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Abstract

We propose a new approach to cyclic ordering of 2D orientations, con-
sisting of a relation algebra (RA) whose universe is a set of ternary rela-
tions. An atom of the RA expresses for triples (z1, 22, z3) of orientations
whether each of the three orientations is equal to, to the left of, opposite
to, or to the right of each of the other two orientations. The RA has 24
atoms and the elements of its universe consist of all possible 224 subsets
of the set of all atoms. Because we are dealing with ternary relations,
we add rotation as an operation in addition to those present in Tarski’s
formalisation of RAs. Amongst other results, (1) we provide for the RA
a constraint propagation procedure computing the closure of a problem
under the different operations, which we show is polynomial, and com-
plete for a subset including all atoms; (2) we prove that another subset,
expressing only information on parallel orientations, is NP-complete; (3)
we show that provided that a subset S of the RA includes two specific
elements, deciding consistency for a problem expressed in the closure of
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S can be polynomially reduced to deciding consistency for a problem ex-
pressed in S; and (4) we derive from the previous result that we “jump”
from tractability to intractability if we add the universal relation to the
set of all atoms of the RA. A comparison to the most closely related work
in the literature indicates that the approach is promising.

Keywords: Qualitative spatial reasoning, Relation algebra, Constraint
satisfaction, Orientation, Computational complexity, Knowledge repre-
sentation.

1 Introduction

Qualitative spatial reasoning (QSR) has become an important and challenging
research area of Artificial Intelligence. An important aspect of it is topological
reasoning (see the survey in [5]). However, many applications (among which
are robot navigation [22], reasoning about shape [34], route description [7, 17])
require the representation and processing of orientation knowledge. A variety
of approaches to this have been proposed: the so-called CYCORD theory for
cyclic ordering of 2D orientations [27, 31, 32], global reference system models
for reasoning about cardinal directions [8, 9], relative orientation models [11,
12, 18, 40], and models for the representation of a panorama [33].

One may want to describe a configuration of points in the plane as viewed
from a global point of view; this could, for instance, correspond to the situation
when a robot has to be located with respect to a number of known landmarks:
such a description may consist of specifying the cyclic order of triples of objects
in the configuration with respect to the viewpoint at the robot’s location. The
CYCORD theory [31, 32] and Schlieder’s system of panorama representation
[33] may be used for such a task. However, in addition to providing the cyclic
order for triples of orientations, many applications may need the specification for
pairs of orientations in the configuration of whether one orientation is to left of,
to the right of, opposite to, or equal to, the other orientation. This feature is not
captured by the system in [31, 32] nor by the one in [33]: indeed, these neglect
what could be called the left/straight/right dichotomy determined by an observer
placed at the point of view and looking in the direction of the reference object;
this dichotomy, which corresponds to the partitioning of the plane into the
directed line point-of-view—-reference-object, the left open half-plane delimited
by that line, and the right open half-plane delimited by the same line, allows,
when captured by a model, for some kind of cognitively plausible reasoning
(some aspects of cognitive plausibility of orientation models in qualitative spatial
reasoning are discussed in [11, 12]).

To illustrate, consider the simple natural language sentence “You see both
the university and the hill on your left when you walk down to the station”:
the CYCORD theory fails to provide a representation of this description. An-
other limitation of the CYCORD theory appears when we consider the same-
direction/opposite-direction dichotomy determined by the same observer referred



to above, which splits the directed line point-of-view—reference-object into the
positive part, i.e., the part the observer is looking at, and the negative part, i.e.,
the part at the back of the observer. This second dichotomy is also important
for qualitative spatial reasoning applications, as illustrated by the descriptions
“The cinema is on the way to the university”, or “To get to the cinema from
the station, walk in the opposite direction to the university”. This motivates
the need for a new, finer grained, approach to cyclic ordering of 2D orientations,
which is what we propose in the paper. The new approach, which is an atomic
relation algebra (RA) whose universe is a set of ternary relations on 2D orien-
tations, overcomes the above limitations; furthermore, as it turns out, its atoms
form a tractable subset, which is important for at least two reasons:

1. Complete information can be checked for consistency in polynomial time.

2. Deciding consistency for a general problem expressed in the RA, which
we show is NP-complete, can be achieved using a backtracking search
procedure, which refines at each node of the search tree the relation on a
triple of 'variables’ to an atom.

The RA represents knowledge on cyclic ordering of 2D orientations as a
ternary constraint satisfaction problem (ternary CSP) of which:

1. the variables range over the set of 2D orientations, which, as we will see
later, is isomorphic to the set of points of a fixed circle, as well as to the
set of directed lines containing a fixed point; and

2. the constraints give for triples of the variables the relation of the RA they
should satisfy.

We first define a binary RA and, based on that, develop our new approach to
cyclic ordering. Among other things, we provide a composition table for the
binary RA. One reason for doing this first is that it will then become easy to
understand how the relations of the ternary RA are obtained.

The binary RA can model the qualitative configuration of two orientations.
It is based on the left/straight/right and same-direction/opposite-direction di-
chotomies mentioned earlier, both determined by an observer placed at the point
of view and looking in the direction of the reference object. The point of view,
say P, is global, and we make the realistic assumption that if a collection of
point objects is to be qualitatively described relative to P then all objects in
the collection are different from P. The point of view may, for instance, be a
robot and the objects in the collection landmarks: equality of the position of
the robot and that of one of the landmarks would correspond to a collision! In
this way, given two objects A and B, it makes sense to consider the orienta-
tions z; and zy of the directed lines (PA) and (PB), respectively, which can
be qualitatively compared according to the two dichotomies mentioned above:
22 is e(qual) to, to the I(eft) of, o(pposite) to, or to the r(ight) of, z;. To
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Figure 1: Localisation of a robot R with respect to four landmarks
L1,L2,L3, LA4.

illustrate, consider the situation in Figure 1 where a robot R has to be qualita-
tively localised relative to four landmarks Lq, Lo, L3, L4. This can be achieved
by considering the orientations 71, Zs, Z3, Z4 of the directed lines (RL1), (RL>),
(RL3), (RL4), respectively, joining the robot to the landmarks. We can then use
the binary RA to represent the situation as a description specifying the relation
holding on each pair of the four orientations. For instance, to “the robot is to
the right of the directed line (L; L2)” corresponds the relation r(Z2, Z1), stating
that orientation Z is to the right of orientation Z;.

So far, constraint-based approaches to QSR have mainly used constraint
propagation methods achieving path consistency. These methods have been
borrowed from qualitative temporal reasoning a la Allen [1], and make use of
a composition table. It is, for instance, well-known from works of van Beek
that path consistency achieves global consistency for CSPs of Allen’s convex
relations. The proof of this result, given in [36, 37], shows that it is mainly
due to the 1-dimensional nature of the temporal domain. The proof uses the
specialisation of Helly’s theorem [4] to n = 1: “If S is a set of convex regions
of the n-dimensional space IR" such that every n + 1 elements in S have a non
empty intersection then the intersection of all elements in S is non empty”.
For the 2-dimensional space (n = 2), the application of the theorem gets a bit
more complicated, since one has to check non emptiness of the intersection of
every three elements, instead of just every two; we will use this to show that a
constraint propagation procedure to be given for the ternary RA, which achieves
strong 4-consistency, has a similar behaviour for a subset including all atoms
as path consistency for Allen’s convex relations: the procedure achieves global
consistency.

