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iAbstractThis report studies the dynamical properties of Hop�eld-Gardner neural networks, with the objectof phase-space gardening.It introduces the new concept of local stability learning rules that specify the stability of eachpattern at each neuron individually.Simulations of the networks show that these learning rules allow to adjust the size and shape thebasins of attraction of the stored patterns as desired.ZusammenfassungDieser Bericht untersucht die M�oglichkeiten, die dynamischen Eigenschaften von neuronalen Netz-werken des Hop�eld-Gardner Typs gezielt zu modi�zieren | das sogenannte 'Phase-Space Gar-dening'. Dazu wird das neue Konzept von local stability Lernregeln vorgestellt. Idee dieserLernregeln ist es, f�ur jedes Neuron und zu lernende Muster die Stabilit�at einzeln vorzugeben.Umfangreiche Simulationen zeigen, da� durch die Verwendung dieser Lernregeln tats�achlich dieGr�o�e und Gestalt der Einzugsbereiche der Muster in weiten Grenzen frei eingestellt werdenk�onnen.
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11 IntroductionHop�eld-Gardner neural networks are both simple and very powerful models of associative memory.Because of their analogy to Ising-spin systems, many properties of the networks can be studiedusing the methods of statistical physics. Probably most important is the replica calculation ofthe maximum storage capacity by [Gardner 87]. However, the dynamics of the networks is verycomplex and still out of reach of the theoretical methods.This report focuses on a study of the basins of attraction in Hop�eld-Gardner networks. Whileprevious studies used networks near saturation, where all patterns have basins of attraction ofapproximately the same size, the object of this report are techniques to adjust size and shapeof the basins of attraction for each pattern|techniques also called phase space gardening forobvious reasons.To this end, a new class of local stability learning rules is presented. These learning rules allowto set the desired stability of a pattern at each neuron. Extensive simulations of the resultingnetworks show that the local stability learning rules allow to set the size and shape of the basinsof attraction of the memory patterns.Main contributions of this report are as follows:� Section 2 introduces the concept of local stability learning rules . Two local stability learningrules are presented in detail:A local stability learning rule for the integer couplings network (spherical model) is derivedas a generalization of the Minover algorithm. This algorithm allows to reach the optimalstabilities for given patterns.Also, a new learning algorithm for the binary couplings network is presented. The algo-rithm combines a greedy optimization (energy-minimization) strategy with the Minovercost-function and can be adapted for local stability learning. It reaches a storage capacityof � � 0:4 in the binary couplings network.� The simulation strategy used in this report, based upon [Forrest 88], is explained in section 3.A new three parameter scaling law for the mf(m0)mean �nal overlap as a function of initialoverlap data is presented. It provides very accurate �ts to the mf (m0) data and allows toderive the size of the basin of attraction mc for a given pattern.� In section 4 the local stability learning rules are used to set the size of the basins of attraction.Simulations of both the integer and the binary couplings networks show that the size of thebasin of attraction of a pattern correlates with the pattern stability. In the same network,



2 1. INTRODUCTIONsome patterns may have very large basins of attraction, while other patterns have smallbasins of attraction.� An attempt to control the shape of the basins of attraction is presented in section 5.A left/right (LR) anisotropy in the stability distributions is used during learning. Thesimulations show that this simple strategy su�ces to install a LR anisotropy in the basinsof attraction.Put together, the results from section 4 and section 5 prove that the local stability learning rulesallow to set both the size and the shape of the basins of attraction|they allow full phase spacegardening. To the best of our knowledge, this report is the most complete study of the dynamicsof Hop�eld-Gardner networks so far and it is the �rst work to study in detail the dependence ofthe basins of attraction on pattern stabilities.This introduction presents the basic de�nitions and terminology used in the later sections. First,section 1.1 describes the original Hop�eld memory neural network with Hebb learning rule andexplains autoassociative storage. Then the Gardner calculation of the maximum storage capacityis presented. Third, the problems encountered in the theoretical understanding of the dynamicsof the networks are sketched in section 1.3.Finally, section 1.4 summarizes the scope of this work, namely the analysis of local stabilitylearning rules and their use to adjust the size and shape of the basins of attraction of the storedmemory patterns.1.1 The Hop�eld-Gardner neural network modelSince the 1982 seminal paper [Hop�eld 82], spin-glass neural networks have attracted considerableattention. The networks show collective computational properties which make them a paradigmfor fault-tolerant massive-parallel computation.A Hop�eld network consists of a highly interconneted system of N Ising spins (called neurons)Si = �1 with couplings Jij from neuron j to neuron i.The basic idea is to store P = � �N binary patterns ��i = �1, � = 1 : : :P , i = 1 : : :N as the�xed points of the dynamics of the network.To compute the state Si at time step t+ 1 both a parallel dynamicsSi(t+ 1) = sgn�jjJij jj�1Xj 6=i JijSj(t)� = sgn�hi(t)�; (1)or serial dynamics (one spin update after another) can be used. A pattern is stored as the �xedpoint of this dynamics if ��i = sgn(jjJijjj�1Pj 6=i Jij��j ). The patterns are then memorized bythe network in a content-addressable (auto-associative) way: starting from an initial state which



1.2 Storage capacity and stabilities 3partially resembles one of the patterns, the system will rapidly evolve into the nearest attractor|the pattern.Hop�eld proposed to set the synaptic couplings according to the Hebb learning rule [Hop�eld 82],Jij = 1N PX�=1 ��i ��j : (2)With the Hebb-rule, the local �eld hi� at neuron Si for pattern ��i becomeshi� = 1N Xj 6=i PX�=1 ��i ��j ��j = 1N�(N � 1)��i +Xj 6=i X� 6=� ��i ��j ��j �: (3)The �rst term stabilizes the pattern, because ��i = sgn(��i ). For uncorrelated patterns (that is,Pj ��i ��j = 0), the sum Pj 6=iP� 6=� ��i ��j ��j consists of P � N uncorrelated terms �1=N , withmean 0 and variance pP=N . Therefore, the patterns will be �xed points of the dynamics as longas � = P=N < 1.From simulations Hop�eld found that the patterns are �xed points and attractors of the dynamicsas long as � < 0:15.Many aspects of the Hop�eld networks are quite well understood by now. For example,[Amit et. al. 85] and [Amit et. al. 87] were able to calculate the mean-�eld theory of the Hop�eldmodel for both �nite and in�nite number of patterns in the replica-approximation.1.2 Storage capacity and stabilitiesShortly after the publication of the Hop�eld model, the search for learning rules with betterstorage capacity �c than the Hebb rule started. Given P patterns ��i , is there a choice of the Jijso that the patterns are stored?In 1987, [Gardner 87] succeeded to calculate the optimal storage capacity of attractor networks,applying the replica method to the space of interactions Jij . To ensure �nite basins of attractionsaround the patterns, a positive 'stability' � is introduced and the synaptic couplings Jij are chosento ful�l the constraints�i� = hi� � ��i � � > 0: (4)Obviously, all patterns are stored correctly, if (the symbol �(x) denotes the Heavyside function)Y�;i �( hi� � ��i � � ) = 1: (5)



