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Synthesizing fault-tolerant systems from fault-intolerant systems simplifies design of
fault-tolerance. Arora and Kulkarni developed a method and tool to synthesize fault-
tolerance under the assumption that specifications are not history-dependent (fusion-
closed). Later, Gärtner and Jhumka removed this assumption by presenting a modular
extension of the Arora-Kulkarni method. This paper presents an implementation of the
Gärtner-Jhumka method which is evaluated on several examples. As additional safety
net, we added automatic verification of the results using the model checker Spin. In the
context of this work, a fault in the Gärtner-Jhumka-method was found. Though this
fault is rare and does not cause incorrect results, there might be no result.

Die Synthese fehlertoleranter Systeme aus fehlerintoleranten Systemen erleichtert die
Generierung von Fehlertoleranz. Es existiert bereits ein Verfahren, um bestehende Pro-
gramme nachträglich fehlertolerant zu machen, die Arora-Kulkarni-Methode. Dafür wird
ein neues Programm generiert, dem ein Fehlertoleranz-Mechanismus hinzugefügt wurde.
Dieses Verfahren ist allerdings sehr restriktiv hinsichtlich der möglichen Eingaben. So
werden nur sogenannte fusion closed Spezifikationen akzeptiert. In dieser Arbeit wird
die Implementation eines neuen Verfahrens präsentiert, das auch andere Spezifikationen
akzeptiert, die Gärtner-Jhumka-Methode. Dieses Verfahren funktioniert als Vorverar-
beitung und gibt ein Zwischenprogramm aus, das die restriktiven Anforderungen der
Arora-Kulkarni-Methode erfüllt. Der Rest der Fehlertoleranz-Synthese kann schließlich
von dieser geleistet werden. Um das Vertrauen in die Ausgaben der Synthese zu erhöhen,
werden sie jeweils durch den Model Checker Spin verifiziert. Im Rahmen dieser Arbeit
wurde ein Fehler in der Gärtner-Jhumka-Methode festgestellt. Dieser Fehler tritt nur
selten auf und führt nicht zu fehlerhaften Ergebnissen. Allerdings ist er in einigen Fällen
dafür verantwortlich, dass gar kein Ergebnis berechnet werden kann.



1 Introduction

The design of fault-tolerant systems usually follows three steps: In the first step, design-
ers fix the fault-assumption, i.e., the type and amount of faults that the system should
tolerate. In the second step, mechanisms are developed that detect and handle the faults
in the system once they occur. Finally, in the third step, the mechanisms together with
the integration into the functional system have to be validated to check that under all
circumstances covered by the fault-assumption the system satisfies its specification.

It is well-known, that designing fault-tolerant systems is not a trivial task. All three
steps can potentially lead to incorrect and fault-intolerant systems. For example, the
choice of the fault-assumption in practice is more an art than a craft: On the one
hand, underestimating the criticality of possible faults as well as their likelihood may
lead to unexpected system failures. On the other hand, overestimating the faults wastes
resources and makes the fault-tolerance mechanisms more complicated (and error prone)
than necessary.

One way to improve this situation is to use automated methods to construct fault-
tolerant systems. Roughly speaking, the designer starts with a program that was de-
signed without fault-tolerance in mind, specifies the fault-assumption and presses a
button: The outcome is a “fault-tolerant version” of the original program that now
transparently tolerates the assumed faults. This is the idea which also underlies generic
fault-tolerance approaches like Triple Modular Redundancy (TMR) or State Machine
Replication (SMR) [1, 2].

In 2000, Arora and Kulkarni [3] published a method to automatically add fault-
tolerance to arbitrary programs, thereby synthesizing fault-tolerant programs. It is
based on a general theory of fault-tolerance [4] and can be regarded as a generalization
of many practical techniques like error-correcting codes, TMR or SMR. The Arora-
Kulkarni method (henceforth abbreviated with AK) has also been implemented in a tool
called FTSyn (Fault-Tolerance Synthesis) [5]. While AK is generic for programs, it is
restrictive with respect to other input: It assumes so-called fusion closed specifications.

Intuitively, fusion-closure of a specification means that at every time within the exe-
cution of a program it is possible to decide whether the specification holds or is violated
only by the information contained in the current state of the system. In the case of a
non-fusion closed specification, history information must be kept as additional state in
order to decide whether the specification is satisfied or not. While being simple to add,
history information causes an exponential growth of the state space if it is added in a
generic way, e.g., by using history variables.

