
Liveness Preserving Composition of Behaviour

Protocols for Petri Net Agents

Michael Köhler Daniel Moldt Heiko Rölke

University of Hamburg, Department of Computer Science

Vogt-Kölln-Straße 30, D-22527 Hamburg

{koehler, moldt, roelke}@informatik.uni-hamburg.de

Abstract

The question of modelling and verification of agent-oriented systems is
our research area. In multi agent systems the interplay of three parts of the
system – called ∆-pattern – is central: first, local elements (e.g. agents),
second, global elements (e.g. the multi agent system), and, third, the
composition structure (e.g. the mobility structure in the agent system).
The dynamic nature of agent systems makes composition a concept on its
own rather than an implicit aspect of the two other concepts.

Multi agent systems are based on three major concepts: mobility, adap-
tivity, and cooperation, which are structured by the ∆-pattern. In this
presentation we focus on agent conversations to present a model, which
describes the interplay of local and global parts as well as the dynamic
configuration structure of a conversation.

This model is based on the multi agent architecture Mulan – designed
at our department. It is used to model mobility, adaptivity, and coopera-
tion in a unified way. Mulan is a Petri net based architecture, which is
both an implementation of a multi agent platform and also a framework
for the modelling of agent applications.

Here we deal with the analysis of liveness preserving composition of
Petri nets. The two areas of agent-oriented modelling and compositional
verification – both in the setting of the Petri net theory – are combined by
dealing with a class of models which have a restricted structure: For the
special case of communication closed protocols it is shown that liveness of
conversations is a structural property. This result is of crucial importance
to compose agent protocols at run-time.

1 Introduction

Modelling and structuring of multi agent systems with respect to both software
engineering and verification requirements is a major task for current efforts.
Currently, agents are generally programmed using high-level languages such
as Java (namely in agent frameworks as Jackal [CFL+98]) or they are defined
by simple scripts. A graphical modelling technique that captures all parts of
agents and their systems – as UML1 in the context of object-orientation – is

1UML stands for Unified Modelling Language. See for example [RJB99].

1

2 1 INTRODUCTION

neither proposed nor in general use.2 A unifying framework based on the visual
programming concept of Petri nets – as proposed by the Sam-architecture –
thus bridges the gap between modelling and programming on the one side and
modelling and verification on the other side.

global view
↑ ↓

local aspects

Figure 1: Central view on traditional software systems

The design of “traditional” software system deals with the interdependencies
of global and local system views (cf. Fig. 1). For multi agent systems the
treatment of three concepts – arranged in the ∆-pattern – has to be taken into
account: The local elements (the agent), the global view (the agent system),
and the composition structure (cf. Fig. 2).

Contrary to object-oriented approaches, all these three elements are con-
cepts in their own right in the context of agent systems. This is due to the
distributed and dynamic nature of agent systems.

global view

local
view

composition
structure

Figure 2: Central view on a multi agent system as a ∆-pattern

In this contribution we propose a modelling approach for agent conversa-
tions. Conversations are one central part of multi agent systems. We have
chosen a special form of high-level Petri nets, called reference nets, as the basis
for our multi agent architecture Sam (cf. [KMR01]). Sam is both an imple-
mentation of a multi agent platform and also a framework for the modelling of
agent applications.

Petri nets in general and “nets within nets” in special offer several practical
as well as theoretical properties for the needs of multi agent systems. As we
have discussed in [KR01b], the major aspects of multi agent systems – mobility,
adaptation, and cooperation – have to be addressed by the following formal
concepts: encapsulation, concurrency, dynamic environment, assumption based
modelling, and structural properties.

2The authors are aware of the upcoming proposals that base on UML i.e. the ones from
Odell et al. [BOP00] (AUML). To our opinion these proposals capture only parts of the agent
modelling tasks and leave out important areas such as agent mobility.

3

Due to these requirements we have chosen the paradigm of “nets within
nets” of Valk [Val87, Val96, Val98, Val00] for the basis of the Sam-architecture.
Sam is specified in the reference nets formalism (cf. [Kum98, Kum02]) and is
implemented with the tool Renew (cf. [KW98]).

The three central concepts together with their relationships have been ad-
dressed in the current research: The relations sketched in figure 2 are picked
up as concepts in other approaches as well. The relation between local ele-
ments and the global view is the central concept of all bottom-up approaches
for software-design, especially in the context of object-orientation (cf. [Mey97])
or the pattern driven approach (cf. [Fow97]). The relation between the global
view and the composition structure is central in the component-based approach
(cf. [Gri98]). Components are composed by special entities, which implement
the “glue” between them in terms of a coordination language.

Our work is structured as follows: section 2 introduces the MAS-architecture
Sam. In section 3 we describe the general requirements towards a verification
system for MAS and to what extend they are met by Sam. Then the interplay
of the three key concepts are presented in the context of agent conversations:
Section 4 describes the global elements of conversation, described by a survey
net. Section 5 deals with the global elements of conversation described by so
called A/C-protocol Petri nets. Section 6 presents the composition structure,
which describes the dynamic interaction of protocols. The composition struc-
ture for conversations is called conversation order. Since conversation orders
are an explicit element in Sam, dynamic reconfiguration at run-time, e.g. for
load balancing purposes or adaptation of agents’ behaviour, is possible. The
work closes with a conclusion and an outlook in section 7.

2 The SAM Architecture

This section gives a short introduction to a multi agent system modelled in
terms of “nets within nets”. This survey is given to make the general ideas
visible that are prerequisite for the understanding of the concepts that follow
in later sections of this paper. It is neither an introduction to multi agent
systems nor the assets and drawbacks of dividing the system into platforms are
discussed here. For a broad introduction see for example [Wei99], the special
view taken in our work is a standard proposal of the ”Foundation for Intelligent
Physical Agents” (FIPA) [FIP98a]. The latest publications of the FIPA can be
found in [FIP].

2.1 Reference Nets

Sam is based on the special Petri net formalism of reference nets [Kum98,
Kum02].3 As for other net formalisms there exist tools for the modelling and
simulation of reference nets [KW98]. Reference nets show some expansions

3It is assumed throughout this text that the reader is familiar with Petri nets in general
as well as coloured Petri nets. Reisig [Rei85] gives a general introduction, Jensen [Jen92]
describes coloured Petri nets.

4 2 THE SAM ARCHITECTURE

compared to “ordinary” coloured Petri nets: nets as token objects, different arc
types, net instances, and communication via synchronous channels. Beside this
they are very similar to coloured Petri nets as defined by Jensen [Jen92]. The
differences are now shortly introduced.

Nets as tokens Reference nets implement the ”nets within nets” paradigm
of Valk [Val96, Val98]. This paper follows his nomenclature and denominates
the surrounding net “system net” and the token net “object net”. Hierarchies
of “nets within nets” relationships are permitted, so the denominators depend
on the beholder’s viewpoint.

