
Bidiretional Attribute EvaluationS�tefan ANDREI �, Manfred KUDLEKy, Cristian MASALAGIUzAbstratOur intention is to desribe a parallel algorithm (using two proessors)for evaluating the attribute instanes of an attributed derivation tree.In the �rst setion, we present some basi notions (graphs, trees, on-text free and attribute grammars).The seond setion emphasizes two ways for representing the orderedoriented trees and the bidiretional traversal is also pointed out.In the third setion, we present a new approah for evaluating theattribute instanes of an attributed derivation tree. We have alled thisstrategy the bidiretional attribute evaluation.In the last setion, we formulate some onlusions and open problems.Keywords: attribute grammars and evaluation, parallel algorithmsMathematis Subjet Classi�ation: 68N20, 68P05, 68Q22,68Q50, 68R10.1 Basi NotionsAn alphabet is a �nite set V . V � is the set of all words over V . The emptyword is denoted by �:De�nition 1.1 We say that G = (V ; E; s; d) is an oriented graph if V isthe set of verties, E is the set of edges, s : E ! V (the soure funtion),d : E ! V (the destination). If s(e) = v and d(e) = v0; then the ar e willbe denoted e : v ! v0 or v e! v0, or simply (v; v0) if the name is not important(i.e. there exists - at least - one ar from v to v0).For any v 2 V , let E(v) = fe j s(e) = vg and S(v) = fv0 j 9 e 2 E suh thatv e! v0g.�Faulty of Informatis, \Al.I.Cuza" University, Str. Berthelot, nr. 16, 6600, Ia�si,România. E-mail: stefan�infoiasi.ro. This work was supported by The World Bank/JointJapan Graduate Sholarship Program.yFahbereih Informatik, Universit�at Hamburg, Vogt-K�olln-Stra�e 30, D-22527 Hamburg,Germany. E-mail: kudlek�informatik.uni-hamburg.dezFaulty of Informatis, \Al.I.Cuza" University, Str. Berthelot, nr. 16, 6600, Ia�si,România. E-mail: mristy�infoiasi.ro. 1



2 Bidiretional Attribute EvaluationDe�nition 1.2 For an oriented graph G = (V ; E; s; d), if V and E are �nite,then G is a �nite oriented graph. If for any v 2 V ; E(v) is a �nite set, then Gis alled a loally oriented �nite graph.For any G = (V ; E; s; d) a loally oriented �nite graph, E = Sv2VE(v) an bedenoted in the following way:E(v) = f< v; 1 >;< v; 2 >; :::; < v; kv >gThat is, the set of all ars having soure v (onsequently the set of sons of v,i.e. S(v)) an be viewed as an ordered set. Suh a loally oriented graph isalled ordered oriented graph. From now on, we shall work only with �niteordered oriented graphs. The loal ordering indues a total left-to-right orderon leaves.Other natural onept notions on graphs an be easily translated to an easiernotation for �nite ordered oriented graphs. For example, a path of length n inG from v to v0 is a word p 2 E�, p = e1e2:::en, n � 1; where:v = v0 e1! v1 e2! v2:::vn�1 en! vn = v0Note. We shall suppose that for any node there exists a path of length 0denoted by �: Other notions (onnetivity, iruits, trees, et.) an be de�nedby translation from their lassial de�nitions. Furthermore, we suppose that thereader is familiar with notions onerning preorder traversal, depth �rst searh,breadth searh orresponding to trees and graphs ([CLR91℄).Example 1.1 Let us onsider the following ordered oriented treeT = (f1; 2; :::; 11g; f< 1; 1 >; < 1; 2 >; < 1; 3 >; < 3; 1 >; < 3; 2 >; < 4; 1 >;< 4; 2 >; < 4; 3 >; < 5; 1 >; < 5; 2 >g; s; d); wheres(< 1; 1 >) = 1 s(< 1; 2 >) = 1 s(< 1; 3 >) = 1 s(< 3; 1 >) = 3s(< 3; 2 >) = 3 s(< 4; 1 >) = 4 s(< 4; 2 >) = 4 s(< 4; 3 >) = 4s(< 5; 1 >) = 5 s(< 5; 2 >) = 5 d(< 1; 1 >) = 2 d(< 1; 2 >) = 3d(< 1; 3 >) = 4 d(< 3; 1 >) = 5 d(< 3; 2 >) = 6 d(< 4; 1 >) = 7d(< 4; 2 >) = 8 d(< 4; 3 >) = 9 d(< 5; 1 >) = 10 d(< 5; 2 >) = 11T has the following graphi representation12 5 6 43 7 8 910 11Figure 1.



