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2 Chains in Collatz's TreeLet fC : N� ! N� be the (\Collatz") fun
tionfC(n) = � n2 if n � 0 (mod 2)3n+ 1 otherwiseShow that for any n 2 N�; there exists a k 2 N� su
h that fC (k)(n) = 1;(fC(1) = fC ; fC (k+1) = fC Æ fC(k)).The 
onje
ture may be rephrased as follows:The following program halts for any given integer m:n := m;while n > 1 doif (n is even) thenn := n=2elsen := 3n+ 1endifendwhile;This represents a useful example when we speak about terminating / non-terminating algorithms or about non-total re
ursive fun
tions. The above al-gorithm obviously terminates for m � 1 (the body of the \while" loop is neverexe
uted) and presents no s
ienti�
al interest. More than that, if m > 1, theonly way we 
an have a �nite exe
ution is to \rea
h" the value 1:Notation 1.1 We shall use the following notations:� m � n (mod p), where m; n 2 Z and p 2 Z� f0g i� p j (m� n);� m � fn1; :::; nrg (mod p), where m; n1; :::; nr 2 Z; p 2 Z � f0g andp � 2 means that m � n1 (mod p) or ... or m � nr (mod p):Theorem 1.1 (a slight generalization of Theorem 4.2, [AnM98℄)(i) fC (3m�n+2p)� 2p�(23m�n+1)3p � 1� = 1; 8 m 2 N; 8 n � f1; 5g (mod 6);8 p 2 f0; :::;m+ 1g;(ii) fC (k+m)(2k � n) = fC(m)(n); 8 m;n; k 2 N;(iii) fC (3m�n+2p+k) �2k � � 2p�(23m�n+1)3p � 1�� = 1; 8 m 2 N; 8 n � f1; 5g(mod 6); 8 p 2 f0; :::;m+ 1g, 8 k 2 N:Proof



Chains in Collatz's Tree 3(i) Similarly to the proof of Theorem 4.2 from [AnM98℄. A

ording to Theo-rem 3.1 ([AnM98℄) we dedu
e that(�) fC (k+2p)(2p � r � 1) = fC(k)(3p � r � 1); 8 p 2 N; r 2 N+Solving the equation 3p � r� 1 = 2k; we obtain r = 23m�n+13p (for p = m+1follows the result from Theorem 4.2 [AnM98℄). By repla
ing r in (�) anddue to the fa
t that fC(k)(2k) = 1; we immediately obtain our identity.(ii) Obviously, by indu
tion on k. (iii) is obtained from (i) and (ii).2 Binary Trees with ChainsWe 
an asso
iate to any y 2 N; k 2 N a �nite binary tree with root y, havingk levels, denoted Ak(y) = (V;E). (we 
an suppose y 6= 0 and k 6= 0). Ea
hnode v 2 V is labelled with a natural number. Ea
h node may have one or twodes
endants (depending on the label !)
(a)

if y 6� 4 (mod 6) 2 � y y�13if y � 4 (mod 6)2 � y y
(b)

y
The entire in�nite tree for the root y will be A(y) = (V;E); V � N (
alledCollatz's tree of the root y). Now, be
ause of fC(1) = 4; fC (2)(1) = 2;fC(3)(1) = 1 there is a \loop" in the Collatz's fun
tion 
ausing repetition of 1as a root of a subtree in�nitely often. To avoid this fa
t, the Collatz fun
tion
an be represented by another graph related to the in�nite tree A(8) atta
hedto it the loop 8 4 2 1 4: This is the only loop in that graph sin
e allnodes in A(8) have di�erent labels, and they are not 1; 2; 4:We 
an reformulate Collatz's 
onje
ture as:V (A(8)) =N� f0; 1; 2; 4g:Lemma 2.1 In A(8) the labels of di�erent verti
es are distin
t, and di�erentfrom 1; 2; 4.Proof By indu
tion on the number of levels.Basis: A1(8) has di�erent labels.Indu
tive Step: We know that the labels of di�erent verti
es from Ak(y) aredistin
t. We have to prove that the labels from the next level are distin
t from



4 Chains in Collatz's Treethe former ones and pairwise distin
t, too. Let v be an arbitrary vertex fromlevel k + 1, labelled by y:I: We suppose that there exists w 2 Ak+1(y); w 6= v for whi
h label(w) = y,too. Of 
ourse, father(v) 2 Ak(y); father(w) 2 Ak(y): Be
ause of the fa
t that2�label(father(v)) 6= (label(father(w))�1)=3, the 
ase father(v) = father(w)
annot o

ur. Supposing that father(v) 6= father(w); we distinguish the 
ases:a) y even. Then label(father(v)) = label(y)2 and label(father(w)) = label(y)2 :Thus label(father(v)) = label(father(w)); thus a 
ontradi
tion to theindu
tive hypothesis;b) y odd. Thenlabel(father(v)) = 3 � label(y)+ 1 and label(father(w)) = 3 � label(y)+ 1:So, again label(father(v)) = label(father(w)); whi
h is a 
ontradi
tionto the indu
tive hypothesis.II: There exists a node on level m � k with label y. If m > 0 this 
on-tradi
ts the indu
tion hypothesis. If m = 0 this means y = 8 and therefore a
ontradi
tion: 4 2 A(8).As a 
onsequen
e of Lemma 2.1, for generating the Collatz's tree, we don'thave to store in memory the entire Collatz's tree. The last level suÆ
es.Sin
e the Collatz Conje
ture is still an open problem, it is possible thatthere exist other in�nite 
onne
ted Collatz graphs with a �nite loop, and/orbi-in�nite Collatz trees. In both 
ases, all nodes of su
h 
onne
ted stru
tureshave di�erent labels.Lemma 2.2 Let A be an in�nite 
onne
ted Collatz graph with a loop, 
on-stru
ted a

ording to Collatz's tree. Then all nodes have di�erent labels.Proof Let L be the �nite loop. Trivially, all nodes of L have di�erent labels. Itis also evident from the Collatz fun
tion that there 
annot exist edges enteringthe loop L.Assume that there exists another �nite loop L0 in A. Sin
e A is 
onne
tedand any loop 
annot have edges entering the only possibility for 
onne
tion isthat there exists a node s whi
h is rea
hed by paths both from L and L0. Butthis is a 
ontradi
tion sin
e no node 
an have more than one in
oming edge.To show that all nodes outside L have di�erent labels, and also di�erentfrom all labels from L, we use indu
tion on the distan
e d(u) for a node u fromthe loop L.Basis: d(u) = 1 is obvious. Sin
e the two 
hildren of a node s 2 L havedi�erent labels, and label(u) = label(s) for some s 2 L would result in twoin
oming edges for s.Indu
tive Step: Assume the indu
tion hypothesis holds for all t 2 L withd(u) � n.



