
Bidire
tional Attribute EvaluationS�tefan ANDREI �, Manfred KUDLEKy, Cristian MASALAGIUzAbstra
tOur intention is to des
ribe a parallel algorithm (using two pro
essors)for evaluating the attribute instan
es of an attributed derivation tree.In the �rst se
tion, we present some basi
 notions (graphs, trees,
on-text free and attribute grammars).The se
ond se
tion emphasizes two ways for representing the orderedoriented trees and the bidire
tional traversal is also pointed out.In the third se
tion, we present a new approa
h for evaluating theattribute instan
es of an attributed derivation tree. We have
alled thisstrategy the bidire
tional attribute evaluation.In the last se
tion, we formulate some
on
lusions and open problems.Keywords: attribute grammars and evaluation, parallel algorithmsMathemati
s Subje
t Classi�
ation: 68N20, 68P05, 68Q22,68Q50, 68R10.1 Basi
 NotionsAn alphabet is a �nite set V . V � is the set of all words over V . The emptyword is denoted by �:De�nition 1.1 We say that G = (V ; E; s; d) is an oriented graph if V isthe set of verti
es, E is the set of edges, s : E ! V (the sour
e fun
tion),d : E ! V (the destination). If s(e) = v and d(e) = v0; then the ar
 e willbe denoted e : v ! v0 or v e! v0, or simply (v; v0) if the name is not important(i.e. there exists - at least - one ar
 from v to v0).For any v 2 V , let E(v) = fe j s(e) = vg and S(v) = fv0 j 9 e 2 E su
h thatv e! v0g.�Fa
ulty of Informati
s, \Al.I.Cuza" University, Str. Berthelot, nr. 16, 6600, Ia�si,România. E-mail: stefan�infoiasi.ro. This work was supported by The World Bank/JointJapan Graduate S
holarship Program.yFa
hberei
h Informatik, Universit�at Hamburg, Vogt-K�olln-Stra�e 30, D-22527 Hamburg,Germany. E-mail: kudlek�informatik.uni-hamburg.dezFa
ulty of Informati
s, \Al.I.Cuza" University, Str. Berthelot, nr. 16, 6600, Ia�si,România. E-mail: m
risty�infoiasi.ro. 1

2 Bidire
tional Attribute EvaluationDe�nition 1.2 For an oriented graph G = (V ; E; s; d), if V and E are �nite,then G is a �nite oriented graph. If for any v 2 V ; E(v) is a �nite set, then Gis
alled a lo
ally oriented �nite graph.For any G = (V ; E; s; d) a lo
ally oriented �nite graph, E = Sv2VE(v)
an bedenoted in the following way:E(v) = f< v; 1 >;< v; 2 >; :::; < v; kv >gThat is, the set of all ar
s having sour
e v (
onsequently the set of sons of v,i.e. S(v))
an be viewed as an ordered set. Su
h a lo
ally oriented graph is
alled ordered oriented graph. From now on, we shall work only with �niteordered oriented graphs. The lo
al ordering indu
es a total left-to-right orderon leaves.Other natural
on
ept notions on graphs
an be easily translated to an easiernotation for �nite ordered oriented graphs. For example, a path of length n inG from v to v0 is a word p 2 E�, p = e1e2:::en, n � 1; where:v = v0 e1! v1 e2! v2:::vn�1 en! vn = v0Note. We shall suppose that for any node there exists a path of length 0denoted by �: Other notions (
onne
tivity,
ir
uits, trees, et
.)
an be de�nedby translation from their
lassi
al de�nitions. Furthermore, we suppose that thereader is familiar with notions
on
erning preorder traversal, depth �rst sear
h,breadth sear
h
orresponding to trees and graphs ([CLR91℄).Example 1.1 Let us
onsider the following ordered oriented treeT = (f1; 2; :::; 11g; f< 1; 1 >; < 1; 2 >; < 1; 3 >; < 3; 1 >; < 3; 2 >; < 4; 1 >;< 4; 2 >; < 4; 3 >; < 5; 1 >; < 5; 2 >g; s; d); wheres(< 1; 1 >) = 1 s(< 1; 2 >) = 1 s(< 1; 3 >) = 1 s(< 3; 1 >) = 3s(< 3; 2 >) = 3 s(< 4; 1 >) = 4 s(< 4; 2 >) = 4 s(< 4; 3 >) = 4s(< 5; 1 >) = 5 s(< 5; 2 >) = 5 d(< 1; 1 >) = 2 d(< 1; 2 >) = 3d(< 1; 3 >) = 4 d(< 3; 1 >) = 5 d(< 3; 2 >) = 6 d(< 4; 1 >) = 7d(< 4; 2 >) = 8 d(< 4; 3 >) = 9 d(< 5; 1 >) = 10 d(< 5; 2 >) = 11T has the following graphi
 representation12 5 6 43 7 8 910 11Figure 1.