The paper is organised as follows. Section 3 provides some background
on constraint satisfaction problems (CSPs) and constraint matrices. Section 4
provides some background on relation algebras (RAs), and focusses on binary
RAs and ternary RAs. Section 5 presents our first RA of 2D orientations,



C)YCy, which is binary. The second RA, CYC;, which is ternary, is presented in
detail in Section 6. We then come back, in Section 7, to CSPs with a focus on
CSPs of 2D orientations: CYCy-CSPs, i.e., CSPs of which the constraints are
CYC, relations on pairs of the variables; and CYC;-CSPs, i.e., CSPs of which the
constraints are CYC; relations on triples of the variables. The section provides an
example showing that path consistency is not sufficient for deciding consistency
for a CSP of CYC; atoms; then a constraint propagation procedure achieving
strong 4-comnsistency for CYC;-CSPs, which we show is polynomial; and finally,
a procedure to search for a strongly 4-consistent, thus consistent, scenario of a
general CYC;-CSP. In Section 8, we show that a subset of CYC; including all
atoms is tractable; specifically, we show that our strong 4-consistency procedure
can decide consistency for a CSP expressed in the subset. In Section 9, we
present some intractability results:

1. From the NP-completeness of the CYCORD theory [15], we derive that
CYC; is NP-complete.

2. We show that a subset of CYC; expressing only information on parallel
orientations is NP-complete.

3. We show that provided that a subset S of CYC; includes two specific ele-
ments, deciding consistency for a CSP expressed in the closure of S under
the different CYC; operations can be polynomially reduced to deciding
consistency for a CSP expressed in S.

4. From the previous result, we derive that for both RAs the set obtained by
adding the universal relation to the set of all atoms is NP-complete.

Section 10 compares our approach to the most closely related ones in the liter-
ature. Directions for future work are discussed in Section 11. Finally, Section
12 summarises the paper.

We first need to motivate the use of ternary relations.

2 Motivation of the use of ternary relations

We make the assumption that the 2D space is associated with a reference system
(0,z,y), and refer to the circle centred at O and of unit radius as Co 1, and to
the set of 2D orientations as 2D(@. Three natural isomorphisms will be of use
in the rest of the paper. In order to facilitate their definitions,we introduce the
following sets:

1. Ro,1 is the set of all radii of Cp,; excluding the centre O but closed at the
other endpoint.

2. dLo is the set of all directed lines containing O.
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Figure 2: The angle (D1, Dy) determined by two directed lines D; and Dy is
the one corresponding to the move in an anticlockwise direction from D; to Ds.

f1200—>’ f2200—> f32D0—>

Definition 1 The isomorphisms and are defined as

follows:

FEPo= . 9p0 = Ry, (1)

flgDO_*(z) is the radius (OP,] € Ro.1 such that the orientation of the vector
=~ -
OP; is z.

F2D0= . 9p0 = Co4 (2)

fngOﬁ(z) is the point P, € Co,1 such that the orientation of the vector OP; is
z.
2D0~ . 9pO — dLo (3)

fsgDo_*(z) is the line o , € dLo of orientation z.

Definition 2 The angle determined by two directed lines D1 and Ds, denoted
(D1, D3), is the one corresponding to the move in an anticlockwise direction from
D; to Ds (see Figure 2). The angle (21, 22) determined by orientations z1 and 2o

32D(9—>(Z1) and Loz, = 32D(9—>(z2)'

is the angle (L0 21 ,20.2,), where Lo 4 =
The set 2DO can thus be viewed as the set of radii of Co 1 (or, indeed, of any
fixed circle), as the set of points of Co 1 (or of any fixed circle), or as the set of
directed lines containing O (or any fixed point). We will not restrict ourselves
to any of these sets; however:

1. in order to illustrate the relation holding between 2D orientations, it seems
more intuitive to look at orientations as directed lines containing a fixed
point, for instance O (isomorphism fBQDO%). For example, an orientation

z1 is to the left of an orientation z, if the angle (22, 21) belongs to (0, 7);

and

2. for the proof of Theorem 6, we will look at an orientation as a radius of

Co 1 excluding the centre O (isomorphism f?DOﬁ).



The aim of this work, as stated in the introduction, is to provide a rela-
tion algebra (RA) for representing and reasoning about cyclic ordering of 2D
orientations. For qualitative ordering of elements of a linear universe, such as
the standard time line, it is sufficient to use a binary relation over the universe;
however, ordering elements of a cyclic universe, such as the universe of 2D ori-
entations (or any of the isomorphic universes Rg 1, Co,1 and dLo), requires the
use of a relation of arity at least equal to three. Together with a convention
saying which of the anticlockwise and clockwise directions corresponds to the
positive direction, a ternary relation with the aim of qualitatively ordering 2D
orientations would give for triples (z1, 22, 23) of orientations which of 2z, and
z3 is met first when we move in the positive direction starting from z;. This
shows the importance of ternary relations for our purpose. On the other hand,
many applications, including those mentioned in the introduction, may require
finer knowledge on triples (z1, z2, 23) of orientations than just the (qualitative)
cyclic order of z;, zo and z3: for instance, they may require for some or all
pairs (z;, z;) of orientations in {21, 22, 23} the additional knowledge of whether
z; is equal to, to the left of, opposite to, or to the right of, z;. As alluded to
briefly in the introduction, the partitioning of the universe of 2D orientations
into the orientation that is equal to, the orientations that are to the left of,
the orientation that is opposite to, and the orientations that are to the right
of, a given orientation (parent orientation) is important because of its cognitive
plausibility [11, 12]: the parent orientation might correspond to the orientation
of the directed line (PR) joining a parent object P to a reference object R;
then an observer placed at the parent object and looking in the direction of the
reference object can describe a primary object S relative to the reference object
R in the following, cognitively plausible, way, where zpr) and z(ps) stand for
the orientations of the directed lines (PR) and (PS), respectively: S may be in
front of the observer, colinear with P and R (equal(z(ps), 2(pr))); to the left
of R (left(z(ps),2(pr))); at the back of the observer, colinear with P and R
(opposite(z(ps), 2(pr))); or to the right of R (right(z(ps), 2(pr)))- Thus what is
needed is to combine a cyclic ordering, thus ternary, relation with these other,
binary, relations, equal, left, right, and opposite, in order to offer the possibil-
ity of expressing finer grained knowledge than just cyclic ordering. This paper
provides a calculus to satisfy this need.

3 Constraint satisfaction problems

A constraint satisfaction problem (CSP) of order n consists of a finite set of n
variables z1,...,z,, a set U (called the universe of the problem), together with
a set of constraints on values from U which may be assigned to the variables.
The problem is solvable if the constraints can be satisfied by some assignement
of values a1,...,a, € U to the variables z1,...,z,, in which case the sequence
(a1,...,an) is called a solution. Two problems are equivalent if they have the



same set of solutions.

An m-ary constraint is of the form R(z;,,---,z;, ), and asserts that the
m-tuple of values assigned to the variables z;,, -, z;  must lie in the m-ary
relation R (an m-ary relation over the universe U is any subset of U™). An
m-ary CSP is one of which the constraints are m-ary constraints. We will be
concerned exclusively with binary CSPs and ternary CSPs.

A unary relation, say R, is equivalent to the binary relation {(a,a) : a € R},
and to the ternary relation {(a,a,a) : a € R}. In turn, a binary relation R is
equivalent to the ternary relation {(a,b,a) : (a,b) € R}.

3.1 Operations on binary relations

A binary relation is a set of ordered pairs, denoted (a,b). For any two binary
relations R and S, RN S is the intersection of R and S; RU S is the union of
R and S, Ro S is the composition of R and S, and R~ is the converse of R;
these are defined as follows:

RnS = {(a,b): (a,b) € R and (a,b) € S},

RUS = {(a,b):(a,b) € Ror (a,b) € S},

RoS = {(a,b):for some ¢, (a,c) € R and (c,b) € S},
R~ = {(a,b): (b,a) € R}.

Three special binary relations over a universe U are the empty relation ) which
contains no pairs at all, the identity relation Z!, = {(a,a) : a € U}, and the
universal relation Tg, =UxU.

3.2 Operations on ternary relations

A ternary relation is a set of ordered triples, denoted (a,b,c). For any two
ternary relations R and S, RN S is the intersection of R and S, RU S is the
union of R and S, Ro S is the composition of R and S, R~ is the converse of
R, and R™ is the rotation of R; these are defined as follows:

RNnS = {(a,b,¢):(a,b,c) € R and (a,b,c) € S},

RuUS = {(a,b,c):(a,b,c) € Ror (a,b,c) € S},

RoS = {(a,b,c):for some d, (a,b,d) € R and (a,d,c) € S},
R~ = {(a,b,¢): (a,c,b) € R},

R~ = {(a,b,¢):(c,a,b) € R}.