In this direction, Gärtner and Jhumka [6] proposed a method to extend AK to also
handle non-fusion closed specifications. Intuitively, the Gärtner-Jhumka method (hence-
forth abbreviated by GJ) can be regarded as a fine-grained method to add history in-
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formation which does not in general lead to state-space explosion. Moreover, GJ was
designed as a modular extension of AK, meaning that the output of GJ is suitable for
further processing using AK. However, GJ has not been implemented yet.

Contributions

The contributions of this paper are threefold: Firstly, we present an implementation of
GJ called FCPre (Fusion Closure Preprocessor). FCPre works as a modular preprocess-
ing extension of FTSyn, the implementation of AK. So for the synthesis of programs
with non-fusion closed specifications, both tools are needed.

Secondly, we show how it is possible to increase the confidence in the output of fault-
tolerance synthesis by adding automatic verification in the back end. More specifically,
we used the model checker Spin [7] to validate the fault-tolerance properties of the
synthesized programs. We describe the lessons learnt from this experiment. Fig. 1.1
shows the placement of FCPre within the overall workflow that produced a fault-tolerant
program from a fault-intolerant program.

Σ FCPre Σ′ FTSyn Σ′′ Spin

“correct”

“not correct”

Figure 1.1: Visualization of the complete synthesis string.

Thirdly, and as a result of the previous point, we report on a slight error in the proof
of GJ. We identified a case where the method does not work. While the fault does not
invalidate the entire method, we evaluate its impact and describe the cases in which
application of GJ may lead to incorrect results.

The source code of the implementation together with the documentation can be down-
loaded [8] and used to validate the results and to perform further experiments.

Paper Outline

We present the system model and the background of AK and GJ in Section 2. Section 3
then describes the implementation of GJ together with the integration of Spin. The
following Section 4 gives an evaluation of the implementation and describes the fault
found in GJ. Finally, Section 5 concludes this paper.

4



2 Formal Background

In this section we present the formal background of fault-tolerance. We first introduce
the system model, then define the problem of automatically adding fault-tolerance and
finally describe the two algorithms to synthesize fault-tolerance. All definitions are
adapted from the original work on AK [3] and GJ [6].

2.1 System Model

States, Transitions, Programs

We model programs as finite state automata. Therefore, a state space is an unstructured
finite nonempty set C of states. In general, we denote states by uncapitalized letters,
e.g., a, b, c, . . .. A state transition t over C is a pair (r, s) of states from C. A program
(or system) Σ consists of a triple (C, I, T ) where I ⊆ C denotes the set of initial states
and T the set of transitions. The smallest possible program consists of only one state
(which is also the initial state) and no transitions, i.e., Σ0 = ({a}, {a}, ∅).

Traces, Properties, Specifications

A trace over C is a nonempty sequence s1, s2, s3, . . . of states over C. Traces can be
finite or infinite. The concatenation of a finite trace α and a finite or infinite trace β
is denoted by α · β. A transition t occurs in a trace σ if there exists an i such that
(si, si+1) = t.

A property over C is defined as a set of traces over C. A trace σ satisfies a property
P iff σ ∈ P . If σ does not satisfy P we say that σ violates P .

There are two kinds of properties: safety and liveness properties. Informally, one
can say that liveness properties are properties that are violated in infinite time and
fulfilled in finite (but arbitrary) time. A liveness property says that something good
will eventually happen. For example, “Eventually, the system will output a value.” is a
liveness property. Since we do not consider liveness properties in this work, we omit a
formal definition of liveness.

By contrast, safety properties are violated in finite time and fulfilled in infinite time.
A safety property denotes that something bad will not happen. Formally, a safety
property is defined as follows. A safety property S over C is a property over C for which
the following holds: For each trace σ which violates S there exists a prefix α of σ such
that for all traces β, α ·β violates S. Examples of safety properties are mutual exclusion
(“No two processes access their critical section at the same time.”) or partial correctness
(“The termination state of the program satisfies a certain predicate.”).
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The set of initial states I and the set of transitions T together describe a safety
property S, where S contains all traces starting in a state in I and using only transitions
from T . S is denoted by safety-prop(Σ), or (by abuse of notation) simply Σ. A safety
specification is a safety property. In this work, we only consider safety specifications.