4 1. INTRODUCTIONGardner was able to calculate the volume of the subspace of all couplings Jij that ful�l the abovecondition as a function of the stability �. With the spherical norm jjJij jj =Pj J 2ij = N , one hasVT = R Qi6=j dJij Q�;i �( hi� � ��i � � ) �(Pj J 2ij �N )R Qi6=j dJij Qi �(Pj J 2ij �N ) : (6)If this subspace VT shrinks to a single point, the network has reached its optimal storage capaci-ty. The very complicated calculation gives (in the replica-symmetric approximation) the storagecapacity � as a function the of minimum stability � as�c(�) = � 1p2� Z 1�� dt e�t2=2 (t + �)2��1; (7)so that �c(0) = 2 [Gardner 87]. This function is sketched in �gure 1.
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α Figure 1: Storage capacity �(�) as a function of minimum stability in the spherical modelA similar calculation is also possible if the couplings are restricted to binary values or integervalues with a �nite range [Gardner & Derrida 88], [Gutfreund & Stein 90]. The e�ects of replicabreaking, however, are very large. The current best estimation for the optimal storage capacityof the binary couplings model is �c;B = 0:83, in excellent agreement with the zero-entropycalculation and simulations [Krauth & Opper 89], [Krauth & M�ezard 89].1.3 Basins of attraction analysisDespite several e�orts, no simple analytical model exists for the description of the dy-namical properties of the Hop�eld-Gardner networks [Krauth et. al. 88], [Kepler & Abbott 88],[Opper et. al. 89], [Nardulli & Pasquariello 90]. Some of the di�culties encountered are obvious:



1.3 Basins of attraction analysis 5� The Hamiltonian (the matrix of couplings Jij) is known explicitly only for the simple caseof the Hop�eld model, but not for the better networks with iterative learning.� Even in the Hop�eld model, the calculation of the �rst-time overlapm1 of the network statewith a pattern after one step of the dynamics is extremely complicated [Bruce et. al. 87].The calculation of m2, m3, etc. is (almost) hopeless.� Several dynamical rules are plausible and have to be studied. For example, simulations showthat a dynamical rule with memory-terms [Kanter & Sompolinsky 87] may lead to betterrecall than the simple parallel or serial dynamics.� The energy landscape of the networks is very complicated. Spurious attractors, e. g. resultingfrom a mixture of patterns, were �rst observed in the Hop�eld model and may completelydominate the dynamics. For example, above � = 0:051 the spurious states are the globalenergy minima in the Hop�eld model.As shown in the previous section, the analytical models allow to calculate whether the patterns�� are stored as �xpoints in the networks. The main objective of an analysis of the dynamics ofthe networks is a model for the basins of attraction of the patterns. That is, what input patternswill be recalled by the network under its dynamics?Starting from a test pattern �0 with initial overlap m0(�0; ��) = 1=NPi �0i��i with a memorypattern ��, �rst the pattern is loaded into the network, so that Si(0) = �0i. Then the dynamicsof the network is iterated, to give Si(1) = sgn(hi(0)), then Si(2) = sgn(hi(1)), : : : After somesteps of the dynamics, the network may reach a �xed point, Si(tf ) = Si(tf �1). The test patternis recalled correctly, if Si(tf ) = ��i . However, the network may recall another memory pattern,Si(tf ) = ��i , or evolve into a spurious attractor or cycle.The basin of attraction of memory pattern �� is the set of all input patterns �0 which ful�lf�0 j S(0) = �0 ) S(tf) = ��g. For example, if all test patterns with initial overlap m0 > mcwith a given pattern �� are recalled correctly by the network, but test patterns with overlapm0 < mc are not recalled, then mc is the size of the basin of attraction of pattern ��.A simple estimation is possible, if the patterns are stored with stability �, so that ��i hi� > �. Thenetwork will then recognize all test patterns that di�er in less than O(�N�1=2) positions frompattern �� in one time step. However, simulations show that the basins of attraction around thememory patterns are much larger, of order O(1).A typical example of a (very small) memory pattern and three input patterns with di�erentoverlap with this memory pattern is shown in �gure 2. The pattern � (�gure 2a) consists of 144bit positions, with (almost) equal probability of �1 (white) and +1 (black). The patterns shownin �gure 2b, 2c, and 2d represent patterns �0 with overlap m0 = 0:9, 0:8 and 0:5.The size of the basins of attraction in Hop�eld-Gardner networks may be much larger thanm0 = 0:5. A network could therefore easily recognize even the third test pattern.



