
Commonality-Based ABox RetrievalThomas Mantay�AbstratIn ommonality-based information retrieval, the ommonalities ofuser-spei�ed examples of desired information are used for informa-tion retrieval. As desribed in previous literature, suh a retrievalmehanism an be built using a ombination of desription logi rea-soning servies whih makes this retrieval tehnique an interestingresearh topi in the �eld of desription logi appliations. However,as will be shown in this artile, the existing tehnique does not alwaysyield a desirable retrieval result. Therefore, we present a theoreti-al framework useful for ommonality-based information retrieval andother desription logi appliations. Part of this framework is a formalde�nition of the notion of ABox subsumption using the standard se-mantis for ABoxes and an algorithm for deiding this problem. Basedon ABox subsumption, we will present an operation for determiningthe least ommon subsuming ABox of a set of ABoxes w.r.t. the ex-pressive desription logis ALENR and ALQ. As a by-produt, analgorithm for omputing the most spei� onept of individuals o-urring in ABoxes w.r.t. the two mentioned desription logis will bedeveloped. We present soundness, ompleteness, and omplexity re-sults and show how the developed reasoning servies an be used fora variant of ommonality-based information retrieval whih we allommonality-based ABox retrieval.1 IntrodutionTerminologial knowledge representation systems based on desription logishave proven to be a useful means for representing the knowledge of an ap-pliation domain in a strutured and formally well understood way [2℄. Theknowledge base as part of a terminologial knowledge representation system�Labor f�ur K�unstlihe Intelligenz, Universit�at Hamburg, Vogt-K�olln-Stra�e 30, D-22527Hamburg, mantay�informatik.uni-hamburg.de1



usually onsists of a terminologial and an assertional omponent. The ter-minologial omponent, also alled TBox, represents the voabulary used inthe assertional omponent referred to as the ABox. It ontains de�nitionsof onepts whih desribe sets of individuals. Conepts are built out ofatomi omponents and roles (representing binary relations between individ-uals) using the onept onstrutors provided by the underlying desriptionlogi language. For example, the set of grandmothers an be desribed usingthe atomi onepts woman and parent and the role has-hild:woman u (� 1 has-hild parent):The ABox is a (partial) instantiation of the voabulary de�ned in the ter-minologial omponent and ontains assertions relating either individuals toonepts, or individuals to eah other via roles. For instane, it an be statedthat the individualMary is onsidered to be an instane of the onept motherand that she has a hild alled Tom:fMary : mother; (Mary;Tom) : has-hildg:A entral feature of terminologial knowledge representation systems basedon desription logis is a set of reasoning servies with the ability to dedueimpliit knowledge from expliitly represented knowledge in the knowledgebase. For instane, the subsumption relation between two onepts an bedetermined. Intuitively, a onept C subsumes a onept D if the set ofindividuals represented by C is a superset of the set of individuals representedby D, i.e. if C is more general than D. Determining the most spei�onept (MSC) desribes the problem of omputing the most spei� onept(from the in�nite spae of all onepts in the desription logi) of whiha given individual is an instane. For two onepts C and D, the leastommon subsumer (LCS) operation determines the most spei� onept(from the desription logi language) whih subsumes C and D. Both theMSC of an individual and the LCS of onepts depend on the underlyingdesription logi language. Also, reasoning servies onerning ABoxes havebeen subjet to researh. Algorithms for heking the satis�ability of ABoxesare among the most prominent ABox reasoning servies intensively studiedso far. Intuitively speaking, an ABox is satis�able i� the onjuntion of itsassertions does not lead to a ontradition. Given an ABox indidivual and aonept, instantiation desribes the problem of determining whether or notthe individual is an instane of the onept. An instantiation algorithm anbe used in order to solve the instane retrieval problem whih desribes thetask of omputing all instanes of a given onept.2



The desribed reasoning servies an be used for ommonality-based in-formation retrieval whih is a relatively new appliation ontext for termino-logial knowledge representation systems iteMantay-TR-99. With this kindof information retrieval, the goal is to provide a user of an information systemwith an example-based query mehanism. More spei�ally, the \ommonal-ities" of user-spei�ed examples of desired information are used as a retrieval�lter on an underlying database. The database is modeled as an ABox andthe set of database items is modeled by a subset of the set of individualsin the ABox. The oneptual abstrations are represented by the MSCs ofthe seleted individuals and the notion of ommonality is formalized by theLCS operation. Eventually, information retrieval is performed by instaneretrieval using the LCS onept.However, two problems our when abstrating from ABox individuals toonepts by means of the MSC operation. The possible presene of ABoxyles is the reason for the MSC to not exist for all individuals. This probleman be irumvented by approximating the MSC of an individual by onsid-ering the onjuntion of most spei� onepts inluded in the TBox of whihthe individual is an instane. But there is another shortoming from a morepratial point of view. Due to the MSC abstration, relevant informationonerning individuals given by the user are �ltered out and thus, annot betaken into aount in the information retrieval proess subsequently. In thispaper, we present new ABox inferene servies in order to irumvent thisproblem.For example, onsider a TV information system equipped with a ommo-nality-based retrieval mehanism. In this ontext, let us assume the preseneof a TBox ontaining the relevant voabulary of the TV world. Furthermore,let A be an ABox suh thatfArmageddon : si�-movie; (Armageddon, Brue-Willis) : has-ator;Pulp-Fition : ation-movie; (Pulp-Fition, Brue-Willis) : has-ator;Brue-Willis : atorg � A:In the given subset of A we state that Armageddon is an instane of theonept si�-movie and Pulp-Fition is an instane of ation-movie. In bothmovies, Brue-Willis is starring as an ator. The MSCs1 of Armageddon andPulp-Fition are given bymsA(Armageddon) � si�-movie u 9 has-ator:ator andmsA(Pulp-Fition) � ation-movie u 9 has-ator:ator;1In this example, ALENR is assumed to be the underlying desription logi. Thelanguage will be formally introdued later. 3



respetively. Assuming movie to be the LCS of si�-movie and ation-movie,the LCS of the two MSCs,C := movie u 9 has-ator:atoris used for instane retrieval on A yielding the set of movies with any a-tor. The information that Brue-Willis is starring in both Armageddon andPulp-Fition is no longer present in C sine this fat was \lost" in the MSC ab-stration. However, this behavior is ertainly undesired for users who prefermovies with this ator.Therefore, in this artile we present new ABox inferene servies forommonality-based information retrieval where assertional knowledge is in-tegrated in the ommonality omputation. More spei�ally, after formallyintroduing some important de�nitions and notations in Setion 2, we givea de�nition of the notion of ABox subsumption in terms of the standardsemantis for ABoxes in Setion 3. We also provide an algorithm for deid-ing ABox subsumption and prove its soundness and ompleteness. Based onABox subsumption, in Setion 4 we will introdue the least ommon subsum-ing ABox as an operation whih determines the most spei� ABox (w.r.t.ABox subsumption) whih subsumes the ABoxes to whih the operation isapplied. As a by-produt, an algorithm for omputing the MSC of individ-uals ourring in ABoxes w.r.t. ALENR and ALQ will be developed. Weonlude with a summary and an outlook on possible future researh topis.Due to the new ABox inferene servies, we adapt the ommonality-basedinformation retrieval senario outlined above. We assume that the databaseis given by a set of ABoxes where eah ABox models exatly one spei�information item in the database. For instane, in the TV information sys-tem the database of TV broadasts is represented by a set of ABoxes whereeah ABox models exatly one broadast. The two movies Armageddon andPulp-Fition ould be represented by the ABoxesA := fArmageddon : si�-movie; (Armageddon, Brue-Willis) :has-ator;Brue-Willis : atorg andB := fPulp-Fition : ation-movie; (Pulp-Fition, Brue-Willis) :has-ator;Brue-Willis : atorg;respetively. Now we desribe how to ompute the ommonalities of A andB by means of the least ommon subsuming ABox operation. In order tosimplify the task, we replae the individuals whih are subjet to the LCSAoperation by a ommon \anhor" whih formally is a new individual notourring in any of the database ABoxes. In our example, the anhor is4



named Broadast and replaes Armageddon in A, Pulp-Fition in B, and theorresponding broadast individuals in the other database ABoxes. Then,the least ommon subsuming ABox of A and B is given byfBroadast : movie; (Broadast, Brue-Willis) : has-ator;Brue-Willis : atorg:Eventually, retrieval is performed by �ltering those ABoxes from the databasewhih are subsumed by the least ommon subsuming ABox. Thereby, theinformation that Brue-Willis is an ator in both movies an be onsideredsubsequently sine it is still present in the ABox used for retrieval.Whereas we onsidered a TV information system as an example, theretrieval mehanism an be applied to a number of appliations, e.g. do-ument retrieval and retrieval on piture databases where the ontent of adoument/piture is modeled by an ABox. These appliations are partiu-larly interesting for ommonality-based ABox retrieval due to the typialourrane of ABox individuals. As a preondition for the desribed infor-mation retrieval mehanism, we extend the unique name assumption usuallyadopted for individuals to sets of ABoxes, i.e. individuals with di�erentnames are interpreted as di�erent individuals, even if they our in di�erentABoxes in the database. Also, we take for granted an open world assump-tion for ABoxes, i.e. the truth value of assertional knowledge not expliitlyrepresented in the ABox is onsidered to be unknown. For instane, giventhe above ABox A, we annot onlude that Brue-Willis is the only ator inArmageddon.2 PreliminariesIn the following two setions, let L be a desription logi whih inludes aonstrutor for full onept negation and for whih there exists an algorithmfor heking satis�ability of ABoxes w.r.t. L. All onepts and roles men-tioned in the sequel are onepts and roles in L. We also assume that thereexists an interpretation I onsisting of a non-empty domain �I and an in-terpretation funtion �I for the interpretation of the onepts and roles inL.De�nition 1 (Conept Relations) Let C and D be onepts. Then weintrodue the following onept relations:� C is subsumed by D (C v D) i� CI � DI holds for all interpretationsI of C and D. 5