In terms of expressiveness, it should be said that the converse and the rota-
tion of a relation R record the same information as R itself. For binary rela-
tions, a converse operation is sufficient because there are two possible ordered
pairs involving two objects, say « and y: (x,y) and (y,x); the converse oper-
ation alone allows going from one of the two pairs to the other. For ternary
relations, a converse operation is no longer sufficient because there are al-
together six possible ordered triples involving three objects, say z, y and =z:



(2,9, 2), (2,2,8), (4,2 ), (9 2,2, (2,7, 9), (2, 7). The converse operation al-
lows going from an ordered triple (z,y, z) to the ordered triple (z, z, y), but does
not allow going to the other four ordered triples. With the addition of the ro-
tation operation, we can move as well to (y, z, z); then from (y, z, z) to (y, z, 2)
using converse, and to (z, z,y) using rotation; and from (z, 2, y) to (2, y, ) using
rotation.

Three special ternary relations over a universe U are the empty relation {§
which contains no triples at all, the identity relation Z}, = {(a,a,a) : a € U},
and the universal relation T¢, = U x U x U. Another special ternary relation,
which expresses equality of the last two arguments and will be needed later, is
I{,” ={(a,b,b): a,b e U}.

The field of a binary relation R is field(R) = {a : for some b, (a,b) €
R or (b,a) € R}; the field of a ternary relation R is field(R) = {a: for some b
and ¢, (a,b,c) € R or (b,a,c) € Ror (b,c,a) € R}. The field of a set A of rela-
tions is the union of the fields of the relations in A: field(A) = Urc.afield(R).

3.3 Constraint matrices

Let P be a CSP of order n, with variables z1,...,z, and universe U.

3.3.1 The case of a binary CSP

Let z;,z; be two variables. If a constraint of P is given on the ordered pair
(zj,z;), specifying that (z;,z;) should belong to a relation R, this can be con-
verted into a constraint on the ordered pair (z;,z;): (z;,z;) € R™~. Therefore,
we can assume that if m constraints involve the variables z; and z; then these
constraints consist of binary relations Ri,..., R, the ordered pair (z;,z;) is
required to belong to. These m constraints are then converted into the single
constraint (z;,z;) € R1 N...NR,,. We can therefore, without loss of generality,
make the assumption that for any two variables z; and z;, there is at most one
constraint involving z; and z;.

A binary constraint matrix of order n over U is an n x n-matrix of binary
relations over U verifying the following:

(Vi <n)(My; CIY) (the diagonal property),
(Wi, j <n)(M;; = (M;;)~) (the converse property).

A binary CSP P over a universe U can be associated with the following binary
constraint matrix, denoted M*:

1. Initialise all entries to the universal relation: (Vi,j < n)((MF);; + TY)

2. Initialise the diagonal elements to the identity relation: (Vi < n)((M7T); <
)

3. For all pairs (z;,z;) of variables on which a constraint (z;,z;) € R is
specified: (M7)i; < (MP)y; N R, (MT)j; « (MT)i;)~



3.3.2 The case of a ternary CSP

Let z;,z;, x;, be three variables; there are altogether six possible ordered triples
on them: (z;,z;, ), (zi, Tk, z5), (T4, Ti, Tk), (&5, Tk, T4), (Tk, Ti, 5), (Tk, T4, 25).
If a constraint of P involving z;, z; and zj is given on an ordered triple other
than (z;,z;,zx), this can be converted into a constraint on the ordered triple
(zi,zj,zx) by using a finite combination of the converse and rotation opera-
tions. For instance, a constraint of the form (zj,z;,z;) € R is equivalent to
(i, z4,2r) € (R7)". We can therefore assume that if m constraints of P in-
volve the variables z;, z;, z; then these consist of ternary relations R1,..., Ry,
the ordered triple (z;, z;, 1) is required to belong to. These m constraints are
then converted into the single constraint (z;,z;,zx) € R1 N...N R,. We can
therefore, without loss of generality, make the assumption that for any three
variables z;, z;, z, there is at most one constraint involving them.

A ternary constraint matrix of order n over U is an n X n X n-matrix of
ternary relations over U verifying the following:

(Vi < n)(Myi; CIE) (the identity property),
(Wi, 4,k <n)(Mijr = (My;)~) (the converse property),
(Wi, 4,k <n)(Mijr = (My;;)") (the rotation property).

A ternary CSP P over a universe U can be associated with the following ternary
constraint matrix, denoted M*:

1. Initialise all entries to the universal relation:
(Vi, 4, k < n)((MP)ijr < Tp)

2. Initialise the diagonal elements to the identity relation:
(Vi <n)((MP)iii  I)

3. For all triples (z;, z;, 1) of variables on which a constraint (z;, z;,z;) € R
is specified:
(MF)iji = (MP)ij R, (MF)ij = (MP)iji)~,
(MP) ki = (MP)iji)™ (MP)jin < (MP)jri) 7,
(MP)kij < (MP)ji)™, (MP)kji = (MP)g5)

We make the assumption that, unless explicitly specified otherwise, a CSP is
given as a constraint matrix.

3.4 Strong k-consistency, refinement

Let P be a CSP of order n, V its set of variables and U its universe. An
instantiation of P is any n-tuple (a1, az,...,a,) of U™, representing an assign-
ment of a value to each variable. A consistent instantiation is an instantiation
(a1, a2,...,a,) which is a solution:

e If P is a binary CSP: (Vi,j < n)((ai,a;) € (MT);;);

10



e If P is a ternary CSP: (Vi, j,k < n)((ai,a;,ar) € (MP);jz).

P is consistent if it has at least one solution; it is inconsistent otherwise. The
consistency problem of P is the problem of verifying whether P is consistent.

Let V' = {zi,,...,z;,} be a subset of V. The sub-CSP of P generated by V",
denoted Pjy, is the CSP with set of variables V' and whose constraint matrix
is obtained by projecting the constraint matrix of P onto V':

e If P is a binary CSP then: (Vk,I < j)(MPv' ) = (MP);,4,)
o If P is a ternary CSP then: (VE,l,m < 5)(M"V' )gim = (MTP)iviri,,)

P is k-consistent [13, 14] if for any subset V' of V' containing k —1 variables, and
for any variable X € V, every solution to Py can be extended to a solution to
Pyiugxy- P is strongly k-consistent if it is j-consistent, for all j < k.

1-consistency, 2-consistency and 3-consistency correspond to node-consistency,
arc-consistency and path-consistency, respectively [26, 28]. Strong n-consistency
of P corresponds to what is called global consistency in [6]. Global consistency
facilitates the important task of searching for a solution, which can be done,
when the property is met, without backtracking [14].

A refinement of P is a CSP P’ with the same set of variables and such that

. (Vi,j)((MP'),'j C (MP);;), in the case of binary CSPs.

o (Vi,7,k)((MF")ijx € (MP)ij1), in the case of ternay CSPs.

4 Relation algebras

We will be using unary operators (—, ~ and 7) and binary operators (&, ® and
o). In expressions without full parentheses, unary operators should be computed
first, followed by o, ®, and @, in that order.

A Boolean algebra with universe B is an algebra of the form (B, ®,®,”, L, T)
which satisfies the following properties, for all R, S,T € B:

Ro(SeT)=(RoS)aT,

R®S=S@R,
R®S@®R=R,
RoSeT=(ReT)e(SeT),
ReR=T.

Of particular interest to this work are Boolean algebras of the form <2A, u,nN,”,
0, A), where A is a nonempty finite set.

We will consider exclusively relation algebras (henceforth, RAs) of which the
universe is a set of binary relations, and RAs of which the universe is a set of
ternary relations; we refer to the former as binary RAs, to the latter as ternary
RAs.