Net instances Net instances are similar to the objects of an object oriented
programming language. They are instantiated copies of a template net like
objects are instances of a class. Different instances of the same net can take
different states at the same time and are independent from each other in all
respects.

Synchronous channels A synchronous channel (cf. also [CH94]) permits
a fusion of transitions (two at a time) for the duration of one occurrence. In
reference nets a channel is identified by its name and its arguments. Channels
are directed, i.e. exactly one of the two fused transitions indicates the net in-
stance in which the counterpart of the channel is located. The other transition
can correspondingly be addressed from any net instance. The flow of informa-
tion via a synchronous channel can take place bidirectional and is also possible
within one net instance.

2.2 Goals and Design of SAM

The Sam architecture for multi agent systems has three goals: it should support
software engineering needs, should be based on a formal model, and should be
in accordance with real social processes (cf. figure 3).

SAM

agent−oriented

software design

sociology

verification,
formal structures

Figure 3: The basic goals of Sam

The Sam architecture consists of four layers – all based on the “nets within
nets”-paradigm (cf. figure 4): the Agnes layer, the Mulan layer, the Sonar

2.2 Goals and Design of SAM 5

layer and on top of these the Öri layer. The Agnes layer consist of the formal
aspects of reference nets and object nets systems. The Mulan-layer describes
the architecture of a multi agent system. Here, an unified framework for mo-
bility, adaptation, and coordination is given. The next layer, called Sonar,
enriches the technical aspects by social aspects, like group processes, roles, so-
cial norms, social structures etc.4 The fourth layer, called Öri, specialises social
agents for the context of public administration.

Agnes

Sonar

Mulan
agent plattforms
technical agents,

agents in public administrations

algebra of agent systems

socially acting agents

ÖRI

Figure 4: The Sam architecture

In this presentation we concentrate on the technical aspects of multi agent
system, as they are treated by the Mulan layer. Take a look at figure 5
for a simplified model of Mulan: The gray rounded boxes enclose nets (net
instances) of their own right. The ZOOM lines enlarge object nets that are
tokens in the respective system net – following the concept of “nets within
nets”.5 The upper left net of the figure is an arbitrary agent system with places
containing agent platforms and transitions modelling communication channels
between the platforms.6

The first zoom leads to a closer view of a simplified agent platform. The cen-
tral place agents contains all agents that are currently hosted on the platform.
New agents can be generated (or migrate from other platforms) by transition
new, agents can be destroyed or migrate to another platform (transition de-
stroy).

Internal message passing differs from the external case – so it is conceptually
separated: The internal communication transition binds two agents (the sender
and the receiver of a message) and allows them to hand over a message via
calls of synchronous channels. External communication involves only one agent
of the platform. For external communication as well as for agent migration the
communication transitions of the top level agent system net are needed. The

4The design of the Sonar and the Öri layer is founded in the DFG project “Agieren
in sozialen Kontexten” (engl. “Acting in Social Contexts”) (s. [vLMV01], and [KLMR00,
HKL+01a]) for some actual work.

5Beware not to confuse this net-to-token relationship with place refinement.
6This is just an illustrating example, the number of places and the form of interconnection

has no further meaning.

6 2 THE SAM ARCHITECTURE

new

re pro

knowledge base

protocols

platforms

communication
 structure

multi agent system
agent platform

p3

p2

p4

p1

a

pi

kb

p

agent

send msgreceive msg

in

external
communication

internal
communication

destroy

agents

out in

start stopsubcall process

protocol

Z
O

O M

protocols in
conversations

out

Figure 5: MAS as nets within nets

interaction of the multi agent system and the agent platform is made possible
by inscribing the transitions with synchronous channels connecting for example
the transition external communication of an agent platform with that of another
one via the communication structure transition of the multi agent system. These
inscriptions are not visible in the figure.

The next zoom shows the structure of an agent. Each agent owns several
net tokens, which describe its behaviour in terms of protocols. An example
protocol is shown as the fourth net. Agents and their (dynamic) behaviour in
form of protocols (protocol nets) are explained in more detail in the following.

Each zoom describes one central concept of multi agent systems. The re-
lationship of the agent system to the platforms raises needs for the concept of
mobility, whereas the relationship between the platform and the agent has to
be treated by the concept of cooperation. The relationship of agents and their
protocols is captured by the concept of adaptation of intelligent agents.

2.3 Agents and Protocols

In the following agents and their (dynamic) behaviour in form of protocol nets
are introduced. An agent is a message processing entity, that is, it must be

2.3 Agents and Protocols 7

able to receive messages, possibly process them and generate messages of its
own. In this context it has to be noted that a completely synchronous message
exchange mechanism as it is used in most object oriented programming systems,
frequently violates the idea of autonomy among agents.7

The introduced basic agent model implies an encapsulation of the agents:
regardless of their internal structure, access is only possible over a clearly de-
fined communication interface. In Fig. 6 this interface is represented by the
transitions receive message and send message. In the figure, the realization of
the interface (through connection of both transitions to a messages transmis-
sion network via synchronous channels) is not represented. Obviously several
(then virtual) communication channels can be mapped to both transitions.

The presented agent model corresponds to the fundamental assumptions
about agents: Because agents should show autonomy, they must be able to ex-
ercise an independent control over their actions. Autonomy implies the ability
to monitor (and, if necessary, filter) incoming messages before an appropriate
service (procedure, method...) is called. The agent must be able to handle mes-
sages of the same type (e.g. asking for the same service) differently just because
of knowing about the message’s sender. This is one of the major differences
between objects and agents: A public object method can be executed by any
other object, protected methods offer a static access control that is very often
inconvenient to the programmer and the user.

The processing of messages is realized by a selection mechanism for spe-
cialised subnets, that implement the functionality of the agent, therefore (beside
the selection process) its behaviour. These subnets are named protocol Petri
nets (or short protocols) in the following.

Each agent can control an arbitrary number of such protocols, possesses
however only one net (in reference net nomenclature: one net instance), that
represents its interface to the agent system and therewith its identity. As men-
tioned before all messages that an agent sends or receives have to pass this
net.

The central point of activity of a protocol-driven agent is the selection of pro-
tocols and therewith the commencement of conversations [CCF+99, KMR01].
The protocol selection can basically be performed pro-actively (the agent itself
starts a conversation) or reactively (protocol selection based on a conversa-
tion activated by another agent).8 This distinction corresponds to the bilateral
access to the place holding the protocols (protocols). The only difference in en-
abling and occurrence of the transitions reactive and pro-active is the arc from
the place incoming messages to the transition reactive. So the latter transition
has an additional input place: the incoming messages buffer. It may only be
enabled by incoming messages. Both the reaction to arriving messages and the
kick-off of a (new) conversation is influenced by the knowledge of an agent. In
the case of the pro-active protocol selection, the place knowledge base is the only
proper enabling condition, the protocols are a side condition. In simple cases

7To our understanding agents are not exclusively (artificial) intelligent agents, but rather
a general software structuring paradigm on top of the ideas of object orientation [Jen00].

