1

Terminological knowledge representation systems based on description logics
have proven to be a useful means for representing the knowledge of an ap-
plication domain in a structured and formally well understood way [2]. The
knowledge base as part of a terminological knowledge representation system

Commonality-Based ABox Retrieval

Thomas Mantay*

Abstract

In commonality-based information retrieval, the commonalities of
user-specified examples of desired information are used for informa-
tion retrieval. As described in previous literature, such a retrieval
mechanism can be built using a combination of description logic rea-
soning services which makes this retrieval technique an interesting
research topic in the field of description logic applications. However,
as will be shown in this article, the existing technique does not always
yield a desirable retrieval result. Therefore, we present a theoreti-
cal framework useful for commonality-based information retrieval and
other description logic applications. Part of this framework is a formal
definition of the notion of ABox subsumption using the standard se-
mantics for ABoxes and an algorithm for deciding this problem. Based
on ABox subsumption, we will present an operation for determining
the least common subsuming ABox of a set of ABoxes w.r.t. the ex-
pressive description logics ALENR and ALQ. As a by-product, an
algorithm for computing the most specific concept of individuals oc-
curring in ABoxes w.r.t. the two mentioned description logics will be
developed. We present soundness, completeness, and complexity re-
sults and show how the developed reasoning services can be used for
a variant of commonality-based information retrieval which we call
commonality-based ABox retrieval.

Introduction

*Labor fiir Kiinstliche Intelligenz, Universitat Hamburg, Vogt-Ko6lln-Strafie 30, D-22527

Hamburg, mantay@informatik.uni-hamburg.de

usually consists of a terminological and an assertional component. The ter-
minological component, also called TBox, represents the vocabulary used in
the assertional component referred to as the ABox. It contains definitions
of concepts which describe sets of individuals. Concepts are built out of
atomic components and roles (representing binary relations between individ-
uals) using the concept constructors provided by the underlying description
logic language. For example, the set of grandmothers can be described using
the atomic concepts woman and parent and the role has-child:

woman M (> 1 has-child parent).

The ABox is a (partial) instantiation of the vocabulary defined in the ter-
minological component and contains assertions relating either individuals to
concepts, or individuals to each other via roles. For instance, it can be stated
that the individual Mary is considered to be an instance of the concept mother
and that she has a child called Tom:

{Mary : mother, (Mary, Tom) : has-child}.

A central feature of terminological knowledge representation systems based
on description logics is a set of reasoning services with the ability to deduce
implicit knowledge from explicitly represented knowledge in the knowledge
base. For instance, the subsumption relation between two concepts can be
determined. Intuitively, a concept C subsumes a concept D if the set of
individuals represented by C' is a superset of the set of individuals represented
by D, i.e. if C is more general than D. Determining the most specific
concept (MSC) describes the problem of computing the most specific concept
(from the infinite space of all concepts in the description logic) of which
a given individual is an instance. For two concepts C' and D, the least
common subsumer (LCS) operation determines the most specific concept
(from the description logic language) which subsumes C' and D. Both the
MSC of an individual and the LCS of concepts depend on the underlying
description logic language. Also, reasoning services concerning ABoxes have
been subject to research. Algorithms for checking the satisfiability of ABoxes
are among the most prominent ABox reasoning services intensively studied
so far. Intuitively speaking, an ABox is satisfiable iff the conjunction of its
assertions does not lead to a contradiction. Given an ABox indidivual and a
concept, instantiation describes the problem of determining whether or not
the individual is an instance of the concept. An instantiation algorithm can
be used in order to solve the instance retrieval problem which describes the
task of computing all instances of a given concept.

The described reasoning services can be used for commonality-based in-
formation retrieval which is a relatively new application context for termino-
logical knowledge representation systems citeMantay-TR-99. With this kind
of information retrieval, the goal is to provide a user of an information system
with an example-based query mechanism. More specifically, the “commonal-
ities” of user-specified examples of desired information are used as a retrieval
filter on an underlying database. The database is modeled as an ABox and
the set of database items is modeled by a subset of the set of individuals
in the ABox. The conceptual abstractions are represented by the MSCs of
the selected individuals and the notion of commonality is formalized by the
LCS operation. Eventually, information retrieval is performed by instance
retrieval using the LCS concept.

However, two problems occur when abstracting from ABox individuals to
concepts by means of the MSC operation. The possible presence of ABox
cycles is the reason for the MSC to not exist for all individuals. This problem
can be circumvented by approximating the MSC of an individual by consid-
ering the conjunction of most specific concepts included in the TBox of which
the individual is an instance. But there is another shortcoming from a more
practical point of view. Due to the MSC abstraction, relevant information
concerning individuals given by the user are filtered out and thus, cannot be
taken into account in the information retrieval process subsequently. In this
paper, we present new ABox inference services in order to circumvent this
problem.

For example, consider a TV information system equipped with a commo-
nality-based retrieval mechanism. In this context, let us assume the presence
of a TBox containing the relevant vocabulary of the TV world. Furthermore,
let A be an ABox such that

{Armageddon : scifi-movie, (Armageddon, Bruce-Willis) : has-actor,
Pulp-Fiction : action-movie, (Pulp-Fiction, Bruce-Willis) : has-actor,
Bruce-Willis : actor} C A.

In the given subset of A we state that Armageddon is an instance of the
concept scifi-movie and Pulp-Fiction is an instance of action-movie. In both
movies, Bruce-Willis is starring as an actor. The MSCs' of Armageddon and
Pulp-Fiction are given by

msc4(Armageddon) = scifi-movie I 3 has-actor.actor and

msc4(Pulp-Fiction) = action-movie I 3 has-actor.actor,

'In this example, ALENR is assumed to be the underlying description logic. The
language will be formally introduced later.

respectively. Assuming movie to be the LCS of scifi-movie and action-movie,
the LCS of the two MSCs,

C := movie N 3 has-actor.actor

is used for instance retrieval on A yielding the set of movies with any ac-
tor. The information that Bruce-Willis is starring in both Armageddon and
Pulp-Fiction is no longer present in C since this fact was “lost” in the MSC ab-
straction. However, this behavior is certainly undesired for users who prefer
movies with this actor.

Therefore, in this article we present new ABox inference services for
commonality-based information retrieval where assertional knowledge is in-
tegrated in the commonality computation. More specifically, after formally
introducing some important definitions and notations in Section 2, we give
a definition of the notion of ABox subsumption in terms of the standard
semantics for ABoxes in Section 3. We also provide an algorithm for decid-
ing ABox subsumption and prove its soundness and completeness. Based on
ABox subsumption, in Section 4 we will introduce the least common subsum-
ing ABox as an operation which determines the most specific ABox (w.r.t.
ABox subsumption) which subsumes the ABoxes to which the operation is
applied. As a by-product, an algorithm for computing the MSC of individ-
uals occurring in ABoxes w.r.t. ALENR and ALQ will be developed. We
conclude with a summary and an outlook on possible future research topics.
Due to the new ABox inference services, we adapt the commonality-based
information retrieval scenario outlined above. We assume that the database
is given by a set of ABoxes where each ABox models exactly one specific
information item in the database. For instance, in the TV information sys-
tem the database of TV broadcasts is represented by a set of ABoxes where
each ABox models exactly one broadcast. The two movies Armageddon and
Pulp-Fiction could be represented by the ABoxes

A := {Armageddon : scifi-movie, (Armageddon, Bruce-Willis) :
has-actor, Bruce-Willis : actor} and
B := {Pulp-Fiction : action-movie, (Pulp-Fiction, Bruce-Willis) :

has-actor, Bruce-Willis : actor},

respectively. Now we describe how to compute the commonalities of A and
B by means of the least common subsuming ABox operation. In order to
simplify the task, we replace the individuals which are subject to the LCSA
operation by a common “anchor” which formally is a new individual not
occurring in any of the database ABoxes. In our example, the anchor is

named Broadcast and replaces Armageddon in A, Pulp-Fiction in B, and the
corresponding broadcast individuals in the other database ABoxes. Then,
the least common subsuming ABox of A and B is given by

{Broadcast : movie, (Broadcast, Bruce-Willis) : has-actor, Bruce-Willis : actor}.

Eventually, retrieval is performed by filtering those ABoxes from the database
which are subsumed by the least common subsuming ABox. Thereby, the
information that Bruce-Willis is an actor in both movies can be considered
subsequently since it is still present in the ABox used for retrieval.

Whereas we considered a TV information system as an example, the
retrieval mechanism can be applied to a number of applications, e.g. doc-
ument retrieval and retrieval on picture databases where the content of a
document /picture is modeled by an ABox. These applications are particu-
larly interesting for commonality-based ABox retrieval due to the typical
occurrance of ABox individuals. As a precondition for the described infor-
mation retrieval mechanism, we extend the unique name assumption usually
adopted for individuals to sets of ABoxes, i.e. individuals with different
names are interpreted as different individuals, even if they occur in different
ABoxes in the database. Also, we take for granted an open world assump-
tion for ABoxes, i.e. the truth value of assertional knowledge not explicitly
represented in the ABox is considered to be unknown. For instance, given
the above ABox A, we cannot conclude that Bruce-Willis is the only actor in
Armageddon.

2 Preliminaries

In the following two sections, let £ be a description logic which includes a
constructor for full concept negation and for which there exists an algorithm
for checking satisfiability of ABoxes w.r.t. £. All concepts and roles men-
tioned in the sequel are concepts and roles in £. We also assume that there
exists an interpretation Z consisting of a non-empty domain A’ and an in-
terpretation function -Z for the interpretation of the concepts and roles in

L.

Definition 1 (Concept Relations) Let C and D be concepts. Then we
introduce the following concept relations:

e (' is subsumed by D (C C D) iff C* C D* holds for all interpretations
T of C and D.

e C is strictly subsumed by D (C = D) iff C* C D? holds for all
interpretations I of C and D.

e C isequivalent to D (C' = D) iff both C C D and D C C hold.

