
Towards Practical Prevention
of Code Injection Vulnerabilities

on the Programming Language Level

Martin Johns

Security in Distributed Systems (SVS)
University of Hamburg, Dept. of Informatics

Vogt-Koelln-Str. 30, D-22527 Hamburg
johns@informatik.uni-hamburg.de

May 28, 2007

Abstract:
A large percentage of today’s security problems is caused by code injection vulnerabil-
ities. Many of these vulnerabilities exist because of implicit code generation through
string serialization. Based on an analysis of the underlying mechanisms, we propose
a general model to outfit modern programming languages with means for explicit and
secure code generation. Further, we identify the model’s key components: the language
integration, the Foreign Language Encapsulation Type, and the abstraction layer. For
each of these components we discuss several potential implementation strategies.

Zusammenfassung:
Ein großer Prozentsatz der momentan auftretenden Code-Injection-Verwundbarkeiten
existiert aufgrund der üblichen Praxis, dynamisch generierten Code mittels String-Konka-
tenation zu erzeugen. Basierend auf einer Analyse der grundlegenden Ursachen, die für
diese Verwundbarkeitsklasse verantwortlich sind, beschreiben wir ein generelles Modell,
das es erlaubt, auf sichere und explizite Art dynamisch Code zu erzeugen. Darauf folgend
identifizieren und beschreiben wir die Haupt-Komponenten unseres Ansatzes: die Lan-
guage Integration, den Foreign Language Encapsulation Type und den Abstraction Layer.
Für jede dieser Komponenten diskutieren wir verschiedene Implementierungsstrategien.

1 Introduction

1.1 Outline of this document

Many security vulnerabilities in today’s applications arise because these applications
are susceptible to code injection attacks. This document proposes first steps towards
lowering this threat by enhancing modern programming languages.

In the remainder of this Section we introduce the problem domain and expose the
underlying mechanisms that lead to the described vulnerability class. In Section 2 we
outline a high level view on our potential language enhancements. In Sections 3 and
4 potential implementation approaches of the proposed method’s key components are
presented and evaluated. After discussing related work in Section 5, we conclude in
Section 6.

1.2 Native and foreign code

Networked applications and especially web applications1 employ a varying amount of
heterogeneous computer languages, such as programming (e.g., Java, PHP, C#), query
(e.g., SQL or XPATH), or mark-up languages (e.g., XML or HTML). In the case of web
applications, some of these languages are taking effect on the server-side and some in
the user’s web browser (see Figure 1.1 for an example scenario).

For the remainder of this paper we will use the following naming convention:

• Native / internal language: The programming language that was used to pro-
gram the actual application (e.g., Java or PHP).

• Foreign / external language: All other computer languages that are employed
by the application.

The application’s runtime solely executes the application’s native language directly.
Foreign code is either passed on to specific interpreters, sent to other hosts, or trans-
mitted to the user’s web browser to be processed there. Server-side foreign languages
are mostly employed for data management. In this context SQL for interaction with
a database and XML for structured data storage in the filesystem are used frequently.
Furthermore, for interacting with remote hosts XML-based web-service languages can
be found frequently. Finally, on the client side a couple of foreign languages are used to
define and implement the application’s interface (e.g., HTML, JavaScript, and CSS).

1While being suited for any kind of application, our approach aims to counter security vulnerabilities
that are notably often found in web applications.

3

SQL

XML

HTML

JavaScript

CSS

Filesystem

Database

Web browser

PHP

Web server

Figure 1.1: Heterogeneous computer languages

Handling of foreign code: In most cases, an application assembles foreign code ex-
clusively using the native language’s String datatype. The native language’s interpreter
processes all these strings and passes them on to their respective destinations:� �

// foreign HTML code
echo "go ";
// foreign SQL code
$sql = "SELECT * FROM users";
$con.execute($sql);� �

As all foreign code is handled in form of string values, on a syntactical level the appli-
cation cannot differentiate strings that contain foreign code from strings that contain
general data. Furthermore, during processing, strings that contain foreign code are often
combined with data that was obtained on runtime. This way dynamic information can
be included in the code, e.g., to outfit a SQL-statement with the ID of an requested
dataset. If this dynamically added data is not properly sanitized security problems due
to code injection attacks can occur.

1.3 Code injection attacks

Most code injection vulnerabilities arise due to a mismatch in the programmer’s intent
while assembling the foreign code and the actual interpretation of the code by the exter-
nal parser. For example, take the following dynamically constructed SQL-statement2:

! Martin Johns, UH, FB Inf, SVS, 16.12.2005 8

Data

Code injection attacks (III): The programmer’s view

Intended by the programmer:

Code

$pass = $_GET[“password”];

$sql = “SELECT * FROM Users WHERE Passwd = ‘” + $pass + “’”;

Example 1: The programmer’s view on code assembly

The application’s programmer probably considered the constant part of the string-
assembly to be the code-portion while the added variable was supposed to add dynami-

2In the course of this document we will frequently use SQL in examples. Note that the proposed
approaches are applicable for any given computer language. The reason for using SQL lies merely in
SQL’s comparatively expressive syntax that allows the construction of short meaningful code.

4

cally data-information to the query.
The database’s parser has no knowledge about the programmer’s intent. It simply

parses the provided string according to the foreign language’s grammar:

! Martin Johns, UH, FB Inf, SVS, 16.12.2005 10

Code injection attacks (V): The DB’s view

Interpreted by the external entity (i.e., the DB):

At compile time, determining the semantic meaning of the

dynamic part is impossible

--> Rice’s Theorem

Code ?Data

$pass = $_GET[“password”];

$sql = “SELECT * FROM Users WHERE Passwd = ‘” + $pass + “’”;

Example 2: The DB’s view (generic)

Thus, an attacker can exploit this discord in the respective views of the assembled
code by providing data-information that is interpreted by the parser to consist partly of
code:

! Martin Johns, UH, FB Inf, SVS, 16.12.2005 11

Code

Code injection attacks (V): The DB’s view

Interpreted by the external entity (i.e., the DB):

Code ?Data

Data

$pass = “’ OR 1=1”;

$sql = “SELECT * FROM Users WHERE Passwd = ‘’ OR 1=1”;

Code

$pass = “’ OR 1=1”;

