, and(iv) D = C or D = E if there exists an E 2 ALENR su
h thatE � :C,3. A!8 fb : Cg [ A(i) if fa : 8R:C; (a; b) : Rg � A and(ii) b : C =2 A,4. A!� fb : Dg [ A(i) fa : (� n R C); (a; b) : Rg � A,(ii) neither b : C 2 A nor there exists an E 2 ALQ su
h that b : E 2A and E � :C,(iii) A [ fb : Dg is satis�able, and(iv) D = C or D = E if there exists an E 2 ALQ su
h that E � :C,5. A!� fb : Dg [ A(i) fa : (� n R C); (a; b) : Rg � A,(ii) neither b : C 2 A nor there exists an E 2 ALQ su
h that b : E 2A and E � :C,(iii) A [ fb : Dg is satis�able, and(iv) D = C or D = E if there exists an E 2 ALQ su
h that E � :C,and6. A!Ru f(a; b) : R; (a; b) : Sg [ A if(i) (a; b) : (R u S) 2 A and(ii) f(a; b) : R; (a; b) : Sg 6� A.23



2De�nition 19 Let A be an ABox and let A := fA1; : : : ;Ang be the set ofABoxes emerging from A by exhaustive appli
ations of the prepro
essing rulesin De�nition 18. Then we de�ne A's prepro
essing 
ompletion asA0 := \B2AB: 2Let us dis
uss the prepro
essing rules and the de�nition of a prepro
essing
ompletion. The !u-rule de
omposes 
on
ept assertions involving 
on
ept
onjun
tions in the usual way. In 
ase, a 
on
ept assertion of the forma : 9 R:C is present and a has an R-su

essor b in A, the !9-rule non-deterministi
ally 
he
ks whether b : C and/or a 
on
ept assertion equivalentto b : :C 
an be added to A while preserving satis�ability of A. If onlyA[fb : Cg (A[fb : :Cg) is satis�able, b : C (a 
on
ept assertion equivalentto b : :C) will be in
luded in A re
e
ting the idea that the property C (:C)holds for b. Otherwise, if both A [ fb : Cg and A[ fb : :Cg are satis�able,due to the interse
tion operation in the de�nition of A0, A's prepro
essing
ompletion does neither in
lude b : C nor a 
on
ept assertion equivalent tob : :C re
e
ting the idea that there exists at least one model of A in whi
hb : C holds and at least one model of A in whi
h b : :C holds. In prin
ipal,the !�- and !�-rules work in the same way. The !8-rule adds b : C toA if a : 8 R:C 2 A and b is an R-su

essor of a in A sin
e in this 
ase b isobviously an instan
e of C. Finally, the!Ru-rule de
omposes role assertionsinvolving role 
onjun
tions (in ALENR).Proposition 6 Let A be an ABox and A0 be A's prepro
essing 
ompletion.Then A is equivalent to A0:Proof. Let A be an ABox and C and C 0 be ABoxes whi
h emerge from Aby appli
ation of one of the prepro
essing rules. Furthermore, let B be theset of all ABoxes whi
h emerge from A by exhaustive appli
ations of theprepro
essing rules. Then, A � C and A � C 0 holds, whi
h implies A v Cand A v C 0. By indu
tion on the length of rule appli
ations it 
an easilybe veri�ed that, for all B 2 B, A v B holds whi
h implies A v A0. Inorder to prove A0 v A, we �rst observe that an appli
ation of the !8-, !u,or !Ru-rule is semanti
s-preserving. If, due to an appli
ation of any of theother prepro
essing rules, a 
on
ept assertion b : C (b : E with E � :C)is added to A and A [ fb : Eg (A [ fb : Cg) is unsatis�able, then b : C24



(b : E) is a logi
al 
onsequen
e of A. Hen
e, for all B 2 B, we have thata : C 2 B (a : E 2 B). But this implies that a : C 2 A0 (a : E 2 A0). Ifboth A [ fb : Cg and A [ fb : Eg are satis�able, then there exists B0 � Bsu
h that, for all B 2 B0, we have that b : C 2 B0 and there exists B00 � Bsu
h that, for all B 2 B00, b : E 2 B00 holds. But then neither b : C 2 A0 norb : E 2 A0 sin
e neither b : C 2 [B2BB nor b : E 2 [B2BB. Consequently, wehave that, for all � 2 A0 n A, � is a logi
al 
onsequen
e of A, whi
h impliesA0 v A, and the 
laim is proved. 2Proposition 6 guarantees that the prepro
essing operation is semanti
s-preserving. In the sequel, we will only 
onsider the prepro
essing 
ompletionsof ABoxes. Su
h an ABox will be 
alled a prepro
essing 
omplete ABox. Withthese preparations, we 
an now state an algorithm for 
omputing the MSC,respe
tively, the MSC approximation.For a prepro
essing 
omplete ABox A w.r.t. either ALENR or ALQand an individual a 2 Ind(A), the invo
ation 
ompute-ms
(a; depth(A);A)
omputes ms
-approxA(a) where A is assumed to be in a form su
h thatno pair of identi
al role assertions is present. If an ABox w.r.t. ALENRis present, the algorithm 
omputes the existential and universal role quan-ti�
ations and �-restri
tions following from the 
onstraints imposed on adue to the role assertions in A. Otherwise, if A is an ABox w.r.t. ALQ,the quali�ed �-restri
tions following from the 
onstraints imposed on a are
omputed. In addition, the algorithm 
onsiders the 
on
epts o

