Bidirectional Attribute Evaluation

Stefan ANDREI * Manfred KUDLEK! Cristian MASALAGIU?

Abstract

Our intention is to describe a parallel algorithm (using two processors)
for evaluating the attribute instances of an attributed derivation tree.

In the first section, we present some basic notions (graphs, trees, con-
text free and attribute grammars).

The second section emphasizes two ways for representing the ordered
oriented trees and the bidirectional traversal is also pointed out.

In the third section, we present a new approach for evaluating the
attribute instances of an attributed derivation tree. We have called this
strategy the bidirectional attribute evaluation.

In the last section, we formulate some conclusions and open problems.

Keywords: attribute grammars and evaluation, parallel algorithms

Mathematics Subject Classification: 68N20, 68P05, 68Q22,
68Q50, 68R10.

1 Basic Notions

An alphabet is a finite set V. V* is the set of all words over V. The empty
word is denoted by A.

Definition 1.1 We say that G = (V, E,s,d) is an oriented graph if V is
the set of vertices, E is the set of edges, s : E — V (the source function),
d: E =V (the destination). If s(e) = v and d(e) = v', then the arc e will
be denoted e : v = v' or v 5 V', or simply (v,v') if the name is not important
(i.e. there exists - at least - one arc from v to v').

For any v € V, let E(v) = {e| s(e) = v} and S(v) = {v' | 3 e € E such that
v5 '}

*Faculty of Informatics, “Al.I.Cuza” University, Str. Berthelot, nr. 16, 6600, Iasi,
Romaénia. E-mail: stefan@infoiasi.ro. This work was supported by The World Bank/Joint
Japan Graduate Scholarship Program.

tFachbereich Informatik, Universitit Hamburg, Vogt-Kolln-StraBe 30, D-22527 Hamburg,
Germany. E-mail: kudlek@informatik.uni-hamburg.de

{Faculty of Informatics, “AlI.Cuza” University, Str. Berthelot, nr. 16, 6600, Iagi,
Romaénia. E-mail: mcristy@infoiasi.ro.

2 Bidirectional Attribute Evaluation

Definition 1.2 For an oriented graph G = (V, E,s,d), if V and E are finite,
then G is a finite oriented graph. If for any v € V, E(v) is a finite set, then G
is called a locally oriented finite graph.

For any G = (V, E, s,d) a locally oriented finite graph, £ = |J E(v) can be
veV
denoted in the following way:

EwWw) ={<v,1>,<v,2>,...,<v,k, >}

That is, the set of all arcs having source v (consequently the set of sons of v,
i.e. S(v)) can be viewed as an ordered set. Such a locally oriented graph is
called ordered oriented graph. From now on, we shall work only with finite
ordered oriented graphs. The local ordering induces a total left-to-right order
on leaves.

Other natural concept notions on graphs can be easily translated to an easier
notation for finite ordered oriented graphs. For example, a path of length n in
G from v to v’ is a word p € E*, p = e1e3...en, n > 1, where:

€ € €
V=0 3 v B UgelUp_1 DU, =0

Note. We shall suppose that for any node there exists a path of length 0
denoted by A. Other notions (connectivity, circuits, trees, etc.) can be defined
by translation from their classical definitions. Furthermore, we suppose that the
reader is familiar with notions concerning preorder traversal, depth first search,
breadth search corresponding to trees and graphs ([CLR91]).

Example 1.1 Let us consider the following ordered oriented tree
T=({12.,11}L{<1,1> <1,2> <1,3> <3,1> <3,2>, <4,1>,
<4,2>,<4,3>,<5,1>, <5, 2>} s, d), where

s(<L,1>)=1 s(<1,2>)= s(< 1,3>) = 5(<3,1>)=3
5(<3,2>)=3 s(<4,1>)= s(<4,2>) = s(<4,3>)=4
s(<5,1>)=5 s(<5,2>)= d(<1,1>) = d(<1,2>)=3
d<1,3>)=4 d(<3,1>)= d(<3,2>) = dl<4,1>)=7
d(<4,2>)=8 d(<43>)—9 d(<5,1>)—10 d(<5,2>)=11

T has the following graphic representation

/%\
/\ /&\
/\

10 11

Figure 1.