Bidiretional Attribute Evaluation 3and it has the preorder (depth �rst) traversal: 1,2,3,5,10,11,6,4,7,8,9.We say that G = (VN ; VT ; Z; P ) is a ontext free grammar, if VN is thealphabet of nonterminal symbols, VT the alphabet of terminal symbols, andV = VN [ VT the set of symbols of G, Z 2 VN the start symbol, P � VN � V �the set of produtions. A pair (A; �) 2 P is alled an A�prodution and it isdenoted by A ! �: The produtions A ! �1; A ! �2; :::; A ! �k will bedenoted by A ! �1 j�2 j ::: j�k (sometimes). The empty word will be denoted� (the word of length 0). A derivation in G is denoted by � =)G � if 9 A 2 �and A ! r 2 P suh that � = �1A�2; � = �1 r �2; the transitive (reexive)losure of the relation =)G is denoted by +=)G ( �=)G ).De�nition 1.3 A derivation tree T = (V ; E; s; d) for a ontext free grammarG = (VN ; VT ; Z; P ) is a node labelled �nite ordered oriented tree. The labels ofthe nodes are given by a funtion f : V ! VN [ VT [ f�g :For any v 2 V, with S(v) = fv1; v2; :::; vkg, if f(v) = X; f(v1) = Y1,f(v2) = Y2, ..., f(vk) = Yk, then G ontains the prodution X ! Y1Y2:::Yk.If f(v) = X (v being the root) and the word w = v1v2:::vn being the (ordered)labels of the leaves, we say that T desribes the word w generated fromX. If X = Z and w 2 V �T , then T desribes a word from L(G).De�nition 1.4 An attribute grammar ([Alb91a℄) is a �ve-tupleAG = (G;SD;AD;R;C);de�ned as follows:(1) G = (VN ; VT ; Z; P ) is a (the underlying) ontext-free grammar. The gram-mar G is assumed to be redued in the sense that every nonterminal symbolis aessible from the start symbol and an generate a string whih ontainsno nonterminal symbols.(1.1) VN and VT denote the alphabets of nonterminal and terminal symbols,respetively, and form the voabulary V = VN [ VT ; VN \ VT = ;;(1.2) P is the �nite set of produtions; a prodution p 2 P will be denotedas p : Xp0 ! Xp1 ::: Xpnp ; where np � 0; Xp0 2 VN and Xpk 2 V for1 � k � np;(1.3) Z 2 VN is the start symbol, whih does not appear on the right sideof any prodution.(2) SD = (TY PE � SET; FUNC � SET ) is a semanti domain.(2.1) TY PE � SET is a �nite set of sets;(2.2) FUNC � SET is a �nite set of total funtions of typetype1 � :::� typen ! type0; where n � 0 and typei 2 TY PE � SET(0 � i � n):



4 Bidiretional Attribute Evaluation(3) AD = (A; I; S; TY PE) is a desription of attributes.(3.1) For eah symbol X 2 V there exists a set A(X) of attributes whihan be partitioned into two disjoint subsets I(X) and S(X) of inher-ited and synthesized attributes, respetively;(3.2) The set of all attributes will be denoted by A, i.e. A = SX2V A(X):(3.3) Attributes assoiated with di�erent symbols are onsidered as di�er-ent, i.e. A(X) \ A(Y ) = ; if X 6= Y: If neessary an attribute a ofsymbol X will be denoted by X:a;(3.4) For a 2 A; TY PE(a) 2 TY PE � SET is the set of possible valuesof a:(4) R(p) is a �nite set of attribute evaluation rules (semanti rules) assoiatedwith the prodution p 2 P .(4.1) Prodution p : Xp0 ! Xp1 ::: Xpnp is said to have the attributeourrene (a; p; k) if a 2 A(Xpk);(4.2) The set of all attribute ourrenes of prodution p will be denoted byAO(p);(4.3) The set AO(p) an be partitioned into two disjoint subsets of de�nedourrenes and used ourrenes denoted by DO(p) and UO(p);respetively:DO(p)=f(s; p; 0) j s 2 S(Xp0)g [ f(i; p; k) j i 2 I(Xpk) ^ 1 � k � npgUO(p)=f(i; p; 0) j s 2 I(Xp0)g [ f(s; p; k) j i 2 S(Xpk) ^ 1 � k � npgThe attribute evaluation rules of R(p) speify how to ompute thevalues of the attribute ourrenes in DO(p) as a funtion of thevalues of ertain other attribute ourrenes in AO(p): The evaluationrule de�ning the attribute ourrene (a; p; k) has the form(a; p; k) := f((a1; p; k1); :::; (am; p; km))(a; p; k) 2 DO(p); f : TY PE(a1)� ::: � TY PE(am)! TY PE(a);f 2 FUNC � SET and (ai; p; ki) 2 AO(p) for 1 � k � m: We saythat (a; p; k) depends on (ai; p; ki), for 1 � i � m:(5) C(p) is a �nite set of semanti onditions assoiated with the produtionp: These onditions are prediates of the form�((a1; p; k1); :::; (am; p; km))� : TY PE(a1) � ::: � TY PE(am) ! ftrue; falseg; � 2 FUNC � SET;and (ai; p; ki) 2 AO(p) for 1 � i � m:



