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Abstract

The paper refers to the Collatz’s conjecture. In the first part, we
present some equivalent forms of this conjecture and a slight generaliza-
tion of a former result from [AnM98]. Then, we present the notion of
“chain subtrees” in Collatz’s tree followed by a characterization theorem
and some subclass of numbers which are labels for some chain subtrees.
Next, we define the notion of “fixed points” and using this, we give an-
other conjecture similar to Collatz’s conjecture. Some new infinite sets
of numbers for which the Collatz’s conjecture holds are given. Finally,
we present some interesting results related to the number of “even” and
“odd” branches in the Collatz’s tree.
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1 Introduction

The exact origin of the Collatz’s conjecture, also called Syracuse conjecture,
3z + 1 problem, Kakutani’s problem, Hasse algorithm, and Ulam’s problem is
not clearly known. It circulated orally among the mathematical community for
many years. This problem is credited to Lothar Collatz (University of Hamburg,
[Col76, Col80]). In his student days in the 1930’s, stimulated by the lectures
of Edmund Landau, Oskar Perron, and Issai Schur, he became interested in
number-theoretic functions. A lot of researchers have studied this conjecture
([Con72, Guy83, Lag85],...). Some prizes have been offered by researchers for
its solution: $50 by H. S. M. Coxeter in 1970 (and $100 for a counterexample),
then $500 by P4l Erdés, and £1000 by B. Thwaites ([WTP82]).
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2 Chains in Collatz’s Tree

Let fo : N* — N* be the (“Collatz”) function

n . j—
£ _l3 ifn=0 (mod 2)
c(n) { 3n+1 otherwise

Show that for any n € N*, there exists a k € N* such that fc(k)(n) =1,
(W) =fc, f* = fo 0 £ V).

The conjecture may be rephrased as follows:
The following program halts for any given integer m:

n = m;
while n > 1 do
if (n is even) then
n:=mn/2
else
n:=3n+1
endif
endwhile; [ |

This represents a useful example when we speak about terminating / non-
terminating algorithms or about non-total recursive functions. The above al-
gorithm obviously terminates for m < 1 (the body of the “while” loop is never
executed) and presents no scientifical interest. More than that, if m > 1, the
only way we can have a finite execution is to “reach” the value 1.

Notation 1.1 We shall use the following notations:
e m=n (modp), wherem, n €Z andp € Z — {0} iff p| (m —n);

e m = {ny,..,n.} (mod p), where m, ny,..., n, € Z, p € Z — {0} and
p > 2 means that m =n; (mod p) or ... orm =n, (mod p).

Theorem 1.1 (a slight generalization of Theorem 4.2, [AnM98])
. 3™ .42 2P (287 "4 1)
(i) fc( D) e

Vpe{0,..,m+1};

—1) =1,VmeN,Vn={L5} (mod6),

(ii) fo5F™ (2% . n) = £, (n), ¥V m,n, k € N;

3p

(mod 6), Vp€{0,..,m+1},V ke N.

m p. (93" n
(iii) fc(3 ‘n+2p+k) [ ok, M_1]> =1,VmeN,Vn = {l1,5}

Proof



Chains in Collatz’s Tree 3

(i) Similarly to the proof of Theorem 4.2 from [AnM98]. According to Theo-
rem 3.1 ([AnM98]) we deduce that

(x) f*H2P)r.p — 1) =371 —1), VpeN, re N,

93" m 4 q
p

Solving the equation 3? -r — 1 = 2% we obtain r = (forp=m+1
follows the result from Theorem 4.2 [AnM98]). By replacing r in (*) and
due to the fact that £-*)(2%) = 1, we immediately obtain our identity.

(ii) Obviously, by induction on k. (iii) is obtained from (i) and (ii).

2 Binary Trees with Chains

We can associate to any y € N, k£ € N a finite binary tree with root y, having
k levels, denoted Aj(y) = (V, E). (we can suppose y # 0 and k # 0). Each
node v € V is labelled with a natural number. Each node may have one or two
descendants (depending on the label !)

Yy ify#4 (mod 6) Y ify=4 (mod 6)
2.y 2.y ‘"’3;1
(a) (b)

The entire infinite tree for the root y will be A(y) = (V, E), V C N (called
Collatz’s tree of the root y). Now, because of fo(1) = 4, ¥ (1) = 2,
fc(3)(1) = 1 there is a “loop” in the Collatz’s function causing repetition of 1
as a root of a subtree infinitely often. To avoid this fact, the Collatz function
can be represented by another graph related to the infinite tree A(8) attached
to it the loop 8 < 4 <~ 2 <~ 1 + 4. This is the only loop in that graph since all
nodes in A(8) have different labels, and they are not 1,2,4.

We can reformulate Collatz’s conjecture as:

V(A@®) =N - {0,1,2,4}.

Lemma 2.1 In A(8) the labels of different vertices are distinct, and different
from 1,2,4.

Proof By induction on the number of levels.

Basis: A;(8) has different labels.

Inductive Step: We know that the labels of different vertices from Aj(y) are
distinct. We have to prove that the labels from the next level are distinct from
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the former ones and pairwise distinct, too. Let v be an arbitrary vertex from
level k + 1, labelled by y.

I: We suppose that there exists w € Ag11(y), w # v for which label(w) = y,
too. Of course, father(v) € Ay (y), father(w) € Aj(y). Because of the fact that
2xlabel(father(v)) # (label(father(w))—1)/3, the case father(v) = father(w)
cannot occur. Supposing that father(v) # father(w), we distinguish the cases:

a) y even. Then label(father(v)) = % and label(father(w)) = %
Thus label(father(v)) = label(father(w)), thus a contradiction to the
inductive hypothesis;

b) y odd. Then
label(father(v)) = 3-label(y) + 1 and label(father(w)) = 3 - label(y) + 1.

So, again label(father(v)) = label(father(w)), which is a contradiction
to the inductive hypothesis.

II: There exists a node on level m < k with label y. If m > 0 this con-
tradicts the induction hypothesis. If m = 0 this means y = 8 and therefore a
contradiction: 4 € A(8). [ |

As a consequence of Lemma 2.1, for generating the Collatz’s tree, we don’t
have to store in memory the entire Collatz’s tree. The last level suffices.