Bidirectional Attribute Evaluation 3

and it has the preorder (depth first) traversal: 1,2,3,5,10,11,6,4,7,8,9.

We say that G = (Vn,Vr, Z, P) is a context free grammar, if Vy is the
alphabet of nonterminal symbols, V; the alphabet of terminal symbols, and
V = VN U Vr the set of symbols of G, Z € Vi the start symbol, P C Vy x V*
the set of productions. A pair (A4,8) € P is called an A—production and it is
denoted by A — (. The productions A — 81, A — Bs,..., A — B will be
denoted by A — (1 |fB2] ... | Br (sometimes). The empty word will be denoted
A (the word of length 0). A derivation in G is denoted by « = Bifd A€

and A — r € P such that & = a; Aay, B = B1 1 B2; the transitive (reflexive)
closure of the relation = is denoted by :2> (:;>)

Definition 1.3 A derivation tree T' = (V, E, s,d) for a context free grammar
G = (Vn,Vr, Z, P) is a node labelled finite ordered oriented tree. The labels of
the nodes are given by a function f:V — Vy UVp U{A}:

For any v € V, with S(v) = {v1,va,...,0x}, if f(v) = X, f(v1) = Y,
f(va) =Ya, ..., f(vg) =Yy, then G contains the production X — Y1Y>...Yy.

If f(v) = X (v being the root) and the word w = vivs...v,, being the (ordered)
labels of the leaves, we say that T describes the word w generated from
X. If X =7 and w € V3, then T describes a word from L(G).

Definition 1.4 An attribute grammar ([Alb91a]) is a five-tuple
AG = (G,SD,AD,R,C),
defined as follows:

(1) G = (Vn,Vr, Z, P) is a (the underlying) context-free grammar. The gram-
mar G is assumed to be reduced in the sense that every nonterminal symbol
is accessible from the start symbol and can generate a string which contains
no nonterminal symbols.

(1.1) Vn and Vi denote the alphabets of nonterminal and terminal symbols,
respectively, and form the vocabulary V = Vy U Vp, Vy N Vy = (;

(1.2) P is the finite set of productions; a production p € P will be denoted
asp: Xpo = Xp1... Xpn,, wheren, >0, X0 € Vy and Xy, €V for
1<k < ny;

(1.3) Z € V is the start symbol, which does not appear on the right side
of any production.

(2) SD = (TYPE — SET,FUNC — SET) is a semantic domain.

(2.1) TYPE — SET is a finite set of sets;

(2.2) FUNC — SET is a finite set of total functions of type

typey X ... X type, — typeg, where n > 0 and type; € TYPE — SET
(0<i<n).

Bidirectional Attribute Evaluation

(3) AD = (A,I,S,TY PE) is a description of attributes.

(3.1) For each symbol X € V there exists a set A(X) of attributes which
can be partitioned into two disjoint subsets I(X) and S(X) of inher-
ited and synthesized attributes, respectively;

(3.2) The set of all attributes will be denoted by A, i.e. A= |J A(X).
Xev

(3.3) Attributes associated with different symbols are considered as differ-
ent, i.e. A(X)NA(Y) =0 if X #Y. If necessary an attribute a of
symbol X will be denoted by X.a;

(3.4) Fora € A, TYPE(a) € TYPE — SET is the set of possible values
of a.

(4) R(p) is a finite set of attribute evaluation rules (semantic rules) associated
with the production p € P.

(4.1) Production p : Xpo — Xp1... Xpn, is said to have the attribute
occurrence (a,p, k) if a € A(Xp1);

(4.2) The set of all attribute occurrences of production p will be denoted by
AO(p);

(4.3) The set AO(p) can be partitioned into two disjoint subsets of defined
occurrences and used occurrences denoted by DO(p) and UO(p),
respectively:

DO(p)={(s,p,0)| s € S(Xpo)} U{(i,p, k) | i € I(Xp) AT <k <mp}

UO(p) ={(i,p,0)| s € I(Xp0)} U{(s,p, k) [1 € S(Xpi) N1 <k <mp}

The attribute evaluation rules of R(p) specify how to compute the
values of the attribute occurrences in DO(p) as a function of the
values of certain other attribute occurrences in AO(p). The evaluation
rule defining the attribute occurrence (a,p, k) has the form

(aapvk) = f((alvpa kl)v R (amvpa km))

(a,p,k) € DO(p), f: TYPE(ay) % ... x TY PE(a,,) — TY PE(a),
f € FUNC — SET and (a;,p,k;) € AO(p) for 1 < k < m. We say

that (a,p, k) depends on (a;,p, k;), for 1 <i < m.