Bidiretional Attribute Evaluation 5Semanti onditions allow the spei�ation of a subset of the language de-�ned by the underlying ontext-free grammar. A sentene that is generated byG is a sentene of the language spei�ed by AG if the semanti onditions yieldtrue. Traditionally, the de�nitions of attribute grammars require that both thestart symbol and the terminal symbols to have no inherited attributes. We donot assume this restrition.We have been so far onerned with the syntax of attribute grammars. Nowlet us disuss their semantis.An unambiguos ontext-free grammar assigns a single derivation tree to eahof its sentenes. The nodes of a derivation tree are labelled with symbols fromV: For eah interior node there is a prodution Xp0 ! Xp1 ::: Xpnp ; suh thatthe node is labelled with Xp0 and its np sons are labelled with Xp1; :::; Xpnp ;respetively. We say that p is the prodution (applied) at that node.De�nition 1.5 A derivation tree is omplete if it has only terminal symbols(or the empty string) as labels of its leaves and the start symbol as the label ofits root.Unless stated otherwise our derivation trees are assumed to be omplete.De�nition 1.6 Given a derivation tree in an attribute grammarAG = (G;SD;AD;R;C); instanes of attributes are attahed to the nodes inthe following way: if node N is labelled with grammar symbol X; then for eahattribute \a" 2 A(X) an instane of \a" is attahed to node N: We say that thederivation tree has the attribute instane N:a. Let N0 be a node, p a produtionat N0 and N1; :::; Nnp the sons of N0 in the given order (De�nition 1.3). Anattribute evaluation instrutionNk:a := f(Nk1 :a1; :::; Nkm :am)is assoiated with attribute instane Nk:a if the attribute evaluation rule(a; p; k) := f((a1; p; k1); :::; (am; p; km))is assoiated with prodution p: We say that attribute instane Nk:a depends onattribute instane Nki :ai for 1 � i � m: If all the values are known and satisfyall attribute evaluation rules then we say that the attributed derivation tree isonsistent.De�nition 1.7 A deorated (or attributed) derivation tree is a deriva-tion tree in whih all attribute instanes have a value (whih is not neessarilyonsistent). A onsistently deorated (attributed) derivation tree is aderivation tree in whih all attribute instanes are de�ned aording to their as-soiated attribute evaluation instrutions, i.e. the exeution of any evaluationinstrution does not hange the values of the attribute assoiated with a treenode (as desribed below).