Fusion-closed Specifications

Fusion closure is defined as follows: Let C be a state set, s ∈ C, X be a specification
over C, α, γ finite state sequences, and β, δ, σ be state sequences over C. Specification
X is fusion closed if the following holds: If α · s · β and γ · s · δ are in X then α · s · δ and
γ · s · β are also in X.

Fault Models and Fault-intolerant Programs

A fault model F maps a program Σ = (C, I, T ) to a program F (Σ) = (F (C), F (I), F (T ))
such that the following conditions hold:

1. F (C) = C,

2. F (I) = I, and

3. F (T ) ⊃ T .

For a given fault model F and a specification SPEC, we say that a program Σ is F -
intolerant with respect to SPEC if Σ satisfies SPEC but F (Σ) violates SPEC. It is
sufficient to restrict faults to the addition of transitions because additional transitions
are the only way to compromise a safety specification. The loss of transitions would
accordingly be the way to compromise a liveness specification. We exclude faults that
modify initial states, i.e. those faults that occur before system starts.

State Projections and Extensions

Given two programs Σ1 = (C1, I1, T1) and Σ2 = (C2, I2, T2), a state projection function
π : C2 7→ C1 tells which states of Σ2 are equivalent with respect to Σ1. It is applicable
to traces in the following way: for a trace s1, s2, s3, . . . over C2 holds that π(s1, s2, . . .) =
π(s1), π(s2), . . ..

Let Σ1 = (C1, I1, T1) and Σ2 = (C2, I2, T2) be two programs. Program Σ2 extends
program Σ1 using state projection function π iff the following conditions hold:

1. C2 ⊇ C1,

2. π is a total mapping from C2 to C1 (for simplicity we assume that for any s ∈ C1

holds that π(s) = s), and

3. π(Σ2) = Σ1.
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Fault-tolerant Versions

Intuitively, a fault-tolerant version of a fault-intolerant program Σ1 is a program Σ2

which has the same behavior as Σ1 if no faults occur, but additionally satisfies the
specification in the presence of faults. Formally, a program Σ2 is the F -tolerant version
of program Σ1 for SPEC using state projection π iff the following conditions hold:

1. Σ1 is F -intolerant with respect to F ,

2. Σ2 extends Σ1 using π,

3. F (Σ2) satisfies SPEC .

Fail-safe Transformation Problem

The basic task we would like to solve is to construct a fault-tolerant version for a given
program and safety specification.

Definition 1 (fail-safe transformation problem) Given a program Σ which is F -
intolerant with respect to a safety specification SPEC. The fail-safe transformation
problem consists of finding a fault-tolerant version of Σ.

Finite and Extension Monotonic Fault Models

In practice, fault-tolerance mechanisms can be affected by faults in the same way as
the original program. So new faults can be created by F after installing fault-tolerance
procedures. Assuming however that after every step of fault-tolerance synthesis new
faults are added, then—in general—it would be impossible to build a fault-tolerant
version of the program since the procedure of adding fault-tolerance mechanisms could
go on endlessly. If the fault model guarantees that at some point in future, no new
faults are generated, it is called finite fault model. We assume a finite fault model in the
context of this work.

No fault disappears by making the program fault-tolerant against it. However, new
faults may be created by F in the F -tolerant version concerning newly created states.
However, F must treat the program after synthesis in a similar way than the program
before synthesis, i.e., the “old” faults must still be possible even in states that are equiva-
lent under state projection π. This is captured in the concept of extension monotonicity.

Formally, a fault model F must be extension monotonic, i.e., for any two programs
Σ1 = (C1, I1, T1) and Σ2 = (C2, I2, T2) such that Σ2 extends Σ1 using π holds:

F (T1) \ T1 ⊆ F (T2) \ T2

2.2 The Arora-Kulkarni method (AK) and FTSyn

AK solves the fail-safe transformation problem for fusion closed specifications. The
basic idea of AK is the creation of redundant states, i.e., making program states that
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were reachable in the fault-intolerant program unreachable in the fault-tolerant version.
They utilize that fusion closed safety specifications can be equivalently expressed as a
set of so called “bad” transitions. Bad transitions are those which always cause a safety
specification violation by their execution. Remember that fusion closure means that the
achievement or violation of the specification can be decided on every state without any
further information. So, there needs to exist at least one transition t = (a, b) with the
following property: until the program is in state a, the specification holds. As soon as
the transition is used and state b is reached, the specification is violated. For example,
assume the specification “never c”. It is quite easy to see that every transition leading
to c must be a bad transition.