� C is stritly subsumed by D (C < D) i� CI � DI holds for allinterpretations I of C and D.� C is equivalent to D (C � D) i� both C v D and D v C hold. 2We will now introdue the assertional part of a knowledge base.De�nition 2 (ABox) Assume that there exists an alphabet of symbols, alledindividuals, disjoint from the sets of onepts and roles of L. Then we saythat� a onept assertion is a syntati expression of the form a : C, and� a role assertion is a syntati expression of the form (a; b) : R,where a and b are individuals, C is a onept, and R is a role. An assertionis either a onept assertion or a role assertion. A �nite set of assertions isalled an ABox. Ind(A) denotes the set of individuals and Roles(A) denotesthe set of roles ourring in assertions of A. 2Given a role assertion (a; b) : R in an ABox A, we say that b is an R-suessor of a in A. If it is lear from the ontext whih ABox is meant,we just say that b is an R-suessor of a. Note that ; also quali�es for anABox. Now the standard semantis for ABoxes will be de�ned starting witha semantial haraterization of individuals.De�nition 3 (Interpretation of Individuals) The interpretation fun-tion �I of an interpretation I for onepts of L is extended to individualsby mapping them to elements of �I suh that aI 6= bI if a 6= b. 2We an now de�ne the semantis of ABoxes.De�nition 4 (Semantis of an ABox) Let a and b be individuals, C aonept, and R a role. An interpretation I satis�es a onept assertion a : Ci� aI 2 CI and it satis�es a role assertion (a; b) : R i� (aI ; bI) 2 RI . Wesay that an interpretation I is a model of an assertion � i� I satis�es �. Aninterpretation I is a model of an ABox A i� I satis�es all assertions in A.2An (un-)satis�able ABox is also alled (in-)onsistent. In the next setion,we will de�ne the notion of ABox subsumption and provide an algorithm fordeiding the ABox subsumption problem.6



3 ABox SubsumptionBased on the ABox semantis, we an de�ne the following ABox relations.De�nition 5 (Relations Conerning ABoxes) Let A and B be ABoxes,a : C and b : D onept assertions, and (a; b) : R and (; d) : S role assertions.Then we de�ne the following relations:� a : C is subsumed by b : D (a : C v b : D) i�, for all interpretationsI, I is a model of a : C implies that I is also a model of b : D.� (a; b) : R is subsumed by (; d) : S [(a; b) : R v (; d) : S℄ i�, for allinterpretations I, I is a model of (a; b) : R implies that I is also amodel of (; d) : S.� a : C is equivalent to b : D (a : C � b : D) i� both a : C v b : D andb : D v a : C hold.� (a; b) : R is equivalent to (; d) : S [(a; b) : R � (; d) : S℄ i� both(a; b) : R v (; d) : S and (; d) : S v (a; b) : R hold.� A is subsumed by B (A v B) i�, for all interpretations I, I is a modelof A implies that I is also a model of B.� A is stritly subsumed by B (A < B) i� A v B holds and there existsa model of B whih is no model of A.� A is equivalent to B (A � B) i� both A v B and B v A hold. 2In De�nition 5 we use the same symbols for ABox subsumption, stritsubsumption, and equivalene as for the orresponding relations betweenonepts (see De�nition 1). It will be lear from the ontext whether theserelations refer to ABoxes or onepts. From the preeding de�nition we animmediately derive the following observations.Proposition 1 Let A and B be ABoxes, a : C and b : D onept assertions,and (a; b) : R and (; d) : S role assertions. Then(i) a : C v b : D i� a = b and C v D.(ii) (a; b) : R v (; d) : S i� a = , b = d, and R is a subrole2 of S.2We assume the subrole relationship between two roles to be appropriately de�ned inthe interpretation of the onept language. 7



(iii) If A = ;, then B v A.(iv) If A is unsatis�able, then A v B.(v) A v A\ B.(vi) A [ B v A. 2The laims in Proposition 1 are trivial onsequenes of De�nition 5 and willbe of use subsequently. Notie the meaning of (v) and (vi) in the propo-sition: Whereas the onjuntion (disjuntion) of onepts leads to a morespei� (general) onept w.r.t. to onept subsumption, the orrespondingoperation for ABoxes, ABox intersetion (union), leads to a more general(spei�) ABox w.r.t. ABox subsumption.We will now present a alulus for deiding ABox subsumption. Thedeision proedure follows the ideas for deiding the appliability of defaultrules on ABoxes as presented in [7℄. The ABox subsumption problem an beredued to the ABox satis�ability problem. More spei�ally, A subsumes Bi� the \negation of eah assertion �" in B added to the assertions inA leads toan unsatis�able ABox. Intuitively, the negation of a onept assertion a : Cwill be the onept assertion a : :C and the negation of a role assertion anbe expressed by an ABox onsisting of the two onept assertions a : 8 R:Aand b : :A where A is a new atomi onept not already present in neitherA nor B. Thereby, the onept assertion a : :C is well-de�ned beause alanguage onstrutor for full negation has been presumed to be present inthe underlying desription logi L.Lemma 1 Let a : C be a onept assertion, (a; b) : R a role assertion, Aan atomi onept, � an assertion in whih A does not appear, and I aninterpretation. Then(i) I is a model of a : C i� I is not a model of a : :C.(ii) If I is a model of (a; b) : R, then I is not a model of fa : 8R:A; b : :Ag.(iii) If A = f�; a : 8 R:A; b : :Ag is unsatis�able, then � is of the form(a; b) : R.Proof. I is a model of a : C i� aI 2 CI i� aI =2 �I n CI = (:C)I whihproves (i). Now we will prove (ii) by ontradition. Suppose I is a modelof (a; b) : R and also a model of fa : 8 R:A; b : :Ag. Sine I is a model ofa : 8 R:A and (aI; bI) 2 RI , it follows that bI 2 AI. However, sine I is8



also a model of b : :A, we have that bI 2 (:A)I \ AI = ; whih leads toa ontradition. (iii) will also be proved by ontradition. We �rst observethat fa : 8R:A; b : :Ag � A is satis�able. Suppose � is a onept assertionof the form  : C suh that A does not our as a subexpression in C. Then,there exists a model I of f : C; a : 8 R:A; b : :Ag for all  2 �I , whihagain ontradits to our assumption. Now suppose � is a role assertion ofthe form (; d) : S. If  6= a, then there obviously exists a model I off(; d) : S; a : 8R:A; b : :Ag for all d 2 �I and roles S. Also, if d 6= b, thereexists a model I of f(; d) : S; a : 8 R:A; b : :Ag for all  2 �I and roles S.Finally, if S 6= R, we an easily �nd a model I of f(; d) : S; a : 8R:A; b : :Agfor all  2 �I and d 2 �I . This proves that  = a, d = b, and S = R and �is of the form (a; b) : R. 2Theorem 1 Let A and B be ABoxes. Then A v B i�, for all � 2 B, thefollowing onditions hold:(i) If � is of the form a : C, then A [ fa : :Cg is unsatis�able.(ii) If � is of the form (a; b) : R, then A[fa : 8R:A; b : :Ag is unsatis�able.Proof. We �rst prove \)" (ompleteness). Suppose A v B. In ase B = ;,nothing has to be shown. Therefore, let a : C 2 B and I be a model ofA. Sine A v B, we have that I is also a model of B and of a : C beausea : C 2 B. By Lemma 1 (i) we know that I is not a model of a : :C andhene, I is not a model of A [ fa : :Cg. Now let (a; b) : R 2 B and Ibe a model of A. Sine A v B, I is also a model of B and of (a; b) : Rbeause (a; b) : R 2 B. Aording to Lemma 1 (ii), I is not a model offa : 8R:A; b : :Ag and hene, I is not a model ofA[fa : 8R:A; b : :Ag. Now\(" (soundness) will be proved. If B = ;, the laim follows by Proposition1 (iii). Otherwise, let a : C 2 B, A [ fa : :Cg be unsatis�able, and I be amodel of A. If A[fa : :Cg is unsatis�able and I is a model of A, it followsthat I is not a model of a : :C. By Lemma 1 (i) this means that I is amodel of a : C. Now let (a; b) : R 2 B and let A [ fa : 8 R:A; b : :Ag beunsatis�able. Then I is no model of A [ fa : 8 R:A; b : :Ag. Sine A is anatomi onept whih does not appear in A, we have that, for all � 2 A, theABoxes f�; a : 8 R:Ag and f�; b : :Ag are satis�able. But this implies thatthere exists an � 2 A suh that f�; a : 8 R:A; b : :Ag is unsatis�able. ByLemma 1 (iii) it follows that � is of the form (a; b) : R. Hene, I is also amodel of (a; b) : R, whih ompletes the proof. 2The funtion abox-subsumes implements an ABox subsumption test givenABoxes A and B w.r.t. L . 9



Algorithm 1 abox-subsumes(A;B)for all � 2 B doif � is of the form a : C thennot(abox-satisfiable(A [ fa : :Cg))else if � is of the form (a; b) : R then// let A be a new atomi onept ourring neither in A nor in Bnot(abox-satisfiable(A [ fa : 8 R:A; b : :Ag))end ifend forTheorem 2 Let A and B be ABoxes w.r.t. L. Then abox-subsumes(A;B)terminates and returns true i� B v A.Proof. The termination of abox-subsumes follows from the termination ofthe funtion abox-satis�able, whih implements the ABox satis�ability test.In Algorithm 1 we hek, for every onept assertion a : C (role assertion(a; b) : R) in B, whether the ABox A[ fa : :Cg (A[ fa : 8R:A; b : :Ag) isunsatis�able. Hene, the laim is a onsequene of Theorem 1. 2Theorem 3 The subsumption problem for ABoxes w.r.t. L is at most asomplex as ABox satis�ability heking for ABoxes w.r.t. L.Proof. Aording to Theorem 1, it an be deided by jBj ABox satis�abil-ity tests if A is subsumed by B. Hene, the number of satis�ability tests ispolynomial in the length of B. This shows that the omplexity of the ABoxsubsumption problem only depends on the omplexity of deiding ABox sat-is�ability of ABoxes w.r.t. L. 2The ABox satis�ability problem has been studied for a variety of desrip-tion logi languages. For ALCNR [1℄ and ALCQ [4℄, algorithmus usingexponential spae in the size of the ABox were proposed. In [3℄, an algo-rithm for heking satis�ability of ABoxes w.r.t. ALCNHR+ is presentedusing exponential spae in the size of the ABox as well. Prominent featuresof the desription logi ALCNHR+ are number restritions, role hierarhies,transitively losed roles, and generalized onept inlusions. For ABoxesw.r.t. the same desription logi language augmented by inverse roles andquali�ed number restritions, ALCHQIR+ , Horroks, Sattler, and Tobies [5℄showed that satis�ability heking is deidable however they do not give alower bound omplexity. Presumably, due to the existene of role hierarhies,ABox satis�ability heking for ALCNHR+ and ALCHQIR+ is no longer inPspae but in Exptime. 10