(5) C(p) is a finite set of semantic conditions associated with the production
p. These conditions are predicates of the form

ﬂ'((alapa kl)v A3} (a’mvpa km))

m: TYPE(a;) X ... x TYPE(a,) — {true, false}, 1 € FUNC — SET,
and (a;,p, ki) € AO(p) for 1 <i < m.

Bidirectional Attribute Evaluation 5

Semantic conditions allow the specification of a subset of the language de-
fined by the underlying context-free grammar. A sentence that is generated by
G is a sentence of the language specified by AG if the semantic conditions yield
true. Traditionally, the definitions of attribute grammars require that both the
start symbol and the terminal symbols to have no inherited attributes. We do
not assume this restriction.

We have been so far concerned with the syntax of attribute grammars. Now
let us discuss their semantics.

An unambiguos context-free grammar assigns a single derivation tree to each
of its sentences. The nodes of a derivation tree are labelled with symbols from
V. For each interior node there is a production X,g — X ... X}y, such that
the node is labelled with X, and its n, sons are labelled with X, ..., Xy,
respectively. We say that p is the production (applied) at that node.
Definition 1.5 A derivation tree is complete if it has only terminal symbols
(or the empty string) as labels of its leaves and the start symbol as the label of
1ts root.

Unless stated otherwise our derivation trees are assumed to be complete.

Definition 1.6 Given a derivation tree in an attribute grammar

AG = (G,SD,AD, R, C), instances of attributes are attached to the nodes in
the following way: if node N is labelled with grammar symbol X, then for each
attribute “a” € A(X) an instance of “a” is attached to node N. We say that the
derivation tree has the attribute instance N.a. Let Ny be a node, p a production
at Ny and Ni, ..., Ny, the sons of Ny in the given order (Definition 1.3). An
attribute evaluation instruction

Ni.a:= f(Ng;-a1y ooy Ni,, .Gm)
s associated with attribute instance Ny.a if the attribute evaluation rule

(avpa k) = f((alapv kl)’) (am,pv km))

1s associated with production p. We say that attribute instance Ny.a depends on
attribute instance Ny, .a; for 1 < i < m. If all the values are known and satisfy
all attribute evaluation rules them we say that the attributed derivation tree is
comnsistent.

Definition 1.7 A decorated (or attributed) derivation tree is a deriva-
tion tree in which all attribute instances have a value (which is not necessarily
consistent). A consistently decorated (attributed) derivation tree is a
derivation tree in which all attribute instances are defined according to their as-
sociated attribute evaluation instructions, i.e. the execution of any evaluation
instruction does not change the values of the attribute associated with a tree
node (as described below).

6 Bidirectional Attribute Evaluation

In this way, an attribute grammar assigns a (consistenly) decorated deriva-
tion tree to each of its sentences. Some applications concentrate on the result
of the semantic conditions which conclusively decide whether a sentence is se-
mantically correct or not. Other applications are only interesting in a decorated
derivation tree as an intermediate result in the compilation process. For these
applications semantic conditions are not used.

Definition 1.8 For each derivation tree T a dependency graph D(T) can
be defined by taking the attribute instances of T as its vertices. The directed
arc (N;.a, N;.b) is contained in the graph if and only if attribute instance N;.b
depends on attribute instance Nj.a. A path in a dependency graph will be called
a dependency path. For n > 0, dp[Ni.a1, Na.as, ..., Ny.a,] stands for a
path with arcs (Ny.a1, N2.a2), (Na.aa, N3.a3), ..., (Np_1.0n_1, Ny.ay). A path
dp[Ni.a1, Na.ag, ..., Np.ayn, Ni.a1] will be called a circular dependency path.
An attribute grammar is circular if it includes a derivation tree whose depen-
dency graph contains a circular dependency graph. An attribute grammar is
called non-circular (well defined) if it is not circular. The class of all well
defined grammars is denoted by WAG.

