
The Database Programming Language DBPLRationale and ReportJoachim W. SchmidtFlorian MatthesThe database programming language DBPL is based on notion of bulk type and iterationabstraction, supports data persistence and transaction procedures, and has Modula-2 as itsalgorithmic kernel. This document describes the rationale behind DBPL and de�nes theelements of the language.Status: Final, June 1992Arbeitsbereich DBISFachbereich InformatikUniversit�at HamburgVogt-K�olln Stra�e 30D-2000 Hamburg 54Federal Republic of GermanyThis work was supported by the European Commission, Basic Research, Contract # 4092.

CONTENTS 1Contents1 The Rationale behind DBPL 31.1 On Data-Intensive Applications : 31.2 Conceptual Foundations of DBPL : 41.3 Language Design Considerations : 51.4 The DBPL System and its Use : 62 Syntax 83 Vocabulary and representation 84 Declarations and scope rules 105 Constant declarations 116 Type declarations 116.1 Basic types : 126.2 Enumerations : 136.3 Subrange types : 136.4 Array types : 136.5 Record types : 146.6 Set types : 156.7 Pointer types : 156.8 Procedure types : 166.9 Relation types : 166.10 Selector types : 176.11 Constructor types : 187 Variable declarations 188 Expressions 198.1 Access expressions : 198.2 Selectors : 208.3 Constructors : 218.4 Operands : 218.4.1 Designators : 228.4.2 Aggregate expressions : 238.4.3 Relation expressions : 238.5 Operators : 248.5.1 Arithmetic operators : 258.5.2 Logical operators : 258.5.3 Set operators : 268.5.4 Relational operators : 26

2 CONTENTS9 Statements 279.1 Assignments : 289.2 Procedure calls : 299.3 Statement sequences : 309.4 If statements : 309.5 Case statements : 319.6 While statements : 319.7 Repeat statements : 329.8 For statements : 329.9 Loop statements : 339.10 With statements : 339.11 Return and exit statements : 3410 Selector declarations 3411 Constructor declarations 3512 Procedure declarations 3612.1 Formal parameters : 3712.2 Standard procedures : 3913 Modules 4014 System-dependent facilities 4315 Processes 4415.1 Creating a process and transfer of control : 4515.2 Device processes and interrupts : 4516 Compilation units 46Bibliography 47

31 The Rationale behind DBPLThe DBPL language orthogonally integrates sets and �rst-order predicates into the stronglyand statically typed programming language Modula-2. The DBPL environment supports thelanguage with full database functionality including persistence, query optimization and trans-action management. The application of modern language technology to database conceptsresults in new insights into the relationship between types and schemas, expressions/iteratorsand queries, selectors and views, or functions and transactions. Furthermore, it allows theexploitation of type theory and formal semantics of programming languages and thus connectsdatabase application development with results from program speci�cation and veri�cation.Section 1 reviews the rationale behind the design of the language and the implementationof the DBPL environment. The subsequent sections de�ne the elements of the language.This de�nition is not intended as a programmer's tutorial (see [SM91a, MS92, MSS91]). Itis intentionally kept concise, and in a sense, minimal. Its function is to serve as a referencefor programmers, implementors, and manual writers, and as an arbiter, should they �nddisagreement.The �rst DBPL language de�nition was published in [EEK+85]. A later revision [SEM88]removed several limitations on the orthogonality of language constructs. The current versionof the report corrects minor ambiguities and errors of its predecessor and is based on theModula-2 Report by N. Wirth as published in N. Wirth: Programming in Modula-2, Springer-Verlag, Berlin, Heidelberg, New York, 3rd Edition, 1985. All modi�cations to the Modula-2Report are indicated at the margins (>, ?).1.1 On Data-Intensive ApplicationsThe development of data-intensive applications, such as information systems or design appli-cations in mechanical or software engineering, involves requirements modeling, design spec-i�cation, and, last but not least, the implementation and maintenance of large databaseapplication programs. Although the database programming language DBPL concentrates onthe last issue and o�ers a uniform and consistent framework for the e�cient implementation ofentire database applications, DBPL was designed, extended and evaluated with a declarativestyle in mind.Data-intensive applications may be characterized by their needs to model and manipulateheavily constrained data that are long-lived and shared by a user community. These require-ments result directly from the fact that databases serve as (partial) representations of someorganizational unit or physical structure that exist in their own constraining context and ontheir own time-scale independent of any computer system. Due to the size of the target sys-tem and the level of detail by which it is represented, such representational data may becomeextremely voluminous { in current data-intensive applications up to O(109) or even higher.In strong contrast to the need for global management of large amounts of representationaldata, data-intensive applications also have a strong demand to process small amounts of localcomputational data that implement individual states or state transitions.In essence, it is that broad spectrum of demands { the di�erence in purpose, size, lifetime,availability etc. of data { and the need to cope with all these demands within a single con-ceptual framework that has to guide the design of a database programming language.

4 1 THE RATIONALE BEHIND DBPLDBPL is a successor of Pascal/R [Sch77] and addresses the above issues by incorporating aset- and rule-based view of extended relational database modelling into the well-understoodsystem programming language Modula-2. DBPL extends Modula-2 into three dimensions:� bulk data management through a data type set (relation);� abstraction from bulk iteration through access expressions;� persistent modules and transactions for sharing, concurrency and recovery control.1.2 Conceptual Foundations of DBPLThe leitmotiv behind the DBPL design was simplicity and power by orthogonality. DBPLaims at exploiting and integrating a solid, well-understood conceptual framework capable toconsistently capture the wide range of data-intensive application requirements outline above| and not the desire to implement new theoretical concepts in isolation.Classical type systems and the relational data model constitute the cornerstones of the DBPLlanguage design. Both contributions provide an enlightening foundation from a technologicalas well as from a theoretical point of view. However, the exciting new experiences are madeat the borderline where types (and expressions, selectors, functions : : :) and data models(and queries, views, transactions : : :) meet and have to be understood, one in the light of theother.During DBPL development, several, mostly unnecessary and ad-hoc restrictions on the pro-gramming language as well as on the data model became obvious. Some limitations, as, forexample, the lack of data type orthogonality (i.e. the restriction to �rst normal form rela-tions) had already been realized, others, like orthogonal persistence (providing persistence forall types, not just for relations) were new for the database community (but already discov-ered by the persistent programming language people). Other insights as, for example, therelationship between abstract access expressions and queries, iterators and views, or betweenrecursive access expressions and deductive databases, came as surprises, at least to us.Globally speaking, the DBPL language and system both heavily rely on conceptual andtheoretical input from following areas:Programming Language Foundations: typing, scoping, binding; [MS89, SM90b]Compilation Technology: type checking, local data
ow analysis, intermediate languages,separate compilation; [SM91b]Extended Relational Modeling: data constructors, bulk operations, query languages andtheir expressive power;Query Optimization: transformations at compile- and run-time, cost models, search strate-gies; [JK83]Recursive Query Evaluation: �xed point semantics, strati�cation, recursive rule de�ni-tion; [ERMS91]

1.3 Language Design Considerations 5Concurrency Control: multi-level concurrency control and recovery for complex objects;[SM91b]Distribution Models: transaction procedures, compensating transactions [JGL+88, JLRS88].In summary, one can say that the DBPL project stayed more or less inside the boundariesdrawn by conventional language technology (e.g. by mathematical typing schemes) and con-centrated on improving the linguistic support for state-of-the-art database technology. Cur-rently, however, we are heavily intrigued by novel programming language concepts (e.g. bytaxonomical typing schemes [Car88]) and are quite positive that they provide the basis forsubstantial extensions of database technology [MS91].1.3 Language Design ConsiderationsThe DBPL language design is also in
uenced by requirements of the DAIDA environmentfor database application development [SWBM89, BJM+89, JMW+90] that asks for a targetlanguage that makes extensive use of sets and �rst-order predicates, and provides a completeseparation of typing and persistence.The main guideline for the design of DBPL can be characterized by the slogan \power throughorthogonality". Instead of designing a new language from scratch (with its own naming,binding, scoping and typing rules), DBPL extends an existing language and puts particularemphasis on the interoperability of the new \database" concepts with those already present inthe programming language. In particular, DBPL aims to overcome the traditional competenceand impedance mismatch between programming languages and database management systemsby providing� a uniform treatment of volatile and persistent data (DBPL supports, for example, rela-tional variables local to DBPL procedures or as function parameters);� a uniform treatment of large quantities of objects with a simple structure and smallquantities of objects with a complex structure, as well as� a uniform (static) compatibility check between the declaration and the use of each value.Implementation details (e.g., storage layout of records, clustering of data, existence of sec-ondary index structures, query evaluation strategies, concurrency and recovery mechanisms)are deliberately hidden from the DBPL programmer. A key idea in the design and implemen-tation of DBPL is to let the runtime system choose appropriate implementation strategiesbased on \high-level" information extracted from the application programs. As it turns out,the widespread use of access expressions (i.e. �rst-order logic abstractions of bulk data access)in typical DBPL programs facilitates such an approach.DBPL also follows Modula-2 by occasionally sacri�cing \language orthogonality" out of en-gineering and e�ciency considerations. For example, DBPL does not support persistenceof pointers and procedure variables. This was not only motivated by the predominance ofassociative identi�cation mechanisms in the classical Relational Data Model, but also by thefar-reaching consequences of this identi�cation mechanism on the concurrency control anddistribution support [BJS86, JLRS88].

6 1 THE RATIONALE BEHIND DBPLModula-2 was chosen as the basis for DBPL because of its software engineering qualities. Itprovides a clear module concept and a strict type system and is further excelled by its balancebetween simplicity and expressive power. Finally, our group had a long tradition in Modula-2compiler construction.A design decision with far-reaching consequences is the compatibility between DBPL andModula-2. DBPL is designed to be fully upward compatible with Modula-2, i.e. every correctModula-2 program has to be correct DBPL program. This decision not only limits the freedomin language extensions (e.g. the keyword SET is already used for bit sets in Modula-2 andis not available for \true" sets in DBPL), but also forces adherence to language mechanisms(e.g. variant records, string handling, local modules) for which nowadays \better" solutionsare available. The main advantage of our compatibility decision is to lower the conceptual andtechnological burden for DBPL users since they do not have to learn yet another language.Furthermore, this decision allows to smoothly integrate DBPL into existing, fully-
edgedsoftware development environments (e.g. debuggers, pro�lers or version managers), to bene�tfrom software libraries and from the interfaces to a variety of other languages and systems.In contrast to some persistent programming languages, the evolution of database schemataand of application programs is left outside the scope of DBPL. This was based on the insightthat this is a complex issue in itself that should be delegated to a speci�c environment (seeDAIDA environment, e.g. [JMW+90]).To summarize, the most prominent feature of the DBPL language is the type-complete inte-gration of sets and �rst-order predicates into a strongly typed, monomorphic language withpersistence as an orthogonal property of individual compilation units. The DBPL systemis further characterized by covering a wide range of operational database demands, such asquery optimization, transaction and distribution management and computer-aided supportfor database application development. Readers interested in speci�c language and systemaspects are referred to the following publications [JLS85, JGL+88, MS89, SGLJ89, SM89,SM90a, SM90b, SM91b]1.4 The DBPL System and its UseThe DBPL project always had a strong commitment to implementability. A multi-user DBPLsystem under VAX/VMS has served many times since 1985 for lab courses on databaseprogramming at the Universities of Frankfurt and Hamburg. There exist several DBPLsystem extensions that experiment with alternatives for concurrency (optimistic, pessimisticand mixed strategies) [BJS86] and integrity control [B�ot90], storage structures for complexobjects, recursive queries [JLS85, SL85] and distribution [JLRS88, JGL+88]. The constructionof a distributed DBPL system is based on ISO/OSI communication standards and involves, forexample, a re-implementation of the DBPL compiler to generate native code for IBM-PC/ATclients in cooperation with VAX/VMS servers.In 1991, a substantial e�ort was made to integrate the experience gained with these proto-types into a new, portable implementation of the DBPL runtime system on various platforms(VAX/VMS, Sun-3, Sun-4/Unix, IBM RISC). By utilizing Sun's optimizing compiler backend,the DBPL compiler achieves \production-quality" performance and interoperability. Imple-mentation aspects of the various layers of the DBPL database system are discussed in [SM91b]and [MS92].