Bidire
tional Attribute Evaluation 3and it has the preorder (depth �rst) traversal: 1,2,3,5,10,11,6,4,7,8,9.We say that G = (VN ; VT ; Z; P) is a
ontext free grammar, if VN is thealphabet of nonterminal symbols, VT the alphabet of terminal symbols, andV = VN [VT the set of symbols of G, Z 2 VN the start symbol, P � VN � V �the set of produ
tions. A pair (A; �) 2 P is
alled an A�produ
tion and it isdenoted by A ! �: The produ
tions A ! �1; A ! �2; :::; A ! �k will bedenoted by A ! �1 j�2 j ::: j�k (sometimes). The empty word will be denoted� (the word of length 0). A derivation in G is denoted by � =)G � if 9 A 2 �and A ! r 2 P su
h that � = �1A�2; � = �1 r �2; the transitive (re
exive)
losure of the relation =)G is denoted by +=)G (�=)G).De�nition 1.3 A derivation tree T = (V ; E; s; d) for a
ontext free grammarG = (VN ; VT ; Z; P) is a node labelled �nite ordered oriented tree. The labels ofthe nodes are given by a fun
tion f : V ! VN [VT [f�g :For any v 2 V, with S(v) = fv1; v2; :::; vkg, if f(v) = X; f(v1) = Y1,f(v2) = Y2, ..., f(vk) = Yk, then G
ontains the produ
tion X ! Y1Y2:::Yk.If f(v) = X (v being the root) and the word w = v1v2:::vn being the (ordered)labels of the leaves, we say that T des
ribes the word w generated fromX. If X = Z and w 2 V �T , then T des
ribes a word from L(G).De�nition 1.4 An attribute grammar ([Alb91a℄) is a �ve-tupleAG = (G;SD;AD;R;C);de�ned as follows:(1) G = (VN ; VT ; Z; P) is a (the underlying)
ontext-free grammar. The gram-mar G is assumed to be redu
ed in the sense that every nonterminal symbolis a

essible from the start symbol and
an generate a string whi
h
ontainsno nonterminal symbols.(1.1) VN and VT denote the alphabets of nonterminal and terminal symbols,respe
tively, and form the vo
abulary V = VN [VT ; VN \ VT = ;;(1.2) P is the �nite set of produ
tions; a produ
tion p 2 P will be denotedas p : Xp0 ! Xp1 ::: Xpnp ; where np � 0; Xp0 2 VN and Xpk 2 V for1 � k � np;(1.3) Z 2 VN is the start symbol, whi
h does not appear on the right sideof any produ
tion.(2) SD = (TY PE � SET; FUNC � SET) is a semanti
 domain.(2.1) TY PE � SET is a �nite set of sets;(2.2) FUNC � SET is a �nite set of total fun
tions of typetype1 � :::� typen ! type0; where n � 0 and typei 2 TY PE � SET(0 � i � n):

4 Bidire
tional Attribute Evaluation(3) AD = (A; I; S; TY PE) is a des
ription of attributes.(3.1) For ea
h symbol X 2 V there exists a set A(X) of attributes whi
h
an be partitioned into two disjoint subsets I(X) and S(X) of inher-ited and synthesized attributes, respe
tively;(3.2) The set of all attributes will be denoted by A, i.e. A = SX2V A(X):(3.3) Attributes asso
iated with di�erent symbols are
onsidered as di�er-ent, i.e. A(X) \ A(Y) = ; if X 6= Y: If ne
essary an attribute a ofsymbol X will be denoted by X:a;(3.4) For a 2 A; TY PE(a) 2 TY PE � SET is the set of possible valuesof a:(4) R(p) is a �nite set of attribute evaluation rules (semanti
 rules) asso
iatedwith the produ
tion p 2 P .(4.1) Produ
tion p : Xp0 ! Xp1 ::: Xpnp is said to have the attributeo

urren
e (a; p; k) if a 2 A(Xpk);(4.2) The set of all attribute o

urren
es of produ
tion p will be denoted byAO(p);(4.3) The set AO(p)
an be partitioned into two disjoint subsets of de�nedo

urren
es and used o

urren
es denoted by DO(p) and UO(p);respe
tively:DO(p)=f(s; p; 0) j s 2 S(Xp0)g [f(i; p; k) j i 2 I(Xpk) ^ 1 � k � npgUO(p)=f(i; p; 0) j s 2 I(Xp0)g [f(s; p; k) j i 2 S(Xpk) ^ 1 � k � npgThe attribute evaluation rules of R(p) spe
ify how to
ompute thevalues of the attribute o