Since the Collatz Conjecture is still an open problem, it is possible that
there exist other infinite connected Collatz graphs with a finite loop, and/or
bi-infinite Collatz trees. In both cases, all nodes of such connected structures
have different labels.

Lemma 2.2 Let A be an infinite connected Collatz graph with a loop, con-
structed according to Collatz’s tree. Then all nodes have different labels.

Proof Let L be the finite loop. Trivially, all nodes of L have different labels. It
is also evident from the Collatz function that there cannot exist edges entering
the loop L.

Assume that there exists another finite loop L' in A. Since A is connected
and any loop cannot have edges entering the only possibility for connection is
that there exists a node s which is reached by paths both from L and L'. But
this is a contradiction since no node can have more than one incoming edge.

To show that all nodes outside L have different labels, and also different
from all labels from L, we use induction on the distance d(u) for a node u from
the loop L.

Basis: d(u) = 1 is obvious. Since the two children of a node s € L have
different labels, and label(u) = label(s) for some s € L would result in two
incoming edges for s.

Inductive Step: Assume the induction hypothesis holds for all t € L with
d(u) < n.
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Let u be a node with d(u) = n + 1 with label(u) = label(v) for some other
v € L with d(v) <n+ 1.

If d(v) = n + 1 then we obtain label(father(u)) = label(father(v)) by
the property of the Collatz function, and since father(u) # father(v) this
contradicts the induction hypothesis.

If d(v) < n then father(u) # father(v), but label(u) = label(v), yielding
again a contradiction to the induction hypothesis. ]

Lemma 2.3 Let B be a bi-infinite connected Collatz tree (without loop). Then
the labels of all nodes are distinct.

Proof Assume the contrary.

a) If there exist two different nodes u, v € B for which label(u) = label(v) on
the same (infinite) path then that would be a loop, contradicting the assumption
of loop-freeness.

b) If there exist two different nodes not on different path for which we have
label(u) = label(v) then there exists a common ancestor ¢ € B. Because of the
Collatz function we get label(father(u)) = label(father(v)), and this can be
continued.

This procedure either gives different s, ¢ on the same path, thus yielding a
loop. A contradiction to the assumption. Or it gives s, s’ for which we have
father(s) = father(s') =t which is impossible since label(s) # label(s'). |

Definition 2.1 We say that C = (V, E) is an (infinite) chain subtree of a
tree T if C is a mazimal subtree such that every node has (exactly) at most
one direct descendant. We say that the node v is the root of C if father(v) in
T does not belong to V(C).

In fact, a chain subtree is formed only by using the situation (a) from the
construction of Collatz’s tree. If we know the label of the root of the chain
subtree, it is obvious that we can deduce the labels of all the descendants (the
labels are multiplied by 2).

Theorem 2.1 (characterization of chains in Collatz’s tree)
Let A(y) be the Collatz’s tree. Then:

(i) there exists a chain C in A(y) with v € V(C) iff 3 | label(v);

(i) much more, v is the root of C iff 3 flabel(father(v)) if father(v) exists
in A(y).

Proof

(i) (=) v € V(C). If 3 | label(v) then we obtain the conclusion. Let us
suppose, by contrary, that 3 ) label(v). So, the label of v is of the form
{1,2,4,5} (mod 6). The following picture shows that each of these cases
leads to a non-chain (i.e. there exists a descendant of v which has two
sons).
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6k$—1 6k:—2 il;ri 6k:—5
12k 4 2 12k + 4 12k +8 2k +1 12k + 10
' N IR
iﬁii 24k +8 4k +1 24k + 20 4k + 3
48k +8 8k +1

(<=) 3| label(v). Let label(v) = 2*-s where 3 | s, (2,s) = 1, k, s € N. Let
ko € N be the minimum ¢ € N, ¢ < k such that there exists u € V(A(y))
with label(u) = 2t - 5.

Let ug be the corresponding u for ky. We state that ug and its descendants
form a chain C. We know that 3 | label(v), so 3 | ug. Therefore ug has
exactly one direct descendent u; for which label(u;) = 2 - label(up). Thus
3| label(u1), and uy has exactly one descendant usy etc. This means that C
is a subtree of A(y) in which every node has exactly one direct descendant.
If C hadn’t been maximal we could have added father(ug) to C. Because
of the minimality of kg, we have label(father(ug)) # 2F°~! . s. Hence
ko = 0, so label(up) = s. Therefore label(father(ug)) = 3s + 1. Because
(s,2) = 1, it follows that 3s + 1 = 4 (mod 6), so father(up) has two
direct descendants. Contradiction ! This implies that C is maximal, i.e.
a chain.

(il) (=) v is the root of C. If 3 | label(father(v)) then C is not maximal
(because we can add father(v) to C). This is a contradiction to Definition
2.1.

(<=) 3 [label(father(v)). If v is not the root of C then there exists w € C
such that v is the son of w. Because w belongs to V(A(y)), it follows that
w is the father of v in A(y). But from w € C we have 3 | label(w). This
is a contradiction to 3 /[ label(father(v)).

The following figure shows after how many levels (for a given node), there
exists a node labelled by a multiple of 3.

According to the figure below and Theorem 2.1, for a vertex labelled by y,
after at most £ levels, we obtain a chain tree in A(y).

y | 3k | 9k+5 | 9k+7 | 9k+8 | 9k+4 | 9k+2 | 9k+1
k| O 2 3 4 5 6 7

The roots of chain trees are pointed out in the below figure by putting their
label into a rectangle.
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Ok + 1 Ok + 2 Ok + 4
PN ' PN

(i) (iv)

18k + 2 18k + 4 18k + 8
y PN y
36k +4 36k+8 6k+1 36k + 16
PN oo PN
72k + 8 12k + 1 72k + 16 ... 72k +32 12k +5
oo 5\ oo
144k + 16 ... 144k + 32 24k + 5 144k + 64

/X vy N
288k +32 48k +5 288k +64 .. 288k +128 [48k+21 |
vy AN
576k +64 . 576k + 128 ")
N (iif)

1152k + 128 |192k + 21
o

9k + 8
(vii) *
9k +5 9k + 7 18k + 16
18k + 10 18k + 14 ... 36k +32 6k+5

N ' vy

36k + 20 36k + 28 72k + 64
) N PN

(vi

72k + 56 12k +9| 144k + 128 24k + 21

(viii) (ix)

Figure 2. Nine situations for obtaining chain subtrees

Lemma 2.4 The following facts hold:

a) 22 =1 (mod 3) and 22**1 =2 (mod 3), V k € N;
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b) 24 =1 (mod 3), Vm e N;

) 2t =pn (mod3), YmeN, V¥n={1,5 (modS6).