Chains in Collatz's Tree 5Let u be a node with d(u) = n + 1 with label(u) = label(v) for some otherv 2 L with d(v) � n+ 1.If d(v) = n + 1 then we obtain label(father(u)) = label(father(v)) bythe property of the Collatz fun
tion, and sin
e father(u) 6= father(v) this
ontradi
ts the indu
tion hypothesis.If d(v) � n then father(u) 6= father(v); but label(u) = label(v), yieldingagain a 
ontradi
tion to the indu
tion hypothesis.Lemma 2.3 Let B be a bi-in�nite 
onne
ted Collatz tree (without loop). Thenthe labels of all nodes are distin
t.Proof Assume the 
ontrary.a) If there exist two di�erent nodes u; v 2 B for whi
h label(u) = label(v) onthe same (in�nite) path then that would be a loop, 
ontradi
ting the assumptionof loop-freeness.b) If there exist two di�erent nodes not on di�erent path for whi
h we havelabel(u) = label(v) then there exists a 
ommon an
estor t 2 B. Be
ause of theCollatz fun
tion we get label(father(u)) = label(father(v)), and this 
an be
ontinued.This pro
edure either gives di�erent s; t on the same path, thus yielding aloop. A 
ontradi
tion to the assumption. Or it gives s; s0 for whi
h we havefather(s) = father(s0) = t whi
h is impossible sin
e label(s) 6= label(s0).De�nition 2.1 We say that C = (V;E) is an (in�nite) 
hain subtree of atree T if C is a maximal subtree su
h that every node has (exa
tly) at mostone dire
t des
endant. We say that the node v is the root of C if father(v) inT does not belong to V (C).In fa
t, a 
hain subtree is formed only by using the situation (a) from the
onstru
tion of Collatz's tree. If we know the label of the root of the 
hainsubtree, it is obvious that we 
an dedu
e the labels of all the des
endants (thelabels are multiplied by 2).Theorem 2.1 (
hara
terization of 
hains in Collatz's tree)Let A(y) be the Collatz's tree. Then:(i) there exists a 
hain C in A(y) with v 2 V (C) i� 3 j label(v);(ii) mu
h more, v is the root of C i� 3 6 j label(father(v)) if father(v) existsin A(y):Proof(i) (=)) v 2 V (C). If 3 j label(v) then we obtain the 
on
lusion. Let ussuppose, by 
ontrary, that 3 6 j label(v): So, the label of v is of the formf1; 2; 4; 5g (mod 6). The following pi
ture shows that ea
h of these 
asesleads to a non-
hain (i.e. there exists a des
endant of v whi
h has twosons).



6 Chains in Collatz's Tree6k + 112k + 2
8k + 1 24k + 8 4k + 124k + 4

6k + 4 6k + 5
4k + 312k + 8 2k + 1 12k + 1024k + 2048k + 8

12k + 46k + 2
((=) 3 j label(v). Let label(v) = 2k �s where 3 j s; (2; s) = 1, k; s 2 N: Letk0 2 N be the minimum t 2 N; t � k su
h that there exists u 2 V (A(y))with label(u) = 2t � s:Let u0 be the 
orresponding u for k0. We state that u0 and its des
endantsform a 
hain C. We know that 3 j label(v); so 3 j u0. Therefore u0 hasexa
tly one dire
t des
endent u1 for whi
h label(u1) = 2 � label(u0): Thus3 j label(u1); and u1 has exa
tly one des
endant u2 et
. This means that Cis a subtree of A(y) in whi
h every node has exa
tly one dire
t des
endant.If C hadn't been maximal we 
ould have added father(u0) to C. Be
auseof the minimality of k0, we have label(father(u0)) 6= 2k0�1 � s: Hen
ek0 = 0, so label(u0) = s: Therefore label(father(u0)) = 3s + 1: Be
ause(s; 2) = 1, it follows that 3s + 1 � 4 (mod 6); so father(u0) has twodire
t des
endants. Contradi
tion ! This implies that C is maximal, i.e.a 
hain.(ii) (=)) v is the root of C. If 3 j label(father(v)) then C is not maximal(be
ause we 
an add father(v) to C). This is a 
ontradi
tion to De�nition2.1.((=) 3 6 j label(father(v)): If v is not the root of C then there exists w 2 Csu
h that v is the son of w. Be
ause w belongs to V (A(y)), it follows thatw is the father of v in A(y). But from w 2 C we have 3 j label(w). Thisis a 
ontradi
tion to 3 6 j label(father(v)):The following �gure shows after how many levels (for a given node), thereexists a node labelled by a multiple of 3:A

ording to the �gure below and Theorem 2.1, for a vertex labelled by y,after at most k levels, we obtain a 
hain tree in A(y).y 3k 9k+5 9k+7 9k+8 9k+4 9k+2 9k+1k 0 2 3 4 5 6 7The roots of 
hain trees are pointed out in the below �gure by putting theirlabel into a re
tangle.
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...
18k + 89k + 4

144k + 64288k + 128 48k + 21(v)
72k + 32

...
12k + 536k + 16

(viii)
36k + 2812k + 972k + 56
18k + 149k + 79k + 6(vii)

(vi) 6k + 3
9k + 518k + 1036k + 20

9k + 3(iv)(i)9k 6k + 1...72k + 16144k + 32
576k + 128

24k + 5
18k + 436k + 8

288k + 6496k + 21
6k + 5...144k + 128 24k + 21

36k + 32
9k + 8

(ix)
18k + 16

72k + 64

...
(ii)

...
192k+ 211152k+ 128

...

...

...

9k + 1

Figure 2. Nine situations for obtaining 
hain subtrees

12k + 1
48k + 5576k + 64 (iii)

9k + 218k + 236k + 472k + 8
288k + 32144k + 16

Lemma 2.4 The following fa
ts hold:a) 22k � 1 (mod 3) and 22k+1 � 2 (mod 3); 8 k 2 N;