8The fundamental difference between pro-active and reactive actions is of great importance
when dealing with agents. An introduction to this topic is e.g. given by Wooldridge in [Woo99].

8 2 THE SAM ARCHITECTURE

protocolsreactive pro-active

kb

p

processing

pi

stop

in

protcols in
conversations

incoming
messages

outgoing
messages

receive
message

send
message

knowledge base

out

Figure 6: A protocol-driven agent

the knowledge base can be implemented for example as a subnet, advanced
implementations as the connection to an inference engine are also possible (and
have been put into practise).

A selected and activated protocol9 participates in a conversation because it
usually includes the exchange of messages with other agents. A conversation
can however also run agent internal, therefore without message traffic. A freshly
invoked conversation holds an unambiguous identification that is not visible in
the figure. All messages belonging to a conversation carry this identification as
a parameter to assign them properly. If an agent receives a messages carrying
such a reference to an existing conversation, transition in is enabled instead
of transition reactive. The net inscriptions that guarantee this enabling are
not represented in figure 6 for reasons of simplicity. The transition in passes
incoming messages to the corresponding protocol in execution. Examples for
this process follow in the remaining sections.

If the sending of messages to other agents is required during the run of a
conversation, these messages are passed from the protocol net over the transition
out to the agent’s main page and are handed over to the message transport
mechanism by the transition send message.10 The communication between a
protocol net and the agent’s main net takes place via synchronous channels.

An interesting feature of any agent derived from the (template) agent in
figure 6 is that they cannot be blocked, neither by incoming messages nor by

9Following the object oriented nomenclature one speaks of an instantiated net or protocol
(that is represented in form of a net).

10The message transport mechanism is part of the agent system (or platform) and is there-
fore only sketched in this section.

9

their protocols11 and therefore cannot loose their autonomy.

Examples for concrete conversation protocols are to be found in the following
chapter, where a producer-consumer process is modelled exemplarily. This
scenario acts also as the case study for our verification approach for Sam.

3 Agent Oriented Verification

The analysis of agent systems raises the need for a special style of verification
systems. This need is due to the dynamics and openness of agent systems. As
stated before, modelling approaches lack a uniform basis. The same is true also
for verification approaches.

Most approaches handle multi agent systems (MAS) the same way as one
would describe a single intelligent agent. This style is based on the tradi-
tional artificial intelligence (AI) view, disregarding the needs of MAS. It is
mostly based on (modal) logical specification and model checking techniques
(cf. [HR00] as an example). In general, approaches addressing the specialities
of MAS focus on one single aspect of description. For mobility several alge-
braic approaches describe the change of environment (cf. [MPW92], [VC98]
or [CGG99]). Adaptation (cf. [GPdFC98]) and cooperation (cf. [SHM99] and
[CCF+99]) are addressed, too.

In our point of view such an approach is insufficient for the analysis of an
agent system, since only parts of the system are specified. It is unclear whether
the combination of the isolated formalisations leads to a correct description
of what the system does. Since the integration of the models has do be done
manually by the developer this leads to an error prone style of construction.

So, we conclude that not only the construction of an agent system should be
done on a uniform basis but also the formal part of reasoning about it should be
based on one single calculus. In the following, we describe which characteristics
such a formal basis should own. So, we have to identify central characteristics
and suited verification techniques.

3.1 Formal Key Concepts in Multi Agent Systems

In our Sam-approach, the central parts of a dynamic, open agent system –
mobility, adaptation, and cooperation – are parts of the concept of composi-
tionality (cf. [Zwi89]), which is based on several fundamental concepts, like
locality, concurrency etc. In the agent context, the major issues – mobility,
adaptation, and cooperation – must be handled by formal concepts. These as-
pects might be of interest in the context of object-orientation, too, but in the
context of agents they cannot be ignored. These concepts are:

1. Encapsulation and modularity. An agent system must be able to express
the concept of information hiding, so the system cannot be formulated in
a “flat” and global way.

11Unless it is strictly necessary for a protocol to block the entire agent and this is explicitly
modelled.

10 3 AGENT ORIENTED VERIFICATION

2. Concurrency. Agent systems are highly independent and run concur-
rently. So specification, implementation, and verification must not rely
on totally ordered action sequences. Partial order semantics (true con-
currency) must be used instead.

3. Dynamic environment. Agent systems are conceptually based on distri-
bution and mobility. Therefore, a proof system must be able to describe
environments and their dynamic change in an explicit way.

4. Assumption based modelling. An approach for MAS must allow to specify
assumptions and commitments towards the environment This can be done
in the assumption/commitment (A/C) concept introduced by [MC81] and
[Jon83]. We additional postulate, that these assumptions and commit-
ments should not only be visible for the verifier but also for the devel-
oper. To avoid a gap between verification and modelling, assumption and
commitments should be an integral part of the model.

5. Structural properties. The systems should allow to easily describe struc-
tural restriction in order to guarantee e.g. security properties. These
restrictions should be easily adaptable in the modelling approach.

These formal concepts are arranged the same way as in the general ∆-
pattern of figure 2: The global view can formally be regarded as a distributed,
concurrent system. The local view is described by modular subclasses, whereas
the dynamic environment plays the role of the composition structure. Assump-
tion/commitment relates the local and the global view. Figure 7 shows the key
concepts within the Agnes layer of Sam.12

Agnes

modular
subclasses

dynamic
connectivity

distributed,
concurrent system

locality
dynamic
environment

environment based
modelling

Figure 7: Central view on the formal basic of Sam

12The Sonar layer is also based on the triangle concept, now in the setting of social science.
The Sonar layer is based on the interplay of actors, social acting, and social structures. The
relationships are described by actor modes, theories based on the concept of social structures,
and theories based on the concept of actor interaction (cf. [HKMM00, HKL+00, KLMR00,
HKL+01b, HKL+02]).

3.2 Classification of Verification Approaches 11

3.2 Classification of Verification Approaches

In the following we have to analyse, which techniques are suited to allow spec-
ification and verification of the above describes concepts.The great number of
publications in the very general field of verification raises the need for a clas-
sification scheme. We propose a classification scheme mainly oriented on two
categories: first the development style and second the verification time. The
first category discriminates top-down and bottom-up construction:

1. Top-down development. This class incorporates the aspect of information
hiding. Programs are composed of encapsulated modules. This style of
development and verification is known as the “top-down” approach. The
most common proof system has been developed by Apt, Francez, and de
Roever [AFdR80].

2. Bottom-up development. This class considers the verification of modules
on their own. The context where modules are embedded in is not known
a priori. This style of reasoning is known as the “bottom-up” approach.
A central step in the development of bottom-up proofs is the assump-
tion/commitment formulation by Chandy and Misra [MC81].

Verification can also be classified by its place in the development:

1. Verification is done after programming (a posteriori verification). First
the system is specified, then coded and afterwards the implementation is
checked against the specification. Central approach is the model checking
technique by Clarke and Emerson [EC82].