We will now introduce the assertional part of a knowledge base.

Definition 2 (ABox) Assume that there ezists an alphabet of symbols, called
individuals, disjoint from the sets of concepts and roles of L. Then we say
that

e q concept assertion s a syntactic expression of the form a : C, and
e a role assertion is a syntactic expression of the form (a,b) : R,

where a and b are individuals, C is a concept, and R is a role. An assertion
18 either a concept assertion or a role assertion. A finite set of assertions is
called an ABox. Ind(A) denotes the set of individuals and Roles(A) denotes

the set of roles occurring in assertions of A. -

Given a role assertion (a,b) : R in an ABox .4, we say that b is an R-
successor of a in A. If it is clear from the context which ABox is meant,
we just say that b is an R-successor of a. Note that () also qualifies for an
ABox. Now the standard semantics for ABoxes will be defined starting with
a semantical characterization of individuals.

Definition 3 (Interpretation of Individuals) The interpretation func-
tion - of an interpretation I for concepts of L is extended to individuals

by mapping them to elements of AT such that a* # b* if a # b. -

We can now define the semantics of ABoxes.

Definition 4 (Semantics of an ABox) Let a and b be individuals, C a
concept, and R a role. An interpretation I satisfies a concept assertion a : C
iff a¥ € CT and it satisfies a role assertion (a,b) : R iff (a*,b) € RT. We
say that an interpretation T is a model of an assertion « iff Z satisfies a. An
interpretation T is a model of an ABox A iff Z satisfies all assertions in AD

An (un-)satisfiable ABox is also called (in-)consistent. In the next section,
we will define the notion of ABox subsumption and provide an algorithm for
deciding the ABox subsumption problem.

3 ABox Subsumption

Based on the ABox semantics, we can define the following ABox relations.

Definition 5 (Relations Concerning ABoxes) Let A and B be ABozes,
a:C andb: D concept assertions, and (a,b) : R and (c,d) : S role assertions.
Then we define the following relations:

e a:C issubsumed by b: D (a:C C b: D) iff, for all interpretations
T, T is a model of a : C implies that T s also a model of b: D.

(a,b) : R is subsumed by (c,d) : S [(a,b) : R C (¢, d) : S| iff, for all
interpretations Z, T is a model of (a,b) : R implies that T is also a
model of (¢,d) : S.

e a:Cisequivalent tob: D (a:C =b:D) iff botha:C Cb:D and
b:DCa:C hold.

(a,b) : R is equivalent to (¢,d) : S [(a,b) : R = (¢, d) : S| iff both
(a,b) : RC (¢,d): S and (¢,d) : S C (a,b) : R hold.

A is subsumed by B (A C B) iff, for all interpretations I, T is a model
of A implies that T is also a model of B.

A is strictly subsumed by B (A C B) iff A C B holds and there ezists
a model of B which is no model of A.

e A is equivalent to B (A = B) iff both AC B and BC A hold.

In Definition 5 we use the same symbols for ABox subsumption, strict
subsumption, and equivalence as for the corresponding relations between
concepts (see Definition 1). It will be clear from the context whether these
relations refer to ABoxes or concepts. From the preceding definition we can
immediately derive the following observations.

Proposition 1 Let A and B be ABoxes, a : C and b : D concept assertions,
and (a,b) : R and (c,d) : S role assertions. Then

(i) a:CCb:D iffa=band CC D.
(11) (a,b) : RC (c,d): S iffa=c, b=d, and R is a subrole® of S.

2We assume the subrole relationship between two roles to be appropriately defined in
the interpretation of the concept language.

(iii) If A= 0, then BT A.
(iv) If A is unsatisfiable, then A C B.
(v) AC AN B.

) UBLC A.
(vi) A CA o

The claims in Proposition 1 are trivial consequences of Definition 5 and will
be of use subsequently. Notice the meaning of (v) and (vi) in the propo-
sition: Whereas the conjunction (disjunction) of concepts leads to a more
specific (general) concept w.r.t. to concept subsumption, the corresponding
operation for ABoxes, ABox intersection (union), leads to a more general
(specific) ABox w.r.t. ABox subsumption.

We will now present a calculus for deciding ABox subsumption. The
decision procedure follows the ideas for deciding the applicability of default
rules on ABoxes as presented in [7]. The ABox subsumption problem can be
reduced to the ABox satisfiability problem. More specifically, A subsumes B
iff the “negation of each assertion 5” in B added to the assertions in 4 leads to
an unsatisfiable ABox. Intuitively, the negation of a concept assertion a : C
will be the concept assertion a : =C' and the negation of a role assertion can
be expressed by an ABox consisting of the two concept assertions a : V R.A
and b : =A where A is a new atomic concept not already present in neither
A nor B. Thereby, the concept assertion a : =C' is well-defined because a
language constructor for full negation has been presumed to be present in
the underlying description logic L.

Lemma 1 Let a : C be a concept assertion, (a,b) : R a role assertion, A
an atomic concept, a an assertion in which A does not appear, and T an
interpretation. Then

(i) T is a model of a : C iff T is not a model of a : —~C.
(i) If T is a model of (a,b) : R, then T is not a model of {a : VR.Ab: —A}.

(iii) If A = {a,a : ¥ R.Ab: —A} is unsatisfiable, then « is of the form
(a,b) : R.

Proof. T is a model of a : C iff a* € CT iff a* ¢ AT\ C* = (=C)* which
proves (7). Now we will prove (i7) by contradiction. Suppose Z is a model
of (a,b) : R and also a model of {a : V R.A,b: = A}. Since Z is a model of
a:V R.A and (a®,b?) € RZ, it follows that b* € AZ. However, since Z is

also a model of b : =A, we have that b7 € (=A)? N AT = () which leads to
a contradiction. (7i¢) will also be proved by contradiction. We first observe
that {a : VR.A,b: -A} C A is satisfiable. Suppose « is a concept assertion
of the form ¢ : C such that A does not occur as a subexpression in C. Then,
there exists a model Z of {c : C,a : V R.A,b : =A} for all ¢ € AT, which
again contradicts to our assumption. Now suppose a is a role assertion of
the form (¢,d) : S. If ¢ # a, then there obviously exists a model Z of
{(c,d): S,a:V RAb:—A} for all d € AT and roles S. Also, if d # b, there
exists a model Z of {(c,d) : S,a:V R.A,b: —A} for all c € AT and roles S.
Finally, if S # R, we can easily find a model Z of {(¢,d) : S,a : VR.A,b: ~A}
for all c € AT and d € A. This proves that c=a, d =0, and S = R and «
is of the form (a,b) : R. O

Theorem 1 Let A and B be ABozxes. Then A T B iff, for all B € B, the
following conditions hold:

(i) If B is of the form a : C, then AU {a : —=C'} is unsatisfiable.
(i) If B is of the form (a,b) : R, then AU{a : VR.A b: = A} is unsatisfiable.

Proof. We first prove “=” (completeness). Suppose A C B. In case B = (),
nothing has to be shown. Therefore, let a : C' € B and Z be a model of
A. Since A C B, we have that Z is also a model of B and of a : C' because
a:C € B. By Lemma 1 (i) we know that Z is not a model of a : =C and
hence, Z is not a model of AU {a : =C}. Now let (a,b) : R € B and T
be a model of A. Since A C B, Z is also a model of B and of (a,b) : R
because (a,b) : R € B. According to Lemma 1 (ii), Z is not a model of
{a : VR.A,b: = A} and hence, 7 is not a model of AU{a : VR.A,b: -A}. Now
“<” (soundness) will be proved. If B = (), the claim follows by Proposition
1 (4i7). Otherwise, let a : C € B, AU {a : =C} be unsatisfiable, and Z be a
model of A. If AU{a : —~C} is unsatisfiable and Z is a model of A4, it follows
that Z is not a model of a : =C. By Lemma 1 (¢) this means that Z is a
model of a : C. Now let (a,b) : R € B and let AU {a:V R.Ab: A} be
unsatisfiable. Then Z is no model of AU {a:V R.A,b:-A}. Since A is an
atomic concept which does not appear in A, we have that, for all o € A, the
ABoxes {a,a : V R.A} and {«a,b: —A} are satisfiable. But this implies that
there exists an a € A such that {a,a : V R.A;b: = A} is unsatisfiable. By
Lemma 1 (i7) it follows that a is of the form (a,b) : R. Hence, Z is also a
model of (a,b) : R, which completes the proof. .

The function aboz-subsumes implements an ABox subsumption test given

ABoxes A and B w.r.t. L.

Algorithm 1 abox-subsumes(A, B)
for all 5 € B do
if [is of the form a : C then
not(abozx-satisfiable(AU {a : -C}))
else if 3 is of the form (a,b) : R then
// let A be a new atomic concept occurring neither in A nor in B
not(aboz-satisfiable(AU {a:V R.Ab: —A}))
end if
end for

Theorem 2 Let A and B be ABozes w.r.t. L. Then abox-subsumes(.A, B)
terminates and returns true iff B C A.

Proof. The termination of aboz-subsumes follows from the termination of
the function aboz-satisfiable, which implements the ABox satisfiability test.
In Algorithm 1 we check, for every concept assertion a : C' (role assertion
(a,b) : R) in B, whether the ABox AU{a:—-C} (AU{a:VR.Ab:—A})is
unsatisfiable. Hence, the claim is a consequence of Theorem 1. O

Theorem 3 The subsumption problem for ABoxes w.r.t. L is at most as
compler as ABoz satisfiability checking for ABoxes w.r.t. L.