urring in
on
ept assertions involving a.Theorem 4 Let A 6= ; be a satis�able and prepro
essing 
omplete ABox inwhi
h no pair of identi
al role assertions appears, a 2 Ind(A), and d 2 IN.Then, 
ompute-ms
(a; d;A) terminates and returns a 
on
ept equivalent toms
-approxA;d(a).Proof. Termination of the algorithm 
an easily be veri�ed. The se
ond pa-rameter d is a �xed natural number whi
h is not modi�ed anywhere in thefun
tion. Moreover, 
ompute-ms
 is only re
ursively invoked with d� 1. Asa 
onsequen
e, either the 
omputation terminates with d > 0 or there ex-ists an invo
ation with d = 0. But then the �rst then-
lause is pro
essedand there are no further invo
ations, whi
h guarantees termination. Weshow the remainder of the 
laim by indu
tion on d. If d = 0, A is non-
y
li
 and 
ompute-ms
(a; d;A) returns > u ua:C2AC whi
h is equivalent toms
A(a) even in the 
ase that there are no 
on
ept assertions involving a.Now assume d > 0. Then, we add to C the 
on
epts imposed by 
on
eptassertions involving a. If there exists no role assertion (a; b) : R 2 A, C25



Algorithm 2 
ompute-ms
(a; d;A)if d = 0 then> u ua:C2ACelseC := f
ompute-ms
(a; 0;A)g;A := f(a; b) : Rjb 2 Ind(A) ^ R 2 Roles(A)g;if A is an ABox w.r.t. ALENR thenC := C [ f9R:(
ompute-ms
(b; d� 1;A))j(a; b) : R 2 Ag;for all A0 � A do// A0 = f(a; b1) : R1; : : : ; (a; bn) : Rngif mss(R1; : : : ; Rn) is de�ned thenC := C [ f(� jA0jmss(R1; : : : ; Rn))gend ifend forR := fRj(a; b) : R 2 Ag;for all R0 � R do// R0 = fR1; : : : ; Rng;S := fb 2 Ind(A)j(a; b) : R ^ R 2 R0g// S = fb1; : : : ; bmg;if mss(R1; : : : ; Rn) is de�ned and there exists a : (� m R) 2 Asu
h that R1 v R ^ � � � ^Rn v R thenC := C [ f8 mss(R1; : : : ; Rn):l
s(
ompute-ms
(b1; d �1;A); : : : ; 
ompute-ms
(bm; d� 1;A))g;end ifend forelse// A is an ABox w.r.t. ALQfor all A0 � A do// A0 = f(a; b1) : R1; : : : ; (a; bn) : Rngif mss(R1; : : : ; Rn) is de�ned thenC := C [ f(� jA0jR1l
s(
ompute-ms
(b1; d� 1;A); : : : ; 
ompute-ms
(bn; d� 1;A)))gend ifend forend ifuC2CCend if
26



is left un
hanged and we 
orre
tly return ms
A(a) a

ording to the initial
ase. Otherwise, we 
olle
t in A the set of role assertions whi
h involve anyrole su

essor of a in A. Suppose A is an ABox w.r.t. ALENR. Then, byindu
tion hypothesis, the invo
ation 
ompute-ms
(b; d�1;A) (yielding Cb) isequivalent to ms
-approxA;d(b). Now let A0 = f(a; b1) : R1; : : : ; (a; bn) : Rngbe a subset of A. If mss(R1; : : : ; Rn) is de�ned, then a has obviously at leastjA0j R-su

essors in A0 (and thus in A) sin
e A0 does not in
lude any pair ofidenti
al role assertions and A is in prepro
essing 
omplete form. Hen
e, weadd the �-restri
tion (� jA0jmss(R1; : : : ; Rn)) to C. Now we 
olle
t into Rthe set of roles R for whi
h there exists some R-su