11



4.1 Binary RAs
U is a binary RA with universe A if:
1. A is a set of binary relations; and

2. U={(A8,6, ,L,T,0,7,7) where (A, ®,®, , L, T) is a Boolean alge-
bra (called the Boolean part, or reduct, of U), o is a binary operation,
~ is a unary operation, Z € A, and the following identities hold for all
R,S, T € A:

(RoS)oT =Ro(SoT),
(R®eS)ocT=RoT®SoT,
RoI=ToR=R,

(R7)~ =R,

(ReS)" =R~ a5,
(RoS)"=S"oR~,
R-0oRoS®S=1.

The properties that hold for a binary RA can be seen as the minimal properties
that hold for an RA whose universe is a set of m-ary relations, with m > 2.
These correspond to the list of properties of RAs given by Tarski [35]. When
the universe is a set of m-ary relations, with m > 3, further properties arise,
due to further operations. Tarski provided for RAs the above list of properties
because he was interested mainly in formalising the theory of binary relations.

We now describe ternary RAs, which need an additional operation (rotation)
and therefore additional properties.

4.2 Ternary RAs
U is a ternary RA with universe A if:
1. A is a set of ternary relations; and

2. U = (A,®,0,”,L,T,0,7,7,Z) where (4,®,®,”,L,T) is a Boolean
algebra (called the Boolean part, or reduct, of i), o is a binary operation,
~ and T are unary operations, Z € A, and the following identities hold
for all R, S,T € A:

(RoS)oT =Ro(S0T),
(R®S)oT=RoT@®SoT,
RoZ=ZoR=R,

(R7)~ =R,

(ReS)" =R~ &S5,

(RoS)~" =S~oR~, (R7)7)” =R,

R~ cRoS0®S=1, (Re@S) " =R" @S5

12



4.3 Atomic RA

An atom of an RA U/ is a minimal nonzero element, i.e., R is an atom if R # |
and for every S € A, either R©®S = L or R®S = L. An RA is atomic if every
nonzero element has an atom below it; i.e., if for all nonzero elements R, there
exists an atom A such that A @ R = A.

In the rest of the paper, we focus on atomic, finite RAs of which the Boolean
part is of the form (27,uU,N,~,0, T):

1. The top element T is a finite set of atoms; the bottom element 1 is the
empty set (J; the universe is the set 27 of all subsets of T; and

2. the operations @, ® and ~ are the usual set-theoretic operations of union
(U), intersection (M) and complement (~) with respect to T (i.e., (VR €
2")(R=T\R)).

A finite RA is atomic, and its Boolean part is completely determined by its
atoms. Furthermore, in an atomic RA, the result of applying any of the opera-
tions of the RA to any elements can be obtained from the results of applying the
different operations to the atoms. Specifying a finite, thus atomic, RA reduces
thus to specifying the identity element and the results of applying the different
operations to the different atoms.

5 An atomic binary RA of 2D orientations

We introduce in this section the first RA of 2D orientations.

5.1 The field

The field field(U) of an RA U with universe A is the union of the fields of
the relations in A; i.e., field(U) = g4 field(R). The field of the RA to be
introduced is the set 2DO of 2D orientations.

5.2 The universe

Given an orientation X of the plane, another orientation Y can form with X
one of the following qualitative configurations:

1. Y is equal to X: the angle (X,Y) is equal to 0.

2. Y is to the left of X: the angle (X,Y") belongs to (0, 7).

w

. 'Y is opposite to X: the angle (X,Y) is equal to .

o~

. 'Y is to the right of X: the angle (X,Y’) belongs to (m,27).

13
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Figure 3: (Left) The converse b~ of a CYC; atom b; (Right) The composition
for every pair of CYC, atoms: the entry on row 7, column j is the CYC, relation
consisting of the composition of the leftmost element of the row and the top
element of the column.

We denote the four configurations by e(Y,X), I(Y,X), o(Y,X) and r(Y,X), re-
spectively. The configurations are Jointly Exhaustive and Pairwise Disjoint
(JEPD): given any two orientations of the plane, they stand in one and only
one of the configurations.

Definition 3 (the atoms) The RA contains four atoms: e,l,o,7. We will
refer to the set of all atoms as BIN.

BIN is the universal binary relation over 2DO: BIN = T%Do =2D0O x 2DO.

Definition 4 (the universe) The universe of the RA, i.e., the set of all its
relations, is the set of subsets of BIN. An element B of the universe is to be
interpreted as follows: (VX,Y € 2DO)(B(Y, X) & \,5b(Y, X))

We refer to the set of singleton relations as ATy AT, = {{e},{l},{o}, {r}}.
We notice that AT is a set of relations, whereas BIN is a relation. When there
is no risk of confusion, we omit the braces in the representation of a singleton
relation.

5.3 The operations applied to the atoms

Figure 3(Left) gives the converse for each of the atoms. Figure 3(Right) gives
the composition for every pair of atoms.

5.4 The identity element

The identity element is the atom e; the composition table of Figure 3(Right)
can be used to verify that: (VR € 2B/V)(Roe =eo R = R).

The RA so defined is an atomic binary RA, which we name CYC,: CYC, =
(2BIN U,n,~,0, BIN,~ ,e). BIN is the universal CYC, relation: (VX,Y €
9DO)(BIN(Y, X)).

14



The structure of CYCy, is very similar to Allen’s algebra of temporal intervals
[1], presented by Ladkin and Maddux as an atomic binary RA [20]. In Appendix
A, we verify the RA properties for CYCy.

5.5 Additional definitions

We make use of the isomorphism f?DO” alluded to earlier, from the set 2DO
onto the set of radii of circle Cp1: as we have seen, given an orientation z,
f12DO_>(z) is the radius (OP;] of Co 1, excluding the centre O, such that the
orientation of the vector OP; is z.

Definition 5 (sector of a CYC, relation) The sector determined by an ori-
entation z and a CYC, relation B, denoted sect(z, B), is the sector of circle
Co .1, excluding the centre O, representing the set of orientations z' related to z

by the relation B: sect(z, B) = {flgDOﬁ(z’)\B(z’,z)}.

Remark 1 The sector determined by an orientation and a CYCy relation does

not include the centre O of circle Co,1. Therefore, given n orientations z1,. .., 2,
n

and n CYCy relations Bi,..., B,, the intersection n sect(zi, B;) 1is either the
i=1

empty set or a set of radii:' this cannot be equal to the centre O, which would be

possible if the sector determined by an orientation and a CYCy relation included

O. This is important for the understanding of the proof of Theorem 6.

Definition 6 Let B be a CYCy relation:

1. B is convex if for all orientations z, sect(z, B) is a convez part of the
plane.

2. The dimension of B is the dimension of the sector it determines with any
orientation.

3. B is holed if:

(a) it is equal to BIN; or

(b) the difference BIN \ B is a CYCy, relation of dimension 1 (is equal
to e, o or {e,o}).

The two atoms e and o of CYC, are of dimension 1, the other two (I and r)
of dimension 2. Moreover, the dimension of a CYC, relation in general is the
greatest of the dimensions of its atoms.

LA set of radii represents, according to our convention (Definition 1), a set of orientation
values.

15
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b3

b2

z

Figure 4: The ternary relation induced from three CYC, atoms: b1b2b3(X,Y, 7)
iff by (Y, X) A ba(Z,Y) A bs(Z, X).

Intuitively, a CYC; relation is holed if the sector it determines with any
orientation is almost equal to the entire surface of circle Cp 1; i.e., the topological
closure of the sector is equal to the entire surface.

We will refer to the set of all CYC, relations which are either convex or holed
as BCH. BCH splits into:

1. eight convex relations: {e}, {l},{o},{r},{e,},{e,r}, {l,0},{o,r}; and
2. four holed relations: {l,r},{e,l,7},{l,0,7}, {e,l,0,7}.

Notice that neither of the CYC, relations {e,!,0} and {e, 0,7} is convex. For
instance, the sector determined by an orientation, say z, and the former relation,
{e,l, 0}, is equal to m minus the centre of Cg ;.