Proof. According to Theorem 1, it can be decided by |B| ABox satisfiabil-
ity tests if A is subsumed by B. Hence, the number of satisfiability tests is
polynomial in the length of B. This shows that the complexity of the ABox
subsumption problem only depends on the complexity of deciding ABox sat-
isfiability of ABoxes w.r.t. L. O

The ABox satisfiability problem has been studied for a variety of descrip-
tion logic languages. For ALCN'R [1] and ALCQ [4], algorithmus using
exponential space in the size of the ABox were proposed. In [3], an algo-
rithm for checking satisfiability of ABoxes w.r.t. ALCNHpg+ is presented
using exponential space in the size of the ABox as well. Prominent features
of the description logic ALCN H g+ are number restrictions, role hierarchies,
transitively closed roles, and generalized concept inclusions. For ABoxes
w.r.t. the same description logic language augmented by inverse roles and
qualified number restrictions, ALCH QT g+, Horrocks, Sattler, and Tobies [5]
showed that satisfiability checking is decidable however they do not give a
lower bound complexity. Presumably, due to the existence of role hierarchies,
ABox satisfiability checking for ACCN Hpg+ and ALCHQTZR+ is no longer in
PSPACE but in EXPTIME.

10

In this section, we defined the notion of ABox subsumption for ABoxes
w.r.t. to a description logic £ and provided an algorithm to decide this prob-
lem. Thereby, only two requirements are imposed on £: A constructor for
full concept negation must be present and a sound and complete algorithm
for checking ABox satisfiability must be available for ABoxes w.r.t. £. In-
stead of the explicit presence of a full negation operation, it suffices if £ is
a sublanguage of another description logic fulfilling the two requirements.
Subsequently, we will make use of this property. We also proved soundness
and completeness of the ABox subsumption algorithm and proved that, even
though ABox subsumption can be reduced to ABox satisfiablity checking,
the problem does not become more complex. Subsequently, the results of
this section will play an important role in the definition and computation of
a least common subsuming ABox operation.

4 Least Common Subsuming ABox

In this section, we are interested in the inference task of computing the LCSA
of ABoxes w.r.t. a description logic £. As will be discussed in more detail
throughout this section, the algorithm for LCSA computation presented here
requires the presence of an LCS algorithm for concepts of £. Since ALENR
and ALQ are two of the most expressive description logics for which an
LCS operation has been presented [6], we restrict the presentation of the
LCSA operation to ABoxes w.r.t. ALENR and ALQ. The description logic
ALENTR (ALQ) is a sublanguage of ALCNR (ALCQ) which both include
a full concept negation operation. Moreover, Buchheit, Donini, and Schaerf
showed in [1] that ABox satisfiability checking for ABoxes w.r.t. ALCNR
is a decidable problem. Hollunder and Baader proved the same result for
ALCQ [4]. Let us first formally introduce syntax and semantics of these two
description logics.

Definition 6 (Syntax of ALENR) Let C be a set of atomic concepts and
R a set of atomic roles disjoint from C. ALENR concepts are recursively
defined as follows:

e The symbols T and 1 are ALENR concepts (top concept, bottom con-
cept).

e A and —A are ALENTR concepts for each A € C (atomic concept,
negated atomic concept).

o Let C and D be ALENTR concepts, R € R an atomic role, and n €
INU {0}. Then

11

— C 1D (concept conjunction),

— 3 R.C (existential role quantification),
— VY R.C (universal role quantification),
— (> n R) (>-restriction), and

— (< n R) (<-restriction)

are also ALENR concepts.

e IfR and S are roles, then RIS is a role in ACENR (role conjunction).
O

Definition 7 (Syntax of ALQ) LetC be a set of atomic concepts and R a
set of roles disjoint from C. ALQ concepts are recursively defined as follows:

e The symbols T and L are ALQ concepts (top concept, bottom concept).

e A and —~A are ALQ concepts for each A € C (atomic concept, negated
atomic concept).

o Let C and D be ALQ concepts, R € R a role, andn € INU{0}. Then

— C 1D (concept conjunction),
— (> n RC) (qualified >-restriction), and
— (£ n RC) (qualified <-restriction)

are also ALQ concepts. -

The languages ALENR and ALQ can be extended to ALCNR and
ALCQ by adding a constructor for full concept negation: =C'. The semantics
of ACENR and ALQ concepts is defined in terms of an interpretation.

Definition 8 (Interpretation, Model, Satisfiability) An interpretation
T = (AL, L) of an ALENR or ALQ concept consists of a non-empty set
AT (the domain of Z) and an interpretation function -*. The interpretation
function maps every atomic concept A to a subset AT C AT and every role
R to a subset RT C AT x AT. The interpretation function is recursively
extended to a complex ALENR or ALQ concept as follows. Assume that
C*, D* and R%, ST are already given and n € INU {0}. Then

o T1 .= AT

o 11T:=10,

12

(-A)T = AT\ AT,
(Cn D) .=C*n D

(RN S)*:= Rt N ST,
JR.CT .= {a € AT|Fb: (a,b) € RT A b€ C7},

Y R.CT = {a € AT|Vb: (a,b) € BT = b € CT},

Vv

n R)* := {a € AT|§{b|(a,b) € RT} > n},

IN

n R) := {a € AT|#{b|(a,b) € R*} < n},

v

n RC) = {a € AT|f{aRT N C*} > n}, and

(
(
e (
(

IN

n RC)* :={a € AT|#{aRT N C*} < n},

where aR* := {b € A%|(a,b) € R*}. An interpretation T is a model of an
ALENTR or ALQ concept C iff CT # 0. If C has a model, C is called

satisfiable (or consistent).
O

Note that the constructor T can be expressed by (> 0 R) in ALENR
and by (> 0ORT) in ALQ. The concept L is expressible by A M —A in
both description logic languages. The semantics can be extended to the
constructor for full concept negation by defining (-C)* := AT\ C%.

For some explanations of the algorithms presented subsequently, we in-
troduce the concept depth.

Definition 9 (Depth) Let C be either an ACENR or ALQ concept. Then
the depth of C' is recursively defined over its structure.

e [fC=3RC',C=YRC',C=(>nR(C"), orC=(< nRC(C"), then
depth(C) = 1+ depth(C").

o IfC=CiM---11Cy, then depth(C) = max({depth(C;)|1 < i < n}).

e In all other cases, depth(C) = 0. -

With these preparations, we will now define the least common subsuming

ABox of A,,..., A, as the most specific ABox (w.r.t. ABox subsumption)
which subsumes Ay, ..., A,.

13

Definition 10 (Least Common Subsuming ABox) Let A;,... , A,,n >
1, be ABozes. Then we define the least common subsuming ABox (LCSA)
of Ay,... , A, as

lesa(Aq, ... Ap) ={A | AACAN---NA, C AN
VA A CAN---NA,CA=AC A} 4

From Definition 10 it follows that lcsa is an associative and commutative
function and lesa(Ay, . . . , A,) is equivalent to lesa(Ay, lesa(As, . . . lesa(An—1, An) .. .)).
Therefore, we will restrict the attention to the problem of computing the
LCSA of two ABoxes since the LCSA of n > 2 ABoxes can be obtained by
n — 1 iterated applications of the binary LCSA operation. In addition, we
can derive the following consequences.

Proposition 2 Let A;, Ay, By, ... ,B, be ABozes. Then
(i) If Ay C Ay, then lesa(Ap, Az) = A;.
(ii) VB,B' € lesa(By,...,B,) : B=DB.

Proof. (i) is an obvious consequence of Definition 10. To see (ii), suppose
B,B € lcsa(By,...,B,) with B # B'. Then, according to Proposition 1
(vi), BU B' is a more specific subsumer of By, ..., B, than both B and B’
and hence, B (resp. B') cannot be an LCSA of By, ... , B, which leads to a

contradiction. -

Proposition 2 (ii) states a uniqueness property similar to the one for the
LCS. If the LCSA is not empty, all pairs of its elements are equivalent. There-
fore, if it is convenient, we will consider lcsa(Ay, . .. , Ay) as a function which
returns an ABox rather than a set of ABoxes in the following. Sometimes,
the LCSA is given by the empty set of ABoxes. In this case we will say that
LCSA is undefined. We will postpone the treatment of an undefined LCSA
and first deal with the problem of how to compute the LCSA in the case that
it exists.

Before starting our analysis, it will be convenient to define the LCS of
Ci,...,C, which are all either ALENR or ALQ concepts as the most spe-
cific concept which subsumes C,... ,C,.

Definition 11 (Least Common Subsumer) LetCh,... ,C,,n > 1, be all
either ACENR or ALQ concepts. Then we define the set of least common
subsumers of Cy,...,C, as:
les(Cy,...,Cp):={E | CiCEA---ANC,CEA
VE'.:CtCEAN---NC,CE =ELCFEY} Qg

14

In [6], we provide an algorithm for computing the LCS of Cy,...,C,. It
will also prove helpful to introduce an operation for the most specific role of
roles Ry,... , R,.

Definition 12 (Most Specific Role) Let R;,...,R, be roles in either
ALENTR or ALQ. Then we define the most specific superrole (MSS) of
Ry,... R, as:

mss(Ry,... ,R,):={R | RRCRA---AR,CRA
VR:RiCRAN---AR,CR = RLC R'}. 0

From this definition we can derive a simple method for computing the
MSS of a number of roles.

Proposition 3 Let Ry,..., R, be roles in ACENR with R; := Rj; T ---T1
Rim, and R; := {Rj1,... ,Rim,} for alli € {1,... ,n}. Then

Nreynern, B if RN NR, #0, and

mss(Ry, ..., Ry) = { '
undefined otherwise. 0
Obviously, for roles Ry, ... , R, in ALQ, mss(R;,...,R,) is given by R;
iff all pairs R; and R; are identical and undefined otherwise. This is true
because there exists no role forming constructor in ALQ. In the sequel, we
will provide an algorithm for computing the LCSA of ABoxes A and B. The
idea is based on the following facts. Given a € A and 8 € B where « and 3
are both either concept assertions or role assertions, we can compute a new
assertion «y such that is the most specific assertion (w.r.t. the subsumption
definition for assertions in Definition 5) which subsumes a and 3. In general,
such a 7 may not exist. If it exists, it is convenient to transform A and
B into a form such that v can easily be determined by pairwise comparing
compatible assertions to one another. Thereby, two assertions are compatible
to each other if both assertions are either concept assertions which involve
the same individual or role assertions which involve the same individuals,
and the MSS of the involved roles is defined. In such a case, we will say that
the new assertion v emerges from a and § by application of the LCSA rules.
The following proposition summarizes these observations.