1.4 The DBPL System and its Use 7Finally, since 1992 there exists an optimizing gatway between the DBPL runtime system andcommercial SQL database engines (Ingres, Oracle) that allows DBPL programs to transpar-ently access existing external database relations in addition to the internal type-completeDBPL objects.We expect the DBPL language and system to be used in research and devleopment mainlyfor the following three tasks:Concept validation: As outlined above, we strongly believe in the necessity of experimentalevaluation of proposed system solutions (e.g. of new concurrency control protocols ora new workstation-server architectures). In many cases, the interaction with severalsystem components (e.g. the recovery management or the query optimizer), or the lackof universality severly impairs the utility of a seemingly advantageous paper-and-pencilsolution.Database education: Our experience in using DBPL intensively in lab classes convincesus that it is an appropriate tool for teaching the essential problems and solutions indatabase application development. Without being distracted by idiosyncratic surfacesyntax and de�ciencies of traditional preprocessor database interfaces, it is much easierto isolate and communicate the repeating patterns in database applications and toconcentrate on an abstract and complete picture of database application programming.Application prototyping: FromModula-2 the DBPL language has inherited software engi-neering qualities that can not be found in commercial database environments and whichqualify DBPL as an appropriate tool for designs and implementations. This use of DBPLis further supported by the quality of the commercial platforms (DEC/VAX/VMS andSUN/RISC/UNIX) on which the DBPL system is realized and the depth of its integra-tion into professional environmets for software development and maintenance.AcknowledgementsWe are grateful for the many contributions by our colleagues, in particular Stefan B�ottcher,Henning Eckhardt, J�urgen Edelmann, Matthias Jarke, J�urgen Koch, Manuel Mall and An-dreas Rudlo�.

8 3 VOCABULARY AND REPRESENTATION2 SyntaxA language is an in�nite set of sentences, namely the sentences well formed according toits syntax. In DBPL, these sentences are called compilation units. Each unit is a �nitesequence of symbols from a �nite vocabulary. The vocabulary of DBPL consists of identi�ers,numbers, strings, operators, and delimiters. They are called lexical symbols and are composedof sequences of characters. (Note the distinction between symbols and characters.)To describe the syntax, an extended Backus-Naur Formalism called EBNF is used. Angularbrackets [] denote optionality of the enclosed sentential form, and curly brackets f g denoteits repetition (possibly 0 times). Syntactic entities (non-terminal symbols) are denoted byEnglish words expressing their intuitive meaning. Symbols of the language vocabulary (termi-nal symbols) are strings enclosed in quote marks or words written in capital letters, so-calledreserved words. Syntactic rules (productions) are designated by a $ sign at the left margin ofthe line.3 Vocabulary and representationThe representation of symbols in terms of characters depends on the underlying character set.The ASCII set is used in this paper, and the following lexical rules must be observed. Blanksmust not occur within symbols (except in strings). Blanks and line breaks are ignored unlessthey are essential to separate two consecutive symbols.1. Identi�ers are sequences of letters and digits. The �rst character must be a letter.$ ident = letter fletter j digitg.Examples:x scan Modula ETH GetSymbol firstLetter2. Numbers are (unsigned) integers or real numbers. Integers are sequences of digits. Ifthe number is followed by the letter B, it is taken as an octal number; if it is followedby the letter H, it is taken as a hexadecimal number; if it is followed by the letter C, itdenotes the character with the given (octal) ordinal number (and is of type CHAR, see6.1).An integer i in the range 0 <= i <= MaxInt can be considered as either of typeINTEGER or CARDINAL; if it is in the range MaxInt < i <= MaxCard, it is of typeCARDINAL. For 16-bit computers: MaxInt = 32767, MaxCard = 65535.A real number always contains a decimal point. Optionally it may also contain a decimalscale factor. The letter E is pronounced as \ten to the power of". A real number is oftype REAL.$ number = integer j real.$ integer = digit fdigitg j octalDigit foctalDigitg (\B" j \C") j

9$ digit fhexDigitg \H".$ real = digit fdigitg \." fdigitg [ScaleFactor].$ ScaleFactor = \E" [\+" j \-"] digit fdigitg.$ hexDigit = digit j \A" j \B" j \C" j \D" j \E" j \F".$ digit = octalDigit j \8" j \9".$ octalDigit = \0" j \1" j \2" j \3" j \4" j \5" j \6" j \7".Examples:1980 3764B 7BCH 33C 12.3 45.67E-83. Strings are sequences of characters enclosed in quote marks. Both double quotes andsingle quotes (apostrophes) may be used as quote marks. However, the opening andclosing marks must be the same character, and this character cannot occur within thestring. A string must not extend over the end of a line.$ string = \ ' " fcharacterg \ ' " j \"" fcharacterg \"".A string consisting of n characters is of type (see 6.4).ARRAY [0..n-1] OF CHARExamples:"DBPL" "Don't worry!" 'codeword "Barbarossa"'4. Operators and delimiters are the special characters, character pairs, or reserved wordslisted below. These reserved words consist exclusively of capital letters and must notbe used in the role of identi�ers. The symbols # and <> are synonyms, and so are &,AND, and �, NOT. >+ < ALL EXPORT QUALIFIED- > AND FOR RECORD* <> ARRAY FROM RELATION/ <= BEGIN IF REPEAT:= >= BY IMPLEMENTATION RETURN& .. CASE IMPORT SELECTOR. : CONST IN SET,) CONSTRUCTOR LOOP SOME;] DATABASE MOD THEN(} DEFINITION MODULE TO[| DIV NOT TRANSACTION{ :+ DO OF TYPE" :- EACH ON UNTIL= :& ELSE OR USING# ELSIF POINTER VAR� END PROCEDURE WHILEEXIT WITH

10 4 DECLARATIONS AND SCOPE RULES ?5. Comments may be inserted between any two symbols in a program. They are arbitrarycharacter sequences opened by the bracket (� and closed by �). Comments may benested, and they do not a�ect the meaning of a program.4 Declarations and scope rulesEvery identi�er occurring in a program must be introduced by a declaration, unless it is astandard identi�er. The latter are considered to be predeclared, and they are valid in all partsof a program. For this reason they are called pervasive. Declarations also serve to specifycertain permanent properties of an object, such as whether it is a constant, a type, a variable,a procedure, or a module.The identi�er is then used to refer to the associated object. This is possible in those parts ofa program only which are within the so-called scope of the declaration. In general, the scopeextends over the entire block (procedure or module declaration) to which the declarationbelongs and to which the object is local. The scope rule is augmented by the following cases:1. If an identi�er x de�ned by a declaration D1 is used in another declaration (not state-ment) D2, then D1 must textually precede D2.2. A type T1 can be used in a declaration of a pointer type T (see 6.7) which textuallyprecedes the declaration of T1, if both T and T1 are declared in the same block. Thisis a relaxation of rule 1.3. If an identi�er de�ned in a module M1 is exported, the scope expands over the blockwhich contains M1. If M1 is a compilation unit (see Ch. 16), it extends to all thoseunits which import M1.4. Field identi�ers of a record declaration (see 6.5) are valid only in �eld designators andin with statements referring to a variable of that record type.An identi�er may be quali�ed. In this case it is pre�xed by another identi�er which designatesthe module (see Ch. 13) in which the quali�ed identi�er is de�ned. The pre�x and theidenti�er are separated by a period. Standard identi�ers appear below.$ qualident = ident f\." identg.>

11ABS (12.2) INTEGER (6.1)BITSET (6.6) LONGINT (6.1)BOOLEAN (6.1) LONGREAL (6.1)CAP (12.2) LOWEST (12.2)CARD (12.2) MAX (12.2)CARDINAL (6.1) MIN (12.2)CHAR (6.1) NEXT (12.2)CHR (12.2) NIL (6.7)DEC (12.2) ODD (12.2)EOR (12.2) ORD (12.2)EXCL (12.2) PRIOR (12.2)FALSE (6.1) PROC (6.8)FLOAT (12.2) REAL (6.1)HALT (12.2) THIS (12.2)HIGH (12.2) SIZE (12.2)HIGHEST (12.2) TRUE (6.1)INC (12.2) TRUNC (12.2)INCL (12.2) VAL (12.2) ?5 Constant declarationsA constant declaration associates an identi�er with a constant value.$ ConstantDeclaration = ident \=" ConstExpression.$ ConstExpression = expression.A constant expression is an expression, which can be evaluated by a mere textual scan withoutactually executing the program. Its operands are constants. (see Ch. 8).Examples of constant declarations areN = 100limit = 2*N-1all = {0..WordSize-1}bound = MAX(INTEGER) - N6 Type declarationsA data type determines a set of values which variables of that type may assume, and itassociates an identi�er with the type. In the case of structured types, it also de�nes thestructure of variables of this type. There are four di�erent structures, namely arrays, records, >sets and relations. ?>

12 6 TYPE DECLARATIONS$ TypeDeclaration = ident \=" type.$ type = SimpleType j ArrayType j RecordType j SetType j$ RelationType j PointerType j ProcedureType j SelectorType j$ ConstructorType.$ SimpleType = qualident j enumeration j SubrangeType.? Examples:Color = (red,green,blue)Index = [0..80]Card = ARRAY Index OF CHARNode = RECORD key: CARDINAL;left,right: TreePtrENDTint = SET OF ColorTreePtr = POINTER TO NodeFunction = PROCEDURE(CARDINAL):CARDINAL> String = ARRAY Index OF CHARItem = RECORD code: Color;itemname: String;price: INTEGER;connectedTo: RELATION OF String;ENDItems = RELATION itemname OF ItemConnections = RELATION OF RECORD from,to: String ENDItemsInRange = SELECTOR ON (Items) WITH (CARDINAL,CARDINAL)? 6.1 Basic typesThe following basic types are predeclared and denoted by standard identi�ers:1. INTEGER comprises the integers between MIN(INTEGER) and MAX(INTEGER).2. CARDINAL comprises the integers between 0 and MAX(CARDINAL).3. BOOLEAN comprises the truth values TRUE or FALSE.4. CHAR denotes the character set provided by the used computer system.5. REAL (and LONGREAL) denote �nite sets of real numbers.6. LONGINT comprises the integers between MIN(LONGINT) and MAX(LONGINT).