6 1. INTRODUCTION
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a) b) c) d)Figure 2: Example memory pattern and three test patternsOnly in special cases it has been possible to derive analytical models for the dynamics of thenetworks, e. g. in sparse connected Hop�eld networks with less than O(lnN) couplings perneuron [Derrida et. al. 87]. The calculation is also possible in the saturated, sparse connectedGardner network, where the basins of attraction are found to be optimal below � � 0:41|all testpatterns with macroscopic overlap m0 > 1=pN are recalled correctly [Gardner 89a].A model for the basins of attraction in fully connected, saturated networks was presented in[Kepler & Abbott 88]. From computer simulations they concluded that most patterns are per-fectly recalled, if the overlap m1 between network state and memory pattern �� after one step ofthe dynamics is larger than the initial overlap m0 of the test pattern ��;r. With an elaborate repli-ca calculation [Kepler & Abbott 88] were able to calculate m1(m0) and could predict the basinsof attraction. However, the model is only approximate and valid only for saturated networks with� � �c(�).Therefore, so far most studies of the dynamics of the networks used computer simulations[Forrest 88], [Hendrich 91], [Koscielny-Bunde 92]. The simulation strategy used in this reportis presented in section 3.1.4 Scope of this workPhase-space gardening|the capability to control the size and shape of the basins of attractionaround the stored patterns|is very desirable for actual applications of large Hop�eld networks asassociative memories. This would also make Hop�eld networks a much better model for associativerecall in the human brain, where obviously some patterns are recalled much better than others.As a means to phase-space gardening (PSG) this report introduces and studies the concept oflocal stability learning rules, both in the spherical model (unrestricted integer couplings) and thebinary couplings model. Extensive simulations of the resulting networks study the size and shapeof the basins of attraction around the stored patterns.The results show that the size of the basins of attraction of a pattern �� can be accuratelycontrolled by the value of the minimum stability of this pattern|in a wide range from tiny to



1.4 Scope of this work 7very large basins of attraction. The shape of the basins of attraction, however, can be adjustedto a much lesser extent.1.4.1 Local stability learning rulesThe original Hop�eld model with Hebb learning gives the same stabilities (a Gaussian distribution)for all patterns. On the other hand, iterative learning rules allow to select the minimum stabilitiesfor a given pattern. Since the �rst simulations of iterative learned networks it has been conjecturedthat larger stabilities imply larger basins of attraction [Forrest 88].However, most previous simulations of iterative learned networks used saturated networks witha global stability � = �max(�) only, and did therefore not study the e�ect of di�erent patternstabilities at given storage density �.This report introduces the concept of local stability learning rules, where the desired minimumstability is not a global constant, but rather chosen individually for each pattern and neuron.That is, instead of one global stability, hi���i > �, the local stability learning rules use P �N localstabilities ��i with hi���i > ��i .This generalization is possible for both the iterative learning rules used in the spherical modelnetworks and the energy-minimization learning rules proposed for the binary-couplings network.In fact, the generalization of the iterative Minover [Krauth & M�ezard 87] learning rule and it'sspeed-optimized variant [Abbott & Kepler 89a] are straightforward.Several initial distributions of the stabilities and the resulting distributions after learning are studiedin this paper.1.4.2 Size of the basins of attractionThe �rst set of experiments with the local stability learning rules is presented in section 4. Thebasins of attraction are studied both in the spherical and the binary-couplings model for twotypical choices for the distribution of stabilities.To test whether larger stabilities actually give larger basins of attraction, a piece by piece constantinterval function is chosen for the distribution of stabilities �(�). That is, the patterns are dividedinto groups and each group of patterns is assigned a stability �i before learning. The simulationsshow that the size of the basins of attraction correlates well with the stabilities for all storagedensities. In fact, it is possible to install very large basins of attraction for some of the patternseven at relatively high storage ratio, at expense of the size of the basins of attraction of mostother patterns.The second set of simulations presents networks with a linear distribution of stabilities, that is,the stability of pattern �� is given by �� = �=P � �max. The simulation data show that it ispossible to set the size of the basin of attraction individually for each pattern.



8 1. INTRODUCTION
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a) All basins of attraction are spherical and of same size (Hop�eld, saturated Gardner model) b)Basins of attraction of di�erent size c) Anisotropic basins of attraction (full phase-space gardening)Figure 3: Phase-space view of the basins of attraction1.4.3 Shape of the basins of attraction: Phase Space GardeningThe simulations presented in section 5 try to install anisotropic basins of attraction around thepatterns.A simple model is introduced to generate a left/right (LR) asymmetry in the distribution ofstabilities of the patterns. A pattern with a high stability �h at the left half of neurons i =1 : : :N=2 but low stability �l at the right half of neurons i = N=2 + 1 : : :N should be recalledbetter from test patterns with noise at the left half of neurons.The simulations show that it is possible to shape the basins of attraction using this technique.However, because small stabilites imply small basins of attraction, the left/right asymmetry is notlarge for either patterns with very small or very large basins of attraction.Some of the implications of the phase-space gardening will be presented in the summary.



92 Local stability learning rulesThis section presents an overview of learning rules for the Hop�eld-Gardner networks, based uponthe Hebb rule as used in the original Hop�eld model. The properties of some iterative learningrules, namely the Minover rule which allows to attain the optimal storage capacity of the Gardnermodel, are summarized in section 2.1. The distributions of stabilities resulting from Hebb andMinover learning are presented in section 2.2.Section 2.3 introduces the new concept of local stability learning rules, the main contribution ofthis report. A local stability learning rule for the spherical model is presented as a generalizationof the Minover rule. Finally, a local stability learning rule for the binary couplings network basedon the energy-minimization rule is given in section 2.4.2.1 Iterative learning rulesShortly after the presentation of the original Hop�eld model with Hebb learning, several groupsproposed iterative learning rules to improve the storage capacity and the recall properties of thenetworks. All of these learning rules are based upon the iteration of Hebb learning steps, until nofurther improvements are possible [Diederich & Opper 87].For the purpose of this report, the Minover algorithm [Krauth & M�ezard 87] is of special interest.Given a network with N neurons and a set of P patterns �� the Minover learning rule iterativelymodi�es the couplings Jij to give the solution with optimal minimum stability �. The idea of thealgorithm is an iteration of Hebb learning steps. To set the new value of synapse Jij , the patternsare sorted by their stabilities, and the pattern �� with the lowest stability so far is used for theHebb learning,Jij ! Jij +N�1 ��(�i� � �) � ��i ��j : (8)This is iterated for all neurons and couplings, until all stabilities �i� > �. A pseudocode descriptionof the Minover algorithm, already modi�ed for local stability learning, is given in �gure 4. Theoriginal Minover algorithm uses the global stability � instead of the local stabilities ��i .To improve the convergence, [Abbott & Kepler 89a] [Abbott 90] proposed to scale the individualHebb steps with the norm jjJij jj of the coupling matrix. The optimal learning speed (minimumnumber of iterations) is reached forJij ! Jij +N�1 ��(�i� � �) � 2(�+ � � �i�)jjJij jj � ��i ��j : (9)