Proposition 4 Let a: C and a : D be concept assertions and (a,b) : R and
(a,b) : S be role assertions such that mss(R,S) is defined. Then:

(i) a:CCa:les(C,D),a:DLCa:les(C,D), and, for all assertions vy
with a : C C 7 and a : D C vy, we have that a : les(C, D) C 7.

15

(ii) (a,b) : R C (a,b) : mss(R,S), (a,b) : S C (a,b) : mss(R,S), and, for
all assertions vy with (a,b) : R C v and (a,b) : S C v, we have that

(a,b) : mss(R,S) C ~. -

The two observations are immediate consequences of the definition of
ABox subsumption (Definition 5), the definition of LCS (Definition 11) and
the definition of MSS (Definition 12).

Following the line described above, we apply the LCSA rules to every
pair of compatible assertions a € A and § € B and obtain a set of new
assertions forming an ABox which is equivalent to the LCSA of A and B.
Let us illustrate this idea by an example.

Example 1 Let

A = {a: AN A" (a,b): (RNS),(c,d): (RT1S)} and
B = {a: AN A" (a,b): (RN S"),b: AN A'}.

Then, for the compatible concept assertionsa : ATMA' € A anda : ANA" € B,
we set v :=a :lecs(ATT A", AN A"). Furthermore, given the compatible role
assertions (a,b) : (R S) € A and (a,b) : (RN S") € B, we set o :=
(a,b) : mss(RM S, RN S"). All other pairs of assertions are incompatible to
each other. Hence, we yield the ABox {71,7.} = {a: A,(a,b) : R} which is
equivalent to lcsa(A, B).

For the ABoxes A and B considered in Example 1, it is possible to com-
pute lcsa(A, B) in the described way. However, as the following example
shows, simply applying the LCSA rules does not solve the problem in gen-
eral.

Example 2 Let

A = {a:3R.A} and
B = {(a,b): (RNS)}.

Then, applying the LCSA rules to A and B yields the empty ABox. However,
the LCSA of A and B is equivalent to the ABox {a : 3R. T} which is strictly
subsumed by (). This problem can be circumvented by adding the concept
assertion a : 3 (R 11 S).T to B yielding B'. Obviously, the new concept
assertion is a logical consequence of B and hence, the transformation from B
to B' is semantics-preserving. Now the LCSA of A and B can be determined
by applying the LCSA rules to A and B' in the usual way.

16

In Example 2, the concept appearing in the added assertion a : 3(RMS). T
is the most specific concept of the individual a w.r.t. B. Generalizing the
described idea, before applying the LCSA rules, we add to A (B) the most
specific concept of a (b) for all individuals a (b) occurring in A (B).

Definition 13 Let A be an ABoz, a € Ind(A), and C a concept. Then we
say that a is an instance of C iff a® € CT holds for all models T of A.

The notion of instances of concepts can now be used to define the most
specific concept of an ABox individual.

Definition 14 (Most Specific Concept) Let L be a description logic, A
an ABozx w.r.t. L, anda € Ind(A). Then we define the most specific concept
(MSC) of a w.r.t. A as

msca(a) :=={C € L | a is an instance of C' N

VC' € L : a is an instance of C' = C C C'}. .

From Definition 14 we can derive two important properties of the MSC.
One of them refers to so called cyclic ABoxes which will be introduced now.

Definition 15 (Path and Cycle) Let A be an ABoxz and n € IN. Then
we introduce the following terms:

e A subset A" C A is called a path of length n of A iff A" is of the
form {(ag,a1) : Ry, ... ,(an 1,a,) : Ry 1} where, fori j € {0,... n},
a; # a; holds whenever i # j.

o A' C A is called a cycle of length n of A iff A’ is of the form {(ag, a1) :
Ry, ..., (an_2,a, 1) : Ry 2,(an_1,00) : Ry 1}. If A contains a cycle,
we also say that A is cyclic, otherwise A is non-cyclic.

e A has maximal cycle (path) length n iff A contains a cycle (path) of
length n and all other cycles (paths) in A are of length smaller than or
equal to n.

e By default, we set the maximal cycle (path) length of A to 0 in case A

is non-cyclic (has no path). -

17

Note that, according to Definition 15, loops are also considered as cycles.
For example, the ABox {(a,a) : R} is cyclic with maximal cycle length of 1.
For a given ABox A, it is easy to compute A’s maximal cycle and path length
by an algorithm. We omit the technical details here. From Definitions 14
and 15 we can derive important properties of the MSC. It is easy to see that
mscy(a) = 0 if A is unsatisfiable. Consequently, for computing the MSC
of an individual in A, we expect A to be at least satisfiable. The following
proposition shows however that this is not the only reason for the MSC to
be the empty set.

Proposition 5 Let A be an ABox and a € Ind(A). Then,

(i) for all individuals a € Ind(A) and all C,C" € mscy(a), C and C' are
equivalent, and

(i) msca(a) does not exist iff A is unsatisfiable or there exist ay,... ,Gm,
Uity - 5 0n1 € Ind(A) and Ry, ..., Ry, Rpi1,... , Ry 1 such that
{(CL, al) : ROa BERE (amaam+1) : Rma cee (anfla am) : Rnfl} g A

Proof. We prove (i) by contradiction. If 4 is unsatisfiable, then msc4(a) = 0
and nothing needs to be shown. Otherwise, let C,C’ € msc4(a) and suppose
C # ('. Then, a is an instance of CT1C" and both CMC’' C C and CN1C' = '
hold, which is a contradiction to C,C" € msc4(a). Now we prove “<” of
(11) by contradiction. If A is unsatisfiable, it is obvious that msc4(a) does
not exist. Otherwise, let {(a,a1) : Ro,..., (@m,@mi1) : Ry, (@n_1,0m) :
R, 1} C A and suppose msc(a) exists. Obviously, we have that msc4(an,)
exists if msca(a) exists. We will now show that msc(a,,) does not exist.

In order to simplify the proof, we define b; := a,,,; and T; := R,,y;, for
i €{0,...,n—m —1}. Assume that there exists a concept C' € msc4(bg).
Then we recursively define a series of concepts C;,7 = 0,1,2,..., as follows:
Co := mscy(by), and (1)

Ci+1 = mSCA(b(i mod (nfm))) M4 T(z mod (nfm))Cz (2)

The concepts C; are well-defined since, for every individual b mod (n—m)) 0C-
curring in (1) and (2), msc4(bi mod (n—m))) is defined (because there is a path
from a t0 b;; mod (n—m)) and msc4(a) is defined according to our assumption).
The sets C;,72 =0,1,2, ..., are constructed in such a way that, for all 7 € IN,
a is an instance of C; and C;,; C C;. Therefore, there exists an ¢ € IN such
that by is an instance of C; and depth(C;) > depth(C'). But this implies that
C IZ C; in contradiction to the assumption that C' € msc4(by). Now we will
prove “=" by contradiction. Suppose msc(a) does not exist and let A be

18

a satisfiable ABox such that there exists no {(a,a1) : Ry, .., (@m,Gmi1) :
Ry,...,(an_1,am) : Ry 1} C A. Consequently, there are obviously only
paths emerging from a. Let p be the length of the longest of these paths
and let A’ be the preprocessing complete?® version of A in which no pair of
identical role assertions is present. If A is an ABox w.r.t. ALENR, then,
for b € Ind(A’) and ¢ € IN, we recursively define a function f(b, i) as follows:

f(,0) := TMNMyceaC and
f(b,i+1) = f(b,0) M Mgeprotescay(T M (= [{(b,c) : R € A}| R)).

From this definition it follows that, for all i € {1,... p}, f(a,i) is well-
defined (since no cycles can be reached by any path emerging from a), a is
an instance of f(a,p), and the concept f(a,p) is the most specific concept
with this property. Hence, f(a,p) is equivalent to msc4(a) in contradiction
to our assumption. In the case that A is an ABox w.r.t. ALQ, we define

f(b, 0) = T M ﬂb:CEA’C and
f(bai + 1) = f(b, 0) 1 ﬂRGRoles(A’)(T 1 ﬂ{(bacl)iRl,m,(b,cq):Rq\Ri:R}gA’(Z q R
les(f(e1,i),- .., fcgr))))-

Again, for alli € {1,... ,p}, f(a,i) is well-defined, a is an instance of f(a, p),
and the concept f(a, p) is the most specific concept with this property. Hence,

f(a,p) is equivalent to msc4(a), which again contradicts to our assumption.
O

Proposition 5 (i) states a similar uniqueness criteria for the MSC as for
the LCSA for ABoxes. From the second part of the proposition it follows
that, for an individual a, msc4(a) does not exist if either A is unsatisfiable
or there emerges some path from a which terminates in any of A’s cycles.
These properties of the MSC lead to the following two consequences. Due
to (i), we will consider the MSC of an individual a occurring in A to be a
concept rather than a set of concepts if msc4(a) # 0. On the other hand, we
consider msc(a) to be undefined if msc4(a) = 0. As another consequence,
the above described idea for computing the LCSA of ABoxes does not work
in all cases. We will now illustrate with an example how to circumvent this
problem.

3In the preprocessing complete version of an ABox A, the concepts C' which appear
in concept assertions of the form a : 3 R.C,a : VR.C,a : (> nRC), and (< n RC(C)
are spread over a’s R-successors, and concept and role conjunctions are decomposed. The
preprocessing completion will be formally defined in Definition 19.

