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2 Chains in Collatz's TreeLet fC : N� ! N� be the (\Collatz") funtionfC(n) = � n2 if n � 0 (mod 2)3n+ 1 otherwiseShow that for any n 2 N�; there exists a k 2 N� suh that fC (k)(n) = 1;(fC(1) = fC ; fC (k+1) = fC Æ fC(k)).The onjeture may be rephrased as follows:The following program halts for any given integer m:n := m;while n > 1 doif (n is even) thenn := n=2elsen := 3n+ 1endifendwhile;This represents a useful example when we speak about terminating / non-terminating algorithms or about non-total reursive funtions. The above al-gorithm obviously terminates for m � 1 (the body of the \while" loop is neverexeuted) and presents no sienti�al interest. More than that, if m > 1, theonly way we an have a �nite exeution is to \reah" the value 1:Notation 1.1 We shall use the following notations:� m � n (mod p), where m; n 2 Z and p 2 Z� f0g i� p j (m� n);� m � fn1; :::; nrg (mod p), where m; n1; :::; nr 2 Z; p 2 Z � f0g andp � 2 means that m � n1 (mod p) or ... or m � nr (mod p):Theorem 1.1 (a slight generalization of Theorem 4.2, [AnM98℄)(i) fC (3m�n+2p)� 2p�(23m�n+1)3p � 1� = 1; 8 m 2 N; 8 n � f1; 5g (mod 6);8 p 2 f0; :::;m+ 1g;(ii) fC (k+m)(2k � n) = fC(m)(n); 8 m;n; k 2 N;(iii) fC (3m�n+2p+k) �2k � � 2p�(23m�n+1)3p � 1�� = 1; 8 m 2 N; 8 n � f1; 5g(mod 6); 8 p 2 f0; :::;m+ 1g, 8 k 2 N:Proof



Chains in Collatz's Tree 3(i) Similarly to the proof of Theorem 4.2 from [AnM98℄. Aording to Theo-rem 3.1 ([AnM98℄) we dedue that(�) fC (k+2p)(2p � r � 1) = fC(k)(3p � r � 1); 8 p 2 N; r 2 N+Solving the equation 3p � r� 1 = 2k; we obtain r = 23m�n+13p (for p = m+1follows the result from Theorem 4.2 [AnM98℄). By replaing r in (�) anddue to the fat that fC(k)(2k) = 1; we immediately obtain our identity.(ii) Obviously, by indution on k. (iii) is obtained from (i) and (ii).2 Binary Trees with ChainsWe an assoiate to any y 2 N; k 2 N a �nite binary tree with root y, havingk levels, denoted Ak(y) = (V;E). (we an suppose y 6= 0 and k 6= 0). Eahnode v 2 V is labelled with a natural number. Eah node may have one or twodesendants (depending on the label !)
(a)

if y 6� 4 (mod 6) 2 � y y�13if y � 4 (mod 6)2 � y y
(b)

y
The entire in�nite tree for the root y will be A(y) = (V;E); V � N (alledCollatz's tree of the root y). Now, beause of fC(1) = 4; fC (2)(1) = 2;fC(3)(1) = 1 there is a \loop" in the Collatz's funtion ausing repetition of 1as a root of a subtree in�nitely often. To avoid this fat, the Collatz funtionan be represented by another graph related to the in�nite tree A(8) attahedto it the loop 8 4 2 1 4: This is the only loop in that graph sine allnodes in A(8) have di�erent labels, and they are not 1; 2; 4:We an reformulate Collatz's onjeture as:V (A(8)) =N� f0; 1; 2; 4g:Lemma 2.1 In A(8) the labels of di�erent verties are distint, and di�erentfrom 1; 2; 4.Proof By indution on the number of levels.Basis: A1(8) has di�erent labels.Indutive Step: We know that the labels of di�erent verties from Ak(y) aredistint. We have to prove that the labels from the next level are distint from



4 Chains in Collatz's Treethe former ones and pairwise distint, too. Let v be an arbitrary vertex fromlevel k + 1, labelled by y:I: We suppose that there exists w 2 Ak+1(y); w 6= v for whih label(w) = y,too. Of ourse, father(v) 2 Ak(y); father(w) 2 Ak(y): Beause of the fat that2�label(father(v)) 6= (label(father(w))�1)=3, the ase father(v) = father(w)annot our. Supposing that father(v) 6= father(w); we distinguish the ases:a) y even. Then label(father(v)) = label(y)2 and label(father(w)) = label(y)2 :Thus label(father(v)) = label(father(w)); thus a ontradition to theindutive hypothesis;b) y odd. Thenlabel(father(v)) = 3 � label(y)+ 1 and label(father(w)) = 3 � label(y)+ 1:So, again label(father(v)) = label(father(w)); whih is a ontraditionto the indutive hypothesis.II: There exists a node on level m � k with label y. If m > 0 this on-tradits the indution hypothesis. If m = 0 this means y = 8 and therefore aontradition: 4 2 A(8).As a onsequene of Lemma 2.1, for generating the Collatz's tree, we don'thave to store in memory the entire Collatz's tree. The last level suÆes.Sine the Collatz Conjeture is still an open problem, it is possible thatthere exist other in�nite onneted Collatz graphs with a �nite loop, and/orbi-in�nite Collatz trees. In both ases, all nodes of suh onneted strutureshave di�erent labels.Lemma 2.2 Let A be an in�nite onneted Collatz graph with a loop, on-struted aording to Collatz's tree. Then all nodes have di�erent labels.Proof Let L be the �nite loop. Trivially, all nodes of L have di�erent labels. Itis also evident from the Collatz funtion that there annot exist edges enteringthe loop L.Assume that there exists another �nite loop L0 in A. Sine A is onnetedand any loop annot have edges entering the only possibility for onnetion isthat there exists a node s whih is reahed by paths both from L and L0. Butthis is a ontradition sine no node an have more than one inoming edge.To show that all nodes outside L have di�erent labels, and also di�erentfrom all labels from L, we use indution on the distane d(u) for a node u fromthe loop L.Basis: d(u) = 1 is obvious. Sine the two hildren of a node s 2 L havedi�erent labels, and label(u) = label(s) for some s 2 L would result in twoinoming edges for s.Indutive Step: Assume the indution hypothesis holds for all t 2 L withd(u) � n.