10 2. LOCAL STABILITY LEARNING RULES2.2 The distribution of stabilitesOne criterion for the classi�cation of attractor neural networks is the distribution of stabilities �(�)after learning, where �(�)d� is the normalized fraction of stabilities ��i in the interval [�;�+d�][Abbott & Kepler 89b].In the Hop�eld model a simple analysis of the local �elds (see equation 3) gives�H(�) = 1p2� exp��12��� 1p��2 �: (10)That is, a Gaussian distribution centered around 1=p� and variance 1. Because the Gaussiandistribution is not zero for � < 0, the patterns are not stored perfectly in the Hop�eld model.In saturated Gardner networks with parameters �, �c(�) the distribution of stabilities can becalculated as well. One has�(�) = 1p2� exp(��2=2)�(�� �c) + 12�1 + erf(�c=p2)��(�� �c); (11)that is a � peak at � = �c and an exponential tail above � � �c.2.3 Local stability learning rulesThe learning rules as presented above try to install the same stabilities for all patterns, to givesaturated networks. Simulations show that this results in networks where all patterns have similarand isotropic basins of attraction [Forrest 88].Under the assumption that the size of the basin of attraction of a pattern correlates with thepattern stability, it is obvious how to modify the above iterative learning rules.� If the basin of attraction of pattern �� should be isotropic but of given size, the pattern islearned until its stabilities �i� are all above a preset value ��, independent of neuron indexi. The value of �� will, however, depend on the storage ratio � and the stabilities chosenfor the other patterns.For example, to enlarge the basin of attraction of pattern �1 in an otherwise saturatednetwork (N , P ), the value �2 � �c(P=N)� � is chosen for patterns �2 to �P , but a largervalue �1 > �c(P=N) is chosen for pattern �1.Two sets of experiments with this type of learning rule are presented in section 4.� If full phase-space gardening is desired, all individual stabilities �i� of pattern �� are presetduring learning.If the pattern �� should be recalled with large basin of attraction at some group of neuronsSi1;:::;in , the respective desired stabilities �i1;� : : : �in;� are set to large values.Simulations with this type of learning rule are presented in section 5.



2.4 Local stability learning in the binary couplings network 11The generalization of the original Minover algorithm into a local stability learning algorithm isstraigtforward|the global parameter � is split into individual values of ��i for all patterns andneurons. A pseudocode description of the algorithm is given in �gure 4.Minover PSG learning( network N , patterns ��, desired stabilities ��i ):initialize the couplings Jij to random or Hebb valuesfor all neurons Si do (parallel)repeatcalculate all pattern stabilities �i�select the pattern �� with lowest stability �i�Jij ! Jij +N�1 ��(��i � �i�) � ��i ��juntil (all �i� > ��i )end forcalculate new norm jjJijjjreturn Jij Figure 4: Minover PSG learning algorithm2.4 Local stability learning in the binary couplings networkThe Hop�eld-Gardner network with clipped binary couplings Jij = �1 is of special theoreticaland practical interest. First, the binary couplings network has �nite information content in thelimit N !1. It stores 0:83 �N2 bits using a coupling matrix of N2 bits|whereas the standardinteger-coupled networks have vanishing relative information content (less than 2 �N2 bits storedin a coupling matrix of N2 � lnN bits). Second, the use of only binary couplings make this modelespecially attractive for electronic or optical implementation.Unfortunately, learning is much harder in the binary couplings network. No learning rules (exceptexhaustive search) are known that allow to reach the critical storage ratio �B = 0:83.The simple clipped Hebb rule, Jij = sgn(P� ��i ��j ) gives a critical storage ratio below � � 0:1,with large number of bit-errors in the patterns and small basins of attraction. Obviously, algorithmsbased on iteration of Hebb steps are not possible in the binary couplings network.However, the learning can be formulated as an optimization problem and standard optimizationalgorithms may be used. For example, [Koehler et. al. 89] de�ned a cost-function asE =Xi;� (�i� � �)2 (12)



12 2. LOCAL STABILITY LEARNING RULESand used a simple gradient descent method to minimize this cost-function by 
ipping the Jij . Apseudocode description of the algorithm is shown in �gure 5. It gives a critical storage ratio of�b;K � 0:4.A variant of this algorithm similar to the Minover scheme was used by [Hendrich 92] in a simulationof fault-tolerance in the binary-couplings network. The idea is to use the cost-functionE =Xi;� �(� � �i�) (13)in combination with the gradient-descent. This algorithm, too, gives �b;H � 0:4 but is easier tocompute and better suited for actual hardware implementations.Examples of the distribution of stabilities after learning with this algorithm are shown in �gure 7.Both of the energy-minimization algorithms can be adapted for phase-space gardening. The idea,again, is to select the individual stabilities a pattern �� should have at neuron Si after learning.The modi�cations to the algorithms are straightforward, see �gure 6 for a pseudocode description.



2.4 Local stability learning in the binary couplings network 13Energy minimization learning( network N , patterns ��, stability � ):initialize the couplings Jij to random valuesfor all neurons Si do (parallel)calculate initial energy, E =Pj;�(�i� � �)2repeatselect a random index kcalculate E+ = E(J 0ik = Jik) and E� = E(J 0ik = �Jik)if (E� < E+) then set Jik = �Jikuntil (no further improvement in E)end forFigure 5: Energy minimization learning algorithm [Koehler et. al. 89]
Energy minimization PSG learning(network N , patterns ��, desired stabilities ��i ):initialize the couplings Jij to random valuesfor all neurons Si do (parallel)calculate initial energy, E =Pj;��(��i � �i�)repeatselect a random index kcalculate E+ = E(J 0ik = Jik) and E� = E(J 0ik = �Jik)if (E� < E+) then set Jik = �Jikuntil (no further improvement in E)end for Figure 6: Energy minimization PSG learning algorithm [Hendrich 93]