19

Example 3 Let

A = {(ag,a1) : Ry, (a1,a3) : Ry, (az,ap) : Ry} and
Bl = {(ag,al) : RUa (al,ag) . Rl}

Then both A and By are cyclic and msca(a) does not exist for all a €
{ao,... a2} and mscp,(a) does not exist for all b € {ag,a1}. Despite,
lesa(A, By) is given by an ABox equivalent to {a; : 3 R;.T,(ag,a1) : Ry}.
For determining lcsa(A, By), we can “approzimate” the MSC of each indi-
vidual in Ind(A) U Ind(B:) up to a depth which is equal to the sum of the
lengths of the longest cycle in A and the one of B. Since the mazimal length
of A’s cycles is 3 and the mazimal length of B’s cycles is 2, we define:

A" = {ag: I Re.(3R1.(IRe.(3 Re.(3R..T)))),
a1 : 3R1.(3 Rs.(3 Ry.(3 R1.(3 Ry.T)))),
as: 3 Ry.(3Ry.(3R1.(3Ry.(3Ry.T))))} U A and
B, = {ap:3 Ry.(3 Ri.(3 Ry.(3 R1.(3Ry.T)))),
ar:3R1.(3 Ry.(3 R1.(3 Ry.(3R..T))))} UB.

Since the additional concept assertions in A" (By) are logical consequences of
A (B,), the transformation is semantics-preserving and A' = A (B} = B,)
is guaranteed. Now lesa(A, By) can be computed by applying the LCSA rules
to A" and B} in the usual way.

Example 3 shows that, if the LCSA of two satisfiable ABoxes exists, but
the MSC of an individual a does not exist, the MSC can be replaced by an
MSC approximation. More specifically, given an ABox A (B) with maximal
cycle length n (m), maximal path length p (¢), and r (s) as the maximum
concept depth over all concepts occurring in concept assertions in A (B), for
all individuals in A (B), we add a : C to A (B) where C is the most specific
concept of depth n +m + p+ g+ r + s of which a is an instance. However,
the following example shows that there is another exception to be considered
in the LCSA determination.

Example 4 (Example 3 continued) Let A be defined as in Example 3
and

By = {ag : I Ry.(3 R1.(3 Ry.(3 Ry.T)))}-

Again, the sum of the lengths of the maximal cycle length of both ABoxes is
3 (because A’s mazimal cycle length is 3 and By is non-cyclic) and thus, we

20

can define

A = {aglleo.(ElRl-(ElRQ'T))’
a1 : IR1.(FRy. (IR T)),
az: 3Ry.(3Ry.(AR,.T))}UA

and apply the LCSA rules to A" and By yielding an ABozx equivalent to
C:= {ag ;3 Ro(a Rl(ﬂ RQT))}

The ABox C is a subsumer of both A and By, but it is not the most specific
one. The LCSA of A and Bs is given by

lesa(A, By) = B,

where By T C. The reason for this undesired result is due to the fact that the
only concept assertion in By involves a concept of depth four which is larger
than the sum of the lengths of the longest cycle in A and the one in Bs, and
this has an effect on determining the LCSA. If we approzimate msc(ag),
msca(ar), and mscy(az) up to a concept of depth four, we get

A" = Hag: I Ry.(3R1.(3 Ry.(3 Ry.T))),
a; : AR1.(FR. (3 Ry.(3 R2.T))),
az : ARy.(I Ry.(3IR1.(IR2.T)))} U A.

As in Example 3, semantics preservation is guaranteed by the transformation
and thus, A" = A holds. Now we can easily compute lcsa(A, By) by applying
the known LCSA rules to A" and By yielding an ABoz equivalent to By as
desired.

The examples suggest the following algorithm for computing the LCSA
of two ABoxes A and B. For all a € Ind(A) and b € Ind(B), we add to A B
the additional concept assertions a : msc4(a) [b: mscg(b)] if a : msc(a) [b:
mscg(b)] exists. Otherwise, we add to .4 (B) the MSC approximation of a (b)
described in Example 4. As argued before, this transformation is semantics-
preserving and thus, equivalence between A (B) and its transformed ABox A’
(B') is guaranteed. Finally, we apply the LCSA rules to A’ and B’ obtaining
the LCSA of A and B. We will now formalize our idea to which degree the
MSC needs to be approximated.

Definition 16 (ABox depth) Let A be an ABoz, cy be A’s mazimal cycle
length, and p4 the length of the longest path in A. Then we define the depth
of A as:

depth(A) := c4+ pa + max({depth(C)la : C € A}). O

21

Intuitively, the depth of an ABox A is given by the sum of the following
numerical values: its maximal cycle length (c4), the length of the longest
path occurring in A (p4), and the value of the largest depth over the concepts
involved in A’s concept assertions.

Definition 17 (Most Specific Concept Approximation) Let L be ei-
ther the description logic ALENR or ALQ, A an ABox w.r.t. L, a €
Ind(A), and d € IN. Then we define the most specific concept approxima-
tion (MSC approximation) of a w.r.t. A and d as

msc-approz 4 4(a) :={C € L | depth(C) < d A a is an instance of C' A
VC' € L : depth(C') < depth(C) A a is

an instance of C' = C C C'}. 0

Intuitively, the MSC approximation of an individual a occurring in an
ABox A is the set of most specific concepts of which a is an instance, where
the depth of the concepts is less than or equal to d. Since all pairs of concepts
of msc-approx 4 4(a) are equivalent as in the case of the MSC, we will consider
msc-approz 4 4(a) as a concept rather than a set of concepts. Obviously, for
d = depth(A), msc-approzx 4 4(a) coincides with msc4(a) if msca(a) exists.
The following example shows that it is convenient to put an ABox into a
specific form before computing the MSC or the MSC approximation of its
individuals.

Example 5 Let
A:={(a,b): R,YR.Ab: B}.

Then, msc4(b) is equivalent to AT B. This result follows since b is an R-
successor of a in A and, due to a : ¥V R.A, b has the property AN B. If we
add the concept assertion b: A to A, msc4(b) can easily be determined.

Example 5 shows that before applying the procedure for computing the
MSC of an individual a € Ind(A), we have to transform A4 into a form such
that relevant information regarding a is “transported” to a. We will now
present a simple method for transforming an ABox into an equivalent ABox
all of whose individuals have this property. The idea is to introduce prepro-
cessing rules similar to the rules presented in [4] for obtaining a preprocessing
complete ABox.

Definition 18 (Preprocessing Rules) For an ABox A w.r.t. either ACENR
or ALQ, we define the preprocessing rules as follows:

22

1. A—=n{a:Cia:Co} UAGf

(’I,) a:C’ll_IC'QEAand
(ii) {a:Cy,a:Cy} € A,

2. A —3{b:DYUAf

(i) {a: 3R.C,(a,b): R} C A,

(i1) neither b : C € A nor there exists an E € ALENR such that
b: Ee Aand E = —-C,

(11i)) AU{b: D} is satisfiable, and
(iv) D = C or D = E if there exists an E € ALENR such that
E=-C,
3. A=y {b:C}UA

(i) if {a:V R.C,(a,b): R} C A and
(ii)) b:C ¢ A,

4. A—=>{b:D}UA
(i) {a: (> nRC),(a,b): R} C A,

(ii) neither b : C € A nor there exists an E € ALQ such thatb: E €
A and E = -C,

(11i)) AU{b: D} is satisfiable, and
(iv) D = C or D = E if there exists an E € ALQ such that E = —-C,
5 A—--{b:D}UA

(i) {a: (< nRC),(a,b): R} C A,

(ii) neither b . C € A nor there exists an E € ALQ such thatb: E €
A and E = -C,

(i1i) AU{b: D} is satisfiable, and

(iv) D = C or D = E if there ezists an E € ALQ such that E = -C,
and

6. A—prn{(a,b):R,(a,b): S}UAif
(i) (a,b): (RN S) € A and
(ii) {(a,b): R,(a,b): S} Z A.

23

O

Definition 19 Let A be an ABox and let A := {A,,... ,A,} be the set of
ABozes emerging from A by exhaustive applications of the preprocessing rules
in Definition 18. Then we define A’s preprocessing completion as

A = ﬂ B.

BeA O

Let us discuss the preprocessing rules and the definition of a preprocessing
completion. The —-rule decomposes concept assertions involving concept
conjunctions in the usual way. In case, a concept assertion of the form
a : 4 R.C is present and a has an R-successor b in A, the —3-rule non-
deterministically checks whether b : C and/or a concept assertion equivalent
to b : =C can be added to A while preserving satisfiability of A. If only
AU{b: C} (AU{b: =C}) is satisfiable, b : C' (a concept assertion equivalent
to b : =C) will be included in A reflecting the idea that the property C (=C)
holds for b. Otherwise, if both AU {b: C} and AU {b: —~C} are satisfiable,
due to the intersection operation in the definition of A’, A’s preprocessing
completion does neither include b : C nor a concept assertion equivalent to
b : —C reflecting the idea that there exists at least one model of A in which
b : C holds and at least one model of A in which b : =C holds. In principal,
the —~- and —<-rules work in the same way. The —y-rule adds b : C' to
Aifa:VRC € A and bis an R-successor of a in A since in this case b is
obviously an instance of C'. Finally, the — g-rule decomposes role assertions
involving role conjunctions (in ALENR).