Proof
a) Obviously, 4 = 22 =1 (mod 3). Therefore (22)k =22¢ =1 (mod 3) and
22k+1 = 2 (mod 3), V k € N;

m m 3m 3m
b) 28" = (3-1)3" = Z( ;
i=0
where M is obtained from the terms corresponding to i = 2, ...,3™. Therefore,
2L =1 (mod3), VmeN;
3™.n ( 3M .

) . 32 . (_I)Smfi = -1+ 3m+1 + 3m+2 . M,

¢) 22" = (3-17°"" = 3 .

i=0
—1+43m+1.n43m+2.n. M, where M is obtained from the terms corresponding
to 1 = 2,...,3™. Therefore, % =n (mod3), Vm e N,Vn = {15}
(mod 6). [

- 34.(=1)3""=%  This equals to

Theorem 2.2 The following identity holds:

m 2m+1 . (23"‘.72 + 1)
(3™ -n+2m+k+2) k —
fe (2 . [ S — 1:|> =1,

VmeN, n={1,5} (mod6), VkecN. Much more, if m=1 (mod 2) and
n=1 (mod6), orm=0 (mod2)andn=>5 (mod 6), then these numbers
(for which Collatz’s conjecture holds) belong to a chain subtree in Collatz’s tree.
The label of the root may be obtained by taking k = 0.

Proof The first part can be obviously obtained by taking p = m+1 in Theorem
1.1.

For the second part, we shall show that % —1=0 (mod 3).
Then, applying Theorem 2.1, we obtain that these numbers belong to a chain.

Because 2 = —1 (mod 3), we get 2™*1 = (=1)™*! (mod 3). According
to Lemma 2.4, c), we obtain L) (-1)™*t1.n  (mod 3).

3 ) 3m 1

Now, if m = 1 (mod2) and n = 1 (mod 6) then (—1)™*!.n = 1
(mod 3). The same relation may be obtained in the other case (m =0 (mod 2)
andn =5 (mod 6)), too. [ |

Theorem 2.3 Let m € N, n = {1,5} (mod6), p € {1,....m—1}, s € N
arbitrary natural numbers. Then (depending on k) the following identities hold:

(i) If k=0 (mod 6) then

fC(3m-n+2p+k+s+4) <2$ . [2P+k+3 . (23m-n -+ 1) — (2k+3 —+ ].) . 31"|) _ 1;

3p+1
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(ii) If k=1 (mod 6) then

fc(3m-n+2p+k+s+3) <2$ . [2P+k+2 . (23m-n -+ 1) — (2k+2 —+ ].) . 3?]) _ 1;

3p+1

(i) If k =2 (mod 6) then

(3™ n+2p+k+s+2) s |

[opthtt . (237 4 1) — (2K+1 4 1) .3P] )

(iv) If k=3 (mod 6) then

£, (37 nt2pthtst) <2$.'2p+k+6.(2ywn.+1)-—(2k+64-1).3p'> _y,

3p+1

(v) If k =4 (mod 6) then

£, (87 ot 2Dt o40) <28 . l2p+k+5 . (23’".n + 1) - (2k+5 + 1) 3f|> _

3p+1

Much more, these numbers belong to a chain subtree in Collatz’s tree. The label
of the root may be obtained by taking s = 0.

(vi) If k=5 (mod 6) then

(3™ -n+2p+k+s+5) s .

[2P+k+4 (28T 1) — (2K 1) - 3p

Proof We know from Theorem 1.1 that:

3"M.n
fC(Sm-n+2p+k) <2k . lQp' (2 + 1) _ 1]) -1,

3p

VmeN,Vn={1,5} (mod6),V ke N.We consider p € {0,...,m — 1}.
28"y

From Lemma 2.4, c), we know that Swl 1S A natural number. So,
23”;#5 (mod 9), Vp<m(andalso%§0 (mod 9), Vp < m).
p. (93 n
Therefore 2(237,,“) —1=8 (mod9). Now, we have:

( ) ifk=0 ( )
( ) ifk=1 ( )
( ) ifk=2 ( )
(mod 9) if k=3 (mod 6)
( ) ifk=4 ( )
( ) ifk=5 ( )

UL =3 00 i~ Do
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Next, we shall show how we obtain (i) from our theorem, the other cases being

M—l] =8 (mod9).

analogous. For k =0 (mod 6) we obtain 2% - [ —
But from the figure 2, (ix), we remark that fo*) (24r +21) = 9r +8. By replacing

p. (93" n
9r + 8 with 2% . [M

T — 1] we can obtain:

optk . (23m-n + 1) _9ok.3p _93.3p

r =

3p+2
p+k+3 (53™.n _(ok+3 ap
Now, we obtain 24r + 21 = 2 2 ;;)1 (217 +1)9 =0 (mod 3). There-
fore
f (3™ n+2p+k+4) 2rHht3 . (23 "+ 1) — (2k+3 + 1) -3v _
¢ 3p+1 =
gm
— fC(Sm-TL+2P+k) <2k . [21) ) (2 + 1) _ 1]) - 1.
3p
From this follows the conclusion by applying Theorems 1.1 (ii), and 2.1. [ ]

Theorem 2.4 Letm € N, n ={1,5} (mod 6), s € N arbitrary natural num-

bers. Then (depending on m, n and k) the following identities hold:
a) If (m = {0,2,4} (mod9) and n = 1 (mod 6)) or (m = {1,3,5}
(mod 9) and n =5 (mod 6)) then

(i) If k=0 (mod 6) then

fc(sm.n+2m+k+s+6) <2$ . [2m+k+5 . (23’".n + 1) - (2k+5 + 1) . 3m]> _y,

3m+1

(i) If k=1 (mod 6) then

fC(Sm.n+2m+k+s+5) <2s . [2m+k+4 . (23’".n + 1) — (2k+4 + 1) . 3m]> _y,

3m+1

(113) If k=2 (mod 6) then

fC(Sm.n+2m+k+s+4) <2s . [2m+k+3 . (23"’-77, _;nllll_ (2k+3 + 1) . 3m]> _y,

(iv) If k=3 (mod 6) then

fC(Sm.n+2m+k+s+3) <2s . [2m+k+2 . (23’".n + 1) — (2k+2 + 1) . 3m]> _y,

3m+1
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(v) Ifk =4 (mod 6) then

fc(3m.n+2m+k+s+2) <23 .