14 2. LOCAL STABILITY LEARNING RULES� = 0:10 (� = 2:0) � = 0:20 (� = 1:1)
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153 Simulation MethodThe results presented in this paper were obtained using the simulation strategy �rst introducedby [Forrest 88]. This section describes the simulation method in more detail.First, the basic idea of the simulations is sketched in section 3.1. Then the typical simulation data,namely the mean �nal overlap mf and the fraction of perfectly recalled patterns fp, is presented.In section 3.3 a new scaling law for the mf(m0) data is proposed that allows to determine thesize of the basins of attraction. Finally, the algorithms for test pattern generation and paralleldynamics are discussed in section 3.4 and section 3.5.3.1 Basic simulation algorithmAs discussed above, the analytical description of the complex dynamics of Hop�eld-Gardner net-works is still out of reach. Therefore, a study of the dynamics of the networks has to recur tocomputer simulation.The basic simulation method used in this paper follows the ideas introduced in [Forrest 88]. Giventhe network size N and storage density �, the network is initialized, a set of random patterns��i = �1, i = 1 : : :N and � = 1 : : :P (P = � �N) is generated and the desired learning rule(Hebb, iterative, Minover, energy minimization, etc.) is applied.To study the basins of attraction around a given pattern ��, random test patterns ��;r withinitial overlap m0 = 1=N Pj ��j ��;rj with pattern �� are generated and iterated to stability underthe network dynamics. Then, the interesting statistical data is recorded, including the �rst stepoverlap m1 after one step of the dynamics, the �nal overlap mf at the �xpoint, the fraction fpof perfectly recalled test patterns, etc.A pseude-code notation of the basic simulation algorithm is shown in �gure 8.In previous simulations of saturated networks, no phase-space gardening was intended. Therefore,all patterns �� had the same stabilities and the simulations could average over all patterns ��. Tostudy the e�ects of phase-space gardening, however, the simulations must record data for eachpattern and are therefore computationally very expensive.3.2 Typical simulation data mf(m0)As an example of the typical data recorded in the simulations, �gure 9 shows the mean �naloverlap mf of the test pattern ��;ri with a pattern ��i as a function of the initial overlap m0 fornetworks of di�erent size.It is obvious that the transition between bad (almost none) and good (almost perfect) recognitionof patterns becomes sharper in larger networks, indicating a phase transition between no andperfect recognition in the limit N !1.



16 3. SIMULATION METHODBasins of attraction simulation( network N ):select global parameters and learning rule (N , P = � �N)for i = 1 to #simulationscreate network and set of random patternsapply learning rulefor � = 1 to Pselect pattern ��ifor initial overlap m0 = m0;1 to m0;Kfor j = 1 to #test-patternsgenerate test-patterniterate to stabilityrecord statistical data (e.g. mf )end forend forcalculate pattern data (e.g. mf (m0))end forcalculate network data (e.g. mc(�))end foraverage over networks Figure 8: Basic simulation algorithm3.3 Estimation of the basins of attractionGiven the simulation data for the �nal overlap mf (m0) as a function of initial overlap at discretevalues of m0 only, there remains the problem to get an accurate estimation for the size of thebasins of attraction. In the following the 'critical initial overlap' mc is used for the size of thebasin of attraction. In an in�nite sized network, all patterns ��;ri with overlap m0 > mc arerecalled perfertly as �� and test patterns with overlap m0 < mc are not recalled. However, intypical simulations small networks are used and �nite size e�ects have to be studied.In [Forrest 88] a simple analytical model was proposed for the fraction fp of perfectly recalledpatterns as a function of m0, critical initial overlap mc and network size N . The function usedwas fp(m0)=(1� fp(m0)) = a1 exp(N a2(m0 �mc)) (14)which provided a very accurate �t to the observed simulation data. Examples for the fp(m0)simulation data are shown in �gure 14 and �gure 15 for several memory patterns in the binarycouplings model.



3.4 Random pattern generation 17
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Typical data for the mean �nal overlapmf as a function of initial test patternoverlap m0. The diagrams shows binarycouplings networks with � = 0:20, N =128 and N = 2048.Each data point (cross) is averaged over1000 random test patterns with overlapm0 with a randomly selected pattern ��.The lines show the linear interpolation be-tween the data points.Note that the transition between perfect(mf � 1) and no recognition becomesvery sharp in larger networks.Figure 9: Mean �nal overlap mf vs. initial overlap m0, �nite-size scalingIn this report, a similar scaling hypothesis is presented for the function mf (m0), namely,mf(m0) = a1m0 + exp(N a2(m0 �mc))1 + exp(N a2(m0 �mc)) : (15)Typical �ts to the simulation data mf (m0) for di�erent patterns with large and tiny basins ofattraction are shown in �gure 10 for a binary-couplings network with � = 0:15 and N = 512.From this �t it is possible to get an accurate estimation for mc for a given pattern.Because the computational e�ort for the non-linear �t (equation 15) is very high, some of theresults presented in sections 4 and 5 use a much simpler linear interpolation to the values mf(m0).The value of mc is taken from mf(mc) = 0:95.3.4 Random pattern generationThe basic algorithm for random test pattern generation is simple. Given a pattern �� and desiredinitial overlap m0, N random numbers in the range [�1; 1] are generated. If random number i isless than m0, then ��;ri = ��i , else ��;ri = ���i .Note from �gure 9 that the transition between almost perfect and no recall as a function ofinitial pattern overlap m0 typically is very sharp. This means that it is necessary to generate testpatterns with exactly overlap m0|otherwise the transition in the mf(m0) data would 'smearout'.Therefore, the simple algorithm sketched above cannot be used for the small networks in thesimulations, because it leads to �nite-size 
uctuations of the order 1=pN . For example, with
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3.5 Parallel dynamics 19N = 1024 
uctuations of order 1=pN correspond to an error of about �m0 � 0:03 which isclearly too large.The solution is to use a better algorithm that gives exactly the desired overlap. In the simulationsreported here a two step approach was implemented. First, the simple algorithm is run to get aninitial test pattern �0. Then the actual overlap between �0 and �� is calculated and compared withthe desired overlap m0. If the overlap is too high (low), additional random selected bit positionsare 
ipped (
ipped back), until the overlap is correct. The pseudocode is shown in �gure 3.4.Random test pattern generation( pattern ��, overlap m0 ):for i = 1 to N doif (random(�1; 1) < m0) then �0i = ��ielse �0i = ���iend forcalculate overlap m0 between �0 and ��if (m0 = m0) return �0while( m0 > m0) do�nd index i with �0i = ��i
ip �0i, update m0end whilewhile( m0 < m0) do�nd index i with �0i = ���i
ip �0i, update m0end whilereturn �0 Figure 11: Random test pattern generation3.5 Parallel dynamicsTo improve the simulation speed, a slight optimization of the parallel dynamics is used. An arrayhi is used to store the local �elds of the neurons. If a new test pattern � is loaded into thenetwork, the local �elds of all neurons are calculated and stored in this array. For the next stepsof the dynamics, this array is updated only whenever a neuron 
ips its state, see �gure 12.When the test pattern has a large overlap with an attractor state, only a few neurons F << Nwill 
ip and the algorithm uses O(F �N) operations instead of O(N2) for the trivial calculationof the parallel dynamics.