Proposition 6 Let A be an ABox and A' be A’s preprocessing completion.
Then

A is equivalent to A’

Proof. Let A be an ABox and C and C' be ABoxes which emerge from A
by application of one of the preprocessing rules. Furthermore, let B be the
set of all ABoxes which emerge from A by exhaustive applications of the
preprocessing rules. Then, A C C and A C C’ holds, which implies A C C
and A C C'. By induction on the length of rule applications it can easily
be verified that, for all B € B, A C B holds which implies A C A’. In
order to prove A’ C A, we first observe that an application of the —y-, —,
or — pn-rule is semantics-preserving. If, due to an application of any of the
other preprocessing rules, a concept assertion b : C' (b : E with E = =C)

is added to A and AU {b: E} (AU {b: C}) is unsatisfiable, then b : C

24

(b : E) is a logical consequence of A. Hence, for all B € B, we have that
a:C € B(a:E € B). But this implies that a : C € A’ (a: E € A'). If
both AU{b: C} and AU {b: E} are satisfiable, then there exists B' C B
such that, for all B € B’, we have that b : C' € B’ and there exists B” C B
such that, for all B € B", b: E € B" holds. But then neither b : C € A’ nor
b: E e A since neither b : C € UgcgBnor b : E € UgepB. Consequently, we
have that, for all « € A"\ A, a is a logical consequence of A, which implies

A' C A, and the claim is proved. -

Proposition 6 guarantees that the preprocessing operation is semantics-
preserving. In the sequel, we will only consider the preprocessing completions
of ABoxes. Such an ABox will be called a preprocessing complete ABox. With
these preparations, we can now state an algorithm for computing the MSC,
respectively, the MSC approximation.

For a preprocessing complete ABox A w.r.t. either ACENR or ALQ
and an individual a € Ind(A), the invocation compute-msc(a, depth(.A), A)
computes msc-approz(a) where A is assumed to be in a form such that
no pair of identical role assertions is present. If an ABox w.r.t. ALENR
is present, the algorithm computes the existential and universal role quan-
tifications and >-restrictions following from the constraints imposed on a
due to the role assertions in A. Otherwise, if A is an ABox w.r.t. ALQ,
the qualified >-restrictions following from the constraints imposed on a are
computed. In addition, the algorithm considers the concepts occurring in
concept assertions involving a.

Theorem 4 Let A # () be a satisfiable and preprocessing complete ABox in
which no pair of identical role assertions appears, a € Ind(A), and d € IN.
Then, compute-msc(a, d, A) terminates and returns a concept equivalent to

msc-approz 44(a).

Proof. Termination of the algorithm can easily be verified. The second pa-
rameter d is a fixed natural number which is not modified anywhere in the
function. Moreover, compute-msc is only recursively invoked with d — 1. As
a consequence, either the computation terminates with d > 0 or there ex-
ists an invocation with d = 0. But then the first then-clause is processed
and there are no further invocations, which guarantees termination. We
show the remainder of the claim by induction on d. If d = 0, A is non-
cyclic and compute-msc(a,d, A) returns T M My.ce 4C which is equivalent to
msc(a) even in the case that there are no concept assertions involving a.
Now assume d > 0. Then, we add to C the concepts imposed by concept
assertions involving a. If there exists no role assertion (a,b) : R € A, C

25

Algorithm 2 compute-msc(a, d, A)
if d =0 then
mn HG:CGAC
else
C := {compute-msc(a,0, A)};
A :={(a,b) : R|b € Ind(A) AN R € Roles(A)};
if A is an ABox w.r.t. ALENR then
C := CU {3 R.(compute-msc(b,d — 1, A))|(a,b) : R € A};
for all A’ C A do
/] A'={(a,by) : Ry, ..., (a,b,): Ry}
if mss(Ry,..., Ry,) is defined then
C:=CU{(> |A'|mss(Ry,... ,R,))}
end if
end for
R :={R|(a,b): R € A};
for all R’ C R do
// R' = {Rla'-- ,Rn};
S :={be Ind(A)|(a,b) : RAR € R'}
/]S ={bi,...,bm};
if mss(Ry,...,R,) is defined and there exists a : (< m R) € A
such that Ry, T RA---AN R, C R then

C = C U {V mss(Ry,...,Ry).lcs(compute-msc(by,d —
1,A), ..., compute-msc(by,,d —1,.A))};
end if
end for

else
// Ais an ABox w.r.t. ALQ
for all A’ C A do
/] A" ={(a,by): Ry,...,(a,b,) : Rn}
if mss(Ry, ..., Ry,) is defined then
C=CuU{(> AR
les(compute-msce(by,d — 1, A), ..., compute-msc(b,,d — 1, A)))}
end if
end for
end if
MNeecC
end if

26

is left unchanged and we correctly return mscy(a) according to the initial
case. Otherwise, we collect in A the set of role assertions which involve any
role successor of a in A. Suppose A is an ABox w.r.t. ALENR. Then, by
induction hypothesis, the invocation compute-msc(b,d—1, A) (yielding Cy) is
equivalent to msc-approz 4 4(b). Now let A’ = {(a,b1) : Ry,... ,(a,b,) : R,}
be a subset of A. If mss(Ry, ..., R,) is defined, then a has obviously at least
| A’| R-successors in A’ (and thus in \A) since A’ does not include any pair of
identical role assertions and A is in preprocessing complete form. Hence, we
add the >-restriction (> |A'|mss(R,...,R,)) to C. Now we collect into R
the set of roles R for which there exists some R-successor of a in A. Let R’ =
{Riy,...,R,} be asubset of R and S = {by,... by} the set of R-successors
ofain Aforall R € R'. If mss(Ry,...,R,)isdefined, Ry C RA---AR, C R
holds, and there exists a concept assertion of the form a : (< m R) in A,
then obviously all successors of a in the role mss(Ry, ..., R,) must have at
least property les(msc-approxaq—1(b1), ... ,msc-approza—1(by)). The re-
lation |S| > m cannot hold because A would be unsatisfiable in this case.
Since, for all b;, compute-msc(b;, d—1, A) is equivalent to msc-approz 4 4-1(b;)
holds by induction hypothesis, we add to C the universal role quantification
Vmss(Ry,...,Ry,).les(compute-mse(by,d — 1, A), ..., compute-msc(by,,d —
1,A)). If Ais an ABox w.r.t. ALQ, let A" = {(a,b1) : Ry,...,(a,by,) :
R,} be a subset of A. According to the induction hypothesis, the invoca-
tion compute-msc(b;,d — 1, A) (yielding Cy,) returns a concept equivalent to
msc-approzr 44(b;) for all i € {1,... n}. Hence, a has at least |A'| successors
in the role mss(Ry,. .., R,) which have property lcs(msc-approzaqa—1(b1),

. ymsc-appror s q4-1(by)). Thereby, if mss(Ry,...,R,) is defined, it is
equivalent to Ry in ALQ. Consequently, we add the qualified >-restriction
(> |A'| Ry Cy,) to C. Eventually, the conjunction of all concepts included in
C is returned which is equivalent to msc4(a). O

Example 6 Let us compute the MSC of a which appears in the satisfiable
and preprocessing complete ABox w.r.t. ACENR

A:={a: (< 2R)N3IR.B,(a,b): R, (a,c): R,b: A,b: B,c: A c:C}.

Then, depth(A) = 1 and compute-msc is invoked with the parameters a, 1,
and A. The recursive invocation compute-msc(a, 0, A) yields C = {(< 2R)I
3 R.B}. Furthermore, we get A = {(a,b) : R,(a,c) : R} and the recursive
invocations compute-msc(b, 0,.A) and compute-msc(c, 0, A) yield AN B and
AN C, respectively, and 3 R.(ATM B) and 3 R.(ANC) are added to C. The
following for-loop adds (> 1R) and (> 2R) to C. Then, for R =R’ = {R}
and S = {b, c}, the subsequent for-loop adds Vmss(R, R).les(ANB, ANC) =

27

V R.A to C. Finally, we return the conjunction of concepts in C, which is
equivalent to (< 2 R)MIAR(ANMB)MNIAR(ANC)MN (> 2R)NV R.A as
desired.

We will now introduce the MSC-completion of an ABox.

Definition 20 Let A and B be satisfiable ABoxes. Then we define A’s MSC-
completion w.r.t. B as

Ap = {a : msc-approx o max({depth(4),depth(s)}) (@)|a € Ind(A)} U A. -

Intuitively, an MSC-completion Ag of an ABox A w.r.t. B emerges from
A by adding the MSC approximation of every individual a € Ind(A) up to
a number which is given by the maximum of the depths of A and B.

We will now get back to the problem that the LCSA of ABoxes does not
always exist.

Example 7 Let

A = {(a,b): R, (b,a): R} and
B := {(a,a): R}.

Then, lesa(A, B) does not exist. The reason for this is that, for each ABozx

C, which subsumes both A and B, there exists an ABox C' with C' — C. More

specifically, if we recursively define a series of concepts C;, i =0,1,2,3,...,
as

C; = 3R.T and
Cz'+1 = ER(CZ),

then it is easy to see that, for alli € INU{0}, AC {a: C;}, BC {a: C;},
and {a: Ciy1} C {a: C;}.

Informally speaking, the reason that the LCSA does not exist in Example
7 is given by the fact that all pairs of cyles C,D with C C A and D C B
which involve at least one common individual, have the following properties:

e the sequence of individuals induced by C is different from the one in-
duced by D, and

e the MSSs of the role pairs corresponding to each pair of corresponding
sequence individuals is defined.

28

These properties of two ABoxes form a set of necessary and sufficient
conditions for the (non-) existence of the LCSA.

Proposition 7 Let A and B be satisfiable ABozxes and C and D be the set of
A’s and B’s cycles, respectively. Then, lcsa(A, B) does not exist iff Ind(A)N
Ind(B) # 0 and there exist C € C of the form {(ag,a1) : Ry, ..., (an_1,a0) :
R, 1} and D € D of the form {(ag,b1) : So,... ,(bm_1,00) : Sm_1} such that
the following conditions hold (assuming m < n without loss of generality):

(i) there exists an t € IN such that a; mod n) 7 (i mod m), and
(1) mss(R(i mod n), S(i modm)) 15 defined for all i € INU {0}.

