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S an be polynomially redued to deiding onsisteny for a problem ex-pressed in S; and (4) we derive from the previous result that we \jump"from tratability to intratability if we add the universal relation to theset of all atoms of the RA. A omparison to the most losely related workin the literature indiates that the approah is promising.Keywords: Qualitative spatial reasoning, Relation algebra, Constraintsatisfation, Orientation, Computational omplexity, Knowledge repre-sentation.1 IntrodutionQualitative spatial reasoning (QSR) has beome an important and hallengingresearh area of Arti�ial Intelligene. An important aspet of it is topologialreasoning (see the survey in [5℄). However, many appliations (among whihare robot navigation [22℄, reasoning about shape [34℄, route desription [7, 17℄)require the representation and proessing of orientation knowledge. A varietyof approahes to this have been proposed: the so-alled CYCORD theory foryli ordering of 2D orientations [27, 31, 32℄, global referene system modelsfor reasoning about ardinal diretions [8, 9℄, relative orientation models [11,12, 18, 40℄, and models for the representation of a panorama [33℄.One may want to desribe a on�guration of points in the plane as viewedfrom a global point of view; this ould, for instane, orrespond to the situationwhen a robot has to be loated with respet to a number of known landmarks:suh a desription may onsist of speifying the yli order of triples of objetsin the on�guration with respet to the viewpoint at the robot's loation. TheCYCORD theory [31, 32℄ and Shlieder's system of panorama representation[33℄ may be used for suh a task. However, in addition to providing the yliorder for triples of orientations, many appliationsmay need the spei�ation forpairs of orientations in the on�guration of whether one orientation is to left of,to the right of, opposite to, or equal to, the other orientation. This feature is notaptured by the system in [31, 32℄ nor by the one in [33℄: indeed, these negletwhat ould be alled the left/straight/right dihotomy determined by an observerplaed at the point of view and looking in the diretion of the referene objet;this dihotomy, whih orresponds to the partitioning of the plane into thedireted line point-of-view{referene-objet, the left open half-plane delimitedby that line, and the right open half-plane delimited by the same line, allows,when aptured by a model, for some kind of ognitively plausible reasoning(some aspets of ognitive plausibility of orientationmodels in qualitative spatialreasoning are disussed in [11, 12℄).To illustrate, onsider the simple natural language sentene \You see boththe university and the hill on your left when you walk down to the station":the CYCORD theory fails to provide a representation of this desription. An-other limitation of the CYCORD theory appears when we onsider the same-diretion/opposite-diretion dihotomy determined by the same observer referred2



to above, whih splits the direted line point-of-view{referene-objet into thepositive part, i.e., the part the observer is looking at, and the negative part, i.e.,the part at the bak of the observer. This seond dihotomy is also importantfor qualitative spatial reasoning appliations, as illustrated by the desriptions\The inema is on the way to the university", or \To get to the inema fromthe station, walk in the opposite diretion to the university". This motivatesthe need for a new, �ner grained, approah to yli ordering of 2D orientations,whih is what we propose in the paper. The new approah, whih is an atomirelation algebra (RA) whose universe is a set of ternary relations on 2D orien-tations, overomes the above limitations; furthermore, as it turns out, its atomsform a tratable subset, whih is important for at least two reasons:1. Complete information an be heked for onsisteny in polynomial time.2. Deiding onsisteny for a general problem expressed in the RA, whihwe show is NP-omplete, an be ahieved using a baktraking searhproedure, whih re�nes at eah node of the searh tree the relation on atriple of 'variables' to an atom.The RA represents knowledge on yli ordering of 2D orientations as aternary onstraint satisfation problem (ternary CSP) of whih:1. the variables range over the set of 2D orientations, whih, as we will seelater, is isomorphi to the set of points of a �xed irle, as well as to theset of direted lines ontaining a �xed point; and2. the onstraints give for triples of the variables the relation of the RA theyshould satisfy.We �rst de�ne a binary RA and, based on that, develop our new approah toyli ordering. Among other things, we provide a omposition table for thebinary RA. One reason for doing this �rst is that it will then beome easy tounderstand how the relations of the ternary RA are obtained.The binary RA an model the qualitative on�guration of two orientations.It is based on the left/straight/right and same-diretion/opposite-diretion di-hotomies mentioned earlier, both determined by an observer plaed at the pointof view and looking in the diretion of the referene objet. The point of view,say P , is global, and we make the realisti assumption that if a olletion ofpoint objets is to be qualitatively desribed relative to P then all objets inthe olletion are di�erent from P . The point of view may, for instane, be arobot and the objets in the olletion landmarks: equality of the position ofthe robot and that of one of the landmarks would orrespond to a ollision! Inthis way, given two objets A and B, it makes sense to onsider the orienta-tions z1 and z2 of the direted lines (PA) and (PB), respetively, whih anbe qualitatively ompared aording to the two dihotomies mentioned above:z2 is e(qual) to, to the l(eft) of, o(pposite) to, or to the r(ight) of, z1. To3
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Figure 1: Loalisation of a robot R with respet to four landmarksL1; L2; L3; L4.illustrate, onsider the situation in Figure 1 where a robot R has to be qualita-tively loalised relative to four landmarks L1; L2; L3; L4. This an be ahievedby onsidering the orientations Z1; Z2; Z3; Z4 of the direted lines (RL1); (RL2);(RL3); (RL4), respetively, joining the robot to the landmarks. We an then usethe binary RA to represent the situation as a desription speifying the relationholding on eah pair of the four orientations. For instane, to \the robot is tothe right of the direted line (L1L2)" orresponds the relation r(Z2; Z1), statingthat orientation Z2 is to the right of orientation Z1.So far, onstraint-based approahes to QSR have mainly used onstraintpropagation methods ahieving path onsisteny. These methods have beenborrowed from qualitative temporal reasoning �a la Allen [1℄, and make use ofa omposition table. It is, for instane, well-known from works of van Beekthat path onsisteny ahieves global onsisteny for CSPs of Allen's onvexrelations. The proof of this result, given in [36, 37℄, shows that it is mainlydue to the 1-dimensional nature of the temporal domain. The proof uses thespeialisation of Helly's theorem [4℄ to n = 1: \If S is a set of onvex regionsof the n-dimensional spae IRn suh that every n+ 1 elements in S have a nonempty intersetion then the intersetion of all elements in S is non empty".For the 2-dimensional spae (n = 2), the appliation of the theorem gets a bitmore ompliated, sine one has to hek non emptiness of the intersetion ofevery three elements, instead of just every two; we will use this to show that aonstraint propagation proedure to be given for the ternary RA, whih ahievesstrong 4-onsisteny, has a similar behaviour for a subset inluding all atomsas path onsisteny for Allen's onvex relations: the proedure ahieves globalonsisteny.The paper is organised as follows. Setion 3 provides some bakgroundon onstraint satisfation problems (CSPs) and onstraint matries. Setion 4provides some bakground on relation algebras (RAs), and fousses on binaryRAs and ternary RAs. Setion 5 presents our �rst RA of 2D orientations,4



CYCb, whih is binary. The seond RA, CYCt, whih is ternary, is presented indetail in Setion 6. We then ome bak, in Setion 7, to CSPs with a fous onCSPs of 2D orientations: CYCb-CSPs, i.e., CSPs of whih the onstraints areCYCb relations on pairs of the variables; and CYCt-CSPs, i.e., CSPs of whih theonstraints are CYCt relations on triples of the variables. The setion provides anexample showing that path onsisteny is not suÆient for deiding onsistenyfor a CSP of CYCb atoms; then a onstraint propagation proedure ahievingstrong 4-onsisteny for CYCt-CSPs, whih we show is polynomial; and �nally,a proedure to searh for a strongly 4-onsistent, thus onsistent, senario of ageneral CYCt-CSP. In Setion 8, we show that a subset of CYCt inluding allatoms is tratable; spei�ally, we show that our strong 4-onsisteny proedurean deide onsisteny for a CSP expressed in the subset. In Setion 9, wepresent some intratability results:1. From the NP-ompleteness of the CYCORD theory [15℄, we derive thatCYCt is NP-omplete.2. We show that a subset of CYCt expressing only information on parallelorientations is NP-omplete.3. We show that provided that a subset S of CYCt inludes two spei� ele-ments, deiding onsisteny for a CSP expressed in the losure of S underthe di�erent CYCt operations an be polynomially redued to deidingonsisteny for a CSP expressed in S.4. From the previous result, we derive that for both RAs the set obtained byadding the universal relation to the set of all atoms is NP-omplete.Setion 10 ompares our approah to the most losely related ones in the liter-ature. Diretions for future work are disussed in Setion 11. Finally, Setion12 summarises the paper.We �rst need to motivate the use of ternary relations.2 Motivation of the use of ternary relationsWe make the assumption that the 2D spae is assoiated with a referene system(O; x; y), and refer to the irle entred at O and of unit radius as CO;1, and tothe set of 2D orientations as 2DO. Three natural isomorphisms will be of usein the rest of the paper. In order to failitate their de�nitions,we introdue thefollowing sets:1. R0;1 is the set of all radii of CO;1 exluding the entre O but losed at theother endpoint.2. dLO is the set of all direted lines ontaining O.5
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D1Figure 2: The angle (D1; D2) determined by two direted lines D1 and D2 isthe one orresponding to the move in an antilokwise diretion from D1 to D2.De�nition 1 The isomorphisms f2DO!1 , f2DO!2 and f2DO!3 are de�ned asfollows: f2DO!1 : 2DO ! R0;1 (1)f2DO!1 (z) is the radius (OPz ℄ 2 R0;1 suh that the orientation of the vetor��!OPz is z. f2DO!2 : 2DO ! CO;1 (2)f2DO!2 (z) is the point Pz 2 CO;1 suh that the orientation of the vetor ��!OPz isz. f2DO!3 : 2DO ! dLO (3)f2DO!3 (z) is the line `O;z 2 dLO of orientation z.De�nition 2 The angle determined by two direted lines D1 and D2, denoted(D1; D2), is the one orresponding to the move in an antilokwise diretion fromD1 to D2 (see Figure 2). The angle (z1; z2) determined by orientations z1 and z2is the angle (`O;z1 ; `O;z2), where `O;z1 = f2DO!3 (z1) and `O;z2 = f2DO!3 (z2).The set 2DO an thus be viewed as the set of radii of CO;1 (or, indeed, of any�xed irle), as the set of points of CO;1 (or of any �xed irle), or as the set ofdireted lines ontaining O (or any �xed point). We will not restrit ourselvesto any of these sets; however:1. in order to illustrate the relation holding between 2D orientations, it seemsmore intuitive to look at orientations as direted lines ontaining a �xedpoint, for instane O (isomorphism f2DO!3 ). For example, an orientationz1 is to the left of an orientation z2 if the angle (z2; z1) belongs to (0; �);and2. for the proof of Theorem 6, we will look at an orientation as a radius ofCO;1 exluding the entre O (isomorphism f2DO!1 ).6



The aim of this work, as stated in the introdution, is to provide a rela-tion algebra (RA) for representing and reasoning about yli ordering of 2Dorientations. For qualitative ordering of elements of a linear universe, suh asthe standard time line, it is suÆient to use a binary relation over the universe;however, ordering elements of a yli universe, suh as the universe of 2D ori-entations (or any of the isomorphi universes R0;1, CO;1 and dLO), requires theuse of a relation of arity at least equal to three. Together with a onventionsaying whih of the antilokwise and lokwise diretions orresponds to thepositive diretion, a ternary relation with the aim of qualitatively ordering 2Dorientations would give for triples (z1; z2; z3) of orientations whih of z2 andz3 is met �rst when we move in the positive diretion starting from z1. Thisshows the importane of ternary relations for our purpose. On the other hand,many appliations, inluding those mentioned in the introdution, may require�ner knowledge on triples (z1; z2; z3) of orientations than just the (qualitative)yli order of z1, z2 and z3: for instane, they may require for some or allpairs (zi; zj) of orientations in fz1; z2; z3g the additional knowledge of whetherzi is equal to, to the left of, opposite to, or to the right of, zj . As alluded tobriey in the introdution, the partitioning of the universe of 2D orientationsinto the orientation that is equal to, the orientations that are to the left of,the orientation that is opposite to, and the orientations that are to the rightof, a given orientation (parent orientation) is important beause of its ognitiveplausibility [11, 12℄: the parent orientation might orrespond to the orientationof the direted line (PR) joining a parent objet P to a referene objet R;then an observer plaed at the parent objet and looking in the diretion of thereferene objet an desribe a primary objet S relative to the referene objetR in the following, ognitively plausible, way, where z(PR) and z(PS) stand forthe orientations of the direted lines (PR) and (PS), respetively: S may be infront of the observer, olinear with P and R (equal(z(PS); z(PR))); to the leftof R (left(z(PS); z(PR))); at the bak of the observer, olinear with P and R(opposite(z(PS); z(PR))); or to the right of R (right(z(PS); z(PR))). Thus what isneeded is to ombine a yli ordering, thus ternary, relation with these other,binary, relations, equal, left, right, and opposite, in order to o�er the possibil-ity of expressing �ner grained knowledge than just yli ordering. This paperprovides a alulus to satisfy this need.3 Constraint satisfation problemsA onstraint satisfation problem (CSP) of order n onsists of a �nite set of nvariables x1; : : : ; xn, a set U (alled the universe of the problem), together witha set of onstraints on values from U whih may be assigned to the variables.The problem is solvable if the onstraints an be satis�ed by some assignementof values a1; : : : ; an 2 U to the variables x1; : : : ; xn, in whih ase the sequene(a1; : : : ; an) is alled a solution. Two problems are equivalent if they have the7