2. Verification is done while programming. This could be done if the pro-
grammer has a central idea how to proof the implementation while he
programs. This kind of style is known as “structured programming”. All
axiomatic approaches – like [Hoa69] – are examples for this approach..

3. Proof by construction. Programming and verification are essentially the
same. These approaches are based on constructive logic (like the COQ sys-
tem [BBC+99]) or on property preserving transformation (like in [Ber87])
or on structural restrictions resulting in subclasses (like in [BT87]). For
top-down modelling the notion of property preserving refinement ([BGV91])
plays a major role.

3.3 From Compositional Verification to Agent Oriented Verifi-

cation

Which approaches are suited for the development and verification of agent sys-
tems? In the following the central requirements of MAS are contrasted with
the existing verification styles, as classified before. Several approaches try to
lift verification styles designed for object oriented programs up to the agent
context – neglecting the special needs of multi agent systems.

The first speciality is due to the nature of agents: agents are encapsulated,
autonomous entities which are loosely coupled. They are developed with only

12 3 AGENT ORIENTED VERIFICATION

with few knowledge of the whole agent system. Developers and agents cannot
know the whole system or the state of the whole system. There is no such thing
as global knowledge for agents.

Due to encapsulation and isolated development only bottom-up verification
can apply to the agent context. All approaches considering agent systems as one
unit must reject the openness of agent systems and rely on some kind of “closed
agent world assumptions”. Only the assumption based style of reasoning can
apply to open systems.

Since agents are considered as active entities (in contrast to passive objects),
we additionally take into account who is reasoning about the agent system. If
it is the developer, we are mainly confronted with “static” problems, if it is
the agent, we are confronted with more “dynamic” aspects. In the second case
reasoning must be done automatically. This seems to be harder than the first
case, where it can be done semi-automatically.

Reasoning at run-time is the consequence when dealing with open systems,
where no one can know in advance, what might enter the system. Security
in mobile agent systems is a central aspect (cf. [Vig98]) which can only be
achieved by structural restrictions on agents or on agent behaviour. Structural
restrictions reduce the proof burden of an agent system.

If one compares these requirements with the classification scheme, one can
recognise, that we can restrict our investigation to the “bottom-up” style and
to “verification while and by development”, since the assumptions of a global
systems or a top-down view is unreasonable.

Due to these requirements we have chosen the paradigm of “nets within
nets” [Val87, Val96, Val98] for the developmental and formal basis of the Sam-
architecture. This approach meets the above mentioned requirements directly
or is adjusted currently by the authors. It has also the benefit that the “nets
within nets” paradigm has it native “machine” implemented in the Renew tool
[KW98].13 This approach could be seen as the formal implementation of the
∆-pattern of figure 7:

• Concurrency/distribution: Like every Petri net formalism it incorporates
the concept of concurrency. The requirement of encapsulation and mod-
ularity is fulfilled by the concept that nets could be regarded as tokens
again – a view that meets well with modularity and locality.

• Dynamic environment: The requirement to handle dynamic environments,
A/C modelling is captured by the formalism of assumption/commitment
Petri nets, short: A/C Petri nets. The subclass of A/C Petri nets deals
with protocols and is therefore called A/C protocols.

• Structural subclasses: The formal and algebraic notion of object nets
allows one to define subclasses with structural guaranteed properties. In
the following, we present the subclass of well formed conversations.

13The work of [BDM+99] favours an approach based on linear logic instead. This work
is a good argument for our approach, since Petri nets and linear logic are strongly related
(cf. [Far00]). Our approach has the additional advantage that our models have a graphical
representation.

13

Nets within nets build the basic formalism for the agent system architecture
Sam. In the further presentation we will focus our attention mainly on the
aspects of the modelling of agents protocols in terms of A/C-Petri nets.

4 Conversations

An important field of application of Petri nets is the specification of processes,
like the producer-consumer process shown in figure 8. In order to give no
room to conceptual confusion, such nets that spread over several agents and/or
distributed functional units will be called “survey nets”. Survey nets are used
the same way like those Petri nets used to model distributed algorithms in
[KRVW97, Rei98], since they provide the global view on a – in principle –
distributed system.

send

capacity

receive

produce buffer consume

[]

[]

Figure 8: Producer-consumer (survey net)

The place buffer in the middle of the figure represents an asynchronous cou-
pling between the process of producing and that of consuming. This coupling is
however to that extent an acting entity that it for example blocks the consumer
if it is empty or, given the case that it is inscribed with a capacity, blocks the
producer when this maximal filling is reached. The following example assumes
that the buffer is restricted by a capacity of one item. This restriction is for sim-
plification purposes only and may be lifted easily. The restriction is indicated
in figure 8 by the gray place capacity under the buffer place.

The producer-consumer scenario acts as our demonstration conversation.
To emphasise the conversation characteristic of our scenario we refined the
model (cf. Fig. 9). In the following, producer and consumer are introduced
as autonomous agents and are modelled according to figure 6 by means of a
reference net. The buffer is not modelled as an independent agent, neverthe-
less this would both syntactically (this will be explained in the following) and
semantically (in consideration of the level of autonomy the buffer owns) be no
problem.

5 Conversation-Protocols

Conversations are built in terms of protocols. Each agent has its own set of
protocols used for participating in a conversation. To link the local view of a
protocol with the global one of the conversation, a new formalism is proposed:
A/C Petri nets. A/C Petri nets and the protocols based on them include a

14 5 CONVERSATION-PROTOCOLS

produce

send
produced

item

receive
acknowledge

acknowledge
(capacity)

receive
item

acknowledge

waiting

item
(buffer) entry

exit

consume

produced
item

entry

exit

Figure 9: Refined producer-consumer scenario

item

:start()

waiting

item

acknowledgeacknowledge

:stop()

receive
acknowledge

:start()

:stop()

exit

receive item entry

exit

entry produce

acknowledge

send
produced
item

produced
item

consume

Figure 10: Splitting the producer-consumer scenario into two protocols

5.1 Distributing a Conversation 15

model of the assumptions made towards the environment. In this section we
describe how to relate the producer-consumer-scenario to protocols and which
environmental assumptions should made explicit, both for the design and also
for verification.

5.1 Distributing a Conversation

The producer-consumer conversation can easily be distributed: the left part
of figure 10 builds the protocol of the producing agent while the right part
implements the protocol for the consuming agent. The places in the middle
describe message pools shared by the protocols.

Since agent protocols describe the instantiation of one produce-consume-
cycle the “looping” transition is split into two transitions inscribed by the
channels :start, and :stop. So, a protocol is started by the agent, processed,
and stopped afterwards by the agent. For the next produce-consume-cycle a
fresh instance of the producer protocol is generated by the agent, the same for
the consumer side.14

Protocols can be formally described and analysed in terms of the A/C no-
tion: A/C notions should not only establish the possibility for modular cor-
rectness proofs – it should further be a integral part of the Petri net model.
Assumptions towards the environment are integrated in the model of the pro-
tocol P . This approach enables the modeller to describe directly the scenario
assumed. Petri net protocols allowing this style of modelling are called A/C
protocols (cf. [KR01a]).