$sql = “SELECT * FROM Users WHERE Passwd = ‘’ OR 1=1”;

Example 3: The DB’s view (code injection)

In general all string values that are provided by an application’s user on runtime
should be treated purely as data and never be executed. But in most cases the native
language does not provide a mechanism to explicitly generate foreign code. For this
reason all foreign code is generated implicitly by string-concatenation and -serialization.
Thus, the native language has no means to differentiate between user-provided dynamic
data and programmer-provided foreign code:

! Martin Johns, UH, FB Inf, SVS, 16.12.2005 9

Interpreted by the program:

--> After $sql has been assembled the program has no

more means to reconstruct the semantic context

String String

Code injection attacks (IV): The language’s view

String

$pass = $_GET[“password”];

$sql = “SELECT * FROM Users WHERE Passwd = ‘” + $pass + “’”;

Example 4: The native language’s view

Therefore, it is the programmer’s duty to make sure that all dynamically added data
will not be parsed as code by the external interpreter. Consequently, if a flaw in the
application’s logic allows an inclusion of arbitrary data into a string segment that is
passed as foreign code to an external entity, an attacker can succeed in injecting malicious
code.

5

1.3.1 Classes of code injection vulnerabilities

Common classes of code injection vulnerabilities are Cross Site Scripting, SQL Injection,
and Remote Command Execution:

Cross Site Scripting (XSS): This class of vulnerabilities subsumes security issues
that enable an attacker to inject HTML or JavaScript into a web application’s pages.
A successful XSS attack can lead to, e.g., the stealing of authentication information,
privilege escalation, or disclosure of confidential data.

SQL Injection: In the case of SQL injection, the attacker is able to maliciously
manipulate SQL queries that are passed to the application’s database. This flaw can
lead to, e.g., unauthorized access, data manipulation, or information disclosure.

Remote Command Execution: Sometimes an application dynamically creates
code in either its native language or as input to a different server side interpreter (e.g.,
the shell). If insufficient sanitized, user-provided data is included in this code an attacker
may be able to execute arbitrary commands within the application.

6

2 Achieving code injection resistance

2.1 Lessons learned from the past

A comparison of the security properties of low level languages like C versus modern
programming languages like Java yields the observation that a whole class of potential
security problems is missing in the latter class: Programs written in such languages
are not susceptible to vulnerabilities like Buffer Overflows that arise from errors in a
program’s memory management. The reason for this is that modern languages do not
grant programs direct access to raw memory. Instead a program’s memory allocation
and usage is abstracted from the actual memory and controlled by internal means of
the programming language (See figure 2.1). The lesson learned here is: A language’s
security properties are not defined by “what a language can do” but by “what a language
cannot do”. C can write to raw memory. It is therefore subject to Buffer Overflow
vulnerabilities. Java cannot write to raw memory. Exploitable Buffer Overflows are
therefore impossible.

As described above, code injection attacks are caused by programming constructs that
create foreign code with the native language’s String type. If we try to apply the lesson
we learned from our Java versus C example to code injection flaws, the resulting question
would be: What would a programming language look like that cannot interface directly
with external interpreters using the language’s String type?

! Martin Johns, UH, FB Inf, SVS, 16.12.2005 10

C versus Java

Programming

Language

Memory

Management

 C

Programming

Language

Abstraction Layer

(Virtual Machine)

Memory

Management

Java

Figure 2.1: Comparing memory management approaches

7

2.2 High level design considerations

To prevent a programming language to directly interface with external interpreters via
its String type, it is crucial to outfit the language with more suitable means to explicitly
assemble, encode, and communicate foreign code.

Furthermore, such a language would have to employ an abstraction layer to enable its
programs to interface with external entities (see Figure 2.2). For example in the case
of web applications the language would e.g. at least require abstracted interfaces for
communication with the database and the web browser.

The interaction with the abstraction layer has to be realised using constructs that are
an integral part of the native language. To be not susceptible to code injection attacks,
it is essential that these constructs provide means for strict separation between data and
code.

! Martin Johns, UH, FB Inf, SVS, 16.12.2005 11

Vision

Programming

Language

Database

 PHP, Java, ASP, etc.

Abstraction Layer

(Application Server)

 ?

External

Interpreters

Web

Services

Web

Browser

S
Q

L

e
.g

.,
 b

a
s

h

X
M

L H
T

M
L

 /
 J

S

Programming

Language

Database

External

Interpreters

Web

Services

Web

Browser

Figure 2.2: Abstracting external language interfaces

2.3 Key components

From the observations detailed in Section 2.2 we can deduct the following key compo-
nents:

• Datatype: We have to introduce a new datatype to the native language that is
suitable to assemble/represent foreign code and that guarantees strict separation
between data and code according to the programmer’s intend.

• Language integration: The handling of the newly created datatype and the
assembly of foreign language’s syntax have to be closely integrated in the native
language. Such an integration has to enforce that all creating of foreign code is
explicit to avoid accidental code creation, e.g., due to implicit string serialization
that in turn may lead to code injection vulnerabilities.

• Abstraction layer: Furthermore, it is necessary to introduce a separating layer
between the application’s runtime and the external entities. As the runtime is not

8

allowed to interact with external interpreters directly anymore, this abstraction
mechanism has to handle such communication.

Such an abstraction layer receives the foreign instructions from the application’s
runtime encapsulated in the newly created datatype. It then translates the pro-
vided code information into correct foreign code without being susceptible to in-
jection attacks and passes this code on to the external entity.

! Martin Johns, UH, FB Inf, SVS, 16.12.2005 18

Key components (I)

Programming

Language

Database External

Interpreters

Web

Services

Web

Browser

Language integration

Abstraction Layer

(Application Server)

Native code

External code

Datatype

Figure 2.3: Key components of the proposed approach

In the remainder of this document conceptual considerations concerning these com-
ponents are discussed.

9

3 Datatype design and language integration

3.1 Design objectives

The specifics how the proposed concepts are realized are crucial to the acceptance by the
developer community. An adoption of the new methods is unlikely if such an adoption
requires considerable training effort or significant programming obstacles in areas that
could be solved conveniently using the current approach. Therefore, in this section we
define design objectives that we consider to be fundamental.