same set of solutions.An m-ary onstraint is of the form R(xi1 ; � � � ; xim), and asserts that them-tuple of values assigned to the variables xi1 ; � � � ; xim must lie in the m-aryrelation R (an m-ary relation over the universe U is any subset of Um). Anm-ary CSP is one of whih the onstraints are m-ary onstraints. We will beonerned exlusively with binary CSPs and ternary CSPs.A unary relation, say R, is equivalent to the binary relation f(a; a) : a 2 Rg,and to the ternary relation f(a; a; a) : a 2 Rg. In turn, a binary relation R isequivalent to the ternary relation f(a; b; a) : (a; b) 2 Rg.3.1 Operations on binary relationsA binary relation is a set of ordered pairs, denoted (a; b). For any two binaryrelations R and S, R \ S is the intersetion of R and S, R [ S is the union ofR and S, R Æ S is the omposition of R and S, and R^ is the onverse of R;these are de�ned as follows:R \ S = f(a; b) : (a; b) 2 R and (a; b) 2 Sg;R [ S = f(a; b) : (a; b) 2 R or (a; b) 2 Sg;R Æ S = f(a; b) : for some ; (a; ) 2 R and (; b) 2 Sg;R^ = f(a; b) : (b; a) 2 Rg:Three speial binary relations over a universe U are the empty relation ; whihontains no pairs at all, the identity relation IbU = f(a; a) : a 2 Ug, and theuniversal relation >bU = U � U .3.2 Operations on ternary relationsA ternary relation is a set of ordered triples, denoted (a; b; ). For any twoternary relations R and S, R \ S is the intersetion of R and S, R [ S is theunion of R and S, R Æ S is the omposition of R and S, R^ is the onverse ofR, and R_ is the rotation of R; these are de�ned as follows:R \ S = f(a; b; ) : (a; b; ) 2 R and (a; b; ) 2 Sg;R [ S = f(a; b; ) : (a; b; ) 2 R or (a; b; ) 2 Sg;R Æ S = f(a; b; ) : for some d; (a; b; d) 2 R and (a; d; ) 2 Sg;R^ = f(a; b; ) : (a; ; b) 2 Rg;R_ = f(a; b; ) : (; a; b) 2 Rg:In terms of expressiveness, it should be said that the onverse and the rota-tion of a relation R reord the same information as R itself. For binary rela-tions, a onverse operation is suÆient beause there are two possible orderedpairs involving two objets, say x and y: (x; y) and (y; x); the onverse oper-ation alone allows going from one of the two pairs to the other. For ternaryrelations, a onverse operation is no longer suÆient beause there are al-together six possible ordered triples involving three objets, say x, y and z:8



(x; y; z); (x; z; y); (y; x; z); (y; z; x); (z; x; y); (z; y; x). The onverse operation al-lows going from an ordered triple (x; y; z) to the ordered triple (x; z; y), but doesnot allow going to the other four ordered triples. With the addition of the ro-tation operation, we an move as well to (y; z; x); then from (y; z; x) to (y; x; z)using onverse, and to (z; x; y) using rotation; and from (x; z; y) to (z; y; x) usingrotation.Three speial ternary relations over a universe U are the empty relation ;whih ontains no triples at all, the identity relation ItU = f(a; a; a) : a 2 Ug,and the universal relation >tU = U � U � U . Another speial ternary relation,whih expresses equality of the last two arguments and will be needed later, isIt23U = f(a; b; b) : a; b 2 Ug.The �eld of a binary relation R is field(R) = fa : for some b; (a; b) 2R or (b; a) 2 Rg; the �eld of a ternary relation R is field(R) = fa : for some band ; (a; b; ) 2 R or (b; a; ) 2 R or (b; ; a) 2 Rg. The �eld of a set A of rela-tions is the union of the �elds of the relations in A: field(A) = [R2Afield(R).3.3 Constraint matriesLet P be a CSP of order n, with variables x1; : : : ; xn and universe U .3.3.1 The ase of a binary CSPLet xi; xj be two variables. If a onstraint of P is given on the ordered pair(xj ; xi), speifying that (xj ; xi) should belong to a relation R, this an be on-verted into a onstraint on the ordered pair (xi; xj): (xi; xj) 2 R^. Therefore,we an assume that if m onstraints involve the variables xi and xj then theseonstraints onsist of binary relations R1; : : : ; Rm the ordered pair (xi; xj) isrequired to belong to. These m onstraints are then onverted into the singleonstraint (xi; xj) 2 R1\ : : :\Rm. We an therefore, without loss of generality,make the assumption that for any two variables xi and xj , there is at most oneonstraint involving xi and xj .A binary onstraint matrix of order n over U is an n � n-matrix of binaryrelations over U verifying the following:(8i � n)(Mii � IbU ) (the diagonal property);(8i; j � n)(Mij = (Mji)^) (the onverse property):A binary CSP P over a universe U an be assoiated with the following binaryonstraint matrix, denoted MP :1. Initialise all entries to the universal relation: (8i; j � n)((MP )ij  >bU )2. Initialise the diagonal elements to the identity relation: (8i � n)((MP )ii  IbU )3. For all pairs (xi; xj) of variables on whih a onstraint (xi; xj) 2 R isspei�ed: (MP )ij  (MP )ij \ R; (MP )ji  ((MP )ij)^.9



3.3.2 The ase of a ternary CSPLet xi; xj ; xk be three variables; there are altogether six possible ordered tripleson them: (xi; xj ; xk); (xi; xk; xj); (xj ; xi; xk); (xj ; xk; xi); (xk ; xi; xj); (xk ; xj ; xi).If a onstraint of P involving xi, xj and xk is given on an ordered triple otherthan (xi; xj ; xk), this an be onverted into a onstraint on the ordered triple(xi; xj ; xk) by using a �nite ombination of the onverse and rotation opera-tions. For instane, a onstraint of the form (xk ; xj ; xi) 2 R is equivalent to(xi; xj ; xk) 2 (R^)_. We an therefore assume that if m onstraints of P in-volve the variables xi; xj ; xk then these onsist of ternary relations R1; : : : ; Rmthe ordered triple (xi; xj ; xk) is required to belong to. These m onstraints arethen onverted into the single onstraint (xi; xj ; xk) 2 R1 \ : : : \ Rm. We antherefore, without loss of generality, make the assumption that for any threevariables xi; xj ; xk, there is at most one onstraint involving them.A ternary onstraint matrix of order n over U is an n � n � n-matrix ofternary relations over U verifying the following:(8i � n)(Miii � ItU ) (the identity property);(8i; j; k � n)(Mijk = (Mikj)^) (the onverse property);(8i; j; k � n)(Mijk = (Mkij)_) (the rotation property):A ternary CSP P over a universe U an be assoiated with the following ternaryonstraint matrix, denoted MP :1. Initialise all entries to the universal relation:(8i; j; k � n)((MP )ijk  >tU )2. Initialise the diagonal elements to the identity relation:(8i � n)((MP )iii  ItU )3. For all triples (xi; xj ; xk) of variables on whih a onstraint (xi; xj ; xk) 2 Ris spei�ed:(MP )ijk  (MP )ijk \ R; (MP )ikj  ((MP )ijk)^;(MP )jki  ((MP )ijk)_; (MP )jik  ((MP )jki)^;(MP )kij  ((MP )jki)_; (MP )kji  ((MP )kij)^:We make the assumption that, unless expliitly spei�ed otherwise, a CSP isgiven as a onstraint matrix.3.4 Strong k-onsisteny, re�nementLet P be a CSP of order n, V its set of variables and U its universe. Aninstantiation of P is any n-tuple (a1; a2; : : : ; an) of Un, representing an assign-ment of a value to eah variable. A onsistent instantiation is an instantiation(a1; a2; : : : ; an) whih is a solution:� If P is a binary CSP: (8i; j � n)((ai; aj) 2 (MP )ij);10



� If P is a ternary CSP: (8i; j; k � n)((ai; aj ; ak) 2 (MP )ijk).P is onsistent if it has at least one solution; it is inonsistent otherwise. Theonsisteny problem of P is the problem of verifying whether P is onsistent.Let V 0 = fxi1 ; : : : ; xijg be a subset of V . The sub-CSP of P generated by V 0,denoted PjV 0 , is the CSP with set of variables V 0 and whose onstraint matrixis obtained by projeting the onstraint matrix of P onto V 0:� If P is a binary CSP then: (8k; l � j)((MPjV 0 )kl = (MP )ikil)� If P is a ternary CSP then: (8k; l;m � j)((MPjV 0 )klm = (MP )ik ilim)P is k-onsistent [13, 14℄ if for any subset V 0 of V ontaining k�1 variables, andfor any variable X 2 V , every solution to PjV 0 an be extended to a solution toPjV 0[fXg. P is strongly k-onsistent if it is j-onsistent, for all j � k.1-onsisteny, 2-onsisteny and 3-onsisteny orrespond to node-onsisteny,ar-onsisteny and path-onsisteny, respetively [26, 28℄. Strong n-onsistenyof P orresponds to what is alled global onsisteny in [6℄. Global onsistenyfailitates the important task of searhing for a solution, whih an be done,when the property is met, without baktraking [14℄.A re�nement of P is a CSP P 0 with the same set of variables and suh that� (8i; j)((MP 0)ij � (MP )ij), in the ase of binary CSPs.� (8i; j; k)((MP 0)ijk � (MP )ijk), in the ase of ternay CSPs.4 Relation algebrasWe will be using unary operators (�, ^ and _) and binary operators (�, � andÆ). In expressions without full parentheses, unary operators should be omputed�rst, followed by Æ, �, and �, in that order.A Boolean algebra with universe B is an algebra of the form hB;�;�;� ;?;>iwhih satis�es the following properties, for all R;S; T 2 B:R� (S � T ) = (R � S)� T;R� S = S �R;R� S �R = R;R� S � T = (R� T )� (S � T );R�R = >:Of partiular interest to this work are Boolean algebras of the form h2A;[;\;� ;;; Ai, where A is a nonempty �nite set.We will onsider exlusively relation algebras (heneforth, RAs) of whih theuniverse is a set of binary relations, and RAs of whih the universe is a set ofternary relations; we refer to the former as binary RAs, to the latter as ternaryRAs. 11



4.1 Binary RAsU is a binary RA with universe A if:1. A is a set of binary relations; and2. U = hA;�;�;� ;?;>; Æ;^ ; Ii where hA;�;�;� ;?;>i is a Boolean alge-bra (alled the Boolean part, or redut, of U), Æ is a binary operation,^ is a unary operation, I 2 A, and the following identities hold for allR;S; T 2 A: (R Æ S) Æ T = R Æ (S Æ T );(R� S) Æ T = R Æ T � S Æ T;R Æ I = I ÆR = R;(R^)^ = R;(R� S)^ = R^ � S^;(R Æ S)^ = S^ ÆR^;R^ ÆR Æ S � S = ?:The properties that hold for a binary RA an be seen as the minimal propertiesthat hold for an RA whose universe is a set of m-ary relations, with m � 2.These orrespond to the list of properties of RAs given by Tarski [35℄. Whenthe universe is a set of m-ary relations, with m � 3, further properties arise,due to further operations. Tarski provided for RAs the above list of propertiesbeause he was interested mainly in formalising the theory of binary relations.We now desribe ternary RAs, whih need an additional operation (rotation)and therefore additional properties.4.2 Ternary RAsU is a ternary RA with universe A if:1. A is a set of ternary relations; and2. U = hA;�;�;� ;?;>; Æ;^ ;_ ; Ii where hA;�;�;� ;?;>i is a Booleanalgebra (alled the Boolean part, or redut, of U), Æ is a binary operation,^ and _ are unary operations, I 2 A, and the following identities holdfor all R;S; T 2 A:(R Æ S) Æ T = R Æ (S Æ T );(R � S) Æ T = R Æ T � S Æ T;R Æ I = I ÆR = R;(R^)^ = R;(R � S)^ = R^ � S^;(R Æ S)^ = S^ ÆR^;R^ ÆR Æ S � S = ?; ((R_)_)_ = R;(R � S)_ = R_ � S_:12