8 Chains in Collatz's Treeb) 23m+13m+1 � 1 (mod 3); 8 m 2 N;
) 23m�n+13m+1 � n (mod 3); 8 m 2 N; 8 n � f1; 5g (mod 6):Proofa) Obviously, 4 = 22 � 1 (mod 3). Therefore �22�k = 22k � 1 (mod 3) and22k+1 � 2 (mod 3); 8 k 2 N;b) 23m = (3 � 1)3m = 3mPi=0� 3mi � � 3i � (�1)3m�i = �1 + 3m+1 + 3m+2 �M;where M is obtained from the terms 
orresponding to i = 2; :::; 3m: Therefore,23m+13m+1 � 1 (mod 3); 8 m 2 N;
) 23m�n = (3 � 1)3m�n = 3m�nPi=0 � 3m � ni � � 3i � (�1)3m�n�i. This equals to�1+3m+1 �n+3m+2 �n �M; where M is obtained from the terms 
orrespondingto i = 2; :::; 3m: Therefore, 23m�n+13m+1 � n (mod 3); 8 m 2 N;8 n � f1; 5g(mod 6):Theorem 2.2 The following identity holds:fC(3m�n+2m+k+2)�2k � �2m+1 � (23m�n + 1)3m+1 � 1�� = 1;8 m 2 N; n � f1; 5g (mod 6); 8 k 2 N: Mu
h more, if m � 1 (mod 2) andn � 1 (mod 6), or m � 0 (mod 2) and n � 5 (mod 6), then these numbers(for whi
h Collatz's 
onje
ture holds) belong to a 
hain subtree in Collatz's tree.The label of the root may be obtained by taking k = 0:Proof The �rst part 
an be obviously obtained by taking p = m+1 in Theorem1.1.For the se
ond part, we shall show that 2m+1�(23m�n+1)3m+1 � 1 � 0 (mod 3):Then, applying Theorem 2.1, we obtain that these numbers belong to a 
hain.Be
ause 2 � �1 (mod 3), we get 2m+1 � (�1)m+1 (mod 3): A

ordingto Lemma 2.4, 
), we obtain 2m+1�(23m�n+1)3m+1 � (�1)m+1 � n (mod 3):Now, if m � 1 (mod 2) and n � 1 (mod 6) then (�1)m+1 � n � 1(mod 3). The same relation may be obtained in the other 
ase (m � 0 (mod 2)and n � 5 (mod 6)), too.Theorem 2.3 Let m 2 N; n � f1; 5g (mod 6); p 2 f1; :::;m � 1g; s 2 Narbitrary natural numbers. Then (depending on k) the following identities hold:(i) If k � 0 (mod 6) thenfC(3m�n+2p+k+s+4) 2s � "2p+k+3 � �23m�n + 1�� �2k+3 + 1� � 3p3p+1 #! = 1;



Chains in Collatz's Tree 9(ii) If k � 1 (mod 6) thenfC (3m�n+2p+k+s+3) 2s � "2p+k+2 � �23m�n + 1�� �2k+2 + 1� � 3p3p+1 #! = 1;(iii) If k � 2 (mod 6) thenfC (3m�n+2p+k+s+2) 2s � "2p+k+1 � �23m�n + 1�� �2k+1 + 1� � 3p3p+1 #! = 1;(iv) If k � 3 (mod 6) thenfC (3m�n+2p+k+s+7) 2s � "2p+k+6 � �23m�n + 1�� �2k+6 + 1� � 3p3p+1 #! = 1;(v) If k � 4 (mod 6) thenfC (3m�n+2p+k+s+6) 2s � "2p+k+5 � �23m�n + 1�� �2k+5 + 1� � 3p3p+1 #! = 1;(vi) If k � 5 (mod 6) thenfC (3m�n+2p+k+s+5) 2s � "2p+k+4 � �23m�n + 1�� �2k+4 + 1� � 3p3p+1 #! = 1:Mu
h more, these numbers belong to a 
hain subtree in Collatz's tree. The labelof the root may be obtained by taking s = 0:Proof We know from Theorem 1.1 that:fC(3m�n+2p+k) 2k � "2p � �23m�n + 1�3p � 1#! = 1;8 m 2 N; 8 n � f1; 5g (mod 6); 8 k 2 N: We 
onsider p 2 f0; :::;m� 1g.From Lemma 2.4, 
), we know that 23m�n+13m+1 is a natural number. So,23m�n+13p � 0 (mod 9); 8 p < m (and also 2p�(23m�n+1)3p � 0 (mod 9); 8 p < m).Therefore 2p�(23m�n+1)3p � 1 � 8 (mod 9). Now, we have:2k =8>>>>><>>>>>: 1 (mod 9) if k � 0 (mod 6)2 (mod 9) if k � 1 (mod 6)4 (mod 9) if k � 2 (mod 6)8 (mod 9) if k � 3 (mod 6)7 (mod 9) if k � 4 (mod 6)5 (mod 9) if k � 5 (mod 6)



10 Chains in Collatz's TreeNext, we shall show how we obtain (i) from our theorem, the other 
ases beinganalogous. For k � 0 (mod 6) we obtain 2k �� 2p�(23m�n+1)3p � 1� � 8 (mod 9).But from the �gure 2, (ix), we remark that fC (4)(24r+21) = 9r+8: By repla
ing9r + 8 with 2k � � 2p�(23m�n+1)3p � 1� we 
an obtain:r = 2p+k � �23m�n + 1�� 2k � 3p � 23 � 3p3p+2 :Now, we obtain 24r + 21 = 2p+k+3�(23m�n+1)�(2k+3+1)�3p3p+1 � 0 (mod 3). There-fore fC(3m�n+2p+k+4) 2p+k+3 � �23m�n + 1�� �2k+3 + 1� � 3p3p+1 ! == fC (3m�n+2p+k) 2k � "2p � �23m + 1�3p � 1#! = 1:From this follows the 
on
lusion by applying Theorems 1.1 (ii), and 2.1.Theorem 2.4 Let m 2 N; n � f1; 5g (mod 6); s 2 N arbitrary natural num-bers. Then (depending on m, n and k) the following identities hold:a) If (m � f0; 2; 4g (mod 9) and n � 1 (mod 6)) or (m � f1; 3; 5g(mod 9) and n � 5 (mod 6)) then(i) If k � 0 (mod 6) thenfC(3m�n+2m+k+s+6) 2s � "2m+k+5 � �23m�n + 1�� �2k+5 + 1� � 3m3m+1 #! = 1;(ii) If k � 1 (mod 6) thenfC(3m�n+2m+k+s+5) 2s � "2m+k+4 � �23m�n + 1�� �2k+4 + 1� � 3m3m+1 #! = 1;(iii) If k � 2 (mod 6) thenfC(3m�n+2m+k+s+4) 2s � "2m+k+3 � �23m�n + 1�� �2k+3 + 1� � 3m3m+1 #! = 1;(iv) If k � 3 (mod 6) thenfC(3m�n+2m+k+s+3) 2s � "2m+k+2 � �23m�n + 1�� �2k+2 + 1� � 3m3m+1 #! = 1;