In this setion, we de�ned the notion of ABox subsumption for ABoxesw.r.t. to a desription logi L and provided an algorithm to deide this prob-lem. Thereby, only two requirements are imposed on L: A onstrutor forfull onept negation must be present and a sound and omplete algorithmfor heking ABox satis�ability must be available for ABoxes w.r.t. L. In-stead of the expliit presene of a full negation operation, it suÆes if L isa sublanguage of another desription logi ful�lling the two requirements.Subsequently, we will make use of this property. We also proved soundnessand ompleteness of the ABox subsumption algorithm and proved that, eventhough ABox subsumption an be redued to ABox satis�ablity heking,the problem does not beome more omplex. Subsequently, the results ofthis setion will play an important role in the de�nition and omputation ofa least ommon subsuming ABox operation.4 Least Common Subsuming ABoxIn this setion, we are interested in the inferene task of omputing the LCSAof ABoxes w.r.t. a desription logi L. As will be disussed in more detailthroughout this setion, the algorithm for LCSA omputation presented hererequires the presene of an LCS algorithm for onepts of L. Sine ALENRand ALQ are two of the most expressive desription logis for whih anLCS operation has been presented [6℄, we restrit the presentation of theLCSA operation to ABoxes w.r.t. ALENR and ALQ. The desription logiALENR (ALQ) is a sublanguage of ALCNR (ALCQ) whih both inludea full onept negation operation. Moreover, Buhheit, Donini, and Shaerfshowed in [1℄ that ABox satis�ability heking for ABoxes w.r.t. ALCNRis a deidable problem. Hollunder and Baader proved the same result forALCQ [4℄. Let us �rst formally introdue syntax and semantis of these twodesription logis.De�nition 6 (Syntax of ALENR) Let C be a set of atomi onepts andR a set of atomi roles disjoint from C. ALENR onepts are reursivelyde�ned as follows:� The symbols > and ? are ALENR onepts (top onept, bottom on-ept).� A and :A are ALENR onepts for eah A 2 C (atomi onept,negated atomi onept).� Let C and D be ALENR onepts, R 2 R an atomi role, and n 2IN [ f0g. Then 11



{ C uD (onept onjuntion),{ 9R:C (existential role quanti�ation),{ 8R:C (universal role quanti�ation),{ (� n R) (�-restrition), and{ (� n R) (�-restrition)are also ALENR onepts.� If R and S are roles, then RuS is a role in ALENR (role onjuntion).2De�nition 7 (Syntax of ALQ) Let C be a set of atomi onepts and R aset of roles disjoint from C. ALQ onepts are reursively de�ned as follows:� The symbols > and ? are ALQ onepts (top onept, bottom onept).� A and :A are ALQ onepts for eah A 2 C (atomi onept, negatedatomi onept).� Let C and D be ALQ onepts, R 2 R a role, and n 2 IN[ f0g. Then{ C uD (onept onjuntion),{ (� n R C) (quali�ed �-restrition), and{ (� n R C) (quali�ed �-restrition)are also ALQ onepts. 2The languages ALENR and ALQ an be extended to ALCNR andALCQ by adding a onstrutor for full onept negation: :C. The semantisof ALENR and ALQ onepts is de�ned in terms of an interpretation.De�nition 8 (Interpretation, Model, Satis�ability) An interpretationI = (�I ; �I) of an ALENR or ALQ onept onsists of a non-empty set�I (the domain of I) and an interpretation funtion �I. The interpretationfuntion maps every atomi onept A to a subset AI � �I and every roleR to a subset RI � �I � �I . The interpretation funtion is reursivelyextended to a omplex ALENR or ALQ onept as follows. Assume thatCI ; DI and RI ; SI are already given and n 2 IN [ f0g. Then� >I := �I,� ?I := ;, 12



� (:A)I := �I nAI ,� (C uD)I := CI \DI,� (R u S)I := RI \ SI,� 9 R:CI := fa 2 �Ij9b : (a; b) 2 RI ^ b 2 CIg;� 8 R:CI := fa 2 �Ij8b : (a; b) 2 RI ) b 2 CIg;� (� n R)I := fa 2 �Ij℄fbj(a; b) 2 RIg � ng,� (� n R)I := fa 2 �Ij℄fbj(a; b) 2 RIg � ng,� (� n R C)I := fa 2 �Ij℄faRI \ CIg � ng, and� (� n R C)I := fa 2 �Ij℄faRI \ CIg � ng,where aRI := fb 2 �I j(a; b) 2 RIg. An interpretation I is a model of anALENR or ALQ onept C i� CI 6= ;. If C has a model, C is alledsatis�able (or onsistent). 2Note that the onstrutor > an be expressed by (� 0 R) in ALENRand by (� 0 R >) in ALQ. The onept ? is expressible by A u :A inboth desription logi languages. The semantis an be extended to theonstrutor for full onept negation by de�ning (:C)I := �I n CI.For some explanations of the algorithms presented subsequently, we in-trodue the onept depth.De�nition 9 (Depth) Let C be either an ALENR or ALQ onept. Thenthe depth of C is reursively de�ned over its struture.� If C = 9R:C 0, C = 8R:C 0, C = (� nR C 0), or C = (� nRC 0), thendepth(C) = 1 + depth(C 0).� If C = C1 u � � � u Cn, then depth(C) = max(fdepth(Ci)j1 � i � ng).� In all other ases, depth(C) = 0. 2With these preparations, we will now de�ne the least ommon subsumingABox of A1; : : : ;An as the most spei� ABox (w.r.t. ABox subsumption)whih subsumes A1; : : : ;An. 13



De�nition 10 (Least Common Subsuming ABox) Let A1; : : : ;An; n �1; be ABoxes. Then we de�ne the least ommon subsuming ABox (LCSA)of A1; : : : ;An aslsa(A1; : : : ;An) := fA j A1 v A ^ � � � ^ An v A^8A0 : A1 v A0 ^ � � � ^ An v A0 )A v A0g:2From De�nition 10 it follows that lsa is an assoiative and ommutativefuntion and lsa(A1; : : : ;An) is equivalent to lsa(A1; lsa(A2; : : : lsa(An�1;An) : : : )).Therefore, we will restrit the attention to the problem of omputing theLCSA of two ABoxes sine the LCSA of n > 2 ABoxes an be obtained byn � 1 iterated appliations of the binary LCSA operation. In addition, wean derive the following onsequenes.Proposition 2 Let A1;A2;B1; : : : ;Bn be ABoxes. Then(i) If A2 v A1, then lsa(A1;A2) � A1.(ii) 8B;B0 2 lsa(B1; : : : ;Bn) : B � B0.Proof. (i) is an obvious onsequene of De�nition 10. To see (ii), supposeB;B0 2 lsa(B1; : : : ;Bn) with B 6� B0. Then, aording to Proposition 1(vi), B [ B0 is a more spei� subsumer of B1; : : : ;Bn than both B and B0and hene, B (resp. B0) annot be an LCSA of B1; : : : ;Bn whih leads to aontradition. 2Proposition 2 (ii) states a uniqueness property similar to the one for theLCS. If the LCSA is not empty, all pairs of its elements are equivalent. There-fore, if it is onvenient, we will onsider lsa(A1; : : : ;An) as a funtion whihreturns an ABox rather than a set of ABoxes in the following. Sometimes,the LCSA is given by the empty set of ABoxes. In this ase we will say thatLCSA is unde�ned. We will postpone the treatment of an unde�ned LCSAand �rst deal with the problem of how to ompute the LCSA in the ase thatit exists.Before starting our analysis, it will be onvenient to de�ne the LCS ofC1; : : : ; Cn whih are all either ALENR or ALQ onepts as the most spe-i� onept whih subsumes C1; : : : ; Cn.De�nition 11 (Least Common Subsumer) Let C1; : : : ; Cn; n � 1; be alleither ALENR or ALQ onepts. Then we de�ne the set of least ommonsubsumers of C1; : : : ; Cn as:ls(C1; : : : ; Cn) := fE j C1 v E ^ � � � ^ Cn v E ^8E 0 : C1 v E 0 ^ � � � ^ Cn v E 0 ) E v E 0g: 214



In [6℄, we provide an algorithm for omputing the LCS of C1; : : : ; Cn. Itwill also prove helpful to introdue an operation for the most spei� role ofroles R1; : : : ; Rn.De�nition 12 (Most Spei� Role) Let R1; : : : ; Rn be roles in eitherALENR or ALQ. Then we de�ne the most spei� superrole (MSS) ofR1; : : : ; Rn as:mss(R1; : : : ; Rn) := fR j R1 v R ^ � � � ^ Rn v R ^8R0 : R1 v R0 ^ � � � ^Rn v R0 ) R v R0g: 2From this de�nition we an derive a simple method for omputing theMSS of a number of roles.Proposition 3 Let R1; : : : ; Rn be roles in ALENR with Ri := Ri1 u � � � uRimi and Ri := fRi1; : : : ; Rimig for all i 2 f1; : : : ; ng. Thenmss(R1; : : : ; Rn) := (uR2R1\���\RnR if R1 \ � � � \Rn 6= ;; andunde�ned otherwise. 2Obviously, for roles R1; : : : ; Rn in ALQ, mss(R1; : : : ; Rn) is given by R1i� all pairs Ri and Rj are idential and unde�ned otherwise. This is truebeause there exists no role forming onstrutor in ALQ. In the sequel, wewill provide an algorithm for omputing the LCSA of ABoxes A and B. Theidea is based on the following fats. Given � 2 A and � 2 B where � and �are both either onept assertions or role assertions, we an ompute a newassertion  suh that  is the most spei� assertion (w.r.t. the subsumptionde�nition for assertions in De�nition 5) whih subsumes � and �. In general,suh a  may not exist. If it exists, it is onvenient to transform A andB into a form suh that  an easily be determined by pairwise omparingompatible assertions to one another. Thereby, two assertions are ompatibleto eah other if both assertions are either onept assertions whih involvethe same individual or role assertions whih involve the same individuals,and the MSS of the involved roles is de�ned. In suh a ase, we will say thatthe new assertion  emerges from � and � by appliation of the LCSA rules.The following proposition summarizes these observations.Proposition 4 Let a : C and a : D be onept assertions and (a; b) : R and(a; b) : S be role assertions suh that mss(R; S) is de�ned. Then:(i) a : C v a : ls(C;D), a : D v a : ls(C;D), and, for all assertions with a : C v  and a : D v , we have that a : ls(C;D) v .15