6.2 Enumerations 136.2 EnumerationsAn enumeration is a list of identi�ers that denote the values which constitute a data type.These identi�ers are used as constants in the program. They, and no other values, belong tothis type. The values are ordered, and the ordering relation is de�ned by their sequence inthe enumeration. The ordinal number of the �rst value is 0.$ enumeration = \(" IdentList \)".$ IdentList = ident f\," identg.Examples of enumerations:(red,green,blue)(club,diamond,heart,spade)(Monday,Tuesday,Wednesday,Thursday,Friday,Saturday,Sunday)6.3 Subrange typesA type T may be de�ned as a subrange of another, basic or enumeration type T1 (exceptREAL) by speci�cation of the least and the highest value in the subrange.$ SubrangeType = [ident] \[" ConstExpression \.." ConstExpression \]".The �rst constant speci�es the lower bound, and must not be greater than the upper bound.The type T1 of the bounds is called the base type of T, and all operators applicable to operandsof type T1 are also applicable to operands of type T. However, a value to be assigned to avariable of a subrange type must lie within the speci�ed interval. The base type can bespeci�ed by an identi�er preceding the bounds. If it is omitted, and the lower bound is anon-negative integer, the base type of the subrange is taken to be CARDINAL; if it is anegative integer, it is INTEGER.A type T1 is said to be compatible with a type T0, if it is declared either as T1 = T0 or as asubrange of T0, or if T0 is a subrange of T1, or if T0 and T1 are both subranges of the same(base) type.Examples of subrange types:[0..N-1]["A".."Z"][Monday..Friday]6.4 Array typesAn array is a structure consisting of a �xed number of components which are all of the sametype, called the component type. The elements of the array are designated by indices, valuesbelonging to the index type. The latter must be an enumeration, a subrange type, or one ofthe basic types BOOLEAN or CHAR.

14 6 TYPE DECLARATIONS$ ArrayType = ARRAY SimpleType f\," SimpleTypeg OF type.A declaration of the formARRAY T1, T2, ..., Tn OF Twith n index types T1 ... Tn must be understood as an abbreviation for the declarationARRAY T1 OFARRAY T2 OF...ARRAY Tn OF TExamples of array types:ARRAY [0..N-1] OF CARDINALARRAY [1..10],[1..20] OF [0..99]ARRAY [-10..+10] OF BOOLEANARRAY WeekDay OF ColorARRAY Color OF WeekDay6.5 Record typesA record type is a structure consisting of a �xed number of components of possibly di�erenttypes. The record type declaration speci�es for each component, called �eld, its type and anidenti�er which denotes the �eld. The scope of these �eld identi�ers is the record de�nitionitself, and they are also accessible within �eld designators (see 8.4) refering to components ofrecord variables, and within with statements.A record type may have several variant sections, in which case the �rst �eld of the section iscalled the tag �eld. Its value indicates which variant is assumed by the section. Individualvariant structures are identi�ed by case labels. These labels are constants of the type indicatedby the tag �eld.$ RecordType = RECORD FieldListSequence END.$ FieldListSequence = FieldList f\;" FieldListg.$ FieldList = [IdentList \:" type j$ CASE [ident] \:" qualident OF variant f\j" variantg$ [ELSE FieldListSequence] END].$ variant = [CaseLabelList \:" FieldListSequence].$ CaseLabelList = CaseLabels f\," CaseLabelsg.$ CaseLabels = ConstExpression [\.." ConstExpression].Examples of record types:

6.6 Set types 15RECORD day: [1..31];month: [1..12];year: [0..2000]ENDRECORDname,firstname: ARRAY [0..9] OF CHAR;age: [0..99];salary: REALENDRECORD x,y: T0;CASE tag0: Color OFred: a: Tr1; b: Tr2|green: c: Tg1; d: Tg2|blue: e: Tb1; f: Tb2END;z: T0;CASE tag1: BOOLEAN OFTRUE: u,v: INTEGER|FALSE: r,s: CARDINALENDENDThe example above contains two variant sections. The variant of the �rst section is indicatedby the value of the tag �eld tag0, the one of the second section by the tag �eld tag1.6.6 Set typesA set type de�ned as SET OF T comprises all sets of values of its base type T. This must bea subrange of the integers between 0 and N{1, or a (subrange of an) enumeration type withat most N values, where N is a small constant determined by the implementation, usually thecomputer's wordsize or a small multiple thereof.$ SetType = SET OF SimpleType.The standard type BITSET is de�ned as follows, where W is a constant de�ned by theimplementation, usually the word size of the computer.BITSET = SET OF [0..W-1]6.7 Pointer typesVariables of a pointer type P assume as values pointers to variables of another type T. Thepointer type P is said to be bound to T. A pointer value is generated by a call to an allocationprocedure in a storage management module.

16 6 TYPE DECLARATIONS$ PointerType = POINTER TO type.Besides such pointer values, a pointer variable may assume the value NIL, which can bethought as pointing to no variable at all.6.8 Procedure typesVariables of a procedure type T may assume as their value a procedure P. The (types of the)formal parameters of P must be the same as those indicated in the formal type list of T. Thesame holds for the result type in the case of a function procedure.Restriction: P must not be declared local to another procedure, and neither can it be a standardprocedure.$ ProcedureType = (PROCEDURE j TRANSACTION) [FormalTypeList].$ FormalTypeList = \(" [[VAR] FormalType$ f\," [VAR] FormalTypeg] \)" [\:" qualident].The standard type PROC denotes a parameterless procedure:PROC = PROCEDURE6.9 Relation types> A relation type declaration speci�es a structure consisting of elements of the same type, calledthe relation element type. The number of elements, called the cardinality of the relation, is not�xed. A relation with zero elements is called empty. The relation type declaration speci�esthe element type as well as the relation key.The relation key de�nes a list of components of the relation element type which uniquelydetermines a relation element. An empty key component list is a synonym for an exhaustiveelement component list; in this case, a relation is just a set of relation elements. A relationkey can only be speci�ed if the relation element type is an array or record structure. Akey component is either speci�ed by a quali�ed identi�er designating a record �eld, or by aconstant expression designating an array component. Key components must not be part of avariant in a variant record structure. The type of a key component must be a simple type ora string.$ RelationType = RELATION [RelationKey] OF type.$ RelationKey = KeyComponent f\," KeyComponentg.$ KeyComponent = KeyDesignator fKeySubDesignatorg.$ KeyDesignator = ident j \[" ConstExpList \]".$ KeySubDesignator = \." ident j \[" ConstExpList \]".$ ConstExpList = ConstExpression f\," ConstExpressiong.Examples of relation types:

6.10 Selector types 17Address = RECORDstreet: String;city: StringENDAddrClass = (office, stock)Company = RECORDcompanyname: String;address: ARRAY AddrClass OF Address;phonenumber: CARDINALENDCompanies = RELATION companyname, address[office].city OFCompanyDeliveries = RELATION itemname OFRECORDitemname: String;name, city: String;quantity: CARDINALEND ?6.10 Selector types >Variables of a selector type T may assume as their values a selector S. The types of the formalparameters and the result type of S must be the same as those indicated in the formal typelist of T.Two selector types are compatible, if their formal parameter types and result types agree,and if their access restrictions are compatible.Access restrictions are used in selector declarations and in the intention list of a transaction(see Ch. 12). They de�ne the set of operations applicable to selected relation variables andpersistent variables.The access symbol = restricts the use of these variables to expressions, to range relationsof FOR EACH statements and as parameters in the standard relation handling procedures(see Ch. 12.2). The access symbols :=, :+, :{, :& enable the use of a selected variable asthe left side of the corresponding relation update operations. De�ning no access restrictionis synonymous to the full set of access symbols. If a selected relation variable is to be passedas a variable parameter, all access rights have to be speci�ed.Access restriction A is called a restriction of access restriction B, if A is a subset of B. Twoaccess restrictions A and B are compatible, if A and B are equal.$ SelectorType = SELECTOR [ON \("qualident\)"] [WITH TypeList]$ AccessRestriction [\:" qualident].$ TypeList = \(" FormalType f\," FormalTypeg \)".$ AccessRestriction = [FOR \(" AccessRight f\," AccessRight \)"g].$ AccessRight = \:=" j \:+" j \:{" j \:&" j \=".

18 7 VARIABLE DECLARATIONSExample of a selector type:ReadOnlyItems = SELECTOR FOR (=): Items? 6.11 Constructor types> Variables of a constructor type T may assume as their values a constructor C. The types ofthe formal parameters and the result type of C must be the same as those indicated in theformal type list of T.Two constructor types are compatible, if their formal pararameter types and result typesagree.$ ConstructorType = CONSTRUCTOR [ON TypeList] [WITH TypeList]\:" qualident.Example of a constructor type:ConnectionRule = CONSTRUCTOR ON (Items): Connections? 7 Variable declarationsVariable declarations serve to introduce variables and associate them with a unique identi�erand a �xed data type and structure. Variables whose identi�ers appear in the same list allobtain the same type.$ VariableDeclaration = IdentList \:" type.The data type determines the set of values that a variable may assume and the operatorsthat are applicable; it also de�nes the structure of the variable.Examples of variable declarations (see examples in Ch. 6):i,j: CARDINALk: INTEGERp,q: BOOLEANs: BITSETF: Functiona: ARRAY Index OF CARDINALw: ARRAY [0..7] OFRECORD ch: CHAR;count: CARDINALENDt: TreePtr>

19thispart: Itemparts: Itemsoldparts: ItemsreadOnlyItems :ReadOnlyItemssuppliers: Companiesorders: DeliveriesInRange: ItemsInRangeadjacent: ConnectionRule ?8 ExpressionsExpressions are constructs denoting rules of computation for obtaining values of variablesand generating new values by the application of operators. Expressions consist of operandsand operators. Parentheses may be used to express speci�c associations of operators andoperands.8.1 Access expressions >Access expressions denote rules for accessing relation variables. Access expressions can benamed and parameterized. A parameter substitution is used to build new access expressionswhich can be stored in variables of type selector and constructor.$ AccessExpression = SelectiveAccessExpression j ConstructiveAccessExpression.$ SelectiveAccessExpression = ElementDenotation \:"expression.$ ConstructiveAccessExpression = expression j$ expression OF ElementDenotation f\," ElementDenotationg \:" expression.$ ElementDenotation = EACH ident IN range.$ range = expression j designator.There are selective and constructive access expressions.A selective access expression has the formEACH v IN rg: seIt denotes the selection rule that refers to exactly those elements v of the range rg, that makethe selection expression se of type BOOLEAN true. The (lexical) scope of an element variableis the selection expression se.A constructive access expression has the forme OF EACH v1 IN r1, EACH v2 IN r2, ..., EACH vn IN rn: seIt denotes the construction rule that evaluates the expression e for exactly those combinationsof the elements v1, v2,: : : , vn of the ranges r1, r2,: : : , rn that ful�ll the selection expressionse. The (lexical) scope of the element variables are the expressions e and se. ?