4.3 Atomi RAAn atom of an RA U is a minimal nonzero element, i.e., R is an atom if R 6= ?and for every S 2 A, either R�S = ? or R�S = ?. An RA is atomi if everynonzero element has an atom below it; i.e., if for all nonzero elements R, thereexists an atom A suh that A�R = A.In the rest of the paper, we fous on atomi, �nite RAs of whih the Booleanpart is of the form h2>;[;\;� ; ;;>i:1. The top element > is a �nite set of atoms; the bottom element ? is theempty set ;; the universe is the set 2> of all subsets of >; and2. the operations �, � and � are the usual set-theoreti operations of union([), intersetion (\) and omplement (�) with respet to > (i.e., (8R 22>)(R = > nR)).A �nite RA is atomi, and its Boolean part is ompletely determined by itsatoms. Furthermore, in an atomi RA, the result of applying any of the opera-tions of the RA to any elements an be obtained from the results of applying thedi�erent operations to the atoms. Speifying a �nite, thus atomi, RA reduesthus to speifying the identity element and the results of applying the di�erentoperations to the di�erent atoms.5 An atomi binary RA of 2D orientationsWe introdue in this setion the �rst RA of 2D orientations.5.1 The �eldThe �eld field(U) of an RA U with universe A is the union of the �elds ofthe relations in A; i.e., field(U) = SR2A field(R). The �eld of the RA to beintrodued is the set 2DO of 2D orientations.5.2 The universeGiven an orientation X of the plane, another orientation Y an form with Xone of the following qualitative on�gurations:1. Y is equal to X : the angle (X;Y ) is equal to 0.2. Y is to the left of X : the angle (X;Y ) belongs to (0; �).3. Y is opposite to X : the angle (X;Y ) is equal to �.4. Y is to the right of X : the angle (X;Y ) belongs to (�; 2�).13



b e l o rb^ e r o l Æ e l o re e l o rl l fl; o; rg r fe; l; rgo o r e lr r fe; l; rg l fl; o; rgFigure 3: (Left) The onverse b^ of a CYCb atom b; (Right) The ompositionfor every pair of CYCb atoms: the entry on row i, olumn j is the CYCb relationonsisting of the omposition of the leftmost element of the row and the topelement of the olumn.We denote the four on�gurations by e(Y,X), l(Y,X), o(Y,X) and r(Y,X), re-spetively. The on�gurations are Jointly Exhaustive and Pairwise Disjoint(JEPD): given any two orientations of the plane, they stand in one and onlyone of the on�gurations.De�nition 3 (the atoms) The RA ontains four atoms: e; l; o; r. We willrefer to the set of all atoms as BIN .BIN is the universal binary relation over 2DO: BIN � >b2DO � 2DO� 2DO.De�nition 4 (the universe) The universe of the RA, i.e., the set of all itsrelations, is the set of subsets of BIN . An element B of the universe is to beinterpreted as follows: (8X;Y 2 2DO)(B(Y;X), Wb2B b(Y;X))We refer to the set of singleton relations as AT b: AT b = ffeg; flg; fog; frgg.We notie that AT b is a set of relations, whereas BIN is a relation. When thereis no risk of onfusion, we omit the braes in the representation of a singletonrelation.5.3 The operations applied to the atomsFigure 3(Left) gives the onverse for eah of the atoms. Figure 3(Right) givesthe omposition for every pair of atoms.5.4 The identity elementThe identity element is the atom e; the omposition table of Figure 3(Right)an be used to verify that: (8R 2 2BIN)(R Æ e = e ÆR = R).The RA so de�ned is an atomi binary RA, whih we name CYCb: CYCb =h2BIN ;[;\;� ; ;; BIN;^ ; ei. BIN is the universal CYCb relation: (8X;Y 22DO)(BIN(Y;X)). 14



The struture of CYCb is very similar to Allen's algebra of temporal intervals[1℄, presented by Ladkin and Maddux as an atomi binary RA [20℄. In AppendixA, we verify the RA properties for CYCb.5.5 Additional de�nitionsWe make use of the isomorphism f2DO!1 alluded to earlier, from the set 2DOonto the set of radii of irle CO;1: as we have seen, given an orientation z,f2DO!1 (z) is the radius (OPz ℄ of CO;1, exluding the entre O, suh that theorientation of the vetor ��!OPz is z.De�nition 5 (setor of a CYCb relation) The setor determined by an ori-entation z and a CYCb relation B, denoted set(z;B), is the setor of irleCO;1, exluding the entre O, representing the set of orientations z0 related to zby the relation B: set(z;B) = ff2DO!1 (z0)jB(z0; z)g.Remark 1 The setor determined by an orientation and a CYCb relation doesnot inlude the entre O of irle CO;1. Therefore, given n orientations z1; : : : ; znand n CYCb relations B1; : : : ; Bn, the intersetion n\i=1 set(zi; Bi) is either theempty set or a set of radii:1 this annot be equal to the entre O, whih would bepossible if the setor determined by an orientation and a CYCb relation inludedO. This is important for the understanding of the proof of Theorem 6.De�nition 6 Let B be a CYCb relation:1. B is onvex if for all orientations z, set(z;B) is a onvex part of theplane.2. The dimension of B is the dimension of the setor it determines with anyorientation.3. B is holed if:(a) it is equal to BIN ; or(b) the di�erene BIN n B is a CYCb relation of dimension 1 (is equalto e, o or fe; og).The two atoms e and o of CYCb are of dimension 1, the other two (l and r)of dimension 2. Moreover, the dimension of a CYCb relation in general is thegreatest of the dimensions of its atoms.1A set of radii represents, aording to our onvention (De�nition 1), a set of orientationvalues. 15
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ZFigure 4: The ternary relation indued from three CYCb atoms: b1b2b3(X;Y; Z)i� b1(Y;X) ^ b2(Z; Y ) ^ b3(Z;X).Intuitively, a CYCb relation is holed if the setor it determines with anyorientation is almost equal to the entire surfae of irle CO;1; i.e., the topologiallosure of the setor is equal to the entire surfae.We will refer to the set of all CYCb relations whih are either onvex or holedas BCH . BCH splits into:1. eight onvex relations: feg; flg; fog; frg; fe; lg; fe; rg; fl; og; fo; rg; and2. four holed relations: fl; rg; fe; l; rg; fl; o; rg; fe; l; o; rg.Notie that neither of the CYCb relations fe; l; og and fe; o; rg is onvex. Forinstane, the setor determined by an orientation, say z, and the former relation,fe; l; og, is equal to � minus the entre of C0;1.De�nition 7 (indued ternary relation) Given three CYCb atoms b1; b2; b3,we de�ne the indued ternary relation b1b2b3 as follows (see Figure 4):(8X;Y; Z)(b1b2b3(X;Y; Z), b1(Y;X) ^ b2(Z; Y ) ^ b3(Z;X))The CYCb omposition table (Figure 3(Right)) has 12 entries onsisting ofatoms, the remaining four onsisting of three-atom relations. Therefore anythree 2D orientations stand in one of the following 24 JEPD on�gurations:eee, ell, eoo, err, lel, lll, llo, llr, lor, lre, lrl, lrr, oeo, olr, ooe, orl, rer, rle, rll,rlr, rol, rrl, rro, rrr. Aording to De�nition 7, rol(X,Y,Z), for instane, meansr(Y;X) ^ o(Z; Y ) ^ l(Z;X).The omposition table rules out the other, (4� 4� 4)� 24, indued ternaryrelations b1b2b3; these are inonsistent: no triple (z1; z2; z3) of orientations existssuh that for suh an indued relation one has b1(z2; z1)^ b2(z3; z2)^ b3(z3; z1).
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6 An atomi ternary RA of 2D orientationsAs we will see, the CYCORD relation y [31, 32℄ holds on a triple (z1; z2; z3)of 2D orientations if the images Pz1 , Pz2 and Pz3 of z1, z2 and z3, respetively,of the isomorphism f2DO!2 (De�nition 1) are:1. pairwise distint, and2. suh that Pz2 is met before Pz3 when we san the irle CO;1 in a lokwisediretion starting from Pz1 .The RA CYCb annot represent the relation y. However, we an de�ne anatomi ternary RA of whih the atoms are the \indued ternary relations" de-sribed above, whih will have y as one of the elements of its universe.6.1 The �eldAs for CYCb, the �eld of this new RA, whih we name CYCt, is the set 2DO of2D orientations.6.2 The universeDe�nition 8 (the atoms) An atom of CYCt is any of the 24 JEPD on�gu-rations a triple of 2D orientations an stand in. We denote the set of all atomsby TER: TER = feee; ell; eoo; err; lel; lll; llo; llr; lor; lre; lrl; lrr; oeo; olr; ooe;orl; rer; rle; rll; rlr; rol; rrl; rro; rrrg.TER is the universal ternary relation over 2DO: TER � >t2DO � 2DO �2DO � 2DO.De�nition 9 (The universe) The universe of the ternary RA, i.e., the set ofall its relations, is the set of subsets of TER. An element T of the universe isto be interpreted as follows: (8X;Y; Z 2 2DO)(T (X;Y; Z), Wt2T t(X;Y; Z))We refer to the set of singleton relations as AT t: AT t = fftg : t 2 TERg.When there is no risk of onfusion, we omit the braes in the representation ofa singleton relation.6.3 The operations applied to the atomsFigure 5 gives the onverse and the rotation for eah of the 24 atoms.In order to give a simple way of writing the omposition tables, we haveto look losely at how omposition is omputed. Given four 2D orientationsX;Y; Z;W and two atoms t1 and t2, orresponding, respetively, to the induedternary relations b1b2b3 and b01b02b03, the onjuntion t1(X;Y; Z)^ t2(X;Z;W ) isinonsistent if b3 6= b01 (see Figure 6 for illustration); this is beause the CYCb17



t t^ t_eee eee eeeell lre lreeoo ooe ooeerr rle rlelel lel errlll lrl lrr
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t t^ t_rll lrr lrlrlr rrr lllrol lor orlrrl llr rrlrro olr rolrrr rlr rllFigure 5: The onverse t^ and the rotation t_ of a CYCt atom t.
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Figure 6: The onjuntion b1b2b3(X;Y; Z) ^ b01b02b03(X;Z;W ) is inonsistent ifb3 6= b01.
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atoms are JEPD. Stated otherwise, when b3 6= b01 we have t1 Æ t2 = ;. Thusomposition splits into four omposition tables, orresponding to the followingfour ases:1. Case 1: b3 = b01 = e. This orresponds to t1 2 feee; lre; ooe; rleg andt2 2 feee; ell; eoo; errg.2. Case 2: b3 = b01 = l. This orresponds to t1 2 fell; lel; lll; lrl; orl; rll; rol; rrlgand t2 2 flel; lll; llo; llr; lor; lre; lrl; lrrg.3. Case 3: b3 = b01 = o. This orresponds to t1 2 feoo; llo; oeo; rrog andt2 2 foeo; olr; ooe; orlg.4. Case 4: b3 = b01 = r. This orresponds to t1 2 ferr; llr; lor; lrr; olr; rer;rlr; rrrg and t2 2 frer; rle; rll; rlr; rol; rrl; rro; rrrg.Figure 7 presents the four omposition tables.26.4 The identity elementGiven a universe U , we have de�ned the relation It23U as f(a; b; b) : a; b 2 Ug.It23U expresses equality of the last two arguments, and leaves unspei�ed therelation between the �rst two. Sine b1b2b3(X;Y; Z), where b1b2b3 is a CYCtatom, represents the onjuntion b1(Y;X)^b2(Z; Y )^b3(Z;X), this means thatif Y and Z are equal then for b1b2b3(X;Y; Z) to hold, b2 must be e, and b1 andb3 must be idential. Thus, when U oinides with 2DO, we get:It232DO = feee; lel; oeo; rergUsing the omposition tables, we an verify that It232DO is an identity elementfor CYCt: (8R 2 2TER)(R Æ It232DO = It232DO ÆR = R)This ompletes the presentation of CYCt:CYCt = h2TER;[;\;� ; ;; TER;^ ;_ ; It232DOiTER is the universal CYCt relation: (8X;Y; Z 2 2DO)(TER(X;Y; Z)).In Appendix B, we verify the RA properties for an atomi ternary RA.2Alternatively, one ould de�ne one single omposition table for CYCt. Suh a table wouldhave 24 � 24 entries, most of whih (i.e., 24 � 24� (16 + 64 + 16 + 64)) would be the emptyrelation.
19
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Figure 8: Graphial illustration of the 24 CYCt atoms: from top to bottom,left to right, the atoms are lrl; orl; rll; rol; rrl; rro; rrr; lll; llo; lrr; lor; llr; olr; rlr;eee; ell; eoo; err; lel; oeo; rer; lre; ooe; rle.
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6.5 ExamplesExample 1 For eah CYCt atom t, Figure 8 presents a on�guration of orien-tations X, Y and Z suh that t(X;Y; Z) holds:� The top row illustrates, from left to right, the atoms lrl; orl; rll; rol; rrl; rro;rrr.� The seond row from the top illustrates, from left to right, the atomslll; llo; lrr; lor; llr; olr; rlr.� The third row from the top illustrates, from left to right, the atoms eee; ell;eoo; err; lel; oeo; rer.� Finally, the bottom row illustrates, from left to right, the atoms lre; ooe; rle.Example 2 Consider again Figure 8:1. Eah atom illustrated on the seond and fourth rows from the top is theonverse of the atom illustrated just above it, on the preeding row.2. The �rst and last three illustrations of the third row from the top havenothing underneath them, on the bottom row: eah of the orrespondingatoms is its proper onverse.3. Consider the relation y de�ned on the set 2DO as follows:(8X;Y;Z 2 2DO)(y(X ;Y ;Z ), Y 6= X ^ Z 6= Y ^ Z 6= X ^ w(X ;Y ;Z ))The relation w holds on a triple (X;Y; Z) of 2D orientations if andonly if we �rst meet Y and then Z when we move in a lokwise diretionstarting from X. Thus the relation y expresses strit betweenness in alokwise diretion. This relation is the unique relation of the CYCORDtheory [31, 32℄, and is indeed an element of CYCt: y = flrl; orl; rll; rol;rrl; rro; rrrg (the set of all atoms illustrated on the top row).4. The onverse of y is the set of all atoms illustrated on the seond rowfrom the top: y^ = flll; llo; lrr; lor; llr; olr; rlrgExample 3 The omposition rule for the CYCORD theory is as follows, andan be veri�ed using the CYCt omposition tables:(8X;Y;Z;W )(y(X ;Y ;Z ) ^ y(X;Z;W)) y(X ;Y ;W ))
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6.6 Additional de�nitionsDe�nition 10 (ross produt of CYCb relations) The ross produt ofthree CYCb relations B1; B2; B3, denoted �(B1; B2; B3), is the CYCt relationonsisting of those atoms b1b2b3 suh that b1 2 B1; b2 2 B2; b3 2 B3:�(B1; B2; B3) = fb1b2b3 : b1 2 B1; b2 2 B2; b3 2 B3g \ TERDe�nition 11 Let R be a CYCt relation:1. The �rst, seond and third projetions of R are the CYCb relations 51(R),52(R) and 53(R), respetively, de�ned as follows:51(R) = fb1 2 BIN : (9b2; b3 2 BIN)(b1b2b3 2 R)g;52(R) = fb2 2 BIN : (9b1; b3 2 BIN)(b1b2b3 2 R)g;53(R) = fb3 2 BIN : (9b1; b2 2 BIN)(b1b2b3 2 R)g2. R is projetable if R = �(51(R);52(R);53(R)).3. R is onvex if it is projetable, and eah of its projetions is a onvex CYCbrelation.4. R is said to be fonvex,holedg (onvex or holed) if it is projetable, andeah of its projetions is a CYCb relation whih is either onvex or holed(belongs to BCH).We notie that, given a CYCt relation R, 51(R), 52(R) and 53(R) are themost spei� CYCb relations suh that:(8X;Y; Z)(R(X;Y; Z))51(R)(Y;X) ^52(R)(Z; Y ) ^53(R)(Z;X))Example 4 1. �(fe; og; flg; fl; rg) = fell; olrg.2. Let R = fell; llog. We have the following: 51(R) = fe; lg, 52(R) = flgand 53(R) = fl; og.3. The ross produt of the three projetions of the relation R above is�(51(R);52(R);53(R)) = �(fe; lg; flg; fl; og) = fell; lll; llog. Thus R 6=�(51(R);52(R);53(R)), and R is not projetable.The set of all projetable CYCt relations an be enumerated by omputing forevery three CYCb relations their ross produt. The set ontains 1518 elements,inluding the empty relation.We will refer to the subset of all fonvex,holedg CYCt relations as TCH .De�nition 12 (losures) Let S denote a subset of CYCt. The weak losure ofS is the smallest subset Sw of CYCt verifying the following properties:(P1) S � Sw; and 23