Objectives concerning the native language:

Foremost, the proposed concepts should not depend on the specifics of a given native
language. They rather should be applicable for any programming language in the class
of procedural and object-orientated languages1.

Furthermore, the realisation of the concepts should not profoundly change the native
language. Only aspects of the native language that directly deal with the assembly of
foreign code should be affected.

Objectives concerning the integration of the foreign language:

The specific design of every programming language is based on a set of paradigms that
were chosen by the language’s creators. These paradigms were selected because they
fitted the creator’s design goals in respect to the language’s scope. This holds especially
true for languages like SQL that were not designed to be a general purpose programming
language but instead to solve one specific problem domain. Therefore, an approach for
integrating the foreign syntax in the native language should aim to mimic the foreign
language as closely as possible. If the language integration requires profound changes in
the foreign syntax it is highly likely that some of the language’s original design paradigms
are violated.

In addition, the capabilities and flexibility of the String type should be kept. String
operations have been proven in practice to be a powerful tool for code assembly. As all
assembled foreign code is processed using a specialized datatype, this datatype should
therefore e.g., provide means for easy combination of code fragments and capabilities to
search and modify the data contents of a given instance.

1To which degree this objective is satisfiable for functional and logical programming languages has to
be determined in the future.

10

3.2 The Foreign Language Encapsulation Type (FLET)

As described Section 2.3, one of our approach’s key components is a datatype which
satisfies the following requirements:

• The datatype is tightly integrated in the native language.

• The datatype is capable of encapsulating blocks of foreign code of arbitrary length
and complexity while retaining a strict separation between data and code.

We refer to such a datatype as Foreign Language Encapsulation Type (FLET). A
FLET can be included in the native language either through extending the languages core
definition or by implementing the datatype via a programming library. The particular
properties of a given FLET are to some degree dependent on the specifics of the foreign
syntax that the FLET is supposed to assemble. For this reason we describe in this
section only aspects of the datatype that are applicable generally. See Appendix A.1 for
exemplified properties of an HTML/JavaScript-FLET.

As the FLET is mainly a mere container to encapsulate instructions for external
entities, on an abstract level it is entirely defined by its public API. To allow foreign
code assembly this API has to include at least the following methods:

• Methods to create a FLET instance, to add further information to an existing
instance, and to combine two instances.

• Separate methods to add either foreign code or data information to an instance.
To prevent potential injection attacks, the method to add foreign code cannot
rely on arbitrary string-serialization. Instead e.g., a code-keyword based approach
could be employed. Depending on the foreign language’s properties a FLET might
provide a family of method for this purpose.

• Methods to pass the foreign code to the abstraction layer.

Furthermore to emulate certain capabilities of the String-type the FLET should also
provide methods to commit the following actions on the data-segments of the FLET’s
content:

• Search for certain strings using regular expressions.

• Insert, delete or replace specified data-parts after they have been added to an
instance.

• Insert further code-information into a data-block (e.g., to create a content filter
that adds further HTML markup to a pre-computed page).

11

3.3 Language integration approaches

The language integration has to outfit the programmer with tools to unambiguously
create instructions in the foreign language. In this section we propose three different
approaches how foreign syntax could be integrated in the native language. These ap-
proaches are then discussed based on the design objectives listed in Section 3.1.

3.3.1 Implementation as an API

A straight forward technique to integrate foreign syntax into a given programming lan-
guage is to create a high level API that allows the assembly of foreign statements. There
are two different design paradigms to create such an API: The API could either emu-
late the foreign language’s syntax (from here on called syntactic API) or alternatively
recreate the semantics of the language’s instructions (semantic API).

In the case of a syntactic API the elements of potential foreign instructions are parti-
tioned according to their syntactic function. Possible classes are e.g., language keyword,
meta-character, integer-value, or string-value. For each of these classes such an API pro-
vides functions to add such an element to a foreign instruction object (see the example
below).

Semantic APIs follow the semantics of the language’s instructions (examples of this
approach would be e.g., the Document Object Model API [10] to create HTML-structures
or SQLDom [19] to create SQL-queries). Within this approach the API does not mirror
the structure of unparsed source code but the structure of the resulting language object
(e.g., the tree structure of a parsed HTML document). Either way, to satisfy the security
requirements that are the basis of this paper, the API should provide means for strictly
separating executable code from dynamic data.

Example (syntactic API):� �
SQLQuery q = new SQLQuery.addKeyWord("SELECT"). addMetaChar("*")

.addKeyWord("FROM"). addString("Users");� �
Example (semantic API):� �

var newElement = document.createElement(’a’);
newElement.setAttribute(’href’, ’http ://www.foo.bar’);
document.addChild(newElement);� �

Advantages: Implementing this approach does not require any changes to the native
language or the language’s compilation/interpretation process. It is therefore applicable
immediately by solely implementing the API.

Disadvantages: The resulting call-structure of a semantic API approach differs sig-
nificantly from the original syntactic structure of the respective foreign language. For
this reason the expected training effort is considerable. Furthermore, it has yet to be

12

shown that this approach is applicable for all existing languages. Until now only mark-up
languages [10] and query languages [19] have been modeled this way.

In the case of a syntactic API the expected training effort of a programmer that is
already familiar with the foreign language should be tolerable. However, due to the
cumbersome syntax of such an API, creating non-trivial code results in large and overly
complicated constructs that are therefore hard to read and maintain.

3.3.2 Extending the native languages grammar

A clean approach towards integrating one computer language into another is to create a
combined grammar. This way syntax elements of the foreign code are promoted to first
class members of the native language, thus completely eliminating the need to construct
source code with the String type.

Example:� �
String UName = "Joe Doe";
SQLQuery q = SELECT * FROM Users WHERE Name = UName;� �

Advantages: Ideally such a solution would not require any syntactical changes in the
foreign language. Therefore the objective to closely mimic the foreign syntax is satisfiable
and the expected training effort that would be required by an introduction of such a
mechanism can be expected to be moderate.

Disadvantages: Implementing such a solution requires profound changes in the native
language’s compiler or interpreter. Furthermore, the feasibility of this approach is not
guaranteed universally. Whether two languages can be combined this way depends on
factors like overlapping syntax elements, static vs. dynamic typing, or compiled vs.
interpreted execution. It is subject to further research to determine in which cases such
an approach towards language integration is possible.