Chains in Collatz's Tree 5Let u be a node with d(u) = n + 1 with label(u) = label(v) for some otherv 2 L with d(v) � n+ 1.If d(v) = n + 1 then we obtain label(father(u)) = label(father(v)) bythe property of the Collatz funtion, and sine father(u) 6= father(v) thisontradits the indution hypothesis.If d(v) � n then father(u) 6= father(v); but label(u) = label(v), yieldingagain a ontradition to the indution hypothesis.Lemma 2.3 Let B be a bi-in�nite onneted Collatz tree (without loop). Thenthe labels of all nodes are distint.Proof Assume the ontrary.a) If there exist two di�erent nodes u; v 2 B for whih label(u) = label(v) onthe same (in�nite) path then that would be a loop, ontraditing the assumptionof loop-freeness.b) If there exist two di�erent nodes not on di�erent path for whih we havelabel(u) = label(v) then there exists a ommon anestor t 2 B. Beause of theCollatz funtion we get label(father(u)) = label(father(v)), and this an beontinued.This proedure either gives di�erent s; t on the same path, thus yielding aloop. A ontradition to the assumption. Or it gives s; s0 for whih we havefather(s) = father(s0) = t whih is impossible sine label(s) 6= label(s0).De�nition 2.1 We say that C = (V;E) is an (in�nite) hain subtree of atree T if C is a maximal subtree suh that every node has (exatly) at mostone diret desendant. We say that the node v is the root of C if father(v) inT does not belong to V (C).In fat, a hain subtree is formed only by using the situation (a) from theonstrution of Collatz's tree. If we know the label of the root of the hainsubtree, it is obvious that we an dedue the labels of all the desendants (thelabels are multiplied by 2).Theorem 2.1 (haraterization of hains in Collatz's tree)Let A(y) be the Collatz's tree. Then:(i) there exists a hain C in A(y) with v 2 V (C) i� 3 j label(v);(ii) muh more, v is the root of C i� 3 6 j label(father(v)) if father(v) existsin A(y):Proof(i) (=)) v 2 V (C). If 3 j label(v) then we obtain the onlusion. Let ussuppose, by ontrary, that 3 6 j label(v): So, the label of v is of the formf1; 2; 4; 5g (mod 6). The following piture shows that eah of these asesleads to a non-hain (i.e. there exists a desendant of v whih has twosons).



6 Chains in Collatz's Tree6k + 112k + 2
8k + 1 24k + 8 4k + 124k + 4

6k + 4 6k + 5
4k + 312k + 8 2k + 1 12k + 1024k + 2048k + 8

12k + 46k + 2
((=) 3 j label(v). Let label(v) = 2k �s where 3 j s; (2; s) = 1, k; s 2 N: Letk0 2 N be the minimum t 2 N; t � k suh that there exists u 2 V (A(y))with label(u) = 2t � s:Let u0 be the orresponding u for k0. We state that u0 and its desendantsform a hain C. We know that 3 j label(v); so 3 j u0. Therefore u0 hasexatly one diret desendent u1 for whih label(u1) = 2 � label(u0): Thus3 j label(u1); and u1 has exatly one desendant u2 et. This means that Cis a subtree of A(y) in whih every node has exatly one diret desendant.If C hadn't been maximal we ould have added father(u0) to C. Beauseof the minimality of k0, we have label(father(u0)) 6= 2k0�1 � s: Henek0 = 0, so label(u0) = s: Therefore label(father(u0)) = 3s + 1: Beause(s; 2) = 1, it follows that 3s + 1 � 4 (mod 6); so father(u0) has twodiret desendants. Contradition ! This implies that C is maximal, i.e.a hain.(ii) (=)) v is the root of C. If 3 j label(father(v)) then C is not maximal(beause we an add father(v) to C). This is a ontradition to De�nition2.1.((=) 3 6 j label(father(v)): If v is not the root of C then there exists w 2 Csuh that v is the son of w. Beause w belongs to V (A(y)), it follows thatw is the father of v in A(y). But from w 2 C we have 3 j label(w). Thisis a ontradition to 3 6 j label(father(v)):The following �gure shows after how many levels (for a given node), thereexists a node labelled by a multiple of 3:Aording to the �gure below and Theorem 2.1, for a vertex labelled by y,after at most k levels, we obtain a hain tree in A(y).y 3k 9k+5 9k+7 9k+8 9k+4 9k+2 9k+1k 0 2 3 4 5 6 7The roots of hain trees are pointed out in the below �gure by putting theirlabel into a retangle.



Chains in Collatz's Tree 7

...
18k + 89k + 4

144k + 64288k + 128 48k + 21(v)
72k + 32

...
12k + 536k + 16

(viii)
36k + 2812k + 972k + 56
18k + 149k + 79k + 6(vii)

(vi) 6k + 3
9k + 518k + 1036k + 20

9k + 3(iv)(i)9k 6k + 1...72k + 16144k + 32
576k + 128

24k + 5
18k + 436k + 8

288k + 6496k + 21
6k + 5...144k + 128 24k + 21

36k + 32
9k + 8

(ix)
18k + 16

72k + 64

...
(ii)

...
192k+ 211152k+ 128

...

...

...

9k + 1

Figure 2. Nine situations for obtaining hain subtrees

12k + 1
48k + 5576k + 64 (iii)

9k + 218k + 236k + 472k + 8
288k + 32144k + 16

Lemma 2.4 The following fats hold:a) 22k � 1 (mod 3) and 22k+1 � 2 (mod 3); 8 k 2 N;



8 Chains in Collatz's Treeb) 23m+13m+1 � 1 (mod 3); 8 m 2 N;) 23m�n+13m+1 � n (mod 3); 8 m 2 N; 8 n � f1; 5g (mod 6):Proofa) Obviously, 4 = 22 � 1 (mod 3). Therefore �22�k = 22k � 1 (mod 3) and22k+1 � 2 (mod 3); 8 k 2 N;b) 23m = (3 � 1)3m = 3mPi=0� 3mi � � 3i � (�1)3m�i = �1 + 3m+1 + 3m+2 �M;where M is obtained from the terms orresponding to i = 2; :::; 3m: Therefore,23m+13m+1 � 1 (mod 3); 8 m 2 N;) 23m�n = (3 � 1)3m�n = 3m�nPi=0 � 3m � ni � � 3i � (�1)3m�n�i. This equals to�1+3m+1 �n+3m+2 �n �M; where M is obtained from the terms orrespondingto i = 2; :::; 3m: Therefore, 23m�n+13m+1 � n (mod 3); 8 m 2 N;8 n � f1; 5g(mod 6):Theorem 2.2 The following identity holds:fC(3m�n+2m+k+2)�2k � �2m+1 � (23m�n + 1)3m+1 � 1�� = 1;8 m 2 N; n � f1; 5g (mod 6); 8 k 2 N: Muh more, if m � 1 (mod 2) andn � 1 (mod 6), or m � 0 (mod 2) and n � 5 (mod 6), then these numbers(for whih Collatz's onjeture holds) belong to a hain subtree in Collatz's tree.The label of the root may be obtained by taking k = 0:Proof The �rst part an be obviously obtained by taking p = m+1 in Theorem1.1.For the seond part, we shall show that 2m+1�(23m�n+1)3m+1 � 1 � 0 (mod 3):Then, applying Theorem 2.1, we obtain that these numbers belong to a hain.Beause 2 � �1 (mod 3), we get 2m+1 � (�1)m+1 (mod 3): Aordingto Lemma 2.4, ), we obtain 2m+1�(23m�n+1)3m+1 � (�1)m+1 � n (mod 3):Now, if m � 1 (mod 2) and n � 1 (mod 6) then (�1)m+1 � n � 1(mod 3). The same relation may be obtained in the other ase (m � 0 (mod 2)and n � 5 (mod 6)), too.Theorem 2.3 Let m 2 N; n � f1; 5g (mod 6); p 2 f1; :::;m � 1g; s 2 Narbitrary natural numbers. Then (depending on k) the following identities hold:(i) If k � 0 (mod 6) thenfC(3m�n+2p+k+s+4) 2s � "2p+k+3 � �23m�n + 1�� �2k+3 + 1� � 3p3p+1 #! = 1;