essor of a in A. Let R0 =fR1; : : : ; Rng be a subset of R and S = fb1; : : : ; bmg the set of R-su

essorsof a inA for allR 2 R0. Ifmss(R1; : : : ; Rn) is de�ned, R1 v R^� � �^Rn v Rholds, and there exists a 
on
ept assertion of the form a : (� m R) in A,then obviously all su

essors of a in the role mss(R1; : : : ; Rn) must have atleast property l
s(ms
-approxA;d�1(b1); : : : ; ms
-approxA;d�1(bm)). The re-lation jSj > m 
annot hold be
ause A would be unsatis�able in this 
ase.Sin
e, for all bi, 
ompute-ms
(bi; d�1;A) is equivalent toms
-approxA;d�1(bi)holds by indu
tion hypothesis, we add to C the universal role quanti�
ation8mss(R1; : : : ; Rn):l
s(
ompute-ms
(b1; d� 1;A); : : : ; 
ompute-ms
(bm; d�1;A)). If A is an ABox w.r.t. ALQ, let A0 = f(a; b1) : R1; : : : ; (a; bn) :Rng be a subset of A. A

ording to the indu
tion hypothesis, the invo
a-tion 
ompute-ms
(bi; d� 1;A) (yielding Cbi) returns a 
on
ept equivalent toms
-approxA;d(bi) for all i 2 f1; : : : ; ng. Hen
e, a has at least jA0j su

essorsin the role mss(R1; : : : ; Rn) whi
h have property l
s(ms
-approxA;d�1(b1);: : : ; ms
-approxA;d�1(bm)). Thereby, if mss(R1; : : : ; Rn) is de�ned, it isequivalent to R1 in ALQ. Consequently, we add the quali�ed �-restri
tion(� jA0jR1 Cbi) to C. Eventually, the 
onjun
tion of all 
on
epts in
luded inC is returned whi
h is equivalent to ms
A(a). 2Example 6 Let us 
ompute the MSC of a whi
h appears in the satis�ableand prepro
essing 
omplete ABox w.r.t. ALENRA := fa : (� 2R) u 9 R:B; (a; b) : R; (a; 
) : R; b : A; b : B; 
 : A; 
 : Cg:Then, depth(A) = 1 and 
ompute-ms
 is invoked with the parameters a, 1,and A. The re
ursive invo
ation 
ompute-ms
(a; 0;A) yields C = f(� 2R)u9 R:Bg. Furthermore, we get A = f(a; b) : R; (a; 
) : Rg and the re
ursiveinvo
ations 
ompute-ms
(b; 0;A) and 
ompute-ms
(
; 0;A) yield A u B andA u C, respe
tively, and 9 R:(A u B) and 9 R:(A u C) are added to C. Thefollowing for-loop adds (� 1R) and (� 2R) to C. Then, for R = R0 = fRgand S = fb; 
g, the subsequent for-loop adds 8mss(R;R):l
s(AuB;AuC) �27



8 R:A to C. Finally, we return the 
onjun
tion of 
on
epts in C, whi
h isequivalent to (� 2 R) u 9 R:(A u B) u 9 R:(A u C) u (� 2 R) u 8 R:A asdesired.We will now introdu
e the MSC-
ompletion of an ABox.De�nition 20 Let A and B be satis�able ABoxes. Then we de�ne A'sMSC-
ompletion w.r.t. B asÂB := fa : ms
-approxA;max(fdepth(A);depth(B)g)(a)ja 2 Ind(A)g [ A: 2Intuitively, an MSC-
ompletion ÂB of an ABox A w.r.t. B emerges fromA by adding the MSC approximation of every individual a 2 Ind(A) up toa number whi
h is given by the maximum of the depths of A and B.We will now get ba
k to the problem that the LCSA of ABoxes does notalways exist.Example 7 Let A := f(a; b) : R; (b; a) : Rg andB := f(a; a) : Rg:Then, l
sa(A;B) does not exist. The reason for this is that, for ea
h ABoxC, whi
h subsumes both A and B, there exists an ABox C 0 with C 0 < C. Morespe
i�
ally, if we re
ursively de�ne a series of 
on
epts Ci, i = 0; 1; 2; 3; : : : ,as C1 := 9R:> andCi+1 := 9R:(Ci);then it is easy to see that, for all i 2 IN [ f0g, A v fa : Cig, B v fa : Cig,and fa : Ci+1g < fa : Cig.Informally speaking, the reason that the LCSA does not exist in Example7 is given by the fa
t that all pairs of 
yles C;D with C � A and D � Bwhi
h involve at least one 
ommon individual, have the following properties:� the sequen
e of individuals indu
ed by C is di�erent from the one in-du
ed by D, and� the MSSs of the role pairs 
orresponding to ea
h pair of 
orrespondingsequen
e individuals is de�ned.28