The task of an attribute evaluator is to compute the values of all attribute
instances attached to the derivation tree, by executing the attribute evaluation
instructions associated with these attribute instances. Generally, the order of
the evaluation is free, with the only restriction that an attribute evaluation in-
struction cannot be executed before its arguments are available. An attribute
instance is available if its value is defined, otherwise it is unavailable. Initially
all attribute instances attached to the derivation tree are unavailable, with the
exception of the inherited attribute instances attached to the root (containing
information concerning the environment of the program) and the synthesized
attribute instances attached to the leaves (determined by the parser). At each
step an attribute instance whose value can be computed is chosen. The eval-
uation process continues until all attribute instances in the tree are defined or
until none of the remaining attribute instances can be evaluated.

For a traditional attribute evaluator, as described above, it is impossible to
evaluate attribute instances involved in a circular dependency path.

Example 1.2 Let AG; = (G1,S8D1,AD1,R1,C1) be the following attribute

grammar:

(1) G1 = ({Z,A},{a,b}, P1, Z1) the underlying context-free grammar and P1
given below;

(2) SD1 = ({integer}, FUNC — SET,), where FUNC — SET; is described

below (i.e. identity function, constant function, add function, etc.);
(3) ADl = (Al,Il,Sl,TYPEl), where

(3.1) Ay = {i,s};
(3.2) 1(2) = [i(4) = {i};

Bidirectional Attribute Evaluation 7

(3:3) 51(Z) = S1(A) = {s}
(3.4) TYPE: (i) = TYPE,(s) = {integer};

(4) the set R1 of attribute evaluation rules is described below both with the
productions of G1;

(5) the set Cy is also presented below both with Py and R;.

Because a production might contain an occurrence of the same nonterminal sym-
bol X, in the attribute evaluation rule X, will have an index (starting from 1 to
the last occurrence). The second production of G1 is such a case.

Production 1:
Z — A
Attribute evaluation rules:
Zi:=1; Z.s:=As Ai:=Z.i
Production 2:
A—aA
Attribute evaluation rules:
Agi = A1i+1; Ay.s = As.s+1;
Production 3:
A—=b
Attribute evaluation rule:
if A7 > 10 then A.s:=0 else A.5:=1

Let us consider the word w = aab. Figure 2 presents the corresponding
derivation tree T and the dependency graph D(T).

/N

Figure 2.

In [Knu68] has been defined an important subclass of atrribute grammars,
the so called purely synthesized AG’s (SAG). In the same paper, was proven
that SAG’s have the same power as Turing machines. We can conclude that the
power of attribute grammars is the same as Turing machines.

8 Bidirectional Attribute Evaluation

2 Data Representations of the Trees and their
Bidirectional Traversal

In this section, we shall present two methods for representing the ordered ori-
ented trees. For the second one, a bidirectional traversal of an ordered oriented
tree is also presented.

First method of representation of ordered oriented trees.

Given the ordered oriented tree T = (V, E,s,d), let m be the maximal
number of sons (counted for all vertices). For representing the sons vy, va, ..., v,
of father v, we use exactly m locations (even if n < m). Consider now the array
t:{1,2,....,p} = VU{null}, where p is a natural number. The array ¢ (denoted
by t[]) is defined in the following way:

t [] = root v ...Us V11.--U1m V21..-022 -.. U1m---Umm---Umm...m
———r

m times

constructed by structural induction:

e if the root of T has the sons v1, ..., v, then t [1]= root, t [2] = vy, ..., t [n] = v,,,
t[n+11=null, ..., t [m]l= null, where null is a special symbol (character);

o let vy € V(T) have the sons vygi, Uwk2, ---» Uwkn and t[sl= vy,
where w € {1,2,...,m}*, k € {1,2,...,m}, then t[s+(m-k) (m+1)+1]1= v,1,
t[s+(m-k) (m+1)+2] = vypa, ..., t[s+(m-k) (m+1)+n]l= vyipn, and the “null” el-
ements t [s+(m-k) (m+1)+n+1]=null, ..., t [s+(m-k) (m+1)+m] = null.

This representation of ordered oriented trees is useful for breadth first search
visits. We don’t present in detail this method of traversing ordered oriented tree,
because this representation has a disadvantage related to its size. That is, the
number of elements of the array t[] is exponential in m. In fact
p=1l+m+m2+...+mm= my;tll’l (m # 1). Of course, the number of vertices
of T could be “very” smaller than this number.