Definition 7 (induced ternary relation) Given three CYCy, atoms by, bs, b3,
we define the induced ternary relation bibabs as follows (see Figure 4):

(VX,Y, Z)(bibabs (X, Y, Z) & b (Y, X) Abs(Z,Y) A bs(Z, X))

The CYCp composition table (Figure 3(Right)) has 12 entries consisting of
atoms, the remaining four consisting of three-atom relations. Therefore any
three 2D orientations stand in one of the following 24 JEPD configurations:
eee, ell, eoo, err, lel, U, llo, lr, lor, lre, Irl, lrr, oeo, olr, ooe, orl, rer, rle, ril,
rlr, rol, rrl, rro, rrr. According to Definition 7, rol(X,Y,Z), for instance, means
r(Y,X)ANo(Z,Y)ANI(Z,X).

The composition table rules out the other, (4 x 4 x 4) — 24, induced ternary
relations b1 bob3; these are inconsistent: no triple (21, 22, 23) of orientations exists
such that for such an induced relation one has by (z2, 21) A ba(23, 22) A b3 (23, 21)-

16



6 An atomic ternary RA of 2D orientations

As we will see, the CYCORD relation cyc [31, 32] holds on a triple (21, 22, 23)
of 2D orientations if the images P,,, P,, and P,, of z1, 2o and z3, respectively,

of the isomorphism f22DO_’ (Definition 1) are:
1. pairwise distinct, and

2. such that P,, is met before P,, when we scan the circle Cp ; in a clockwise
direction starting from P,,.

The RA CYC; cannot represent the relation cyc. However, we can define an
atomic ternary RA of which the atoms are the “induced ternary relations” de-
scribed above, which will have cyc as one of the elements of its universe.

6.1 The field

As for CYCy, the field of this new RA, which we name C)C;, is the set 2DO of
2D orientations.

6.2 The universe

Definition 8 (the atoms) An atom of CYC; is any of the 24 JEPD configu-
rations a triple of 2D orientations can stand in. We denote the set of all atoms
by TER: TER = {eee,ell,eoo0,err,lel,lll,llo,llr,lor,lre,lrl, lrr, oeo, olr, ooe,
orl,rer,rle,rll,rlr,rol, rrl, rro,rrr}.

TER is the universal ternary relation over 2DO: TER = T!¢ = 2DO x

2Do
2D0O x 2DO.

Definition 9 (The universe) The universe of the ternary RA, i.e., the set of
all its relations, is the set of subsets of TER. An element T of the universe is
to be interpreted as follows: (VX,Y,Z € 2DO)(T(X,Y,Z) & \/,cr t(X,Y, Z))

We refer to the set of singleton relations as AT AT: = {{t} : t € TER}.
When there is no risk of confusion, we omit the braces in the representation of
a singleton relation.

6.3 The operations applied to the atoms

Figure 5 gives the converse and the rotation for each of the 24 atoms.

In order to give a simple way of writing the composition tables, we have
to look closely at how composition is computed. Given four 2D orientations
X,Y, Z,W and two atoms t; and ¢, corresponding, respectively, to the induced
ternary relations by babs and b b5b5, the conjunction t1(X,Y, Z) Ato(X, Z, W) is
inconsistent if b # b} (see Figure 6 for illustration); this is because the CYC,
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(¢ e [0 Je oo [eo [ Jem [eo J[e [e7 [ ]

eee | eee | eee llo | orl | lor 0eo | oeo | eoo ril | lrr | Irl
ell |lre |lre lUr | rrl | lr olr | rro | llo rir | rrr | Ul
eoo | ooe | ooe lor | rol | olr ooe | eoo | oeo rol | lor | orl
err | rle | rle lre | ell | rer orl | llo | rro rrel | lr | rrl
lel | lel | err Irl |1l | rrr rer | rer | ell rro | olr | rol
iur | Irl | lrr lrr | il | rir rle | err | lel rrr | vir | rll

Figure 5: The converse ¢t~ and the rotation ¢t~ of a CYC; atom ¢.

b, by

/
1A b3

by by

A

Figure 6: The conjunction b;babs(X,Y, Z) A b b4b5(X, Z, W) is inconsistent if
by # b].
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atoms are JEPD. Stated otherwise, when bs # b} we have t; o t5 = (. Thus
composition splits into four composition tables, corresponding to the following
four cases:

1. Case 1: b3 = b} = e. This corresponds to t; € {eee,lre,ooe,rle} and
to € {eee, ell, eoo, err}.

2. Case 2: b3 = b} = 1. This corresponds to t; € {ell,lel,lll,lrl,orl,ril,rol,rri}
and ty € {lel,lll,llo,lr,lor,lre,lrl,lrr}.

3. Case 3: b3 = b} = o. This corresponds to t; € {eoo,llo,oeo,rro} and
ta € {oeo, olr, ooe, orl}.

4. Case 4: b3 = b} = r. This corresponds to t; € {err,llr,lor,lrr,olr, rer,
rlr,rrr} and to € {rer,rle,rll,rlr,rol,rrl,rro,rrr}.

Figure 7 presents the four composition tables.?

6.4 The identity element

Given a universe U, we have defined the relation Z{?* as {(a,b,b) : a,b € U}.
I,t]” expresses equality of the last two arguments, and leaves unspecified the
relation between the first two. Since b1bab3(X,Y, Z), where b1babs is a CYC;
atom, represents the conjunction b1 (Y, X)Abo(Z,Y)Ab3(Z, X), this means that
if Y and Z are equal then for b1b2b3(X,Y, Z) to hold, by must be e, and b; and
bs must be identical. Thus, when U coincides with 2DO, we get:

I’ézf)o = {eee, lel, oeo, rer}

Using the composition tables, we can verify that 152130 is an identity element
for CYC;:

(VR € 2"PR)(Ro I5f =I5 o R =R)

This completes the presentation of CYC;:

Cyct = <2TER5 Ua mai 703 TER,V 7A 71—;2]3)0>

TER is the universal CYC; relation: (VX,Y,Z € 2DO)(TER(X,Y, Z)).
In Appendix B, we verify the RA properties for an atomic ternary RA.

2 Alternatively, one could define one single composition table for CYC;. Such a table would
have 24 x 24 entries, most of which (i.e., 24 x 24 — (16 + 64 + 16 + 64)) would be the empty
relation.
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| o || eee | ell | eoo | err |

eee || eee | ell eoo | err

Ire || lre | {lel,lil,lrl} | llo | {lr,lor,lrr}

ooe || ooe | orl oeo | olr

rle || rle | {rll,rol,rrl} | rro | {rer,rir,rrr}

| o || lel | 1 | llo | lr | lor | Ire | irl | lrr
ell ell | ell eoo | err err | eee | ell err
lel lel | 1l llo | llr lor | lre | Irl lrr
we || w | llo | {Urdor,lrr} | lrr | lre | {lelULlrl} | lrr
Irl || el | {lellllirl} | llo | lUr lr | lre | Irl {ilr,lor,lrr}
orl || orl | orl oeo | olr olr | ooe | orl olr
rll || rll | {rll,rol,rrl} | rro | rrr rrr | rle | rll {rer,rlr,rrr}
rol || rol | rrl rro | rrr rer | rle | rll rir
rel || rrl | rrl rro | {rer,rlr,rrr} | vlr | rle | {ril,rol,rrl} | rir
| o || 0eo | olr | ooe | orl |

eoo || eoo | err eee | ell

llo || llo | {llr,lor,lrr} | Ire | {lel,lll,Irl}

oeo || oeo | olr ooe | orl

rro || rro | {rer,rlr,rrr} | rle | {ril,rol,rri}

[0 [[rer [rie]ri [ rir [ rol | rr [ rro ] rrr

err || err | eee | ell err ell | ell eoo | err
lUr || Ur |lre | lrl {Ur,dor,irr} | trl | {lelULlrl} | llo | lr
lor lor | lre | Irl Irr lel | 1l llo | llr
ler || trr | lre | {lelllLlrl} | lrr ur | llo | {lrlor,lrr}
olr olr | ooe | orl olr orl | orl oeo | olr
rer || rer | rle | ril rir rol | rrl rro | rrr
rlr || rir | rle | {ril,rol,rri} | rir rrl | rrl rro | {rer,rir,rrr}
rer || rrer | rle | ril {rer,rlir,rrr} | vl | {ril,rol,rrl} | rro | rrr

Figure 7: The CYC; composition tables: case 1, case 2, case 3 and case 4,
respectively, from top to bottom.
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z z 7 Y Y Y Y Y
Y s 7 z
Y z
X X X X X X
Y \4 Y z z z z z
z $ v Y
z Y
X=Y=Z X=Y X=Y X=Y X X X
z z YZ v=z

Y

Figure 8: Graphical illustration of the 24 CYC; atoms: from top to bottom,
left to right, the atoms are Irl, orl, ril, rol, rri,rro, rrr, U, llo,lrr,lor, llr, olr, rir,
eee, ell, eoo, err,lel, oeo, rer, lre, ooe, rle.