These properties of two ABoxes form a set of ne
essary and suÆ
ient
onditions for the (non-) existen
e of the LCSA.Proposition 7 Let A and B be satis�able ABoxes and C and D be the set ofA's and B's 
y
les, respe
tively. Then, l
sa(A;B) does not exist i� Ind(A)\Ind(B) 6= ; and there exist C 2 C of the form f(a0; a1) : R0; : : : ; (an�1; a0) :Rn�1g and D 2 D of the form f(a0; b1) : S0; : : : ; (bm�1; a0) : Sm�1g su
h thatthe following 
onditions hold (assuming m � n without loss of generality):(i) there exists an i 2 IN su
h that a(i mod n) 6= b(i mod m), and(ii) mss(R(i mod n); S(i mod m)) is de�ned for all i 2 IN [ f0g.Proof. We �rst prove \(" by 
ontradi
tion. Suppose, C 2 l
sa(A;B) existswith d = depth(C) and there are 
y
les C = f(a0; a1) : R0; : : : ; (an�1; a0) :Rn�1g in A and D = f(a0; b1) : S0; : : : ; (bm�1; a0) : Sm�1g in B su
h thatthe 
onditions (i) and (ii) hold. Then, we 
reate a sequen
e of ABoxesC1; C2; C3; : : : su
h that, for all i 2 IN [ f0g, A v Ci and B v Ci hold. Were
ursively de�ne 
on
eptsC0 := 9mss(R0; S0):> andCi+1 := 9mss(Ri; S(i mod m)):(Ci):Note that, for all i 2 IN [ f0g, the 
on
ept Ci is well-de�ned sin
e, due to
ondition (ii), the MSSs in Ci all exist. Now let Ci := fa0 : Cig and observethat, for all i 2 IN[f0g, A v Ci and B v Ci sin
e a0 2 Ind(A\B) and Ci+1 <Ci. But then, for all i > d, we have that Ci < C whi
h 
ontradi
ts to ourassumption that C 2 l
sa(A;B). Now we will prove \)" by 
ontraposition.If either A or B is non-
y
li
, then l
sa(A;B) obviously exists. Therefore,let C 2 C be of the form f(a0; a1) : R0; : : : ; (an�1; a0) : Rn�1g and let D 2D be of the form f(a0; b1) : S0; : : : ; (bm�1; a0) : Sm�1g. Then, l
sa(A;B)exists i� l
sa(C;D) exists. Suppose that a(i mod n) = b(i mod m) holds forall i 2 IN [ f0g. Furthermore, assume that mss(R(i mod n); S(i mod m)) isde�ned for all i 2 IN [ f0g. Then, l
sa(C;D) is given by the ABox f(a; b) :mss(R(i mod n); S(i mod m))j1 � i � mn ^ (a; b) : R(i mod n) 2 C ^ (a; b) :S(i mod m) 2 Dg. Now we will 
onsider the 
ase in whi
h there exists ani 2 IN [ f0g su
h that mss(R(i mod n); S(i mod m)) is unde�ned. Let C 0 (D0)be C's (D's) MSC-
ompletion. Then, l
sa(C;D) is given by fa : l
s(C;D)ja :C 2 C 0 ^ a : D 2 D0g [ f(a; b) : mss(R; S)j(a; b) : R 2 C 0 ^ (a; b) : S 2D0 ^ mss(R; S) is de�nedg. Finally, if there exists an i 2 IN [ f0g su
hthat mss(R(i mod n); S(i mod m)) is unde�ned and there exists a j 2 IN [ f0gsu
h that a(j mod n) 6= b(j mod m), we again de�ne C 0 (D0) as C's (D's) MSC-
ompletion and observe that l
sa(C;D) is given by fa : l
s(C;D)ja : C 229