The second method to represent ordered oriented trees.

Let T = (V, E, s,d) be the ordered oriented tree. For representing the sons
v1, Vs, ..., v, of father v, we use n locations. Now, the number of locations
of the corresponding vector will be the same as the cardinality of V. Let m be
the maximum number of sons (for all vertices of T'). Consider now the array
t:{1,2,..,s} - (V,{1,2,...,m}), where s = |V|. The informations contained
in ¢ have the following meaning: t[il= (v,d) iff v € V and d is the number of
sons of v.

Example 2.1 For the tree presented in Example 1.1, we have:

t[1=(1,3)(2,0)(3,2)(5,2) (10,0) (11,0) (6,0) (4,3) (7,0) (8,0) (9,0)

According to the (possible) huge number of “free cells” from the array t,
the first method for implementing ordered oriented trees, is not convenient for

Bidirectional Attribute Evaluation 9

deriving parallel algorithms. The second representation method (although it
provides no direct access) allows us to use a bidirectional parsing according to
the placement of leaves.

This representation of ordered oriented trees is useful for depth first search
visits. As the input of the following bidirectional traversal is the array t [1 which
is the corresponding preorder representation of T' (i.e. the second method for
representing ordered oriented trees). In fact, we present a parallel combination
of the two sequential strategies of traversal up and down for the tree. Further-
more, the down traversal coincides with the depth first search strategy. We
consider two processors P1, P2 and two global variables i1, i2 (i.e. both proces-
sors can read these variables). We suppose that we have a procedure “halt(P)”,
which stops the running of the processor P. We shall call this algorithm (BT)
(i.e. bidirectional traversal).

Common memory

Input tree

i1 i2

Processor P1 Processor P2

Output tapel Output tape2

Y \i

Arithmetic Arithmetic
and logic and logic
unitl unit2

A

A

1

Control

Unit

Figure 3. General SIMD Model for Bidirectional Traversal

We can say that our model is a SIMD (simple instruction stream and multiple
data stream) computer ([Ak197]). This means that these two processors P1
and P2 operate synchronously. Furthermore, we can say that our model uses
multiprocessors because the processors P1, P2 share a common memory.

10 Bidirectional Attribute Evaluation

procedure visit_down(P1);
begin
if i1 <= i2 then begin
(vi,d) := t[ill;
{visit the vertex vi}
write("we have visited ", vl);
write(" and it has ", d, " sons");
il =il + 1;
visit_down(P1)
end
else halt(P1);
end;

The up traversal of the tree is quite similar.

procedure visit_up(P2);
begin
if i2 > il then begin
(v2,d) := t[i2];
{visit the vertex v2}
write("we have visited ", v2);
write(" and it has ", d, " sons");
i2 = i2 - 1;
visit_up(P2)
end
else halt(P2);
end;

The main program is

begin
read(t[]); {read the tree}
i1 :=1; i2 := n; {n being the number of vertices of T}

repeat in parallel
visit_down(P1);
visit_up(P2)
until (i1>i2);
end.

Example 2.2 Let us consider the tree from Example 1.1 (and 2.1). We shall
simulate the “parallel running” of Algorithm (BT).

Initial: i1 = 1 and i2 = 2.

Step 1: P1 — “we have visited 1 and it has 3 sons”
P2 — “we have visited 9 and it has 0 sons”

Step 2: P1 — “we have visited 2 and it has 0 sons”

Bidirectional Attribute Evaluation 11

P2 — “we have visited 8 and it has 0 sons”

Step 3: P1 — “we have visited 3 and it has 2 sons”

P2 — “we have visited 7 and it has 0 sons”

Step 4: P1 — “we have visited 5 and it has 2 sons”

P2 — “we have visited 4 and it has 3 sons”

Step 5: P1 — “we have visited 10 and it has 0 sons”

P2 — “we have visited 6 and it has 0 sons”

Step 6: P1 — “we have visited 11 and it has 0 sons”

P2 — halts

Compared to the classical preorder visit (which needs 11 steps), our bidirectional
traversal needs only 6 steps.