(ii) (a; b) : R v (a; b) : mss(R; S), (a; b) : S v (a; b) : mss(R; S), and, forall assertions  with (a; b) : R v  and (a; b) : S v , we have that(a; b) : mss(R; S) v . 2The two observations are immediate onsequenes of the de�nition ofABox subsumption (De�nition 5), the de�nition of LCS (De�nition 11) andthe de�nition of MSS (De�nition 12).Following the line desribed above, we apply the LCSA rules to everypair of ompatible assertions � 2 A and � 2 B and obtain a set of newassertions forming an ABox whih is equivalent to the LCSA of A and B.Let us illustrate this idea by an example.Example 1 LetA := fa : A u A0; (a; b) : (R u S); (; d) : (R u S)g andB := fa : A u A00; (a; b) : (R u S 0); b : A u A0g:Then, for the ompatible onept assertions a : AuA0 2 A and a : AuA00 2 B,we set 1 := a : ls(A u A0; A u A00). Furthermore, given the ompatible roleassertions (a; b) : (R u S) 2 A and (a; b) : (R u S 0) 2 B, we set 2 :=(a; b) : mss(R u S;R u S 0). All other pairs of assertions are inompatible toeah other. Hene, we yield the ABox f1; 2g � fa : A; (a; b) : Rg whih isequivalent to lsa(A;B).For the ABoxes A and B onsidered in Example 1, it is possible to om-pute lsa(A;B) in the desribed way. However, as the following exampleshows, simply applying the LCSA rules does not solve the problem in gen-eral.Example 2 Let A := fa : 9R:Ag andB := f(a; b) : (R u S)g:Then, applying the LCSA rules to A and B yields the empty ABox. However,the LCSA of A and B is equivalent to the ABox fa : 9R:>g whih is stritlysubsumed by ;. This problem an be irumvented by adding the oneptassertion a : 9 (R u S):> to B yielding B0. Obviously, the new oneptassertion is a logial onsequene of B and hene, the transformation from Bto B0 is semantis-preserving. Now the LCSA of A and B an be determinedby applying the LCSA rules to A and B0 in the usual way.16



In Example 2, the onept appearing in the added assertion a : 9(RuS):>is the most spei� onept of the individual a w.r.t. B. Generalizing thedesribed idea, before applying the LCSA rules, we add to A (B) the mostspei� onept of a (b) for all individuals a (b) ourring in A (B).De�nition 13 Let A be an ABox, a 2 Ind(A), and C a onept. Then wesay that a is an instane of C i� aI 2 CI holds for all models I of A.The notion of instanes of onepts an now be used to de�ne the mostspei� onept of an ABox individual.De�nition 14 (Most Spei� Conept) Let L be a desription logi, Aan ABox w.r.t. L, and a 2 Ind(A). Then we de�ne the most spei� onept(MSC) of a w.r.t. A asmsA(a) := fC 2 L j a is an instane of C ^8C 0 2 L : a is an instane of C 0 ) C v C 0g: 2From De�nition 14 we an derive two important properties of the MSC.One of them refers to so alled yli ABoxes whih will be introdued now.De�nition 15 (Path and Cyle) Let A be an ABox and n 2 IN. Thenwe introdue the following terms:� A subset A0 � A is alled a path of length n of A i� A0 is of theform f(a0; a1) : R0; : : : ; (an�1; an) : Rn�1g where, for i; j 2 f0; : : : ; ng,ai 6= aj holds whenever i 6= j.� A0 � A is alled a yle of length n of A i� A0 is of the form f(a0; a1) :R0; : : : ; (an�2; an�1) : Rn�2; (an�1; a0) : Rn�1g. If A ontains a yle,we also say that A is yli, otherwise A is non-yli.� A has maximal yle (path) length n i� A ontains a yle (path) oflength n and all other yles (paths) in A are of length smaller than orequal to n.� By default, we set the maximal yle (path) length of A to 0 in ase Ais non-yli (has no path). 2
17



Note that, aording to De�nition 15, loops are also onsidered as yles.For example, the ABox f(a; a) : Rg is yli with maximal yle length of 1.For a given ABox A, it is easy to ompute A's maximal yle and path lengthby an algorithm. We omit the tehnial details here. From De�nitions 14and 15 we an derive important properties of the MSC. It is easy to see thatmsA(a) = ; if A is unsatis�able. Consequently, for omputing the MSCof an individual in A, we expet A to be at least satis�able. The followingproposition shows however that this is not the only reason for the MSC tobe the empty set.Proposition 5 Let A be an ABox and a 2 Ind(A). Then,(i) for all individuals a 2 Ind(A) and all C;C 0 2 msA(a), C and C 0 areequivalent, and(ii) msA(a) does not exist i� A is unsatis�able or there exist a1; : : : ; am;am+1; : : : ; an�1 2 Ind(A) and R0; : : : ; Rm; Rm+1; : : : ; Rn�1 suh thatf(a; a1) : R0; : : : ; (am; am+1) : Rm; : : : ; (an�1; am) : Rn�1g � A.Proof. We prove (i) by ontradition. If A is unsatis�able, then msA(a) = ;and nothing needs to be shown. Otherwise, let C;C 0 2 msA(a) and supposeC 6� C 0. Then, a is an instane of CuC 0 and both CuC 0 < C and CuC 0 < C 0hold, whih is a ontradition to C;C 0 2 msA(a). Now we prove \(" of(ii) by ontradition. If A is unsatis�able, it is obvious that msA(a) doesnot exist. Otherwise, let f(a; a1) : R0; : : : ; (am; am+1) : Rm; : : : ; (an�1; am) :Rn�1g � A and suppose msA(a) exists. Obviously, we have that msA(am)exists if msA(a) exists. We will now show that msA(am) does not exist.In order to simplify the proof, we de�ne bi := am+i and Ti := Rm+i, fori 2 f0; : : : ; n �m � 1g. Assume that there exists a onept C 2 msA(b0).Then we reursively de�ne a series of onepts Ci; i = 0; 1; 2; : : : ; as follows:C0 := msA(b0); and (1)Ci+1 := msA(b(i mod (n�m))) u 9 T(i mod (n�m)):Ci: (2)The onepts Ci are well-de�ned sine, for every individual b(i mod (n�m)) o-urring in (1) and (2), msA(b(i mod (n�m))) is de�ned (beause there is a pathfrom a to b(i mod (n�m)) and msA(a) is de�ned aording to our assumption).The sets Ci; i = 0; 1; 2; : : : ; are onstruted in suh a way that, for all i 2 IN,a is an instane of Ci and Ci+1 < Ci. Therefore, there exists an i 2 IN suhthat b0 is an instane of Ci and depth(Ci) > depth(C). But this implies thatC 6v Ci in ontradition to the assumption that C 2 msA(b0). Now we willprove \)" by ontradition. Suppose msA(a) does not exist and let A be18



a satis�able ABox suh that there exists no f(a; a1) : R0; : : : ; (am; am+1) :Rm; : : : ; (an�1; am) : Rn�1g � A. Consequently, there are obviously onlypaths emerging from a. Let p be the length of the longest of these pathsand let A0 be the preproessing omplete3 version of A in whih no pair ofidential role assertions is present. If A is an ABox w.r.t. ALENR, then,for b 2 Ind(A0) and i 2 IN, we reursively de�ne a funtion f(b; i) as follows:f(b; 0) := > u ub:C2A0C andf(b; i+ 1) := f(b; 0) u uR2Roles(A0)(> u (� jf(b; ) : R 2 AgjR)):From this de�nition it follows that, for all i 2 f1; : : : ; pg, f(a; i) is well-de�ned (sine no yles an be reahed by any path emerging from a), a isan instane of f(a; p), and the onept f(a; p) is the most spei� oneptwith this property. Hene, f(a; p) is equivalent to msA(a) in ontraditionto our assumption. In the ase that A is an ABox w.r.t. ALQ, we de�nef(b; 0) := > u ub:C2A0C andf(b; i+ 1) := f(b; 0) u uR2Roles(A0)(> u uf(b;1):R1;::: ;(b;q):Rq jRi=Rg�A0(� q Rls(f(1; i); : : : ; f(q; i)))):Again, for all i 2 f1; : : : ; pg, f(a; i) is well-de�ned, a is an instane of f(a; p),and the onept f(a; p) is the most spei� onept with this property. Hene,f(a; p) is equivalent to msA(a), whih again ontradits to our assumption.2Proposition 5 (i) states a similar uniqueness riteria for the MSC as forthe LCSA for ABoxes. From the seond part of the proposition it followsthat, for an individual a, msA(a) does not exist if either A is unsatis�ableor there emerges some path from a whih terminates in any of A's yles.These properties of the MSC lead to the following two onsequenes. Dueto (i), we will onsider the MSC of an individual a ourring in A to be aonept rather than a set of onepts if msA(a) 6= ;. On the other hand, weonsider msA(a) to be unde�ned if msA(a) = ;. As another onsequene,the above desribed idea for omputing the LCSA of ABoxes does not workin all ases. We will now illustrate with an example how to irumvent thisproblem.3In the preproessing omplete version of an ABox A, the onepts C whih appearin onept assertions of the form a : 9 R:C; a : 8 R:C; a : (� n R C), and (� n R C)are spread over a's R-suessors, and onept and role onjuntions are deomposed. Thepreproessing ompletion will be formally de�ned in De�nition 19.19