6 Bidiretional Attribute EvaluationIn this way, an attribute grammar assigns a (onsistenly) deorated deriva-tion tree to eah of its sentenes. Some appliations onentrate on the resultof the semanti onditions whih onlusively deide whether a sentene is se-mantially orret or not. Other appliations are only interesting in a deoratedderivation tree as an intermediate result in the ompilation proess. For theseappliations semanti onditions are not used.De�nition 1.8 For eah derivation tree T a dependeny graph D(T ) anbe de�ned by taking the attribute instanes of T as its verties. The diretedar (Ni:a;Nj :b) is ontained in the graph if and only if attribute instane Nj :bdepends on attribute instane Ni:a. A path in a dependeny graph will be alleda dependeny path. For n > 0; dp[N1:a1; N2:a2; :::; Nn:an℄ stands for apath with ars (N1:a1; N2:a2); (N2:a2; N3:a3); :::; (Nn�1:an�1; Nn:an): A pathdp[N1:a1; N2:a2; :::; Nn:an; N1:a1℄ will be alled a irular dependeny path.An attribute grammar is irular if it inludes a derivation tree whose depen-deny graph ontains a irular dependeny graph. An attribute grammar isalled non-irular (well de�ned) if it is not irular. The lass of all wellde�ned grammars is denoted by WAG.The task of an attribute evaluator is to ompute the values of all attributeinstanes attahed to the derivation tree, by exeuting the attribute evaluationinstrutions assoiated with these attribute instanes. Generally, the order ofthe evaluation is free, with the only restrition that an attribute evaluation in-strution annot be exeuted before its arguments are available. An attributeinstane is available if its value is de�ned, otherwise it is unavailable. Initiallyall attribute instanes attahed to the derivation tree are unavailable, with theexeption of the inherited attribute instanes attahed to the root (ontaininginformation onerning the environment of the program) and the synthesizedattribute instanes attahed to the leaves (determined by the parser). At eahstep an attribute instane whose value an be omputed is hosen. The eval-uation proess ontinues until all attribute instanes in the tree are de�ned oruntil none of the remaining attribute instanes an be evaluated.For a traditional attribute evaluator, as desribed above, it is impossible toevaluate attribute instanes involved in a irular dependeny path.Example 1.2 Let AG1 = (G1; SD1; AD1; R1; C1) be the following attributegrammar:(1) G1 = (fZ;Ag; fa; bg; P1; Z1) the underlying ontext-free grammar and P1given below;(2) SD1 = (fintegerg; FUNC � SET1), where FUNC � SET1 is desribedbelow (i.e. identity funtion, onstant funtion, add funtion, et.);(3) AD1 = (A1; I1; S1; TY PE1); where(3.1) A1 = fi; sg;(3.2) I1(Z) = I1(A) = fig;



Bidiretional Attribute Evaluation 7(3.3) S1(Z) = S1(A) = fsg;(3.4) TY PE1(i) = TY PE1(s) = fintegerg;(4) the set R1 of attribute evaluation rules is desribed below both with theprodutions of G1;(5) the set C1 is also presented below both with P1 and R1:Beause a prodution might ontain an ourrene of the same nonterminal sym-bol X, in the attribute evaluation rule X, will have an index (starting from 1 tothe last ourrene). The seond prodution of G1 is suh a ase.Prodution 1:Z ! AAttribute evaluation rules:Z:i := 1; Z:s := A:s A:i := Z:iProdution 2:A! aAAttribute evaluation rules:A2:i := A1:i+ 1; A1:s := A2:s+ 1;Prodution 3:A! bAttribute evaluation rule:if A:i > 10 then A:s := 0 else A:s := 1Let us onsider the word w = aab. Figure 2 presents the orrespondingderivation tree T and the dependeny graph D(T ).Za Aa AbT: Za aD(T): A Ai si si sbFigure 2.In [Knu68℄ has been de�ned an important sublass of atrribute grammars,the so alled purely synthesized AG's (SAG). In the same paper, was proventhat SAG's have the same power as Turing mahines. We an onlude that thepower of attribute grammars is the same as Turing mahines.



8 Bidiretional Attribute Evaluation2 Data Representations of the Trees and theirBidiretional TraversalIn this setion, we shall present two methods for representing the ordered ori-ented trees. For the seond one, a bidiretional traversal of an ordered orientedtree is also presented.First method of representation of ordered oriented trees.Given the ordered oriented tree T = (V ; E; s; d), let m be the maximalnumber of sons (ounted for all verties). For representing the sons v1; v2; :::; vnof father v, we use exatly m loations (even if n < m). Consider now the arrayt : f1; 2; :::; pg ! V [fnullg, where p is a natural number. The array t (denotedby t[℄) is de�ned in the following way:t[℄= root v1:::v2 v11:::v1m v21:::v22 ::: v1m:::vmm:::vmm:::m| {z }m timesonstruted by strutural indution:� if the root of T has the sons v1; :::; vn then t[1℄= root, t[2℄= v1, ..., t[n℄= vn,t[n+1℄= null, ..., t[m℄= null; where null is a speial symbol (harater);� let vwk 2 V (T ) have the sons vwk1, vwk2, ..., vwkn and t[s℄= vwk,where w 2 f1; 2; :::;mg�; k 2 f1; 2; :::;mg, then t[s+(m-k)(m+1)+1℄= vwk1,t[s+(m-k)(m+1)+2℄= vwk2, ..., t[s+(m-k)(m+1)+n℄= vwkn, and the \null" el-ements t[s+(m-k)(m+1)+n+1℄= null, ..., t[s+(m-k)(m+1)+m℄= null.This representation of ordered oriented trees is useful for breadth �rst searhvisits. We don't present in detail this method of traversing ordered oriented tree,beause this representation has a disadvantage related to its size. That is, thenumber of elements of the array t[℄ is exponential in m. In fatp = 1+m+m2+ :::+mm = mm+1�1m�1 (m 6= 1). Of ourse, the number of vertiesof T ould be \very" smaller than this number.The seond method to represent ordered oriented trees.Let T = (V ; E; s; d) be the ordered oriented tree. For representing the sonsv1; v2; ..., vn of father v, we use n loations. Now, the number of loationsof the orresponding vetor will be the same as the ardinality of V : Let m bethe maximum number of sons (for all verties of T ). Consider now the arrayt : f1; 2; :::; sg ! (V ; f1; 2; :::;mg), where s = jVj: The informations ontainedin t have the following meaning: t[i℄= (v; d) i� v 2 V and d is the number ofsons of v.Example 2.1 For the tree presented in Example 1.1, we have:t[℄=(1,3)(2,0)(3,2)(5,2)(10,0)(11,0)(6,0)(4,3)(7,0)(8,0)(9,0)Aording to the (possible) huge number of \free ells" from the array t,the �rst method for implementing ordered oriented trees, is not onvenient for