3.3.3 Usage of a pre-processor

By employing a pre-processor the advantages of the two approaches above can be com-
bined without introducing significant additional disadvantages. Instead of directly in-
corporating the foreign syntax into the native language, an additional mechanism is
introduced that transparently translates foreign syntax into appropriate native code.
For this procedure a pre-processor that is executing the translation step, and a high
level API, representing the foreign code’s syntax (see Section 3.3.1), are required. The
actual foreign code is integrated in the source code and framed by explicit mark-up
signifiers (e.g., $$). Furthermore, to incorporate data-information from the native code
into the foreign code statements, the pre-processor has to provide a simple meta-syntax
(see example below and Appendix A.2). Before the source code is compiled, the pre-
processor translates all foreign code that is framed by according boundaries into the
respective API representation.

13

Example:� �
String UName = "Joe Doe";
SQLQuery q = $$ SELECT * FROM Users WHERE

Name = $nativeString(UName)$ ORDER BY ID; $$� �
First steps in this direction were realized with SQLJ [6] and Embedded SQL [21], two
independently developed mechanisms to combine static SQL statements either with Java
or C respectively using a pre-processor (see Section 5.2 for details).

Advantages: By using such a mechanism the foreign language’s syntax remains un-
changed. Therefore, the expected training effort consists mainly in learning the pre-
processors meta-syntax.

Disadvantages: An introduction of such a mechanism requires changes in the compi-
lation process. Before the code can be complied (or interpreted), the pre-processor has
to be executed in order to change the foreign code into the native API calls. There-
fore, the source code that has been written by the programmer differs from the source
code that is processed by the compiler. In the case that a compilation error occurs in
a code region that has been altered by the pre-processor, finding and eliminating this
programming error may prove difficult. For this reason a wrapped compilation process
that post-processes the compiler’s messages is recommendable.

14

4 The abstraction layer

The abstraction layer has the task to serialize an instantiated FLET into a format that is
understood by the external entity (e.g., the database engine). In this section we discuss
possible alternatives in respect to the abstraction layer’s position and potential code
serialization strategies.

4.1 Position of the abstraction layer

4.1.1 Integral part of the native language

The abstraction layer could be realized within the means of the native language. Such
an implementation would either be done by integrating the layer’s functionality in the
language’s runtime (comparable to Java’s memory management) or by implementing
a programming library. In either case, the layer provides an interface through which
an instantiated FLET is received, serialized to foreign code and communicated to the
external entity.

Advantages: Such a realization provides tight integration in the native language. Fur-
thermore, if the layer is implemented via a programming library, the deployment re-
quirements of applications that were written using this mechanism remain unaffected.

Disadvantages: Such a solution is specific for a given native language. This is unfor-
tunate as only a subset of the layer’s functionality, mainly the handling of the FLET’s
internal structure, is specific for a given native language. Other components, like the
serialization strategy (see Section 4.2), are independent from the particular properties
of the native language.

Additionally if the layer is not implemented as a programming library, changes to
either the native language’s compiler or runtime are necessary.

4.1.2 Intermediate entity

Secondly, the abstraction layer could be implemented as a detached unit that resides
in between the native language’s interpreter and the external entity. In this case the
native language translates an instantiated FLET into a language independent serializa-
tion object, that encodes the foreign instructions while maintaining the strict separation
between data and code. This object is then translated by the abstraction layer into
actual foreign code.

15

! Martin Johns, UH, FB Inf, SVS, 16.12.2005 26

Abstraction layer: Position (I)

Native

Language

External

Interpreter

AL

Native

Language

External

Interpreter

AL

Native

Language

External

Interpreter

AL

Figure 4.1: Potential positions of the abstraction layer

Advantages: Such an abstraction layer is independent from a specific native language
and is thus usable with any language for which a module exists that translates a FLET
into the language independent serialization format. Thus, all domain specific knowledge
concerning how to create safe foreign instructions has to be implemented only once.

Disadvantages: Realizing the abstraction layer as an intermediate entity adds com-
plexity to the installation process of an application. In addition to the native language’s
runtime and the external entity also the abstraction layer has to be deployed.

Furthermore, in this scenario an intermediate serialization step is necessary. The
FLET is first serialized into the language independent format before this format is
translated into foreign code by the abstraction layer, resulting in overhead and potential
performance penalties.

4.1.3 Part of the external entity

Finally, the abstraction layer could be directly integrated in the external entity (e.g.,
into the database’s parser). In this case the entity’s parsing unit can employ the data/-
code information provided by the FLET (which again is communicated as a serialized,
language independent object).

Advantages: As discussed in Section 1.3 code injection vulnerabilities occur because of
the confusion between data and code portions of dynamically generated foreign instruc-
tions. The FLET’s internal structure maintains a strict separation between information
that was meant by the programmer to be executed and information that was meant to
represent data. Additionally, as no step is necessary that translates the FLET’s infor-
mation back into foreign code, potential ambiguities cannot be reintroduced. Thus, by
directly using the information concerning data/code separation provided the serialized
FLET the external entity’s parser can reliably avoid mistakes that lead to code injection
vulnerabilities.

In addition to the reliable protection this approach also should provide advantages

16

concerning the performance of applications employing this solution: The serialization
step is straight forward and only limited further parsing is necessary, as the FLET
already provides information that is structured in a way that is comfortably transferable
into a parse-tree.

Disadvantages: Implementing this approach requires profound changes in the external
interpreter’s interface and parser. While the solutions discussed in Sections 4.1.1 and
4.1.2 can be implemented with programming libraries or additional executables, realiz-
ing such an integration demands changing the actual external entity, resulting in high
anticipated development costs.

Furthermore, such alteration of the external entity is not always feasible. In certain
scenarios the external entity can not be influenced by the deployer of the application.
For instance, the operator of a web application has no means to alter the web browsers
of the application’s users.

Finally such a solution is highly specific for a certain external entity, e.g., one certain
database. This property is significant when changes in the deployed technology occur,
e.g., when the actual deployed database is exchanged. While a given implementation of
the approaches outlined in Sections 4.1.1 and 4.1.2 can be adapted comparatively easy,
such a change would require high development cost in the currently discussed solution
approach, unless the newly deployed database already supports the FLET’s serialization
format.