C 0 ^ a : D 2 D0g [ f(a; b) : mss(R; S)j(a; b) : R 2 C 0 ^ (a; b) : S 2 D0 ^mss(R; S) is de�nedg, whi
h 
ompletes the proof. 2The proposition states a set of ne
essary and suÆ
ient 
ondition for the(non-) existen
e of the LCSA of ABoxes. Before stating an algorithm whi
himplements the test of the 
onditions, let us �rst introdu
e some useful no-tation. For individuals a1; : : : ; an, n 2 IN [ f0g, we introdu
e a sequen
eas a synta
ti
 expression of the form [a1; : : : ; an℄. Informally speaking, se-quen
es 
orrespond to multisets in whi
h the order of elements is obeyed.We also introdu
e two types of operations on sequen
es. For sequen
es,[a1; : : : ; an℄ and [b1; : : : ; bm℄, the sequen
e [a1; : : : ; an℄ n [b1; : : : ; bm℄ emergesfrom [a1; : : : ; an℄ by eliminating all ai from [a1; : : : ; an℄ su
h that there ex-ists a bj 2 fb1; : : : ; bmg with ai = bj. Moreover, [a1; : : : ; an℄ Æ [b1; : : : ; bm℄ =[a1; : : : ; an; b1; : : : ; bm℄ denotes the 
on
atenation of [a1; : : : ; an℄ and [b1; : : : ; bm℄.Eventually, [a1; : : : ;an℄ and [b1; : : : ; bn℄ are equal i� ai = bi holds for all i 2 f1; : : : ; ng.Algorithm 3 l
sa-unde�ned(firstp; 
y
le1p; 
y
le2p; startind1; startind2;ind1; ind2; sequen
e1; sequen
e2;A;B)if (:firstp ^ (ind1 = startind1) ^ (ind2 = startind2)) or ((ind1 =startind1) ^ 
y
le2p) or ((ind2 = startind2) ^ 
y
le1p) then:(sequen
e1 n [startind1℄ = sequen
e2 n [startind2℄)elseS1 := f(ind1; b) : R 2 Ag;S2 := f(ind2; b) : R 2 Bg;for all (a; b) : R 2 S1 dofor all (
; d) : S 2 S2 domss(R; S) ^ l
sa-undefined(false;:firstp ^ (ind1 = startind1);:firstp ^ (ind2 = startind2); startind1; startind2; b; d;sequen
e1 Æ [a℄; sequen
e2 Æ [b℄;A;B)end forend forend ifAlgorithm 3 
he
ks if the 
onditions given in Proposition 7 hold forABoxes A and B. The �rst three parameters are Boolean variables, wherefirstp indi
ates whether or not l
sa-unde�ned is in its �rst in
arnation.Hen
e, at �rst invo
ation firstp is set to true. 
y
le1p (
y
le2p) indi
ateswhether a 
y
le has been dete
ted in A (B). Consequently, both variablesare initialized with false. startind1 (startind2) takes the variable in A(B) from whi
h the 
y
le-test is started. ind1 (ind2) takes a variable whi
h30



is 
he
ked for being the \end" of a 
y
le in A (B). When invoking l
sa-unde�ned, both startind1; startind2; ind1, and ind2 are initialized with avariable a 2 Ind(A) \ Ind(B). Sin
e a is always 
onsidered the startingindividual of a possible 
y
le in A and B, 
ondition (i) need not be 
he
kedexpli
itly in the algorithm. sequen
e1 (sequen
e2) 
ontains the sequen
e ofvariables involved in a possible 
y
le in A (B). Sin
e 
on
ept assertions donot in
uen
e the 
onditions in Proposition 7, we eliminate all 
on
ept asser-tions from A and B before invoking the algorithm. In the �rst then-
lause,we 
he
k if either ind1 (ind2) is the last individual in the sequen
e of indi-viduals forming a 
y
le in A (B) or ind1 (ind2) is the last individual in thesequen
e of individuals forming a 
y
le in A (B) and a 
y
le in B (A) hasalready been dete
ted before. If the then-
lause evaluates to true, we 
he
k
ondition (i) in Proposition 7. Otherwise, in the else-
lause we 
olle
t inS1 (S2) all role assertions of the form (ind1; b) : R [(ind2; b) : R℄. For ea
h(ind1; b) : R 2 S1 and (ind2; d) : S 2 S2, we 
he
k if mss(R; S) is de�ned(
ondition (ii) in Proposition 7). In 
ase, mss(R; S) is unde�ned, the algo-rithm 
orre
tly returns false. Otherwise, l
sa-unde�ned is invoked re
ursivelywith the following values. firstp is set to false sin
e its meaning is only toprevent us from entering the then-
lause at �rst 
all. If ind1 = startind1(ind2 = startind2) and firstp does not hold, then a 
y
le is present in A(B). Hen
e, in the next in
arnation of l
sa-unde�ned, 
y
le1p (
y
le2p) isset to false and ind1 (ind2) is 
on
atenated to sequen
e1 (sequen
e2). Inorder to 
omplete the test of the 
onditions (i) and (ii) in Proposition 7,we re
ursively 
all l
sa-unde�ned with ind1 := b and ind2 := d. With these
onsiderations, the following theorem 
an be proved.Theorem 5 Let A and B be satis�able ABoxes and A0 := A n fa : C 2 Agand B0 := B nfa : C 2 Bg. Then, l
sa(A;B) does not exist i� Ind(A;B) 6= ;and, for all a 2 Ind(A0)\Ind(B0), the invo
ation l
sa-unde�ned(false; false;false; a; a; a; a; false; false;A0;B0) returns false. 2Thus, Algorithm 3 provides a de
ision pro
edure with whi
h the (non-)existen
e of the LCSA of two ABoxes 
an be de
ided. If the LCSA exists,the following theorem shows how to 
ompute it.Theorem 6 Let A and B be ABoxes and ÂB A's MSC-
ompletion w.r.t. Band B̂A B's MSC-
ompletion w.r.t. A. Furthermore, letC := fa : l
s(C;D)ja : C 2 ÂB ^ a : D 2 B̂Ag [f(a; b) : mss(R; S)j(a; b) : R 2 ÂB ^ (a; b) : S 2 B̂A ^mss(R; S) is de�nedg: (3)Then, if l
sa(A;B) exists, it is equivalent to C.31