20 8 EXPRESSIONS8.2 Selectors> Selectors denote selective access expressions where the range relation is a designator. Theyare introduced by selector declarations and have a type (see 6.10 and 10).Selectors are used in relations (see 8.4.3), in for statements (see 9.8), in the intention list oftransactions (see Ch. 12), and as designators (see 8.4.1).$ selector = designator [\(" [designator] \)" [ActualParameters]].Let S be a selector declared as:SELECTOR S ON (RPar: RType) WITH (ParList) FOR (AccList): RType;BEGIN EACH r IN RPar: p(r,ParList) END SSuch a parameterized selector can be used to de�ne new selectors by a (partial) parametersubstitution:� The substitution of the ON-parameter of S by a designator R, S(R), denotes a non-ON-parameterized selector SR, that is bound to R as its range relation. That selector isequivalent to the declarationSELECTOR SR WITH (ParList) FOR (AccList): RType;BEGIN EACH r IN R: p(r,ParList) END SR� The relational ON-parameter of a selector can also be substituted by a selected rela-tion variable denoted by any type-compatible (non-parameterized) selector [SRP]. Theresulting selector, S([SRP]), has as its access restriction the intersection of the accessrestrictions of S and SRP.� Substitution of the WITH-parameter list of S by actual parameters, S()(ActList), de-notes a selector equivalent to the declarationSELECTOR SP ON (RPar: RType) FOR (AccList): RType;BEGIN EACH r IN RPar: pp(r) END SPwhere pp is the predicate p after substitution of each occurence of the formal parametersby the current values of the actual parameters.� ON- and WITH-parameters can be substituted simultaneously: S(R)(ActList) is anunparameterized selector equivalent toSELECTOR SRP FOR (AccList): RType;BEGIN EACH r IN R: pp(r) END SRPA selector with an ON-parameter of type RType but without a WITH-parameter can beapplied to a relation variable of type RType: R[SP] denotes a selected relation variable. Forthe special case of a non-parameterized selector the application is denoted by [SRP]. Thedesignators R[SP], [SRP], [SP(R)] and [SR(P)] are synonymous. They denote a subvariableof R, which is de�ned by the access expression

8.3 Constructors 21EACH r IN R: pp(r)A selected relation variable can only be used in a context de�ned by the access restrictions(AccList) of the selector type.The interpretation of a selected relation variable depends on its actual context:� If [SRP] is used in an expression it is synonymous to the relation expressionRType{EACH r IN R: pp(r)}� The semantics of assignments to selected relation variables are de�ned in 9.1.� The substitution of a variable parameter in a procedure call by a selected relation vari-able implies repeated evaluation of the access expression in the procedure or transaction.Examples of selectors and selected relation variables (see examples in Ch. 10 together withtheir types in Ch. 6 and 7):InRange()(0,N) SELECTOR ON (Items): ItemsInRange(parts) SELECTOR WITH(CARDINAL, CARDINAL): ItemsInRange([RedItems(oldparts)]) SELECTOR WITH(CARDINAL, CARDINAL): Items[RedItems(parts)] Itemsorders[OfParts()("Printer")] Deliveries[InRange(oldparts)(0,k)] Items ?8.3 Constructors >Constructors denote access expression lists. They are introduced by constructor declarationsand have a type that is determined by the constructor heading (see 6.11 and 11).The use of constructors is restricted to relations and the intention list of transactions.$ constructor = designator [ActualParameters [ActualParameters]].Constructors can be generated by substituting formal parameters of existing constructors.The rules for subtitution are the same as those for selectors with the exception, that a con-structor may have more than one ON-parameter. ?8.4 Operands >Operands are denoted by literal constants, i.e. numbers, strings and sets (see Ch. 5), desig-nators, aggregates or relations. ?

22 8 EXPRESSIONS8.4.1 Designators >A designator consists of an identi�er referring to the constant, variable, procedure, trans-action, selector or constructor to be designated, or a selector enclosed in square bracketsdenoting a selected relation variable (see 8.2).$ designator = (qualident j \[" selector \]") f \." ident j \[" ExpList \]" j \""g.$ ExpList = expression f\," expressiong.? This identi�er may possibly be quali�ed by module identi�ers (see Ch. 4 and 13), and it maybe followed by component selectors, if the designated object is an element of a structure. Ifthe structure is an array A, then the designator A[E] denotes that component of A whoseindex is the current value of the expression E. The index type of A must be assignmentcompatible with the type of E (see 9.1). A designator of the formA[E1,E2,: : : ,En] stands for A[E1][E2]: : : [En].> If the structure is a relation R declared byR: RELATION k1, k2,: : : , kn OF ElementTypethen the designator R[E1,: : : ,En] denotes that element of R whose key component values arethe current values of the selection expressions E1 to En. A variable designated in this way iscalled a selected element variable. The types of the selection expressions must be assignmentcompatible with the types of the key components k1,: : : ,kn identi�ed by the relation type. Thetype of a selected element variable is de�ned by the relation element type with the additionalconstraint that the values of the key components are restricted to the values of the selectionexpressions. This implies that the values of the key components of a selected element variablecannot be altered. Note also, that R[E1,: : : ,En] denotes an object of type ElementType onlyif an element with key value E1,E2,: : : ,En exists in R. Thus selected element variables maycause con
icts with type de�nitions and other constraints (see 9.1).? If the structure is a record R, then the designator R.f denotes the �eld f of R. The designatorP"denotes the variable which is referenced by the pointer P.If the designated object is a variable, then the designator refers to the variable's currentvalue. If the object is a function procedure, a designator without parameter list refers tothat procedure. If it is followed by a (possibly empty) parameter list, the designator impliesan activation of the procedure and stands for the value resulting from its execution, i.e. forthe \returned" value. The (types of these) actual parameters must correspond to the formalparameters as speci�ed in the procedure's declaration (see Ch. 12).Examples of designators (see examples in Ch. 7):k (INTEGER)a[i] (CARDINAL)w[3].ch (CHAR)t .key (CARDINAL)t .left .right (TreePtr)

8.4 Operands 23> parts["Printer"] (Item)suppliers["Brown & Co","Zurich"].phonenumber (CARDINAL) ?8.4.2 Aggregate expressions >An aggregate must be either of type RECORD or type ARRAY. The identi�er preceding theleft bracket of an aggregate speci�es the type of the aggregate. If an element of a relation ora component of an aggregate is an aggregate the type identi�er preceding the aggregate canbe omitted.If the aggregate is of type ARRAY, all components must be assignment compatible with thearray element type and the number of components must be the same as the number of arrayelements: if A=ARRAY [i..j] OF T and AfE0,...,Eng is an aggregate then n=j{i and thecomponent Ek corresponds to the array element with the index [i+k].If the aggregate is of type RECORD the components and the record �elds are associated inthe sequence of their declaration. The component expressions must be assignment compat-ible with their corresponding record �elds. Components associated with tag �elds must beconstant expressions (see Ch. 5). Records containing variants without tag �elds cannot bebuilt with an aggregate.$ aggregate = [qualident] \f" ExpList \g".Examples of aggregates:Item{green,"Printer",999, {"Computer"}} (Item)Node{25,t .left,NIL} (Node) ?8.4.3 Relation expressions >RTypefg denotes the empty relation of type RType.Relation expressions denote sets of relation elements; relation elements can be given by� selective or constructive access expressions as de�ned in 8.1,� unparameterized selectors denoting elements de�ned by the selective access expressionsof their bodies,� unparameterized constructors denoting the access expression list of their bodies.Note, that constructive access expressions include the case that a relation element is given byan expression that evaluates a single value of the relation's element type.If several relation elements are speci�ed, they all have to be of the same type, which is therelation element type.

24 8 EXPRESSIONS$ relation = qualident \f" AccessExpressionList \g".$ AccessExpressionList = [AccessExpression f \," AccessExpression g].Examples of relations:Items{thispart} (Items)Items{EACH p IN parts:p.code = red} (Items)Items{InRange(parts)(0,7)} (Items)Deliveries{EACH o IN orders: SOME p IN parts(o.itemname = p.itemname)} (Deliveries)Items{EACH p IN parts: p.code = thispart.code,thispart} (Items)Items{{p.code,p.itemname,1000,p.connectedTo} OFEACH p IN oldparts: p.price<1000} (Items)Connections{TransConn(parts)} (Connections)? 8.5 OperatorsThe syntax of expressions speci�es operator precedences according to four classes of oper-ators. The operators NOT, SOME and ALL have the highest precedence, followed by the>? so-called multiplying operators, then the so-called adding operators, and �nally, with thelowest precedence, the relational operators. Sequences of operators of the same precedenceare executed from left to right.> $ expression = SimpleExpression [RelOperator SimpleExpression] j$ constructor j selector.$ RelOperator = \=" j \#" j \<>" j \<" j \<=" j \>" j \>=" j IN.$ SimpleExpression = [\+" j \{"] term fAddOperator termg.$ AddOperator = \+" j \{" j OR.$ term = factor fMulOperator factorg.$ MulOperator = \�" j \/" j DIV j MOD j AND j \&".$ factor = number j string j set j designator [ActualParameters] j$ relation j aggregate j Quanti�edExpression j$ \(" expression \)" j NOT factor.$ ActualParameters = \(" [ExpList] \)".$ set = [qualident] \f" [element f\," elementg] \g".$ element = expression [\.." expression].$ Quanti�edExpression = (SOME j ALL) ident IN expression predicate.$ predicate = \(" expression \)" j Quanti�edExpression.? The available operators are listed in the following tables. In some instances, several di�erentoperations are designated by the same operator symbol. In these cases, the actual operationis identi�ed by the types of the operands.

8.5 Operators 258.5.1 Arithmetic operators symbol operation+ addition{ subtraction� multiplication/ real divisionDIV integer divisionMOD modulusThese operators (except /) apply to operands of type INTEGER, CARDINAL, or subrangesthereof. Both operands must be either of type CARDINAL or a subrange with base typeCARDINAL, in which case the result is of type CARDINAL, or they must both be of typeINTEGER or a subrange with base type INTEGER, in which case the result is of typeINTEGER.The operators +, {, and * also apply to operands of type REAL. In this case, both operandsmust be of type REAL, and the result is then also of type REAL. The division operator /applies to REAL operands only. When used as operators with a single operand only, { denotessign inversion and + denotes the identity operation. Sign inversion applies to operands oftype INTEGER or REAL. The operations DIV and MOD are de�ned by the following rules:x DIV y is equal to the truncated quotient of x/yx MOD y is equal to the remainder of the division x DIV y (for y > 0)x = (x DIV y)*y+ (x MOD y)8.5.2 Logical operators symbol operationOR logical disjunctionAND logical conjunctionNOT negationThese operators apply to BOOLEAN operands and yield a BOOLEAN result.p OR q means \if p then TRUE, otherwise q"p AND q means \if p then q, otherwise FALSE" >Quanti�ers apply to operands of type RELATION and BOOLEAN and yield a BOOLEANresult. symbol operationSOME existential quanti�cationALL universal quanti�cation

26 8 EXPRESSIONSThe expression in a quanti�ed expression must be of type RELATION. The expression in apredicate must be of type BOOLEAN. Element variables in quanti�ed expressions are calledbound element variables. The scope of a bound element variable is the subsequent predicate,its type is the element type of the subsequent relation expression.SOME r IN R (exp) is true, if some element r in the relation R makes the expression exp true.Analogously ALL r IN R (exp) is true, if all elements r in R ful�ll the selection expressionexp.? 8.5.3 Set operators symbol operation+ set union{ set di�erence� set intersection/ symmetric set di�erenceThese operations apply to operands of any set type and yield a result of the same type.x IN (s1 + s2) iff (x IN s1) OR (x IN s2)x IN (s1 - s2) iff (x IN s1) AND NOT (x IN s2)x IN (s1 * s2) iff (x IN s1) AND (x IN s2)x IN (s1 / s2) iff (x IN s1) # (x IN s2)8.5.4 Relational operatorsRelational operators yield a BOOLEAN result. They apply to the basic types INTEGER,CARDINAL, BOOLEAN, CHAR, REAL, to enumerations, and to subrange types.symbol relation= equal# unequal< less<= less or equal (set inclusion)> greater>= greater or equal (set inclusion)IN contained in (membership)The relational operators = and # also apply to sets and pointers. If applied to sets, <= and>= denote (improper) inclusion. The relational operators =, #, <, <=, >, >= may also> be used to compare arrays of type string (see Ch. 3), and then denote alphabetical orderingaccording to the underlying character set. A string of length n1 can be compared with a stringvariable of length n2 > n1. In this case the string value is extended with a null character(0C) which will be the last character to be compared.The relational operators =, #, <, <=, >, >= may also be used to express a subclass ofrelation comparisons which are key-based. The value of the expression