In the Sam framework, A/C protocols are based on A/C Petri nets. A/C-
Petri nets are described in terms of synchronous channels, more precisely by up-
links: The notion of an up-link describes the “passive” part of two synchronising
transitions. This is exactly what we want for a model of the environment: an
external action matching an assumption about an external action.

The models have the same meaning as the protocols nets in Fig. 10, but they
are more expressive by denoting assumptions about the environment, without
the disadvantage of including directly the environment. This is done by the
assumption part of the protocol, depicted by unfilled net elements: the tran-
sitions with the inscription (: in() and : out() as well as : start() and : stop()).
Additionally, the places info, ticketin, and ticketout are declared to be part of
the assumptions.15 The place info contains data that is needed to match each
request and reply. How this assumption part could be exploited for verifica-
tion is shown in [KR01a] where the correctness proof of the producer-consumer
scenario is given.

Producer The protocol of the producer agent is represented in figure 11.
The upper transitions with the channels :start, :out, :in, and :stop are typical
for all types of protocol nets. The :start channel serves as a means to pass
possibly necessary parameters to the protocol. It is called on the agent main

14Protocols are related to protocol instances similar as classes to objects.
15Note, that places in A/C Petri nets are not subdivided like transitions, so this fact is only

a point of presentation.

16 5 CONVERSATION-PROTOCOLS

page (see figure 6) either by transition reactive or pro-active. The channels :in
and :out are responsible for the communication of an operating protocol with
the environment. They connect to the transitions of the same denominators on
the agent’s main page. When a protocol has finished its task, the transition
inscribed with channel :stop is enabled. By calling this channel the agent may
delete the protocol or, more precisely, the protocol instance.

waiting:start() :stop()

:out(i) :in(a)

entry exit

produce receive
acknowledge

send
produced item

acknowledge

info

item

i

i

ii

produced
item

a

a

Figure 11: The producer protocol

After the start of the protocol the transition produce produces a performa-
tive16 (here i) containing an item, that is directed to the consumer. Note that
in the example the performative is the only thing that is produced. The perfor-
mative will be sent over the :out channel; subsequently the protocol is blocked
waiting for an answer message. The blocking behaviour is necessary to simulate
a synchronous communication between producer and buffer. Without waiting
for an answer the producer would be able to ”flood” the buffer with messages,
what requires an infinite buffer capacity. An arriving confirmation enables the
transition acknowledge received. After occurrence of this transition the protocol
is not blocked any further and terminates (by enabling the stop transition).
The producer agent is now able to select and instantiate the produce protocol
again.

Consumer The protocol net that models the consume behaviour of the con-
sumer agent (see figure 12) is selected (reactively) by the agent’s main page to
process an incoming performative from the producer agent. It is instantiated,
started via the channel :start and the channel :in is used to pass the performative
to the protocol. Beside others the performative is needed to send a acknowledge
performative to the originator of the conversation (the producer). Note that
the consumer agent does not know the producer or if there is one or several of
them. The protocol works in either case.

The consumer can block an arriving message as long as it wants, until it
is ready to ”consume” the carried item. In figure 12, this is represented by
the transition send acknowledge. After acknowledging the receipt of the item
the transition consume may occur. After that the protocol terminates and can

16Some of the ideas that led to the agent model introduced here are partially originated in
the area of the KQML- ([FL97]) or FIPA-agents ([FIP98b]). Roughly speaking a performative
is a message. KQML stands for ”Knowledge Query and Manipulation Language”, FIPA is the
abbreviation of ”Foundation for Intelligent Physical Agents”.

17

:start()

:in(i)

receive item

acknowledgeitem

acknowledge consume :stop()

ticket-out

exit
i i i

a

i

i
entry

i

a

ticket-in :out(a)

Figure 12: The consumer protocol

be deleted. The place ticketout controls that the protocol is only deleted after
sending the acknowledge.

Figures 11 and 12 show the protocols that model a conversation between
producer and consumer. They are executed within agents of the type of figure 6.
The nets form a simple example that illustrates how to model a producer-
consumer process by means of agent oriented Petri nets.

cooperation

conversation

A/C-protocols conversation
oder

Figure 13: Central view on conversations

Agent conversations represent all the three aspects of the ∆-pattern (cf.
Fig. 13): The global element is the agent conversation modelled by the survey
net. Conversations consists of several interacting, agent-local protocol nets, so,
protocols are the local element. The relation of the protocols and the global
conversation is represented by the unfilled nodes in the protocol nets. Con-
versations are structured by the causal ordering of the messages. This order
builds the configuration part. It should be considered as valuable like the two
others, since only the explicit expressed order makes it possible to change the
conversation dynamically. This order is considered in the following.

6 Well Formed Conversations

Agents in Sam cooperate in terms of conversations. A conversation consists
of a set of protocol Pi, which participate at this conversation. Each protocol
P is identified with an infinite set P 〈i〉, i ∈ N , where P 〈i〉 denotes the ith
instantiation of the protocol P . Since each instance of P is a net on its own, P

18 6 WELL FORMED CONVERSATIONS

could be identified with the parallel composition of all instances:

P = P 〈1〉||P 〈2〉|| . . .

In the cyclic producer-consumer scenario in Fig. 8 infinite many instances exist:
Producer〈1〉, Producer〈2〉, . . . as well as Consumer〈1〉, Consumer 〈2〉, . . .

In general, each agent owns a set of protocol instances, which participate at
the conversation. The set of protocol instances of one agent belonging to one
conversation is

Conv i = Pi,1|| . . . ||Pi,ni

A conversation is formed by the behaviour of all protocol instances:

Conversation = Conv1|| . . . ||Convn

In general, the set Conv i = Pi,1|| . . . ||Pi,ni
contains more than one instance of

one protocol.

6.1 Phase Ordered Conversations

If conversations are finite, i.e. in fact only a finite number of instances are
involved, correctness can be described in terms of a well funded order on in-
stances. In the case of infinite conversations such an order cannot exist, so a
different criterion for correctness has to be defined.

A infinite conversation is described by the composition of infinite many
instances:

Conversation = (P1〈1〉||P2〈2〉|| . . .)|| . . . ||(Pn〈1〉||Pn〈2〉|| . . .)

....

....[]

[]
P<1> P<2> P<3>

C<2>C<1>

e/x e/xe/xe

[][]
e e/x e/x

msg msg msgmsgmsg

Figure 14: An infinite conversation between two agents

Correctness of infinite conversation intuitively describes some progress. The
infinite conversation depicted in figure 14 has some kind of progress. There, the
interaction between two partners is described. One partner uses the producer
protocols P , the other the consumer protocols C. Each activated instance is
described by one transition, named P 〈i〉 resp. C〈i〉. Places named e or e/x
describe states between two activated instances, places named msg describe
messages in transit.