Proof. Suppose l
sa(A;B) exists. We prove the 
laim by showing by indu
-tion on A's and B's 
ardinalities that, for all � 2 A and � 2 B, there exists a
 2 C su
h that � v 
, � v 
, and, for all 
0 with � v 
0 and � v 
0, 
 v 
0holds and C 
ontains no further assertions. In 
ase jAj = 0 (jBj = 0), we haveÂB = ; (B̂A = ;) and C = ; and the 
laim follows by Proposition 2 (i). Nowlet A and B be given with n = jAj and m = jBj and suppose l
sa(A;B) � C(indu
tion hypothesis). We de�ne A0 := A [ f�0g, where �0 is either of theform a : C or (a; b) : R. Now let � 2 A0. In 
ase � 6= �0, the 
laim is a
onsequen
e of the indu
tion hypothesis. Therefore, let � = �0 and suppose� is of the form a : C. Sin
e B̂A is the MSC-
ompletion of B, it follows thateither the individual a does not o

ur in B (and hen
e not in B̂A either) orthere exists a 
on
ept assertion � of the form a : D 2 B̂A. In the former
ase, nothing needs to be shown sin
e l
sa(fa : Cg;B) � ;. Otherwise, thereexists a 
on
ept assertion a : l
s(C;D) 2 C 0 and a : C v a : l
s(C;D),a : D v a : l
s(C;D), and a : l
s(C;D) v 
0, for all 
0, follows a

ord-ing to Proposition 4 (i). Now suppose that � is of the form (a; b) : R.Unless there exists a role assertion � 2 B̂A of the form (a; b) : S wheremss(R; S) is de�ned, nothing needs to be shown. Otherwise, there existsa role assertion (a; b) : mss(R; S) 2 C 0 and (a; b) : R v (a; b) : mss(R; S),(a; b) : S v (a; b) : mss(R; S) and (a; b) : mss(R; S) v 
0, for all 
0, holdsa

ording to Proposition 4 (ii). A

ording to (3), C 0 
ontains no further as-sertions and thus, l
sa(A0;B) � C 0 holds. The proof for the 
ase jAj = n andjBj = m + 1 is analogous. 2Given any of the des
ription logi
s ALENR or ALQ, Algorithm 4 is anLCSA implementation taking A and B whi
h are both either ABoxes w.r.tALENR orALQ. The fun
tion 
ompute-l
s implements the LCS of 
on
eptsas in De�nition 11. In [6℄, we give an LCS algorithm for the des
ription logi
sALENR and ALQ.Theorem 7 Let A and B be ABoxes. Then, if l
sa(A;B) exists, the invo
a-tion 
ompute-l
sa(A;B) terminates and returns an ABox C whi
h is equiva-lent to l
sa(A;B).Proof. Termination of the algorithm follows by the termination of the fun
-tions 
ompute-prepro
essing-
ompletion, 
ompute-ms
, and 
ompute-l
s sin
e
ompute-l
sa is not re
ursively invoked. If A (B) is unsatis�able, we return B(A). The 
orre
tness of this follows by Proposition 2. Otherwise, in the else-bran
h we �rst 
ompute the prepro
essing 
ompletions of A and B by meansof the fun
tion 
ompute-prepro
essing-
ompletions and 
onstru
t the MSC-
ompletions ÂB of A and B̂A of B in the �rst two for-loops. Then, we initial-ize C to the empty ABox and add a 
on
ept assertion a : 
ompute-l
s(C;D)32