urren
es in DO(p) as a fun
tion of thevalues of
ertain other attribute o

urren
es in AO(p): The evaluationrule de�ning the attribute o

urren
e (a; p; k) has the form(a; p; k) := f((a1; p; k1); :::; (am; p; km))(a; p; k) 2 DO(p); f : TY PE(a1)� ::: � TY PE(am)! TY PE(a);f 2 FUNC � SET and (ai; p; ki) 2 AO(p) for 1 � k � m: We saythat (a; p; k) depends on (ai; p; ki), for 1 � i � m:(5) C(p) is a �nite set of semanti

onditions asso
iated with the produ
tionp: These
onditions are predi
ates of the form�((a1; p; k1); :::; (am; p; km))� : TY PE(a1) � ::: � TY PE(am) ! ftrue; falseg; � 2 FUNC � SET;and (ai; p; ki) 2 AO(p) for 1 � i � m:

Bidire
tional Attribute Evaluation 5Semanti

onditions allow the spe
i�
ation of a subset of the language de-�ned by the underlying
ontext-free grammar. A senten
e that is generated byG is a senten
e of the language spe
i�ed by AG if the semanti

onditions yieldtrue. Traditionally, the de�nitions of attribute grammars require that both thestart symbol and the terminal symbols to have no inherited attributes. We donot assume this restri
tion.We have been so far
on
erned with the syntax of attribute grammars. Nowlet us dis
uss their semanti
s.An unambiguos
ontext-free grammar assigns a single derivation tree to ea
hof its senten
es. The nodes of a derivation tree are labelled with symbols fromV: For ea
h interior node there is a produ
tion Xp0 ! Xp1 ::: Xpnp ; su
h thatthe node is labelled with Xp0 and its np sons are labelled with Xp1; :::; Xpnp ;respe
tively. We say that p is the produ
tion (applied) at that node.De�nition 1.5 A derivation tree is
omplete if it has only terminal symbols(or the empty string) as labels of its leaves and the start symbol as the label ofits root.Unless stated otherwise our derivation trees are assumed to be
omplete.De�nition 1.6 Given a derivation tree in an attribute grammarAG = (G;SD;AD;R;C); instan
es of attributes are atta
hed to the nodes inthe following way: if node N is labelled with grammar symbol X; then for ea
hattribute \a" 2 A(X) an instan
e of \a" is atta
hed to node N: We say that thederivation tree has the attribute instan
e N:a. Let N0 be a node, p a produ
tionat N0 and N1; :::; Nnp the sons of N0 in the given order (De�nition 1.3). Anattribute evaluation instru
tionNk:a := f(Nk1 :a1; :::; Nkm :am)is asso
iated with attribute instan
e Nk:a if the attribute evaluation rule(a; p; k) := f((a1; p; k1); :::; (am; p; km))is asso
iated with produ
tion p: We say that attribute instan
e Nk:a depends onattribute instan
e Nki :ai for 1 � i � m: If all the values are known and satisfyall attribute evaluation rules then we say that the attributed derivation tree is
onsistent.De�nition 1.7 A de
orated (or attributed) derivation tree is a deriva-tion tree in whi
h all attribute instan
es have a value (whi
h is not ne
essarily
onsistent). A
onsistently de
orated (attributed) derivation tree is aderivation tree in whi
h all attribute instan
es are de�ned a

ording to their as-so
iated attribute evaluation instru
tions, i.e. the exe
ution of any evaluationinstru
tion does not
hange the values of the attribute asso
iated with a treenode (as des
ribed below).

6 Bidire
tional Attribute EvaluationIn this way, an attribute grammar assigns a (
onsistenly) de
orated deriva-tion tree to ea
h of its senten
es. Some appli
ations
on
entrate on the resultof the semanti

onditions whi
h
on
lusively de
ide whether a senten
e is se-manti
ally
orre
t or not. Other appli
ations are only interesting in a de
oratedderivation tree as an intermediate result in the
ompilation pro
ess. For theseappli
ations semanti