Chains in Collatz's Tree 11(v) If k � 4 (mod 6) thenfC (3m�n+2m+k+s+2) 2s � "2m+k+1 � �23m�n + 1�� �2k+1 + 1� � 3m3m+1 #! = 1;(vi) If k � 5 (mod 6) thenfC (3m�n+2m+k+s+7) 2s � "2m+k+6 � �23m�n + 1�� �2k+6 + 1� � 3m3m+1 #! = 1:b) If (m � f0; 2; 4g (mod 9) and n � 5 (mod 6)) or (m � f1; 3; 5g(mod 9) and n � 1 (mod 6)) then(i) If k � 0 (mod 6) thenfC (3m�n+2m+k+s+2) 2s � "2m+k+1 � �23m�n + 1�� �2k+1 + 1� � 3m3m+1 #! = 1;(ii) If k � 1 (mod 6) thenfC (3m�n+2m+k+s+7) 2s � "2m+k+6 � �23m�n + 1�� �2k+6 + 1� � 3m3m+1 #! = 1;(iii) If k � 2 (mod 6) thenfC (3m�n+2m+k+s+6) 2s � "2m+k+5 � �23m�n + 1�� �2k+5 + 1� � 3m3m+1 #! = 1;(iv) If k � 3 (mod 6) thenfC (3m�n+2m+k+s+5) 2s � "2m+k+4 � �23m�n + 1�� �2k+4 + 1� � 3m3m+1 #! = 1;(v) If k � 4 (mod 6) thenfC (3m�n+2m+k+s+4) 2s � "2m+k+3 � �23m�n + 1�� �2k+3 + 1� � 3m3m+1 #! = 1;(vi) If k � 5 (mod 6) thenfC(3m�n+2m+k+s+3) 2s � "2p+k+2 � �23m�n + 1�� �2k+2 + 1� � 3m3m+1 #! = 1:



12 Chains in Collatz's TreeMu
h more, these numbers belong to a 
hain tree. The label of the root may beobtained taking s = 0:Proof We know from Theorem 1.1 that:fC(3m�n+2m+k) 2k � "2m � �23m�n + 1�3m � 1#! = 1;8 m 2 N; 8 n � f1; 5g (mod 6); 8 k 2 N: From Lemma 2.4, 
), we know that23m�n+13m+1 � n (mod 3). So, 23m�n+13m � 3 � n (mod 9). Next, all the identitiesfrom the 
on
lusion of this theorem 
an be obtained using a similar pro
edureas in the proof of Theorem 2.3.3 Some \�xed points"In this se
tion, we shall de�ne some kind of \�xed points". Using this notion,we shall give a 
onje
ture whi
h is similar to the Collatz's Conje
ture. Startingfrom numbers of the form 2k �s�t; (t odd), our aim is to redu
e them to 3k0 �s�t0;(t0 odd) for whi
h t0 � t su
h that we 
ould analyse solutions of 3k0 � s� t0 = 2p(su
h numbers 
an be redu
ed to 1).Lemma 3.1 Let k; s be arbitrary natural numbers (k; s � 1). Then the fol-lowing idendities hold:(i) fC (2m)(2k � s� 1) = 3m � 2k�m � s� 1; 8 m 2 f0; :::; kg;(ii) fC (5m)(2k � s� 5) = 32m � 2k�3m � s� 5; 8 m 2 f0; :::; bk3
g;(iii) fC (18m)(2k � s� 17) = 37m � 2k�11m � s� 17; 8 m 2 f0; :::; b k11
g:Proof We pro
eed by indu
tion on m:(i) Basis: m = 1: It is obvious that fC (2)(2k � s� 1) = 3 � 2k�1 � s� 1.Indu
tive Step: We suppose that (i) is true for m and prove it for m+1(m+ 1 � k). From the indu
tive hypothesis, we know that:fC(2m)(2k � s� 1) = 3m � 2k�m � s� 1:But fC(2)(3m �2k�m �s�1) = fC(3m+1 �2k�m �s�2) = 3m+1 �2k�m�1 �s�1:Therefore fC(2m+2)(2k � s� 1) = 3m+1 � 2k�m�1 � s� 1:(ii) Basis: m = 1: We 
an immediatelly remark thatfC (5)(2k � s� 5) = fC(4)(3 � 2k � s� 14) = fC(3)(3 � 2k�1 � s� 7) == fC(2)(32 � 2k�1 � s� 20) = fC(32 � 2k�2 � s� 10) = 32 � 2k�3 � s� 5:



Chains in Collatz's Tree 13Indu
tive Step: We suppose that (ii) is true for m and prove it for m+1(m+ 1 � bk3 
). From the indu
tive hypothesis, we know that:fC(5m)(2k � s� 5) = 32m � 2k�3m � s� 5:But fC(5)(32m � 2k�3m � s� 5) = 32m+2 � 2k�3m�3 � s� 5: Therefore, we havefC(5m+5)(2k � s� 5) = 32m+2 � 2k�3m�3 � s� 5:(iii) Basis: m = 1: We 
an immediatelly remark thatfC(18)(2k � s� 17) = fC (17)(3 � 2k � s� 50) = fC (16)(3 � 2k�1 � s� 25) == fC(15)(32�2k�1�s�74) = fC(14)(32�2k�2�s�37) = fC(13)(32�2k�3�s�110) == fC(12)(33�2k�3�s�55) = fC(11)(34�2k�3�s�164) = fC(10)(34�2k�4�s�82) == fC(9)(34 �2k�5 �s�41) = fC(8)(35 �2k�5 �s�122) = fC(7)(35 �2k�6 �s�61) == fC(6)(36 �2k�6 �s�182) = fC(5)(36 �2k�7 �s�91) = fC(4)(37 �2k�7 �s�272) == fC(3)(37 �2k�8 �s�136) = fC(2)(37 �2k�9 �s�68) = fC(37 �2k�10 �s�34) == 37 � 2k�11 � s� 17Indu
tive Step: We suppose that (iii) is true for m and prove it form+ 1 (m+ 1 � b k11
). From the indu
tive hypothesis, we know that:fC(18m)(2k � s� 17) = 37m � 2k�11m � s� 17:But fC(18)(37m � 2k�11m � s � 17) = 37m+7 � 2k�11m�11 � s � 17: ThereforefC(7m+7)(2k � s� 17) = 37m+7 � 2k�11m�11 � s� 17:Theorem 3.1 The following identities hold (for all m and s natural numbers):(i) fC(2m)(2m � s� 1) = 3m � s� 1;(ii) fC(5m)(23m � s� 5) = 32m � s� 5;(iii) fC(18m)(211m � s� 17) = 37m � s� 17:Proof We take in Lemma 3.1, k = m, k = 3m and k = 11m respe
tively.Let us denote byT = ft j 9 m; 9 k1; 9 k2; 9 t0 � t su
h that fC(m)(2k � s� t) = 3k1 � 2k2 � s� t0and m is minimal with this propertyg;where k and s are arbitrary natural numbers. A

ording to Theorem 3.1, weobtain 1; 5; 17 2 T and mu
h more t0 = t: We may 
all these numbers (1; 5; 17)