4.2 Foreign code serialization strategy

If the abstraction layer is realized as described in Sections 4.1.1 or 4.1.2 the actual com-
munication with the external entity is still done using a character-based representation of
the foreign code. Therefore, the serialization of an instantiated FLET has to be handled
with care. Otherwise injection attacks may still be possible.

4.2.1 Disarming potential injection attacks by changing data representation

Some external entities support encoding methods which reliably cause the entity to
treat all encoded data as non executable. For example in HTML all characters that are
provided in their HTML-encoded version (“&...;”) are neither interpreted as HTML
nor as JavaScript1. If such an encoding is available, all the abstraction layer has to do
is to encode the FLET’s data information, before passing on the code. Unfortunately,
not all external entity types provide such an alternative data representation.

4.2.2 Detecting injection attacks by comparing parse trees

Su and Wassermann have outlined in [26] a method to detect injection attacks. Before
passing the foreign code to the external interpreter, the code is parsed twice: Once

1Exceptions to this rule, like URL-parameters, exist and have to be treated separately.

17

the exact code that is supposed to be passed on and once a version of the code in
which all dynamically added data is exchanged with dummy data. A difference in the
two resulting parse trees is an indicator for an injection attack. Su and Wassermann’s
approach depends on dynamic data tainting, which is not always feasible and prone to
false positives. In our case the tainting step is not necessary as the distinction between
data and code is already encoded in the FLET.

Such a solution provides a sound decision whether an injection attack was attempted.
Unfortunately, this protection comes with a price: A given foreign code has to be parsed
at least three times, twice in the abstraction layer and once in the external entity.
Therefore, the resulting overhead especially for large or complex code blocks is expected
to be substantial. Furthermore, such a solution would be highly specific for one single
external entity type, as the exact foreign parsing process has to be duplicated in the
abstraction layer.

4.2.3 Encoding potential “dangerous” entities

Injection attacks can be detected and disarmed by carefully examining the provided data
and its execution context. If attacker-provided data attempts to inject code, such an
attempt can be detected and disarmed by locally removing or encoding meta-characters
that were used to execute the injection attack. This technique closely resembles the
current method of output sanitation. In our case there is the significant advantage
that the sanitation algorithm has concrete knowledge about the intended nature of the
examined code segments.

While being comparatively easy to realize, this approach has to be implemented with
great care as otherwise the application might still be vulnerable to sophisticated attacks.

4.2.4 Choosing the appropriate serialization strategy

Whenever possible all dynamically provided data should be re-encoded in a non-executable
representation (see Sec. 4.2.1). If the external entity does not provide such an alterna-
tive string-representation, the developer should determine if the expected performance
overhead of the solution outlined in Section 4.2.2 is compatible with the application’s ob-
jectives. Only if this is not the case, the “classical” way of output sanitation as described
in section 4.2.3 should be implemented.

18

5 Related Work

5.1 Detecting and mitigating code injection attacks

String Masking: In an earlier work [14] we proposed SMask, an approach towards
transparent approximate separation of data and code. To persistently mark legitimate
foreign code in string values, SMask applies character masks on certain parts of theses
strings before program execution. This way SMask is able to identify code that was
injected during the execution process, as injected code is not masked correctly.

Dynamic Taint Analysis: Taint analysis tracks the flow of untrusted data through
the application. All user-provided data is “tainted” until its state is explicitly set to be
“untainted”. This allows the detection if untrusted data is used in a security sensible
context. Taint analysis was first introduced by Perl’s taint mode [27]. More recent works
describe finer grained approaches to dynamic taint propagation. These techniques allow
the tracking of untrusted input on the basis of single characters.

In independent concurrent works Nguyen-Tuong et al [22] and Pietraszek and Vanden
Berghe [23] proposed fine grained taint propagation to counter various classes of injection
attacks. Both approaches require a modification of the interpreter to enhance its string
data type. The extended string data type can carry character-level taint information that
is preserved by all string operations. A low level integration of the protection mechanism
in the native language’s interpreter is therefore essential for these approaches to work.

Xu et al [28] propose a fine grained taint mechanism that is implemented using a C-
to-C source code translation technique. Their method detects a wide range of injection
attacks in C programs and in languages which use interpreters that were written in C.
To protect an interpreted application against injection attacks the application has to be
executed by a recompiled interpreter. Therefore, the source code of the interpreter is
needed.

Static Taint Analysis: Besides dynamic taint analysis which is done on run-time,
there have been proposals for static taint analysis that is solely done by examining the
application’s source code. Using static source code analysis a data flow graph of the
application is generated. Using this graph, the analyzer tries to determine if a data
path between the untrusted user input and security sensitive functions exists. Static
taint analysis has been described for example by Shankar et al. [25], Huang et al. [11],
Livshits and Lam [18], and Jovanovic et al. [15].

Instruction Set Randomization: SQLrand [1] uses instruction set randomization
to counter SQL injection attacks. All SQL statements that are included in the protected
application are modified to include a randomized component. Between the application
and the database a proxy mechanism is introduced that parses every query using the
modified instruction set. As the attacker does not know the correct syntax, a code

19

injection attack will result in a parsing error. SQLrand requires the programmer of the
application to permanently include the randomized syntax in the application’s source
code. Therefore SQLrand does not protect legacy applications. Furthermore, as the
randomization is static, information leaks like SQL error messages might lead to partial
or full disclosure of the randomized instruction set.

Comparison of parse trees: Su and Wassermann [26] describe an approach that
employs context free grammars for data validation. Data that is dynamically added to
foreign code statements has to fulfill specifically constructed grammars. The approach
has been implemented as “SQLCheck” to prevent SQL injection attacks. By tracking
dynamically added values through the application’s processes SQLCheck can identify
untrusted values before the query is passed to the database. These values are parsed
by the constructed grammar to validate their correctness. As discussed in Section 4.2.2
their approach is well suited to be employed in our approach’s abstraction layer.

5.2 Foreign language integration

Extensive work has been done in the domain of specifically integrating a certain given
foreign language into native code (e.g., [2], [16], [3], [9], [7], [17], [4]). Especially SQL
and XML-based languages have received a lot of attention. As most of these special
purpose integration efforts cannot be extended to arbitrary foreign languages, we only
list selected publications in this section.