(P2) (8R;S 2 Sw)(R^ 2 Sw; R_ 2 Sw; R \ S 2 Sw).The losure of S under strong 4-onsisteny, or s4-losure of S, is the smallestsubset Ss4 of CYCt verifying the following properties:(P3) S � Ss4; and(P4) (8R;S; T 2 Ss4)(R^ 2 Ss4; R_ 2 Ss4; R\ S 2 Ss4; R Æ S \ T 2 Ss4).The losure of S is the smallest subset S of CYCt verifying the following prop-erties:(P5) S � S; and(P6) (8R;S 2 S)(R^ 2 S; R_ 2 S; R \ S 2 S; R Æ S 2 S).Given a subset S of CYCt, we have Sw � Ss4 � S. The relations in San be viewed as resulting from the \exeution" of (well-formed) expressionsonstruted from the alphabet VS = S [ f^;_ ;\; Æ; (; )g; we refer to suhexpressions as S-expressions, and to the set of all of them as Xp(S).De�nition 13 Xp(S) is the smallest set of expressions over VS verifying thefollowing two properties:1. a CYCt relation belonging to S belongs to Xp(S); and2. if e1 and e2 belong to Xp(S) then so do (e1)^; (e1)_; e1 \ e2; e1 Æ e2.We suppose the reader familiar with (labelled) binary trees (eah node of suha tree has at most two immediate suessors). If a (binary) tree t redues to aleaf labelled with R, we represent it as R; otherwise, let r be the root of t and� the label of r:1. if r has one immediate suessor then we represent t as h�; t0i, where t0 is(the representation of) the subtree rooted at the immediate suessor ofr;2. if r has two immediate suessors then we represent t as ht1; �; t2i, wheret1 and t2 are (the representations of) the subtrees rooted, respetively, atthe left immediate suessor and at the right immediate suessor of r.De�nition 14 (tree) The tree, tS(e), and the number of subtrees, nstS(e), ofan S-expression e are de�ned reursively as follows:1. for all R 2 S, tS(R) = R and nstS(R) = 1;2. tS(e^) = h^; tS(e)i and nstS(e^) = 1 + nstS(e);3. tS(e_) = h_; tS(e)i and nstS(e_) = 1 + nstS(e);24



4. tS(e1\e2) = htS(e1);\; tS(e2)i and nstS(e1\e2) = 1+nstS(e1)+nstS(e2);and5. tS(e1Æe2) = htS(e1); Æ; tS(e2)i and nstS(e1Æe2) = 1+nstS(e1)+nstS(e2).Thus the leaves of the tree of an S-expression are labelled with elements ofS, and the internal nodes with the operators ^, _, \ and Æ. The number ofsubtrees, nstS(e), of an S-expression e is the sum of the number, nlS(e), ofleaves of tS(e) and the number, noS(e), of operators of e: nstS(e) = nlS(e) +noS(e); noS(e) indiates the number of internal nodes of tS(e), i.e., the numberof operators to apply in order to get the orresponding element of S. Theproedure enumerate() in Figure 9 enumerates the losure of a subset S ofCYCt: the elements of S are supposed ordered. When the proedure ompletes,variable size indiates the number of relations in the losure of S, the array ontains the elements of the losure of S, and for eah i = 1 : : : size, t[i℄ is thetree of an S-expression whose \exeution" gives [i℄, nst[i℄ is the number ofsubtrees of t[i℄.Remark 2 In the remainder of the paper, and partiularly in the proof of The-orem 9, we refer to the tree t[i℄ as the tree, tS([i℄), of the relation [i℄ ofS, and to nst[i℄ as the number of subtrees, nstS(tS([i℄)), of tS([i℄): t[i℄ =tS([i℄); nst[i℄ = nstS(tS([i℄)).7 CSPs on yli ordering of 2D orientationsWe de�ne a CYCb-CSP as a CSP of whih the onstraints are CYCb relations onpairs of the variables; a CYCt-CSP as a CSP of whih the onstraints are CYCtrelations on triples of the variables. For both types of CSPs, the universe is theset 2DO of 2D orientations. We use the term CYC-CSP to refer to a CSP whihis either a CYCb-CSP or a CYCt-CSP.A CYCb-matrix (resp. CYCt-matrix) of order n is a onstraint matrix oforder n of whih the entries are CYCb (resp. CYCt) relations. The onstraintmatrix assoiated with a CYCb-CSP (resp. CYCt-CSP) is a CYCb-matrix (resp.CYCt-matrix).A senario of a CYC-CSP is a re�nement P 0 suh that all entries of MP 0 areatoms. A onsistent senario is a senario whih is onsistent.If we make the assumption that a CYC-CSP does not inlude the emptyonstraint, whih indiates a trivial inonsisteny, then a CYCb-CSP is strongly2-onsistent and a CYCt-CSP is strongly 3-onsistent.7.1 Ahieving path onsisteny for a CYCb-CSPA simple adaptation of Allen's onstraint propagation algorithm [1℄ an be usedto ahieve path onsisteny (hene strong 3-onsisteny) for CYCb-CSPs. Ap-plied to a CYCb-CSP P , suh an adaptation would repeat the following steps25



Input: a subset S = fR1; : : : ; Rmg of CYCt (S � 2TER).Output: enumeration of the losure S.proedure enumerate(S; ; t; nst);1. for i 1 to mf[i℄ Ri;t[i℄ Ri;nst[i℄ = 1;g2. size m;3. i 1;4. while(i � size)f5. R ([i℄)^;6. if(R =2 )fsize++;[size℄ R;t[size℄ h^; t[i℄i;nst[size℄ 1+nst[i℄;g7. R ([i℄)_;8. if(R =2 )fsize++;[size℄ R;t[size℄ h_; t[i℄i;nst[size℄ 1+nst[i℄;g9. j  1;10. while(j � i)f11. R [i℄ \ [j℄;12. if(R =2 )fsize + +;[size℄  R;t[size℄  ht[i℄;\; t[j℄i;nst[size℄  1 +nst[i℄ + nst[j℄;g13. R [i℄ Æ [j℄;14. if(R =2 )fsize + +;[size℄  R;t[size℄  ht[i℄; Æ; t[j℄i;nst[size℄  1 +nst[i℄ + nst[j℄;g15. R [j℄ Æ [i℄;16. if(R =2 )fsize + +;[size℄  R;t[size℄  ht[j℄; Æ; t[i℄i;nst[size℄  1 +nst[j℄ + nst[i℄;g17. j ++;18. g19. i++;20. g Figure 9: Enumeration of the losure of a subset of CYCt.26
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Figure 10: (I) The `Indian tent'; and (II) its assoiated CYCb-CSP: the CSP ispath onsistent but not onsistent (path onsisteny does not detet inonsis-teny even for CYCb-CSPs entirely labelled with atoms).until either stability is reahed or the empty relation is deteted (indiatinginonsisteny):1. Consider a triple (Xi; Xj ; Xk) of variables verifying (MP )ij 6� ((MP )ik Æ(MP )kj)2. (MP )ij  (MP )ij \ (MP )ik Æ (MP )kj3. If ((MP )ij = ;) then exit (the CSP is inonsistent).Example 5 (the `Indian tent') The `Indian tent' onsists of a lokwise tri-angle (ABC), together with a fourth point D whih is to the left of eah of thedireted lines (AB) and (BC) (see Figure 10(I)).The knowledge about the `Indian tent' an be represented as a CYCb-CSPon four variables, X1, X2, X3 and X4, representing the orientations of thedireted lines (AB), (AC), (BC) and (BD), respetively. From (ABC) beinga lokwise triangle, we get a �rst set of onstraints: fr(X2; X1); r(X3; X1);r(X3; X2)g. From D being to the left of eah of the direted lines (AB) and(BC), we get a seond set of onstraints: fl(X4; X1); l(X4; X3)g.If we add the onstraint r(X4; X2) to the CSP, whih states that the point Dshould be to the right of the direted line (AC), this leads to an inonsisteny.R�ohrig [32℄ has shown that using the CYCORD theory one an detet suh aninonsisteny, whereas this annot be deteted using lassial onstraint-basedapproahes suh as those in [8, 9, 18℄.The CYCb-CSP is represented graphially in Figure 10(II): a CYCb onstraintR(X;Y ) is represented as the direted edge (X;Y ) labelled with R. The CSP ispath-onsistent: (8i; j; k)(Pij � Pik Æ Pkj).3 However, as mentioned above, theCSP is inonsistent. Therefore:3This an be easily veri�ed using the CYCb omposition table.27



Theorem 1 Path-onsisteny does not detet inonsisteny even for CYCb-CSPs entirely labelled with atoms.7.2 Ahieving strong 4-onsisteny for a CYCt-CSPA onstraint propagation proedure, s4(), for CYCt-CSPs is given in Figure 11;the proedure is an adaptation of Allen's algorithm [1℄ to ternary relations. Theinput is a CYCt-CSP P of order n. When the proedure ompletes, P veri�esthe following: (8i; j; k; l � n)((MP )ijk � (MP )ijl Æ (MP )ilk).The proedure makes use of a queue Queue. Initially, we an assume that alltriples (Xi; Xj ; Xk) suh that 1 � i � j � k � n are entered into Queue. Theproedure removes one triple from Queue at a time. When a triple (Xi; Xj ; Xk)is removed from Queue, the proedure eventually updates the relations on theneighbouring triples (triples sharing two variables with (Xi; Xj ; Xk)). If suha relation is suessfully updated, the orresponding triple is sorted, in suh away to have the variable with the smallest index �rst and the variable with thegreatest index last, and the sorted triple is plaed in Queue (if it is not alreadythere) sine it may in turn onstrain the relations on neighbouring triples: thisis done by add-to-queue(). The proess terminates when Queue beomes empty.Theorem 2 The onstraint propagation proedure s4() ahieves strong 4-onsistenyfor the input CYCt-CSP, and runs into ompletion in O(n4) time, where n isthe number of variables of the CSP.Proof. A CYCt-CSP is strongly 3-onsistent. Proedure s4() ahieves 4-onsisteny, therefore it ahieves strong 4-onsisteny. The number of variabletriples (Xi; Xj ; Xk) is O(n3). A triple may be plaed in Queue at most a on-stant number of times (24, whih is the total number of CYCt atoms). Everytime a triple is removed from Queue for propagation, the proedure performsO(n) operations.7.3 A onsistent senario searh algorithm for CYCt-CSPsWe will show that the task of heking onsisteny for a general CYCt-CSP isNP-omplete; thus, with the assumption P 6= NP , no polynomial algorithm anbe found for that task. On the other hand, we will show that the set of CYCtatoms is tratable; spei�ally, we will show that a CYCt-CSP for whih everythree variablesX;Y; Z are involved in a onstraint of the form t(X;Y; Z), where tis a CYCt atom, an be heked for onsisteny using the s4() proedure, whihperforms in polyomial time. We an thus use a baktraking searh proedureto hek onsisteny for a general CYCt-CSP, whih will searh for a senario,if any, of the input CYCt-CSP whih is strongly 4-onsistent, thus onsistent.Suh a searh proedure is provided in Figure 12, whih is similar to the one ofLadkin and Reinefeld [21℄ for temporal interval networks, exept that:28