20 3. SIMULATION METHOD
Fast parallel dynamics( network N , initial pattern � )for i = 1 to N calculate the local �eld hi(�)t = 0repeatt = t + 1for i = 1 to N do Si(t+ 1) = sgn(hi(t))for i = 1 to N doif (Si(t + 1) 6= Si(t)) thenfor k = 1 to N do hk(t+ 1) = hk(t) + 2JkiSi(t+ 1)end ifend foruntil (S(t+ 1) = S(t) or t > tmax)Figure 12: Fast parallel dynamics



214 Phase-space gardening: Size of the basins of attractionThis section studies the basins of attraction for two di�erent models in the spherical as well asthe binary couplings network.The �rst model uses a piece by piece constant distribution of stabilities. That is, the patternsare divided into groups f�1 : : : �kg, f�k+1 : : : �lg, f�l+1 : : : �mg, : : :and each group is assigned adi�erent stability during learning. If the pattern stabilities correlate with the size of the basinsof attraction, then each group of patterns should have basins of attraction of approximately thesame size|and the larger the stabilities the larger the basins of attraction.The second model uses a linear distribution of stabilites. The desired stability of pattern �� is�� = �min + (�=P ) � (�max � �min). Therefore, each pattern �� should have a slightly largerbasin of attraction than pattern ���1.
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κFigure 13: Piece by piece constant and linear distribution of desired stabilities �(�)Both example distributions of desired stabilities are sketched in �gure 13. The following sectionspresent the simulation results for both models in detail.4.1 Piece by piece constant distribution of stabilitiesThe standard learning algorithms give the same global stability to all patterns. Perhaps the mostsimple generalization is to divide the patterns into groups f�1 : : : �kg, f�k+1 : : : �lg, f�l+1 : : : �mg,and to use a learning rule that gives the same stabilities for each pattern of a group but di�erentstabilities for the di�erent groups. With local stability learning rules this is possible with a pieceby piece constant function for the desired stabilities ��i .



22 4. PHASE-SPACE GARDENING: SIZE OF THE BASINS OF ATTRACTIONTypical simulation data is shown in �gure 14 for a binary couplings network with � = 0:1 andN = 512. The desired stabilities were set to � = 2:3 and � = 1:8 for the �rst 10% and thesecond 10% of the patterns, while a lower value of � = 0:9 was used for the remaining 80% ofthe patterns.The resulting distribution of stabilities after learning is shown in �gure 14a. It shows the threepeaks expected for a superposition of the distributions from the three pattern groups. However,the learning rule did not reach the desired stabilities. The maxima are at � � 1:9, 1:4 and 0:7.After learning the basins of attraction were estimated for each pattern group. That is, threesimulations were run. First, test patterns were generated and iterated to stability for the patternswith desired stability � = 2:3, then for the second (� = 1:8), and �nally the third pattern group(� = 0:9).The simulation data for the mean �nal overlap mf(m0) and the fraction of perfectly recalledpatterns fp(m0) are shown in �gure 14b and 14c. It is easy to see that the basins of attractionare very large, around mc � 0:2 for the patterns with high stability (desired stability � = 2:3),about mc � 0:35 for the patterns with stability � = 1:8, and smaller (mc � 0:65) for theremaining patterns with � = 0:9.A similar experiment with �ve groups of patterns at storage density � = 0:15 is shown in �gure 15.The desired stabilities were � = 2:1, 1:8, 1:6, 1:4 and 1:1 for 10%, 10%, 10%, 10%, and 80% ofthe patterns. The resulting distribution of stabilities is shown in �gure 15a, with the mean �naloverlap mf and the fraction of perfectly recalled patterns fp in �gure 15b and 15c. As in theprevious experiment, the mf and fp data was averaged over all patterns from the correspondingpattern group.Again, the learning rule allows to control the size of the basin of attraction. The mf (m0) dataindicate basins of attraction of about mc � 0:2, 0:28, 0:38, 0:4 and 0:65 for the di�erent patterngroups.In order to further test the local stability learning concept, the next simulations do not averageover the patterns from each pattern group with the same desired stability. Instead, several patternsare selected at random from the patterns groups and simulated individually. This allows to testwhether all patterns with nearly equal stability have basins of attraction of nearly equal size.The natural way to display these data is the mc(�) plot shown in �gure 16. For each selectedpattern, the size mc of its basin of attraction is determined from the mf (m0) data and plottedversus its minimum or mean stability. If the basins of attraction are equal for all patterns withequal stability, then the plot should only show clusters of (mc; �) points for the di�erent stabilitygroups.This is shown in �gure 16 for a network with � = 0:15 and desired pattern stabilities � = 2:6,2:2, 1:8, 1:4, and 0:8 (N = 512). The correlation between the pattern stability and the size ofthe basin of attraction is obvious. In the same network, some patterns have basins of attractionas large as mc = 0:18 (corresponding to a mean stability of �mean = 2:1), while most patternshave mc = 0:85 at �mean = 1:0.



4.1 Piece by piece constant distribution of stabilities 23The local stability learning rules can also be used for phase-space gardening in the binary couplingsnetworks at higher storage ratio. In �gure 17 two examples are shown for � = 0:25 and N = 512.The left plot shows a network with desired pattern stabilities � = f2:5, 2:0, 1:5, 0:8g for 10%,10%, 10%, and 70% of the patterns. The right plot shows a network with desired patternstabilities � = f2:3, 1:8, 1:4, 0:7g. In both simulations, the basins of attraction are small for thepatterns with lowest stability (mc � 0:97), but much larger (up to mc = 0:25) for the patternswith higher stability.