(vi) If k=5 (mod 6) then

fC(Sm-n+2m+k+s+7) <2s

b) If (m = {0,2,4}
(mod 9) and n=1 (mod 6)

(i) If k=0 (mod 6) then

fc(3m.n+2m+k+s+2) <23 .

(i) If k=1 (mod 6) then

fC(Sm-n+2m+k+s+7) <2s

(i) If k =2 (mod 6) then

fc(sm.n+2m+k+s+6) <25 .

(iv) If k=3 (mod 6) then

fc(3m-n+2m+k+s+5) <25

(v) If k=4 (mod 6) then

fC (3™ -n+2m+k+s+4) <2s

(vi) If k=5 (mod 6) then

fC(Sm-n+2m+k+s+3) <23

om+k+1

(287 1) — (28 1) - 3™

11

|

om+k+6

3m+1

(28" 1) — (2K46 4 1) . 3m

)

|

(mod 9) and n

) then

3m+1

5 (mod 6)) or (m

-

{1,3,5}

om+k+1 (23"‘-71 + 1) _ (2k+1 + 1) .3m
3m+1 = 1;
[2m+k+6 . (23"‘-77, + 1) _ (2k+6 + 1) . 3m]>
. =1;
3m+1
gmEhEs . (237 1) — (285 +1) 3™
3m+1 = 1;
om+k+4 (23"‘-71 + 1) _ (2k+4 + 1) .3m
' 3m+1 = 1;
[2m+k+3 . (23"‘-71 + 1) _ (2k+3 + 1) _3m]>
. =1;
3m+1

(274 1) — (2842 4+ 1) - 3™

[2p+k+2 .

3m+1
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Much more, these numbers belong to a chain tree. The label of the root may be
obtained taking s = 0.

Proof We know from Theorem 1.1 that:

m 3™-n
fC(3m-n+2m+k) <2k . [2 i (2 + ]') _ 1]) — 1’

3m

VmeN,Vn={1,5} (mod®6),VkeN.From Lemma 2.4, c), we know that

233,,,':ﬁ'1 =n (mod 3). So, Z =+t =3-n (mod?9). Next, all the identities
from the conclusion of this theorem can be obtained using a similar procedure

as in the proof of Theorem 2.3. [ |

3 Some “fixed points”

In this section, we shall define some kind of “fixed points”. Using this notion,
we shall give a conjecture which is similar to the Collatz’s Conjecture. Starting
from numbers of the form 2%-s—t, (¢ odd), our aim is to reduce them to 3% -s—¢',
(t' odd) for which ¢ < ¢ such that we could analyse solutions of 3* - s — ¢/ = 27
(such numbers can be reduced to 1).

Lemma 3.1 Let k, s be arbitrary natural numbers (k, s > 1). Then the fol-
lowing idendities hold:

(i) £ 2k . s —1)=3m.2k"m .5 —1 YV me{0,..,k};

(ii) fE™ (2 .5 —5) = 32m . 2k=3m .5 5 ¥ m € {0,.., | £}
(iii) £ ¥ (2% .5 —17) = 3T .2k 1M s 17 ¥V m € {0,..., | £}
Proof We proceed by induction on m.

(i) Basis: m = 1. It is obvious that fo® (2% .s — 1) =3.2k 1.5 - 1.

Inductive Step: We suppose that (i) is true for m and prove it for m + 1
(m + 1 < k). From the inductive hypothesis, we know that:

£k s —1)=3m. 2k g1,

But fo (2 (3m.2k=m .5 _1) = fo(3mH1.2k—m. g _9) = 3m+l.gh-m—1.5_1,
Therefore £ 32 (2% . 5 — 1) = 3m+1 . gk-m—1. g _ 1,

(ii) Basis: m = 1. We can immediatelly remark that
fe®@2F . s—5) =fWE. 2" s—14) =@ 2"1.s-7) =

=f,D(32. 21 .5 —20) = (3222 .5 —10) = 3%2.2F3 . 5 —5.
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Inductive Step: We suppose that (ii) is true for m and prove it for m+1

(m+1< |%]). From the inductive hypothesis, we know that:

£ 5™ (2 .5 —5) = 3% . 9h3m L5 5

But fp(%)(32m.2k=3m . g _5) = 32m+2.9k=3m=3 . 5 _ 5 Therefore, we have

fc(5m+5)(2k .5 — 5) — 32m+2  9k—3m-3 o &
(iii) Basis: m = 1. We can immediatelly remark that

£ 0902k s —17) =£07 (3. 28 . s —50) = £(19 (3. 2k=1 . s — 25) =

= £ 1) (32.2F 15— 74) = £,19) (32.2872.5-37) = £,(*¥) (32.2873.5-110)
= fc(12)(33-2k73-s—55) = fc(ll)(34-2k73'8—164) = fC(lO)(34'2k74's_82)
—£,® (3426 5.5—41) = £.(®) (35.2F5.5-122) = £.(7 (35.2F6.5—61

):
= £, % (35.2F76.5-182) = fo® (38.28".5-01) = fo® (37-2FT.s—272) =
):

= £ (3728 8. 5-136) = £,(P (372" 0. 5-68) = £(37-2F 0. 534
=372k s 17

Inductive Step: We suppose that (iii) is true for m and prove it for

m+1 (m+1<|[Z£]). From the inductive hypothesis, we know that:

fc(18m)(2k .5 — 17) — 37m X 2k—11m s —17.

But £, (18)(37m . gh—11m . g _ 17) = 37m+7 . gk—11m-11 . ¢ _ 17 Therefore

fc(7m+7) (Qk . — 17) — 37m+7 . 2k—11m—11 s —17.