14 Chains in Collatz's Tree�xed points. We 
he
ked on the 
omputer for all t � 108 the membership toT , and we obtained a positive answer. For the numbers less than 108 but whi
hdon't belong to f1; 5; 17g; we obtained t0 < t. This means that these numbersare not �xed points. We 
onje
ture that:(C) All natural numbers belong to T :In the following, we shall prove that the equations of the form:3m � s� 1 = 2p; 32m � s� 5 = 2p; 37m � s� 17 = 2phave always solutions. In addition, for every m0 2 N we have an in�nity ofsolutions (m; s; p) with m = m0.Be
ause of this, the Collatz's Conje
ture is similar to our 
onje
ture (C),whi
h 
an be reformulated in the following way:Let g : N� ! N� be the fun
tiong(n) = � n2 if n � 0 (mod 2)3n� 1 otherwiseShow that, for any n 2 N�; there exists an k 2 N� su
h that g(k)(n) � n:We shall prove some results that will help us further in our 
onsideration.We shall use the following notations:� bx3k = fn 2 N j n � x (mod 3k)g;� Z3k = fbx3k j x 2 Ng;� (Z3k ;�;�) is a ring with � and � de�ned below:{ bx3k � by3k = d(x + y)3k ;{ bx3k � by3k = d(xy)3k :� U(Z3k ) the group of invertible elements in (Z3k ;�;�), this means thatU(Z3k ) = fbx3k j (x; 3k) = 1; x 2 Ng;� < x > the subgroup generated by x.We shall use the following lemma.Lemma 3.2 Let � be the order of b23k in U(Z3k ), where k � 1: Then for everyn su
h that 3k j (2n � 1) we have � j n:Proof By de�nition, � is the least number � (� 2 N � f0g) with b2�3k = b13kin Z3k (this is equivalent to 2� � 1 (mod 3k) (1)). If n = �t + r with0 � r � ��1; t; r 2 N, we have 2n � 2�t �2r � 2r (mod 3k): For 3k j (2n�1)we have 2n � 1 (mod 3k); so therefore 2r � 1 (mod 3k): If r 6= 0, this is a
ontradi
tion with (1) be
ause r < �: From this, we infer that r = 0 =) n = �t.Thus � j n and the proof of the lemma is 
omplete.



Chains in Collatz's Tree 15Theorem 3.2 U(Z3k ) =< b23k >; for all k � 1:Proof Let � be the order of b23k in the group U(Z3k ) (b23k 2 U(Z3k ) be
ause2 and 3 are mutually prime numbers). From Euler's Theorem it follows that2'(3k) � 1 (mod 3k). This is equivalent to 22�3k�1 � 1 (mod 3k). Fromthe de�nition of � and Lemma 3.2, it follows that � j (2 � 3k�1). From 2� � 1(mod 3k) we infer that � � 0 (mod 2): Therefore � = 2�3t, where 0 � t � k�1:Let us suppose that t � k � 2: We have 22�3t � 1 (mod 3k): There-fore �22�3t�3(k�2)�t � 1 (mod 3k): Thus 22�3k�2 � 1 (mod 3k), so it follows(23k�2 + 1)(23k�2 � 1) � 0 (mod 3k). However 23k�2 � 1 � 1 (mod 3), thatmeans 3k j (23k�2 + 1): This is an obvious 
ontradi
tion with Lemma 2.4.Hen
e, t = k � 1. This implies � = 2 � 3k�1 = 
ard(U(Z3k )), i.e. U(Z3k ) isa 
y
li
 group generated by b23k .Theorem 3.3 Let u; v be two given natural numbers with (3; v) = 1: Then forevery m 2 N the equation 3um � s = 2p + v (��)satis�es:a) there exists a unique solution (s0; p0) of (��) with 0 � p0 < 2 � 3um�1;b) every solution (s; p) of the equation (**) with m > 0 is of the form 2p0+2�3um�1�t + v3um ; p0 + 2 � 3um�1 � t!where t 2 N, and vi
eversa, for every t 2 N the above pair is a solutionfor (��).Proofa) We use Theorem 3.2 with k = um and obtain U(Z3um) =< b23um >.Using (3; v) = 1, we obtain �bv3um 2 U(Z3um): Therefore there exists aunique p0, 0 � p0 < 2 � 3um�1 (2 � 3um�1 = 
ard(U(Z3um ))) su
h thatb23um = �bv3um in Z3um . This is equivalent to the fa
t that there exists aunique p0; p0 < 2 � 3um�1 su
h that 3um j 2p+ v, i.e. there exists a uniquesolution (s0; p0) for (��) whi
h satis�es 0 � p0 < 2 � 3um�1:b) \=)" Let (s; p) be a solution of (��). We have 3um � s0 = 2p0 + v and also3um � s = 2p + v. Thus 2p0 � 2p (mod 3um), so 2p�p0 � 1 (mod 3um)be
ause b23um is invertible in Z3um ((2; 3) = 1). So b2p�p03um = b13um , hen
e2 �3um�1 j (p�p0) (from Lemma 3.2 be
ause 2 �3um�1 is the order of b23umas we have seen from Theorem 3.2). Thus there exists t 2 N su
h thatp = p0 + 2 � 3um�1 � t. On the other hand s = 2p+v3um ; so the pair (s; p) is ofthe requested form.



16 Chains in Collatz's Tree\(=" Let p = p0 + 2 � 3um�1 � t and s = 2p0+2�3um�1�t+v3um . We shall provethat (s; p) is a solution of (��). We have 2 � 3um�1 � t = p� p0. It followsthat 2p�p0 � 22�3um�1�t (mod 3um), i.e. 2p�p0 � 1 (mod 3um) (be
ause'(3um) = 2 � 3um�1, it follows that 22�3um�1 � 1 (mod 3um)). Hen
e2p � 2p0 (mod 3um), so 2p + v � 2p0 + v � 0 (mod 3um): Therefore3um j (2p + v), so there exists s0 2 N su
h that 3um � s0 = 2p + v: If weprove that s0 = s; the theorem is proven.We obtain that s0 = 2p+v3um = 2p0+2�3um�1�t+v3um = s. Hen
e s0 = s; so3um � s = 2p + v, i.e. (s; p) is a solution for (��).Now, we shall apply Theorem 3.3 to some parti
ular values of u and mwhi
h are interesting in solving our equations. We try to �nd numbers p0 whi
hsatis�es 0 � p0 < 2 � 3um�1. This 
an be done by a simple program. After we�nd (s0; p0), we know all the solutions as stated in Theorem 3.3, b).Let us denote by p(m)0 the number p0 whi
h 
orresponds to a given m. Inthe following, we des
ribe a relation between p(m)0 and p(m+1)0 .Lemma 3.3 For equations of type (��), there exists k, 0 � k < 3u, su
h thatp(m+1)0 � p(m)0 = 2 � 3um�1 � k.Proof Let (s(m+1)0 ; p(m+1)0 ) be a solution of the equation 3u(m+1) � s = 2p + v.Therefore (3u � s0; p(m+1)0 ) is a solution of the equation 3um � s = 2p + v: FromTheorem 3.3, b), we infer that there exists k 2 N su
h thatp(m+1)0 = p(m)0 + 2 � 3um�1 � k:Be
ause p(m+1)0 < 2 � 3u(m+1)�1, it follows that k < 3u.This means we 
an �nd p(m)0 using a linear algorithm of the time 
omplexityO(m�3u) = O(m): A