Assume t = (a, b) is a bad transition, so its occurrence has to be prevented. Since the
specification is fusion closed, the execution of t will cause any trace in which t occurs to
violate the specification. So, t has to be made unreachable. To guarantee that, one has
to distinguish between the following cases:

• If t is a reachable program transition, specification violations may occur without
the incidence of a fault. This scenario is excluded through our assumptions.

• If t is a non-reachable program transition, it can be simply removed.

• If t is a fault transition, it cannot be just removed. In this case, the starting state
a of t has to be made unreachable. But this is only possible if there is a non-
reachable program transition on every path from a starting state to a that can be
simply removed. Otherwise, there is no fault-tolerant version.

This line of reasoning does not work if we assume a non-fusion closed specification. It is
easy to imagine that if the violation of the specification depends on the past (see above),
a transition is not necessarily good or bad but it may be both.

a b c d

Figure 2.1: Example of AK. The specification is “never d”

As an example, consider the program depicted in Fig. 2.1. The specification is “never
d”. The challenge is to make state d unreachable. First, one has to check if the safety
specification can be violated in the absence of faults. Since this is not the case here,
we can continue. The transition leading to state d is (c, d). It is a program transition
and it is not reachable from the initial state in the absence of faults. So, it can be
eliminated because the removal does not change the behavior of the system in the fault
free scenario.

The example in Fig. 2.1 also helps to show examples that cannot be synthesized.
Imagine there would be a program transition (b, c). In this case, state d would be
reachable only by program transitions, so that no transition could be removed without
changing the program behavior in the absence of faults. Such a removal would destroy the
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equivalence of the fault intolerant and the fault-tolerant version. As another example,
imagine that the fault-assumption includes an additional fault transition (a, d). This
transition cannot be removed. Furthermore, state a could not be made redundant. The
impossibility of fault-tolerance synthesis in these cases is not a drawback of the method
but it shows that the wrong fault assumption was chosen.

FTSyn [5] was implemented by Ebnenasir as part of a PhD thesis [9] advised by
Kulkarni, one of the authors of AK. The source code of FTSyn is available for download
upon request (a version is also included in the distribution of FCPre [8]). FTSyn was
written in the Java programming language.

2.3 The Gärtner-Jhumka method (GJ)

We now give an overview of the work of Gärtner and Jhumka [6] and contrast it with AK.
In contrast to AK, GJ deals with specifications which are not necessarily fusion closed.
GJ pays particular attention at those states where a specification violation cannot be
definitely decided. These states are called bad fusion points. Informally, a bad fusion
point has at least two different “pasts” (i.e., execution histories), one that leads to a
specification violation, and another that will meet the specification. An example is
given in Fig. 2.2. The specification is “d implies previously b”. Observe that state c
is a bad fusion point. By making the transition from c to d, an execution history of
a, c will lead to a specification violation, while an execution history of a, b, c satisfies
the specification. So, it is not possible to decide whether (c, d) is a bad transition or
not without any information about the past. This effectively results from not assuming
fusion-closure of specifications.

a b c d

Figure 2.2: Example of GJ. The specification is “d implies previously b”.

The aim of GJ is to remove bad fusion points. Bad fusion points are duplicated to
separate the two cases. All such duplicate states map to the same state using a state
projection function. In our example, state c is split up to remove the bad fusion point.
This results in the program given in Fig. 2.3. The new state c′ allows us to distinguish
between the “good” and the “bad” transition. The transition (c, d) now has to violate
the specification while (c′, d) definitely meets the specification. Neither c nor c′ are a
bad fusion point after duplication.