We saw in Example 2.2 that the processor P1 visits the tree in depth first
search manner (the order of visiting the vertices is {1, 2, 3,5,10,11,6,4,7,8,9})
and P2 in the opposited manner to P1 (i.e. the order of visiting the vertices
is {9,8,7,4,6,11,10,5,3,2,1}). In fact, P2 visits all the sons from right to left
and finally their root.

Theorem 2.1 (correctness and completeness) Let T = (V, E, s,d) be a ordered
oriented tree represented by an array which contains its preorder representation
as the input of Algorithm (BT). Then:

a)

b)

After the execution of Algorithm (BT), all the vertices of T have been
visited.

Let us denote with Ti(n), Ta(n) the running time of the procedures
visit_down and visit_up, where n = |V|. Then the parallel running
time t(n) satisfies the relation (we suppose that the routing time is zero):

min{T; (n), T>(n)}
2

< t(n) < max{T1(n), T>(n)}

Proof

a)

If i1 < 2 then each call of procedures visit_down and visit_up implies
the visit of two new vertices (i.e. which has not yet been visited). We
know that the array t contains in fact the preorder representation of T
The procedures visit_down and visit_up read the array t cell by cell
(because of the statements i1 := i1 + 1 and i2 := i2 - 1). The cells
t[i1] and t[i2] contain informations about the current vertices v1 and
v2, respectively. So, v1, v2 have been visited at this parallel step.

The inequality ¢(n) < max{Ti(n),T>(n)} can be obtaining by supposing
that one processor stays. For instance, if P1 stays, then ¢(n) = Tx(n)
(time routing is zero). The other inequality can be obtained by supposing

that both processors work until 41 = ¢2. This implies a running time of
min{Ty(n) To(n)}
3 .

12 Bidirectional Attribute Evaluation

3 Bidirectional Attribute Evaluation

In [Alb91b], the flexible and the rigid tree-walking strategies for traversing the
attributed decorated tree have been presented. A flexible strategy is completely
determined by the attribute dependencies of the grammar concerned. Typical
example of attribute grammar classes with a flexible tree traversal strategy are
the absolute non-circular (ANC) and the ordered attribute grammars.

A rigid strategy is independent of the attributed dependencies. A typical
example of a rigid strategy is to make a number of passes over the derivation
tree, where a pass is defined to be a depth-first left-to-right or right-to-left
traversal of the derivation tree. An example of a strategy somewhere in between
the flexible and the rigid strategies is the performance of attribute evaluation
during a sequence of sweeps over the derivation tree. A sweep, as defined in
[EnF82], is a depth-first traversal of the derivation tree, without the restriction
of a left-to-right or a right-to-left order of succesion, i.e. the visiting order of
the nodes is free with the only restriction that every tree node is visited exactly
once.

Our approach refers to a rigid strategy which works for general non-circular
attributed grammars. We called it bidirectional attribute grammars. Next,
we present the attribute evaluation algorithm which works for a well-defined
attribute grammar (WAG). We call it bidirectional attribute evaluation algo-
rithm, and it will be denoted by (BAE). Each vertex v of the input attributed
derivation tree has three components. The first component is the label, i.e.
the terminal or non-terminal symbol X, the other components being the set of
instances of inherited and synthesized attributes of X, respectively.

The Algorithm (BAE):

Input: A well-defined attribute grammar AG and an attributed derivation tree
T = (V, E) where only the inherited attribute instances of the start symbol and
the synthesized attribute instances of the terminal symbols are defined.
Output: An attributed derivation tree where all attribute instances are defined.
Method: Like in Algorithm (BT), we shall present two procedures for each
of the processors and a main program. Because each element of the array
t [] stores two informations, the current vertex and the number of sons of the
current vertex (i.e. the pair (v,d)), we denote t[].one=v and t[].two=d.
Each of these procedures contain two calls of procedure evaluate(X.a). This
procedure is in fact the corresponding attribute evaluation instruction to the
current production according to Definition 1.6.

procedure visit_down(P1);
begin
if i1 <=|V| then begin
(vi,d) := t[il1];
(Xp0,I(Xp0),S(Xp0)):=v;
for k :=1 to d do
(Xpk,I(Xpk),S(Xpk)) := t[il+k].one;