Input: a CYCt-CSP P .Output: the CSP P made strongly 4-onsistent.proedure s4(P );1. initialise Queue;2. repeatf3. get next triple (Xi; Xj ; Xk) from Queue;4. for m 1 to nf5. Temp (MP )ijm \ (MP )ijk Æ (MP )ikm;6. If Temp = ; then exit (the CSP is inonsistent);7. if Temp 6= (MP )ijm8. fadd-to-queue(Xi; Xj ; Xm);update(P; i; j;m; Temp);g9. Temp (MP )ikm \ (MP )ikj Æ (MP )ijm;10. If Temp = ; then exit (the CSP is inonsistent);11. if Temp 6= (MP )ikm12. fadd-to-queue(Xi; Xk; Xm);update(P; i; k;m; Temp);g13. Temp (MP )jkm \ (MP )jki Æ (MP )jim;14. If Temp = ; then exit (the CSP is inonsistent);15. if Temp 6= (MP )jkm16. fadd-to-queue(Xj; Xk; Xm);update(P; j; k;m; Temp);g17. g18. g19. until Queue is empty;proedure update(P; i; j; k; T );1. (MP )ijk  T ; (MP )ikj  T^; (MP )jki  T_;2. (MP )jik  ((MP )jki)^; (MP )kij  ((MP )jki)_; (MP )kji  ((MP )kij )^;Figure 11: A onstraint propagation proedure for CYCt-CSPs.29



Input: A CYCt-CSP P ;Output: true if and only if P is onsistent;funtion onsistent(P );1. s4(P );2. if(P ontains the empty relation)return false;3. else4. if(P ontains triples labelled with relations other than atoms)f5. hoose suh a triple, say (Xi; Xj ; Xk);6. T  (MP )ijk ;7. for eah atom t in Tf8. re�ne (MP )ijk to t (i.e., (MP )ijk  t);9. if(onsistent(P ))return true;10. g11. (MP )ijk  T ;12. return false;13. g14. else return true;Figure 12: A onsistent senario searh algorithm for CYCt-CSPs.
30



1. it re�nes the relation on a triple of variables at eah node of the searhtree, instead of the relation on a pair of variables; and2. it makes use of the proedure s4(), whih ahieves strong 4-onsisteny,in the preproessing step and as the �ltering method during the searh,instead of a path onsisteny proedure.The other details are similar to those of Ladkin and Reinefeld's algorithm.De�nition 15 Let P denote a CYCt-CSP of order n:1. P is projetable if for all i; j; k, (MP )ijk is a projetable CYCt relation.2. The projetion of P is the CYCb-CSP 5(P ) with the same set of variables,and suh that: (8i; j � n)((M5(P ))ji = \k�n[51((MP )ijk)\52((MP )kij)\53((MP )ikj )℄).The next two theorems will be needed in the next setion, for the proof ofTheorem 6.Theorem 3 A projetable CYCt-CSP is equivalent to its projetion.Proof. Let P be a projetable CYCt-CSP; thus:(8i; j; k)[(MP )ijk � �(51((MP )ijk);52((MP )ijk);53((MP )ijk))℄In other words, the onstraint (MP )ijk(Xi; Xj ; Xk) an be equivalently writ-ten as the following onjuntion of binary onstraints: 51((MP )ijk)(Xj ; Xi) ^52((MP )ijk)(Xk; Xj)^53((MP )ijk)(Xk; Xi). P an be written as the onjun-tion ^i;j;k�n(MP )ijk(Xi; Xj ; Xk); replaing the onstraint (MP )ijk(Xi; Xj ; Xk)by the equivalent onjuntion of binary onstraints, we get:P � ^i;j;k�n[51((MP )ijk)(Xj ; Xi) ^52((MP )ijk)(Xk ; Xj) ^53((MP )ijk)(Xk; Xi)℄Beause the onjuntion onsiders all possible triples (i; j; k), with i; j; k � n,it an be split into:P � ^i;j;k�n51((MP )ijk)(Xj ;Xi)^ ^i;j;k�n52((MP )ijk)(Xk;Xj)^ ^i;j;k�n53((MP )ijk)(Xk;Xi)We onsider now the main three subonjuntions and rename i; j; k as k; i; j,respetively, in the seond subonjuntion, and as i; k; j, respetively, in thethird subonjuntion; we get:P � ^i;j;k�n51((MP )ijk)(Xj ;Xi) ^ ^i;j;k�n52((MP )kij )(Xj ;Xi) ^ ^i;j;k�n53((MP )ikj )(Xj ;Xi)31



Putting bak the three subonjuntions into one main onjuntion, we get:P � ^i;j;k�n[51((MP )ijk)(Xj ; Xi)^52((MP )kij )(Xj ; Xi)^53((MP )ikj)(Xj ; Xi)℄whih is equivalent to:P � ^i;j�n[k̂�n51((MP )ijk)(Xj ; Xi) ^52((MP )kij)(Xj ;Xi) ^53((MP )ikj )(Xj ;Xi)℄whih in turn is equivalent to:P � ^i;j�n[\k�n[51((MP )ijk) ^52((MP )kij) ^53((MP )ikj )℄(Xj ; Xi)℄This orresponds exatly to the onstraint matrix of the projetion 5(P ) of P .Theorem 4 Let P denote a projetable CYCt-CSP of order n. If P is strongly4-onsistent then its projetion 5(P ) veri�es the following: (8i; j; k1; k2 � n)[(M5(P ))ji =51((MP )ijk1 ) =52((MP )k1ij) =53((MP )ik1j) = 51((MP )ijk2 )℄.Proof (sketh). Strong 4-onsisteny of P implies its losure under the oper-ations of onverse and rotation, as well as under what we will refer to as theoperation of strong 4-onsisteny, or s4-operation for short:(MP )ijk  (MP )ijk \ (MP )ijl Æ (MP )ilkFrom the losure under the operations of onverse and rotation, we get:(8b1b2b3 2 TER)(b1b2b3 2 (MP )ijk1 , b3(b2)^b1 2 (MP )ik1j , (b3)^b1(b2)^ 2 (MP )k1ij)whih implies the following:(8b1 2 BIN)[b1 2 51((MP )ijk1 ), b1 2 53((MP )ik1j), b1 2 52((MP )k1ij)℄Thus (8i; j; k1)[51((MP )ijk1 ) =52((MP )k1ij) =53((MP )ik1j)℄.Let b1 2 51((MP )ijk1 ), and suppose that for some k2 6= k1, b1 =2 51((MP )ijk2 ).We use the fat that given two CYCt atoms t1 and t2 and a CYCb atom b, if b =251(t1) then b =2 51(t1 Æ t2). We get that b1 =2 51((MP )ijk2 Æ (MP )ik2k1). Nowlosure under the s4-operation implies that (MP )ijk1 � (MP )ijk2 Æ (MP )ik2k1 .From b1 =2 51((MP )ijk2 Æ (MP )ik2k1), we derive that b1 =2 51((MP )ijk1 ), whihontradits our supposition.A CYCb-CSP P an be transformed into an equivalent CYCt-CSP, say P 0, asfollows:1. P 0 has the same set of variables as P ; and2. (8i; j; k)((MP 0)ijk = �((MP )ji; (MP )kj ; (MP )ki).32
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Xi1 = z1Xij = zjXik = zkFigure 13: Illustration of the proof of Theorem 6.8 A tratability resultThe aim of this setion is to show that the losure under strong 4-onsisteny,(AT t)s4, of the set AT t = fftg : t 2 TERg of all CYCt atoms is tratable; morespei�ally, using the terminology in [2℄, we show that the CYCt ompositiontables are omplete for (AT t)s4. We �rst prove that if a CYCt-CSP expressedin TCH is strongly 4-onsistent then it is globally onsistent, from whih theresult will follow. The proof will need Helly's onvexity theorem:Theorem 5 (Helly's Theorem [4℄) Let S be a set of onvex regions of then-dimensional spae IRn. If every n+1 elements in S have a non empty inter-setion then the intersetion of all elements of S is non empty.For n = 2, the theorem states that if a set of onvex planar regions is suh thatevery three regions in the set have a non empty intersetion then the intersetionof all regions in the set is non empty.Van Beek [36℄ has used the speialisation to n = 1 of Helly's theorem toprove a tratability result for path onsistent CSPs of Allen's onvex relations.We will need the speialisation to n = 2.Theorem 6 Let P be a CYCt-CSP expressed in TCH: (8i; j; k)((MP )ijk 2TCH). If P is strongly 4-onsistent then it is globally onsistent.Proof. Sine P is expressed in TCH and is strongly 4-onsistent, we have thefollowing:1. P is equivalent to its projetion 5(P ), whih is a CYCb-CSP expressed inBCH : (8i; j)((M5(P ))ij 2 BCH).2. The projetion 5(P ) is strongly 4-onsistent.So the problem beomes that of showing that 5(P ) is globally onsis-tent. For this purpose, we suppose that the instantiation (Xi1 ; Xi2 ; : : : ; Xik ) =(z1; z2; : : : ; zk); k � 4, is a solution to the k-variable sub-CSP (5(P ))jfXi1 ;:::;Xikg33



of 5(P ). We need to prove that the partial solution an be extended to any(k + 1)st variable, say Xik+1 , of 5(P ).4 This is equivalent to showing that thefollowing setors have a non empty intersetion (see Figure 13 for illustration):set(z1; (M5(P ))ik+1i1); set(z2; (M5(P ))ik+1i2); : : : ; set(zk; (M5(P ))ik+1ik).Sine the (M5(P ))ik+1ij ; j = 1 : : : k, belong to BCH , eah of these setorsis: 1. a onvex subset of the plane; or2. almost equal to the surfae of irle CO;1 (its topologial losure is equalto that surfae).We split these setors into those verifying ondition (1) and those verifyingondition (2). We assume, without loss of generality, that the �rst m verifyondition (1), and the last k�m verify ondition (2). We write the intersetionof the setors as I = I1 \ I2, with I1 = Tmj=1 set(zj ; (M5(P ))ik+1ij ); I2 =Tkj=m+1 set(zj ; (M5(P ))ik+1ij ).Due to strong 4-onsisteny, every three of these setors have a non emptyintersetion. If any of the setors is a radius (the orresponding relation is eithere or o) then the entire intersetion must be equal to that radius sine the setorintersets with every other two.We now need to show that when no setor redues to a radius, the interse-tion is still non empty:Case 1: m=kThis means that all setors are onvex. Sine every three of them have a nonempty intersetion, Helly's theorem immediately implies that the intersetionof all setors is non empty.Case 2: m=0This means that no setor is onvex; whih in turn implies that eah setor issuh that its topologial losure overs the entire surfae of CO;1. Hene, for allj = 1 : : : k:1. the setor set(zj ; (M5(P ))ik+1ij ) is equal to the entire surfae of CO;1minus the entre (the relation (MP )ik+1ij is equal to BIN); or2. the setor set(zj ; (M5(P ))ik+1ij ) is equal to the entire surfae of CO;1minus the entre and one or two radii (the relation (MP )ik+1ij is equal tofe; l; rg, fl; o; rg or fl; rg).4Sine the CYCt-CSP P is projetable, any solution to any sub-CSP of the projetion 5(P )is solution to the orresponding sub-CSP of P . This would not be neessarily the ase if Pwere not projetable. 34



So the intersetion of all setors is equal to the entire surfae of CO;1 mi-nus the entre and a �nite number (at most 2k) of radii. Sine the surfae isof dimension 2, a radius of dimension 1, and the entre of dimension 0, theintersetion must be non empty (of dimension 2).Case 3: 0 < m < kThis means that some setors (at least one) are onvex, the others (at leastone) are suh that their topologial losures over the entire surfae of CO;1.The intersetion I1 is non empty due to Helly's theorem, sine every threesetors appearing in it have a non empty intersetion. We need to onsider twosubases.Subase 3.1: I1 is a single radius, say tSine no setor redues to a radius, and the setors appearing in I1 are less than�, there must exist two setors, say s1 and s2, appearing in I1 suh that theirintersetion is t. Sine, due to strong 4-onsisteny, s1 and s2 together with anysetor appearing in I2 form a non empty intersetion, the whole intersetion,i.e., I , must be equal to t.Subase 3.2: I1 is a 2-dimensional (onvex) setorThe intersetion I2 is the entire surfae of CO;1 minus the entre and a �nitenumber (at most 2(k �m)) of radii. Sine the entre is of dimension 0, a �niteunion of radii is of dimension 0 or 1, and the intersetion I1 is of dimension 2,the whole intersetion I must be non empty (of dimension 2).The intersetion of all setors is non empty in all ases. The partial solutionan therefore be extended to variableXik+1 (whih an be instantiated with anyorientation in the intersetion of the k setors).It follows from Theorems 2 and 6 that if the TCH sublass is losed understrong 4-onsisteny, it must be tratable. Unfortunately, as illustrated by thefollowing example, TCH is not so losed.Example 6 (non losure of TCH under strong 4-onsisteny) The CYCb-CSP depited in Figure 14 an be represented as the projetable CYCt-CSP Pverifying the following: (MP )123 = lll; (MP )124 = �(l; fl; rg; fl; rg); (MP )134 =P234 = �(l; l; fl; rg). Applying the propagation proedure s4() to P leaves un-hanged (MP )123; (MP )134; (MP )234, but transforms (MP )124 into the relationflll; llr; lrrg, whih is not projetable: this is done by the operation (MP )124  (MP )124 \ (MP )123 Æ (MP )134.Indeed, as we will show, the subset TCH is not tratable. Even worse, we willprove that the strit subset AT t [ fTERg is already NP-omplete (Corollary4). 35
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�(r; fl; rg; r)�(l; l; fl; rg)�(l; r; fe; l; rg)�(r; fl; rg; l)�(l; fl; rg; l)�(r; r; fl; rg)�(l; fl; rg; r)�(r; l; fl; rg)�(l; r; fl; rg)Figure 15: Enumeration of (AT t)s4.The set (AT t)s4 inludes all 28 entries of the CYCt omposition tables: the24 atoms together with the relations �(l; fe; l; rg; l);�(l; fl; o; rg; r);�(r; fe; l; rg; r);�(r; fl; o; rg; l). Furthermore, enumerating (AT t)s4 leads to 49 relations (in-luding the empty relation), all of whih are fonvex,holedg relations (belongto TCH). This immediately gives the following orollary, stating tratability of(AT t)s4.Corollary 1 (tratability of (AT t)s4) Let P be a CYCt-CSP expressed in(AT t)s4: (8i; j; k)((MP )ijk 2 (AT t)s4). Deiding onsisteny for P is tratable.Proof. Immediate from Theorems 2 and 6.The enumeration of (AT t)s4 is given in Figure 15.Example 7 Transforming the CYCb-CSP of the `Indian tent' into a CYCt-CSP,say P 0, leads to (MP 0)123 = rrr; (MP 0 )124 = rrl; (MP 0 )134 = rll; (MP 0)234 =rlr. P 0 lies in (AT t)s4, hene the propagation proedure s4() must detet36