After eliminating all bad fusion points of the original program Σ, GJ outputs an ex-
tension Σ′ of Σ. Gärtner and Jhumka [6] show that applying a solution to the fail-safe
transformation problem to Σ′ results in a fault-tolerant version of Σ. The specification
used for this step is simply the fusion-closure of the original (non-fusion closed) specifica-
tion. In our example, the resulting program in Fig. 2.3 can be given to AK (implemented
by FTSyn) for the synthesis. FTSyn finally eliminates the bad transition (c, d).
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So overall, AK solves the fail-safe transformation problem for fusion closed specifica-
tions while GJ (in conjunction with AK) solves the problem for general specifications.

a b c d

c′

Figure 2.3: Next step of GJ. The specification is “d implies previously b”.
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3 Implementation of GJ

We now describe FCPre, the implementation of GJ. FCPre is a front-end to FTSyn, the
implementation of AK. We describe FCPre in three steps: We first present an overview
of the system design in Section 3.1. We then give an insight into the difficulties of
implementing GJ in Section 3.2. Finally, Section 3.3 describes how we used the model
checker Spin as a back-end to validate the synthesis process.

3.1 System design

As we want to synthesize programs, a program is expected as input. The algorithms
however work on graphs. So, we use a FTSyn method to convert a given program in
guarded commands [10] into a directed graph. This graph together with the specification
is afterwards passed to FCPre.

The specification has to be given in an extra file. There, it is encoded as a boolean
formula with certain operators, namely comparison operators (==, ! =, <, >, <=, >=)
and logical operators (!, &&, ||, − >, ˜). The latter denotes the previously operator.
It returns true, if the following expression has been true somewhere in the past. A
previously condition is in general bound to another criterion. In most cases, the incidence
of an event implies the previous occurrence of another. For example, the reaching of a
program state or a group of states that share a common criterion implies that previously
another program state or some state of a group has been visited. This way, for example,
it is possible to assert that program states are visited in a correct order. The formula
is parsed and transformed into a specification tree. By the use of the specification tree,
bad fusion points are eliminated and the fusion closure of the specification is computed.

After the application of GJ, the output is again translated to guarded commands,
i.e. a new program is generated. This program serves as input for FTSyn. The output
of FTSyn is also a program. It is finally transformed to a valid input for the model
checker Spin. The output of Spin denotes if the safety specification can be violated in
the synthesized program.

There are about six programs interacting in the fault-tolerance synthesis process in-
cluding the model checking part. These programs are managed by a shell script. There
are programs for the synthesis itself as well as for format casting in-between. The com-
pilation, the execution, the removal, and the moving of files are done by this script.
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Fault
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Figure 3.1: Classification of FCPre and FTSyn in the context of the general fail-safe
transformation problem. FCPre computes the fusion closure of the spec-
ification and eliminates the bad fusion points. FTSyn is represented by
the Arora-Kulkarni-Tool and solves the fusion closed fail-safe transformation
problem.
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3.2 Implemented algorithms

In this section, we give an overview of the details of the implementation of GJ. Data
structures and algorithms are presented.

The most critical aspect of GJ is the elimination of bad fusion points. First, however,
bad fusion points have to be identified.

Definition 2 (fusion, fusion point) Let s be a state and α = αpre · s · αpost and β =
βpre · s · βpost be two traces in which s occurs. Then we define

fusion(α, s, β) = αpre · s · βpost

If fusion(α, s, β) 6= α and fusion(α, s, β) 6= β we call s a fusion point of α and β.

A bad fusion point is defined as follows.

Definition 3 (bad fusion point) Let SPEC be a specification, Σ be a system satis-
fying SPEC, s be a state of Σ, and F a fault model such that F (Σ) violates SPEC.
State s is a bad fusion point of Σ for SPEC in the presence of F iff there exist traces
α, β ∈ SPEC such that

1. s is a fusion point of α and β,

2. fusion(α, s, β) ∈ F (Σ), and

3. fusion(α, s, β) /∈ SPEC.

The task is the discovery of a state s and two paths α and β that match the conditions
in the definition. Finding a bad fusion point can be hard because testing the criteria, i.e.
the existence of such paths, for each state is complex. So, we start with the identification
of possible bad fusion points. First, all states that accomplish two necessary conditions
are marked as “bad fusion point candidates”. First, there need to be at least two
incoming transitions, one that belongs to α and the other for β. The second condition
says that there needs to be at least one fault transition in the past of one incoming path.
So, we know that one of the paths should lead to a specification violation.