onditions are not used.De�nition 1.8 For ea
h derivation tree T a dependen
y graph D(T)
anbe de�ned by taking the attribute instan
es of T as its verti
es. The dire
tedar
 (Ni:a;Nj :b) is
ontained in the graph if and only if attribute instan
e Nj :bdepends on attribute instan
e Ni:a. A path in a dependen
y graph will be
alleda dependen
y path. For n > 0; dp[N1:a1; N2:a2; :::; Nn:an℄ stands for apath with ar
s (N1:a1; N2:a2); (N2:a2; N3:a3); :::; (Nn�1:an�1; Nn:an): A pathdp[N1:a1; N2:a2; :::; Nn:an; N1:a1℄ will be
alled a
ir
ular dependen
y path.An attribute grammar is
ir
ular if it in
ludes a derivation tree whose depen-den
y graph
ontains a
ir
ular dependen
y graph. An attribute grammar is
alled non-
ir
ular (well de�ned) if it is not
ir
ular. The
lass of all wellde�ned grammars is denoted by WAG.The task of an attribute evaluator is to
ompute the values of all attributeinstan
es atta
hed to the derivation tree, by exe
uting the attribute evaluationinstru
tions asso
iated with these attribute instan
es. Generally, the order ofthe evaluation is free, with the only restri
tion that an attribute evaluation in-stru
tion
annot be exe
uted before its arguments are available. An attributeinstan
e is available if its value is de�ned, otherwise it is unavailable. Initiallyall attribute instan
es atta
hed to the derivation tree are unavailable, with theex
eption of the inherited attribute instan
es atta
hed to the root (
ontaininginformation
on
erning the environment of the program) and the synthesizedattribute instan
es atta
hed to the leaves (determined by the parser). At ea
hstep an attribute instan
e whose value
an be
omputed is
hosen. The eval-uation pro
ess
ontinues until all attribute instan
es in the tree are de�ned oruntil none of the remaining attribute instan
es
an be evaluated.For a traditional attribute evaluator, as des
ribed above, it is impossible toevaluate attribute instan
es involved in a
ir
ular dependen
y path.Example 1.2 Let AG1 = (G1; SD1; AD1; R1; C1) be the following attributegrammar:(1) G1 = (fZ;Ag; fa; bg; P1; Z1) the underlying
ontext-free grammar and P1given below;(2) SD1 = (fintegerg; FUNC � SET1), where FUNC � SET1 is des
ribedbelow (i.e. identity fun
tion,
onstant fun
tion, add fun
tion, et
.);(3) AD1 = (A1; I1; S1; TY PE1); where(3.1) A1 = fi; sg;(3.2) I1(Z) = I1(A) = fig;

Bidire
tional Attribute Evaluation 7(3.3) S1(Z) = S1(A) = fsg;(3.4) TY PE1(i) = TY PE1(s) = fintegerg;(4) the set R1 of attribute evaluation rules is des
ribed below both with theprodu
tions of G1;(5) the set C1 is also presented below both with P1 and R1:Be
ause a produ
tion might
ontain an o

urren
e of the same nonterminal sym-bol X, in the attribute evaluation rule X, will have an index (starting from 1 tothe last o

urren
e). The se
ond produ
tion of G1 is su
h a
ase.Produ
tion 1:Z ! AAttribute evaluation rules:Z:i := 1; Z:s := A:s A:i := Z:iProdu
tion 2:A! aAAttribute evaluation rules:A2:i := A1:i+ 1; A1:s := A2:s+ 1;Produ
tion 3:A! bAttribute evaluation rule:if A:i > 10 then A:s := 0 else A:s := 1Let us
onsider the word w = aab. Figure 2 presents the
orrespondingderivation tree T and the dependen
y graph D(T).Za Aa AbT: Za aD(T): A Ai si si sbFigure 2.In [Knu68℄ has been de�ned an important sub
lass of atrribute grammars,the so
alled purely synthesized AG's (SAG). In the same paper, was proventhat SAG's have the same power as Turing ma
hines. We
an
on
lude that thepower of attribute grammars is the same as Turing ma
hines.

8 Bidire
tional Attribute Evaluation2 Data Representations of the Trees and theirBidire
tional TraversalIn this se
tion, we shall present two methods for representing the ordered ori-ented trees. For the se
ond one, a bidire
tional traversal of an ordered orientedtree is also presented.First method of representation of ordered oriented trees.Given the ordered oriented tree T = (V ; E; s; d), let m be the maximalnumber of sons (
ounted for all verti
es). For representing the sons v1; v2; :::; vnof father v, we use exa
tly m lo
ations (even if n < m). Consider now the arrayt : f1; 2; :::; pg ! V [fnullg, where p is a natural number. The array t (denotedby t[℄) is de�ned in the following way:t[℄= root v1:::v2 v11:::v1m v21:::v22 ::: v1m:::vmm:::vmm:::m| {z }m times
onstru
ted by stru
tural indu
tion:� if the root of T has the sons v1; :::; vn then t[1℄= root, t[2℄= v1, ..., t[n℄= vn,t[n+1℄= null, ..., t[m℄= null; where null is a spe
ial symbol (
hara
ter);� let vwk 2 V (T) have the sons vwk1, vwk2, ..., vwkn and t[s℄= vwk,where w 2 f1; 2; :::;mg�; k 2 f1; 2; :::;mg, then t[s+(m-k)(m+1)+1℄= vwk1,t[s+(m-k)(m+1)+2℄= vwk2, ..., t[s+(m-k)(m+1)+n℄= vwkn, and the \null" el-ements t[s+(m-k)(m+1)+n+1℄= null, ..., t[s+(m-k)(m+1)+m℄= null.This representation of ordered oriented trees is useful for breadth �rst sear
hvisits. We don't present in detail this method of traversing ordered oriented tree,be
ause this representation has a disadvantage related to its size. That is, thenumber of elements of the array t[℄ is exponential in m. In fa
tp = 1+m+m2+ :::+mm = mm+1�1m�1 (m 6= 1). Of
ourse, the number of verti
esof T
ould be \very" smaller than this number.The se
ond method to represent ordered oriented trees.Let T = (V ; E; s; d) be the ordered oriented tree. For representing the sonsv1; v2; ..., vn of father v, we use n lo
ations. Now, the number of lo
ationsof the
orresponding ve
tor will be the same as the
ardinality of V : Let m bethe maximum number of sons (for all verti
es of T). Consider now the arrayt : f1; 2; :::; sg ! (V ; f1; 2; :::;mg), where s = jVj: The informations
ontainedin t have the following meaning: t[i℄= (v; d) i� v 2 V and d is the number ofsons of v.Example 2.1 For the tree presented in Example 1.1, we have:t[℄=(1,3)(2,0)(3,2)(5,2)(10,0)(11,0)(6,0)(4,3)(7,0)(8,0)(9,0)A