its inonsisteny. Indeed, the operation (MP 0)124  (MP 0)124 \ (MP 0)123 Æ(MP 0)134 leads to the empty relation, sine rrr Æ rll = rll.Corollary 2 (tratability of AT b) Let P be a CYCb-CSP expressed in AT b:(8i; j)((MP )ij 2 AT b). Deiding onsisteny for P is tratable.Proof (sketh). Let P be a CYCb-CSP as stated in the orollary. Construtfrom P the CYCt-CSP P 0 of whih P is the projetion: (8i; j; k)((MP 0)ijk =�((MP )ji; (MP )kj ; (MP )ki)). All entries ofMP belong toAT t. From Corollary1, deiding onsisteny for P 0, thus for P , is tratable.9 Intratability resultsThis setion presents some intratability results:1. We �rst show that the RA CYCt is NP-omplete; this diretly follows fromthe NP-ompleteness of the CYCORD theory [15℄.2. We show that the weak losure (PAR)w of the subset PAR = ffoeo; ooeg;feee; eoo; ooeg; feee; eoo; oeo; ooegg of CYCt, whih expresses only informa-tion on parallel orientations, is NP-omplete. This gives an idea of howhard reasoning within CYCt is: even if we restrit ourselves to a world ofparallel orientations, reasoning within that world is already NP-omplete!3. We show that provided that a subset S of CYCt inludes the relationseee and TER, deiding onsisteny for a CSP expressed in S an bepolynomially redued to deiding onsisteny for a CSP expressed in S.4. We use the previous result to prove that the set AT +t = AT t [ fTERg,i.e., the set obtained by adding the universal relation to the set of all CYCtatoms, is NP-omplete.5. From NP-ompleteness of AT +t , we derive NP-ompleteness of AT +b =AT b [ fBINg, thus of the RA CYCb.Theorem 7 Deiding onsisteny of a CYCt-CSP is NP-omplete.Proof: The set AT t of all CYCt atoms is tratable (Corollary 1); thus, if aCYCt-CSP is suh that on every triple (X;Y; Z) there is a onstraint of theform t(X;Y; Z), where t is an atom, deiding its onsisteny is polynomial, andan be ahieved using the s4() proedure. Therefore, all we need to show isthat there exists a deterministi polynomial transformation of an instane of anNP-omplete problem to a CYCt-CSP [16℄.The CYCORD theory is NP-omplete [15℄. The transformation of a problemexpressed in the CYCORD theory (a onjuntion of CYCORD relations) into a37



problem expressed in CYCt (i.e., into a CYCt-CSP) is immediate from the rule il-lustrated in Figure 8(top) (see Example 2(3)) transforming a CYCORD relationinto a CYCt relation. Spei�ally, suh a problem, say P , an be transformedinto a CYCt-CSP, say P 0, in the following way:1. Initialise all entries of MP 0 to the universal CYCt relation TER:(8i; j; k)((MP 0)ijk  TER)2. Initialise the diagonal elements to eee: (8i)((MP 0)iii  eee);3. For all CYCORD relationXi-Xj-Xk of P , stating that orientationsXi; Xj ;Xk are distint from eah other and enountered in that order when weturn in a lokwise diretion starting from Xi, perform the following:T  (MP 0)ijk \ y; update(P 0; i ; j ; k ;T );The proedure update() is de�ned in Figure 11, just after the proedure s4().By onstrution, MP 0 is a onstraint matrix over CYCt. The transformation isdeterministi and polynomial, and P is satis�able if and only if P 0 is onsistent.Corollary 3 Let P be a CYCt-CSP expressed in CY CORD+ = fy; y^; eee;TERg: (8i; j; k)((MP )ijk 2 CY CORD+). Deiding onsisteny for P is NP-omplete.Proof (sketh). In the proof of Theorem 7, the CYCt-CSP P 0 assoiatedwith a problem P expressed in the CYCORD theory is suh that its onstraintmatrix MP 0 is entirely expressed in fy; y^; eee;TERg (we notie that theset fy; y^; eee;TER; ;g is losed under intersetion, rotation, and onverse).The weak losure of the set PAR = ffoeo; ooeg; feee; eoo; ooeg; feee; eoo; oeo;ooegg ontains 15 of the 16 elements of 2feee;eoo;oeo;ooeg; it an be easily enu-merated:(PAR)w = f fg; feeeg; feoog; foeog; fooeg; feee; eoog; feee; oeog; feee; ooeg;feoo; oeog; feoo; ooeg; foeo; ooeg; feee; eoo; oeog; feee; eoo; ooeg;feee; oeo; ooeg; feee; eoo; oeo; ooeggTheorem 8 (NP-ompleteness of (PAR)w) Let P be a CYCt-CSP expressedin (PAR)w: (8i; j; k)((MP )ijk 2 (PAR)w). Deiding onsisteny for P isNP-omplete.Proof. The subset (PAR)w belongs to NP, sine solving a CYCt-CSP of atomsis polynomial (Corollary 1). We need to prove that there exists a (determinis-ti) polynomial transformation of an instane of an NP-omplete problem (weonsider an instane of 3-SAT: a instane of SAT of whih every lause ontainsexatly three literals) into a CYCt-CSP expressed in (PAR)w in suh a waythat the former is satis�able (has a model) if and only if the latter is onsistent.Suppose that S is an instane of 3-SAT, and denote by:38



1. Lit(S) = f`1; : : : ; `ng the set of literals appearing in S;2. Cl(S) the set of lauses of S; and3. BinCl(S) the set of binary lauses whih are sublauses of lauses inCl(S).The CYCt-CSP, PS , we assoiate with S is as follows. Its set of variables isV = fXj 2 Lit(S)[BinCl(S)g[fX0g. X0 is a truth determining variable: allorientations whih are equal to X0 orrespond to elements of Lit(S)[BinCl(S)whih are true, the others (those whih are opposite to X0) to elements ofLit(S) [ BinCl(S) whih are false. The onstraint matrix of PS , MPS , is re-garded as being indexed with elements from f0g [ Lit(S) [ BinCl(S), and theentry (MPS )ab stands for the relation on triple (Xa; Xb; X):1. Initialise all entries of MPS to feee; eoo; oeo; ooeg:(8a; b; )((MPS)ab  feee; eoo; oeo; ooeg)2. Initialise the diagonal elements to eee: (8a)((MPS )aaa  eee);3. for all pairs (Xp; Xp) of variables suh that fp; pg � Lit(S), p and p shouldhave omplementary truth values; hene Xp and Xp should be oppositeto eah other in PS : T  (MPS )0pp \ feoo; ooeg;update(PS; 0; p; p; T );4. for all variablesX1 ; X2 suh that (1_2) is a lause of S, 1 and 2 an-not be simultaneously false; translated into PS , X1 and X2 should not beboth opposite toX0: T  (MPS )012\feee; eoo; ooeg;update(PS; 0; 1; 2; T );5. for all variables X(`1_`2); X`1 , if `1 is true then so is (`1 _ `2); translatedinto PS , X0 and X`1 should not be both opposite to X(`1_`2):T  (MPS )(`1_`2)`10 \ feee; eoo; ooeg;update(PS; `1 _ `2; `1; 0; T );Again, the proedure update() is de�ned in Figure 11, just after the proedures4(). The transformation is deterministi and polynomial. Moreover, sine(PAR)w is losed under intersetion, onverse and rotation, the �nal matrixMPS is a onstraint matrix over (PAR)w. IfM is a model of S, it is mapped toa solution of PS as follows. X0 is assigned any value of [0; 2�). For all ` 2 Lit(S),X` is assigned the same value as X0 if M assigns the value true to literal `, thevalue opposite to that of X0 otherwise. For all (`1 _ `2) 2 BinCl(S), X(`1_`2)is assigned the same value as X0 if either X`1 or X`2 is assigned the same valueas X0, the opposite value otherwise. On the other hand, any solution to PS anbe mapped to a model of S by assigning to every literal ` the value true if andonly if the variable X` is assigned the same value as X0.Before going further in the presentation of our intratability results, we wantto be lear with respet to the issue of representing a CYCt-CSP. The mostonvenient way for representing suh a CSP is ertainly the use of an n�n�n-matrix, where n is the order of the CSP; one reason for this is that the standard39



way for onstraint propagation algorithms and for solution searh algorithms,whih onstitute the main reasoning tools for onstraint-based frameworks, todeal with a CSP is to have it represented as a matrix. We have assumed so farthat the matrix assoiated with a CYCt-CSP was a onstraint matrix; i.e., itveri�es the diagonal property, the onverse property, and the rotation property.However, in terms of solutions, if we assoiate with a CYCt-CSP P the n�n�n-matrix MP;2 de�ned as follows:1. Initialise all entries to the universal relation TER: (8i; j; k)((MP;2)ijk  TER)2. Initialise all diagonal elements to eee: (8i)((MP;2)iii  eee)3. For all triples (Xi; Xj ; Xk) of variables suh that a onstraintR(Xi; Xj ; Xk)is spei�ed: (MP;2)ijk  (MP;2)ijk \Rthen the matries MP and MP;2 are equivalent, i.e., they have the same set ofsolutions.Binary CSPs of Allen's relations on pairs of interval variables in whih everytwo variables are involved in exatly one onstraint are alled normalised setsof interval formulas in [30℄.De�nition 16 An orientation formula is a CYCt relation on a triple of vari-ables, i.e., a onstraint of the form R(X;Y; Z), where R is a CYCt relation. Anormalised set of orientation formulas is a CYCt-CSP given as a set of on-straints in whih every three variables are involved in exatly one onstraint.Given a CYCt-CSP P , the matrixMP is losed under the operations of onverseand rotation; this is not neessarily the ase for the matrixMP;2: in partiular,if P is a normalised set of orientation formulas then for any three variables Xi,Xj and Xk, at most one element in the set f(MP;2)lmn : fl;m; ng = fi; j; kgg isnot the universal relation.Remark 3 If a subset S of CYCt inludes the relations eee and TER then anormalised set of orientation formulas, say P , whih is entirely expressed in Sis suh that its assoiated matrix MP;2 is also entirely expressed in S.Theorem 9 Let S be a subset of CYCt suh that eee 2 S and TER 2 S.Deiding onsisteny for a normalised set of orientation formulas expressed inS an be polynomially redued to deiding onsisteny for a normalised set oforientation formulas expressed in S.Proof. We have seen how, given a subset S of CYCt, to assoiate with eahrelation R in the losure S a tree tS(R) in suh a way that the \exeution"of tS(R) gives R itself (see De�nition ?? and Remark 2). We use the tree of arelation in S to transform a normalised set of orientation formulas expressedin S into an equivalent set of orientation formulas, g(P ), expressed in S andin whih every three variables are involved in at most one onstraint:40



1. g(fR(X;Y; Z)g) = h(tS(R)(X;Y; Z)), for all R 2 S2. g(fR(X;Y; Z)g [ P 0) = g(fR(X;Y; Z)g) [ g(P 0), where R 2 S and P 0 isa non empty set of orientation formulas expressed in S.The mapping h is de�ned as follows:1. h(R(X;Y; Z)) = fR(X;Y; Z)g, for all R 2 S2. h(h^; ti(X;Y; Z)) = h(t(X;Z; Y ))3. h(h_; ti(X;Y; Z)) = h(t(Z;X; Y ))4. h(ht1;\; t2i(X;Y; Z)) = h(t1(X;Y; Z)) [ h(t2(X;Y; Z 0)) [ feee(Z;Z 0; Z)g,where Z 0 is a fresh variable5. h(ht1; Æ; t2i(X;Y; Z)) = h(t1(X;Y;W )) [ h(t2(X;W;Z)), where W is afresh variable.By onstrution, g(P ) is a set of orientation formulas expressed in S with theproperty that every three variables are involved in at most one formula. g(P ) istransformed into an equivalent normalised set of orientation formulas by reatingfor every three variablesX;Y; Z not already involved in any formula the formulaTER(X;Y; Z).Letm denote the number of orientation formulas in P , and refer to the orien-tation formulas as f1(X11 ; X12 ; X13); : : : ; fi(Xi1 ; Xi2 ; Xi3); : : : ; fm(Xm1 ; Xm2 ; Xm3).For eah i = 1 : : :m, let si denote the size of fi, i.e., the number, nstS(fi), ofsubtrees of fi (see Remark 2): si = nstS(fi). If s is the greatest of the si's thenthe onstrution takes O(ms) time; the transformation is thus polynomial.We are now in a position to derive that for both of the presented RAs, CYCband CYCt, we \jump" from tratability to intratability if add the universalrelation to the set of all atoms.Corollary 4 The subset AT +t = AT t [ fTERg of CYCt is NP-omplete.Proof. Any set of orientation formulas over AT +t an be onverted into anequivalent normalised set of orientation formulas over AT +t . The subset AT +tinludes the relations eee and TER. From Corollary 3 and Theorem 9, and thelosure of (AT +t ) under onverse, it is suÆient to show that the relation ybelongs to (AT +t ). The following sequene shows that this is indeed the ase:1. R1 = lll; R2 = llr; R3 = rll2. R4 = R1 ÆR2 = fllr; lor; lrrg3. R5 = (R4)_ = fllr; olr; rlrg4. R6 = R5 ÆR3 = flrl; orl; rll; rol; rrlg41