Bidiretional Attribute Evaluation 9deriving parallel algorithms. The seond representation method (although itprovides no diret aess) allows us to use a bidiretional parsing aording tothe plaement of leaves.This representation of ordered oriented trees is useful for depth �rst searhvisits. As the input of the following bidiretional traversal is the array t[℄ whihis the orresponding preorder representation of T (i.e. the seond method forrepresenting ordered oriented trees). In fat, we present a parallel ombinationof the two sequential strategies of traversal up and down for the tree. Further-more, the down traversal oinides with the depth �rst searh strategy. Weonsider two proessors P1, P2 and two global variables i1, i2 (i.e. both proes-sors an read these variables). We suppose that we have a proedure \halt(P)",whih stops the running of the proessor P. We shall all this algorithm (BT)(i.e. bidiretional traversal).
Output tape1.. unit1and logiArithmeti

i1 i2
Common memoryInput tree

Proessor P1
..Arithmetiunit2and logi Output tape2Proessor P2

ControlUnitFigure 3. General SIMD Model for Bidiretional TraversalWe an say that our model is a SIMD (simple instrution stream and multipledata stream) omputer ([Akl97℄). This means that these two proessors P1and P2 operate synhronously. Furthermore, we an say that our model usesmultiproessors beause the proessors P1, P2 share a ommon memory.



10 Bidiretional Attribute Evaluationproedure visit_down(P1);beginif i1 <= i2 then begin(v1,d) := t[i1℄;{visit the vertex v1}write("we have visited ", v1);write(" and it has ", d, " sons");i1 := i1 + 1;visit_down(P1)endelse halt(P1);end;The up traversal of the tree is quite similar.proedure visit_up(P2);beginif i2 > i1 then begin(v2,d) := t[i2℄;{visit the vertex v2}write("we have visited ", v2);write(" and it has ", d, " sons");i2 := i2 - 1;visit_up(P2)endelse halt(P2);end;The main program isbeginread(t[℄); {read the tree}i1 := 1; i2 := n; {n being the number of verties of T}repeat in parallelvisit_down(P1);visit_up(P2)until (i1>i2);end.Example 2.2 Let us onsider the tree from Example 1.1 (and 2.1). We shallsimulate the \parallel running" of Algorithm (BT).Initial: i1 = 1 and i2 = 2.Step 1: P1 ! \we have visited 1 and it has 3 sons"P2 ! \we have visited 9 and it has 0 sons"Step 2: P1 ! \we have visited 2 and it has 0 sons"