ording to Theorem 3.3, we would have had an exponentialalgorithm (we test every number p between 0 and 2�3um�1�1). By using Lemma3.3, we 
an easily implement a program whi
h 
omputes for given values of u,v and for every m, the value of p(m)0 : Using this program, we found the formof the solutions for (u; v) 2 f(2; 5); (7; 17)g: We list the form of this solutionsbelow.Let us 
onsider the equation 32m � s = 2p + 5: We want to �nd its solutions(m; s; p) 2 N3. We take in Theorem 3.3 u = 2 and v = 5.For m = 0 we have the solutions (0; 2t + 5; t); 8 t 2 N:For m = 1, we �nd s0 = 1 and p0 = 2 (0 � 2 < 2 � 32m�1 = 2 � 3). We havethe solutions (1; 22�3�t+2 + 532 ; 2 � 3 � t+ 2); 8 t 2 Nand these are all the solutions with m = 1.



Chains in Collatz's Tree 17For m = 2, all the solutions are(2; 22�33�t+50 + 534 ; 2 � 33 � t+ 50); 8 t 2 NFor m = 3, all the solutions are(3; 22�35�t+266 + 536 ; 2 � 35 � t+ 266); 8 t 2 NFor m = 4, all the solutions are(4; 22�37�t+266 + 538 ; 2 � 37 � t+ 266); 8 t 2 NLet us 
onsider the equation 37m �s = 2p+17:We take in Theorem 3.3 u = 7and v = 17.For m = 0 we have all the solutions (0; 2t + 17; t); 8 t 2 N:For m = 1, all the solutions are(1; 22�36�t+762 + 1737 ; 2 � 36 � t+ 762); 8 t 2 NFor m = 2, all the solutions are(2; 22�313�t+1116132 + 17314 ; 2 � 313 � t+ 1116132); 8 t 2 NFor (u; v) = (1; 1), we �nd all the solutions by proof, i.e. let us study theequation 3m � s = 2p + 1: In fa
t, this 
ase has been treated in Theorem 4.2([AnM98℄). We shall �nd the solutions (m; s; p) 2 N3. We take u = 1 and v = 1in Theorem 3.3. We shall prove that p(m)0 = 3m�1: From Lemma 2.4, we have3m j (23m�1 + 1): A

ording to Theorem 3.3, a), be
ause 0 � 3m�1 < 2 � 3m�1and the uniqueness of p0 in that range, it follows that p(m)0 = 3m�1: Thus, allthe solutions of the equation are:(m; 23m�1(2t+1) + 13m ; 3m�1(2t+ 1)); 8 t 2 N; 8 m � 1For m = 0, we have all the solutions (0; 2t + 1; t); 8 t 2 N:Using the above results, we 
an dedu
e other sub
lasses of natural numbersfor whi
h Collatz's 
onje
ture holds.Theorem 3.4 For all t 2 N, s 2 N, the following identities hold:(i) fC(5k+s+2�3�t+2) �2s � h23k � 22�3�t+2+532k � 5i� = 1; 8 k 2 f0; 1g;



18 Chains in Collatz's Tree(ii) fC (5k+s+2�33�t+50) �2s � h23k � 22�23�t+50+532k � 5i� = 1; 8 k 2 f0; 1; 2g;(iii) fC (5k+s+2�35�t+266) �2s � h23k � 22�35�t+266+532k � 5i� = 1; 8 k 2 f0; 1; 2; 3g;(iv) fC (5k+s+2�37�t+266) �2s � h23k � 22�37�t+266+532k � 5i� = 1; 8 k 2 f0; 1; 2; 3; 4g;(v) fC (18k+s+2�36�t+762) �2s � h211k � 22�36�t+762+1737k � 17i� = 1; 8 k 2 f0; 1g;(vi) fC (18k+s+2�313�t+1116132) �2s � h211k � 22�313�t+1116132+1737k � 17i� = 1;8 k 2 f0; 1; 2g.Proof(i) Using a pro
edure similar to the proof of Lemma 3.1, we 
an immediatelyobtain (by indu
tion on k) the identity:fC(5k) �32(m�k) � 23k � s� 5� = 32m � s� 5; 8 k 2 f0; 1; :::;mg:But, we saw above that the equation 32m � s� 5 = 2p has the solutions (m; s; p):�1; 22�3�t+2 + 532 ; 2 � 3 � t+ 2�A

ording to the fa
t that fC(p)(2p) = 1 it follows thatfC (5k+2�3�t+2)�23k � 22�3�t+2 + 532k � 5� = 1; 8 k 2 f0; 1g:Now, applying Theorem 1.1 (ii), we 
an multiply by 2 and thus we immediatelyobtain the requested identity.The 
ases (ii)-(iv) are very similar. For the 
ases (v), (vi) we 
an use theidentity (whi
h 
an be proved by indu
tion on k):fC (18k) �37(m�k) � 211k � s� 17� = 37m � s� 17; 8 k 2 f0; 1; :::;mg:4 Relations between \even" and \odd" bran
hesNext, we shall present an interesting result related to the number of \even" and\odd" bran
hes in the Collatz's tree.We say that n! n2 is an operation of type 0 and n! 3n+1 of type 1. Ona 
ertain number, we 
annot perform two 
onse
utive operations of type 1. So,we perform k0 operations of type 0, one of type 1, k1 of type 0, one of type 1and so on.