21



6.5 Examples

Example 1 For each CYC; atom t, Figure 8 presents a configuration of orien-
tations X, Y and Z such that t(X,Y,Z) holds:

e The top row illustrates, from left to right, the atoms Irl, orl,rll, rol,rrl,rro,
rrr.

e The second row from the top illustrates, from left to right, the atoms
Ui, o, lrr, lor,llr,olr,rir.

e The third row from the top illustrates, from left to right, the atoms eee, ell,
eoo, err,lel, oeo, rer.

e Finally, the bottom row illustrates, from left to right, the atoms lre, ooe, rle.

Example 2 Consider again Figure 8:

1. Each atom illustrated on the second and fourth rows from the top is the
converse of the atom illustrated just above it, on the preceding row.

2. The first and last three illustrations of the third row from the top have
nothing underneath them, on the bottom row: each of the corresponding
atoms 1s its proper converse.

3. Consider the relation cyc defined on the set 2DO as follows:

(VX,Y,Z € 2DO)(cyce(X, Y, Z) & Y A XNZ#YANZ # X Aew(X, Y, Z))

The relation cw holds on a triple (X,Y,Z) of 2D orientations if and
only if we first meet Y and then Z when we move in a clockwise direction
starting from X. Thus the relation cyc expresses strict betweenness in a
clockwise direction. This relation is the unique relation of the CYCORD
theory [31, 32], and is indeed an element of CYCy: cyc = {lrl, orl, rll, rol,
rrl,rro,rrr} (the set of all atoms illustrated on the top row).

4. The converse of cyc is the set of all atoms illustrated on the second row
from the top:
cyc™ = {1l llo, lrr, lor, llr, olr, rlr}

Example 3 The composition rule for the CYCORD theory is as follows, and
can be verified using the CYC; composition tables:
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6.6 Additional definitions

Definition 10 (cross product of CYC; relations) The cross product of
three CYCy relations B, Be, Bs, denoted TI(B1, Bs, Bs), is the CYC; relation
consisting of those atoms b1bybs such that by € By,bs € Bs, b3 € Bs:

H(Bl,BQ,B3) = {blebg 1 by € Bl,bQ € B2,b3 S B3} NTER
Definition 11 Let R be a CYC; relation:

1. The first, second and third projections of R are the CYCy relations 7' (R),
V2(R) and 73(R), respectively, defined as follows:

vl(R) = {bl € BIN : (Ebg,bg S BIN)(b1b2b3 S R)},

VZ(R) = {b2 € BIN : (Ebl,bg S BIN)(b1b2b3 S R)},

VS(R) = {bg € BIN : (Ebl,bz S BIN)(b1b2b3 S R)}

2. R is projectable if R = TI(7*(R), v2(R), V3(R)).

3. R is convex if it is projectable, and each of its projections is a convex CYC,
relation.

4. R is said to be {convex,holed} (convex or holed) if it is projectable, and
each of its projections is a CYCy relation which is either convezr or holed

(belongs to BCH ).

We notice that, given a CYC; relation R, v!(R), v?(R) and /3(R) are the
most specific CYCy relations such that:

(VX,Y, Z)(R(X,Y, Z) = 7' (R)(Y, X) A V*(R)(Z,Y) A V*(R)(Z, X))
Example 4 1. TI({e, 0}, {i},{l,r}) = {ell, olr}.

2. Let R = {ell,llo}. We have the following: 7'(R) = {e, 1}, V*(R) = {l}
and 73(R) = {l,0}.

3. The cross product of the three projections of the relation R above is

(v (R), V2(R),v*(R)) = II({e, (1}, {I}, {l,0}) = {ell,lll,llo}. Thus R #
I(vY(R),V2(R),?(R)), and R is not projectable.

The set of all projectable CYC; relations can be enumerated by computing for
every three CYCy relations their cross product. The set contains 1518 elements,
including the empty relation.

We will refer to the subset of all {convex,holed} CYC; relations as TCH.

Definition 12 (closures) Let S denote a subset of CYCy. The weak closure of
S is the smallest subset SV¢ of CYC; verifying the following properties:

(P1) S C 8*¢; and
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(P2) (VR’ S c Sw(:)(Rv c Sw(:’Rf-\ c S“’”,Rﬂ S e Sw(:)'

The closure of S under strong 4-consistency, or sdc-closure of S, is the smallest
subset S*4¢ of CYC, verifying the following properties:

(P3) S C &%¢; and
(P4) (VR,S,T € 8**°)(R~ € §**,R™ € §***,RNS € §**,Ro SNT € §).

The closure of S is the smallest subset S¢ of CYCy verifying the following prop-
erties:

(P5) § C 8% and
(P6) (VR,S € S) (R~ €S8 RT €S RNSeS  RoSeS.

Given a subset S of CYC;, we have S¥¢ C S§%¢ C S°. The relations in S°
can be viewed as resulting from the “execution” of (well-formed) expressions
constructed from the alphabet Vs = S U {~,7,N,0,(,)}; we refer to such
expressions as S¢-expressions, and to the set of all of them as Xp(S¢).

Definition 13 Xp(S¢) is the smallest set of expressions over Vg verifying the
following two properties:

1. a CYCy relation belonging to S belongs to X p(S°); and
2. if e1 and es belong to Xp(S°) then so do (e1)™,(e1)",e1 Nea,e1 0 es.

We suppose the reader familiar with (labelled) binary trees (each node of such
a tree has at most two immediate successors). If a (binary) tree ¢ reduces to a
leaf labelled with R, we represent it as R; otherwise, let r be the root of ¢ and
a the label of r:

1. if 7 has one immediate successor then we represent ¢ as («,t'), where t' is
(the representation of) the subtree rooted at the immediate successor of
r;

2. if r has two immediate successors then we represent ¢ as (t1, «, t2), where
t1 and t9 are (the representations of) the subtrees rooted, respectively, at
the left immediate successor and at the right immediate successor of r.

Definition 14 (tree) The tree, ts(e), and the number of subtrees, nsts(e), of
an S°-expression e are defined recursively as follows:

1. for all R € S, ts(R) = R and nsts(R) = 1;
2. ts(e7) =(",ts(e)) and nsts(e™) =1+ nsts(e);

3. ts(e™) = (", ts(e)) and nsts(e™) = 1 + nsts(e);
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4. ts(eiNes) = (ts(e1),N,ts(e2)) and nsts(eiNes) = 1+nsts(er)+nsts(ez);
and

5. ts(eroey) = (ts(er),o,ts(e2)) and nsts(eioes) = 1+nsts(er)+nsts(ea).

Thus the leaves of the tree of an S®-expression are labelled with elements of
S, and the internal nodes with the operators ~, =, N and o. The number of
subtrees, nsts(e), of an S°-expression e is the sum of the number, nls(e), of
leaves of ts(e) and the number, nogs(e), of operators of e: nsts(e) = nls(e) +
nos(e); nos(e) indicates the number of internal nodes of ts(e), i.e., the number
of operators to apply in order to get the corresponding element of S¢. The
procedure enumerate() in Figure 9 enumerates the closure of a subset S of
CYC;: the elements of S are supposed ordered. When the procedure completes,
variable size indicates the number of relations in the closure of S, the array ¢
contains the elements of the closure of S, and for each i = 1...size, [i] is the
tree of an S°-expression whose “execution” gives c[i], nst[i] is the number of
subtrees of ¢[i].