27r1 <= r2where r1, r2 are relation expressions is equal to the value of the quanti�ed expressionALL v1 IN r1 SOME v2 IN r2 (v1.key = v2.key).where v1.key=v2.key stands for a conjunction of comparisons of the key attributes.The relational operator IN denotes set or relation membership. In an expression of the formx IN e, the expression e must be of type SET OF T, where T is (compatible with) the typeof x, or the expression e must be of relation type and x of its element type. ?Examples of expressions (refer to examples in Ch. 7):1980 (CARDINAL)k DIV 3 (INTEGER)NOT p OR q (BOOLEAN)(i+j) * (i-j) (CARDINAL)s - {8,9,13} (BITSET)a[i] + a[j] (CARDINAL)a[i+j] * a[i-j] (CARDINAL)(0<= k) & (k<100) (BOOLEAN)t .key = 0 (BOOLEAN){13..15} <= s (BOOLEAN)i IN {0,5..8, 15} (BOOLEAN) >SOME p IN parts (p.code = red) (BOOLEAN)Items{EACH p IN oldparts: p.price<1000} <= parts (BOOLEAN)thispart IN parts (BOOLEAN) ?9 StatementsStatements denote actions. There are elementary and structured statements. Elementarystatements are not composed of any parts that are themselves statements. They are theassignment, the procedure call, and the return and exit statements. Structured statementsare composed of parts that are themselves statements. These are used to express sequencing,and conditional, selective, and repetitive execution.$ statement = [assignment j ProcedureCall j$ IfStatement j CaseStatement j WhileStatement j$ RepeatStatement j LoopStatement j ForStatement j$ WithStatement j EXIT j RETURN [expression]].A statement may also be empty, in which case it denotes no action. The empty statement isincluded in order to relax punctuation rules in statement sequences.

28 9 STATEMENTS9.1 AssignmentsThe assignment serves to replace the current value of a variable by a new value indicated byan expression. The assignment operator is written as \:=" and pronounced as \becomes".> $ assignment = designator UpdateOperator expression.$ UpdateOperator = \:+" j \:{" j \:&" j \:=".? The designator to the left of the assignment operator denotes a variable. After an assignmentis executed, the variable has the value obtained by evaluating the expression. The old valueis lost (overwritten). The type of the variable must be assignment compatible with the typeof the expression. Operand types are said to be assignment compatible, if either they arecompatible or both are INTEGER or CARDINAL or subranges with base types INTEGERor CARDINAL.A string of length n1 can be assigned to a string variable of length n2>n1. In this case, thestring value is extended with a null character (0C). A string of length 1 is compatible withthe type CHAR.> A constructor of type T1 can be assigned to a constructor of type T2 i� their formal parametertypes and result types agree. The same holds for selectors and selector variables with theadditional constraint, that the access restrictions of T2 have to be a restriction of the accessrestrictions of T1.Assignments that update a relation variable rel of type RType by a relation expression rex,using one of the relation update operators, :+, :{, :&, are equivalent to assignments using theassignment operator, :=, and a more complicated relation expression.Relation insertion:rel:+ rexis equivalent torel:= RType{EACH r IN rel: TRUE,EACH x IN rex: NOT SOME r IN rel (x.key=r.key)}.Relation deletion:rel:- rexis equivalent torel:= RType{EACH r IN rel: NOT SOME x IN rex (r.key=x.key)}Relation replacement:rel:& rex

9.2 Procedure calls 29is equivalent torel:= RType{EACH r IN rel: NOT SOME x IN rex (r.key=x.key),EACH x IN rex: SOME r IN rel (x.key=r.key)}The expressions x.key=y.key here stand for a conjunction of comparisons of the respectivekey attributes.The execution of an assignment to a selected relation variable (see 8.2)R[SP]:= rexis intended to meet the following two constraints: The value of the selected relation variableafter the assignment becomes equal to the relation expression, rex, while the value of thenon-selected rest of variable R remains unchanged. Note that, due to constraint violations, aselective assignment may not be executable.The assignment to a selected element variable (see 8.4.1) is a special case of selective relationassignment. ?Examples of assignments:i:= kp:= i = jj:= log2(i+j)F:= log2s:= {2,3,5,7,11,13}a[i]:= (i+j) * (i-j)t .key:= iw[i+1].ch:= "A" >adjacent:= DirConnparts := Items{EACH p IN oldparts: p.price>k}parts :- Items{EACH p IN parts: p.code=red}parts :& Items{thispart}parts[RedItems] := oldparts[InRange(oldparts)(0,k)] := Items{}oldparts := Items{} ?9.2 Procedure callsA procedure call serves to activate a procedure or transaction. The procedure call maycontain a list of actual parameters which are substituted in place of their correspondingformal parameters de�ned in the procedure declaration (see Ch. 12). The correspondence isestablished by the positions of the parameters in the lists of actual and formal parametersrespectively. There exist two kinds of parameters: variable and value parameters.

30 9 STATEMENTSIn the case of variable parameters, the actual parameter must be a designator denoting avariable. If it designates a component of a structured variable, the selector is evaluatedwhen the formal/actual parameter substitution takes place, i.e. before the execution of theprocedure. If the parameter is a value parameter, the corresponding actual parameter mustbe an expression. This expression is evaluated prior to the procedure activation, and theresulting value is assigned to the formal parameter which now constitutes a local variable.The types of corresponding actual and formal parameters must be compatible in the case ofvariable parameters and assignment compatible in the case of value parameters.$ ProcedureCall = designator [ActualParameters].Examples of procedure calls:Read(i)Write(j*2+1,6)INC(a[i])9.3 Statement sequencesStatement sequences denote the sequence of actions speci�ed by the component statementswhich are separated by semicolons.$ StatementSequence = statement f\;" statementg.9.4 If statements$ IfStatement = IF expression THEN StatementSequence$ fELSIF expression THEN StatementSequenceg$ [ELSE StatementSequence] END.The expressions following the symbols IF and ELSIF are of type BOOLEAN. They are evalu-ated in the sequence of their occurrence, until one yields the value TRUE. Then its associatedstatement sequence is executed. If an ELSE clause is present, its associated statement se-quence is executed if and only if all Boolean expressions yielded the value FALSE.Example:IF (ch>="A") & (ch<="Z") THEN ReadIdentifierELSIF (ch>="0") & (ch<="9") THEN ReadNumberELSIF ch = '"' THEN ReadString ('"')ELSIF ch = "'" THEN ReadString ("'")ELSE SpecialCharacterEND

9.5 Case statements 319.5 Case statementsCase statements specify the selection and execution of a statement sequence according to thevalue of an expression. First the case expression is evaluated, then the statement sequence isexecuted whose case label list contains the obtained value. The type of the case expressionmust be a basic type (except REAL), an enumeration type, or a subrange type, and all labelsmust be compatible with that type. Case labels are constants, and no value must occur morethan once. If the value of the expression does not occur as a label of any case, the statementsequence following the symbol ELSE is selected.$ CaseStatement = CASE expression OF case f\j" caseg$ [ELSE StatementSequence] END.$ case = [CaseLabelList \:" StatementSequence].Example:CASE i OF0:p:= p OR q; x:= x+y|1:p:= p OR q; x:= x-y|2:p:= p AND q; x:= x*yEND9.6 While statementsWhile statements specify the repeated execution of a statement depending on the value ofa Boolean expression. The expression is evaluated before each subsequent execution of thestatement sequence. The repetition stops as soon as this evaluation yields the value FALSE.$ WhileStatement = WHILE expression DO StatementSequence END.Examples:WHILE j>0 DOj:= j DIV 2; i:= i+1ENDWHILE i#j DOIF i>j THEN i:= i-jELSE j:= j-iENDENDWHILE (t#NIL) & (t .key#i) DOt:= t .leftEND

32 9 STATEMENTS9.7 Repeat statementsRepeat statements specify the repeated execution of a statement sequence depending onthe value of a Boolean expression. The expression is evaluated after each execution of thestatement sequence, and the repetition stops as soon as it yields the value TRUE. Hence, thestatement sequence is executed at least once.$ RepeatStatement = REPEAT StatementSequence UNTIL expression.Example:REPEATk:= i MOD j; i:= j; j:= kUNTIL j = 09.8 For statementsThe for statement indicates that a statement sequence is to be repeatedly executed while aprogression of values is assigned to a variable. This variable is called the control variable ofthe for statement. It cannot be a component of a structured variable, it cannot be imported,nor can it be a parameter. Its value should not be changed by the statement sequence.> $ ForStatement = FOR ControlSection DO StatementSequence END.$ ControlSection = ident \:=" expression TO expression [BY ConstExpression] j$ SelectiveAccessExpression j ident \:" selector.? The for statementFOR v := A TO B BY C DO SS ENDexpresses repeated execution of the statement sequence SS with v successively assuming thevalues A, A+C, A+2C, ..., A+nC, where A+nC is the last term not exceeding B. v is calledthe control variable, A the starting value, B the limit, and C the increment. A and B mustbe assignment compatible with v; C must be a constant of type INTEGER or CARDINAL.If no increment is speci�ed, it is assumed to be 1.> If the control section is given by a selective access expression, the element variable is calledcontrol element variable. If a selector is used, its element variable is renamed by the identi�erpreceding the selector; the selector has to be unparameterized. The scope of a control elementvariable is the subsequent statement sequence.The control section is evaluated only once to determine all elements e1, e2,: : : , en in the rangerelation that ful�ll the selection expression. The iteration order of these elements is systemde�ned.The control element variable obeys the same rules as a selected relation element variable (see8.4.1). The value of the control element variable may be changed if the access restriction ofthe range relation variable contains the access right :&.Examples:

9.9 Loop statements 33FOR i := 1 TO 80 DO j:= j+a[i] ENDFOR i := 80 TO 2 BY -1 DO a[i] := a[i-1] ENDFOR EACH o IN orders:SOME p IN parts ((p.itemname=o.itemname) AND (p.code=red)) DOi := i + o.quantity;END;FOR EACH item: RedItems(parts) DOitem.price:= item.price DIV 2;END ?9.9 Loop statementsA loop statement speci�es the repeated execution of a statement sequence. It is terminatedby the execution of any exit statement within that sequence.$ LoopStatement = LOOP StatementSequence END.Example:LOOPIF t1 .key> x THEN t2:= t1 .left; p:= TRUEELSE t2:= t1 .right; p:= FALSEEND;IF t2 = NIL THENEXITEND;t1:= t2ENDWhile, repeat, and for statements can be expressed by loop statements containing a singleexit statement. Their use is recommended as they characterize the most frequently occurringsituations where termination depends either on a single condition at either the beginning orend of the repeated statement sequence, or on reaching the limit of an arithmetic progres-sion. The loop statement is, however, necessary to express the continuous repetition of cyclicprocesses, where no termination is speci�ed. It is also useful to express situations exempli-�ed above. Exit statements are contextually, although not syntactically bound to the loopstatement which contains them.9.10 With statementsThe with statement speci�es a record variable and a statement sequence. In these statementsthe quali�cation of �eld identi�ers may be omitted, if they are to refer to the variable speci�edin the With clause. If the designator denotes a component of a structured variable, the selectoris evaluated once (before the statement sequence). The with statement opens a new scope.