24 4. PHASE-SPACE GARDENING: SIZE OF THE BASINS OF ATTRACTIONa)
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Figure 14: Piece by piece constant �(�), binary couplings network, � = 0:10



4.1 Piece by piece constant distribution of stabilities 25a)
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4.2 Linear distribution of stabilities, spherical model 274.2 Linear distribution of stabilities, spherical modelThis section presents simulation data for the Hop�eld-Gardner network with integer couplings(spherical model) under a linear distribution of pattern stabilities.That is, the desired stability for pattern �� is set to �� = (�=P ) � �max, and then the modi�edMinover learning rule (�gure 4) is applied. If the correlation between pattern stability and size ofthe basin of attraction is monotone, then each pattern �� should have a larger basin of attractonthan pattern ���1. Therefore all patterns have to be simulated in order to determine their basinsof attraction.A typical simulation result at low storage density � = 0:3 is shown in �gure 18. The bottomdiagram gives the minimum and mean pattern stability �min and �mean as a function of patternindex after learning. While the modi�ed Minover algorithm could not reach the desired minimumstabilities, �� = 3:5 � (�=P ), it did install a linear distribution with approximately �� � 3:5 �(�=P )� 0:8. Some patterns with low index are not stored at all.The upper diagram presents the size of the basins of attraction as a function of pattern index.Only patterns with mc < 1 are shown. For patterns that are recognized at all, one has mc(�) <mc(�� 1), the expected behaviour.The comparison between the upper and the bottom diagram shows the correlation between patternminimum stability and size of the basin of attraction. The corresponding plot of mc versus �minis shown in �gure 19b.The dependence of mc on �min is approximately linear for stabilities �min > 0:8. For minimumstabilities 0 < �min < 0:8 the function mc(�min) is nonlinear, but can be approximated by alow degree polynomial (even a quadratic function su�ces). The exact functional dependence isnot known. Unfortunately, the compuational e�ort for an accurate estimation of mc(�min; �) isextremely high and out of the scope of this study.In any case, the results show that the size of basins of attraction of each pattern corresponds toits stability, which in turn can be set during learning with a local stability learning rule.Similar results for networks with other values of the storage density are shown in �gure 19a, 19c,and 19d for � = 0:2, 0:5 and 0:7 respectively. Smaller (larger) values of � were not studied inthe simulations, because the basins of attraction in these networks are very large (small) anyway.Note that the dependence on mc(�min) di�ers for all four simulations from �gure 19, though theoverall behaviour is similar.
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Figure 18: mc(�) and �(�), linear distribution of stabilites, spherical model, � = 0:3
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30 4. PHASE-SPACE GARDENING: SIZE OF THE BASINS OF ATTRACTION4.3 Linear distribution of stabilities: binary couplings modelUnlike the Minover learning algorithm, the energy-minimization algorithms for the binary couplingsnetworks cannot guarantee the desired values for the minimum stabilities. Rather, the minimumstabilities vary greatly after learning, and some of the stabilities may even be negative|thepatterns will be stored with some bit errors. Only the overall distribution of stabilities �i� willfollow the desired shape.This is shown in �gure 20, where in the bottom diagram the minimum, 5% percentile, andmean pattern stabilities are plotted against the pattern index for a binary couplings network with� = 0:15, N = 1024 after energy-minimization PSG learning. While the mean stabilities showa smooth behaviour, the minimum stabilities vary greatly (and most are smaller than zero) andeven the 5% percentile stabilities are somewhat scattered.As in �gure 18 for the spherical model, the upper diagram from �gure 20 plots the size ofthe basins of attraction mc versus the pattern index. Interestingly, the plot of mc(�) is rathersmooth|indicating a correlation of mc with �mean rather than �min. Again, the patterns withtoo low stabilities are not recalled by the network. These patterns, with mc > 1, are not shownin the diagram.As a consequence of the scattering of the values of �min and even �0:05, the following plots ofthe simulations of the binary couplings model will show mc as a function of �mean. In �gure 21four simulations with � = 0:10, 0:15, 0:20 and 0:25 are shown.
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335 Phase-space gardening: Shaping the basins of attractionAs the results of section 4 show, local stability learning rules allow to set the size of the basinsof attraction for each pattern. There remains the question whether the shape of the basins ofattraction can be adjusted as well.To this end, in section 5.1 the very simple LR model is introduced and the corresponding simulationstrategy is presented in section 5.2. A �rst naive implementation using the energy-minimizationPSG learning rule is described in section 5.3. Simulation results which show LR anisotropy in thebasins of attraction are reported in section 5.4.5.1 The LR modelUnlike other neural network models, the neuron and pattern values in a Hop�eld-Gardner networkare binary only. Therefore a neuron either has the correct value (for a given pattern) or not.There are no analog middle values. So what is meant with 'shape' of the basins of attraction?The goal of the Hop�eld network is to recognize the trained patterns from noisy input patterns.To shape the basin of attraction of a pattern �� therefore means to specify in detail what inputsshould be recalled as the pattern ��. For example, one could wish that some test patterns arerecalled, although they contained much noise in some region (say, the �rst half of bits), but lessnoise in the remaining bit positions.This section presents a very simple model for this kind of anisotropy, called the LR model. Theidea is to assign di�erent stabilites to the left and right halves of each pattern while learning witha local stability learning rule. That is, the patterns �� are divided into two groups. The �rstpatterns � = 1; : : : ; P=2 are assigned the desired stabilities �i� = f�L; �Rg and the remainingpatterns � = P=2 + 1; : : : ; P are assigned the stabilities �i� = f�R; �Lg. These distributions ofstabilities for the �rst and second halves of patterns are sketched in �gure 22.With �L > �R this choice of the distribution of stabilities means that the �rst half of patternsshould be recognized better (from less initial overlap) at the left half of bit positions (neurons)and worse at the right half of neurons|and vice versa.5.2 The LR simulation strategyTo test whether the basins of attraction show a left/right aniostropy after LR learning, naturally,one has to simulate the network with anisotropic test patterns.To generate these test patterns, the test pattern generation procedure from �gure 3.4 is calledtwice for each pattern. First it is applied with desired overlap m0;L to the left half of a memorypattern and then with desired overlap m0;R to the right half. This is illustrated in �gure 23. Thememory pattern from �gure 2 and two test patterns with desired overlap m0 = fm0;L; m0;Rg =f1:0; 0:5g and m0 = f0:5; 1:0g are shown.
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5.3 A �rst LR implementation 375.3 A �rst LR implementationThe results of the �rst run of LR simulations are shown in �gure 26. It is easy to see that thelearning strategy has let to an LR asymmetry in the recognition in the patterns. However, theLR asymmetry|from the �mc plots|is much larger for the �rst half of patterns � = 1; : : : ; P=2than for the remaining patterns.a) N = 600, � = 0:15, � = f0:7; 2:0g b) � = f0:8; 2:7g
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ip. Therefore the LR asymmetryis largest for the synapses set �rst.This learning strategy can therefore be used, if a large LR aniostropy is desired for only some ofthe patterns. The synapses where these patterns should be recognized best are then simply learnt�rst.