Proof. We first prove “<” by contradiction. Suppose, C € lcsa(A, B) exists
with d = depth(C) and there are cycles C = {(ap,a1) : Ro,...,(an 1,00) :
R, 1} in A and D = {(ao,b1) : So,...,(bm_1,a0) : Sp_1} in B such that
the conditions (i) and (i7) hold. Then, we create a sequence of ABoxes
C1,Cs,Cs, ... such that, for all : € NU {0}, A C C; and B C C; hold. We
recursively define concepts

Co := TImss(Ry,Sy). T and
Ci+1 = EImss(Ri,S(i modm)).(C’i).

Note that, for all # € IN U {0}, the concept C; is well-defined since, due to
condition (¢), the MSSs in C; all exist. Now let C; := {ao : C;} and observe
that, for all+ € NU{0}, A C C; and B C C; since ag € Ind(ANB) and C;y1 C
C;. But then, for all ¢ > d, we have that C; C C which contradicts to our
assumption that C € lesa(A, B). Now we will prove “=” by contraposition.
If either A or B is non-cyclic, then lcsa(A, B) obviously exists. Therefore,
let C € C be of the form {(ag,a1) : Ro,...,(an_1,a0) : Rp_1} and let D €
D be of the form {(ag,b1) : So,..., (bm_1,00) : Sm_1}. Then, lcsa(A, B)
exists iff lcsa(C, D) exists. Suppose that a(; modn) = (i modm) holds for
all i € INU {0}. Furthermore, assume that mss(R(mod n), S(i modm)) 18
defined for all i € INU {0}. Then, lcsa(C, D) is given by the ABox {(a,b) :
mss(R(mod n), S modm))|l < & < mn A (a,b) : Ri moan) € C A (a,b) :
S(i modm) € D}. Now we will consider the case in which there exists an
i € INU {0} such that mss(R; mod n), S(i modm)) is undefined. Let C' (D')
be C’s (D’s) MSC-completion. Then, lesa(C, D) is given by {a : les(C, D)|a :
CeCANa:DeD}U{(ab): mss(R,S)|(a,b) : R € C'"N(a,b) : S €
D' A mss(R, S) is defined}. Finally, if there exists an ¢ € IN U {0} such
that mss(R; mod n), S(i mod m)) is undefined and there exists a j € INU {0}
such that a(; modn) 7 b(j mod m), We again define C' (D') as C’s (D’s) MSC-
completion and observe that lcsa(C, D) is given by {a : les(C,D)la : C €

29

C'"Na: D e D}U{(a,b) : mss(R,S)|(a,b) : R € C' A (a,b) : S € DA
mss(R, S) is defined}, which completes the proof. O

The proposition states a set of necessary and sufficient condition for the
(non-) existence of the LCSA of ABoxes. Before stating an algorithm which
implements the test of the conditions, let us first introduce some useful no-
tation. For individuals ay,...,a,, n € INU {0}, we introduce a sequence
as a syntactic expression of the form [ay,... ,a,]. Informally speaking, se-
quences correspond to multisets in which the order of elements is obeyed.
We also introduce two types of operations on sequences. For sequences,

la1, ..., a,] and [by,... by], the sequence [aq,... ,a,]\ [b1,... ,by| emerges
from [ay, ... ,a,| by eliminating all a; from [ay, ... ,a,| such that there ex-
ists a b; € {by,... by} with a; = b;. Moreover, [ay,...,a,]0[b1,... ,bn] =
lai,...,an,b1,...,by] denotes the concatenation of [ay, . .. ,a,] and [by, ... , byl
Eventually, [a4, ...,

a,| and [by, ..., b,] are equal iff a; = b; holds for all i € {1,... ,n}.

Algorithm 3 lcsa-undefined(firstp, cyclelp, cycle2p, startindl, startind2,
indl, ind2, sequencel, sequence2, A, B)
if (—firstp A (indl = startindl) A (ind2 = startind2)) or ((indl =
startindl) A cycle2p) or ((ind2 = startind2) A cyclelp) then
—(sequencel \ [startindl] = sequence2 \ [startind2])

else
S; := {(indl1,b) : R € A};
S, := {(ind2,b) : R € B};
for all (a,b) : R€ S; do

for all (¢,d): S €S, do
mss(R, S) A lesa-unde fined(false, = firstp A (indl = startindl),
—firstp A (ind2 = startind2), startindl, startind2, b, d,
sequencel o [a], sequence2 o [b], A, B)
end for
end for
end if

Algorithm 3 checks if the conditions given in Proposition 7 hold for
ABoxes A and B. The first three parameters are Boolean variables, where
firstp indicates whether or not lcsa-undefined is in its first incarnation.
Hence, at first invocation firstp is set to true. cyclelp (cycle2p) indicates
whether a cycle has been detected in A (B). Consequently, both variables
are initialized with false. startindl (startind2) takes the variable in A4
(B) from which the cycle-test is started. indl (ind2) takes a variable which

30

is checked for being the “end” of a cycle in A (B). When invoking lcsa-
undefined, both startindl, startind2,indl, and ind2 are initialized with a
variable a € Ind(A) N Ind(B). Since a is always considered the starting
individual of a possible cycle in .4 and B, condition (¢) need not be checked
explicitly in the algorithm. sequencel (sequence2) contains the sequence of
variables involved in a possible cycle in A (B). Since concept assertions do
not influence the conditions in Proposition 7, we eliminate all concept asser-
tions from A and B before invoking the algorithm. In the first then-clause,
we check if either indl (ind2) is the last individual in the sequence of indi-
viduals forming a cycle in A (B) or indl (ind2) is the last individual in the
sequence of individuals forming a cycle in A (B) and a cycle in B (\A) has
already been detected before. If the then-clause evaluates to true, we check
condition (¢) in Proposition 7. Otherwise, in the else-clause we collect in
S1 (S2) all role assertions of the form (indl,b) : R [(ind2,b) : R|. For each
(ind1,b) : R € S; and (ind2,d) : S € Ss, we check if mss(R,S) is defined
(condition (iz) in Proposition 7). In case, mss(R, S) is undefined, the algo-
rithm correctly returns false. Otherwise, lcsa-undefined is invoked recursively
with the following values. firstp is set to false since its meaning is only to
prevent us from entering the then-clause at first call. If indl = startindl
(ind2 = startind2) and firstp does not hold, then a cycle is present in A
(B). Hence, in the next incarnation of lcsa-undefined, cyclelp (cycle2p) is
set to false and indl (ind2) is concatenated to sequencel (sequence2). In
order to complete the test of the conditions (i) and (4i) in Proposition 7,
we recursively call lesa-undefined with indl := b and ind2 := d. With these
considerations, the following theorem can be proved.

Theorem 5 Let A and B be satisfiable ABozes and A' .= A\ {a: C € A}
and B' := B\ {a: C € B}. Then, lcsa(A, B) does not exist iff Ind(.A, B) # 0
and, for alla € Ind(A")NInd(B'), the invocation lcsa-undefined(false, false,
false,a,a,a,a, false, false, A', B') returns false. 0

Thus, Algorithm 3 provides a decision procedure with which the (non-)
existence of the LCSA of two ABoxes can be decided. If the LCSA exists,
the following theorem shows how to compute it.

Theorem 6 Let A and B be ABozes and Ag A’s MSC-completion w.r.t. B
and By B’s MSC-completion w.r.t. A. Furthermore, let

C = {a:les(C,D)a:CeAgha:DeByU
{(a,b) : mss(R, S)|(a,b) : R € Ag A (a,b): S € By A
mss(R, S) is defined}. (3)

Then, if lesa(A, B) exists, it is equivalent to C.

31

Proof. Suppose lcsa(A, B) exists. We prove the claim by showing by induc-
tion on A’s and B’s cardinalities that, for all « € A and 8 € B, there exists a
v € C such that « C v, 8 C ~, and, for all 4’ with a £+ and S C v, v C v/
holds and C contains no further assertions. In case |A| = 0 (|B| = 0), we have
Az =0 (B4 =0) and C = 0 and the claim follows by Proposition 2 (i). Now
let A and B be given with n = | A| and m = |B| and suppose lcsa(A, B) =C
(induction hypothesis). We define A’ := AU {a'}, where o is either of the
form a : C or (a,b) : R. Now let a € A'. In case a # o, the claim is a
consequence of the induction hypothesis. Therefore, let @ = o' and suppose
a is of the form a : C. Since B, is the MSC-completion of B, it follows that
either the individual a does not occur in B (and hence not in By either) or
there exists a concept assertion (of the form a : D € By4. In the former
case, nothing needs to be shown since lcsa({a : C'}, B) = (). Otherwise, there
exists a concept assertion a : les(C,D) € C' and a : C C a : les(C, D),
a:DCa:les(C,D), and a : les(C,D) C +', for all ', follows accord-
ing to Proposition 4 (i). Now suppose that « is of the form (a,b) : R.
Unless there exists a role assertion 3 € By of the form (a,b) : S where
mss(R,S) is defined, nothing needs to be shown. Otherwise, there exists
a role assertion (a,b) : mss(R,S) € C' and (a,b) : R C (a,b) : mss(R,S),
(a,b) : S C (a,b) : mss(R,S) and (a,b) : mss(R,S) C «', for all v, holds
according to Proposition 4 (4i). According to (3), C' contains no further as-
sertions and thus, lcsa(A', B) = C' holds. The proof for the case |A| = n and
\B| = m + 1 is analogous. O

Given any of the description logics ALENR or ALQ, Algorithm 4 is an
LCSA implementation taking A and B which are both either ABoxes w.r.t
ALENTR or ALQ. The function compute-lcs implements the LCS of concepts
as in Definition 11. In [6], we give an LCS algorithm for the description logics

ALENTR and ALQ.

Theorem 7 Let A and B be ABoxes. Then, if lcsa(.A, B) exists, the invoca-
tion compute-lcsa(A, B) terminates and returns an ABox C which is equiva-

lent to lcsa(A, B).