Chains in Collatz's Tree 19Theorem 4.1 Let a1; :::; at 2 f1; 2g; t 2 N+ su
h that there is no i 2 f1; 2; :::; tg;ai = ai+1 = 1: Then, there exists x 2 N su
h that we 
an perform on x; theoperations of type a1; :::; at in this order.Proof Let us suppose that we have n operations of type 1 in this �nite sequen
e.Then there exist k0; k1; :::; kn su
h that k0; kn � 0 and k1; :::; kn�1 � 1 andak0+1 = ak0+k1+2 = ::: = ak0+:::+kn�1+n = 1ai = 0; 8 i 62 fk0 + 1; k0 + k1 + 2; :::; k0 + :::+ kn�1 + ngbe
ause (2; 3) = 1 it follows that b23n�1 2 U(Z3n�1 ); i.e. there exists y 2 N forwhi
hz = 2k��2k1+:::kn � y � 30 � 2k1+:::+kn�1 � 31 � 2k1+:::kn�2 � :::� 3n�2 � 2k1 � 3n�1�� 0 (mod 3n) holds. We take x = z3n and we state that this satis�es therequirements. Performing k0 operations of type 0 on x; we obtain2k1+:::+kn�1 � y � 30 � 2k1+:::+kn�2 � :::� 3n�2 � 2k1 � 3n�13nwhi
h is an odd number sin
e k1 � 1: Performing one operation of type 1 onthis number we get2k1(2k2+:::+kn�1 � y � 30 � 2k2+:::+kn�2 � :::� 3n�2)3n�1Continuing in this way, after performing operations of type a1; :::; at in this orderon x; we obtain y (t = k0 + :::+ kn + n).Let us denote by Si the set of numbers from Collatz's tree for whi
h we haveexa
tly i operations of type 1 until we rea
h 1. In [ShW92℄ it is proved that Siis in�nite. We shall prove this too, as a 
onsequen
e of Theorem 4.1.Theorem 4.2 
ard(Si) =1 (Si is in�nite).Proof In Theorem 3.1 we have seen that fC(2i)(2i �s�1) = 3i �s�1: A

ordingto Theorem 3.3, we infer that the equation 3m � s� 1 = 2p has in�nitely manysolutions with m = i: Be
ause for di�erent s; and �xed i the numbers 2i � s� 1are pairwise distin
t, we dedu
e that 2i � s � 1 2 Si; for any s su
h that thereexists p with 3i � s� 1 = 2p: Moreover, the numbers 2k � (2i � s� 1) 2 Si; 8 k � 0:Thus Si has in�nitely many elements.For all n 2 N and n from Collatz's tree we denote by an the number of stepsof type 1, and by bn the number of steps of type 0 until we rea
h 1: We try toestimate the ratio anbn : It 
an be easily seen that anbn � 1:Lemma 4.1 For every n 2 N� f0g; with (n; 3) = 1; there existsu 2 f1; 2; 3; 4; 5; 6g su
h that 2u � n � 4 (mod 18).



20 Chains in Collatz's TreeProof Be
ause 26t � 1 (mod 9); 26t+1 � 2 (mod 9); 26t+2 � 4 (mod 9);26t+3 � 8 (mod 9); 26t+4 � 7 (mod 9); 26t+5 � 5 (mod 9); where t 2 N,(n; 3) = 1, and (2; 9) = 1, we have that there exists a u with u 2 f1; 2; 3; 4; 5; 6gand 9 j (2u�1 � n� 2): This implies 18 j (2u � n� 4):Lemma 4.2 For every n 2 N� f0g; with (n; 6) = 1; there exist t; r 2 N� f0gsu
h that n = 18t + r, r 2 f1; 5; 7; 11; 13; 17g, and there exist m 2 N � f0g,a = 1, b � 4 with (m; 6) = 1 and fC (a+b)(m) = n, where a (b) denotes thenumber of type 1 (0) steps, respe
tively.Proof This follows from the following �gure.18k+136k+272k+4... 24k+1
18k+536k+1072k+20 ...... 48k+13

18k+736k+1472k+28144k+56 ...288k+112... 96k+37a) b) 
)18k+1136k+22... 12k+7
18k+1336k+2672k+52... 24k+17e)d)

18k+1736k+34... 12k+11f)Lemma 4.3 There exist in�nitely many numbers n, with (n; 6) = 1, from Col-latz's tree for whi
h we have anbn � 14 :



Chains in Collatz's Tree 21Proof Let us 
onsider n1 = 5. It is obvious that (n1; 6) = 1; an1 = 1; bn1 = 4,and therefore an1bn1 � 14 . We shall 
onstru
t nk indu
tively for all k 2 N+ �f1g:Let us suppose we have 
onstru
ted n1; ..., nk so that level(ni) < level(ni+1)in Collatz's tree, (ni; 6) = 1 for all i 2 f1; 2; :::; kg, ani = i, and anibni � 14 :Sin
e (nk; 6) = 1 we 
on
lude that there exist t; r 2 N su
h that nk = 18t+rwith r 2 f1; 5; 7; 11; 13; 17g. From Lemma 4.2 follows that there exists nk fromCollatz's tree su
h that� (nk+1; 6) = 1,� ank+1 = ank + 1,� bnk+1 � bnk + 4,� level(nk) < level(nk+1) � level(nk) + 5.From the indu
tion hypothesis it is obvious that ank+1 = ank + 1 = k + 1and bnk+1 � bnk + 4 � 4 � ank + 4 = 4 � ank+1 . Therefore ank+1bnk+1 � 14 .Be
ause of level(n1) < level(n2) < ::: and Lemma 2.1 follows that thenumbers n1; n2; ::: are pairwise distin
t.Remark 4.1 The numbers n1; n2; � � � belong to the same in�nite path in Col-latz's tree as 
an be easily seen from the 
onstru
tion above. Moreover, thisin�nite path is not ultimately ending in a 
hain. Let n be any number on thispath (starting with n1). Then there exists k 2 N � f0g su
h that n is betweenn�k and nk+1 on this path. It follows that ank = an = k and bnk < bn � bnk+4.Therefore anbn = kbn � kbnk+4 � k4ank+4 = k4(k+1) = 14 � 14(k+1) � 14 � 18 = 18 .Thus, anbn � 18 holds for all numbers n on this path.Theorem 4.3 The limit limn!1 anbn does not exist.Proof We know that limi!1 a2ib2i = limi!1 0i = 0: Note that the sequen
e (2i) is anin�nite path of Collatz's tree but not ultimately a 
hain sin
e there are in�nitelymany bran
hing points by Lemma 4.1.A

ording to Lemma 4.3, there exist in�nitely many numbers n su
h thatn is from Collatz's tree and anbn � 14 : From these numbers, we 
an extra
tnk1 < nk2 < :::.If the limit limi!1 ankibnki exists, this is greater or equal than 14 . But limi!1 a2ib2i = 0.Thus the limit limn!1 anbn doesn't exist. If the limit limi!1 ankibnki doesn't exist, thenthe limit limn!1 anbn doesn't exist either.It is obvious that we 
annot perform 2 
onse
utive steps of type 1 on anumber n. Sin
e the last 3 steps are of type 0 we get an < bn, or anbn < 1.In the following we prove a stronger result.