In order to soften the object-relational impedance mismatch Meijer et al. propose
Xen [20], a type system and language extension for C# that allows native creation and
querying of XML-structures. Additionally, Xen promotes a subset of SQL to be first
class members of C#. However, the authors still employ string serialization to create
XML-data that is passed on to external entities and do not consider the potential security
implications of this mechanism.

Russel and Krüger describe SQL DOM [19]. A given database schema can be used
to automatically generate a SQL Domain Object Model. This model is transformed to
an API which encapsulates the capabilities of SQL in respect to the given schema, thus
eliminating the need to generate SQL statements with the String datatype. As every
schema bears a schema-specific domain object model and consequently a schema-specific
API, every change in the schema requires a re-generation of the API.

As mentioned in Section 3.3.3 Embedded SQL [21] and SQLJ [6] employ a language
pre-processor to enable the embedding of SQL in either C or Java respectively. Unlike our
proposed approach these techniques only allow the inclusion of static SQL statements in
the source code. The pre-processor creates native code that immediately communicates
the SQL code to the database. Thus dynamic assembly and processing of foreign code,
as it is provided in our proposed approach via the FLET’s interface, is not possible.

20

6 Conclusion

In this report, we proposed techniques to enhance programming languages with capa-
bilities for secure creation of foreign code.

Based on a generalized model that introduces an abstraction layer between the pro-
gramming language’s runtime and potential external entities, we discussed various al-
ternatives towards the integration of foreign syntax into the native language. The cen-
terpiece of our code-assembly architecture is the FLET (see 3.2), an abstract datatype
that allows the creation and processing of foreign code segments while strictly preserving
the separation between data and code. This way injection vulnerabilities that are intro-
duced by implicit, string-serialization based code-generation become impossible. We are
convinced that an adoption of our proposed techniques would reduce the attack surface
of code injection attacks significantly.

The next step in our research will be an exemplified implementation of the pre-
processor concept to integrate the languages HTML and JavaScript into Java. This
way we aim to prove the feasibility of our approach.

Outlook

During the creation of this document we encountered several topics that should be
addressed in the future.

Templates in web applications: Most mature web application frameworks provide
templating file-formats to allow the separation of the program’s logic from the applica-
tion’s interface (as it can be found in so called “Model, View, Controller”-architectures).
Such templating-formats usually combine static HTML-code with well defined insertion
points which are filled with dynamic data during execution. Popular examples of such
templating-mechanisms are for instance J2EE’s java server pages (jsp) [12], or Ruby-on-
Rail’s rhtml-format [8].

Depending on the design decisions concerning the FLET’s integration in the native
language (as outlined in Section 3.3), creating a templating-engine that conforms to our
concept’s fundamental objectives is not trivial. This holds true especially if the proposed
mechanisms are realized in the form of programming libraries (as discussed for example
in Sections 3.3.1 (API) or 3.3.3 (preprocessor)) and not as a fundamental addition to
the native language’s core. In such cases an unsophisticated templating-implementation
might reintroduce implicit code-serialization by allowing the creation of foreign code from
strings that are stored in files. Consequently, this could provide careless programmers
with an insecure shortcut towards foreign code assembly by reading their foreign code
from dynamically created files.

21

However, we consider the existence of a templating mechanism to be essential in the
field of web application development. For this reason a potential practical solution has
to provide a secure approach towards templating.

Enforcing further coding or security constraints: The FLET encapsulates the
foreign code in a partially processed state. Depending on the FLET’s actual implemen-
tation this state might for example resemble a token stream or an abstract syntax tree.
In any case the FLET provides better means towards an automatic “understanding”
of the foreign code than the general String-datatype. This could be employed to glob-
ally enforce further constraints on the foreign code. For example the well-formedness of
dynamically created XML documents could be verified before passing them on to the
external entity. Also, depending on the execution context, the FLET could restrict the
set of legal code-keywords and APIs to a “safe” subset. For instance, this way third
party add-ons/plug-ins to the application can be restricted by a SQL-FLET to use only
non-altering database operations like select-statements.

Furthermore, in addition to enforcing restrictions on the foreign code, the FLET could
also be employed to instrument the foreign code with additional semantics. For example
an HTML-FLET could automatically add hidden one-time tokens into HTML forms to
avoid CSRF-vulnerabilities [24].

Detection of code injection attempts: As already mentioned in Section 4.2.2 the
attack detection method described by Su and Wassermann in [26] is well fitted to be
combined with our approach. Su and Wassermann’s method is based on comparing parse
trees. Every foreign code statement is serialized twice. Once with the dynamic values
provided by the application’s user and once with dummy values. If the parse trees of
the resulting statements differ, the user’s data did contain a code injection attack. As
the FLET has precise knowledge which components of a given foreign code block are
containing data-values, the process of replacing these components with dummy values
is straight forward and reliable.

As described in 4.2.2 creating and comparing parse trees in realtime before com-
municating the foreign code to the external entity may not always be feasible due to
performance issues. Furthermore, in many cases the FLET is able to prevent injec-
tion attacks reliably by changing the representation of the data-components (see Section
4.2.1) without requiring the identification of malicious data-values in the first place.

However, while not always suitable for preventing injection attacks, Su and Wasser-
mann’s approach is perfectly fitted for detecting attempted attacks. Such a detection
mechanism does not require to be applied in real time. The creation and comparison of
the parse trees can be done asynchronously after the actual process has taken place. By
monitoring potential malicious activities this way, the application’s operators can iden-
tify source of malicious behaviour like suspicious user accounts or compromised network
locations.

22

A Appendix: Exemplified FLET API and
pre-processor metasyntax

As mentioned in Section 6 we are currently working on an implementation that employs
the language pre-processor approach (see Section 3.3.3) to incorporate the foreign lan-
guages HTML and JavaScript into the Java programming language. For this purpose we
did a preliminary definition of an according FLET and a matching pre-processor meta-
syntax. In this appendix we document our first results in order to clarify the content of
sections 3.2 and 3.3.3.