Bidiretional Attribute Evaluation 11P2 ! \we have visited 8 and it has 0 sons"Step 3: P1 ! \we have visited 3 and it has 2 sons"P2 ! \we have visited 7 and it has 0 sons"Step 4: P1 ! \we have visited 5 and it has 2 sons"P2 ! \we have visited 4 and it has 3 sons"Step 5: P1 ! \we have visited 10 and it has 0 sons"P2 ! \we have visited 6 and it has 0 sons"Step 6: P1 ! \we have visited 11 and it has 0 sons"P2 ! haltsCompared to the lassial preorder visit (whih needs 11 steps), our bidiretionaltraversal needs only 6 steps.We saw in Example 2.2 that the proessor P1 visits the tree in depth �rstsearh manner (the order of visiting the verties is f1; 2; 3; 5; 10; 11; 6; 4; 7; 8; 9g)and P2 in the opposited manner to P1 (i.e. the order of visiting the vertiesis f9; 8; 7; 4; 6; 11; 10; 5; 3; 2; 1g). In fat, P2 visits all the sons from right to leftand �nally their root.Theorem 2.1 (orretness and ompleteness) Let T = (V ; E; s; d) be a orderedoriented tree represented by an array whih ontains its preorder representationas the input of Algorithm (BT). Then:a) After the exeution of Algorithm (BT), all the verties of T have beenvisited.b) Let us denote with T1(n), T2(n) the running time of the proeduresvisit_down and visit_up, where n = jVj: Then the parallel runningtime t(n) satis�es the relation (we suppose that the routing time is zero):minfT1(n); T2(n)g2 � t(n) � max fT1(n); T2(n)gProofa) If i1 < i2 then eah all of proedures visit_down and visit_up impliesthe visit of two new verties (i.e. whih has not yet been visited). Weknow that the array t ontains in fat the preorder representation of T .The proedures visit_down and visit_up read the array t ell by ell(beause of the statements i1 := i1 + 1 and i2 := i2 - 1). The ellst[i1℄ and t[i2℄ ontain informations about the urrent verties v1 andv2, respetively. So, v1, v2 have been visited at this parallel step.b) The inequality t(n) � maxfT1(n); T2(n)g an be obtaining by supposingthat one proessor stays. For instane, if P1 stays, then t(n) = T2(n)(time routing is zero). The other inequality an be obtained by supposingthat both proessors work until i1 = i2. This implies a running time ofminfT1(n);T2(n)g2 .



12 Bidiretional Attribute Evaluation3 Bidiretional Attribute EvaluationIn [Alb91b℄, the exible and the rigid tree-walking strategies for traversing theattributed deorated tree have been presented. A exible strategy is ompletelydetermined by the attribute dependenies of the grammar onerned. Typialexample of attribute grammar lasses with a exible tree traversal strategy arethe absolute non-irular (ANC) and the ordered attribute grammars.A rigid strategy is independent of the attributed dependenies. A typialexample of a rigid strategy is to make a number of passes over the derivationtree, where a pass is de�ned to be a depth-�rst left-to-right or right-to-lefttraversal of the derivation tree. An example of a strategy somewhere in betweenthe exible and the rigid strategies is the performane of attribute evaluationduring a sequene of sweeps over the derivation tree. A sweep, as de�ned in[EnF82℄, is a depth-�rst traversal of the derivation tree, without the restritionof a left-to-right or a right-to-left order of suesion, i.e. the visiting order ofthe nodes is free with the only restrition that every tree node is visited exatlyone.Our approah refers to a rigid strategy whih works for general non-irularattributed grammars. We alled it bidiretional attribute grammars. Next,we present the attribute evaluation algorithm whih works for a well-de�nedattribute grammar (WAG). We all it bidiretional attribute evaluation algo-rithm, and it will be denoted by (BAE). Eah vertex v of the input attributedderivation tree has three omponents. The �rst omponent is the label, i.e.the terminal or non-terminal symbol X , the other omponents being the set ofinstanes of inherited and synthesized attributes of X; respetively.The Algorithm (BAE):Input: A well-de�ned attribute grammar AG and an attributed derivation treeT = (V ; E) where only the inherited attribute instanes of the start symbol andthe synthesized attribute instanes of the terminal symbols are de�ned.Output: An attributed derivation tree where all attribute instanes are de�ned.Method: Like in Algorithm (BT), we shall present two proedures for eahof the proessors and a main program. Beause eah element of the arrayt[℄ stores two informations, the urrent vertex and the number of sons of theurrent vertex (i.e. the pair (v,d)), we denote t[℄.one=v and t[℄.two=d.Eah of these proedures ontain two alls of proedure evaluate(X.a). Thisproedure is in fat the orresponding attribute evaluation instrution to theurrent prodution aording to De�nition 1.6.proedure visit_down(P1);beginif i1 <=jVj then begin(v1,d) := t[i1℄;(Xp0,I(Xp0),S(Xp0)):=v;for k := 1 to d do(Xpk,I(Xpk),S(Xpk)) := t[i1+k℄.one;