34 10 SELECTOR DECLARATIONS$ WithStatement = WITH designator DO StatementSequence END.Example:WITH t DOkey:= 0; left:= NIL; right:= NILEND9.11 Return and exit statementsA return statement consists of the symbol RETURN, possibly followed by an expression. Itindicates the termination of a procedure (or a module body), and the expression speci�es thevalue returned as result of a function procedure. Its type must be assignment compatiblewith the result type speci�ed in the procedure heading (see Ch. 12).Function procedures require the presence of a return statement indicating the result value.There may be several, although only one will be executed. In proper procedures, a returnstatement is implied by the end of the procedure body. An explicit return statement thereforeappears as an additional, probably exceptional termination point.An exit statement consists of the symbol EXIT, and it speci�es termination of the enclosingloop statement and continuation with the statement following that loop statement (see 9.9).10 Selector declarations> Selector declarations introduce selectors. They consist of a heading de�ning the name andthe type of the selector and a body containing a selective access expression with a designatoras its range relation. Selectors are used to de�ne value-based constraints on relation variablesor to restrict access rights on relations.If the ON-parameter is omitted, the selector is bound to the global relation variable of thereference type, which is given by the range relation in the selector body. If the ON-parameteris speci�ed, it has to be used as the range relation. The WITH-parameters have to be valueparameters and can be substituted to derive new specialized selectors.A selector is called unparameterized, if neither ON- nor WITH-parameters are speci�ed.Access restrictions are explained in 6.10 and are part of the selector type. The scope rulesfor selector declarations are the same as for procedure declarations.$ SelectorDeclaration = SelectorHeading \;" SelectorBlock ident.$ SelectorHeading = SELECTOR ident [OnParameter]$ [WITH ParameterList] AccessRestriction [\:" qualident].$ SelectorBlock = BEGIN EACH ident IN designator \:" expression END.$ OnParameter = ON \(" ident \:" FormalType \)".$ ParameterList = \(" FPSection f\;" FPSectiong \)".Examples of selector declarations:

35SELECTOR RedParts: Items;BEGIN EACH r IN parts: r.code=red END RedPartsSELECTOR RedItems ON (rel: Items);BEGIN EACH r IN rel: r.code=red END RedItemsSELECTOR ColoredItems ON (rel: Items) WITH (color: Color);BEGIN EACH r IN rel: r.code=color END ColoredItemsSELECTOR OfParts ON (orders: Deliveries) WITH (s: String);BEGIN EACH o IN orders: o.itemname=s END OfParts ?11 Constructor declarations >Constructor declarations introduce constructors. They consist of a heading de�ning the nameand the type of the constructor and a body consisting of a list of access expressions. Con-structors are used to intentionally de�ne relations. Constructor declarations can be recursive(with a �xed-point semantic).ON-parameters have to be of type relation. They can be substituted by (selected) relationvariables or unparameterized constructors, i.e. their substitution yields a new constructorwith references to global or persistent relations. The WITH-parameters have to be valueparameters and can be substituted to derive new specialized constructors (see 8.3).If neither WITH- nor ON-parameters are de�ned, the constructor is called unparameterized.Unparameterized constructors can be evaluated through relation expressions (see 8.4.3).The scope rules for constructor declarations are the same as for procedure declarations.$ ConstructorDeclaration = ConstructorHeading \;" ConstructorBlock ident.$ ConstructorHeading = CONSTRUCTOR ident [ON ParameterList]$ [WITH ParameterList] \:" qualident.$ ConstructorBlock = BEGIN AccessExpressionList END.Examples of constructors:CONSTRUCTOR DirConn ON (P: Items): Connections;BEGIN{a.itemname, c} OFEACH a IN P, EACH c IN a.connectedTo: TRUEEND DirConnCONSTRUCTOR TransConn ON (P: Items): Connections;BEGINDirConn(P),{a.from, b.to} OFEACH a IN Connections{DirConn(P)},

36 12 PROCEDURE DECLARATIONSEACH b IN Connections{TransConn(P)}: a.to = b.fromEND TransConn? 12 Procedure declarationsProcedure declarations consist of a procedure heading and a block which is said to be theprocedure body. The heading speci�es the procedure identi�er and the formal parameters.The block contains declarations and statements. The procedure identi�er is repeated at theend of the procedure declaration.> Procedures can be divided into two classes, namely ordinary procedures and transaction pro-cedures. The latter are marked by the symbol TRANSACTION instead of PROCEDURE.? There are two kinds of procedures, namely proper procedures and function procedures. Thelatter are activated by a function designator as a constituent of an expression, and yield aresult that is an operand in the expression. Proper procedures are activated by a procedurecall. The function procedure is distinguished in the declaration by indication of the type ofits result following the parameter list. Its body must contain a RETURN statement whichde�nes the result of the function procedure.All constants, variables, types, modules and procedures declared within the block that consti-tutes the procedure body are local to the procedure. The values of local variables, includingthose de�ned within a local module, are unde�ned upon entry to the procedure. Since pro-cedures may be declared as local objects too, procedure declarations may be nested. Everyobject is said to be declared at a certain level of nesting. If it is declared local to a proce-dure at level k, it has itself level k+1. Objects declared in the module that constitutes acompilation unit (see Ch. 16) are de�ned to be at level 0.In addition to its formal parameters and local objects, also the objects declared in the envi-ronment of the procedure are known and accessible in the procedure (with the exception ofthose objects that have the same name as objects declared locally).The use of the procedure identi�er in a call within its declaration implies recursive activationof the procedure.> $ ProcedureDeclaration = ProcedureHeading \;" block ident.$ ProcedureHeading = (PROCEDURE j TRANSACTION) ident [FormalParameters].$ block = fdeclarationg [USING IntentionList]$ [BEGIN StatementSequence] END.$ declaration = CONST fConstantDeclaration \;"g j$ TYPE fTypeDeclaration \;"g j$ VAR fVariableDeclaration \;"g j$ SelectorDeclaration \;" j ConstructorDeclaration \;" j$ ProcedureDeclaration \;" j ModuleDeclaration \;".$ IntentionList = Intention f \;" Intentiong.$ Intention = expression f\," expressiong AccessRestriction.

12.1 Formal parameters 37Transaction procedures are the only means of interacting with the database. They consistof a sequence of operations on persistent variables and have to be regarded as atomic withrespect to their e�ects on the database. The property of atomicity does not hold for variablesother than persistent variables.Under some scheduling strategies transaction procedures are subject to automatic restarts. Arestart does not reset the global variables and parameters used in the transaction procedures.In contrast to ordinary procedures, nested and recursive calls of transaction procedures areinadmissable.An intention list may be used to denote the set of persistent variables accessed during ex-ecution of a transaction procedure. The intention list is a means for passing additionalinformation about the transaction's behavior to the compiler. The compiler may use thisinformation for some optimization.Access to a persistent object is de�ned by its designator and (a superset of) the needed accessrights. If a designator is denoted by a selector of type T, the access restriction in the intentionlist has to be a restriction of T. An unparameterized constructor C may be used to requestread access to all (sub-)relations needed to evaluate C. ?12.1 Formal parametersFormal parameters are identi�ers which denote actual parameters speci�ed in the procedurecall. The correspondence between formal and actual parameters is established when theprocedure is called. There are two kinds of parameters, namely value and variable parameters.The kind is indicated in the formal parameter list. Value parameters stand for local variablesto which the result of the evaluation of the corresponding actual parameter is assigned asinitial value. Variable parameters correspond to actual parameters that are variables, andthey stand for these variables. Variable parameters are indicated by the symbol VAR, valueparameters by the absence of the symbol VAR.Formal parameters are local to the procedure, i.e. their scope is the program text whichconstitutes the procedure declaration.$ FormalParameters = \(" [FPSection f\;" FPSectiong] \)" [\:" qualident].$ FPSection = [VAR] IdentList \:" FormalType.$ FormalType = [ARRAY OF] qualident.The type of each formal parameter is speci�ed in the parameter list. In the case of variableparameters it must be compatible with its corresponding actual parameter (see 9.2), in thecase of value parameters the formal type must be assignment compatible with the actual type(see 9.1). If the parameter is an array, the formARRAY OF Tmay be used, where the speci�cation of the actual index bounds is omitted. The parameteris then said to be an open array parameter. T must be the same as the element type of theactual array, and the index range is mapped onto the integers 0 to N{1, where N is the numberof elements. The formal array can be accessed elementwise only, or it may occur as actual

38 12 PROCEDURE DECLARATIONSparameter whose formal parameter is without speci�ed index bounds. A function procedurewithout parameters has an empty parameter list. It must be called by a function designatorwhose actual parameter list is empty too.Restriction: If a formal parameter speci�es a procedure type, then the corresponding actual parametermust be either a procedure declared at level 0 or a variable (or parameter) of that procedure type. Itcannot be a standard procedure.Examples of procedure declarations:PROCEDURE Read(VAR x: CARDINAL);VAR i: CARDINAL; ch: CHAR;BEGIN i:= 0;REPEAT ReadChar(ch)UNTIL (ch>= "0") & (ch<= "9");REPEAT i:= 10*i + (ORD(ch)-ORD("0"));ReadChar(ch)UNTIL (ch<"0") OR (ch>"9");x:= iEND ReadPROCEDURE Write(x,n: CARDINAL);VAR i: CARDINAL;buf: ARRAY[1..10] OF CARDINAL;BEGIN i:= 0;REPEAT INC(i); buf[i]:= x MOD 10; x:= x DIV 10UNTIL x = 0;WHILE n>i DOWriteChar(" "); DEC(n)END;REPEAT WriteChar(CHR(buf[i] + ORD("0")));DEC(i)UNTIL i = 0;END WritePROCEDURE log2(x: CARDINAL): CARDINAL;VAR y: CARDINAL; (* assume x>0 *)BEGIN x: = x-1; y: = 0;WHILE x>0 DOx:= x DIV 2; y:= y+1END;RETURN yEND log2> TRANSACTION AveragePrice (irel: Items): INTEGER;VAR sum: INTEGER;USING irel FOR (=);

12.2 Standard procedures 39BEGINsum := 0;FOR EACH item IN irel: TRUE DO sum := sum + item.price END;RETURN sum DIV CARD(irel)END AveragePrice;TRANSACTION DropItem (s: String);USING orders[OfParts()(s)] FOR (=);parts FOR (=, :-) ;BEGINIF SOME p IN parts (p.itemname=s) AND(orders[OfParts(s)] = Deliveries{})THEN parts :- Items{parts[s]}ENDEND DropItem; ?12.2 Standard proceduresStandard procedures are prede�ned. Some are generic procedures that cannot be explicitlydeclared, i.e. they apply to classes of operand types or have several possible parameter listforms. Standard procedures areABS(x) absolute value; result type = argument type.CAP(ch) if ch is a lower case letter, the corresponding capital letter; if ch is acapital letter, the same letter.CHR(x) the character with ordinal number x. CHR(x) = VAL(CHAR,x)FLOAT(x) x of type CARDINAL represented as a value of type REAL.HIGH(a) high index bound of array a.MAX(T) the maximum value of type T.MIN(T) the minimum value of type T.ODD(x) x MOD 2 # 0.ORD(x) ordinal number (of type CARDINAL) of x in the set of values de�nedby type T of x. T is any enumeration type, CHAR, INTEGER, orCARDINAL.SIZE(T) the number of storage units required by a variable of type T, or thenumber of storage units required by the variable T.TRUNC(x) real number x truncated to its integral part (of type CARDINAL).VAL(T,x) the value with ordinal number x and with type T. T is any enumerationtype, CHAR, INTEGER, or CARDINAL. VAL(T,ORD(x)) = x, if x oftype T. >