Theorem 3.1 The following identities hold (for all m and s natural numbers):

(i) £ (@m.s—1)=3m.5—1;
(ii) £ (23m .5 —5) = 32m. 55,
(iti) foHE™ (Q1m .5 _17) =3"m. 5 _17.
Proof We take in Lemma 3.1, k = m, k = 3m and k = 11m respectively.
Let us denote by
T ={t|3m,3 k,T ky, I’ <t such that £o(™ (2F .5 —¢) =3k .2k . 5

and m is minimal with this property},

tl

where k and s are arbitrary natural numbers. According to Theorem 3.1, we
obtain 1, 5, 17 € T and much more ¢’ = t. We may call these numbers (1, 5,17)
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fixed points. We checked on the computer for all ¢ < 10® the membership to
T, and we obtained a positive answer. For the numbers less than 10® but which
don’t belong to {1,5,17}, we obtained ¢ < ¢t. This means that these numbers
are not fixed points. We conjecture that:

@) All natural numbers belong to 7.
In the following, we shall prove that the equations of the form:
3Mm.s—1=2P, 32M.5_5=2P 3.5 _17=2P

have always solutions. In addition, for every mg € N we have an infinity of
solutions (m, s, p) with m = my.

Because of this, the Collatz’s Conjecture is similar to our conjecture (C),
which can be reformulated in the following way:

Let g : N* — N* be the function

_l3 ifn=0 (mod 2)
9(n) { 3n —1 otherwise

Show that, for any n € N*, there exists an k € N* such that g*) (n) < n.

We shall prove some results that will help us further in our consideration.
We shall use the following notations:

e 75 ={neN|n=2z (mod3*)};

e Zy. = {Zg |z € N}

(Zsr,®,®) is a ring with & and © defined below:
- Egk D @\3k = (ZE + y)sk;

— T31 @ Yar = (TY)ge-

U(Z3+) the group of invertible elements in (Z3x, ®, ®), this means that
U(Zg) = {23 | (z,3%) =1, z € N};

e < z > the subgroup generated by z.

We shall use the following lemma.

Lemma 3.2 Let a be the order of 231 in U(Zg:), where k > 1. Then for every
n such that 3% | (2" — 1) we have a | n.

Proof By definition, « is the least number § (8 € N — {0}) with §§k =15,
in Zsx (this is equivalent to 28 = 1 (mod 3¥) (1)). If n = at + r with
0<r<a-1,t r €N, wehave?2” =2%.2" =27 (mod 3*). For 3¥ | (2" —1)
we have 2" = 1 (mod 3%), so therefore 2" = 1 (mod 3%). If r # 0, this is a
contradiction with (1) because r < a. From this, we infer that r = 0 = n = at.
Thus « | n and the proof of the lemma is complete. [ |
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Theorem 3.2 U(Z3:) =< 23 >, for all k > 1.

Proof Let o be the order of 2. in the group U(Zsx) (23: € U(Z3:) because
2 and 3 are mutually prime numbers). From Euler’s Theorem it follows that
2¢6") = 1 (mod 3*). This is equivalent to 22%*"" = 1 (mod 3*). From
the definition of a and Lemma 3.2, it follows that « | (2-3F"!). From 2% =1
(mod 3*) we infer that =0 (mod 2). Therefore o = 2-3¢, where 0 < t < k—1.

Let us suppose that ¢ < k — 2. We have 223" = 1 (mod 3%). There-

(k—2)—t

fore (22‘3t) =1 (mod 3%). Thus 223" ° =1 (mod 3*), so it follows

23" +1)(22 " —=1) =0 (mod 3*). However 22~ —1=1 (mod 3), that

means 3" | (23’672 + 1). This is an obvious contradiction with Lemma 2.4.
Hence, t = k — 1. This implies a = 2 - 3*~1 = card(U(Zs+)), i.e. U(Zgx) is

a cyclic group generated by §3k. [ |

Theorem 3.3 Let u, v be two given natural numbers with (3,v) = 1. Then for
every m € N the equation

3um.s=2P+vy (%)
satisfies:
a) there exists a unique solution (s, po) of (¥x) with 0 < pg < 2-3um~1;

b) every solution (s,p) of the equation (**) with m > 0 is of the form

um—1
(2p0+2-3 t 4y

3um

,p0+23umlt)

where t € N, and viceversa, for every t € N the above pair is a solution

for (xx).
Proof

a) We use Theorem 3.2 with k& = um and obtain U(Zzum) =< 23um >.
Using (3,v) = 1, we obtain —¥zum € U(Zgum ). Therefore there exists a
unique pg, 0 < pg < 231 (2.3m"1 = card(U(Zzum))) such that
§3um = —gum in Zzum. This is equivalent to the fact that there exists a
unique po, pp < 2-3¥"~1 such that 3™ | 2P + v, i.e. there exists a unique
solution (sg,pg) for () which satisfies 0 < pg < 2 - 3¥m~L,

b) “=" Let (s,p) be a solution of (xx). We have 3¥™. sy = 2P° 4+ v and also
34 . g =2 + 9. Thus 27 = 27 (mod 3“™), so 27 P> =1 (mod 3“™)
because 2gum is invertible in Zgum ((2,3) = 1). So 25,2° = Tgum, hence
2.3um=1| (p—p) (from Lemma 3.2 because 2- 3“1 is the order of 23um
as we have seen from Theorem 3.2). Thus there exists ¢ € N such that
p=po+2-3¥""1. ¢ On the other hand s = 2;;';”, so the pair (s,p) is of
the requested form.
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gpo+2:3um =14

“="Let p=po +2-3"""'. ¢ and s = Z————=F%. We shall prove
that (s, p) is a solution of (x*). We have 2-3%m~1.¢ = p — py. It follows
that 2P=P0 = 223"" "t (mod 3um), je. 2P7P0 =1 (mod 3%™) (because
p(3¥m) = 2. 3um=1 it follows that 223"""" =1 (mod 3*™)). Hence
2P = 2P0 (mod 3%™), s0 2P + v = 2P0 + v = 0 (mod 3*™). Therefore
3% | (2P 4 v), so there exists s’ € N such that 3“™ - s’ = 2P + v. If we
prove that s’ = s, the theorem is proven.

. » po42-3um—1.
We obtain that s’ = 2t = 2 -2 = 5. Hence s’ = s, so

3um . g =2P 4 v, i.e. (s,p) is a solution for (xx).

Now, we shall apply Theorem 3.3 to some particular values of u and m
which are interesting in solving our equations. We try to find numbers pg which
satisfies 0 < pg < 2-3%"~1, This can be done by a simple program. After we
find (sg,po), we know all the solutions as stated in Theorem 3.3, b).