Bidiretional Attribute Evaluation 13for k := 1 to d dofor (all a2I(Xpk)) doif (Xpk.a is undefined) and(all argument instanes of the evaluation instrutionfor Xpk.a are defined)then evaluate(Xpk.a);for (all a2S(Xp0)) doif (Xp0.a is undefined) and(all argument instanes of the evaluation instrutionfor Xp0.a are defined)then evaluate(Xp0.a);i1 := i1 + 1;visit_down(P1)endelse halt(P1);end;The up traversal of the tree is quite similar.proedure visit_up(P2);beginif i2 >= 1 then begin(v2,d) := t[i2℄;(Xp0,I(Xp0),S(Xp0)):=v;for k := 1 to d do(Xpk,I(Xpk),S(Xpk)) := t[i2+k℄.one;for k := 1 to d dofor (all a2I(Xpk)) doif (Xpk.a is undefined) and(all argument instanes of the evaluation instrutionfor Xpk.a are defined)then evaluate(Xpk.a);for (all a2S(Xp0)) doif (Xp0.a is undefined) and(all argument instanes of the evaluation instrutionfor Xp0.a are defined)then evaluate(Xp0.a);i2 := i2 - 1;visit_up(P2)endelse halt(P2);end;The main program isbeginread(t[℄); {read the attributed derivation tree}i1 := 1; i2 := n;



14 Bidiretional Attribute Evaluation{n being the number of verties of the input tree}repeat in parallelvisit_down(P1);visit_up(P2)until (all attribute instanes are evaluated);write(t[℄);{the attributed derivation tree is onsistently deorated}end.Remark 3.1 Every attribute instane is evaluated during the earliest possiblepass and the di�erent instanes of the same attribute may be evaluated duringdi�erent passes. In the lassial model of evaluation the attributed instanes ofthe attributed derivation tree depend in fat on the number of levels (depth) ofthe input derivation tree. For instane, the synthesized attributed instanes ofthe root of T will be de�ned after at least m visits of the attributed derivationtree, where m is the depth of it.Using our bidiretional attribute evaluation algorithm, the synthesized at-tribute instanes of the root of T will be de�ned in one visit of the attributedderivation tree, for the synthesized attributed instanes of the terminal symbols.Compared to [Alb91b℄, our bidiretional attribute evaluation algorithm has\half" time running than the lassial attribute evaluation algorithm.Example 3.1 Let us onsider the attribute grammar (Example 2.1). It is easyto see that for w = aab, aording to Algorithm (BAE), we need only one downvisit and one up visit for evaluating all the attribute instanes of the orrespodingattributed derivation tree. On the other hand, using lassial methods (downvisits), for evaluating the attribute instanes, we need to visit the attributedderivation tree three times (i.e. three down visits).We an immediately generalize to the input word w = amb. In that ase,Algorithm (BAE) needs the same one down visit and one up visit, instead ofm+1 down visits in the lassial method.Theorem 3.1 (orretness and omplexity) If the input attributed grammar AGis non-irular, then Algorithm (BAE) will ompute the attribute instanes ofthe input attributed derivation tree in a �nite number of steps. That is, the out-put of the Algorithm (BAE) will be a onsistently deorated attibuted derivationtree.Proof Let AG be a non-irular (well de�ned) attribute grammar. This meansthat for any derivation tree T , the dependeny graph D(T ) has no yles. InD(T ), the direted ar (Ni:a;N)j:b) is an ar i� attribute instaneNj :b dependson attribute instane Ni:a. Beause D(T ) is ayli, its ars speify a partial or-dering of the attribute instanes. The existene of ar (Ni:a;Nj :b) indiates thatthe value of attribute instane Ni:a must be de�ned before attribute instaneNj :b an be omputed.