As one can observe, there is no S-cut in the process, which consists only of
e/x-places, since in each S-cut also one message is included. So, no global state
exists, that could naturally describe the “next” state of the conversation.

6.1 Phase Ordered Conversations 19

[]

[]
P<1> P<1>

C<1>

e

e e/x e/x

P<2>P<2>

e/x

....

C<2>

msg msg

....

msgmsg

e/x

Figure 15: A phase structured infinite conversation

To obtain a definition for progress of infinite conversations, we postulate
that in each process there are infinite many S-cuts, that consist only of e/x-
places. All states between two adjoining e/x-cuts naturally form one single
entity, which is called a phase. Thus, correctness is the infinite sequence of
phases. This characterisation of communication is inspected in the field of
communication-closed-layers (cf. [EF82], [FPZ93] und [SdR94]):

(P1,1; . . . ;P1,m)|| . . . ||(Pn,1; . . . ;Pn,m) = (P1,1|| . . . ||Pn,1); . . . ; (P1,m|| . . . ||Pn,m)

In the case of reactive agent protocols, this notion could be extended onto the
infinite case, thus describing the reactive protocols:

(P1,1; . . . ;P1,m; . . .)|| . . . ||(Pn,1; . . . ;Pn,m; . . .)

= (P1,1|| . . . ||Pn,1); . . . ; (P1,m|| . . . ||Pn,m); . . .

Figure 15 shows an example for an infinite process of a conversation, which
is structured in phases. In each phase there are two active protocol instances:
the i-th phase consists of the interaction of P 〈i〉 and C〈i〉. In this conversation
the assignment of protocols to agents is not fixed, as one can see in Fig. 15:
the relation is switched by a phase change. Each phase has one producing and
one consuming agent. The roles, in which they act, are switched from phase to
phase.

waiting

:stop()

entry exit

produce receive
acknowledge

send
produced item

request info

item

i

i

ii

produced
item

a

a

:in(a)

n-1

cash pool

n

acknowledge

:start(n)

n
guard n>0

:out(i)
guard n=0

n

i

:abort(i)

Figure 16: The produce protocol with phase order

Phase structuring of conversation gives us a progress criterion for infinite
conversation, since it reduces the progress criterion for the whole conversation

20 6 WELL FORMED CONVERSATIONS

towards an phase-local criterion. If the initial phase terminates and each ter-
minating phase is followed by an terminating one, the correctness of the whole
conversation follows inductively. The infinite reproduction of phases could be
formally described in terms of liveness analogous to the correctness definition
for work-flow nets [Aal97].

In general, termination of one single phase is described in terms of an order,
which we call phase order . Each agent owns a fix amount of “message cash” for
paying the sending and receiving of messages. Phase and conversation orders are
integrated in the formalism of Sam (cf. figure 16 and 17). Each A/C-protocol
has an additional place cash pool, which contains the actual cash units. Cash
units are used to restrict the message transfer: Sending of messages subtracts
– if n > 0 – an amount of one cash unit from the actual cash amount n ∈ N.
This is expressed by the guard: (guard n > 0). If not enough cash units are
present (guard n = 0) the conversation is aborted via the channel : abort.

:start(n) receive item

acknowledge

acknowledge consume :stop()

exit
i i i

a

i

i
entry

i

a

n-1

item

n

ticket-in ticket-out

cash pool

:out(a)

n
n

:in(i)

a

:abort(a)
guard n>0guard n=0

Figure 17: The consumer protocol with phase order

Since the number of protocols per phase is fixed in all processes the marking
of the place cash pool is strictly monotone decreasing. So, we can conclude that
if a protocol terminates under the assumption that all request messages will be
replied by the environment, the whole conversation must terminate.

6.2 Dynamic Reconfiguration

Since agent protocols are aware of the phase order, they can make use of it:
The phase ordering can be changed when the conversation steps forward to
the next one. Agents could negotiate how this should be done. The process is
controlled by a meta-protocol which controls the conversation and the dynamic
reconfiguration between phases. Such a meta-protocol is shown in figure 18,
where the process of instantiating, stopping, and reconfiguring of a protocol is
specified.17 The protocol net is a token ppn of the net. The transition instantiate
creates a new instance, called ppn, by the expression ppn: new acppn. The
protocol type acppn is passed by as an parameter. The instance is started
(ppn:start(n)), where the phase order is described by the initial cash amount

17Figure 18 is only for demonstration purposes. In fact, this meta protocol is part of the
Mulan-agent itself, which controls the conversation and the protocol instances as described
before (cf. Fig. 6).

21

n. When the protocol instance has finished its job, it is stopped (ppn:stop())
and discarded. The actual phase is finished now. The transition reconfigure
switches then to the next phase by setting the protocol type to new acppn and
assigning new cash to the cash pool.18 Then the cycle could be restarted again.

[]

instanciate

stop

protocol
not instantiated

[new_acppn,
new_cash]

phase
order

protocol
finished

reconfigure

[Producer,2]

running
protcol

ppn

ppn:stop()

ppn

ppn: new acppn
ppn:start(n)

[acppn,
cash]

Figure 18: Conversation meta protocol

In general, a conversation is well formed iff each agent’s conversation meta
protocol is live, since this guarantees the progress of phases. The character-
isation that there are an infinite number of e/x-cuts is correct, cause this is
equivalent to the existence of an infinite number of reconfigure-cuts, so, each
reconfigure transition fires exactly once per phase. The intention of the well
formedness definition is similar to those for work-flow nets in [Aal97]. Our defi-
nition is more general, since we first have to cope with several nets and not only
a single one, and second we have to deal with reactive nets, which communicate
with their environment, which is not present in the context of [Aal97].

7 Conclusion and Outlook

In this presentation, three concepts are shown to be central for the modelling
of mobility, adaptivity, and cooperation in multi agent systems, namely: the
local elements, the global view, and the composition structure, together with
their relationships.

Here, we concentrated on the field of coordination, which is modelled as
an interplay of the concepts: conversation, A/C-protocols, and conversation
orders. Due to the dynamic reconfiguration mechanism implemented in the
agent system architecture Mulan the question of correctness is raised.

In this work we propose liveness preserving composition of agent protocol
nets in terms of conversation orders. Here, the special case of phase-ordered
communication in combination with protocol nets is presented. For this case,
liveness turns out to be a structural property of the composition of A/C-protocol
nets by a conversation order. This result is needed to combine agent protocols
at run-time.

18In the concrete implementation the values of new acppn and new cash are chosen with
respect to the knowledge base of the agent.

22 REFERENCES

Our results are embedded in the more general context of the development
of a Petri net based architecture for multi agent systems, called Sam. Further
work has to be done to formally establish a notion for structures of multi agent
platforms, communication behaviour etc. This work is supposed to lead into a
complete calculus for multi agent systems, that hopefully allows more general
composition than just phase-oriented composition.