ording to the (possible) huge number of \free
ells" from the array t,the �rst method for implementing ordered oriented trees, is not
onvenient for

Bidire
tional Attribute Evaluation 9deriving parallel algorithms. The se
ond representation method (although itprovides no dire
t a

ess) allows us to use a bidire
tional parsing a

ording tothe pla
ement of leaves.This representation of ordered oriented trees is useful for depth �rst sear
hvisits. As the input of the following bidire
tional traversal is the array t[℄ whi
his the
orresponding preorder representation of T (i.e. the se
ond method forrepresenting ordered oriented trees). In fa
t, we present a parallel
ombinationof the two sequential strategies of traversal up and down for the tree. Further-more, the down traversal
oin
ides with the depth �rst sear
h strategy. We
onsider two pro
essors P1, P2 and two global variables i1, i2 (i.e. both pro
es-sors
an read these variables). We suppose that we have a pro
edure \halt(P)",whi
h stops the running of the pro
essor P. We shall
all this algorithm (BT)(i.e. bidire
tional traversal).
Output tape1.. unit1and logi
Arithmeti

i1 i2
Common memoryInput tree

Pro
essor P1
..Arithmeti
unit2and logi
 Output tape2Pro
essor P2

ControlUnitFigure 3. General SIMD Model for Bidire
tional TraversalWe
an say that our model is a SIMD (simple instru
tion stream and multipledata stream)
omputer ([Akl97℄). This means that these two pro
essors P1and P2 operate syn
hronously. Furthermore, we
an say that our model usesmultipro
essors be
ause the pro
essors P1, P2 share a
ommon memory.

10 Bidire
tional Attribute Evaluationpro
edure visit_down(P1);beginif i1 <= i2 then begin(v1,d) := t[i1℄;{visit the vertex v1}write("we have visited ", v1);write(" and it has ", d, " sons");i1 := i1 + 1;visit_down(P1)endelse halt(P1);end;The up traversal of the tree is quite similar.pro
edure visit_up(P2);beginif i2 > i1 then begin(v2,d) := t[i2℄;{visit the vertex v2}write("we have visited ", v2);write(" and it has ", d, " sons");i2 := i2 - 1;visit_up(P2)endelse halt(P2);end;The main program isbeginread(t[℄); {read the tree}i1 := 1; i2 := n; {n being the number of verti
es of T}repeat in parallelvisit_down(P1);visit_up(P2)until (i1>i2);end.Example 2.2 Let us
onsider the tree from Example 1.1 (and 2.1). We shallsimulate the \parallel running" of Algorithm (BT).Initial: i1 = 1 and i2 = 2.Step 1: P1 ! \we have visited 1 and it has 3 sons"P2 ! \we have visited 9 and it has 0 sons"Step 2: P1 ! \we have visited 2 and it has 0 sons"