Chains in Collatz's Tree 9(ii) If k � 1 (mod 6) thenfC (3m�n+2p+k+s+3) 2s � "2p+k+2 � �23m�n + 1�� �2k+2 + 1� � 3p3p+1 #! = 1;(iii) If k � 2 (mod 6) thenfC (3m�n+2p+k+s+2) 2s � "2p+k+1 � �23m�n + 1�� �2k+1 + 1� � 3p3p+1 #! = 1;(iv) If k � 3 (mod 6) thenfC (3m�n+2p+k+s+7) 2s � "2p+k+6 � �23m�n + 1�� �2k+6 + 1� � 3p3p+1 #! = 1;(v) If k � 4 (mod 6) thenfC (3m�n+2p+k+s+6) 2s � "2p+k+5 � �23m�n + 1�� �2k+5 + 1� � 3p3p+1 #! = 1;(vi) If k � 5 (mod 6) thenfC (3m�n+2p+k+s+5) 2s � "2p+k+4 � �23m�n + 1�� �2k+4 + 1� � 3p3p+1 #! = 1:Muh more, these numbers belong to a hain subtree in Collatz's tree. The labelof the root may be obtained by taking s = 0:Proof We know from Theorem 1.1 that:fC(3m�n+2p+k) 2k � "2p � �23m�n + 1�3p � 1#! = 1;8 m 2 N; 8 n � f1; 5g (mod 6); 8 k 2 N: We onsider p 2 f0; :::;m� 1g.From Lemma 2.4, ), we know that 23m�n+13m+1 is a natural number. So,23m�n+13p � 0 (mod 9); 8 p < m (and also 2p�(23m�n+1)3p � 0 (mod 9); 8 p < m).Therefore 2p�(23m�n+1)3p � 1 � 8 (mod 9). Now, we have:2k =8>>>>><>>>>>: 1 (mod 9) if k � 0 (mod 6)2 (mod 9) if k � 1 (mod 6)4 (mod 9) if k � 2 (mod 6)8 (mod 9) if k � 3 (mod 6)7 (mod 9) if k � 4 (mod 6)5 (mod 9) if k � 5 (mod 6)



10 Chains in Collatz's TreeNext, we shall show how we obtain (i) from our theorem, the other ases beinganalogous. For k � 0 (mod 6) we obtain 2k �� 2p�(23m�n+1)3p � 1� � 8 (mod 9).But from the �gure 2, (ix), we remark that fC (4)(24r+21) = 9r+8: By replaing9r + 8 with 2k � � 2p�(23m�n+1)3p � 1� we an obtain:r = 2p+k � �23m�n + 1�� 2k � 3p � 23 � 3p3p+2 :Now, we obtain 24r + 21 = 2p+k+3�(23m�n+1)�(2k+3+1)�3p3p+1 � 0 (mod 3). There-fore fC(3m�n+2p+k+4) 2p+k+3 � �23m�n + 1�� �2k+3 + 1� � 3p3p+1 ! == fC (3m�n+2p+k) 2k � "2p � �23m + 1�3p � 1#! = 1:From this follows the onlusion by applying Theorems 1.1 (ii), and 2.1.Theorem 2.4 Let m 2 N; n � f1; 5g (mod 6); s 2 N arbitrary natural num-bers. Then (depending on m, n and k) the following identities hold:a) If (m � f0; 2; 4g (mod 9) and n � 1 (mod 6)) or (m � f1; 3; 5g(mod 9) and n � 5 (mod 6)) then(i) If k � 0 (mod 6) thenfC(3m�n+2m+k+s+6) 2s � "2m+k+5 � �23m�n + 1�� �2k+5 + 1� � 3m3m+1 #! = 1;(ii) If k � 1 (mod 6) thenfC(3m�n+2m+k+s+5) 2s � "2m+k+4 � �23m�n + 1�� �2k+4 + 1� � 3m3m+1 #! = 1;(iii) If k � 2 (mod 6) thenfC(3m�n+2m+k+s+4) 2s � "2m+k+3 � �23m�n + 1�� �2k+3 + 1� � 3m3m+1 #! = 1;(iv) If k � 3 (mod 6) thenfC(3m�n+2m+k+s+3) 2s � "2m+k+2 � �23m�n + 1�� �2k+2 + 1� � 3m3m+1 #! = 1;



Chains in Collatz's Tree 11(v) If k � 4 (mod 6) thenfC (3m�n+2m+k+s+2) 2s � "2m+k+1 � �23m�n + 1�� �2k+1 + 1� � 3m3m+1 #! = 1;(vi) If k � 5 (mod 6) thenfC (3m�n+2m+k+s+7) 2s � "2m+k+6 � �23m�n + 1�� �2k+6 + 1� � 3m3m+1 #! = 1:b) If (m � f0; 2; 4g (mod 9) and n � 5 (mod 6)) or (m � f1; 3; 5g(mod 9) and n � 1 (mod 6)) then(i) If k � 0 (mod 6) thenfC (3m�n+2m+k+s+2) 2s � "2m+k+1 � �23m�n + 1�� �2k+1 + 1� � 3m3m+1 #! = 1;(ii) If k � 1 (mod 6) thenfC (3m�n+2m+k+s+7) 2s � "2m+k+6 � �23m�n + 1�� �2k+6 + 1� � 3m3m+1 #! = 1;(iii) If k � 2 (mod 6) thenfC (3m�n+2m+k+s+6) 2s � "2m+k+5 � �23m�n + 1�� �2k+5 + 1� � 3m3m+1 #! = 1;(iv) If k � 3 (mod 6) thenfC (3m�n+2m+k+s+5) 2s � "2m+k+4 � �23m�n + 1�� �2k+4 + 1� � 3m3m+1 #! = 1;(v) If k � 4 (mod 6) thenfC (3m�n+2m+k+s+4) 2s � "2m+k+3 � �23m�n + 1�� �2k+3 + 1� � 3m3m+1 #! = 1;(vi) If k � 5 (mod 6) thenfC(3m�n+2m+k+s+3) 2s � "2p+k+2 � �23m�n + 1�� �2k+2 + 1� � 3m3m+1 #! = 1:



12 Chains in Collatz's TreeMuh more, these numbers belong to a hain tree. The label of the root may beobtained taking s = 0:Proof We know from Theorem 1.1 that:fC(3m�n+2m+k) 2k � "2m � �23m�n + 1�3m � 1#! = 1;8 m 2 N; 8 n � f1; 5g (mod 6); 8 k 2 N: From Lemma 2.4, ), we know that23m�n+13m+1 � n (mod 3). So, 23m�n+13m � 3 � n (mod 9). Next, all the identitiesfrom the onlusion of this theorem an be obtained using a similar proedureas in the proof of Theorem 2.3.3 Some \�xed points"In this setion, we shall de�ne some kind of \�xed points". Using this notion,we shall give a onjeture whih is similar to the Collatz's Conjeture. Startingfrom numbers of the form 2k �s�t; (t odd), our aim is to redue them to 3k0 �s�t0;(t0 odd) for whih t0 � t suh that we ould analyse solutions of 3k0 � s� t0 = 2p(suh numbers an be redued to 1).Lemma 3.1 Let k; s be arbitrary natural numbers (k; s � 1). Then the fol-lowing idendities hold:(i) fC (2m)(2k � s� 1) = 3m � 2k�m � s� 1; 8 m 2 f0; :::; kg;(ii) fC (5m)(2k � s� 5) = 32m � 2k�3m � s� 5; 8 m 2 f0; :::; bk3g;(iii) fC (18m)(2k � s� 17) = 37m � 2k�11m � s� 17; 8 m 2 f0; :::; b k11g:Proof We proeed by indution on m:(i) Basis: m = 1: It is obvious that fC (2)(2k � s� 1) = 3 � 2k�1 � s� 1.Indutive Step: We suppose that (i) is true for m and prove it for m+1(m+ 1 � k). From the indutive hypothesis, we know that:fC(2m)(2k � s� 1) = 3m � 2k�m � s� 1:But fC(2)(3m �2k�m �s�1) = fC(3m+1 �2k�m �s�2) = 3m+1 �2k�m�1 �s�1:Therefore fC(2m+2)(2k � s� 1) = 3m+1 � 2k�m�1 � s� 1:(ii) Basis: m = 1: We an immediatelly remark thatfC (5)(2k � s� 5) = fC(4)(3 � 2k � s� 14) = fC(3)(3 � 2k�1 � s� 7) == fC(2)(32 � 2k�1 � s� 20) = fC(32 � 2k�2 � s� 10) = 32 � 2k�3 � s� 5:



Chains in Collatz's Tree 13Indutive Step: We suppose that (ii) is true for m and prove it for m+1(m+ 1 � bk3 ). From the indutive hypothesis, we know that:fC(5m)(2k � s� 5) = 32m � 2k�3m � s� 5:But fC(5)(32m � 2k�3m � s� 5) = 32m+2 � 2k�3m�3 � s� 5: Therefore, we havefC(5m+5)(2k � s� 5) = 32m+2 � 2k�3m�3 � s� 5:(iii) Basis: m = 1: We an immediatelly remark thatfC(18)(2k � s� 17) = fC (17)(3 � 2k � s� 50) = fC (16)(3 � 2k�1 � s� 25) == fC(15)(32�2k�1�s�74) = fC(14)(32�2k�2�s�37) = fC(13)(32�2k�3�s�110) == fC(12)(33�2k�3�s�55) = fC(11)(34�2k�3�s�164) = fC(10)(34�2k�4�s�82) == fC(9)(34 �2k�5 �s�41) = fC(8)(35 �2k�5 �s�122) = fC(7)(35 �2k�6 �s�61) == fC(6)(36 �2k�6 �s�182) = fC(5)(36 �2k�7 �s�91) = fC(4)(37 �2k�7 �s�272) == fC(3)(37 �2k�8 �s�136) = fC(2)(37 �2k�9 �s�68) = fC(37 �2k�10 �s�34) == 37 � 2k�11 � s� 17Indutive Step: We suppose that (iii) is true for m and prove it form+ 1 (m+ 1 � b k11). From the indutive hypothesis, we know that:fC(18m)(2k � s� 17) = 37m � 2k�11m � s� 17:But fC(18)(37m � 2k�11m � s � 17) = 37m+7 � 2k�11m�11 � s � 17: ThereforefC(7m+7)(2k � s� 17) = 37m+7 � 2k�11m�11 � s� 17:Theorem 3.1 The following identities hold (for all m and s natural numbers):(i) fC(2m)(2m � s� 1) = 3m � s� 1;(ii) fC(5m)(23m � s� 5) = 32m � s� 5;(iii) fC(18m)(211m � s� 17) = 37m � s� 17:Proof We take in Lemma 3.1, k = m, k = 3m and k = 11m respetively.Let us denote byT = ft j 9 m; 9 k1; 9 k2; 9 t0 � t suh that fC(m)(2k � s� t) = 3k1 � 2k2 � s� t0and m is minimal with this propertyg;where k and s are arbitrary natural numbers. Aording to Theorem 3.1, weobtain 1; 5; 17 2 T and muh more t0 = t: We may all these numbers (1; 5; 17)