5. R7 = (R6)_ = flrl; orl; rrl; rro; rrrg6. R8 = R7 ÆR7 = flrl; orl; rll; rol; rrl; rro; rrrg = y.Corollary 5 The subset AT +b = AT b [ fBINg of CYCb is NP-omplete.Proof. A CYCb-CSP of atoms an be solved in polynomial time (Corollary 2).Thus we need to show that there is a polynomial deterministi transformationof an instane of an NP-omplete problem into a problem expressed in AT +b .We onsider a normalised set, P , of orientation formulas expressed in AT +t .Aording to Corollary 4, deiding onsisteny for P is NP-omplete. Theset AT +t [ f;g is losed under onverse, rotation and intersetion (in otherwords, (AT +t [ f;g)w = AT +t [ f;g); therefore, the onstraint matrix MP isentirely expressed in AT +t . Finally, P is projetable, and is therefore equivalentto its projetion 5(P ). 5(P ), by de�nition, veri�es the following: (8i; j �n)((M5(P ))ji = Tk�n[51((MP )ijk) \ 52((MP )kij ) \53((MP )ikj )℄). Beauseeah of the projetions 51(R), 52(R) and 53(R) of any CYCt relation R inAT +t is either a CYCb atom or the relationBIN , the CYCb-CSP5(P ) is entirelyexpressed in AT +b .10 Related workWe ompare our approah to yli ordering of 2D orientations with the mostlosely related researh in the literature.10.1 The CYCORD theoryThe CYCORD theory [27, 31, 32℄ expresses yli ordering of 2D orientations; itontains only one relation, namely the relation y we have already mentionedand translated into the CYCt RA (see Example 2(3)). The main disadvantage ofthe theory is that real appliations generally need to represent �ner knowledgethan just what ould be alled, as we saw in Example 2(3), strit betweennessin a lokwise diretion.10.2 Representation of a panoramaIn [22℄, Levitt and Lawton disussed QUALNAV, a qualitative landmark navi-gation system for mobile robots. One feature of the system is the representationof the information about the order of landmarks as seen by the visual sensorof a mobile robot. Suh information provides the panorama of the robot withrespet to the visible landmarks.Figure 16 illustrates the panorama of an objet S with respet to �ve refer-ene objets (landmarks) A;B;C;D;E in Shlieder's system [33℄ (page 527).42
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l1
North

l2

l3

l4

South-EastSouth-West

West East

North-West North-East

South

S S EastWest

North

South

North-West

South-West

North-East

South-EastFigure 17: Frank's one-shaped (left) and projetion-based (right) models ofardinal diretions.known for Allen's interval algebra [1℄ and Vilain and Kautz's point algebra [39℄to �nd a maximal tratable subset inluding all atoms (maximal in the sensethat adding any other relation to the subset leads to an NP-hard subset). Thedrawbak of Frank's models is that they use a global referene system.The RA CYCb we have presented an be used for the representation of relativeorientation knowledge about a on�guration of 2D points. Suh knowledgewould ontain for pairs (A;B) of objets in the on�guration the position of(the primary objet) B relative to (the referene objet) A, as viewed from aglobal point of view, say S: B is on line (SA) on the same side of S as A, tothe left of A, on line (SA) on the side of S opposite to that of A, or to the rightof A. The drawbak here is that the point of view is global.Thus the ommon points of Frank's models and our RA CYCb are (1) theuse of a global onept (a global referene system in the former ase, a globalviewpoint in the latter); and (2) the representation of knowledge as binary rela-tions desribing a primary objet relative to a referene objet. Their reseptiveexpressive powers are however inomparable.A well-known model of relative orientation of 2D points is the Double-Crossalulus de�ned by Freksa [11℄, and developed further by Zimmermann andFreksa [40℄. The alulus an be looked at as a ternary RA, with 15 atomsorresponding to the 15 regions of a spei� partition of the plane determinedby a parent objet, say A, and a referene objet, say B (Figure 18(d)). Thepartition is based on the following:1. the left/straight/right dihotomy determined by an observer plaed at theparent objet and looking in the diretion of the referene objet (Figure18(a));2. the front/neutral/bak dihotomy determined by the same observer (Fig-ure 18(b)); and 44



front
neutral
back

(a) (b)

back
neutral

(c)

1

12

155 10

94

3 138

6

(d)

2

11

7
A

B

A

B B

A
A

Bfront
14

rightleft

straight
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subset of either RA inluding all atoms annot inlude the universal relation,and vie-versa. In terms of expressiveness, the minimal ondition for a subsetof an RA to be useful is to inlude all atoms as well as the universal relation;this an be justi�ed thus: (1) it is important for real appliations to be o�eredthe possibility of expressing omplete information, whih is made possible onlyif all atoms are present; and (2) it is important as well for real appliationsto be o�ered the possibility of providing no information on some tuples of themanipulated objets, whih is made possible only if the universal relation ispresent. In the light of these omments, we are ommitted to fae intratabilityif what we want is to get expressively useful subsets of either RA.We have provided for the ternary RA a polynomial onstraint propagationproedure, whih is inomplete in the general ase (the RA has been shown tobe NP-omplete), but still omplete for a subset inluding all atoms. Problemsorresponding to atual data (or most randomly generated data) may not lie inthe subset. As a onsequene, it would be interesting to study the behaviour ofa general solution searh algorithm, suh as the one we have provided (whih isexponential in the general ase, but solves any problem expressed in the RA),on atual or most randomly generated instanes. Again, extensive work on thisissue has been done for CSPs of Allen's interval relations [19, 21, 29, 38℄.The RAs we have presented do not take into aount the front/neutral/bakdihotomy determined by an observer plaed at the point of view and lookingin the diretion of the referene objet; i.e., the dihotomy orresponding to thepartition of the plane into the half-plane onsisting of the front of the observer,the half-plane onsisting of the bak of the observer, and the borderline betweenthe two half-planes. Augmenting the binary RA with this feature would leadto eight atoms (equal, left-front, left, left-bak, opposite, right-bak, right andright-front). The orresponding ternary RA we would lead to has 80 atoms,whih an be enumerated by appropriately re�ning the illustrations of the CYCtatoms depited in Figure 8. For instane, re�ning the leftmost on�guration ofthe top row in Figure 8 leads to �ve on�gurations (see Figure 19). We plan toinvestigate the omputational properties of this �ner-grained alulus.One of the biggest hallenges for qualitative spatial reasoning is the inte-gration of qualitative distane and qualitative orientation. A formalism withsuh a harateristi would, for instane, allow for the representation of naturallanguage desriptions suh as \B is loser than, and to left of, A" (B lies withinan appropriate setor of the dis entred at the speaker's loation, say S, and ofradius SA). This hallenge has been disussed by many authors [8, 9, 12℄, andone reent and promising work addressing the issue is [25℄.Finally, a alulus of 3D orientations, similar to the ternary RA of 2D ori-entations we have presented, might be developed.
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Figure 20: Illustration of the proof of Theorem 10.f(x; y) : (y; x) 2 (�; 2�)g; o^ = f(x; y) : (y; x) 2 f�gg; r^ = f(x; y) : (y; x) 2(0; �)g: Using again the equivalenes 4{7, we get that the onverse table reordsthe exat onverses of the atoms: e^ = f(x; y) : e(x; y)g = e; l^ = f(x; y) :r(x; y)g = r; o^ = f(x; y) : o(x; y)g = o; r^ = f(x; y) : l(x; y)g = l:Cheking the entries of the omposition table: In order to hek that T (b1; b2) =b1 Æ b2, it is suÆient to use the following sound inferene rule, in whih A andB denote onvex subsets of [0; 2�), and size(X) is the maximum of all y�x forx; y 2 X :[(X;Z) 2 A ^ (Z; Y ) 2 B ^ size(A) < � ^ size(B) < �℄) (X;Y ) 2 A+s B℄ (8)where +s is set addition (omposition): A +s B = f : (9a 2 A; 9b 2B)( = a + b)g. We laim that the inferene rule is 3-omplete for A;B 2ff0g; (0; �); f�g; (�; 2�)g; i.e., for any suh A and B, we have the following:(8X;Y )[(X;Y ) 2 A+s B ) (9Z)((X;Z) 2 A ^ (Z; Y ) 2 B)℄.Theorem 10 The inferene rule (8) is 3-omplete for A;B 2 ff0g; (0; �);f�g; (�; 2�)g.Proof. We proeed by enumerating all possible ases. Cases (1) and (6) in theenumeration are illustrated in Figure 20:1. If A = f0g then A +s B = B. For all X;Y suh that (X;Y ) 2 B, if wetake Z = X then (X;Z) = (X;X) = 0 2 A and (Z; Y ) = (X;Y ) 2 B (seeFigure 20(a)).2. If A = f�g then A +s B = f� + � : � 2 Bg. Let X;Y be suh that(X;Y ) 2 A +s B: (9� 2 B)((X;Y ) = � + �). We take Z = X + �; thenfrom (X;Y ) = � + � and Z = � +X , we infer that (X;Z) = � 2 A and(Z; Y ) = � 2 B.3. If B = f0g then A +s B = A. For all X;Y suh that (X;Y ) 2 A, if wetake Z = Y then (X;Z) = (X;Y ) 2 A and (Z; Y ) = (Y; Y ) = 0 2 B.52



4. If B = f�g then A +s B = f� + � : � 2 Ag. Let X;Y be suh that(X;Y ) 2 A +s B: (9� 2 A)((X;Y ) = � + �). We take Z = Y + �; thusY = Z+�, from whih we an infer (Z; Y ) = � 2 B. From (X;Y ) = �+�and (Y; Z) = �, we infer (X;Z) = � 2 A.5. If A = (0; �) and B = (0; �) then A +s B = f� + � : � 2 (0; �); � 2(0; �)g = (0; 2�). For all X and Y suh that (X;Y ) 2 (0; 2�), we an �ndZ suh that (X;Z) 2 (0; �) and (Z; Y ) 2 (0; �): take Z in suh a way that(X;Z) = (Z; Y ) (i.e., Z is the bisetor of (X;Y )).6. If A = (0; �) and B = (�; 2�) then A +s B = f� + � : � 2 (0; �); � 2(�; 2�)g = (�; 3�) � [0; �) [ (�; 2�). For all X and Y suh that (X;Y ) 2[0; �) [ (�; 2�), we an �nd Z suh that (X;Z) 2 (0; �) and (Z; Y ) 2(�; 2�): if (X;Y ) 2 (�; 2�) (see Figure 20(b)), take Z in suh a waythat (X;Z) = (Z; Y 0), where Y 0 is the orientation opposite to Y (i.e.,(Y; Y 0) = �); if (X;Y ) = 0 (see Figure 20()), take Z in suh a way that(X;Z) = �=2; and if (X;Y ) 2 (0; �) (see Figure 20(d)), take Z in suh away that (Y; Z) = (Z;X 0), where X 0 is the orientation opposite to X (i.e.,(X;X 0) = �).7. If A = (�; 2�) and B = (0; �) then A +s B = f� + � : � 2 (�; 2�); � 2(0; �)g = (�; 3�) � [0; �) [ (�; 2�). For all X and Y suh that (X;Y ) 2(�; 3�), we an �nd Z suh that (X;Z) 2 (�; 2�) and (Z; Y ) 2 (0; �):if (X;Y ) 2 (�; 2�), take Z in suh a way that (X 0; Z) = (Z; Y ) (i.e.,Z is the bisetor of (X 0; Y )), where X 0 is the orientation opposite to X(i.e., X 0 is suh that (X;X 0) = �); if (X;Y ) = 0, take Z in suh away that (X;Z) = 3�=2; and if (X;Y ) 2 (0; �), take Z in suh a waythat (Y 0; Z) = (Z;X) (i.e., Z is the bisetor of (Y 0; X)), where Y 0 is theorientation opposite to Y (i.e., Y 0 is suh that (Y; Y 0) = �).8. If A = (�; 2�) and B = (�; 2�) then A +s B = f� + � : � 2 (�; 2�); � 2(�; 2�)g = (2�; 4�) � (0; 2�). For all X and Y suh that (X;Y ) 2 (0; 2�),we an �nd Z suh that (X;Z) 2 (�; 2�) and (Z; Y ) 2 (�; 2�): if (X;Y ) 2(�; 2�), take Z in suh a way that (Y; Z) = (Z;X) (i.e., Z is the bisetorof (Y;X)); if (X;Y ) = �, take Z in suh a way that (X;Z) = 3�=2; andif (X;Y ) 2 (0; �), take Z in suh a way that (X 0; Z) = (Z; Y 0) (i.e., Z isthe bisetor of (X 0; Y 0)), where X 0 is the orientation opposite to X (i.e.,(X;X 0) = �) and Y 0 is the orientation opposite to Y (i.e., (Y; Y 0) = �).B Verifying the RA properties for an atomiternary RA1. (R Æ S) Æ T = R Æ (S Æ T )?(a) Let (a; b; ) 2 (R ÆS) Æ T . Thus (9d)((a; b; d) 2 (R ÆS)^ (a; d; ) 2 T ).53