Example 3 LetA := f(a0; a1) : R0; (a1; a2) : R1; (a2; a0) : R2g andB1 := f(a0; a1) : R0; (a1; a0) : R1g:Then both A and B1 are yli and msA(a) does not exist for all a 2fa0; : : : ; a2g and msB1(a) does not exist for all b 2 fa0; a1g. Despite,lsa(A;B1) is given by an ABox equivalent to fa1 : 9 R1:>; (a0; a1) : R0g.For determining lsa(A;B1), we an \approximate" the MSC of eah indi-vidual in Ind(A) [ Ind(B1) up to a depth whih is equal to the sum of thelengths of the longest yle in A and the one of B. Sine the maximal lengthof A's yles is 3 and the maximal length of B's yles is 2, we de�ne:A0 := fa0 : 9 R0:(9 R1:(9 R2:(9R0:(9R1:>))));a1 : 9R1:(9R2:(9 R0:(9 R1:(9 R2:>))));a2 : 9R2:(9R0:(9 R1:(9 R2:(9 R0:>))))g [ A andB01 := fa0 : 9 R0:(9 R1:(9 R0:(9R1:(9R0:>))));a1 : 9R1:(9R0:(9 R1:(9 R0:(9 R1:>))))g [ B:Sine the additional onept assertions in A0 (B01) are logial onsequenes ofA (B1), the transformation is semantis-preserving and A0 � A (B01 � B1)is guaranteed. Now lsa(A;B1) an be omputed by applying the LCSA rulesto A0 and B01 in the usual way.Example 3 shows that, if the LCSA of two satis�able ABoxes exists, butthe MSC of an individual a does not exist, the MSC an be replaed by anMSC approximation. More spei�ally, given an ABox A (B) with maximalyle length n (m), maximal path length p (q), and r (s) as the maximumonept depth over all onepts ourring in onept assertions in A (B), forall individuals in A (B), we add a : C to A (B) where C is the most spei�onept of depth n +m + p+ q + r + s of whih a is an instane. However,the following example shows that there is another exeption to be onsideredin the LCSA determination.Example 4 (Example 3 ontinued) Let A be de�ned as in Example 3and B2 := fa0 : 9R0:(9R1:(9 R2:(9 R0:>)))g:Again, the sum of the lengths of the maximal yle length of both ABoxes is3 (beause A's maximal yle length is 3 and B2 is non-yli) and thus, we20



an de�ne A0 := fa0 : 9R0:(9 R1:(9 R2:>));a1 : 9 R1:(9R2:(9R0:>));a2 : 9 R2:(9R0:(9R1:>))g [ Aand apply the LCSA rules to A0 and B2 yielding an ABox equivalent toC := fa0 : 9R0:(9R1:(9R2:>))g:The ABox C is a subsumer of both A and B2, but it is not the most spei�one. The LCSA of A and B2 is given bylsa(A;B2) � B2where B2 < C. The reason for this undesired result is due to the fat that theonly onept assertion in B2 involves a onept of depth four whih is largerthan the sum of the lengths of the longest yle in A and the one in B2, andthis has an e�et on determining the LCSA. If we approximate msA(a0),msA(a1), and msA(a2) up to a onept of depth four, we getA00 := fa0 : 9R0:(9 R1:(9 R2:(9 R0:>)));a1 : 9 R1:(9R2:(9R0:(9R2:>)));a2 : 9 R2:(9R0:(9R1:(9R2:>)))g [ A:As in Example 3, semantis preservation is guaranteed by the transformationand thus, A00 � A holds. Now we an easily ompute lsa(A;B2) by applyingthe known LCSA rules to A00 and B2 yielding an ABox equivalent to B2 asdesired.The examples suggest the following algorithm for omputing the LCSAof two ABoxes A and B. For all a 2 Ind(A) and b 2 Ind(B), we add to A Bthe additional onept assertions a : msA(a) [b : msB(b)℄ if a : msA(a) [b :msB(b)℄ exists. Otherwise, we add to A (B) the MSC approximation of a (b)desribed in Example 4. As argued before, this transformation is semantis-preserving and thus, equivalene between A (B) and its transformed ABox A0(B0) is guaranteed. Finally, we apply the LCSA rules to A0 and B0 obtainingthe LCSA of A and B. We will now formalize our idea to whih degree theMSC needs to be approximated.De�nition 16 (ABox depth) Let A be an ABox, A be A's maximal ylelength, and pA the length of the longest path in A. Then we de�ne the depthof A as: depth(A) := A + pA +max(fdepth(C)ja : C 2 Ag): 221



Intuitively, the depth of an ABox A is given by the sum of the followingnumerial values: its maximal yle length (A), the length of the longestpath ourring inA (pA), and the value of the largest depth over the oneptsinvolved in A's onept assertions.De�nition 17 (Most Spei� Conept Approximation) Let L be ei-ther the desription logi ALENR or ALQ, A an ABox w.r.t. L, a 2Ind(A), and d 2 IN. Then we de�ne the most spei� onept approxima-tion (MSC approximation) of a w.r.t. A and d asms-approxA;d(a) := fC 2 L j depth(C) � d ^ a is an instane of C ^8C 0 2 L : depth(C 0) � depth(C) ^ a isan instane of C 0 ) C v C 0g: 2Intuitively, the MSC approximation of an individual a ourring in anABox A is the set of most spei� onepts of whih a is an instane, wherethe depth of the onepts is less than or equal to d. Sine all pairs of oneptsofms-approxA;d(a) are equivalent as in the ase of the MSC, we will onsiderms-approxA;d(a) as a onept rather than a set of onepts. Obviously, ford = depth(A), ms-approxA;d(a) oinides with msA(a) if msA(a) exists.The following example shows that it is onvenient to put an ABox into aspei� form before omputing the MSC or the MSC approximation of itsindividuals.Example 5 Let A := f(a; b) : R; 8R:A; b : Bg:Then, msA(b) is equivalent to A u B. This result follows sine b is an R-suessor of a in A and, due to a : 8 R:A, b has the property A u B. If weadd the onept assertion b : A to A, msA(b) an easily be determined.Example 5 shows that before applying the proedure for omputing theMSC of an individual a 2 Ind(A), we have to transform A into a form suhthat relevant information regarding a is \transported" to a. We will nowpresent a simple method for transforming an ABox into an equivalent ABoxall of whose individuals have this property. The idea is to introdue prepro-essing rules similar to the rules presented in [4℄ for obtaining a preproessingomplete ABox.De�nition 18 (Preproessing Rules) For an ABoxA w.r.t. either ALENRor ALQ, we de�ne the preproessing rules as follows:22



1. A!u fa : C1; a : C2g [ A if(i) a : C1 u C2 2 A and(ii) fa : C1; a : C2g 6� A,2. A!9 fb : Dg [ A if(i) fa : 9 R:C; (a; b) : Rg � A,(ii) neither b : C 2 A nor there exists an E 2 ALENR suh thatb : E 2 A and E � :C,(iii) A [ fb : Dg is satis�able, and(iv) D = C or D = E if there exists an E 2 ALENR suh thatE � :C,3. A!8 fb : Cg [ A(i) if fa : 8R:C; (a; b) : Rg � A and(ii) b : C =2 A,4. A!� fb : Dg [ A(i) fa : (� n R C); (a; b) : Rg � A,(ii) neither b : C 2 A nor there exists an E 2 ALQ suh that b : E 2A and E � :C,(iii) A [ fb : Dg is satis�able, and(iv) D = C or D = E if there exists an E 2 ALQ suh that E � :C,5. A!� fb : Dg [ A(i) fa : (� n R C); (a; b) : Rg � A,(ii) neither b : C 2 A nor there exists an E 2 ALQ suh that b : E 2A and E � :C,(iii) A [ fb : Dg is satis�able, and(iv) D = C or D = E if there exists an E 2 ALQ suh that E � :C,and6. A!Ru f(a; b) : R; (a; b) : Sg [ A if(i) (a; b) : (R u S) 2 A and(ii) f(a; b) : R; (a; b) : Sg 6� A.23



2De�nition 19 Let A be an ABox and let A := fA1; : : : ;Ang be the set ofABoxes emerging from A by exhaustive appliations of the preproessing rulesin De�nition 18. Then we de�ne A's preproessing ompletion asA0 := \B2AB: 2Let us disuss the preproessing rules and the de�nition of a preproessingompletion. The !u-rule deomposes onept assertions involving oneptonjuntions in the usual way. In ase, a onept assertion of the forma : 9 R:C is present and a has an R-suessor b in A, the !9-rule non-deterministially heks whether b : C and/or a onept assertion equivalentto b : :C an be added to A while preserving satis�ability of A. If onlyA[fb : Cg (A[fb : :Cg) is satis�able, b : C (a onept assertion equivalentto b : :C) will be inluded in A reeting the idea that the property C (:C)holds for b. Otherwise, if both A [ fb : Cg and A[ fb : :Cg are satis�able,due to the intersetion operation in the de�nition of A0, A's preproessingompletion does neither inlude b : C nor a onept assertion equivalent tob : :C reeting the idea that there exists at least one model of A in whihb : C holds and at least one model of A in whih b : :C holds. In prinipal,the !�- and !�-rules work in the same way. The !8-rule adds b : C toA if a : 8 R:C 2 A and b is an R-suessor of a in A sine in this ase b isobviously an instane of C. Finally, the!Ru-rule deomposes role assertionsinvolving role onjuntions (in ALENR).Proposition 6 Let A be an ABox and A0 be A's preproessing ompletion.Then A is equivalent to A0:Proof. Let A be an ABox and C and C 0 be ABoxes whih emerge from Aby appliation of one of the preproessing rules. Furthermore, let B be theset of all ABoxes whih emerge from A by exhaustive appliations of thepreproessing rules. Then, A � C and A � C 0 holds, whih implies A v Cand A v C 0. By indution on the length of rule appliations it an easilybe veri�ed that, for all B 2 B, A v B holds whih implies A v A0. Inorder to prove A0 v A, we �rst observe that an appliation of the !8-, !u,or !Ru-rule is semantis-preserving. If, due to an appliation of any of theother preproessing rules, a onept assertion b : C (b : E with E � :C)is added to A and A [ fb : Eg (A [ fb : Cg) is unsatis�able, then b : C24