14 Chains in Collatz's Tree�xed points. We heked on the omputer for all t � 108 the membership toT , and we obtained a positive answer. For the numbers less than 108 but whihdon't belong to f1; 5; 17g; we obtained t0 < t. This means that these numbersare not �xed points. We onjeture that:(C) All natural numbers belong to T :In the following, we shall prove that the equations of the form:3m � s� 1 = 2p; 32m � s� 5 = 2p; 37m � s� 17 = 2phave always solutions. In addition, for every m0 2 N we have an in�nity ofsolutions (m; s; p) with m = m0.Beause of this, the Collatz's Conjeture is similar to our onjeture (C),whih an be reformulated in the following way:Let g : N� ! N� be the funtiong(n) = � n2 if n � 0 (mod 2)3n� 1 otherwiseShow that, for any n 2 N�; there exists an k 2 N� suh that g(k)(n) � n:We shall prove some results that will help us further in our onsideration.We shall use the following notations:� bx3k = fn 2 N j n � x (mod 3k)g;� Z3k = fbx3k j x 2 Ng;� (Z3k ;�;�) is a ring with � and � de�ned below:{ bx3k � by3k = d(x + y)3k ;{ bx3k � by3k = d(xy)3k :� U(Z3k ) the group of invertible elements in (Z3k ;�;�), this means thatU(Z3k ) = fbx3k j (x; 3k) = 1; x 2 Ng;� < x > the subgroup generated by x.We shall use the following lemma.Lemma 3.2 Let � be the order of b23k in U(Z3k ), where k � 1: Then for everyn suh that 3k j (2n � 1) we have � j n:Proof By de�nition, � is the least number � (� 2 N � f0g) with b2�3k = b13kin Z3k (this is equivalent to 2� � 1 (mod 3k) (1)). If n = �t + r with0 � r � ��1; t; r 2 N, we have 2n � 2�t �2r � 2r (mod 3k): For 3k j (2n�1)we have 2n � 1 (mod 3k); so therefore 2r � 1 (mod 3k): If r 6= 0, this is aontradition with (1) beause r < �: From this, we infer that r = 0 =) n = �t.Thus � j n and the proof of the lemma is omplete.



Chains in Collatz's Tree 15Theorem 3.2 U(Z3k ) =< b23k >; for all k � 1:Proof Let � be the order of b23k in the group U(Z3k ) (b23k 2 U(Z3k ) beause2 and 3 are mutually prime numbers). From Euler's Theorem it follows that2'(3k) � 1 (mod 3k). This is equivalent to 22�3k�1 � 1 (mod 3k). Fromthe de�nition of � and Lemma 3.2, it follows that � j (2 � 3k�1). From 2� � 1(mod 3k) we infer that � � 0 (mod 2): Therefore � = 2�3t, where 0 � t � k�1:Let us suppose that t � k � 2: We have 22�3t � 1 (mod 3k): There-fore �22�3t�3(k�2)�t � 1 (mod 3k): Thus 22�3k�2 � 1 (mod 3k), so it follows(23k�2 + 1)(23k�2 � 1) � 0 (mod 3k). However 23k�2 � 1 � 1 (mod 3), thatmeans 3k j (23k�2 + 1): This is an obvious ontradition with Lemma 2.4.Hene, t = k � 1. This implies � = 2 � 3k�1 = ard(U(Z3k )), i.e. U(Z3k ) isa yli group generated by b23k .Theorem 3.3 Let u; v be two given natural numbers with (3; v) = 1: Then forevery m 2 N the equation 3um � s = 2p + v (��)satis�es:a) there exists a unique solution (s0; p0) of (��) with 0 � p0 < 2 � 3um�1;b) every solution (s; p) of the equation (**) with m > 0 is of the form 2p0+2�3um�1�t + v3um ; p0 + 2 � 3um�1 � t!where t 2 N, and vieversa, for every t 2 N the above pair is a solutionfor (��).Proofa) We use Theorem 3.2 with k = um and obtain U(Z3um) =< b23um >.Using (3; v) = 1, we obtain �bv3um 2 U(Z3um): Therefore there exists aunique p0, 0 � p0 < 2 � 3um�1 (2 � 3um�1 = ard(U(Z3um ))) suh thatb23um = �bv3um in Z3um . This is equivalent to the fat that there exists aunique p0; p0 < 2 � 3um�1 suh that 3um j 2p+ v, i.e. there exists a uniquesolution (s0; p0) for (��) whih satis�es 0 � p0 < 2 � 3um�1:b) \=)" Let (s; p) be a solution of (��). We have 3um � s0 = 2p0 + v and also3um � s = 2p + v. Thus 2p0 � 2p (mod 3um), so 2p�p0 � 1 (mod 3um)beause b23um is invertible in Z3um ((2; 3) = 1). So b2p�p03um = b13um , hene2 �3um�1 j (p�p0) (from Lemma 3.2 beause 2 �3um�1 is the order of b23umas we have seen from Theorem 3.2). Thus there exists t 2 N suh thatp = p0 + 2 � 3um�1 � t. On the other hand s = 2p+v3um ; so the pair (s; p) is ofthe requested form.



16 Chains in Collatz's Tree\(=" Let p = p0 + 2 � 3um�1 � t and s = 2p0+2�3um�1�t+v3um . We shall provethat (s; p) is a solution of (��). We have 2 � 3um�1 � t = p� p0. It followsthat 2p�p0 � 22�3um�1�t (mod 3um), i.e. 2p�p0 � 1 (mod 3um) (beause'(3um) = 2 � 3um�1, it follows that 22�3um�1 � 1 (mod 3um)). Hene2p � 2p0 (mod 3um), so 2p + v � 2p0 + v � 0 (mod 3um): Therefore3um j (2p + v), so there exists s0 2 N suh that 3um � s0 = 2p + v: If weprove that s0 = s; the theorem is proven.We obtain that s0 = 2p+v3um = 2p0+2�3um�1�t+v3um = s. Hene s0 = s; so3um � s = 2p + v, i.e. (s; p) is a solution for (��).Now, we shall apply Theorem 3.3 to some partiular values of u and mwhih are interesting in solving our equations. We try to �nd numbers p0 whihsatis�es 0 � p0 < 2 � 3um�1. This an be done by a simple program. After we�nd (s0; p0), we know all the solutions as stated in Theorem 3.3, b).Let us denote by p(m)0 the number p0 whih orresponds to a given m. Inthe following, we desribe a relation between p(m)0 and p(m+1)0 .Lemma 3.3 For equations of type (��), there exists k, 0 � k < 3u, suh thatp(m+1)0 � p(m)0 = 2 � 3um�1 � k.Proof Let (s(m+1)0 ; p(m+1)0 ) be a solution of the equation 3u(m+1) � s = 2p + v.Therefore (3u � s0; p(m+1)0 ) is a solution of the equation 3um � s = 2p + v: FromTheorem 3.3, b), we infer that there exists k 2 N suh thatp(m+1)0 = p(m)0 + 2 � 3um�1 � k:Beause p(m+1)0 < 2 � 3u(m+1)�1, it follows that k < 3u.This means we an �nd p(m)0 using a linear algorithm of the time omplexityO(m�3u) = O(m): Aording to Theorem 3.3, we would have had an exponentialalgorithm (we test every number p between 0 and 2�3um�1�1). By using Lemma3.3, we an easily implement a program whih omputes for given values of u,v and for every m, the value of p(m)0 : Using this program, we found the formof the solutions for (u; v) 2 f(2; 5); (7; 17)g: We list the form of this solutionsbelow.Let us onsider the equation 32m � s = 2p + 5: We want to �nd its solutions(m; s; p) 2 N3. We take in Theorem 3.3 u = 2 and v = 5.For m = 0 we have the solutions (0; 2t + 5; t); 8 t 2 N:For m = 1, we �nd s0 = 1 and p0 = 2 (0 � 2 < 2 � 32m�1 = 2 � 3). We havethe solutions (1; 22�3�t+2 + 532 ; 2 � 3 � t+ 2); 8 t 2 Nand these are all the solutions with m = 1.