Let us denote by p(()m) the number pg which corresponds to a given m. In

the following, we describe a relation between p(()m) and p[()m+1).

Lemma 3.3 For equations of type (xx), there exists k, 0 < k < 3%, such that
(m+1) _(m) _ 2.3um-1 L
Do by " = .

Proof Let (s(()m+1),p((]m+l)) be a solution of the equation 34“("+1) . g = 2P 4 o,
Therefore (3 - so,p[()m+1)) is a solution of the equation 3™ - s = 2P 4+ v. From
Theorem 3.3, b), we infer that there exists k& € N such that

pngrl) — p(()m) +9.3um—1

Because pémﬂ) < 2. 3ulm+)=1 it follows that k < 3%.
||

This means we can find p((]m) using a linear algorithm of the time complexity

O(m-3*) = O(m). According to Theorem 3.3, we would have had an exponential
algorithm (we test every number p between 0 and 2-3“"~! —1). By using Lemma
3.3, we can easily implement a program which computes for given values of u,
v and for every m, the value of p((]m). Using this program, we found the form
of the solutions for (u,v) € {(2,5),(7,17)}. We list the form of this solutions
below.

Let us consider the equation 32 - s = 2P + 5. We want to find its solutions
(m, s,p) € N3. We take in Theorem 3.3 v = 2 and v = 5.

For m = 0 we have the solutions (0,2! + 5,¢), V ¢t € N.

Form =1, we find s =l and pp =2 (0 <2< 2-3>""! =2.3). We have

the solutions
) 22-3-t+2+5
0=

and these are all the solutions with m = 1.

,2-3-t42), VteN
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For m = 2, all the solutions are

22-33-t+50 +5

2

,2:-3°t4+50), VteN

For m = 3, all the solutions are

22-35-t+266 +5

6,

,2-3%14266), VteEN

For m = 4, all the solutions are

22-37-t+266 +5

4

, 2371 4266), VtEN

Let us consider the equation 37 -s = 2P 4+17. We take in Theorem 3.3 u = 7
and v = 17.

For m = 0 we have all the solutions (0,2¢ +17,t), V ¢t € N.

For m = 1, all the solutions are

92344762 4 17
1,T+,2-36-t+762), VieN
For m = 2, all the solutions are

13
22-3 -t+1116132+17
314

(2, ,2-3% .t 41116132), VtEN

For (u,v) = (1,1), we find all the solutions by proof, i.e. let us study the
equation 3™ - s = 2P + 1. In fact, this case has been treated in Theorem 4.2
([AnM98]). We shall find the solutions (m,s,p) € N®. We take u =1 and v = 1

in Theorem 3.3. We shall prove that p((]m) = 3™"1, From Lemma 2.4, we have
3m | (237"71 +1). According to Theorem 3.3, a), because 0 < 3™~ < 2.3m~!
and the uniqueness of pg in that range, it follows that p(()m) = 3™, Thus, all
the solutions of the equation are:

93™ 1 (2t41) +1

3 312t 4+ 1)), VEEN, Vm >1

(m,

For m = 0, we have all the solutions (0,2 + 1,¢), V ¢t € N.

Using the above results, we can deduce other subclasses of natural numbers
for which Collatz’s conjecture holds.

Theorem 3.4 For allt € N, s € N, the following identities hold:

(i) £ OFFot234+2) (25. [23k LR 5]) —1, Vke{01);
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(ii) £ Bkt s+23%1+50) (23 . [2% LR 5}) =1, Vke{0,1,2};
}
}

(1) £18HFo2 90T (9o [outk 2T 7)) =1, v ke {0,1)

(iii) fc(5k+s+2-35-t+266) (25' [23k 5235, ¢+266+5 5 ) _1, Y ke{0,1,2,3);

(iv) fc(5k+s+2-37-t+266) (25. [23k 2237 ‘*266+5 -5 ) =1, Vke{0,1,2,3,4};

(vi) fc(18k+s+2-313-t+1116132) (23 . [211k ) 22'313-t+31717:6132+17 _ 17]) _
v ke{0,1,2}.

Proof
(i) Using a procedure similar to the proof of Lemma 3.1, we can immediately
obtain (by induction on k) the identity:

£, (O%) (32“"*’“) 93k g 5) =3 .55 Vke{0,1,..,m}

But, we saw above that the equation 3™ . s — 5 = 2P has the solutions (m, s, p):

22-3-t+2 + 5
(1,T,2-3-t+2>
According to the fact that £2()(27) = 1 it follows that

92:3-t+2
£, (5k+2:3442) (23k . T"’E’ — 5) =1, Vke{0,1}.

Now, applying Theorem 1.1 (ii), we can multiply by 2 and thus we immediately
obtain the requested identity.

The cases (ii)-(iv) are very similar. For the cases (v), (vi) we can use the
identity (which can be proved by induction on k):

£, (18%) (37<m—k> itk g 17) —3™ .5 17, YV k € {0,1,...,m}.

4 Relations between “even” and “odd” branches

Next, we shall present an interesting result related to the number of “even” and
“odd” branches in the Collatz’s tree.

We say that n — % is an operation of type 0 and n — 3n + 1 of type 1. On
a certain number, we cannot perform two consecutive operations of type 1. So,
we perform kg operations of type 0, one of type 1, k; of type 0, one of type 1
and so on.
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Theorem 4.1 Letas,...,a; € {1,2}, t € N4 such that there isnoi € {1,2,...,t},
a; = ajy1 = 1. Then, there exists x € N such that we can perform on z, the
operations of type ay, ..., a; in this order.