Proof. Termination of the algorithm follows by the termination of the func-
tions compute-preprocessing-completion, compute-msc, and compute-lcs since
compute-lesa is not recursively invoked. If A4 (B) is unsatisfiable, we return B
(A). The correctness of this follows by Proposition 2. Otherwise, in the else-
branch we first compute the preprocessing completions of A and B by means
of the function compute-preprocessing-completions and construct the MSC-
completions Az of A and B4 of B in the first two for-loops. Then, we initial-
ize C to the empty ABox and add a concept assertion a : compute-les(C, D)

32

Algorithm 4 compute-lcsa(A, B)
if A (B) is unsatisfiable then
B (A)
else
A := compute-preprocessing-completion(A);
B := compute-preprocessing-completion(B);

-{iB = A,
By = B;

for all a € Ind(A) do
Ap = Ag U {a : compute-msc(a, max({depth(A), depth(B)}), A)}
end for
for all b € Ind(B) do
B := B4 U {b: compute-msc(b, max({depth(A), depth(B)}), B)}
end for
C = 0;
for all o in /13 do
for all 3 in B4 do
if « is of the form a : C and § is of the form a : D then
C :=CU{a: compute-les(C, D)}
else if a is of the form (a,b) : R and S is of the form (a,b) : S and
mss(R, S) is defined then
C:=CU{(a,b) : mss(R,S)}
end if
end for
end for
C
end if

33

to C iff there exists a pair of concept assertions a : C' € Ag and a: D € B4.
We add a role assertion (a,b) : mss(R,S) to C iff there exists a pair of
role assertions (a,b) : R € Ag and (a,b) : S € By and mss(R,S) is de-
fined. Since compute-lcs is assumed to be a correct LCS implementation,
compute-lesa(A, B) returns an ABox equivalent to C in (3), and the claim is

a consequence of Theorem 6. O

Summarizing, in order to compute the LCSA of ABoxes A and B, we first
check whether lcsa(A, B) is defined. This can be done by Algorithm 3. If
lesa(A, B) is defined, it can be determined by Algorithm 4.

5 Complexity Results

In this section, we will state complexity results starting with a definition of
the size of an ABox. It turns out that the size of the LCSA of n ABoxes w.r.t.
either ACENR or ALQ is polynomial in the sizes of the input concepts. The
ABox size definition does not take into account sizes of concepts which occurs
in concept assertions included in the input ABoxes. Therefore, we will give
an alternative ABox size definition which takes concepts into consideration.
As a consequence, the size of the LCSA will blow up exponentially in the
sizes of the input ABoxes in the worst case.

Definition 21 (Size of an ABox) Let A be an ABox. Then we define the
size of A as

size(A) 1= |Al. O

Theorem 8 The size of the LCSA of A, ..., A,, which are all ABozes
w.r.t. either ACENR or ALQ, is polynomial in the sizes of A;, ..., A, if
lesa(A, ..., Ay) exists.

Proof. According to the LCSA algorithm, we add at most |Ind(A)| (|[Ind(B)|)
concept assertions to A (B). Hence, the size of Ag (Z’S’A) is polynomial in
the size of A (B). From Theorem 6 it follows that the size of lcsa(A, B)
is polynomial in the sizes of Az and B4. Now it can easily be shown by

induction on n that the size of lcsa(Ay,...,A,) is also polynomial in the
sizes of Ay,..., A,. O

Theorem 8 shows that the size of lcsa(Ay, ... ,.A,) does not grow expo-
nentially in the sizes of A;,..., A,. However, in real applications the size
of storage needed to store the ABox lcsa(Ay, ... ,A,) can be exponential in
the storage needed for A;,...,A,. The reason is that the ABox size does

not take into account the sizes of concepts involved in concept assertions.

34

Definition 22 (Size of a Concept) Let C be either an ALENTR or an
ALQ concept. Then we define the size of C, |C|, recursively on C'’s structure
as follows:

(i) If C =T or C = L, then |C| = 1.
(i) If C is an atomic or negated atomic concept, then |C| := 1.

(iii) If C is of the form 3 R.D, ¥ R.D, (> n R D), or (< n R D), then
C|:=1+|D|.

(i) If C is of the form C; M ---MC,, then |C| = |Cy|+---+ |C,]|.

Now we can give the definition of the exact ABox size which takes concept
sizes into consideration.

Definition 23 (Exact Size of an ABox) Let A be an ABoz w.r.t. ACENR
or ALQ. Then we define the exact size of A as

e-size(A) := [{(a,b) : R € A} + Z |C.

a:CeA

Now we introduce the notion of minimality of ABoxes w.r.t. their exact size.

Definition 24 (Minimal Exact ABox Size) Let A be an ABox. Then
we say that A has minimal exact size iff, for all A', we have that A = A’
implies e-size(A) < e-size(A").

Thus, an ABox A has minimal exact size if there exists no equivalent
ABox with smaller exact size than A. Unfortunately, the result in Theorem
8 does not hold as soon as we consider exact ABox sizes. Subsequently, we
will also need a similar notion of minimality of concepts.

Definition 25 (Minimal Concept Size) Let C be an ALENR (ALQ)
concept. Then we say that C has minimal size iff, for all C' € ALENR
(ALQ), we have that C = C" implies |C| < |C"].

With these preparations, we can state the following theorem.

Theorem 9 The exact size of the LCSA of Ay, ... , A, which are all ABozes
w.r.t. either ACENR or ALQ, can be exponential in the eract sizes of
Av, oo Ay iflesa(Ay, ... Ay) exists.

35

Proof. The problem of computing the LCS of ALENR (ALQ) concepts
can be reduced to computing the LCSA of ABoxes w.r.t. either ALENR
or ALQ. Let C4,...,C, be either ALENR or ALQ concepts and A; =
{a : Ci},... A, = {a : C,} be ABoxes. Then lcsa(A,,...,A,) = {a:
les(Chy...,Cy)}. In [6], it is shown that the LCS of n ALENR or ALQ

concepts C4,...,C, can blow up exponentially in the sizes of C4,...,C,.
Obviously, if E with E = lcs(Cy, ... ,C,) has minimal size, then {a : E} has
minimal exact size, which proves the claim. 0

Even though, Theorem 9 shows that the LCSA of ABoxes can blow up
exponentially in the worst case, retrieval in the commonality-based informa-
tion retrieval framework can be optimized by first sorting the ABoxes in the
database according to the subsumption relation. Given a database DB and
ABoxes Ay,... ,A,, D, D' € DB, we can omit the subsumption test between
lesa(Ay, ..., Ay) and D' if both D [Z lesa(Ay, ..., A,) and D C D’ hold.

6 Conclusion and Future Work

In this article, we have introduced new description logic inference services
useful for commonality-based information retrieval which is considered to be
an interesting research topic in description logic applications. We showed
with an example that performing commonality-based information retrieval
in the usual way (i.e. based on applying the least common subsumer on the
most specific concepts of knowledge base individuals which represent user-
specified information examples) is not always appropriate and suggested a
theoretical framework to overcome the shortcomings. We first gave a def-
inition of subsumption for ABoxes and provided an algorithm for deciding
this problem. Thereby, only two requirements are imposed on the descrip-
tion logic underlying the ABoxes: A constructor for full concept negation
must be present and an algorithm for checking ABox satisfiability must be
available. We proved soundness and completeness of the ABox subsump-
tion algorithm and showed that ABox subsumption is at most as complex
as ABox satisfiability checking. The notion of ABox subsumption is used
for the definition of a least common subsuming ABox operation which was
introduced as a generalization operation for ABoxes in a similar way as the
least common subsumer for concepts. We gave algorithms for both checking
the existence of the least common subsuming ABox and, in case of existence,
for computing the least common subsuming ABox of ABoxes w.r.t. to the
two description logics ALENR and ALQ. We showed that the exact size
of the least common subsuming ABox can become exponential in the exact

36

sizes of the ABoxes to which it is applied. As a by-product, we developed an
algorithm for computing the most specific concept of ABox individuals oc-
curring in ABoxes w.r.t. ALENR and ALQ. The reason for restricting the
LCSA operation to ABoxes w.r.t. the two mentioned languages is that the
least common subsumer operation is needed in our algorithm and ALENR
and ALQ are among the most expressive languages for which the least com-
mon subsumer is available. Future research should include the extension of
the LCSA operation to ABoxes w.r.t. more expressive description logic lan-
guages. Possibly this requires the extension of the least common subsumer
to more expressive description logics as well.

References

[1] M. Buchheit, F.-M. Donini, and A. Schaerf. Decidable reasoning in ter-
minological knowledge representation systems. Journal of Artificial In-
telligence Research, 1:109-138, 1993.

2] F. M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. Principles
of Knowledge Representation, chapter Reasoning in Description Logics,
pages 191-236. CSLI Publications, 1996.

(3] V. Haarslev and R. Moller. Expressive ABox Reasoning with Number
Restrictions, Role Hierarchies, and Transitively Closed Roles. Technical
Report FBI-HH-M-288/99, Department of Computer Science, University
of Hamburg, 1999.

[4] B. Hollunder. Algorithmic Foundations of Terminological Knowledge Rep-
resentation Systems. PhD thesis, Universitat des Saarlandes, 1994.

[5] 1. Horrocks, U. Sattler, and S. Tobies. A Description Logic with Transitive
and Converse Roles, Role Hierarchies, and Qualifying Number Restric-
tions. LTCS-Report 99-08, LuFg Theoretical Computer Science, RWTH
Aachen, Germany, 1999.

6] T. Mantay. Computing Least Common Subsumers in Expressive De-
scription Logics. Technical Report FBI-HH-M-286/99, Department of
Computer Science, University of Hamburg, 1999.

[7] R. Moller and M. Wessel. Terminological Default Reasoning about Spatial
Information: A First Step. In Proceedings of the International Conference
on Spatial Information Theory, COSIT’ 99, Stade, 1999. Springer-Verlag.

37