Bidirectional Attribute Evaluation 13

for k := 1 to d do
for (all a€I(Xpk)) do
if (Xpk.a is undefined) and
(all argument instances of the evaluation instruction
for Xpk.a are defined)
then evaluate(Xpk.a);
for (all aeS(Xp0)) do
if (Xp0.a is undefined) and
(all argument instances of the evaluation instruction
for XpO.a are defined)
then evaluate(Xp0O.a);
il := i1 + 1;
visit_down(P1)
end
else halt(P1);
end;

The up traversal of the tree is quite similar.

procedure visit_up(P2);
begin
if i2 >= 1 then begin
(v2,d) := t[i2];
(Xp0,I(Xp0),S(Xp0)):=v;
for k := 1 to d do
(Xpk,I(Xpk),S(Xpk)) := t[i2+k].one;
for k := 1 to d do
for (all a€I(Xpk)) do
if (Xpk.a is undefined) and
(all argument instances of the evaluation instruction
for Xpk.a are defined)
then evaluate(Xpk.a);
for (all aeS(Xp0)) do
if (Xp0.a is undefined) and
(all argument instances of the evaluation instruction
for XpO.a are defined)
then evaluate(Xp0O.a);
i2 = i2 - 1;
visit_up(P2)
end
else halt(P2);
end;

The main program is

begin
read(t[]); {read the attributed derivation tree}
il :=1; i2 := n;

14 Bidirectional Attribute Evaluation

{n being the number of vertices of the input tree}
repeat in parallel
visit_down(P1);
visit_up(P2)
until (all attribute instances are evaluated);
write(t[1);
{the attributed derivation tree is consistently decorated}
end.

Remark 3.1 FEvery attribute instance is evaluated during the earliest possible
pass and the different instances of the same attribute may be evaluated during
different passes. In the classical model of evaluation the attributed instances of
the attributed derivation tree depend in fact on the number of levels (depth) of
the input derivation tree. For instance, the synthesized attributed instances of
the root of T will be defined after at least m visits of the attributed derivation
tree, where m is the depth of it.

Using our bidirectional attribute evaluation algorithm, the synthesized at-
tribute instances of the root of T will be defined in one wvisit of the attributed
derivation tree, for the synthesized attributed instances of the terminal symbols.

Compared to [AIb91b], our bidirectional attribute evaluation algorithm has
“half” time running than the classical attribute evaluation algorithm.

Example 3.1 Let us consider the attribute grammar (Example 2.1). It is easy
to see that for w = aab, according to Algorithm (BAE), we need only one down
visit and one up visit for evaluating all the attribute instances of the correspoding
attributed derivation tree. On the other hand, using classical methods (down
visits), for evaluating the attribute instances, we need to visit the attributed
derivation tree three times (i.e. three down visits).

We can immediately generalize to the input word w = a™b. In that case,
Algorithm (BAE) needs the same one down visit and one up visit, instead of
m+1 down visits in the classical method.

Theorem 3.1 (correctness and complezity) If the input attributed grammar AG
is mon-circular, then Algorithm (BAE) will compute the attribute instances of
the input attributed derivation tree in a finite number of steps. That is, the out-
put of the Algorithm (BAE) will be a consistently decorated attibuted derivation
tree.

Proof Let AG be a non-circular (well defined) attribute grammar. This means
that for any derivation tree T, the dependency graph D(T') has no cycles. In
D(T), the directed arc (N;.a, N)j.b) is an arc iff attribute instance N;.b depends
on attribute instance N;.a. Because D(T) is acyclic, its arcs specify a partial or-
dering of the attribute instances. The existence of arc (N;.a, N;.b) indicates that
the value of attribute instance N;.a must be defined before attribute instance
N;.b can be computed.

Bidirectional Attribute Evaluation 15

The procedures visit_down(P1) and visit_up(P2) use the procedure
evaluate(X.a), which is in fact an attribute evaluation instruction. Because
of the loop repeat ... until, from the main program, it follows that all at-
tributed instances of T' will be computed. Because D(T') has no cycles, it follows
that the number of iterations of the above loop is finite. |

4 Conclusions

The complexity of Algorithm (BAE) applied to an attributed derivation tree
is related to the complexity of Algorithm (BT) applied to an ordinary tree. It
is obvious that the number of visits for evaluating all the attribute instances
of the attributed derivation tree made by Algorithm (BAE) is less than the
classical algorithm ([Al1b91b]). As we saw in Example 3.1, there exist situations
for which our bidirectional evaluating strategy is independent of the size of the
input attributed derivation tree (only two visits).