40 13 MODULESDEC(x) x:= x{1DEC(x,n) x:= x{nEXCL(s,i) s:= s{fig for sets, s:{fig for relationsHALT terminate program executionINC(x) x:= x+1INC(x,n) x:= x+nINCL(s,i) s:= s+fig for sets, s:+fig for relations? The procedures INC and DEC also apply to operands x of enumeration types and of typeCHAR. In these cases they replace x by its (n-th) successor or predecessor.> The �ve relation handling procedures LOWEST, NEXT, THIS, HIGHEST and PRIOR selectat most one element from the possibly selected relation variable rel given as the �rst parameter.If the element exists it is assigned to the second parameter r which must be a variable of theelement type of the �rst parameter, and EOR(rel) becomes FALSE; if the element does notexist EOR(rel) becomes TRUE and r remains unchanged.The procedures assume an order on the elements of the relation rel. If a relation key wasspeci�ed in the declaration of rel, then this order is given by the lexicographic order on thevalue sets of the types of the key components. If the key list was empty, a system dependentorder will be used.LOWEST(rel, r) selects the �rst element in rel.HIGHEST(rel, r) selects the last element in rel.PRIOR(rel, r) selects the predecessor of r in rel.NEXT(rel, r) selects the successor of r in rel.THIS(rel, r) selects the element in rel, that has the same ordinal value as r.EOR() returns, whether the last execution of any of the above listed operationsselected an element r IN rel.CARD(rex) rex is a relation expression of any relation type and the result is theactual number of relation elements in rex; the result type is CARDINAL.? 13 ModulesA module constitutes a collection of declarations and a sequence of statements. They areenclosed in the brackets MODULE and END. The module heading contains the moduleidenti�er, and possibly a number of import lists and an export list. The former specify allidenti�ers of objects that are declared outside but used within the module and thereforehave to be imported. The export-list speci�es all identi�ers of objects declared within themodule and used outside. Hence, a module constitutes a wall around its local objects whosetransparency is strictly under control of the programmer.Objects local to a module are said to be at the same scope level as the module. They can beconsidered as being local to the procedure enclosing the module but residing within a morerestricted scope.

41$ ModuleDeclaration = MODULE ident [priority] \;" fimportg [export] block ident.$ priority = \[" ConstExpression \]".$ export = EXPORT [QUALIFIED] IdentList \;".$ import = [FROM ident] IMPORT IdentList \;".The module identi�er is repeated at the end of the declaration.The statement sequence that constitutes the module body is executed when the procedure towhich the module is local is called. If several modules are declared, then these bodies areexecuted in the sequence in which the modules occur. These bodies serve to initialize localvariables and must be considered as pre�xes to the enclosing procedure's statement part.If an identi�er occurs in the import (export) list, then the denoted object may be used inside(outside) the module as if the module brackets did not exist. If, however, the symbol EXPORTis followed by the symbol QUALIFIED, then the listed identi�ers must be pre�xed with themodule's identi�er when used outside the module. This case is called quali�ed export, and isused when modules are designed which are to be used in coexistence with other modules notknown a priori. Quali�ed export serves to avoid clashes of identical identi�ers exported fromdi�erent modules (and presumably denoting di�erent objects).A module may feature several import lists which may be pre�xed with the symbol FROM anda module identi�er. The FROM clause has the e�ect of unqualifying the imported identi�ers.Hence they may be used within the module as if they had been exported in normal, i.e.non-quali�ed mode.If a record type is exported, all its �eld identi�ers are exported too. The same holds for theconstant identi�ers in the case of an enumeration type.Examples of module declarations:The following module serves to scan a text and to copy it into an output character sequence.Input is obtained characterwise by a procedure inchr and delivered by a procedure outchr.The characters are given in the ASCII code; control characters are ignored, with the exceptionof LF (line feed) and FS (�le separator). They are both translated into a blank and cause theBoolean variables eoln (end of line) and eof (end of �le) to be set respectively. FS is assumedto be preceded by LF.MODULE LineInput;IMPORT inchr, outchr;EXPORT read, NewLine, NewFile, eoln, eof, lno;CONST LF = 12C; CR = 15C; FS = 34C;VAR lno: CARDINAL;(* line number *)ch: CHAR; (* last character read *)eof, eoln: BOOLEAN;PROCEDURE NewFile;BEGINIF NOT eof THENREPEAT inchr(ch) UNTIL ch = FS;

42 13 MODULESEND;eof: = FALSE; eoln:= FALSE; lno:= 0END NewFile;PROCEDURE NewLine;BEGINIF NOT eoln THENREPEAT inchr(ch) UNTIL ch = LF;outchr(CR); outchr(LF)END;eoln: = FALSE; INC(lno)END NewLine;PROCEDURE read(VAR x: CHAR);BEGIN (* assume NOT eoln AND NOT eof *)LOOP inchr(ch); outchr(ch);IF ch>= " " THENx:= ch; EXITELSIF ch = LF THENx:= " "; eoln:= TRUE; EXITELSIF ch = FS THENx:= " "; eoln:= TRUE; eof:= TRUE; EXITENDENDEND read;BEGIN eof:= TRUE; eoln:= TRUEEND LineInput.The next example is a module which operates a disk track reservation table, and protects itfrom unauthorized access. A function procedure NewTrack yields the number of a free trackwhich is becoming reserved. Tracks can be released by calling procedure ReturnTrack.MODULE TrackReservation;EXPORT NewTrack, ReturnTrack;CONST ntr = 1024; (* no. of tracks *)w = 16; (*word size*)m = ntr DIV w;VAR i: CARDINAL;free: ARRAY [0..m-1] OF BITSET;PROCEDURE NewTrack(): INTEGER;(* reserves a new track and yields its index as result,if a free track is found, and -1 otherwise *)VAR i,j: CARDINAL; found: BOOLEAN;BEGIN found:= FALSE; i:= m;

43REPEAT DEC(i); j:= w;REPEAT DEC(j);IF j IN free[i] THEN found:= TRUE ENDUNTIL found OR (j=0)UNTIL found OR (i=0);IF found THEN EXCL(free[i],j); RETURN i*w+jELSE RETURN -1ENDEND NewTrack;PROCEDURE ReturnTrack(k: CARDINAL);BEGIN (* assume 0<=k<ntr *)INCL(free[k DIV w], k MOD w)END ReturnTrack;BEGIN (* mark all tracks free *)FOR i:= 0 TO m-1 DO free[i]:= {0..w-1} ENDEND TrackReservation.14 System-dependent facilitiesDBPL o�ers certain facilities that are necessary to program low-level operations referringdirectly to objects particular of a given computer and/or implementation. These include forexample facilities for accessing devices that are controlled by the computer, and facilities tobreak the data type compatibility rules otherwise imposed by the language de�nition. Suchfacilities are to be used with utmost care, and it is strongly recommended to restrict theiruse to speci�c modules (called low-level modules). Most of them appear in the form of datatypes and procedures imported from the standard module SYSTEM. A low-level module istherefore explicitly characterized by the identi�er SYSTEM appearing in its import list.Note: Because the objects imported from SYSTEM obey special rules, this module must be known tothe compiler. It is therefore called a pseudo-module and need not be supplied as a separate de�nitionmodule (see Ch. 16).The facilities exported from the module SYSTEM are speci�ed by individual implementations.Normally, the types WORD and ADDRESS, and the procedures ADR, TSIZE, NEWPRO-CESS, TRANSFER are among them (see also Ch. 15).The type WORD represents an individually accessible storage unit. No operation exceptassignment is de�ned on this type. However, if a formal parameter of a procedure is of typeWORD, the corresponding actual parameter may be of any type that uses one storage wordin the given implementation. If a formal parameter has the type ARRAY OF WORD, itscorresponding actual parameter may be of any type; in particular it may be a record type tobe interpreted as an array of words.The type ADDRESS is de�ned asADDRESS = POINTER TO WORD

44 15 PROCESSESIt is compatible with all pointer types, and also with the type CARDINAL. Therefore, alloperators for integer arithmetic apply to operands of this type. Hence, the type ADDRESScan be used to perform address computations and to export the results as pointers. Thefollowing example of a primitive storage allocator demonstrates a typical usage of the typeADDRESS.MODULE Storage;FROM SYSTEM IMPORT ADDRESS;EXPORT Allocate;VAR lastused: ADDRESS;PROCEDURE Allocate(VAR a: ADDRESS; n: CARDINAL);BEGIN a:= lastused; lastused:= lastused + nEND Allocate;BEGIN lastused:= 0END StorageThe function ADR(x) denotes the storage address of the variable x and is of type ADDRESS.TSIZE(T) is the number of storage units assigned to any variable of type T. TSIZE is of anarithmetic type depending on the implementation.Examples:ADR(lastused) TSIZE(Node)Besides those exported from the pseudo-module SYSTEM, there are two other facilities whosecharacteristics are system-dependent. The �rst is the possibility to use a type identi�er Tas a name denoting the type transfer function from the type of the operand to the type T.Evidently, such functions are data representation dependent, and they involve no explicitconversion instructions.The second non-standard facility is used in variable declarations. It allows to specify theabsolute address of a variable and to override the allocation scheme of a compiler. This facilityis intended for access to storage locations with speci�c purpose and �xed address, such ase.g. device registers on computers with \memory-mapped I/O". This address is speci�ed asa constant integer expression enclosed in brackets immediately following the identi�er in thevariable declaration. The choice of an appropriate data type is left to the programmer.15 ProcessesBeing aModula-2 extension, DBPL is designed primarily for implementation on a conventionalsingle-processor computer. For multiprogramming it o�ers only some basic facilities whichallow the speci�cation of quasi-concurrent processes and of genuine concurrency for peripheraldevices. The word process is here used with the meaning of coroutine. Coroutines are processesthat are executed by a (single) processor one at a time.