A.1 FLET

As the internals of the FLET are properties of a particular implementation, this section
only deals with aspects of the FLET’s external interface represented by its API. This
API was designed according to the following design paradigms:

• The API is not primarily meant to be used by the programmer. It serves the pur-
pose to provide an interface to the FLET to be used by automatically generated
code. As a direct manual usage of this API by the programmer cannot be pre-
vented, the API is specifically designed to prevent the implicit code-serialization
of arbitrary string-values.

• The purpose of the API is to inhibit code injection attacks. It does not necessarily
mirror the syntactic or semantic meaning of a given element of the foreign language.

A.1.1 Adding HTML code to the FLET

The FLET’s core-API consists of the following functions:

• addText(String text): Adds general text to the code. This text represents pure
data and contains by definition neither HTML nor JavaScript The abstraction
layer is therefore required to treat the text accordingly.

• openTag(String tagName): Adds an HTML element to the encapsulated foreign
code. The parameter tagName can only contain the name of predefined HTML tags
(accordingly to [13]). The tag remains open for potential trailing HTML-attributes
which can be added by addAttribute().

• addAttribute(String attName, String value=""): Adds an attribute to the
preceding open tag. The value of the parameter attName has to match one of

23

the predefined HTML attributes according to [13]. If addAttribute() is called
outside the context of an open tag, the function parameters are added to the
FLET’s content as pure data (similar as addText() would do).

• closeTag(): Closes the last open HTML tag. Remark: addText() and openTag()
also implicitly close preceding open tags.

Example:� �
HTMLFlet h = new HTMLFlet;
h.openTag("a"). addAttribute("href", "http ://php.net");
h.closeTag ();
h.addText("Write better code");
h.openTag("/a"). closeTag ();� �

A.1.2 Adding JavaScript code to the FLET

JavaScript is an independent self-contained programming language with a syntax that
is completely detached from HTML. For this reason, the FLET provides a distinct set
of functions to allow adding of JavaScript-code to the encapsulated foreign-code object.

We chose a token-based approach to define the FLET’s API in respect to adding
JavaScript-code. This means, with the exception of data-values, the elements of the
JavaScript’s code are added to the FLET in tokenized form. Based on the ECMAScript
language definition [5] which standardizes JavaScript’s syntax, we differentiate between
four distinct element-classes:

1. Keyword-token: Tokens representing elements of JavaScript’s set of reserved key-
words as defined in [5] Section 7.5.2. For each of these elements the FLET provides
a distinct API function. Theses functions adhere to the following syntax conven-
tion: addJS Keyword() where Keyword is replaced with the actual keyword (e.g.,
addJS while() adds the keyword while to the code).

2. Identifier-token: Tokens representing programmer defined identifier like variables
or function names. Such tokens are added with the function addJSIdentifier(String
id). The parameter id cannot contain any white-space or illegal punctuation as
defined in [5] Section 7.6. Furthermore elements of the keyword-token set as defined
above are forbidden.

3. Punctuator-token: Tokens representing legal meta-characters as defined in [5] Sec-
tion 7.7 (like “;”). For each of these meta-characters the FLET provides a dis-
tinct API-function. Theses functions adhere to the following syntax convention:
addJSMetachar Character() where Character is replaced by a verbalized represen-
tation of the character (e.g., addJSMetachar equals() adds the meta-character
“=” to the code).

4. Data-value: String and numeric values are added to the FLET with the functions
addJSStringValue(String val) and addJSNumericValue(Double val) respec-
tively.

24

Example:� �
HTMLFlet h = new HTMLFlet ();
h.openTag("script"). closeTag ();

// var username = "Peter P. Mary";
h.addJS_var ();
h.addJSIdentifier("username");
h.addJSMetachar_equals ();
h.addJSMetachar_doublequote ();
h.addJSStringValue("Peter P. Mary");
h.addJSMetachar_doublequote ();
h.addJSMetachar_semicolon ();

h.openTag("/script"). closeTag ();� �
A.1.3 Combining HTML and JavaScript

JavaScript is included in HTML documents either framed by script-tags or as value
of an HTML-attribute. The former case can be modeled as exemplified in the listing
above. The latter case requires two additional API-elements:

• startJSAttribute(String attName): Adds an HTML-attribute to the preceding
open tag. The value of the attribute contains executable JavaScript-code. This
code is added by the functions listed in Section A.1.2.

• endJSAttribute(): Ends the JavaScript-code value of the preceding opened HTML-
attribute.

Example:� �
//

HTMLFlet h = new HTMLFlet ();
h.openTag("a");

h.startJSAttribute("onclick");
h.addJSIdentifier("document");
h.addJSMetachar_dot ();
h.addJSIdentifier("location");
h.addJSMetachar_equals ();
h.addJSMetachar_doublequote ();
h.addJSStringValue("http ://php.net");
h.addJSMetachar_doublequote ();
h.addJSMetachar_semicolon ();
h.endJSAttribute ();

h.closeTag ();� �
A.2 Metasyntax

To allow unambiguous identification foreign code that is supposed to be handled by the
pre-processor, this code is framed by predefined syntactic markers. To avoid potential

25

clashes with the native and foreign language’s syntax the actual choice which syntactic
markers are employed is variable. In the current case we decided to utilise a metasyntax
that is based on the “$”-character as this character does not possess special syntactic
meaning neither in Java nor in HTML/JavaScript.

A.2.1 Basic operations

Create a new FLET instance:� �
HTMLFletObj h $=$ <table ><tr><td>foo </td ></tr> $$� �

Adding further code to a existing FLET instance:� �
h $+$ <tr><td>another table cell </td ></tr> $$� �

Combining two FLET instances:� �
HTMLFletObj h1 $=$ <head ><title >Homer and Marge $$
HTMLFletObj h2 $=$ sitting on a tree </title ></head > $$
h1 $=$ h1 $+$ h2 $$� �

A.2.2 Explicit adding of JavaScript code

The pre-processor can only distinguish JavaScript code from general text through the
HTML-context of the particular code fragment. Such a context would be either framing
<script>-tags or an attribute-definition that expects JavaScript code inside its value
(e.g., an event handler). If the pre-processor should create JavaScript code outside of
such a context the programmer has to communicate his intention explicitly. Otherwise
the text would be added to the FLET as non-executable data.� �

h $+JS$ document.write("Hello World"); $$� �
A.2.3 Combining foreign code with native datatypes

To allow the dynamic creation of foreign code the meta-syntax contains means to add
data-information provided by the native language. In particular the meta-functions
$addString()$, $addInteger()$ and $addDouble()$ are provided to allow the inclu-
sion of Java’s basic datatypes.� �

// Add dynamic string information to foreign code statement
String email = req.getParameter("email");
HTML h $=$ Email $$

// Add dynamic integer information to foreign code statement
int id = get_some_reference_ID(parameter1 , parameter2);
h $+$ link $$� �

26

Bibliography

[1] Stephen W. Boyd and Angelos D. Keromytis. Sqlrand: Preventing sql injection
attacks. In Proceedings of the 2nd Applied Cryptography and Network Security
(ACNS) Conference, 2004.