But, sometimes, due to the dependency graph, the processors have to wait
one each other and only one processor works. In that case, the parallel attribute
evaluation coincides with the classical one. One open problem could be: In
which cases (for what kinds of attribute grammars) our bidirectional attribute
evaluation is strictly (or two times) better than the classical one ?

If the underlying context free grammar of the corresponding attribute gram-
mar is in Chomsky normal form, then any derivation tree will be binary. In that
case, the first method of representing ordered oriented trees is a convenient data
structure for Algorithm (BAE), too. Furthermore, any node of the tree could be
directly accessed (i.e. not sequential, like in the second method of representing
ordered oriented trees).

References

[Alb91a] Alblas, H.: Introduction to Attribute Grammars. Attribute Grammars,
Applications and Systems, LNCS 545, Eds. Alblas, H., Melichar, B., pp.
1-15 (1991)

[A1b91b] Alblas, H.: Attribute Evaluation Methods. Attribute Grammars, Ap-
plications and Systems, LNCS 545, Eds. Alblas, H., Melichar, B., pp. 48-113
(1991)

[AhUT72] Aho, A.V., Ullman, J.D.: The Theory of Parsing, Translation, and
Compiling. Volume I, II, Prentice Hall, 1972

[Ak197] Akl, S.: Parallel Computation. Models and Methods. Prentice Hall,
1997

[AnG95] Andrei, St., Grigorasg, Gh.: Tehnici de compilare. Lucrari de laborator.
Editura Universitatii “Al.I.Cuza”, lagi, 1995

16 Bidirectional Attribute Evaluation

[AnK99] Andrei, St., Kudlek, M.: Bidirectional Parsing for Context Free Lan-
guages. B-219, Fachbereich Informatik, Universitat Hamburg: pp. 1-56
(1999)

[ASU86] Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques,
and Tools. Addison-Wesley Publishing Company, U.S.A.; 1986

[CLR91] Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algo-
rithms. The MIT Press, New York, 1991

[EnF82] Engelfriet, J., Filé, G.: Simple multi-visit attribute grammars. Journal
of Computer and System Science 24, pp. 283-314 (1982)

[GiR89] Gibbons, A., Rytter, W.: Efficient Parallel Algorithms. Cambrigde
University Press, 1989

[GTWT78] Goguen, J. A., Thatcher, J. W., Wagner, E.G.: An initial algebra
approach to the specification, correctness, and implementation of abstract
data types. Current Trends in Programming Methodology, IV: Data Struc-
turing, (R.T. Yeh Ed.) Prentice Hall, New Jersey, pp. 80-149 (1978)

[Gri86] Grigorag, Gh.: Limbaje formale si tehnici de compilare. Editura Uni-
versitatii “Al.I.Cuza”, Iasi, 1986

[Har78] Harrison, M. A.: Introduction to Formal Language Theory. Addison -
Wesley Publishing Company, 1978

[Hay88] Hayes, J.P.: Computer Architecture and Organization, McGraw-Hill
International Editions, 1988

[HoU79] Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Lan-
guages and Computation. Addison - Wesley Publishing Company, 1979

[JuA97] Jucan, T, Andrei, St.: Limbaje formale si teoria automatelor. Culegere
de probleme. Editura Universitatii “Al. I. Cuza”, lasi, 1997

[Knu68] Knuth, D. E.: Semantics of Context-Free Languages. Mathematical
Systems Theory, Vol. 2, No. 2 Springer Verlag, New York, pp. 127-145
(1968)

[Mas92] Masalagiu, C.: Tipuri abstracte de date. Editura Universitdtii “Al. I.
Cuza”, Tasi, 1992

[Sal73] Salomaa, A.: Formal Languages. Academic Press. New York, 1973

[Tha67] Thatcher, J. W.: Characterizing derivation trees of context free gram-
mars through a generalization of finite automata theory. Journal of Com-
puter and System Science 1, pp. 317-322 (1967)

[ThS92] Thulasiraman, K., Swamy, M.N.S.: Graphs: Theory and Algorithms.
John Wiley & Sons, INC., New York, 1992