Proof Let us suppose that we have n operations of type 1 in this finite sequence.
Then there exist kg, k1, ..., k, such that ko, k, > 0 and &y, ..., kn_1 > 1 and

Qkot1 = Gko+hi+2 = = = kot Akn_14n = 1

a;=0,Vid{ko+1,ko+ki +2,...;ko+...+kn_1 +n}

because (2,3) = 1 it follows that 23.-1 € U(Zgn-1), i.e. there exists y € N for
which

2 ::2k‘(2k1+nnkn y __30 .2k1+nn+k",1 __31 .2k1+n”k",2 - .. __3n42 .2k1__ 3n71)
= 0 (mod 3") holds. We take z = 35 and we state that this satisfies the
requirements. Performing &y operations of type 0 on z, we obtain
2k1+...+kn_1 cy - 30 . 2k1+...+kn_2 — = 3n—2 . 2k1 _ 3n—1
3n

which is an odd number since k£; > 1. Performing one operation of type 1 on
this number we get

k1 (2k2+---+kn71 Sy — 30. kot Akn-2 _ 3n72)
3n—1

Continuing in this way, after performing operations of type ay, ..., a; in this order
on z, we obtain y (¢t = ko + ... + kn, + n).
|

Let us denote by S; the set of numbers from Collatz’s tree for which we have
exactly ¢ operations of type 1 until we reach 1. In [ShW92] it is proved that S;
is infinite. We shall prove this too, as a consequence of Theorem 4.1.

Theorem 4.2 card(S;) = oo (S; is infinite).

Proof In Theorem 3.1 we have seen that fo(*) (2¢.s—1) = 3i.5— 1. According
to Theorem 3.3, we infer that the equation 3™ - s — 1 = 2P has infinitely many
solutions with m = i. Because for different s, and fixed i the numbers 2° - s — 1
are pairwise distinct, we deduce that 2' - s — 1 € S;, for any s such that there
exists p with 3?- s — 1 = 2P, Moreover, the numbers 2% . (2¢.s—1) € S;, V k > 0.
Thus S; has infinitely many elements.

|

For all n € N and n from Collatz’s tree we denote by a,, the number of steps
of type 1, and by b,, the number of steps of type 0 until we reach 1. We try to
estimate the ratio 7. It can be easily seen that 3= < 1.

Lemma 4.1 For every n € N — {0}, with (n,3) = 1, there exists
u€ {1,2,3,4,5,6} such that 2*-n =4 (mod 18).
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Proof Because 2/ =1 (mod 9), 26/*1 =2 (mod 9), 25**2 =4 (mod 9),
26043 =8 (mod 9), 2t** = 7 (mod 9), 25445 = 5 (mod 9), where t € N,
(n,3) =1, and (2,9) = 1, we have that there exists a v with v € {1,2,3,4,5,6}
and 9 | (241 - n — 2). This implies 18 | (2* - n — 4).

|

Lemma 4.2 For every n € N — {0}, with (n,6) = 1, there exist t,r € N — {0}
such that n = 18t +r, r € {1,5,7,11,13,17}, and there exist m € N — {0},
a=1,b< 4 with (m,6) =1 and £ (m) = n, where a (b) denotes the
number of type 1 (0) steps, respectively.

Proof This follows from the following figure.

18k+1 18k+5 18k+7
y y y
36k+2 36k+10 36k+14
Y PN Y
72k+4 72k+20 72k+28
SN N PN
24k+1 48k+13 144k+56
y
a) b) 288k+112
SN 9
18k+11 18k+13 96k+37
y y
36k+22 36k+26 18k+17
PN Y y
12k+7 72k+52 36k+34
PN PN
d) 24k+17 12k+11
e) f)

Lemma 4.3 There ezist infinitely many numbers n, with (n,6) = 1, from Col-
latz’s tree for which we have 3> > %.
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Proof Let us consider n; = 5. It is obvious that (n1,6) =1, a,, =1, by, =4,
and therefore Zﬁ > 1. We shall construct ny, inductively for all k£ € N — {1}.
n1

Let us suppose we have constructed ny, ..., ng so that level(n;) < level(n;i1)
in Collatz’s tree, (n;,6) =1 for all 1 € {1,2, ..., k}, an, =7, and Z" > 1

Since (ng,6) = 1 we conclude that there exist ¢,r € N such that n; = 18¢t+r
with » € {1,5,7,11,13,17}. From Lemma 4.2 follows that there exists nj from
Collatz’s tree such that

b (nk+176) =1,
L ankJrl = a'nk + 1’

o by, <bn +4,

Nk 41
o level(ny) < level(nyy1) < level(ny) + 5.

From the induction hypothesis it is obvious that ankJr1 =ap, +1=Fk+1
and by, ,, <by, +4<4-an, +4=14-ay,,,. Therefore ;4 > 1.
+

Because of level(ni) < level(ns) < ... and Lemma 2.1 follows that the
numbers 1y, na, ... are pairwise distinct.
|

Remark 4.1 The numbers ni,na,--- belong to the same infinite path in Col-
latz’s tree as can be easily seem from the comstruction above. Moreover, this
infinite path is not ultimately ending in a chain. Let n be any number on this
path (starting with ny). Then there exists k € N — {0} such that n is between
n—k and ny11 on this path. It follows that a,, = an =k and by, < b, < by, +4.

an _ k k _ k — 1 _ 1 1_1_1
Therefore 5> = - > by T4 2 Ta,,+4 — I(h+1) 4 A(kFD) 217§ 5

b
Thus, 3 ar = > % holds for all numbers n on this path.

Theorem 4.3 The limit lim Z—" does not exist.
n—oo n

Proof We know that lim 72 = lim 3 = 0. Note that the sequence (2%) is an
1—00 2 71— 00
infinite path of Collatz’s tree but not ultimately a chain since there are infinitely
many branching points by Lemma 4.1.
According to Lemma 4.3, there exist infinitely many numbers n such that
n is from Collatz’s tree and 7= > %. From these numbers, we can extract
Ng, < Ny < oeee

If the limit lim : L exists, this is greater or equal than 7. But lim ZL =0.

T—00 Mk i—oo 2!
an .
Thus the limit lim 7= doesn’t exist. If the limit lim 5 doesn’t exist, then
n—oo " 1—00 Mk
the limit lim 3= doesn’t exist either.
n—oo "

It is obvious that we cannot perform 2 consecutive steps of type 1 on a
number n. Since the last 3 steps are of type 0 we get a,, < b, or 3> < 1.
In the following we prove a stronger result.
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Theorem 4.4 For all n from Collatz’s tree holds %3 < 1,

2bn

Proof This will be shown by induction on a, + b,. Note that a,, + b, ranges
over all positive natural numbers since there exists the infinite set n = b* with
a, = 0.

The basis is obvious since to a, + b, = 1 only corresponds n = 2 with a,, =0
and b, = 1.