Chains in Collatz's Tree 17For m = 2, all the solutions are(2; 22�33�t+50 + 534 ; 2 � 33 � t+ 50); 8 t 2 NFor m = 3, all the solutions are(3; 22�35�t+266 + 536 ; 2 � 35 � t+ 266); 8 t 2 NFor m = 4, all the solutions are(4; 22�37�t+266 + 538 ; 2 � 37 � t+ 266); 8 t 2 NLet us onsider the equation 37m �s = 2p+17:We take in Theorem 3.3 u = 7and v = 17.For m = 0 we have all the solutions (0; 2t + 17; t); 8 t 2 N:For m = 1, all the solutions are(1; 22�36�t+762 + 1737 ; 2 � 36 � t+ 762); 8 t 2 NFor m = 2, all the solutions are(2; 22�313�t+1116132 + 17314 ; 2 � 313 � t+ 1116132); 8 t 2 NFor (u; v) = (1; 1), we �nd all the solutions by proof, i.e. let us study theequation 3m � s = 2p + 1: In fat, this ase has been treated in Theorem 4.2([AnM98℄). We shall �nd the solutions (m; s; p) 2 N3. We take u = 1 and v = 1in Theorem 3.3. We shall prove that p(m)0 = 3m�1: From Lemma 2.4, we have3m j (23m�1 + 1): Aording to Theorem 3.3, a), beause 0 � 3m�1 < 2 � 3m�1and the uniqueness of p0 in that range, it follows that p(m)0 = 3m�1: Thus, allthe solutions of the equation are:(m; 23m�1(2t+1) + 13m ; 3m�1(2t+ 1)); 8 t 2 N; 8 m � 1For m = 0, we have all the solutions (0; 2t + 1; t); 8 t 2 N:Using the above results, we an dedue other sublasses of natural numbersfor whih Collatz's onjeture holds.Theorem 3.4 For all t 2 N, s 2 N, the following identities hold:(i) fC(5k+s+2�3�t+2) �2s � h23k � 22�3�t+2+532k � 5i� = 1; 8 k 2 f0; 1g;



18 Chains in Collatz's Tree(ii) fC (5k+s+2�33�t+50) �2s � h23k � 22�23�t+50+532k � 5i� = 1; 8 k 2 f0; 1; 2g;(iii) fC (5k+s+2�35�t+266) �2s � h23k � 22�35�t+266+532k � 5i� = 1; 8 k 2 f0; 1; 2; 3g;(iv) fC (5k+s+2�37�t+266) �2s � h23k � 22�37�t+266+532k � 5i� = 1; 8 k 2 f0; 1; 2; 3; 4g;(v) fC (18k+s+2�36�t+762) �2s � h211k � 22�36�t+762+1737k � 17i� = 1; 8 k 2 f0; 1g;(vi) fC (18k+s+2�313�t+1116132) �2s � h211k � 22�313�t+1116132+1737k � 17i� = 1;8 k 2 f0; 1; 2g.Proof(i) Using a proedure similar to the proof of Lemma 3.1, we an immediatelyobtain (by indution on k) the identity:fC(5k) �32(m�k) � 23k � s� 5� = 32m � s� 5; 8 k 2 f0; 1; :::;mg:But, we saw above that the equation 32m � s� 5 = 2p has the solutions (m; s; p):�1; 22�3�t+2 + 532 ; 2 � 3 � t+ 2�Aording to the fat that fC(p)(2p) = 1 it follows thatfC (5k+2�3�t+2)�23k � 22�3�t+2 + 532k � 5� = 1; 8 k 2 f0; 1g:Now, applying Theorem 1.1 (ii), we an multiply by 2 and thus we immediatelyobtain the requested identity.The ases (ii)-(iv) are very similar. For the ases (v), (vi) we an use theidentity (whih an be proved by indution on k):fC (18k) �37(m�k) � 211k � s� 17� = 37m � s� 17; 8 k 2 f0; 1; :::;mg:4 Relations between \even" and \odd" branhesNext, we shall present an interesting result related to the number of \even" and\odd" branhes in the Collatz's tree.We say that n! n2 is an operation of type 0 and n! 3n+1 of type 1. Ona ertain number, we annot perform two onseutive operations of type 1. So,we perform k0 operations of type 0, one of type 1, k1 of type 0, one of type 1and so on.



Chains in Collatz's Tree 19Theorem 4.1 Let a1; :::; at 2 f1; 2g; t 2 N+ suh that there is no i 2 f1; 2; :::; tg;ai = ai+1 = 1: Then, there exists x 2 N suh that we an perform on x; theoperations of type a1; :::; at in this order.Proof Let us suppose that we have n operations of type 1 in this �nite sequene.Then there exist k0; k1; :::; kn suh that k0; kn � 0 and k1; :::; kn�1 � 1 andak0+1 = ak0+k1+2 = ::: = ak0+:::+kn�1+n = 1ai = 0; 8 i 62 fk0 + 1; k0 + k1 + 2; :::; k0 + :::+ kn�1 + ngbeause (2; 3) = 1 it follows that b23n�1 2 U(Z3n�1 ); i.e. there exists y 2 N forwhihz = 2k��2k1+:::kn � y � 30 � 2k1+:::+kn�1 � 31 � 2k1+:::kn�2 � :::� 3n�2 � 2k1 � 3n�1�� 0 (mod 3n) holds. We take x = z3n and we state that this satis�es therequirements. Performing k0 operations of type 0 on x; we obtain2k1+:::+kn�1 � y � 30 � 2k1+:::+kn�2 � :::� 3n�2 � 2k1 � 3n�13nwhih is an odd number sine k1 � 1: Performing one operation of type 1 onthis number we get2k1(2k2+:::+kn�1 � y � 30 � 2k2+:::+kn�2 � :::� 3n�2)3n�1Continuing in this way, after performing operations of type a1; :::; at in this orderon x; we obtain y (t = k0 + :::+ kn + n).Let us denote by Si the set of numbers from Collatz's tree for whih we haveexatly i operations of type 1 until we reah 1. In [ShW92℄ it is proved that Siis in�nite. We shall prove this too, as a onsequene of Theorem 4.1.Theorem 4.2 ard(Si) =1 (Si is in�nite).Proof In Theorem 3.1 we have seen that fC(2i)(2i �s�1) = 3i �s�1: Aordingto Theorem 3.3, we infer that the equation 3m � s� 1 = 2p has in�nitely manysolutions with m = i: Beause for di�erent s; and �xed i the numbers 2i � s� 1are pairwise distint, we dedue that 2i � s � 1 2 Si; for any s suh that thereexists p with 3i � s� 1 = 2p: Moreover, the numbers 2k � (2i � s� 1) 2 Si; 8 k � 0:Thus Si has in�nitely many elements.For all n 2 N and n from Collatz's tree we denote by an the number of stepsof type 1, and by bn the number of steps of type 0 until we reah 1: We try toestimate the ratio anbn : It an be easily seen that anbn � 1:Lemma 4.1 For every n 2 N� f0g; with (n; 3) = 1; there existsu 2 f1; 2; 3; 4; 5; 6g suh that 2u � n � 4 (mod 18).