Algorithm 4 
ompute-l
sa(A;B)if A (B) is unsatis�able thenB (A)elseA := 
ompute-prepro
essing-
ompletion(A);B := 
ompute-prepro
essing-
ompletion(B);ÂB := A;B̂A := B;for all a 2 Ind(A) doÂB := ÂB [ fa : 
ompute-ms
(a;max(fdepth(A); depth(B)g);A)gend forfor all b 2 Ind(B) doB̂A := B̂A [ fb : 
ompute-ms
(b;max(fdepth(A); depth(B)g);B)gend forC := ;;for all � in ÂB dofor all � in B̂A doif � is of the form a : C and � is of the form a : D thenC := C [ fa : 
ompute-l
s(C;D)gelse if � is of the form (a; b) : R and � is of the form (a; b) : S andmss(R; S) is de�ned thenC := C [ f(a; b) : mss(R; S)gend ifend forend forCend if
33



to C i� there exists a pair of 
on
ept assertions a : C 2 ÂB and a : D 2 B̂A.We add a role assertion (a; b) : mss(R; S) to C i� there exists a pair ofrole assertions (a; b) : R 2 ÂB and (a; b) : S 2 B̂A and mss(R; S) is de-�ned. Sin
e 
ompute-l
s is assumed to be a 
orre
t LCS implementation,
ompute-l
sa(A;B) returns an ABox equivalent to C in (3), and the 
laim isa 
onsequen
e of Theorem 6. 2Summarizing, in order to 
ompute the LCSA of ABoxes A and B, we �rst
he
k whether l
sa(A;B) is de�ned. This 
an be done by Algorithm 3. Ifl
sa(A;B) is de�ned, it 
an be determined by Algorithm 4.5 Complexity ResultsIn this se
tion, we will state 
omplexity results starting with a de�nition ofthe size of an ABox. It turns out that the size of the LCSA of n ABoxes w.r.t.either ALENR or ALQ is polynomial in the sizes of the input 
on
epts. TheABox size de�nition does not take into a

ount sizes of 
on
epts whi
h o

ursin 
on
ept assertions in
luded in the input ABoxes. Therefore, we will givean alternative ABox size de�nition whi
h takes 
on
epts into 
onsideration.As a 
onsequen
e, the size of the LCSA will blow up exponentially in thesizes of the input ABoxes in the worst 
ase.De�nition 21 (Size of an ABox) Let A be an ABox. Then we de�ne thesize of A as size(A) := jAj: 2Theorem 8 The size of the LCSA of A1; : : : ;An, whi
h are all ABoxesw.r.t. either ALENR or ALQ, is polynomial in the sizes of A1; : : : ;An ifl
sa(A1; : : : ;An) exists.Proof. A

ording to the LCSA algorithm, we add at most jInd(A)j (jInd(B)j)
on
ept assertions to A (B). Hen
e, the size of ÂB (B̂A) is polynomial inthe size of A (B). From Theorem 6 it follows that the size of l
sa(A;B)is polynomial in the sizes of ÂB and B̂A. Now it 
an easily be shown byindu
tion on n that the size of l
sa(A1; : : : ;An) is also polynomial in thesizes of A1; : : : ;An. 2Theorem 8 shows that the size of l
sa(A1; : : : ;An) does not grow expo-nentially in the sizes of A1; : : : ;An. However, in real appli
ations the sizeof storage needed to store the ABox l
sa(A1; : : : ;An) 
an be exponential inthe storage needed for A1; : : : ;An. The reason is that the ABox size doesnot take into a

ount the sizes of 
on
epts involved in 
on
ept assertions.34



De�nition 22 (Size of a Con
ept) Let C be either an ALENR or anALQ 
on
ept. Then we de�ne the size of C, jCj, re
ursively on C's stru
tureas follows:(i) If C = > or C = ?, then jCj := 1.(ii) If C is an atomi
 or negated atomi
 