[2] Aske Simon Christensen, Anders Møller, and Michael I. Schwartzbach. Static anal-
ysis for dynamic XML. Technical Report RS-02-24, BRICS, May 2002. Presented
at Programming Language Technologies for XML, PLAN-X, October 2002.

[3] R. Connor, D. Lievens, F. Simeoni, S. Neely, and G. Russell. Projector: a partially
typed language for querying xml. In Programming Language Technologies for XML
(PLAN-X 2002), 2002.

[4] William R. Cook and Siddhartha Rai. Safe query objects: Statically typed objects
as remotely executable queries. In Proc. of the International Conference on Software
Engineering (ICSE 2005), pages 97–106, 2005.

[5] ECMA. Ecmascript language specification, 3rd edition. Standard ECMA-262,
http://www.ecma-international.org/publications/standards/Ecma-262.
htm, December 1999.

[6] American National Standard for Information Technology. Ansi/incits 331.1-1999
- database languages - sqlj - part 1: Sql routines using the java (tm) program-
ming language. InterNational Committee for Information Technology Standards
(formerly NCITS), September 1999.

[7] Vladimir Gapeyev and Benjamin C. Pierce. Regular object types. In European Con-
ference on Object-Oriented Programming (ECOOP), Darmstadt, Germany, 2003. A
preliminary version was presented at FOOL ’03.

[8] David Heinemeier Hansson. Ruby on rails documentation. [online], http://www.
rubyonrails.org/docs, (05/18/07), 2007.

[9] Falk Hartmann. An architecture for an xml-template engine enabling safe authoring.
In DEXA ’06: Proceedings of the 17th International Conference on Database and
Expert Systems Applications, pages 502–507, 2006.

[10] Philippe Le Hegaret, Ray Whitmer, and Lauren Wood. Document object model
(dom). W3C recommendation, http://www.w3.org/DOM/, January 2005.

27

[11] Yao-Wen Huang, Fang Yu, Christian Hang, Chung-Hung Tsai, Der-Tsai Lee, and
Sy-Yen Kuo. Securing web application code by static analysis and runtime protec-
tion. In Proceedings of the 13th conference on World Wide Web, pages 40–52. ACM
Press, 2004.

[12] Sun Microsystems Inc. Javaserver pages technology. [online], http://java.sun.
com/products/jsp/, (05/18/07), 2007.

[13] Ian Jacobs, Arnaud Le Hors, and David Raggett. Html 4.01 specification. W3C
recommendation, http://www.w3.org/TR/1999/REC-html401-19991224, Novem-
ber 1999.

[14] Martin Johns and Christian Beyerlein. Smask: Preventing injection attacks in
web applications by approximating automatic data/code separation. In 22nd ACM
Symposium on Applied Computing (SAC 2007), Security Track, March 2007.

[15] Nenad Jovanovic, Christopher Kruegel, and Engin Kirda. Pixy: A static analysis
tool for detecting web application vulnerabilities. In 2006 IEEE Symposium on
Security and Privacy, May 2006.

[16] Martin Kempa and Volker Linnemann. On xml objects. In Programming Language
Technologies for XML (PLAN-X 2002), 2002.

[17] Daan Leijen and Erik Meijer. Domain specific embedded compilers. In 2nd USENIX
Conference on Domain Specific Languages (DSL’99), pages 109–122, Austin, Texas,
October 1999. Also appeared in ACM SIGPLAN Notices 35, 1, (Jan. 2000).

[18] Benjamin Livshits and Monica S. Lam. Finding security vulnerabilities in java
applications using static analysis. In Proceedings of the 14th USENIX Security
Symposium, August 2005.

[19] R. A. McClure and I. H. Krueger. Sql dom: compile time checking of dynamic
sql statements. In Proceedings of the 27th International Conference on Software
Engineering, 2005.

[20] Erik Meijer, Wolfram Schulte, and Gavin Bierman. Unifying tables, objects, and
documents. In Declarative Programming in the Context of OO Languages (DP-
COOL ’03), volume 27. John von Neumann Institute of Computing, 2003.

[21] MSDN. Embedded sql for c. website, http://msdn.microsoft.com/
library/default.asp?url=/library/en-us/esqlforc/ec 6 epr 01 3m03.asp,
(27/02/07).

[22] A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley, and D. Evans. Automati-
cally hardening web applications using precise tainting. In 20th IFIP International
Information Security Conference, May 2005.

28

[23] Tadeusz Pietraszek and Chris Vanden Berghe. Defending against injection attacks
through context-sensitive string evaluation. In Recent Advances in Intrusion De-
tection (RAID2005), 2005.

[24] Thomas Schreiber. Session riding - a widespread vulnerability in today’s web ap-
plications. Whitepaper, SecureNet GmbH, http://www.securenet.de/papers/
Session Riding.pdf, December 2004.

[25] U. Shankar, K. Talwar, J. S. Foster, and D. Wagner. Detecting format string
vulnerabilities with type qualifiers. In Proceedings of the 10th USENIX Security
Symposium, 2001.

[26] Zhendong Su and Gary Wassermann. The essence of command injection attacks in
web applications. In Proceedings of POPL’06, January 2006.

[27] Larry Wall, Tom Christiansen, and Jon Orwant. Programming Perl. O’Reilly, 3rd
edition, July 2000.

[28] Wei Xu, Sandeep Bhatkar, and R. Sekar. Taint-enhanced policy enforcement: A
practical approach to defeat a wide range of attacks. In 15th USENIX Security
Symposium, August 2006.

29