20 Chains in Collatz's TreeProof Beause 26t � 1 (mod 9); 26t+1 � 2 (mod 9); 26t+2 � 4 (mod 9);26t+3 � 8 (mod 9); 26t+4 � 7 (mod 9); 26t+5 � 5 (mod 9); where t 2 N,(n; 3) = 1, and (2; 9) = 1, we have that there exists a u with u 2 f1; 2; 3; 4; 5; 6gand 9 j (2u�1 � n� 2): This implies 18 j (2u � n� 4):Lemma 4.2 For every n 2 N� f0g; with (n; 6) = 1; there exist t; r 2 N� f0gsuh that n = 18t + r, r 2 f1; 5; 7; 11; 13; 17g, and there exist m 2 N � f0g,a = 1, b � 4 with (m; 6) = 1 and fC (a+b)(m) = n, where a (b) denotes thenumber of type 1 (0) steps, respetively.Proof This follows from the following �gure.18k+136k+272k+4... 24k+1
18k+536k+1072k+20 ...... 48k+13

18k+736k+1472k+28144k+56 ...288k+112... 96k+37a) b) )18k+1136k+22... 12k+7
18k+1336k+2672k+52... 24k+17e)d)

18k+1736k+34... 12k+11f)Lemma 4.3 There exist in�nitely many numbers n, with (n; 6) = 1, from Col-latz's tree for whih we have anbn � 14 :



Chains in Collatz's Tree 21Proof Let us onsider n1 = 5. It is obvious that (n1; 6) = 1; an1 = 1; bn1 = 4,and therefore an1bn1 � 14 . We shall onstrut nk indutively for all k 2 N+ �f1g:Let us suppose we have onstruted n1; ..., nk so that level(ni) < level(ni+1)in Collatz's tree, (ni; 6) = 1 for all i 2 f1; 2; :::; kg, ani = i, and anibni � 14 :Sine (nk; 6) = 1 we onlude that there exist t; r 2 N suh that nk = 18t+rwith r 2 f1; 5; 7; 11; 13; 17g. From Lemma 4.2 follows that there exists nk fromCollatz's tree suh that� (nk+1; 6) = 1,� ank+1 = ank + 1,� bnk+1 � bnk + 4,� level(nk) < level(nk+1) � level(nk) + 5.From the indution hypothesis it is obvious that ank+1 = ank + 1 = k + 1and bnk+1 � bnk + 4 � 4 � ank + 4 = 4 � ank+1 . Therefore ank+1bnk+1 � 14 .Beause of level(n1) < level(n2) < ::: and Lemma 2.1 follows that thenumbers n1; n2; ::: are pairwise distint.Remark 4.1 The numbers n1; n2; � � � belong to the same in�nite path in Col-latz's tree as an be easily seen from the onstrution above. Moreover, thisin�nite path is not ultimately ending in a hain. Let n be any number on thispath (starting with n1). Then there exists k 2 N � f0g suh that n is betweenn�k and nk+1 on this path. It follows that ank = an = k and bnk < bn � bnk+4.Therefore anbn = kbn � kbnk+4 � k4ank+4 = k4(k+1) = 14 � 14(k+1) � 14 � 18 = 18 .Thus, anbn � 18 holds for all numbers n on this path.Theorem 4.3 The limit limn!1 anbn does not exist.Proof We know that limi!1 a2ib2i = limi!1 0i = 0: Note that the sequene (2i) is anin�nite path of Collatz's tree but not ultimately a hain sine there are in�nitelymany branhing points by Lemma 4.1.Aording to Lemma 4.3, there exist in�nitely many numbers n suh thatn is from Collatz's tree and anbn � 14 : From these numbers, we an extratnk1 < nk2 < :::.If the limit limi!1 ankibnki exists, this is greater or equal than 14 . But limi!1 a2ib2i = 0.Thus the limit limn!1 anbn doesn't exist. If the limit limi!1 ankibnki doesn't exist, thenthe limit limn!1 anbn doesn't exist either.It is obvious that we annot perform 2 onseutive steps of type 1 on anumber n. Sine the last 3 steps are of type 0 we get an < bn, or anbn < 1.In the following we prove a stronger result.