15.1 Creating a process and transfer of control 4515.1 Creating a process and transfer of controlA new process is created by a call toPROCEDURE NEWPROCESS(P: PROC; A: ADDRESS; n: CARDINAL;VAR p1: ADDRESS)P denotes the procedure which constitutes the process,A is the base address of the process' workspace,n is the size of this workspace,p1 is the result parameter.A new process with P as program and A as workspace of size n is assigned to p1. This processis allocated, but not activated. P must be a parameterless procedure declared at level 0.A transfer of control between two processes is speci�ed by a call toPROCEDURE TRANSFER(VAR p1, p2: ADDRESS)This call suspends the current process, assigns it to p1, and resumes the process designatedby p2. Evidently, p2 must have been assigned a process by an earlier call to either NEW-PROCESS or TRANSFER. Both procedures must be imported. A program terminates, whencontrol reaches the end of a procedure which is the body of a process.Note: assignment to p1 occurs after identi�cation of the new process p2; hence, the actual parametersmay be identical.15.2 Device processes and interruptsIf a process contains an operation of a peripheral device, then the processor may be transferredto another process after the operation of the device has been initiated, thereby leading to aconcurrent execution of that other process with the device process. Usually, termination ofthe device's operation is signalled by an interrupt of the main processor. In terms of DBPL,an interrupt is a transfer operation. This interrupt transfer is (in Modula-2 implemented onthe PDP-11) preprogrammed by and combined with the transfer after device initiation. Thiscombination is expressed by a call toPROCEDURE IOTRANSFER(VAR p1, p2: ADDRESS; va: CARDINAL)In analogy to TRANSFER, this call suspends the calling device process, assigns it to p1,resumes (transfers to) the suspended process p2, and in addition causes the interrupt transferoccurring upon device completion to assign the interrupted process to p2 and to resume thedevice process p1. va is the interrupt vector address assigned to the device. The procedureIOTRANSFER must be imported from the module SYSTEM, and should be considered asPDP-11 implementation-speci�c.It is necessary that interrupts can be postponed (disabled) at certain times, e.g. when vari-ables common to the cooperating processes are accessed, or when other, possibly time-critical

46 16 COMPILATION UNITSoperations have priority. Therefore, every module is given a certain priority level, and everydevice capable of interrupting is given a priority level. Execution of a program can be inter-rupted, if and only if the interrupting device has a priority that is greater than the prioritylevel of the module containing the statement currently being executed. Whereas the devicepriority is de�ned by the hardware, the priority level of each module is speci�ed by its head-ing. If an explicit speci�cation is absent, the level in any procedure is that of the callingprogram. IOTRANSFER must be used within modules with a speci�ed priority only.16 Compilation unitsA text which is accepted by the compiler as a unit is called a compilation unit. There are threekinds of compilation units: main modules, de�nition modules, and implementation modules.A main module constitutes a main program and consists of a so-called program module. Inparticular, it has no export list. Imported objects are de�ned in other (separately compiled)program parts which themselves are subdivided into two units, called de�nition module andimplementation module.The de�nition module speci�es the names and properties of objects that are relevant toclients, i.e. other modules which import from it. The implementation module contains localobjects and statements that need not be known to a client. In particular the de�nitionmodule contains the export list, constant, type, and variable declarations, and speci�cationsof procedure, selector and constructor headings. The corresponding implementation modulecontains the complete procedure declarations, and possibly further declarations of objects notexported. De�nition and implementation modules exist in pairs. Both may contain importlists, and all objects declared in the de�nition module are available in the correspondingimplementation module without explicit import.> Compilation units pre�xed with the symbol DATABASE are called database modules. Vari-ables declared within a database module which reside at the same scope level as the modulesare called persistent variables. Their lifetime is longer than that of any program importingthe database module. The set of all persistent variables of a database module constitutesa database. Persistent variables are shared objects, i.e. they can be accessed by severalprograms simultaneously. An access to a persistent variable must be part of a transactionexecution. During the transaction execution the calling program is guaranteed to be the onlyone accessing the respective persistent variables; the values of these variables upon entry tothe transaction however cannot be deduced from the program.$ CompilationUnit = [DATABASE] (De�nitionModule j ImplementationModule j$ ProgramModule). $ De�nitionModule = DEFINITION MODULE ident \;"$ fimportg fde�nitiong END ident \.".$ de�nition = CONST fConstantDeclaration \;"g j$ TYPE fident [\=" type] \;"g j$ VAR fVariableDeclaration \;"g j$ SelectorHeading \;" j SelectorDeclaration \;" j$ ConstructorHeading \;" j ConstructorDeclaration \;" j$ ProcedureHeading \;".$ ImplementationModule = IMPLEMENATION MODULE ident [priority] \;"

REFERENCES 47$ fimportg declaration$ [DATABASE DEFINITON StatementSequence]$ [DATABASE IMPLEMENTATION StatementSequence]$ [BEGIN StatementSequence] END ident \.".$ ProgramModule = MODULE ident [priority] \;" fimportg declaration$ [DATABASE StatementSequence] [BEGIN StatementSequence] END ident \.". ?The de�nition module evidently represents the interface between the implementation moduleon one side and its clients on the other side. The de�nition module contains those declarationswhich are relevant to the client modules, and presumably no other ones. Hence, the de�nitionmodule acts as the implementation module's (extended) export list, and all its declared objectsare exported.De�nition modules imply the use of quali�ed export. Type de�nitions may consist of thefull speci�cation of the type (in this case its export is said to be transparent), or they mayconsist of the type identi�er only. In this case the full speci�cation must appear in thecorresponding implementation module, and its export is said to be opaque. The type isknown in the importing client modules by its name only, and all its properties are hidden.Therefore, procedures operating on operands of this type, and in particular operating onits components, must be de�ned in the same implementation module which hides the type'sproperties. Opaque export is restricted to pointers. Assignment and test for equality areapplicable to all opaque types.As in local modules, the body of an implementation module acts as an initialisation facilityfor its local objects. Before its execution, the imported modules are initialized in the order inwhich they are listed. If circular references occur among modules, their order of initializationis not de�ned. >The body of a database module may contain initialization statements for each kind of com-pilation unit. This initialization is executed only once during database lifetime, namly beforeany access to the persistent variables has been made.It is also possible to de�ne the body of a selector or constructor in the de�nition part ofa module. These selectors and constructors must not be rede�ned in the implementationmodule. ?References[BJM+89] A. Borgida, M. Jarke, J. Mylopoulos, J.W. Schmidt, and Y. Vassiliou. The Soft-ware Development Environment as a Knowledge Base Management System. InJ.W. Schmidt and C. Thanos, editors, Foundations of Knowledge Base Manage-ment, Topics in Information Systems. Springer-Verlag, 1989.[BJS86] S. B�ottcher, M. Jarke, and J.W. Schmidt. Adaptive Predicate Managers inDatabase Systems. In Proc. of the 12th International Conference on VLDB,Kyoto, 1986.[B�ot90] S. B�ottcher. Improving the Concurrency of Integrity Checks and Write Opera-tions. In Proc. ICDT 90, Paris, December 1990.

48 REFERENCES[Car88] L. Cardelli. Types for Data-Oriented Languages. In Advances in Database Tech-nology, EDBT '88, volume 303 of Lecture Notes in Computer Science, pages 1{15.Springer-Verlag, 1988.[EEK+85] H. Eckhardt, J. Edelmann, J. Koch, M. Mall, and J.W. Schmidt. Draft Reporton the Database Programming Language DBPL. DBPL-Memo 091-85, Fachbere-ich Informatik, Johann Wolfgang Goethe-Universit�at, Frankfurt, West Germany,1985.[ERMS91] J. Eder, A. Rudlo�, F. Matthes, and J.W. Schmidt. Data Construction with Re-cursive Set Expressions in DBPL. In Proceedings of the Kiev East/West Workshopon Next Generation Database Technology, volume 504 of Lecture Notes in Com-puter Science, April 1991.[JGL+88] W. Johannsen, L. Ge, W. Lamersdorf, K. Reinhard, and J.W. Schmidt. DatabaseApplication Support in Open Systems: Language Support and Implementation.In Proc. IEEE 4th Int. Conf. on Data Engineering, Los Angeles, USA, February1988.[JK83] M. Jarke and J. Koch. Range Nesting: A Fast Method to Evaluate Quanti�edQueries. In Proceedings of the ACM-SIGMOD International Conference on Man-agement of Data, pages 196{206, May 1983.[JLRS88] W. Johannsen, W. Lamersdorf, K. Reinhard, and J.W. Schmidt. The DURESSProject: Extending Databases into an Open Systems Architecture. In Advancesin Database Technology, EDBT '88, volume 303 of Lecture Notes in ComputerScience, pages 616{620. Springer-Verlag, 1988.[JLS85] M. Jarke, V. Linnemann, and J.W. Schmidt. Data Constructors: On the Inte-gration of Rules and Relations. In 11th Intern. Conference on Very Large DataBases, Stockholm, August 1985.[JMW+90] M. Jeusfeld, M. Mertikas, I. Wetzel, Jarke. M., and J.W. Schmidt. DatabaseApplication Development as an Object Modelling Activity. In Proc. 16th VLDBConference, Brisbane, Australia, August 1990.[MS89] F. Matthes and J.W. Schmidt. The Type System of DBPL. In Proceedings of theSecond International Workshop on Database Programming Languages, Salishan,Oregon, pages 255{260, June 1989.[MS91] F. Matthes and J.W. Schmidt. Towards Database Application Systems: Types,Kinds and Other Open Invitations. In Proceedings of the Kiev East/West Work-shop on Next Generation Database Technology, volume 504 of Lecture Notes inComputer Science, April 1991.[MS92] F. Matthes and J.W. Schmidt. DBPL User and System Manual. FIDE Tech-nical Report FIDE/92/??, Fachbereich Informatik, Universit�at Hamburg, WestGermany, 1992.[MSS91] F. Matthes, G. Schr�oder, and J.W. Schmidt. VAX Modula-2 User's Guide; VAXDBPL User's Guide. DBPL Memo 121-91, Fachbereich Informatik, Universit�atHamburg, West Germany, December 1991.

REFERENCES 49[Sch77] J.W. Schmidt. Some High Level Language Constructs for Data of Type Relation.In Proceedings of the ACM-SIGMOD International Conference on Managementof Data, Toronto, Canada, August 1977.[SEM88] J.W. Schmidt, H. Eckhardt, and F. Matthes. DBPL Report. DBPL-Memo 112-88,Fachbereich Informatik, Johann Wolfgang Goethe-Universit�at, Frankfurt, WestGermany, 1988.[SGLJ89] J.W Schmidt, L. Ge, V. Linnemann, and M. Jarke. Integrated Fact and RuleManagement Based on Database Technology. In J.W. Schmidt and C. Thanos,editors, Foundations of Knowledge Base Management, Topics in Information Sys-tems. Springer-Verlag, 1989.[SL85] J.W. Schmidt and V. Linnemann. Higher Level Relational Objects. In Proc. 4thBritish National Conference on Databases (BNCOD 4). Cambridge UniversityPress, July 1985.[SM89] J.W. Schmidt and F. Matthes. Advances in Database Programming: On Con-cepts, Languages and Methodologies. In Proc. 16th SOFSEM'89, �Zdiar, HighTatra, �CSSR, December 1989. Available through Hamburg University.[SM90a] J.W. Schmidt and F. Matthes. DBPL Language and System Manual. EspritProject 892 MAP 2.3, Fachbereich Informatik, Universit�at Hamburg, West Ger-many, April 1990.[SM90b] J.W. Schmidt and F. Matthes. Language Technology for Post-Relational DataSystems. In A. Blaser, editor, Database Systems of the 90s, volume 466 of LectureNotes in Computer Science, pages 81{114, November 1990.[SM91a] J.W. Schmidt and F. Matthes. Modular and Rule-Based Database Programmingin DBPL. FIDE Technical Report FIDE/91/15, Fachbereich Informatik, Univer-sit�at Hamburg, West Germany, February 1991.[SM91b] J.W. Schmidt and F. Matthes. Naming Schemes and Name Space Management inthe DBPL Persistent Storage System. In Proceedings of the Fourth InternationalWorkshop on Persistent Object Systems, Martha's Vineyard, Massachusetts. Mor-gan Kaufmann Publishers, January 1991.[SWBM89] J.W. Schmidt, I. Wetzel, A. Borgida, and J. Mylopoulos. Database Program-ming by Formal Re�nement of Conceptual Designs. IEEE { Data Engineering,September 1989.