Bidire
tional Attribute Evaluation 11P2 ! \we have visited 8 and it has 0 sons"Step 3: P1 ! \we have visited 3 and it has 2 sons"P2 ! \we have visited 7 and it has 0 sons"Step 4: P1 ! \we have visited 5 and it has 2 sons"P2 ! \we have visited 4 and it has 3 sons"Step 5: P1 ! \we have visited 10 and it has 0 sons"P2 ! \we have visited 6 and it has 0 sons"Step 6: P1 ! \we have visited 11 and it has 0 sons"P2 ! haltsCompared to the
lassi
al preorder visit (whi
h needs 11 steps), our bidire
tionaltraversal needs only 6 steps.We saw in Example 2.2 that the pro
essor P1 visits the tree in depth �rstsear
h manner (the order of visiting the verti
es is f1; 2; 3; 5; 10; 11; 6; 4; 7; 8; 9g)and P2 in the opposited manner to P1 (i.e. the order of visiting the verti
esis f9; 8; 7; 4; 6; 11; 10; 5; 3; 2; 1g). In fa
t, P2 visits all the sons from right to leftand �nally their root.Theorem 2.1 (
orre
tness and
ompleteness) Let T = (V ; E; s; d) be a orderedoriented tree represented by an array whi
h
ontains its preorder representationas the input of Algorithm (BT). Then:a) After the exe
ution of Algorithm (BT), all the verti
es of T have beenvisited.b) Let us denote with T1(n), T2(n) the running time of the pro
eduresvisit_down and visit_up, where n = jVj: Then the parallel runningtime t(n) satis�es the relation (we suppose that the routing time is zero):minfT1(n); T2(n)g2 � t(n) � max fT1(n); T2(n)gProofa) If i1 < i2 then ea
h
all of pro
edures visit_down and visit_up impliesthe visit of two new verti
es (i.e. whi
h has not yet been visited). Weknow that the array t
ontains in fa
t the preorder representation of T .The pro
edures visit_down and visit_up read the array t
ell by
ell(be
ause of the statements i1 := i1 + 1 and i2 := i2 - 1). The
ellst[i1℄ and t[i2℄
ontain informations about the
urrent verti
es v1 andv2, respe
tively. So, v1, v2 have been visited at this parallel step.b) The inequality t(n) � maxfT1(n); T2(n)g
an be obtaining by supposingthat one pro
essor stays. For instan
e, if P1 stays, then t(n) = T2(n)(time routing is zero). The other inequality
an be obtained by supposingthat both pro
essors work until i1 = i2. This implies a running time ofminfT1(n);T2(n)g2 .

12 Bidire
tional Attribute Evaluation3 Bidire
tional Attribute EvaluationIn [Alb91b℄, the
exible and the rigid tree-walking strategies for traversing theattributed de
orated tree have been presented. A
exible strategy is
ompletelydetermined by the attribute dependen
ies of the grammar
on
erned. Typi
alexample of attribute grammar
lasses with a
exible tree traversal strategy arethe absolute non-
ir
ular (ANC) and the ordered attribute grammars.A rigid strategy is independent of the attributed dependen
ies. A typi
alexample of a rigid strategy is to make a number of passes over the derivationtree, where a pass is de�ned to be a depth-�rst left-to-right or right-to-lefttraversal of the derivation tree. An example of a strategy somewhere in betweenthe
exible and the rigid strategies is the performan
e of attribute evaluationduring a sequen
e of sweeps over the derivation tree. A sweep, as de�ned in[EnF82℄, is a depth-�rst traversal of the derivation tree, without the restri
tionof a left-to-right or a right-to-left order of su

esion, i.e. the visiting order ofthe nodes is free with the only restri
tion that every tree node is visited exa
tlyon
e.Our approa
h refers to a rigid strategy whi
h works for general non-
ir
ularattributed grammars. We
alled it bidire
tional attribute grammars. Next,we present the attribute evaluation algorithm whi
h works for a well-de�nedattribute grammar (WAG). We
all it bidire
tional attribute evaluation algo-rithm, and it will be denoted by (BAE). Ea
h vertex v of the input attributedderivation tree has three
omponents. The �rst
omponent is the label, i.e.the terminal or non-terminal symbol X , the other
omponents being the set ofinstan
es of inherited and synthesized attributes of X; respe
tively.The Algorithm (BAE):Input: A well-de�ned attribute grammar AG and an attributed derivation treeT = (V ; E) where only the inherited attribute instan
es of the start symbol andthe synthesized attribute instan
es of the terminal symbols are de�ned.Output: An attributed derivation tree where all attribute instan
es are de�ned.Method: Like in Algorithm (BT), we shall present two pro
edures for ea
hof the pro
essors and a main program. Be
ause ea
h element of the arrayt[℄ stores two informations, the
urrent vertex and the number of sons of the
urrent vertex (i.e. the pair (v,d)), we denote t[℄.one=v and t[℄.two=d.Ea
h of these pro
edures
ontain two
alls of pro
edure evaluate(X.a). Thispro
edure is in fa
t the
orresponding attribute evaluation instru
tion to the
urrent produ
tion a

ording to De�nition 1.6.pro
edure visit_down(P1);beginif i1 <=jVj then begin(v1,d) := t[i1℄;(Xp0,I(Xp0),S(Xp0)):=v;for k := 1 to d do(Xpk,I(Xpk),S(Xpk)) := t[i1+k℄.one;