(a; b; d) 2 (RÆS) implies (9e)((a; b; e) 2 R^ (a; e; d) 2 S). From (a; e; d) 2S and (a; d; ) 2 T , we infer (a; e; ) 2 (S Æ T ). From (a; b; e) 2 R and(a; e; ) 2 (S Æ T ), we infer (a; b; ) 2 R Æ (S Æ T ). Therefore (R Æ S) Æ T �R Æ (S Æ T ).(b) Now let (a; b; ) 2 R Æ (S Æ T ). Thus (9d)((a; b; d) 2 R ^ (a; d; ) 2(S Æ T )). (a; d; ) 2 (S Æ T ) implies (9e)((a; d; e) 2 S ^ (a; e; ) 2 T ).From (a; b; d) 2 R and (a; d; e) 2 S, we infer (a; b; e) 2 (R Æ S). From(a; b; e) 2 (RÆS) and (a; e; ) 2 T , we infer (a; b; ) 2 (RÆS)ÆT . Therefore(R Æ S) Æ T � R Æ (S Æ T ).2. (R [ S) Æ T = (R Æ T ) [ (S Æ T )?(R [ S) Æ T = f(a; b; ) : (9d)((a; b; d) 2 (R [ S) ^ (a; d; ) 2 T )g =f(a; b; ) : (9d)([(a; b; d) 2 R _ (a; b; d) 2 S℄) ^ (a; d; ) 2 Tg = f(a; b; ) :(9d)((a; b; d) 2 R^ (a; d; ) 2 T )g[f(a; b; ) : (9d)((a; b; d) 2 S ^ (a; d; ) 2T )g = (R Æ T ) [ (S Æ T ).3. R Æ I = I ÆR = R?We prove this for I = It23U = f(a; b; b) : a; b 2 Ug. The reason for this isthat the identity element of the atomi ternary RA of our interest, CYCt,is It232DO (U = 2DO).R Æ I = f(a; b; ) : (9d)((a; b; d) 2 R ^ (a; d; ) 2 I)g. But (a; d; ) 2 Iimplies (d = ); thus R Æ I = f(a; b; ) : (a; b; ) 2 R ^ (a; ; ) 2 Ig. Sine(8a; )((a; ; ) 2 I), we infer R Æ I = f(a; b; ) : (a; b; ) 2 Rg = R. Onthe other hand, I Æ R = f(a; b; ) : (9d)((a; b; d) 2 I ^ (a; d; ) 2 R)g. But(a; b; d) 2 I implies (d = b); thus I ÆR = f(a; b; ) : (a; b; b) 2 I^(a; b; ) 2Rg. Sine (8a; b)((a; b; b) 2 I), we infer I ÆR = f(a; b; ) : (a; b; ) 2 Rg =R.4. (R^)^ = R?(R^)^ = f(a; b; ) : (a; ; b) 2 R^g. But (a; ; b) 2 R^ is equivalent to(a; b; ) 2 R. Therefore (R^)^ = f(a; b; ) : (a; b; ) 2 Rg = R.5. (R [ S)^ = R^ [ S^?(R[S)^ = f(a; b; ) : (a; ; b) 2 R[Sg = f(a; b; ) : (a; ; b) 2 R_(a; ; b) 2Sg = f(a; b; ) : (a; ; b) 2 Rg [ f(a; b; ) : (a; ; b) 2 Sg = R^ [ S^.6. (R Æ S)^ = S^ ÆR^?(R Æ S)^ = f(a; b; ) : (a; ; b) 2 R Æ Sg = f(a; b; ) : (9d)((a; ; d) 2R ^ (a; d; b) 2 S)g = f(a; b; ) : (9d)((a; d; ) 2 R^ ^ (a; b; d) 2 S^)g =f(a; b; ) : (9d)((a; b; d) 2 S^ ^ (a; d; ) 2 R^)g = S^ ÆR^.7. R^ ÆR Æ S \ S = ;?Let (a; b; ) 2 R^ Æ R Æ S. Thus (9d)((a; b; d) 2 R^ ^ (a; d; ) 2 R Æ S).(a; d; ) 2 R Æ S is equivalent to (a; d; ) =2 R Æ S, whih in turn implies(8e)((a; d; e) =2 R _ (a; e; ) =2 S). Now onsider the speial ase e = b:from (a; b; d) 2 R^, we derive (a; d; b) 2 R; thus (a; b; ) =2 S.54



8. ((R_)_)_ = R?((R_)_)_ = f(a; b; ) : (; a; b) 2 (R_)_g. But (; a; b) 2 (R_)_ isequivalent to (b; ; a) 2 R_, whih in turn is equivalent to (a; b; ) 2 R.Therefore ((R_)_)_ = f(a; b; ) : (a; b; ) 2 Rg = R.9. (R [ S)_ = R_ [ S_?(R[S)_ = f(a; b; ) : (; a; b) 2 R[Sg = f(a; b; ) : (; a; b) 2 R_(; a; b) 2Sg = f(a; b; ) : (; a; b) 2 Rg [ f(a; b; ) : (; a; b) 2 Sg = R_ [ S_.10. Cheking the entries of the di�erent tables: Similarly to CYCb, we have tohek that the onverse table, the rotation table and the omposition ta-bles of CYCt reord the exat onverses, the exat rotations and the exatompositions of the atoms.The onverse table and the rotation table: From the fat that the CYCbonverse table reords the exat onverses of the atoms, we derive straight-forwardly that the onverse table and the rotation table of CYCt reordthe exat onverses and the exat rotations of the atoms. We illustratethis with the atom lrr. By de�nition, (lrr)^ = f(x; y; z) : (x; z; y) 2 lrrg.Applying the de�nition of a CYCt atom, we get: (lrr)^ = f(x; y; z) :(z; x) 2 l ^ (y; z) 2 r ^ (y; x) 2 rg. Reordering the elements of the on-juntion (z; x) 2 l ^ (y; z) 2 r ^ (y; x) 2 r, we get: (lrr)^ = f(x; y; z) :(y; x) 2 r ^ (y; z) 2 r ^ (z; x) 2 lg. Thanks to the fat that the CYCbonverse table reords the exat onverses of the atoms, we derive that(y; z) 2 r i� (z; y) 2 l, from whih we get: (lrr)^ = f(x; y; z) : (y; x) 2r ^ (z; y) 2 l ^ (z; x) 2 lg. Now the set f(x; y; z) : (y; x) 2 r ^ (z; y) 2l ^ (z; x) 2 lg orresponds exatly the CYCt atom rll, whih implies that(lrr)^ = rll. By de�nition of the rotation operation, we get: (lrr)_ =f(x; y; z) : (z; x; y) 2 lrrg. Using the de�nition of a CYCt atom, we get:(lrr)_ = f(x; y; z) : (x; z) 2 l ^ (y; x) 2 r ^ (y; z) 2 rg. Reorderingthe elements of the onjuntion (x; z) 2 l ^ (y; x) 2 r ^ (y; z) 2 r, weget: (lrr)_ = f(x; y; z) : (y; x) 2 r ^ (y; z) 2 r ^ (x; z) 2 lg. Thanks,again, to the fat that the CYCb onverse table reords the exat on-verses of the atoms, we get that the assertions (y; z) 2 r and (x; z) 2 lare equivalent, respetively, to (z; y) 2 l and (z; x) 2 r, whih implies:(lrr)_ = f(x; y; z) : (y; x) 2 r ^ (z; y) 2 l ^ (z; x) 2 rg. Now the setf(x; y; z) : (y; x) 2 r ^ (z; y) 2 l ^ (z; x) 2 rg orresponds exatly to theCYCt atom rlr; thus (lrr)_ = rlr.The omposition tables: We say that the CYCt omposition tables aresound if for any two atoms t1 and t2, it is the ase that T (t1; t2) � t1 Æ t2,where T (t1; t2) is the entry on the row labelled with t1 and the olumnlabelled with t2; if the tables are sound, we say that they are 4-ompleteif for any two atoms t1 and t2, it is the ase that T (t1; t2) � t1 Æ t2.Soundness implies that if we know that a triple (x; y; w) belongs to t1 Æ t2,whih, by de�nition, means that we an �nd z suh that (x; y; z) 2 t1and (x; z; w) 2 t2, then it must be the ase that the triple (x; y; w) also55



belongs to the entry T (t1; t2); if 4-ompleteness also holds then the triples(x; y; w) in the relation reorded by an entry orrespond exatly to theatual omposition of the orresponding atoms. We show how to om-pute the entries of the omposition tables; this will at the same time show4-ompleteness of the tables. For this purpose, we onsider two atomst1 = b1b2b3 and t2 = b01b02b03. As we saw before, due to the fat that theCYCb atoms are JEPD, t1 Æ t2 = ; if b3 6= b01 (again, refer to Figure 6for illustration); so we suppose b3 = b01 = b, whih leads to t1 = b1b2b,t2 = bb02b03, and t1 Æ t2 = f(x; y; w) : (9z)((y; x) 2 b1 ^ (z; y) 2 b2 ^ (z; x) 2b ^ (w; z) 2 b02 ^ (w; x) 2 b03)g. We will need the isomorphim � from2DO � 2DO onto 2DO � 2DO, de�ned as follows: �((x; y)) = (x0; y),where x0 the orientation opposite to x, i.e., x0 is suh that o(x; x0); theisomorphism is extended to subsets of 2DO�2DO in the following naturalway: �(S) = f�((x; y)) : (x; y) 2 Sg; for the CYCb atoms, whih are par-tiular subsets of 2DO�2DO, we get �(e) = o; �(l) = r; �(o) = e; �(r) = l.We proeed by enumerating all possible ases:(a) if b1 = e then t1 Æ t2 = eb03b03;(b) if b2 = e then t1 Æ t2 = t2;() if b02 = e then t1 Æ t2 = t1;(d) if b03 = e then t1 Æ t2 = b1(b1)^e;(e) if b1 = o then from (y; x) 2 o ^ (w; x) 2 b03 we get (w; y) 2 �(b03);thus t1 Æ t2 = f(x; y; w) : (y; x) 2 b1 ^ (w; y) 2 �(b03) ^ (w; x) 2 b03g =b1�(b03)b03;(f) if b03 = o then from (x; y) 2 (b1)^ ^ (w; x) 2 o we get (w; y) 2�((b1)^); thus t1 Æ t2 = f(x; y; w) : (y; x) 2 b1 ^ (w; y) 2 �((b1)^) ^(w; x) 2 b03g = b1�((b1)^)b03;(g) if b2 = o then from (w; z) 2 b02 ^ (z; y) 2 o we get (w; y) 2 �(b02);thus t1 Æ t2 = f(x; y; w) : (y; x) 2 b1 ^ (w; y) 2 �(b02) ^ (w; x) 2 b03g =b1�(b02)b03;(h) if b02 = o then from (z; y) 2 b2 ^ (w; z) 2 o we get (w; y) 2 �(b2);thus t1 Æ t2 = f(x; y; w) : (y; x) 2 b1 ^ (w; y) 2 �(b2) ^ (w; x) 2 b03g =b1�(b2)b03;(i) if b = e then JEPDness of the CYCb atoms gives b2 = (b1)^ andb02 = b03; this leads to t1 Æ t2 = �(b1; b03 Æ (b1)^; b03) (4-ompletenessomes from 3-ompletess of the CYCb omposition table: eah entryreords the exat omposition of the orresponding CYCb atoms);(j) In a similar way, if b = o then we infer that b03 = �(b02) and b1 =�((b2)^); thus t1 Æ t2 = �(b1; b03 Æ (b1)^; b03). Again, 4-ompletenessstems from 3-ompleteness of the CYCb omposition table.56
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Figure 21: Illustration of 4-ompleteness of the CYCt omposition tables.The remaining ases are those when eah of b1; b2; b; b02; b03 belongs tofl; rg. These over altogether 32 entries of the omposition tables: 16of these onsist of atoms, the other 16 of 3-atom relations. We prove4-ompleteness for one 1-atom entry and for one 3-atom entry; the 4-ompleteness proof for the other entries is similar. We onsider the entriesT (llr; rll) = lrl and T (llr; rlr) = fllr; lor; lrrg.T (llr; rll) = lrl?Consider four orientations x; y; z; w suh that llr(x; y; z)^rll(x; z; w). Thisis illustrated in Figure 21(left). Orientation w is fored to be between-in-a-lokwise-diretion the orientation opposite to z and orientation x. Theillustration learly indiates that the relation on triple (x; y; w) is lrl. Con-versely, onsider a on�guration of three orientations x, y and w suh thatlrl(x; y; w). We an always �nd z suh that llr(x; y; z) ^ rll(x; z; w): forinstane, we an take z suh that o(z; z0), where z0 in turn is suh that(w; z0) = (z0; y) (z0 is the bisetor of (w; y)).T (llr; rlr) = fllr; lor; lrrg?Consider four orientations x; y; z; w suh that llr(x; y; z)^rlr(x; z; w). Thisis illustrated in Figure 21(right). Orientation w is fored to be to the leftof, opposite to, or to the right of, y; thus the relation on triple (x; y; w)is �(l; fl; o; rg; r) = fllr; lor; lrrg. Conversely, onsider a on�guration ofthree orientations x, y and w suh that fllr; lor; lrrg(x; y; w). We an al-ways �nd z suh that llr(x; y; z)^rlr(x; z; w): if llr(x; y; w) or lor(x; y; w)then take z suh that (x0; z) = (z; w), where x0 is suh that o(x; x0); oth-erwise, take z suh that (x0; z) = (z; y0), where x0 and y0 are suh thato(x; x0) and o(y; y0).
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