(b : E) is a logial onsequene of A. Hene, for all B 2 B, we have thata : C 2 B (a : E 2 B). But this implies that a : C 2 A0 (a : E 2 A0). Ifboth A [ fb : Cg and A [ fb : Eg are satis�able, then there exists B0 � Bsuh that, for all B 2 B0, we have that b : C 2 B0 and there exists B00 � Bsuh that, for all B 2 B00, b : E 2 B00 holds. But then neither b : C 2 A0 norb : E 2 A0 sine neither b : C 2 [B2BB nor b : E 2 [B2BB. Consequently, wehave that, for all � 2 A0 n A, � is a logial onsequene of A, whih impliesA0 v A, and the laim is proved. 2Proposition 6 guarantees that the preproessing operation is semantis-preserving. In the sequel, we will only onsider the preproessing ompletionsof ABoxes. Suh an ABox will be alled a preproessing omplete ABox. Withthese preparations, we an now state an algorithm for omputing the MSC,respetively, the MSC approximation.For a preproessing omplete ABox A w.r.t. either ALENR or ALQand an individual a 2 Ind(A), the invoation ompute-ms(a; depth(A);A)omputes ms-approxA(a) where A is assumed to be in a form suh thatno pair of idential role assertions is present. If an ABox w.r.t. ALENRis present, the algorithm omputes the existential and universal role quan-ti�ations and �-restritions following from the onstraints imposed on adue to the role assertions in A. Otherwise, if A is an ABox w.r.t. ALQ,the quali�ed �-restritions following from the onstraints imposed on a areomputed. In addition, the algorithm onsiders the onepts ourring inonept assertions involving a.Theorem 4 Let A 6= ; be a satis�able and preproessing omplete ABox inwhih no pair of idential role assertions appears, a 2 Ind(A), and d 2 IN.Then, ompute-ms(a; d;A) terminates and returns a onept equivalent toms-approxA;d(a).Proof. Termination of the algorithm an easily be veri�ed. The seond pa-rameter d is a �xed natural number whih is not modi�ed anywhere in thefuntion. Moreover, ompute-ms is only reursively invoked with d� 1. Asa onsequene, either the omputation terminates with d > 0 or there ex-ists an invoation with d = 0. But then the �rst then-lause is proessedand there are no further invoations, whih guarantees termination. Weshow the remainder of the laim by indution on d. If d = 0, A is non-yli and ompute-ms(a; d;A) returns > u ua:C2AC whih is equivalent tomsA(a) even in the ase that there are no onept assertions involving a.Now assume d > 0. Then, we add to C the onepts imposed by oneptassertions involving a. If there exists no role assertion (a; b) : R 2 A, C25



Algorithm 2 ompute-ms(a; d;A)if d = 0 then> u ua:C2ACelseC := fompute-ms(a; 0;A)g;A := f(a; b) : Rjb 2 Ind(A) ^ R 2 Roles(A)g;if A is an ABox w.r.t. ALENR thenC := C [ f9R:(ompute-ms(b; d� 1;A))j(a; b) : R 2 Ag;for all A0 � A do// A0 = f(a; b1) : R1; : : : ; (a; bn) : Rngif mss(R1; : : : ; Rn) is de�ned thenC := C [ f(� jA0jmss(R1; : : : ; Rn))gend ifend forR := fRj(a; b) : R 2 Ag;for all R0 � R do// R0 = fR1; : : : ; Rng;S := fb 2 Ind(A)j(a; b) : R ^ R 2 R0g// S = fb1; : : : ; bmg;if mss(R1; : : : ; Rn) is de�ned and there exists a : (� m R) 2 Asuh that R1 v R ^ � � � ^Rn v R thenC := C [ f8 mss(R1; : : : ; Rn):ls(ompute-ms(b1; d �1;A); : : : ; ompute-ms(bm; d� 1;A))g;end ifend forelse// A is an ABox w.r.t. ALQfor all A0 � A do// A0 = f(a; b1) : R1; : : : ; (a; bn) : Rngif mss(R1; : : : ; Rn) is de�ned thenC := C [ f(� jA0jR1ls(ompute-ms(b1; d� 1;A); : : : ; ompute-ms(bn; d� 1;A)))gend ifend forend ifuC2CCend if
26



is left unhanged and we orretly return msA(a) aording to the initialase. Otherwise, we ollet in A the set of role assertions whih involve anyrole suessor of a in A. Suppose A is an ABox w.r.t. ALENR. Then, byindution hypothesis, the invoation ompute-ms(b; d�1;A) (yielding Cb) isequivalent to ms-approxA;d(b). Now let A0 = f(a; b1) : R1; : : : ; (a; bn) : Rngbe a subset of A. If mss(R1; : : : ; Rn) is de�ned, then a has obviously at leastjA0j R-suessors in A0 (and thus in A) sine A0 does not inlude any pair ofidential role assertions and A is in preproessing omplete form. Hene, weadd the �-restrition (� jA0jmss(R1; : : : ; Rn)) to C. Now we ollet into Rthe set of roles R for whih there exists some R-suessor of a in A. Let R0 =fR1; : : : ; Rng be a subset of R and S = fb1; : : : ; bmg the set of R-suessorsof a inA for allR 2 R0. Ifmss(R1; : : : ; Rn) is de�ned, R1 v R^� � �^Rn v Rholds, and there exists a onept assertion of the form a : (� m R) in A,then obviously all suessors of a in the role mss(R1; : : : ; Rn) must have atleast property ls(ms-approxA;d�1(b1); : : : ; ms-approxA;d�1(bm)). The re-lation jSj > m annot hold beause A would be unsatis�able in this ase.Sine, for all bi, ompute-ms(bi; d�1;A) is equivalent toms-approxA;d�1(bi)holds by indution hypothesis, we add to C the universal role quanti�ation8mss(R1; : : : ; Rn):ls(ompute-ms(b1; d� 1;A); : : : ; ompute-ms(bm; d�1;A)). If A is an ABox w.r.t. ALQ, let A0 = f(a; b1) : R1; : : : ; (a; bn) :Rng be a subset of A. Aording to the indution hypothesis, the invoa-tion ompute-ms(bi; d� 1;A) (yielding Cbi) returns a onept equivalent toms-approxA;d(bi) for all i 2 f1; : : : ; ng. Hene, a has at least jA0j suessorsin the role mss(R1; : : : ; Rn) whih have property ls(ms-approxA;d�1(b1);: : : ; ms-approxA;d�1(bm)). Thereby, if mss(R1; : : : ; Rn) is de�ned, it isequivalent to R1 in ALQ. Consequently, we add the quali�ed �-restrition(� jA0jR1 Cbi) to C. Eventually, the onjuntion of all onepts inluded inC is returned whih is equivalent to msA(a). 2Example 6 Let us ompute the MSC of a whih appears in the satis�ableand preproessing omplete ABox w.r.t. ALENRA := fa : (� 2R) u 9 R:B; (a; b) : R; (a; ) : R; b : A; b : B;  : A;  : Cg:Then, depth(A) = 1 and ompute-ms is invoked with the parameters a, 1,and A. The reursive invoation ompute-ms(a; 0;A) yields C = f(� 2R)u9 R:Bg. Furthermore, we get A = f(a; b) : R; (a; ) : Rg and the reursiveinvoations ompute-ms(b; 0;A) and ompute-ms(; 0;A) yield A u B andA u C, respetively, and 9 R:(A u B) and 9 R:(A u C) are added to C. Thefollowing for-loop adds (� 1R) and (� 2R) to C. Then, for R = R0 = fRgand S = fb; g, the subsequent for-loop adds 8mss(R;R):ls(AuB;AuC) �27



8 R:A to C. Finally, we return the onjuntion of onepts in C, whih isequivalent to (� 2 R) u 9 R:(A u B) u 9 R:(A u C) u (� 2 R) u 8 R:A asdesired.We will now introdue the MSC-ompletion of an ABox.De�nition 20 Let A and B be satis�able ABoxes. Then we de�ne A'sMSC-ompletion w.r.t. B asÂB := fa : ms-approxA;max(fdepth(A);depth(B)g)(a)ja 2 Ind(A)g [ A: 2Intuitively, an MSC-ompletion ÂB of an ABox A w.r.t. B emerges fromA by adding the MSC approximation of every individual a 2 Ind(A) up toa number whih is given by the maximum of the depths of A and B.We will now get bak to the problem that the LCSA of ABoxes does notalways exist.Example 7 Let A := f(a; b) : R; (b; a) : Rg andB := f(a; a) : Rg:Then, lsa(A;B) does not exist. The reason for this is that, for eah ABoxC, whih subsumes both A and B, there exists an ABox C 0 with C 0 < C. Morespei�ally, if we reursively de�ne a series of onepts Ci, i = 0; 1; 2; 3; : : : ,as C1 := 9R:> andCi+1 := 9R:(Ci);then it is easy to see that, for all i 2 IN [ f0g, A v fa : Cig, B v fa : Cig,and fa : Ci+1g < fa : Cig.Informally speaking, the reason that the LCSA does not exist in Example7 is given by the fat that all pairs of yles C;D with C � A and D � Bwhih involve at least one ommon individual, have the following properties:� the sequene of individuals indued by C is di�erent from the one in-dued by D, and� the MSSs of the role pairs orresponding to eah pair of orrespondingsequene individuals is de�ned.28