Bidire
tional Attribute Evaluation 13for k := 1 to d dofor (all a2I(Xpk)) doif (Xpk.a is undefined) and(all argument instan
es of the evaluation instru
tionfor Xpk.a are defined)then evaluate(Xpk.a);for (all a2S(Xp0)) doif (Xp0.a is undefined) and(all argument instan
es of the evaluation instru
tionfor Xp0.a are defined)then evaluate(Xp0.a);i1 := i1 + 1;visit_down(P1)endelse halt(P1);end;The up traversal of the tree is quite similar.pro
edure visit_up(P2);beginif i2 >= 1 then begin(v2,d) := t[i2℄;(Xp0,I(Xp0),S(Xp0)):=v;for k := 1 to d do(Xpk,I(Xpk),S(Xpk)) := t[i2+k℄.one;for k := 1 to d dofor (all a2I(Xpk)) doif (Xpk.a is undefined) and(all argument instan
es of the evaluation instru
tionfor Xpk.a are defined)then evaluate(Xpk.a);for (all a2S(Xp0)) doif (Xp0.a is undefined) and(all argument instan
es of the evaluation instru
tionfor Xp0.a are defined)then evaluate(Xp0.a);i2 := i2 - 1;visit_up(P2)endelse halt(P2);end;The main program isbeginread(t[℄); {read the attributed derivation tree}i1 := 1; i2 := n;

14 Bidire
tional Attribute Evaluation{n being the number of verti
es of the input tree}repeat in parallelvisit_down(P1);visit_up(P2)until (all attribute instan
es are evaluated);write(t[℄);{the attributed derivation tree is
onsistently de
orated}end.Remark 3.1 Every attribute instan
e is evaluated during the earliest possiblepass and the di�erent instan
es of the same attribute may be evaluated duringdi�erent passes. In the
lassi
al model of evaluation the attributed instan
es ofthe attributed derivation tree depend in fa
t on the number of levels (depth) ofthe input derivation tree. For instan
e, the synthesized attributed instan
es ofthe root of T will be de�ned after at least m visits of the attributed derivationtree, where m is the depth of it.Using our bidire
tional attribute evaluation algorithm, the synthesized at-tribute instan
es of the root of T will be de�ned in one visit of the attributedderivation tree, for the synthesized attributed instan
es of the terminal symbols.Compared to [Alb91b℄, our bidire
tional attribute evaluation algorithm has\half" time running than the
lassi
al attribute evaluation algorithm.Example 3.1 Let us
onsider the attribute grammar (Example 2.1). It is easyto see that for w = aab, a

ording to Algorithm (BAE), we need only one downvisit and one up visit for evaluating all the attribute instan
es of the
orrespodingattributed derivation tree. On the other hand, using
lassi
al methods (downvisits), for evaluating the attribute instan
es, we need to visit the attributedderivation tree three times (i.e. three down visits).We
an immediately generalize to the input word w = amb. In that
ase,Algorithm (BAE) needs the same one down visit and one up visit, instead ofm+1 down visits in the
lassi
al method.Theorem 3.1 (
orre
tness and
omplexity) If the input attributed grammar AGis non-
ir
ular, then Algorithm (BAE) will
ompute the attribute instan
es ofthe input attributed derivation tree in a �nite number of steps. That is, the out-put of the Algorithm (BAE) will be a
onsistently de
orated attibuted derivationtree.Proof Let AG be a non-
ir
ular (well de�ned) attribute grammar. This meansthat for any derivation tree T , the dependen
y graph D(T) has no
y
les. InD(T), the dire
ted ar
 (Ni:a;N)j:b) is an ar
 i� attribute instan
eNj :b dependson attribute instan
e Ni:a. Be
ause D(T) is a
y
li
, its ar
s spe
ify a partial or-dering of the attribute instan
es. The existen
e of ar
 (Ni:a;Nj :b) indi
ates thatthe value of attribute instan
e Ni:a must be de�ned before attribute instan
eNj :b
an be
omputed.