22 Chains in Collatz's TreeTheorem 4.4 For all n from Collatz's tree holds n�3an2bn � 1.Proof This will be shown by indu
tion on an + bn. Note that an + bn rangesover all positive natural numbers sin
e there exists the in�nite set n = bk withan = 0.The basis is obvious sin
e to an+bn = 1 only 
orresponds n = 2 with an = 0and bn = 1.Assume that the statement holds for all m su
h that am + bm = k, andsuppose that n is from Collatz's tree with an + bn = k+1. Let m be the fatherof n, thus am + bm = k. Now, either m = n2 or m = 3n+ 1.In the �rst 
ase we have an = am and bn = bm + 1, and therefore we getn�3an2bn = 2m�3am2bm+1 = m�3am2bm � 1 ( by the indu
tion hypothesis ).In the se
ond 
ase we have an = am + 1 and bn = bm, and therefore we getn�3an2bn = 3n�3am2bm = (m�1)3am2bm < m�3am2bm � 1 (***) ( by the indu
tion hypothesis ).Therefore, in both 
ases we have n�3an2bn � 1.Remark 4.2 The equality n�3an2bn = 1 only holds for n of the form n = 2k. This
an be seen easily from (***).Theorem 4.5 For all n from Collatz's tree holds anbn < log2log3 .Proof From Theorem 4.4 we have n�3an2bn � 1, and therefore n � 3an � 2bnwhi
h implies 3an < 2bn being equivalent to an � log3 < bn � log2. Thereforeanbn < log2log3 < 1.Remark 4.3 The last two theorems may be generalized to the 
ase that the rootof the tree is not 1 but an arbitrary number q 2 N with q 6� 4 (mod 6). Withthe same meaning for an and bn to rea
h q hold: n3an2bn � q with n3an2bn = q onlyif n = q2k, and anbn < log2+logqlog3 .The following result establishes in whi
h 
ases some similarities in Collatz'stree may o

ur.Theorem 4.6 If n1 and n2 belong to Collatz's tree, n1; n2 � 4; and the di�er-en
e n1 � n2 = k1 � 3k2 , where k1 is even, then A2k2(n1) and A2k2 (n2) have thesame stru
ture (i.e. are isomorphi
 subtrees).Proof For k2 = 0 the statement is obvious.We shall prove the general statement by indu
tion on k2: We suppose thestatement true for k2 � 1. For k2 � 1 we have (be
ause k1 is even) n1 � n2 � 0(mod 6): Let us suppose n1 = 6t1+r and n2 = 6t2+r, where r 2 f0; 1; 2; 3; 4; 5g



Chains in Collatz's Tree 23and t1; t2 are natural numbers. In the following �gure we display all possiblesituations:12k24ka)
6k + 112k + 224k + 4b)

6k + 212k + 424k + 8 4k + 1
)6k + 312k + 624k + 12d)
6k + 412k + 8 2k + 124k + 16 4k + 2e)

6k + 512k + 1024k + 20 4k + 3f)

6k

If r = 0 we are in situation a). The �rst two levels of A2k2 (n1) and A2k2(n2)have the same stru
ture. Moreover24t1 � 24t2 = 24(t1 � t2) = 4(n1 � n2) = 4k1 � 3k2 = 12k1 � 3k2�1Applying the indu
tion hypothesis, we infer that A2k2 (n1) and A2k2(n2) havethe same stru
ture.If r = 5 we are in situation f). The �rst two levels of A2k2(n1) and A2k2(n2)have the same stru
ture. Moreover24t1+20� (24t2+20) = 24(t1� t2) = 4(n1�n2) = 4k1 � 3k2 = 12k1 � 3k2�1 and4t1 + 3� (4t2 + 3) = 4(t1 � t2) = 4 � n1 � n26 = 2k1 � 3k2�1Applying the indu
tion hypothesis, we infer that A2k2 (n1) and A2k2(n2) havethe same stru
ture.Situations b), 
), d), e) 
an be handled in a similar way. Having proved theindu
tion step, the proof is 
omplete.



24 Chains in Collatz's TreeRemark 4.4 Related to Theorem 4.6, we 
annot state the theorem for subtreesA2k2+1(n1) and A2k2+1(n2). As a 
ounterexample, A3(10) and A3(16) havedi�erent stru
tures on level 3. 1632 564128 21 20 3
20 340 680 13 12

10
10

5 Con
lusionsFor the sake of presentation, we 
an give a new reformulation (the fourth one)of Collatz's 
onje
ture using a type 0 grammar. LetG = (fS;A;B;C;Dg; f#; ag; S; P )be a type 0 grammar for whi
h the set of produ
tions P is given by:1. S ! # a# 2. S ! # a a#3. S ! # a a a a# 4. S ! #AAAAAAAA#5. #A! #AB 6. BA! AAB7. B#! A# 8. #AA! #AAC9. C AA! AAC 10. AC #! D#11. AAAD ! DA 12. #D ! #13. A! aThe grammarG is not monotoni
 be
ause of the produ
tions 10, 11, 12. It is al-most obvious that G (whi
h we 
alled Collatz's grammar) simulates Collatz'stree A(8), i.e.:# an# 2 L(G); n 2 N () n is a label of a node from A(8)To the numbers 1; 2; 4, whi
h are on the levels 0; 1; 2 in A(1), 
orrespond the ter-minal words # a#, # a a#, # a a a a# (obtained from the produ
tions 1; 2; 3).The label of the root of A(8) is des
ribed in the fourth produ
tion of G: Thetransformation y ! 2 � y is simulated by the produ
tions 5; 6; 7 and the trans-formation y ! y�13 , when y � 4 (mod 6) is simulated by the produ
tions8; 9; 10; 11; 12:The produ
tions 8; 9; 10 
he
k if the number of A symbols is even,and the produ
tions 10; 11; 12 
he
k if the number of A symbols is 1 (mod 3).Therefore, in the aÆrmative 
ase, the number of A symbols is 4 (mod 6):Finally, using produ
tion 13; we obtain the 
orresponding terminal word.



Chains in Collatz's Tree 25For instan
e, we 
an easily prove that(i) #An# n+1;�=)G #A2n# using the produ
tions 5,6,7and(ii) #A6k+4# 5k+4;�=)G #A2k+1# using the produ
tions 8,9,10,11,12where n+1;�=)G means that we have applyed n+ 1 derivations in G.One of the property of this grammar is:if there exists a derivation S k;�=)G # an#; then k is unique.If we don't want to have this property, we 
an just simply repla
e the produ
-tions 1; 2; 3; 4 by S ! #A# (i.e. we obtain an equivalent phrase stru
turegrammar with only 10 produ
tions). As a 
on
lusion, maybe this reformulationmay lead to further investigations.In our paper, we �nd some new in�nite sub
lasses of natural numbers forwhi
h Collatz's 
onje
ture is true. We dis
uss the 
hain subtrees and theirproperties. As a 
onje
ture very similar with Collatz's 
onje
ture we presentthe problem (C) (se
tion 3). Another open problem is to estimate the relationbetween the number of \even" steps and \odd" steps in the Collatz's tree. Aresult from [ShW92℄ has been proved as a 
onsequen
e of Theorem 4.1.A
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