These properties of two ABoxes form a set of neessary and suÆientonditions for the (non-) existene of the LCSA.Proposition 7 Let A and B be satis�able ABoxes and C and D be the set ofA's and B's yles, respetively. Then, lsa(A;B) does not exist i� Ind(A)\Ind(B) 6= ; and there exist C 2 C of the form f(a0; a1) : R0; : : : ; (an�1; a0) :Rn�1g and D 2 D of the form f(a0; b1) : S0; : : : ; (bm�1; a0) : Sm�1g suh thatthe following onditions hold (assuming m � n without loss of generality):(i) there exists an i 2 IN suh that a(i mod n) 6= b(i mod m), and(ii) mss(R(i mod n); S(i mod m)) is de�ned for all i 2 IN [ f0g.Proof. We �rst prove \(" by ontradition. Suppose, C 2 lsa(A;B) existswith d = depth(C) and there are yles C = f(a0; a1) : R0; : : : ; (an�1; a0) :Rn�1g in A and D = f(a0; b1) : S0; : : : ; (bm�1; a0) : Sm�1g in B suh thatthe onditions (i) and (ii) hold. Then, we reate a sequene of ABoxesC1; C2; C3; : : : suh that, for all i 2 IN [ f0g, A v Ci and B v Ci hold. Wereursively de�ne oneptsC0 := 9mss(R0; S0):> andCi+1 := 9mss(Ri; S(i mod m)):(Ci):Note that, for all i 2 IN [ f0g, the onept Ci is well-de�ned sine, due toondition (ii), the MSSs in Ci all exist. Now let Ci := fa0 : Cig and observethat, for all i 2 IN[f0g, A v Ci and B v Ci sine a0 2 Ind(A\B) and Ci+1 <Ci. But then, for all i > d, we have that Ci < C whih ontradits to ourassumption that C 2 lsa(A;B). Now we will prove \)" by ontraposition.If either A or B is non-yli, then lsa(A;B) obviously exists. Therefore,let C 2 C be of the form f(a0; a1) : R0; : : : ; (an�1; a0) : Rn�1g and let D 2D be of the form f(a0; b1) : S0; : : : ; (bm�1; a0) : Sm�1g. Then, lsa(A;B)exists i� lsa(C;D) exists. Suppose that a(i mod n) = b(i mod m) holds forall i 2 IN [ f0g. Furthermore, assume that mss(R(i mod n); S(i mod m)) isde�ned for all i 2 IN [ f0g. Then, lsa(C;D) is given by the ABox f(a; b) :mss(R(i mod n); S(i mod m))j1 � i � mn ^ (a; b) : R(i mod n) 2 C ^ (a; b) :S(i mod m) 2 Dg. Now we will onsider the ase in whih there exists ani 2 IN [ f0g suh that mss(R(i mod n); S(i mod m)) is unde�ned. Let C 0 (D0)be C's (D's) MSC-ompletion. Then, lsa(C;D) is given by fa : ls(C;D)ja :C 2 C 0 ^ a : D 2 D0g [ f(a; b) : mss(R; S)j(a; b) : R 2 C 0 ^ (a; b) : S 2D0 ^ mss(R; S) is de�nedg. Finally, if there exists an i 2 IN [ f0g suhthat mss(R(i mod n); S(i mod m)) is unde�ned and there exists a j 2 IN [ f0gsuh that a(j mod n) 6= b(j mod m), we again de�ne C 0 (D0) as C's (D's) MSC-ompletion and observe that lsa(C;D) is given by fa : ls(C;D)ja : C 229



C 0 ^ a : D 2 D0g [ f(a; b) : mss(R; S)j(a; b) : R 2 C 0 ^ (a; b) : S 2 D0 ^mss(R; S) is de�nedg, whih ompletes the proof. 2The proposition states a set of neessary and suÆient ondition for the(non-) existene of the LCSA of ABoxes. Before stating an algorithm whihimplements the test of the onditions, let us �rst introdue some useful no-tation. For individuals a1; : : : ; an, n 2 IN [ f0g, we introdue a sequeneas a syntati expression of the form [a1; : : : ; an℄. Informally speaking, se-quenes orrespond to multisets in whih the order of elements is obeyed.We also introdue two types of operations on sequenes. For sequenes,[a1; : : : ; an℄ and [b1; : : : ; bm℄, the sequene [a1; : : : ; an℄ n [b1; : : : ; bm℄ emergesfrom [a1; : : : ; an℄ by eliminating all ai from [a1; : : : ; an℄ suh that there ex-ists a bj 2 fb1; : : : ; bmg with ai = bj. Moreover, [a1; : : : ; an℄ Æ [b1; : : : ; bm℄ =[a1; : : : ; an; b1; : : : ; bm℄ denotes the onatenation of [a1; : : : ; an℄ and [b1; : : : ; bm℄.Eventually, [a1; : : : ;an℄ and [b1; : : : ; bn℄ are equal i� ai = bi holds for all i 2 f1; : : : ; ng.Algorithm 3 lsa-unde�ned(firstp; yle1p; yle2p; startind1; startind2;ind1; ind2; sequene1; sequene2;A;B)if (:firstp ^ (ind1 = startind1) ^ (ind2 = startind2)) or ((ind1 =startind1) ^ yle2p) or ((ind2 = startind2) ^ yle1p) then:(sequene1 n [startind1℄ = sequene2 n [startind2℄)elseS1 := f(ind1; b) : R 2 Ag;S2 := f(ind2; b) : R 2 Bg;for all (a; b) : R 2 S1 dofor all (; d) : S 2 S2 domss(R; S) ^ lsa-undefined(false;:firstp ^ (ind1 = startind1);:firstp ^ (ind2 = startind2); startind1; startind2; b; d;sequene1 Æ [a℄; sequene2 Æ [b℄;A;B)end forend forend ifAlgorithm 3 heks if the onditions given in Proposition 7 hold forABoxes A and B. The �rst three parameters are Boolean variables, wherefirstp indiates whether or not lsa-unde�ned is in its �rst inarnation.Hene, at �rst invoation firstp is set to true. yle1p (yle2p) indiateswhether a yle has been deteted in A (B). Consequently, both variablesare initialized with false. startind1 (startind2) takes the variable in A(B) from whih the yle-test is started. ind1 (ind2) takes a variable whih30



is heked for being the \end" of a yle in A (B). When invoking lsa-unde�ned, both startind1; startind2; ind1, and ind2 are initialized with avariable a 2 Ind(A) \ Ind(B). Sine a is always onsidered the startingindividual of a possible yle in A and B, ondition (i) need not be hekedexpliitly in the algorithm. sequene1 (sequene2) ontains the sequene ofvariables involved in a possible yle in A (B). Sine onept assertions donot inuene the onditions in Proposition 7, we eliminate all onept asser-tions from A and B before invoking the algorithm. In the �rst then-lause,we hek if either ind1 (ind2) is the last individual in the sequene of indi-viduals forming a yle in A (B) or ind1 (ind2) is the last individual in thesequene of individuals forming a yle in A (B) and a yle in B (A) hasalready been deteted before. If the then-lause evaluates to true, we hekondition (i) in Proposition 7. Otherwise, in the else-lause we ollet inS1 (S2) all role assertions of the form (ind1; b) : R [(ind2; b) : R℄. For eah(ind1; b) : R 2 S1 and (ind2; d) : S 2 S2, we hek if mss(R; S) is de�ned(ondition (ii) in Proposition 7). In ase, mss(R; S) is unde�ned, the algo-rithm orretly returns false. Otherwise, lsa-unde�ned is invoked reursivelywith the following values. firstp is set to false sine its meaning is only toprevent us from entering the then-lause at �rst all. If ind1 = startind1(ind2 = startind2) and firstp does not hold, then a yle is present in A(B). Hene, in the next inarnation of lsa-unde�ned, yle1p (yle2p) isset to false and ind1 (ind2) is onatenated to sequene1 (sequene2). Inorder to omplete the test of the onditions (i) and (ii) in Proposition 7,we reursively all lsa-unde�ned with ind1 := b and ind2 := d. With theseonsiderations, the following theorem an be proved.Theorem 5 Let A and B be satis�able ABoxes and A0 := A n fa : C 2 Agand B0 := B nfa : C 2 Bg. Then, lsa(A;B) does not exist i� Ind(A;B) 6= ;and, for all a 2 Ind(A0)\Ind(B0), the invoation lsa-unde�ned(false; false;false; a; a; a; a; false; false;A0;B0) returns false. 2Thus, Algorithm 3 provides a deision proedure with whih the (non-)existene of the LCSA of two ABoxes an be deided. If the LCSA exists,the following theorem shows how to ompute it.Theorem 6 Let A and B be ABoxes and ÂB A's MSC-ompletion w.r.t. Band B̂A B's MSC-ompletion w.r.t. A. Furthermore, letC := fa : ls(C;D)ja : C 2 ÂB ^ a : D 2 B̂Ag [f(a; b) : mss(R; S)j(a; b) : R 2 ÂB ^ (a; b) : S 2 B̂A ^mss(R; S) is de�nedg: (3)Then, if lsa(A;B) exists, it is equivalent to C.31



Proof. Suppose lsa(A;B) exists. We prove the laim by showing by indu-tion on A's and B's ardinalities that, for all � 2 A and � 2 B, there exists a 2 C suh that � v , � v , and, for all 0 with � v 0 and � v 0,  v 0holds and C ontains no further assertions. In ase jAj = 0 (jBj = 0), we haveÂB = ; (B̂A = ;) and C = ; and the laim follows by Proposition 2 (i). Nowlet A and B be given with n = jAj and m = jBj and suppose lsa(A;B) � C(indution hypothesis). We de�ne A0 := A [ f�0g, where �0 is either of theform a : C or (a; b) : R. Now let � 2 A0. In ase � 6= �0, the laim is aonsequene of the indution hypothesis. Therefore, let � = �0 and suppose� is of the form a : C. Sine B̂A is the MSC-ompletion of B, it follows thateither the individual a does not our in B (and hene not in B̂A either) orthere exists a onept assertion � of the form a : D 2 B̂A. In the formerase, nothing needs to be shown sine lsa(fa : Cg;B) � ;. Otherwise, thereexists a onept assertion a : ls(C;D) 2 C 0 and a : C v a : ls(C;D),a : D v a : ls(C;D), and a : ls(C;D) v 0, for all 0, follows aord-ing to Proposition 4 (i). Now suppose that � is of the form (a; b) : R.Unless there exists a role assertion � 2 B̂A of the form (a; b) : S wheremss(R; S) is de�ned, nothing needs to be shown. Otherwise, there existsa role assertion (a; b) : mss(R; S) 2 C 0 and (a; b) : R v (a; b) : mss(R; S),(a; b) : S v (a; b) : mss(R; S) and (a; b) : mss(R; S) v 0, for all 0, holdsaording to Proposition 4 (ii). Aording to (3), C 0 ontains no further as-sertions and thus, lsa(A0;B) � C 0 holds. The proof for the ase jAj = n andjBj = m + 1 is analogous. 2Given any of the desription logis ALENR or ALQ, Algorithm 4 is anLCSA implementation taking A and B whih are both either ABoxes w.r.tALENR orALQ. The funtion ompute-ls implements the LCS of oneptsas in De�nition 11. In [6℄, we give an LCS algorithm for the desription logisALENR and ALQ.Theorem 7 Let A and B be ABoxes. Then, if lsa(A;B) exists, the invoa-tion ompute-lsa(A;B) terminates and returns an ABox C whih is equiva-lent to lsa(A;B).Proof. Termination of the algorithm follows by the termination of the fun-tions ompute-preproessing-ompletion, ompute-ms, and ompute-ls sineompute-lsa is not reursively invoked. If A (B) is unsatis�able, we return B(A). The orretness of this follows by Proposition 2. Otherwise, in the else-branh we �rst ompute the preproessing ompletions of A and B by meansof the funtion ompute-preproessing-ompletions and onstrut the MSC-ompletions ÂB of A and B̂A of B in the �rst two for-loops. Then, we initial-ize C to the empty ABox and add a onept assertion a : ompute-ls(C;D)32