References

[Aal97] Wil van der Aalst. Verification of workflow nets. In Pierre Azeme and Gi-
anfranco Balbo, editors, Application and theory of Petri nets, volume 1248
of Lecture Notes in Computer Science, pages 407–426, Berlin Heidelberg
New York, June 1997. Springer Verlag.

[AFdR80] K. R. Apt, N. Francez, and W.P. de Roever. A proof system for commu-
nicating sequential processes. ACM Transactions on Programming Lan-
guages and Systems, 2(3):359–385, 1980.

[BBC+99] B. Barras, S. Boutin, C. Cornes, J. Courant, Y. Coscoy, D. Delahaye,
D. de Rauglaudre, J.-Ch. Fillitre, E. Giménez, H. Herbelin, G. Huet,
H. Laulhère, C. Muñoz, C. Murthy, C. Parent-Vigouroux, P. Loiseleur,
Ch. Paulin-Mohring, A. Sabi, and B. Werner. The Coq Proof Assis-
tent – Reference Manual, Version 6.3.1, Coq Project, December 1999.
http://pauillac.inria.fr/coq.

[BDM+99] M. Bozzano, G. Delzanno, M. Martelli, V. Mascardi, and F. Zini. Logic
Programming & Multi-Agent Systems: a Synergic Combination for Ap-
plications and Semantics. In K.R. Apt, V.W. Marek, M. Truszczynski,
and D.S. Warren, editors, The Logic Programming Paradigm: a 25-Year
Perspective, pages 5–32. Springer Verlag, 1999.

[Ber87] G. Berthelot. Transformations and decompositions of nets. In W. Brauer,
W. Reisig, and G. Rozenberg, editors, Petri nets: Central models and their
properties, number 254/255 in LNCS. Springer-Verlag, 1987.

[BGV91] Wilfried Brauer, Robert Gold, and Walter Vogler. A survey of behaviour
and equivalence preserving refinements of Petri nets. In G. Rozenberg, edi-
tor, Advances in Petri nets 1990, volume 483 of Lecture Notes in Computer
Science, pages 1–46, Berlin, Germany, 1991. Springer-Verlag.

[BOP00] Bernhard Bauer, James Odell, and H. van Dyke Parunak. Extending
UML for Agents. In Proceeding of Agent-Oriented Information Systems
Workshop, pages 3 – 17, 2000.

[BT87] Eike Best and P.S. Thiagarajan. Some classes of live and safe Petri nets. In
Klaus Voss, editor, Concurrency and nets, pages 71–94, Berlin, Germany,
1987. Gesellschaft für Mathematik und Datenverarbeitung, Springer-Ver-
lag.

[CCF+99] R. Scott Cost, Ye Chen, T. Finin, Y. Labrou, and Y. Peng. Modeling agent
conversation with colored Petri nets. In Working notes on the workshop
on specifying and implementing conversation policies (Autonomous agents
’99), 1999.

REFERENCES 23

[CFL+98] R.S. Cost, T. Finin, Y. Labrou, X. Luan, Y. Peng, L. Soboroff, J. May-
field, and A. Voughannanm. Jackal: A Java-based Tool for Agent De-
velopment. In Working Notes of the Workshop on Tools for Developing
Agents, AAAI‘98, pages 73–82. AAAI Press, 1998.

[CGG99] Luca Cardelli, Andrew D. Gordon, and Giorgio Ghelli. Mobility types for
mobile ambients. In Proceedings of the ICALP’99, volume 1644 of LNCS,
pages 230–239. Springer-Verlag, 1999.

[CH94] Søren Christensen and Niels Damgaard Hansen. Coloured Petri nets ex-
tended with channels for synchronous communication. In Rober Valette,
editor, Application and Theory of Petri Nets 1994, Proc. of 15th Intern.
Conf. Zaragoza, Spain, June 1994, LNCS, pages 159–178, June 1994.

[EC82] E. A. Emerson and E. M. Clarke. Using branching time temporal logics to
synthesize synchronisation sceletons. Sci. Comput. Program., 2:241–266,
1982.

[EF82] T. Elrad and N. Francez. Decomposition of distributed programs into
communication closed layers. Science of computer programming, 2:155–
173, 1982.

[Far00] Berndt Farwer. Linear Logic Based Calculi for Object Petri Nets. Logos
Verlag, Berlin, 2000.

[FIP] Foundation for Intelligent Physical Agents. http://www.fipa.org.

[FIP98a] FIPA. FIPA 97 Specification, Part 1 - Agent Management. Technical
report, Foundation for Intelligent Physical Agents, http://www.fipa.org,
Oktober 1998.

[FIP98b] FIPA. FIPA 97 Specification, Part 2 - Agent Communication Lan-
guage. Technical report, Foundation for Intelligent Physical Agents,
http://www.fipa.org, Oktober 1998.

[FL97] Tim Finin and Yannis Labrou. A Proposal for a new KQML Specification.
Technical report, University of Maryland, Februar 1997.

[Fow97] Martin Fowler. Analysis patterns: reusable object models. Addison-Wesley
series in object-oriented software engineering. Addison-Wesley, 1997.

[FPZ93] M. Fokkinga, M. Poel, and J. Zwiers. Modular completeness for com-
munication closed layers. In E. Best, editor, Proceedings CONCUR’93,
volume 715 of LNCS, pages 50–65, Hildesheim, Germany, 23–26August
1993. Springer.

[GPdFC98] Gustavo M. Gois, Angelo Perkusich, Jorge C. A. de Figueiredo, and Evan-
dro B. Costa. Towards a multi-agent interactive learning environment
oriented to the Petri net domain. In Proc. IEEE Int. Conf. on Systems,
Man, and Cybernetics (SMC’98), 11-14 October 1998, San Diego, USA,
pages 250–255, October 1998.

[Gri98] Frank Griffel. Componentware: Konzepte und Techniken eines Soft-
wareparadigmas. dpunkt Verlag, 1998.

[HKL+00] Daniela Hinck, Michael Köhler, Roman Langer, Daniel Moldt, and Heiko
Rölke. Akteurstheoretische Betrachtungen organisationaler Handlungen.
Arbeitsberichte des Forschungsprogramms: Agieren in sozialen Kontexten,
Universität Hamburg, Fachbereich Informatik, Vogt-Kölln Str. 30, 22527
Hamburg, Germany, 2000. Beitrag auf dem Workshop Sozionik 2000.

24 REFERENCES

[HKL+01a] Daniela Hinck, Michael Köhler, Roman Langer, Daniel Moldt, and Heiko
Rölke. Modelling a sociological case study. In Modelling Artificial Societies
and Hybrid Organisations (MASHO’01), 2001.

[HKL+01b] Daniela Hinck, Michael Köhler, Roman Langer, Daniel Moldt, and Heiko
Rölke. Organisation etablierter Machtzentren: Modellierungen und Re-
analysen zu Norbert Elias. Arbeitsberichte des Forschungsprogramms:
Agieren in sozialen Kontexten 306, Universität Hamburg, Fachbereich In-
formatik, Vogt-Kölln Str. 30, 22527 Hamburg, Germany, 2001.