Assume that the statement holds for all m such that a,, + b, = k, and
suppose that n is from Collatz’s tree with a,, + b, = k + 1. Let m be the father

of n, thus a,, + b,, = k. Now, either m = ¢ or m = 3n + 1.

In the first case we have a,, = a,, and b,, = b,, + 1, and therefore we get
ndt =23t = m3™ <1 ( by the induction hypothesis ).

In the second case we have a, = a,, + 1 and b,, = b,,,, and therefore we get

nﬁ:" = 3722'b37:m = (m;;}fﬂm < m;im <1 (***) ( by the induction hypothesis ).

Therefore, in both cases we have ”2%"" <1.

Remark 4.2 The equality ”2%:" =1 only holds for n of the form n = 2%. This

can be seen easily from (***).

Theorem 4.5 For all n from Collatz’s tree holds §* < ﬁzzg

Proof From Theorem 4.4 we have ”2%:" < 1, and therefore n - 3%» < 2=

which implies 3% < 2b» being equivalent to a,, - log3 < b, - log2. Therefore

an log2
b < Togz < 1-

Remark 4.3 The last two theorems may be generalized to the case that the root
of the tree is not 1 but an arbitrary number ¢ € N with ¢ Z4 (mod 6). With
the same meaning for a, and b, to reach g hold: %= < q with 23—~ = ¢ only

2bn 2bn
if n = g2k an - log2+loggq
if n = q2%, and - < gz

The following result establishes in which cases some similarities in Collatz’s
tree may occur.

Theorem 4.6 Ifn; and ns belong to Collatz’s tree, ny, ng > 4, and the differ-
ence ny — ny = ky - 382 where ky is even, then Asy,(n1) and Aag,(ns) have the
same structure (i.e. are isomorphic subtrees).

Proof For ks = 0 the statement is obvious.

We shall prove the general statement by induction on k2. We suppose the
statement true for ks — 1. For ks > 1 we have (because k; is even) n; — na =0
(mod 6). Let us suppose ny = 6t; +r and ny = 6t +r, where r € {0,1,2,3,4,5}
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and t;, ty are natural numbers. In the following figure we display all possible
situations:

6k 6k +1 6k + 2
! ! !
12k 12k + 2 12k + 4
' ! N
24k 24k + 4 24k + 8 4k + 1
a) b) c)
6k +3 6k + 4 6k +5
! PN !
12k + 6 126+8 2k+1 12k + 10
' oy PN
24k + 12 24k +16 4k +2 24k +20 4k +3
d) e) f)

If r = 0 we are in situation a). The first two levels of Asg, (n1) and Aag, (n2)
have the same structure. Moreover

241 — 24ty = 24(ty — t3) = 4(ny — no) = 4ky - 372 = 12k - 3k 71

Applying the induction hypothesis, we infer that Asg,(n1) and Asy,(n2) have
the same structure.

If r = 5 we are in situation f). The first two levels of Asy,(n1) and Aag, (n2)
have the same structure. Moreover

24t1 4 20 — (245 + 20) = 24(t1 — t2) = 4(ny —no) = 4ky - 372 = 12k; - 3%271 and

ny — Ny

Aty +3 — (dty +3) = 4(t —t2) = 4- = 2k, - 3k271
Applying the induction hypothesis, we infer that Asg,(n1) and Asy,(n2) have
the same structure.
Situations b), ¢), d), e) can be handled in a similar way. Having proved the
induction step, the proof is complete.
|
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Remark 4.4 Related to Theorem 4.6, we cannot state the theorem for subtrees
Aspyy1(n1) and Asp,y1(n2). As a counterezample, Az(10) and As(16) have
different structures on level 3.

10 16
PN PN
20 3 32 5
N
40 6 64 10
SN PN
80 13 12 128 21 20 3

5 Conclusions

For the sake of presentation, we can give a new reformulation (the fourth one)
of Collatz’s conjecture using a type 0 grammar. Let

G = ({S,A, B,C, D}, {#,a}, S, P)

be a type 0 grammar for which the set of productions P is given by:

1. S—> #a# 2. S— #aa#

3.S > #aaaa# 4 S—>H#AAAAAAAAH#
5. #A—> #AB 6. BA— AAB

7. B# — A# 8. #AA—-#AAC

9. CAA— AAC 10. AC# — D+#

11. AAAD - DA 12. #D - #

13. A —>a

The grammar G is not monotonic because of the productions 10, 11, 12. It is al-
most obvious that G (which we called Collatz’s grammar) simulates Collatz’s
tree A(8), i.e.:

#a"# € L(G), n € N <= n is a label of a node from A(8)

To the numbers 1, 2,4, which are on the levels 0,1,2 in A(1), correspond the ter-
minal words # a #, #aa#, #aaaa# (obtained from the productions 1,2, 3).
The label of the root of A(8) is described in the fourth production of G. The
transformation y — 2 - y is simulated by the productions 5,6,7 and the trans-
formation y — yT*l, when y = 4 (mod 6) is simulated by the productions
8,9,10,11,12. The productions 8,9, 10 check if the number of A symbols is even,
and the productions 10,11, 12 check if the number of A symbolsis 1 (mod 3).
Therefore, in the affirmative case, the number of A symbols is 4 (mod 6).
Finally, using production 13, we obtain the corresponding terminal word.
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For instance, we can easily prove that
(2) H# A" H# n+:G1$* # A®" 4 using the productions 5,6,7

and
(1) # AR 4 5’%4’* # A%**1 4 using the productions 8,9,10,11,12

where n%&* means that we have applyed n + 1 derivations in G.

One of the property of this grammar is:
. . . . k, . .
if there exists a derivation S ?* #a"#, then k is unique.

If we don’t want to have this property, we can just simply replace the produc-
tions 1,2,3,4 by S — # A+# (i.e. we obtain an equivalent phrase structure
grammar with only 10 productions). As a conclusion, maybe this reformulation
may lead to further investigations.

In our paper, we find some new infinite subclasses of natural numbers for
which Collatz’s conjecture is true. We discuss the chain subtrees and their
properties. As a conjecture very similar with Collatz’s conjecture we present
the problem (C) (section 3). Another open problem is to estimate the relation
between the number of “even” steps and “odd” steps in the Collatz’s tree. A
result from [ShW92] has been proved as a consequence of Theorem 4.1.
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