Algorithm 4 ompute-lsa(A;B)if A (B) is unsatis�able thenB (A)elseA := ompute-preproessing-ompletion(A);B := ompute-preproessing-ompletion(B);ÂB := A;B̂A := B;for all a 2 Ind(A) doÂB := ÂB [ fa : ompute-ms(a;max(fdepth(A); depth(B)g);A)gend forfor all b 2 Ind(B) doB̂A := B̂A [ fb : ompute-ms(b;max(fdepth(A); depth(B)g);B)gend forC := ;;for all � in ÂB dofor all � in B̂A doif � is of the form a : C and � is of the form a : D thenC := C [ fa : ompute-ls(C;D)gelse if � is of the form (a; b) : R and � is of the form (a; b) : S andmss(R; S) is de�ned thenC := C [ f(a; b) : mss(R; S)gend ifend forend forCend if
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to C i� there exists a pair of onept assertions a : C 2 ÂB and a : D 2 B̂A.We add a role assertion (a; b) : mss(R; S) to C i� there exists a pair ofrole assertions (a; b) : R 2 ÂB and (a; b) : S 2 B̂A and mss(R; S) is de-�ned. Sine ompute-ls is assumed to be a orret LCS implementation,ompute-lsa(A;B) returns an ABox equivalent to C in (3), and the laim isa onsequene of Theorem 6. 2Summarizing, in order to ompute the LCSA of ABoxes A and B, we �rsthek whether lsa(A;B) is de�ned. This an be done by Algorithm 3. Iflsa(A;B) is de�ned, it an be determined by Algorithm 4.5 Complexity ResultsIn this setion, we will state omplexity results starting with a de�nition ofthe size of an ABox. It turns out that the size of the LCSA of n ABoxes w.r.t.either ALENR or ALQ is polynomial in the sizes of the input onepts. TheABox size de�nition does not take into aount sizes of onepts whih oursin onept assertions inluded in the input ABoxes. Therefore, we will givean alternative ABox size de�nition whih takes onepts into onsideration.As a onsequene, the size of the LCSA will blow up exponentially in thesizes of the input ABoxes in the worst ase.De�nition 21 (Size of an ABox) Let A be an ABox. Then we de�ne thesize of A as size(A) := jAj: 2Theorem 8 The size of the LCSA of A1; : : : ;An, whih are all ABoxesw.r.t. either ALENR or ALQ, is polynomial in the sizes of A1; : : : ;An iflsa(A1; : : : ;An) exists.Proof. Aording to the LCSA algorithm, we add at most jInd(A)j (jInd(B)j)onept assertions to A (B). Hene, the size of ÂB (B̂A) is polynomial inthe size of A (B). From Theorem 6 it follows that the size of lsa(A;B)is polynomial in the sizes of ÂB and B̂A. Now it an easily be shown byindution on n that the size of lsa(A1; : : : ;An) is also polynomial in thesizes of A1; : : : ;An. 2Theorem 8 shows that the size of lsa(A1; : : : ;An) does not grow expo-nentially in the sizes of A1; : : : ;An. However, in real appliations the sizeof storage needed to store the ABox lsa(A1; : : : ;An) an be exponential inthe storage needed for A1; : : : ;An. The reason is that the ABox size doesnot take into aount the sizes of onepts involved in onept assertions.34



De�nition 22 (Size of a Conept) Let C be either an ALENR or anALQ onept. Then we de�ne the size of C, jCj, reursively on C's strutureas follows:(i) If C = > or C = ?, then jCj := 1.(ii) If C is an atomi or negated atomi onept, then jCj := 1.(iii) If C is of the form 9 R:D, 8 R:D, (� n R D), or (� n R D), thenjCj := 1 + jDj.(iv) If C is of the form C1 u � � � u Cn, then jCj := jC1j+ � � �+ jCnj.Now we an give the de�nition of the exat ABox size whih takes oneptsizes into onsideration.De�nition 23 (Exat Size of an ABox) Let A be an ABox w.r.t. ALENRor ALQ. Then we de�ne the exat size of A ase-size(A) := jf(a; b) : R 2 Agj+ Xa:C2A jCj:Now we introdue the notion of minimality of ABoxes w.r.t. their exat size.De�nition 24 (Minimal Exat ABox Size) Let A be an ABox. Thenwe say that A has minimal exat size i�, for all A0, we have that A � A0implies e-size(A) � e-size(A0).Thus, an ABox A has minimal exat size if there exists no equivalentABox with smaller exat size than A. Unfortunately, the result in Theorem8 does not hold as soon as we onsider exat ABox sizes. Subsequently, wewill also need a similar notion of minimality of onepts.De�nition 25 (Minimal Conept Size) Let C be an ALENR (ALQ)onept. Then we say that C has minimal size i�, for all C 0 2 ALENR(ALQ), we have that C � C 0 implies jCj � jC 0j.With these preparations, we an state the following theorem.Theorem 9 The exat size of the LCSA of A1; : : : ;An, whih are all ABoxesw.r.t. either ALENR or ALQ, an be exponential in the exat sizes ofA1; : : : ;An if lsa(A1; : : : ;An) exists.35



Proof. The problem of omputing the LCS of ALENR (ALQ) oneptsan be redued to omputing the LCSA of ABoxes w.r.t. either ALENRor ALQ. Let C1; : : : ; Cn be either ALENR or ALQ onepts and A1 =fa : C1g; : : : ;An = fa : Cng be ABoxes. Then lsa(A1; : : : ;An) � fa :ls(C1; : : : ; Cn)g. In [6℄, it is shown that the LCS of n ALENR or ALQonepts C1; : : : ; Cn an blow up exponentially in the sizes of C1; : : : ; Cn.Obviously, if E with E � ls(C1; : : : ; Cn) has minimal size, then fa : Eg hasminimal exat size, whih proves the laim. 2Even though, Theorem 9 shows that the LCSA of ABoxes an blow upexponentially in the worst ase, retrieval in the ommonality-based informa-tion retrieval framework an be optimized by �rst sorting the ABoxes in thedatabase aording to the subsumption relation. Given a database DB andABoxes A1; : : : ;An;D;D0 2 DB, we an omit the subsumption test betweenlsa(A1; : : : ;An) and D0 if both D 6v lsa(A1; : : : ;An) and D v D0 hold.6 Conlusion and Future WorkIn this artile, we have introdued new desription logi inferene serviesuseful for ommonality-based information retrieval whih is onsidered to bean interesting researh topi in desription logi appliations. We showedwith an example that performing ommonality-based information retrievalin the usual way (i.e. based on applying the least ommon subsumer on themost spei� onepts of knowledge base individuals whih represent user-spei�ed information examples) is not always appropriate and suggested atheoretial framework to overome the shortomings. We �rst gave a def-inition of subsumption for ABoxes and provided an algorithm for deidingthis problem. Thereby, only two requirements are imposed on the desrip-tion logi underlying the ABoxes: A onstrutor for full onept negationmust be present and an algorithm for heking ABox satis�ability must beavailable. We proved soundness and ompleteness of the ABox subsump-tion algorithm and showed that ABox subsumption is at most as omplexas ABox satis�ability heking. The notion of ABox subsumption is usedfor the de�nition of a least ommon subsuming ABox operation whih wasintrodued as a generalization operation for ABoxes in a similar way as theleast ommon subsumer for onepts. We gave algorithms for both hekingthe existene of the least ommon subsuming ABox and, in ase of existene,for omputing the least ommon subsuming ABox of ABoxes w.r.t. to thetwo desription logis ALENR and ALQ. We showed that the exat sizeof the least ommon subsuming ABox an beome exponential in the exat36



sizes of the ABoxes to whih it is applied. As a by-produt, we developed analgorithm for omputing the most spei� onept of ABox individuals o-urring in ABoxes w.r.t. ALENR and ALQ. The reason for restriting theLCSA operation to ABoxes w.r.t. the two mentioned languages is that theleast ommon subsumer operation is needed in our algorithm and ALENRand ALQ are among the most expressive languages for whih the least om-mon subsumer is available. Future researh should inlude the extension ofthe LCSA operation to ABoxes w.r.t. more expressive desription logi lan-guages. Possibly this requires the extension of the least ommon subsumerto more expressive desription logis as well.Referenes[1℄ M. Buhheit, F.-M. Donini, and A. Shaerf. Deidable reasoning in ter-minologial knowledge representation systems. Journal of Arti�ial In-telligene Researh, 1:109{138, 1993.[2℄ F. M. Donini, M. Lenzerini, D. Nardi, and A. Shaerf. Priniplesof Knowledge Representation, hapter Reasoning in Desription Logis,pages 191{236. CSLI Publiations, 1996.[3℄ V. Haarslev and R. M�oller. Expressive ABox Reasoning with NumberRestritions, Role Hierarhies, and Transitively Closed Roles. TehnialReport FBI-HH-M-288/99, Department of Computer Siene, Universityof Hamburg, 1999.[4℄ B. Hollunder. Algorithmi Foundations of Terminologial Knowledge Rep-resentation Systems. PhD thesis, Universit�at des Saarlandes, 1994.[5℄ I. Horroks, U. Sattler, and S. Tobies. A Desription Logi with Transitiveand Converse Roles, Role Hierarhies, and Qualifying Number Restri-tions. LTCS-Report 99-08, LuFg Theoretial Computer Siene, RWTHAahen, Germany, 1999.[6℄ T. Mantay. Computing Least Common Subsumers in Expressive De-sription Logis. Tehnial Report FBI-HH-M-286/99, Department ofComputer Siene, University of Hamburg, 1999.[7℄ R. M�oller and M. Wessel. Terminologial Default Reasoning about SpatialInformation: A First Step. In Proeedings of the International Confereneon Spatial Information Theory, COSIT'99, Stade, 1999. Springer-Verlag.37