[HKL+02] Daniela Hinck, Michael Köhler, Roman Langer, Daniel Moldt, and Heiko
Rölke. Soziologische Grundlagen des Handelns modelliert mit Petrinetzen.
Arbeitsberichte des Forschungsprogramms: Agieren in sozialen Kontexten,
Universität Hamburg, Fachbereich Informatik, Vogt-Kölln Str. 30, 22527
Hamburg, Germany, 2002.

[HKMM00] Sven Heitsch, Michael Köhler, Marcel Martens, and Daniel Moldt. High
level Petri nets for a model of organisational decision making. In Proceed-
ings of the Workshop HLPN 2000, 2000.

[Hoa69] C.A.R. Hoare. An axiomatic basis for computer programming. Commu-
nication of the ACM, 12:576–580, 1969.

[HR00] Michael Huth and Mark Ryan. Logic in Computer Science: Modelling and
reasoning about systems. Cambridge University Press, 2000.

[Jen92] Kurt Jensen. Coloured Petri nets, Basic Methods, Analysis Methods and
Practical Use, volume 1 of EATCS monographs on theoretical computer
science. Springer-Verlag, 1992.

[Jen00] Nicholas R. Jennings. On agent-based software engineering. Artificial
Intelligence, 117:277–296, 2000.

[Jon83] Cliff B. Jones. Specification and design of (parallel) programs. In R. E. A.
Mason, editor, Information processing, pages 321–332. Elsevier Science
Publishers B.B., 1983.

[KLMR00] Michael Köhler, Roman Langer, Daniel Moldt, and Heiko Rölke. Com-
bining the sociological theory of Bourdieu with multi agent systems. In
C. Jonker, A. Letia, G. Lindemann, and T. Uthmann, editors, Modelling
Artificial Societies and Hybrid Organisations (MASHO’00), Workshop at
the ECAI 2000, 2000.

[KMR01] Michael Köhler, Daniel Moldt, and Heiko Rölke. Modeling the behaviour
of Petri net agents. In J. M. Colom and M. Koutny, editors, Proceedings
of the 22st Conference on Application and Theory of Petri Nets, volume
2075 of LNCS, pages 224–241. Springer-Verlag, June 2001.

[KR01a] Michael Köhler and Heiko Rölke. A/c petri nets - assumption based mod-
elling and reasoning. In Gabriel Juhas and Robert Lorenz, editors, Proceed-
ings des 6. Workshop Algorithmen und Werkzeuge für Petrinetze, pages
43–48. Universität Eichstätt, 2001.

[KR01b] Michael Köhler and Heiko Rölke. Towards a unified approach for modeling
and verification of multi agent systems. In D. Moldt, editor, Proceedings of
the Workshop on Modelling, object, componets, and agents (MOCA’01),
pages 85–104. Computer Science Department, Aarhus University, 2001.

REFERENCES 25

[KRVW97] E. Kindler, W. Reisig, H. Völzer, and R. Walter. Petri net based verifica-
tion of distributed algorithms: an example. Formal Aspects of computing,
9:409–424, 1997.

[Kum98] Olaf Kummer. Simulating synchronous channels and net instances. In
J. Desel, P. Kemper, E. Kindler, and A. Oberweis, editors, Forschungs-
bericht Nr. 694: 5. Workshop Algorithmen und Werkzeuge für Petrinetze,
pages 73–78. Universität Dortmund, Fachbereich Informatik, 1998.

[Kum02] Olaf Kummer. Referenznetze. Dissertation, Universität Hamburg, Fach-
bereich Informatik, 2002.

[KW98] Olaf Kummer and Frank Wienberg. Reference net workshop (Renew).
Universität Hamburg, http://www.renew.de, 1998.

[MC81] Jayadev Misra and K. Mani Chandy. Proofs of networks of processes.
IEEE Transactions on Software Engineering, 7(4):417–426, 1981.

[Mey97] Bertrand Meyer. Object-oriented software construction. Prentice Hal,
1997.

[MPW92] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile
processes, parts 1-2. Information and computation, 100(1):1–77, 1992.

[Rei85] Wolfgang Reisig. Petri Nets: An Introduction. Springer-Verlag, Heidel-
berg, 1985.

[Rei98] Wolfgang Reisig. Elements of distributed algorithms. Modelling and anal-
ysis with Petri nets. Springer-Verlag, 1998.

[RJB99] J. Rumbaugh, I. Jacobson, and G. Booch. The unified modeling language
reference manual: The definitive reference to the UML from the origi-
nal designers. Addison-Wesley object technology series. Addison-Wesley,
Reading, Mass., 1999.

[SdR94] F. Stomp and W.-P. de Roever. Designing distributed algorithms by means
of formal sequentially phased reasoning. Formal Aspects of Computing,
6(6):716–737, 1994.

[SHM99] A. El Fallah Seghrouchni, S. Haddad, and H. Mazouzi. A formal study of
interactions in multi-agent systems. In 14th ISCA-CATA, Cancun, Mex-
ique, April 1999.

[Val87] Rüdiger Valk. Modelling of task flow in systems of functional units. Tech-
nical Report FBI-HH-B-124/87, Universität Hamburg, 1987.

[Val96] Rüdiger Valk. On processes of object Petri nets. Technical Report FBI-
HH-B-185/96, Universität Hamburg, FB Informatik, 1996.

[Val98] Rüdiger Valk. Petri nets as token objects: An introduction to elementary
object nets. In Jörg Desel and Manuel Silva, editors, Application and
Theory of Petri Nets, volume 1420 of LNCS, pages 1–25, June 1998.

[Val00] Rüdiger Valk. Concurrency in communicating object Petri nets. In
G. Agha, F. De Cindio, and G. Rozenberg, editors, Concurrent Object-
Oriented Programming and Petri Nets, Lecture Notes in Computer Sci-
ence, Berlin, 2000. Springer-Verlag.

[VC98] Jan Vitek and Giuseppe Castagna. Seal: A framework for secure mobile
computations. pages 47–77, 1998.

26 REFERENCES

[Vig98] Giovanni Vigna, editor. Mobile Agents and Security, volume 1419 of Lec-
ture Notes in Computer Science. Springer-Verlag, 1998.

[vLMV01] Rolf von Lüde, Daniel Moldt, and Rüdiger Valk.
Agieren in sozialen Kontexten. http://www.informatik.uni-
hamburg.de/TGI/forschung/projekte/sozionik, 2001. Universität Hamburg:
Institut für Soziologie und Fachbereich Informatik.

[Wei99] Gerhard Weiss, editor. Multiagent systems. MIT Press, 1999.

[Woo99] Michael Wooldridge. Intelligent agents. In Weiss [Wei99], chapter 1.

[Zwi89] Job Zwiers. Compositionality, concurrency, and partial correctness: proof
theories for networks of processes and their relationship. LNCS 321. Sprin-
ger-Verlag, 1989.