Remark 2 In the remainder of the paper, and particularly in the proof of The-
orem 9, we refer to the tree t[i] as the tree, ts(c[i]), of the relation c[i] of
8¢, and to nst[i] as the number of subtrees, nsts(ts(c[i])), of ts(c[i]): t[i] =
ts(cli]), nst[i] = nsts(ts(c[i])).

7 CSPs on cyclic ordering of 2D orientations

We define a CYCy-CSP as a CSP of which the constraints are C)Cj relations on
pairs of the variables; a CYC;-CSP as a CSP of which the constraints are C)C;
relations on triples of the variables. For both types of CSPs, the universe is the
set 2DO of 2D orientations. We use the term CYC-CSP to refer to a CSP which
is either a CYCy-CSP or a CYC;-CSP.

A CYCp-matrix (resp. CYCi-matrix) of order n is a constraint matrix of
order n of which the entries are CYC, (resp. CYC;) relations. The constraint
matrix associated with a CYCj-CSP (resp. CYC;-CSP) is a CYCj,-matrix (resp.
CY(C;-matrix).

A scenario of a CYC-CSP is a refinement P’ such that all entries of M are
atoms. A consistent scenario is a scenario which is consistent.

If we make the assumption that a CYC-CSP does not include the empty
constraint, which indicates a trivial inconsistency, then a CYC;,-CSP is strongly
2-consistent and a CYC;-CSP is strongly 3-consistent.

7.1 Achieving path consistency for a C)C,-CSP

A simple adaptation of Allen’s constraint propagation algorithm [1] can be used
to achieve path consistency (hence strong 3-consistency) for CYC,-CSPs. Ap-
plied to a CYCy,-CSP P, such an adaptation would repeat the following steps
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ook W

10.
11.
12.

13.
14.

15.
16.

17.
18.
19.
20.

Input: a subset S = {Ry,..., Ry} of CYC; (S C 2TFR),
Output: enumeration of the closure §°¢.
procedure enumerate(S, ¢, t, nst);
for i « 1 to m{c[i] + Ry;t[i] « Rinst[i] = 1;}
size < m;
1+ 1;
while(: < size){
R« (c[1])7;
if(R ¢ c){size+ +;c[size] < Rjt[size] - (7, t[i]);nst[size] < 1+ nst[i];}
R« (c[1])7;
if(R ¢ c){size+ +;c[size] < Rjt[size] - (7, t[i]);nst[size] < 1+ nst[i];}
J< L
while(j < i){
R« c[i] N cfj;

if(R ¢ c){size + +;c[size] < Rjt[size] < (t[i],N, t[j]);nst[size] < 1 +
nstli] + nstljl;}

R « cfil o clj;

if(R ¢ c){size + +ic[size] < R;t[size] < (t[i], o, t[]]);nst[size] < 1 +
nstli] + nstljl;}

R« clj] o cli

if(R ¢ c){size + +;c[size] « Rjt[size] « (t[]], o, t[i]);nst[size] + 1 +
nstlj] + nstlil}

J++
}
i+ +;

}

Figure 9: Enumeration of the closure of a subset of CYC;.
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Figure 10: (I) The ‘Indian tent’; and (II) its associated CYC,-CSP: the CSP is
path consistent but not consistent (path consistency does not detect inconsis-
tency even for CYC,-CSPs entirely labelled with atoms).

until either stability is reached or the empty relation is detected (indicating
inconsistency):

1. Consider a triple (X;, X;, Xj) of variables verifying (M*);; Z (M),
(MP)5)

2. (MP)ij < (MP)i; 0 (MP)ir 0 (MT)1;
3. If (M%);; = 0) then exit (the CSP is inconsistent).

Example 5 (the ‘Indian tent’) The ‘Indian tent’ consists of a clockwise tri-
angle (ABC), together with a fourth point D which is to the left of each of the
directed lines (AB) and (BC) (see Figure 10(I)).

The knowledge about the ‘Indian tent’ can be represented as a CYC,-CSP
on four variables, X1, Xo, X3 and X4, representing the orientations of the
directed lines (AB), (AC), (BC) and (BD), respectively. From (ABC) being
a clockwise triangle, we get a first set of constraints: {r(Xa, X1),r(Xs, X1),
(X3, X2)}. From D being to the left of each of the directed lines (AB) and
(BC), we get a second set of constraints: {I(X4, X1),1(X4, X3)}.

If we add the constraint r(X4, X2) to the CSP, which states that the point D
should be to the right of the directed line (AC), this leads to an inconsistency.
Réhrig [32] has shown that using the CYCORD theory one can detect such an
inconsistency, whereas this cannot be detected using classical constraint-based
approaches such as those in [8, 9, 18].

The CYCy-CSP is represented graphically in Figure 10(I1): a CYCy constraint
R(X,Y) is represented as the directed edge (X,Y) labelled with R. The CSP is
path-consistent: (Vi, j, k)(Pij C P, o Py;).> However, as mentioned above, the
CSP is inconsistent. Therefore:

3This can be easily verified using the CYC; composition table.
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Theorem 1 Path-consistency does not detect inconsistency even for CYCy-
CSPs entirely labelled with atoms.

7.2 Achieving strong 4-consistency for a C)C,-CSP

A constraint propagation procedure, s4c¢(), for CYCy-CSPs is given in Figure 11;
the procedure is an adaptation of Allen’s algorithm [1] to ternary relations. The
input is a CYCs-CSP P of order n. When the procedure completes, P verifies
the following;: (Vi,j, k,l < TL)((MP)ijk - (MP)ijl o (MP)dk)

The procedure makes use of a queue Queue. Initially, we can assume that all
triples (X;, X;, X%) such that 1 < i < j < k < n are entered into Queue. The
procedure removes one triple from Queue at a time. When a triple (X;, X;, X;)
is removed from Queue, the procedure eventually updates the relations on the
neighbouring triples (triples sharing two variables with (X;, X;, X})). If such
a relation is successfully updated, the corresponding triple is sorted, in such a
way to have the variable with the smallest index first and the variable with the
greatest index last, and the sorted triple is placed in Queue (if it is not already
there) since it may in turn constrain the relations on neighbouring triples: this
is done by add-to-queue(). The process terminates when Queue becomes empty.

Theorem 2 The constraint propagation procedure sdc() achieves strong 4-consistency
for the input CYC;-CSP, and runs into completion in O(n*) time, where n is
the number of variables of the CSP.

Proof. A C)YC;-CSP is strongly 3-consistent. Procedure s4c() achieves 4-
consistency, therefore it achieves strong 4-consistency. The number of variable
triples (X;, X;, Xx) is O(n®). A triple may be placed in Queue at most a con-
stant number of times (24, which is the total number of CYC; atoms). Every
time a triple is removed from Queue for propagation, the procedure performs
O(n) operations. m

7.3 A consistent scenario search algorithm for C)YC;-CSPs

We will show that the task of checking consistency for a general CYC;-CSP is
NP-complete; thus, with the assumption P # N P, no polynomial algorithm can
be found for that task. On the other hand, we will show that the set of C)YC;
atoms is tractable; specifically, we will show that a CYC;-CSP for which every
three variables X, Y, Z are involved in a constraint of the form ¢(X,Y, Z), where ¢
is a CYC; atom, can be checked for consistency using the s4c() procedure, which
performs in polyomial time. We can thus use a backtracking search procedure
to check consistency for a general CYC;-CSP, which will search for a scenario,
if any, of the input CYC;-CSP which is strongly 4-consistent, thus consistent.
Such a search procedure is provided in Figure 12, which is similar to the one of
Ladkin and Reinefeld [21] for temporal interval networks, except that:
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10.
11.
12.
13.
14.
15.
16.
17.
18.
19.