W.l.o.g. we assume that β is good and α is the bad trace, i.e. the one that contains
the fault transition. So, we first try to find a path β from an initial state to an end
state, i.e. a state that has no successor. This path has to satisfy the specification and it
must contain s. We take the bad fusion point candidates as s, one after the other. For
all initial states, we start the search algorithm.
find_traces(DAG F (Σ), bad fusion point candidate s){
for all c ∈ I(F (Σ)) do

find_β(F (Σ), c, <c>, SPEC, s);
end for}

The algorithm works in the following way. It starts at the bad fusion point candidate
s and considers all paths from an initial state to s by going backwards from s. Probably,
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the continuation of α to an end state would cause a specification violation. But this
is not important here. It is just interesting that α does not violate SPEC. Search is
implemented using two recursive procedures find_β and find_α that construct traces
α and β by state inspection and concatenation.

The following procedure looks for matching traces with β ∈ SPEC and s ∈ β. We
assume the program graph to be directed and acyclic, because a deterministic program
with a cyclic graph might run infinitely long. If cyclic graphs are taken into account,
our algorithm has to be slightly modified for termination. First, all paths through F (Σ)
are recorded. If a path l matches the criteria, it is taken as β and the algorithm that
finds α is started.
find_β(DAG F (Σ), actual state c, β candidate l, specification SPEC,

bad fusion point candidate s){
if (c has no successor) then

/* l is β candidate */

if (l ∈ SPEC) and (s ∈ l) then

find_α(F (Σ), s, <s>, SPEC, l);
end if

else /* c has successor */

for all successors t of c do

find_β(F (Σ), t, l · <t>, SPEC, s);
break if a bad fusion point has been found;

end for

end if}

We found a specification compliant path that includes a bad fusion point candidate s.
The part after s is taken for the fusion. It is the first part that is still needed. It suffices
to find a path from an initial state to s that satisfies the specification. According to
the definition, the fusion of both traces has to violate the specification. The following
algorithm is meant to find the trace α. The path is temporarily stored in variable l.
find_α(DAG F (Σ), actual state c, α candidate l, specification SPEC,

trace β){
if (c has no predecessor) then

/* l is α candidate */

if (l ∈ SPEC) then

if (fusion(l, s, β) /∈ SPEC) then

/* α is found: l; s is bad fusion point */

eliminate bad fusion point s with respect to α and β;
end if

end if

else /* c has predecessors */

for all predecessors t of c do

find_α(F (Σ), t, <t> · l, SPEC, β);
break if a bad fusion point has been found;

end for

end if}
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If the algorithm succeeds to find α and β that match, the bad fusion point candidate
is a real bad fusion point.

In our example given in Fig. 2.2, state c is marked as a bad fusion point candidate
since it has two incoming transitions from a and b, and the fault transition (a, c) in the
past. The good path β is a, b, c, d, α is a, c, and the bad fusion point is c. Note that α
has to fulfill the specification but lead to a specification violation on continuation.

As we have just explained the method how a bad fusion point is identified, the next
thing to do is the presentation of bad fusion point removal. The idea is the separation of
both traces α and β. Therefore, a new state s′ is generated as an exact copy of the bad
fusion point s. The transitions that belong to β are then diverted to s′. Additionally, the
outgoing transition of s that belongs to β is copied with initial state s′. Let us assume
that the transition (s, t) is part of β. Then, after the removal, (s′, t) is introduced in
the system. Note, that the transition (s, t) is not immediately removed. However, this
transition is now part of the bad trace and probably will be removed in the next step
by FTSyn. Regarding the faults, it is important to be able to distinguish the “clone”
states s and s′.

It is worth mentioning that the state projection function is implemented indirectly.
The most important aspect of the state projection function is to ensure that duplicated
states are relevant for the compliance with specification, i.e. if a duplicated state is vis-
ited, the effect should be the same as if the original state is visited. For example, assume
the specification “e implies previously b”. The state projection function guarantees that
if e is visited after b′ but b is not visited at all, the specification is satisfied. If e′ is visited,
b or an equivalent state has to be visited before. This job is done by construction. The
specification relies on program variables. The duplicated state has the same values as
its original. So, all specification clauses that concern a state s, concern its duplication
s′ the same way. For example, assume a state s with the unique state number 3. The
program variable x has the value 4. If s is duplicated, a new state s′ is generated. It gets
a unique state number, e.g. 13. The program variable x has the value 4 as in s. So, s and
s′ differ in at least one variable value (the state number), but by the specification, they
are treated the same. The specification can only refer to x because the state number
variable is introduced after the definition of the specification.