Bidire
tional Attribute Evaluation 15The pro
edures visit_down(P1) and visit_up(P2) use the pro
edureevaluate(X.a), whi
h is in fa
t an attribute evaluation instru
tion. Be
auseof the loop repeat ... until, from the main program, it follows that all at-tributed instan
es of T will be
omputed. Be
auseD(T) has no
y
les, it followsthat the number of iterations of the above loop is �nite.4 Con
lusionsThe
omplexity of Algorithm (BAE) applied to an attributed derivation treeis related to the
omplexity of Algorithm (BT) applied to an ordinary tree. Itis obvious that the number of visits for evaluating all the attribute instan
esof the attributed derivation tree made by Algorithm (BAE) is less than the
lassi
al algorithm ([Alb91b℄). As we saw in Example 3.1, there exist situationsfor whi
h our bidire
tional evaluating strategy is independent of the size of theinput attributed derivation tree (only two visits).But, sometimes, due to the dependen
y graph, the pro
essors have to waitone ea
h other and only one pro
essor works. In that
ase, the parallel attributeevaluation
oin
ides with the
lassi
al one. One open problem
ould be: Inwhi
h
ases (for what kinds of attribute grammars) our bidire
tional attributeevaluation is stri
tly (or two times) better than the
lassi
al one ?If the underlying
ontext free grammar of the
orresponding attribute gram-mar is in Chomsky normal form, then any derivation tree will be binary. In that
ase, the �rst method of representing ordered oriented trees is a
onvenient datastru
ture for Algorithm (BAE), too. Furthermore, any node of the tree
ould bedire
tly a

essed (i.e. not sequential, like in the se
ond method of representingordered oriented trees).Referen
es[Alb91a℄ Alblas, H.: Introdu
tion to Attribute Grammars. Attribute Grammars,Appli
ations and Systems, LNCS 545, Eds. Alblas, H., Meli
har, B., pp.1-15 (1991)[Alb91b℄ Alblas, H.: Attribute Evaluation Methods. Attribute Grammars, Ap-pli
ations and Systems, LNCS 545, Eds. Alblas, H., Meli
har, B., pp. 48-113(1991)[AhU72℄ Aho, A.V., Ullman, J.D.: The Theory of Parsing, Translation, andCompiling. Volume I, II, Prenti
e Hall, 1972[Akl97℄ Akl, S.: Parallel Computation. Models and Methods. Prenti
e Hall,1997[AnG95℄ Andrei, S�t., Grigora�s, Gh.: Tehni
i de
ompilare. Lu
r�ari de laborator.Editura Universit�at�ii \Al.I.Cuza", Ia�si, 1995

16 Bidire
tional Attribute Evaluation[AnK99℄ Andrei, S�t., Kudlek, M.: Bidire
tional Parsing for Context Free Lan-guages. B-219, Fa
hberei
h Informatik, Universit�at Hamburg: pp. 1-56(1999)[ASU86℄ Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Prin
iples, Te
hniques,and Tools. Addison-Wesley Publishing Company, U.S.A., 1986[CLR91℄ Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introdu
tion to Algo-rithms. The MIT Press, New York, 1991[EnF82℄ Engelfriet, J., Fil�e, G.: Simple multi-visit attribute grammars. Journalof Computer and System S
ien
e 24, pp. 283-314 (1982)[GiR89℄ Gibbons, A., Rytter, W.: EÆ
ient Parallel Algorithms. CambrigdeUniversity Press, 1989[GTW78℄ Goguen, J. A., That
her, J. W., Wagner, E.G.: An initial algebraapproa
h to the spe
i�
ation,
orre
tness, and implementation of abstra
tdata types. Current Trends in Programming Methodology, IV: Data Stru
-turing, (R.T. Yeh Ed.) Prenti
e Hall, New Jersey, pp. 80-149 (1978)[Gri86℄ Grigora�s, Gh.: Limbaje formale �si tehni
i de
ompilare. Editura Uni-versit�at�ii \Al.I.Cuza", Ia�si, 1986[Har78℄ Harrison, M. A.: Introdu
tion to Formal Language Theory. Addison -Wesley Publishing Company, 1978[Hay88℄ Hayes, J.P.: Computer Ar
hite
ture and Organization, M
Graw-HillInternational Editions, 1988[HoU79℄ Hop
roft, J.E., Ullman, J.D.: Introdu
tion to Automata Theory, Lan-guages and Computation. Addison - Wesley Publishing Company, 1979[JuA97℄ Ju
an, T, Andrei, S�t.: Limbaje formale �si teoria automatelor. Culegerede probleme. Editura Universit�at�ii \Al. I. Cuza", Ia�si, 1997[Knu68℄ Knuth, D. E.: Semanti
s of Context-Free Languages. Mathemati
alSystems Theory, Vol. 2, No. 2 Springer Verlag, New York, pp. 127-145(1968)[Mas92℄ Masalagiu, C.: Tipuri abstra
te de date. Editura Universit�at�ii \Al. I.Cuza", Ia�si, 1992[Sal73℄ Salomaa, A.: Formal Languages. A
ademi
 Press. New York, 1973[Tha67℄ That
her, J. W.: Chara
terizing derivation trees of
ontext free gram-mars through a generalization of �nite automata theory. Journal of Com-puter and System S
ien
e 1, pp. 317-322 (1967)[ThS92℄ Thulasiraman, K., Swamy, M.N.S.: Graphs: Theory and Algorithms.John Wiley & Sons, INC., New York, 1992