Bidiretional Attribute Evaluation 15The proedures visit_down(P1) and visit_up(P2) use the proedureevaluate(X.a), whih is in fat an attribute evaluation instrution. Beauseof the loop repeat ... until, from the main program, it follows that all at-tributed instanes of T will be omputed. BeauseD(T ) has no yles, it followsthat the number of iterations of the above loop is �nite.4 ConlusionsThe omplexity of Algorithm (BAE) applied to an attributed derivation treeis related to the omplexity of Algorithm (BT) applied to an ordinary tree. Itis obvious that the number of visits for evaluating all the attribute instanesof the attributed derivation tree made by Algorithm (BAE) is less than thelassial algorithm ([Alb91b℄). As we saw in Example 3.1, there exist situationsfor whih our bidiretional evaluating strategy is independent of the size of theinput attributed derivation tree (only two visits).But, sometimes, due to the dependeny graph, the proessors have to waitone eah other and only one proessor works. In that ase, the parallel attributeevaluation oinides with the lassial one. One open problem ould be: Inwhih ases (for what kinds of attribute grammars) our bidiretional attributeevaluation is stritly (or two times) better than the lassial one ?If the underlying ontext free grammar of the orresponding attribute gram-mar is in Chomsky normal form, then any derivation tree will be binary. In thatase, the �rst method of representing ordered oriented trees is a onvenient datastruture for Algorithm (BAE), too. Furthermore, any node of the tree ould bediretly aessed (i.e. not sequential, like in the seond method of representingordered oriented trees).Referenes[Alb91a℄ Alblas, H.: Introdution to Attribute Grammars. Attribute Grammars,Appliations and Systems, LNCS 545, Eds. Alblas, H., Melihar, B., pp.1-15 (1991)[Alb91b℄ Alblas, H.: Attribute Evaluation Methods. Attribute Grammars, Ap-pliations and Systems, LNCS 545, Eds. Alblas, H., Melihar, B., pp. 48-113(1991)[AhU72℄ Aho, A.V., Ullman, J.D.: The Theory of Parsing, Translation, andCompiling. Volume I, II, Prentie Hall, 1972[Akl97℄ Akl, S.: Parallel Computation. Models and Methods. Prentie Hall,1997[AnG95℄ Andrei, S�t., Grigora�s, Gh.: Tehnii de ompilare. Lur�ari de laborator.Editura Universit�at�ii \Al.I.Cuza", Ia�si, 1995



16 Bidiretional Attribute Evaluation[AnK99℄ Andrei, S�t., Kudlek, M.: Bidiretional Parsing for Context Free Lan-guages. B-219, Fahbereih Informatik, Universit�at Hamburg: pp. 1-56(1999)[ASU86℄ Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Priniples, Tehniques,and Tools. Addison-Wesley Publishing Company, U.S.A., 1986[CLR91℄ Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introdution to Algo-rithms. The MIT Press, New York, 1991[EnF82℄ Engelfriet, J., Fil�e, G.: Simple multi-visit attribute grammars. Journalof Computer and System Siene 24, pp. 283-314 (1982)[GiR89℄ Gibbons, A., Rytter, W.: EÆient Parallel Algorithms. CambrigdeUniversity Press, 1989[GTW78℄ Goguen, J. A., Thather, J. W., Wagner, E.G.: An initial algebraapproah to the spei�ation, orretness, and implementation of abstratdata types. Current Trends in Programming Methodology, IV: Data Stru-turing, (R.T. Yeh Ed.) Prentie Hall, New Jersey, pp. 80-149 (1978)[Gri86℄ Grigora�s, Gh.: Limbaje formale �si tehnii de ompilare. Editura Uni-versit�at�ii \Al.I.Cuza", Ia�si, 1986[Har78℄ Harrison, M. A.: Introdution to Formal Language Theory. Addison -Wesley Publishing Company, 1978[Hay88℄ Hayes, J.P.: Computer Arhiteture and Organization, MGraw-HillInternational Editions, 1988[HoU79℄ Hoproft, J.E., Ullman, J.D.: Introdution to Automata Theory, Lan-guages and Computation. Addison - Wesley Publishing Company, 1979[JuA97℄ Juan, T, Andrei, S�t.: Limbaje formale �si teoria automatelor. Culegerede probleme. Editura Universit�at�ii \Al. I. Cuza", Ia�si, 1997[Knu68℄ Knuth, D. E.: Semantis of Context-Free Languages. MathematialSystems Theory, Vol. 2, No. 2 Springer Verlag, New York, pp. 127-145(1968)[Mas92℄ Masalagiu, C.: Tipuri abstrate de date. Editura Universit�at�ii \Al. I.Cuza", Ia�si, 1992[Sal73℄ Salomaa, A.: Formal Languages. Aademi Press. New York, 1973[Tha67℄ Thather, J. W.: Charaterizing derivation trees of ontext free gram-mars through a generalization of �nite automata theory. Journal of Com-puter and System Siene 1, pp. 317-322 (1967)[ThS92℄ Thulasiraman, K., Swamy, M.N.S.: Graphs: Theory and Algorithms.John Wiley & Sons, INC., New York, 1992