In the example displayed in Fig. 2.2, the bad fusion point c has to be removed. We
generate the new state c′ as a copy of c. The transition (b, c) is part of β and thus
diverted to c′, i.e. (b, c) is replaced by (b, c′). The outgoing transition (c, d) is just
copied instead of diverted to c′ because we do not want to change the behavior of the
program yet (see Fig. 2.3).

Now, the computation of bad transitions is explained. Recall that after the removal of
all bad fusion points, there are just good or bad transitions. The fusion closed specifica-
tion can be expressed as a set of bad transitions. The algorithm starts at an initial state
in the extended state space and traverses all transitions. If one transition violates the
non-fusion closed specification, it is added to the set of bad transitions and the consec-
utive path is not considered. The set of bad transitions is passed as safety specification
to FTSyn.
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3.3 Interfacing with Spin

This section deals with those difficulties that occurred on interfacing fault-tolerance
synthesis programs, i.e. FCPre and FTSyn, with the model checker Spin [7].

Brief Overview of Spin

Spin (Simple Promela INterpreter) is used to verify the final results of FTSyn after
each synthesis. Therefore, FTSyn’s output that is present as guarded commands has to
be transformed to PROMELA (PROcess MEta LAnguage) [11], the input language of
Spin. Spin has the advantage of portability across a large number of platforms, namely
Unix, Linux, cygwin, Plan9, Inferno, Solaris, Mac, and Windows. Together with the
presumption that FTSyn and FCPre are written in the Java programming language
that also provides a certain portability with its virtual machine, the portability of Spin
may become a big advantage. Good documentation of Spin is available [12], and the
flexibility of runtime options is another strong point in favor of choosing Spin.

In the context of Spin, we make use of so-called never claims. Spin expects two input
files. The first file contains the system itself, i.e. variable declarations, the process
declarations including the fault process and the initialization. It has the file type .prom

and is written in PROMELA. The second file ending with .ltl however consists of the
specification coded as a never claim, i.e. a formula that states what should never happen
in the execution of this program. The never claim is automatically generated by Spin
given a LTL (Linear Time Logic) formula.

Using Spin to Validate Output

As we had no influence neither on the output format of FTSyn nor on the input format
of Spin, one has to convert one into the other though it might be hard to maintain
semantics. Not all needed information is encoded in the FTSyn output file, e.g. the
fault transitions and the specification do not appear. This is the reason why additional
files have to be generated by FCPre for Spin. These files contain detailed information
about states besides fault transitions and the specification.

Finally, the implication operator -> is indeed documented, however its usage is re-
stricted to the top level formula given to Spin. It is possible to define some LTL clauses
and link them with an identifier. According to the documentation, it is possible to
use all operators and variables and even other clause identifiers in these clauses. Yet,
the use of the implication operator in the definition of a clause causes parse errors. In
the formula that is finally given to Spin, this operator may be used without problems.
So, the automatic generation of clauses has to stop on the level where the first impli-
cation operator occurs. The upper levels of the specification tree have to be coded in
one formula and may not be diverted into clauses. Of course, as this operator is used
frequently in non-fusion closed safety specifications, this is a real drawback that needs
further investigation.
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4 Evaluation

In this section, we present some results from using the implementation of GJ. First, we
discuss one working example. Then, we present a case where GJ fails.

4.1 Illustrated example

We want to illustrate the functioning of the complete fault-tolerance synthesis by pre-
senting one example produced by our tool. The example is one of those presented by
Gärtner and Jhumka [13] in an extended Technical Report of their conference paper [6].

The example is not fully synthesized by Gärtner and Jhumka [13]. Here we finish the
synthesis of this example. It is given in Fig. 4.1. There are two bad fusion points, namely
c and d. They are removed by FCPre, c first and d afterwards, before both violating
transitions (c, d) and (d, e), each violating one part of the specification, are deleted by
FTSyn. As a proof of correctness, Spin verified the fault tolerance property.