on
ept, then jCj := 1.(iii) If C is of the form 9 R:D, 8 R:D, (� n R D), or (� n R D), thenjCj := 1 + jDj.(iv) If C is of the form C1 u � � � u Cn, then jCj := jC1j+ � � �+ jCnj.Now we 
an give the de�nition of the exa
t ABox size whi
h takes 
on
eptsizes into 
onsideration.De�nition 23 (Exa
t Size of an ABox) Let A be an ABox w.r.t. ALENRor ALQ. Then we de�ne the exa
t size of A ase-size(A) := jf(a; b) : R 2 Agj+ Xa:C2A jCj:Now we introdu
e the notion of minimality of ABoxes w.r.t. their exa
t size.De�nition 24 (Minimal Exa
t ABox Size) Let A be an ABox. Thenwe say that A has minimal exa
t size i�, for all A0, we have that A � A0implies e-size(A) � e-size(A0).Thus, an ABox A has minimal exa
t size if there exists no equivalentABox with smaller exa
t size than A. Unfortunately, the result in Theorem8 does not hold as soon as we 
onsider exa
t ABox sizes. Subsequently, wewill also need a similar notion of minimality of 
on
epts.De�nition 25 (Minimal Con
ept Size) Let C be an ALENR (ALQ)
on
ept. Then we say that C has minimal size i�, for all C 0 2 ALENR(ALQ), we have that C � C 0 implies jCj � jC 0j.With these preparations, we 
an state the following theorem.Theorem 9 The exa
t size of the LCSA of A1; : : : ;An, whi
h are all ABoxesw.r.t. either ALENR or ALQ, 
an be exponential in the exa
t sizes ofA1; : : : ;An if l
sa(A1; : : : ;An) exists.35



Proof. The problem of 
omputing the LCS of ALENR (ALQ) 
on
epts
an be redu
ed to 
omputing the LCSA of ABoxes w.r.t. either ALENRor ALQ. Let C1; : : : ; Cn be either ALENR or ALQ 
on
epts and A1 =fa : C1g; : : : ;An = fa : Cng be ABoxes. Then l
sa(A1; : : : ;An) � fa :l
s(C1; : : : ; Cn)g. In [6℄, it is shown that the LCS of n ALENR or ALQ
on
epts C1; : : : ; Cn 
an blow up exponentially in the sizes of C1; : : : ; Cn.Obviously, if E with E � l
s(C1; : : : ; Cn) has minimal size, then fa : Eg hasminimal exa
t size, whi
h proves the 
laim. 2Even though, Theorem 9 shows that the LCSA of ABoxes 
an blow upexponentially in the worst 
ase, retrieval in the 
ommonality-based informa-tion retrieval framework 
an be optimized by �rst sorting the ABoxes in thedatabase a

ording to the subsumption relation. Given a database DB andABoxes A1; : : : ;An;D;D0 2 DB, we 
an omit the subsumption test betweenl
sa(A1; : : : ;An) and D0 if both D 6v l
sa(A1; : : : ;An) and D v D0 hold.6 Con
lusion and Future WorkIn this arti
le, we have introdu
ed new des
ription logi
 inferen
e servi
esuseful for 
ommonality-based information retrieval whi
h is 
onsidered to bean interesting resear
h topi
 in des
ription logi
 appli
ations. We showedwith an example that performing 
ommonality-based information retrievalin the usual way (i.e. based on applying the least 
ommon subsumer on themost spe
i�
 
on
epts of knowledge base individuals whi
h represent user-spe
i�ed information examples) is not always appropriate and suggested atheoreti
al framework to over
ome the short
omings. We �rst gave a def-inition of subsumption for ABoxes and provided an algorithm for de
idingthis problem. Thereby, only two requirements are imposed on the des
rip-tion logi
 underlying the ABoxes: A 
onstru
tor for full 
on
ept negationmust be present and an algorithm for 
he
king ABox satis�ability must beavailable. We proved soundness and 
ompleteness of the ABox subsump-tion algorithm and showed that ABox subsumption is at most as 
omplexas ABox satis�ability 
he
king. The notion of ABox subsumption is usedfor the de�nition of a least 
ommon subsuming ABox operation whi
h wasintrodu
ed as a generalization operation for ABoxes in a similar way as theleast 
ommon subsumer for 
on
epts. We gave algorithms for both 
he
kingthe existen
e of the least 
ommon subsuming ABox and, in 
ase of existen
e,for 
omputing the least 
ommon subsuming ABox of ABoxes w.r.t. to thetwo des
ription logi
s ALENR and ALQ. We showed that the exa
t sizeof the least 
ommon subsuming ABox 
an be
ome exponential in the exa
t36



sizes of the ABoxes to whi
h it is applied. As a by-produ
t, we developed analgorithm for 
omputing the most spe
i�
 
on
ept of ABox individuals o
-
urring in ABoxes w.r.t. ALENR and ALQ. The reason for restri
ting theLCSA operation to ABoxes w.r.t. the two mentioned languages is that theleast 
ommon subsumer operation is needed in our algorithm and ALENRand ALQ are among the most expressive languages for whi
h the least 
om-mon subsumer is available. Future resear
h should in
lude the extension ofthe LCSA operation to ABoxes w.r.t. more expressive des
ription logi
 lan-guages. Possibly this requires the extension of the least 
ommon subsumerto more expressive des
ription logi
s as well.Referen
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