22 Chains in Collatz's TreeTheorem 4.4 For all n from Collatz's tree holds n�3an2bn � 1.Proof This will be shown by indution on an + bn. Note that an + bn rangesover all positive natural numbers sine there exists the in�nite set n = bk withan = 0.The basis is obvious sine to an+bn = 1 only orresponds n = 2 with an = 0and bn = 1.Assume that the statement holds for all m suh that am + bm = k, andsuppose that n is from Collatz's tree with an + bn = k+1. Let m be the fatherof n, thus am + bm = k. Now, either m = n2 or m = 3n+ 1.In the �rst ase we have an = am and bn = bm + 1, and therefore we getn�3an2bn = 2m�3am2bm+1 = m�3am2bm � 1 ( by the indution hypothesis ).In the seond ase we have an = am + 1 and bn = bm, and therefore we getn�3an2bn = 3n�3am2bm = (m�1)3am2bm < m�3am2bm � 1 (***) ( by the indution hypothesis ).Therefore, in both ases we have n�3an2bn � 1.Remark 4.2 The equality n�3an2bn = 1 only holds for n of the form n = 2k. Thisan be seen easily from (***).Theorem 4.5 For all n from Collatz's tree holds anbn < log2log3 .Proof From Theorem 4.4 we have n�3an2bn � 1, and therefore n � 3an � 2bnwhih implies 3an < 2bn being equivalent to an � log3 < bn � log2. Thereforeanbn < log2log3 < 1.Remark 4.3 The last two theorems may be generalized to the ase that the rootof the tree is not 1 but an arbitrary number q 2 N with q 6� 4 (mod 6). Withthe same meaning for an and bn to reah q hold: n3an2bn � q with n3an2bn = q onlyif n = q2k, and anbn < log2+logqlog3 .The following result establishes in whih ases some similarities in Collatz'stree may our.Theorem 4.6 If n1 and n2 belong to Collatz's tree, n1; n2 � 4; and the di�er-ene n1 � n2 = k1 � 3k2 , where k1 is even, then A2k2(n1) and A2k2 (n2) have thesame struture (i.e. are isomorphi subtrees).Proof For k2 = 0 the statement is obvious.We shall prove the general statement by indution on k2: We suppose thestatement true for k2 � 1. For k2 � 1 we have (beause k1 is even) n1 � n2 � 0(mod 6): Let us suppose n1 = 6t1+r and n2 = 6t2+r, where r 2 f0; 1; 2; 3; 4; 5g



Chains in Collatz's Tree 23and t1; t2 are natural numbers. In the following �gure we display all possiblesituations:12k24ka)
6k + 112k + 224k + 4b)

6k + 212k + 424k + 8 4k + 1)6k + 312k + 624k + 12d)
6k + 412k + 8 2k + 124k + 16 4k + 2e)

6k + 512k + 1024k + 20 4k + 3f)

6k

If r = 0 we are in situation a). The �rst two levels of A2k2 (n1) and A2k2(n2)have the same struture. Moreover24t1 � 24t2 = 24(t1 � t2) = 4(n1 � n2) = 4k1 � 3k2 = 12k1 � 3k2�1Applying the indution hypothesis, we infer that A2k2 (n1) and A2k2(n2) havethe same struture.If r = 5 we are in situation f). The �rst two levels of A2k2(n1) and A2k2(n2)have the same struture. Moreover24t1+20� (24t2+20) = 24(t1� t2) = 4(n1�n2) = 4k1 � 3k2 = 12k1 � 3k2�1 and4t1 + 3� (4t2 + 3) = 4(t1 � t2) = 4 � n1 � n26 = 2k1 � 3k2�1Applying the indution hypothesis, we infer that A2k2 (n1) and A2k2(n2) havethe same struture.Situations b), ), d), e) an be handled in a similar way. Having proved theindution step, the proof is omplete.



24 Chains in Collatz's TreeRemark 4.4 Related to Theorem 4.6, we annot state the theorem for subtreesA2k2+1(n1) and A2k2+1(n2). As a ounterexample, A3(10) and A3(16) havedi�erent strutures on level 3. 1632 564128 21 20 3
20 340 680 13 12
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5 ConlusionsFor the sake of presentation, we an give a new reformulation (the fourth one)of Collatz's onjeture using a type 0 grammar. LetG = (fS;A;B;C;Dg; f#; ag; S; P )be a type 0 grammar for whih the set of produtions P is given by:1. S ! # a# 2. S ! # a a#3. S ! # a a a a# 4. S ! #AAAAAAAA#5. #A! #AB 6. BA! AAB7. B#! A# 8. #AA! #AAC9. C AA! AAC 10. AC #! D#11. AAAD ! DA 12. #D ! #13. A! aThe grammarG is not monotoni beause of the produtions 10, 11, 12. It is al-most obvious that G (whih we alled Collatz's grammar) simulates Collatz'stree A(8), i.e.:# an# 2 L(G); n 2 N () n is a label of a node from A(8)To the numbers 1; 2; 4, whih are on the levels 0; 1; 2 in A(1), orrespond the ter-minal words # a#, # a a#, # a a a a# (obtained from the produtions 1; 2; 3).The label of the root of A(8) is desribed in the fourth prodution of G: Thetransformation y ! 2 � y is simulated by the produtions 5; 6; 7 and the trans-formation y ! y�13 , when y � 4 (mod 6) is simulated by the produtions8; 9; 10; 11; 12:The produtions 8; 9; 10 hek if the number of A symbols is even,and the produtions 10; 11; 12 hek if the number of A symbols is 1 (mod 3).Therefore, in the aÆrmative ase, the number of A symbols is 4 (mod 6):Finally, using prodution 13; we obtain the orresponding terminal word.



Chains in Collatz's Tree 25For instane, we an easily prove that(i) #An# n+1;�=)G #A2n# using the produtions 5,6,7and(ii) #A6k+4# 5k+4;�=)G #A2k+1# using the produtions 8,9,10,11,12where n+1;�=)G means that we have applyed n+ 1 derivations in G.One of the property of this grammar is:if there exists a derivation S k;�=)G # an#; then k is unique.If we don't want to have this property, we an just simply replae the produ-tions 1; 2; 3; 4 by S ! #A# (i.e. we obtain an equivalent phrase struturegrammar with only 10 produtions). As a onlusion, maybe this reformulationmay lead to further investigations.In our paper, we �nd some new in�nite sublasses of natural numbers forwhih Collatz's onjeture is true. We disuss the hain subtrees and theirproperties. As a onjeture very similar with Collatz's onjeture we presentthe problem (C) (setion 3). Another open problem is to estimate the relationbetween the number of \even" steps and \odd" steps in the Collatz's tree. Aresult from [ShW92℄ has been proved as a onsequene of Theorem 4.1.AknowledgementsWe thank to Prof. Dr. Matthias Jantzen and Researh Assistent Olaf Kum-mer (Fahbereih Informatik, Universit�at Hamburg) for their very useful re-marks, suggestions and omments whih improved the paper.Referenes[AnM98℄ Andrei, S�t., Masalagiu, C.: About the Collatz Conjeture. Ata In-formatia 35, pp. 167-179 (1998)[Col76℄ Collatz, L.: letters to R. Terras, 7 May 1976 and 2 Sept. 1976[Col80℄ Collatz, L.: letters to L. Garner, 17 Marh 1980[Con72℄ Conway, J.H.: Unpreditable Iterations. Proeedings 1972. NumberTheory Conferene. University of Colorado, S.U.A.: pp. 49-52 (1972)[DLR93℄ Devienne, Ph., Leb�eque, P., Routier, J.C.: One binary ReursiveHorn-Clause. Laboratoire d'Informatique Fondamentale de Lille. CNRSU.A. 369, Frane 1993
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