We conducted some more experiments [14]. The synthesis tool works properly on
these examples. Spin verified all results successfully. The algorithms of FCPre are
not optimized for runtime. There may be faster algorithms for these purposes. The
algorithms that are used are developed for stability and trace-ability. On a moderately
powerful PC (900 MHz, 256 MB RAM) it took less than half a minute to fully synthesize
each of the examples. Most of the time is needed to compile the source files using javac.

4.2 The Error in GJ

In this section, we describe the error that we found in the correctness proof of GJ. There
is a case where GJ cannot continue synthesizing the program. We must say that this is
not a fatal error. It is rare and the occurrence is evident so that the intermediate result
does not appear to be the final result.

The error in the proof is located in Lemma 3, step 1.2 [13, p. 20]. In the context
of the proof, it is abstracted from the kind of incoming and outgoing transitions. It is
just assumed that every transition can be diverted. However, we assumed that fault
transitions cannot be diverted. So, there is the implicit assumption that the adjacent
transitions are program transitions. It would be preferable to make a case distinction
at this point. So, the method itself might not be faulty but potentially incomplete. If
one introduces an instruction what one has to do in the case of a fault transition, the
method would work in all cases.

We want to demonstrate the fault using an example.
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(1)

a b c d e

(2)

a b c d e

c′

(3)

a b c d e

c′ d′

(4)

a b c d e

c′ d′

Figure 4.1: Example of a complete fault-tolerance synthesis. The specification is
“(d implies previously b) and (e implies previously c)”.

18



(1)

a b c d e f g

(2)

a b c d e f g

c′

(3)

a b c d e f g

c′ d′

(4)

a b c d e f g

c′ d′

(5)

a b c d e f g

c′ d′ f ′

Figure 4.2: The graphical illustration of the fault in GJ correctness lemma. The
specification is “g implies previously (b or e)”.
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Let us look at Fig. 4.2. The specification says “g implies previously (b or e)”. The first
bad fusion point c is duplicated. Afterwards, state d is a bad fusion point candidate. We
look for applicable α and β and find α = a, c, d and β = a, b, c′, d, f, g. The next step is
the duplication of state d. The transition (c′, d) ∈ β is diverted to (c′, d′). Finally, one
would have to add the transition (d′, f). This, however, is a fault transition that cannot
be newly generated.

Let us assume for a moment that adding new fault transitions would be allowed but not
the redirection or deletion. In this case, we would add a new fault transition (d′, f) (cf.
Fig. 4.2(4)). The next bad fusion point would be f , α = a, c, d, f , and β = a, b, c′, d′, f, g.
After the duplication of f , the fault transition (d′, f) would have to be diverted to (d′, f ′).
This cannot work.

The correctness proof of GJ is correct as long as the transition that belongs to the
good path β and starts at the bad fusion point is not a fault transition.
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5 Conclusion

Our aim has been the implementation of a preprocessor for standard automatic fault-
tolerance synthesis methods. This preprocessor has been meant to extend the set of
possible inputs by those problems including a non-fusion closed specification. Finally,
the resulting software is able to synthesize programs with a given fault model and a
general safety specification. The model checker Spin is successfully embedded in the
synthesis process to increase the trust in the results. It helped in identifying an error in
the GJ method.

Runtime criteria were not considered in this work. The operating experience has
shown that runtime aspects can be neglected. Memory aspects can also be disregarded
as a limiting factor. Remember that FCPre was designed to reduce the memory usage
in comparison to methods that make use of standard history variables. However, testing
the system on larger examples is part of future work.

A task for future research would be the consideration of liveness or mixed specifi-
cations, i.e. non-masking fault-tolerance. If other kinds of specifications are possible,
new kinds of faults need to be examined as well. In the case of liveness properties, the
removal of a transition might lead to a specification violation.

Another way of extension is the development of a tool with a graphical user interface
(GUI) or at least such an interface for FCPre. However, the graphical representation of
graphs of unknown size is not trivial. If they should be planar, the problem becomes
NP complete. The positioning of an unknown number of nodes is the hardest challenge.

Further, one might implement a translation of C or Java source code to the guarded
commands of FTSyn and vice versa, using e.g. ESC/Java [15]. This way, programs
that are written in a high level language could be synthesized though the resulting code
after re-translation will not be well human readable. The most important aspect is that
the applicability would be increased. This would also allow to test the entire system on
larger examples to evaluate the scalability of the approach.
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