38 5. PHASE-SPACE GARDENING: SHAPING THE BASINS OF ATTRACTION5.4 Basins of attraction in the LR modelThis section presents simulation results for the LR model in the binary couplings network. Allsimulations used the learning algorithm from �gure 6, with random selection of index k.First, an example of the distribution �(�) of stabilities after learning with this algorithm andthe pattern stability distributions for two randomly chosen patterns are shown in �gure 27 fora network with � = 0:15 and N = 600. The corresponding basins of attraction are shown in�gure 28c. The control simulation with �L = �R gives an estimate to the size of the �nite-sizeand random 
uctuations (�gure 28a).The �nite-size scaling of the basins of attraction in the binary couplings network with � = 0:15and �L = 0:9, �R = 2:0 is shown in �gure 29 for networks with N = 300, N = 600, andN = 1200. Similar results for storage ratios � = 0:20 and � = 0:25 are shown in �gure 30 and31.Storage ratios � < 0:10 were not studied in the LR model, because it is very di�cult to set smallvalues for the stabilities during learning. Therefore the basins of attraction in these networks arevery large for all patterns. Similar, networks with � > 0:25 were not studied, because the learningrules fail to set the required large values of the stabilities. Additionally, the basins of attractionare tiny anyway and there is little room for a LR anisotropy.As the simulations from �gures 28 to 31 show, the simple LR strategy allows to set anisotropicbasins of attraction in the networks. If no LR asymmetry is used (�L = �R), the control simulationfrom �gure 28a demonstrates that the basins of attraction are isotropic for all patterns.However, the LR simulations indicate that the shape can be controlled to a much lesser extentthan the size of the basins of attraction. Recall from the simulations from section 4 that the sizeof the basins of attraction could be set to values from mc = 1� � to mc � 0:2.The largest �mc reached in the simulations is for the network with � = 0:20, �L = 0:7 and�R = 1:7 from �gure 30d, where �mc � 0:7.Note, too, that the larger the values of �mc, the smaller the lower of mc;L and mc;R. Thelearning rule did install anisotropic basins of attraction, but these are smaller than the isotropicbasins. Also, the 
uctuations of mc;L and mc;R are rather large for the networks studied, see e.g.�gure 28c. The �nite-size scaling from �gure 29 indicates that the 
uctuations decrease withincreasing network size.Naturally, a large �mc needs large values of �R and small values of �L. While it is possible to setlarge stabilities to only a few patterns (as in section 4), the LR simulations need large stabilitiesfor one-half of bit positions of all patterns. This limits the value of �R and therefore the amountof LR anisotropy.A further study of anisotropic basins of attraction might therefore try to install stabilities withlarge LR asymmetry for only some patterns, with most of the remaining patterns well below thecritical pattern stability �c(�).



5.4 Basins of attraction in the LR model 39�(�), (� = 0:15, � = f0:9; 1:8g, N = 600)
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44 6. SUMMARY6 SummaryThis report studied the dynamical properties of Hop�eld-Gardner attractor neural networks. Basedupon the simulations from [Forrest 88] it tried to answer the question whether size and shape ofthe basins of attraction of the memory patterns depend on the pattern stabilities.It introduced the concept of 'local stability' learning rules as a means of phase-space gardening.Two local stability learning rules were studied in detail: A straightforward generalization of theMinover algorithm for the Gardner network with integer couplings (spherical model) and a newenergy-minimization learning algorithm for the binary couplings network.The idea of the local stability learning rules is to specify an initial distribution of desired patternstabilities during the learning phase in order to set the basins of attraction. This was demonstratedfor two simple models. The �rst model used a piece by piece constant distribution of stabilities.The simulation results show that all patterns with the same value of the stabilities indeed havebasins of attraction of the same size. Very large basins of attraction (corresponding to low valuesof mc � 0:2) and small basins of attraction (with mc � 1� �) are possible in the same network.The second model used a linear distribution of stabilities, �� = (�=P )�max. This results ina network, where the basin of attraction of each pattern �� is a little larger than the basin ofattraction of pattern ���1. The dependence of mc(�) is linear for stabilities �i� > 0:8 andnonlinear below. Unfortunately, it still seems impossible to derive an analytical model for mc(�).In both the piece by piece constant and the linear model, the distribution of stabilities does dependon the pattern index �, but not on the neuron index i. Therefore, the resulting basins of attractionare isotropic.As a simple way to anisotropic basins of attraction, the LR model was presented in section 5.1.It splits the distribution of stabilities into a left and right half for the �rst and second half ofpatterns. The distribution of stabilities then does depend on both pattern index � and neuronindex i. The simulations show that this simple model su�ces to install anisotropic basins ofattraction.Furhter work on local stability learning rules may concentrate on correlated pattern storage, wherethe simple Hebb learning breaks down. Another important application not studied in this reportis the storage of temporal sequences.With the concept of local stability learning rules, this report introduced the means for a 'micro-surgery' of the dynamics of Hop�eld/Gardner networks. Both the size and shape of the basinsof attraction can be adjusted as desired, within the limits of the critical storage capacity. Thismakes the networks much more attractive for applications and better candidates for associativerecall in brain models.
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