Input: a CYC;-CSP P.
Output: the CSP P made strongly 4-consistent.
procedure sdc(P);
initialise Queue;
repeat{
get next triple (X;, X;, X;) from Queue;
for m < 1 to n{
Temp < (MP)ijm 0 (M) g5 0 (MP) it
If Temp = () then exit (the CSP is inconsistent);
if Temp # (M")ijm
{add-to-queue(X;, X;, X,,);update(P, 1, j, m, Temp);}
Temp « (MP)igm 0 (M7 )irj © (M")ijm;
If Temp = () then exit (the CSP is inconsistent);
if Temp # (MP)itm
{add-to-queue(X;, Xy, X, );update(P, i, k,m, Temp);}
Temp < (MP) jem N (MF) i 0 (MP) jim;
If Temp = () then exit (the CSP is inconsistent);
if Temp # (MP)jkm

{add-to-queue(X;, Xy, X,,,);update(P, j, k, m, Temp);}

}

until Queue is empty;

procedure update(P, i, 7, k,T);

C(MP)ije = T3 (MP)ipg = T35 (MP)jri = T75

(MP)jie —  (MP)jra) 75 (MP)rij = (MP)js) ™5 (MF )i
(MP)1if) 7

Figure 11: A constraint propagation procedure for C)C;-CSPs.
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10.
11.
12.
13.
14.

Input: A CYC;-CSP P,
Output: true if and only if P is consistent;
function consistent(P);
sdc(P);
if(P contains the empty relation)return false;
else
if(P contains triples labelled with relations other than atoms){
choose such a triple, say (X;, X;, Xi);
T (MP)ijk;
for each atom ¢ in T'{
refine (MT);;x to t (ie., (M), + t);
if(consistent(P))return true;
}
(MP),;jk « T;
return false;

}

else return true;

Figure 12: A consistent scenario search algorithm for CYC;-CSPs.
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1. it refines the relation on a triple of variables at each node of the search
tree, instead of the relation on a pair of variables; and

2. it makes use of the procedure s4c(), which achieves strong 4-consistency,
in the preprocessing step and as the filtering method during the search,
instead of a path consistency procedure.

The other details are similar to those of Ladkin and Reinefeld’s algorithm.
Definition 15 Let P denote a CYCy-CSP of order n:
1. P is projectable if for all i,j,k, (M), is a projectable CYC; relation.

2. The projection of P is the CYCy-CSP s7(P) with the same set of variables,
and such that: (Vi j < n)(MY )i = ([ ((MF)ig) 072 (M P)1s)0
k<n
VAMT)irs)])-

The next two theorems will be needed in the next section, for the proof of
Theorem 6.

Theorem 3 A projectable CYCy-CSP is equivalent to its projection.
Proof. Let P be a projectable CYC;-CSP; thus:

(¥, 5, &) (M )i = T(T (M) i), 72 (M P)iji), 72 (MP)ij1)]

In other words, the constraint (M7T);;x(X;, X;, Xx) can be equivalently writ-
ten as the following conjunction of binary constraints: 7' ((M*);;1)(X;, Xi) A
VE(MP) k) Xk, X)) A7 ((MP)ij1) (X, X;). P can be written as the conjunc-
tion /\ (M%) i1 (Xi, Xj, Xy); replacing the constraint (M7) 1, (X, X, X3)
4,5,k<n
by the equivalent conjunction of binary constraints, we get:
p= /\ [ (MP)ia) (X5, Xa) A2 (M7 )ign) (Xe, X5) A 72 (M )ijn) (X, X))
i,7,k<n

Because the conjunction considers all possible triples (i, 7, k), with i, 5,k < n,
it can be split into:

p= N\ VM0 xon N\ s x) s\ P70 (e X0

i,j,k<n i,j,k<n i,j,k<n
We consider now the main three subconjunctions and rename i, j, k as k,1, 7,

respectively, in the second subconjunction, and as i, k, j, respectively, in the
third subconjunction; we get:

p= N\ Mo xon NS X X0 PR X, X

G k<n G k<n igik<n
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Putting back the three subconjunctions into one main conjunction, we get:
P= N [V (MP)ij) (X5, XA (MP) ki) (X5, X) AV (M P )irg ) (X, Xi)]
i,4,k<n
which is equivalent to:
P= N [N UMYX, X0) A F2(MP)kig) (X5, Xi) A 7 (MT)ig5) (X, X))
,j<n k<n
which in turn is equivalent to:
P= N\ [IF(MP)ig) A7 (MP)hig) A2 (M) )1 (X5, X))
i,j<n k<n

This corresponds exactly to the constraint matrix of the projection 57 (P) of P.
]

Theorem 4 Let P denote a projectable CYCy-CSP of order n. If P is strongly
4-consistent then its projection <7 (P) verifies the following: (Vi,j,k1,ks < n)[(MYVP));; =
THMEP )ijhy) = T2((MP)gyi5) = T(MP )iny 5) = 7H(ME )ijn, )]

Proof (sketch). Strong 4-consistency of P implies its closure under the oper-

ations of converse and rotation, as well as under what we will refer to as the
operation of strong 4-consistency, or s4c-operation for short:

(MP)iji = (MP)iji 0 (M) ij0 0 (M7 )i
From the closure under the operations of converse and rotation, we get:
(Vb1babs € TER)
(brbabs € (MF)ijn,  b3(bs) b1 € (MP)ip,; & (b3) " ba(ba) ™ € (MP)1,5)

which implies the following:
(Vb1 € BIN)[b1 € 7' (M7)iji,) & b1 € V2 (M")inyj) < b1 € V2 ((MP)1y5)]

Thus (Vi, j, k1)[V' (MP)ijr,) = V2 (M7 )kyi5) = V2 (MP)iny ).

Let by € 72 ((MP)ijx,), and suppose that for some k2 # k1, b1 ¢ 72 ((MF)ijk, ).
We use the fact that given two CYC; atoms ¢; and ¢» and a CYCj, atom b, if b ¢
V' (t1) then b ¢ 7' (t1 o t2). We get that by ¢ /' (M")ijk, © (M )ikok,). Now
closure under the sdc-operation implies that (MF);;x, € (MP)ijk, o (M )ikopy -
From b1 ¢ vl((MP)iij o (MP),']Q]“), we derive that b1 ¢ vl((MP)z‘jkl), which
contradicts our supposition. m

A CYCy-CSP P can be transformed into an equivalent CYC;-CSP, say P’, as
follows:

1. P’ has the same set of variables as P; and

2. (Vi, j, k) (MP)igi, = TL((MP) 5, (MP)j, (MP) i)
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:zk'

(MV(P))ik+1ik

Figure 13: Illustration of the proof of Theorem 6.

8 A tractability result

The aim of this section is to show that the closure under strong 4-consistency,
(AT )%, of the set AT; = {{t} : t € TER} of all CYC; atoms is tractable; more
specifically, using the terminology in [2], we show that the CYC; composition
tables are complete for (A7;)**°. We first prove that if a CYC;-CSP expressed
in TCH is strongly 4-consistent then it is globally consistent, from which the
result will follow. The proof will need Helly’s convexity theorem:

Theorem 5 (Helly’s Theorem [4]) Let S be a set of conver regions of the
n-dimensional space R™. If every n + 1 elements in S have a non empty inter-
section then the intersection of all elements of S is non empty.

For n = 2, the theorem states that if a set of convex planar regions is such that
every three regions in the set have a non empty intersection then the intersection
of all regions in the set is non empty.

Van Beek [36] has used the specialisation to n = 1 of Helly’s theorem to
prove a tractability result for path consistent CSPs of Allen’s convex relations.
We will need the specialisation to n = 2.

Theorem 6 Let P be a CYC;-CSP expressed in TCH: (Yi,j,k)(MT)ijx €
TCH). If P is strongly 4-consistent then it is globally consistent.

Proof. Since P is expressed in TC H and is strongly 4-consistent, we have the
following;:

1. P is equivalent to its projection 7 (P), which is a CYCy-CSP expressed in
BCH: (¥i,5)(MVP);; € BOH).

2. The projection s7(P) is strongly 4-consistent.

So the problem becomes that of showing that s7(P) is globally consis-
tent. For this purpose, we suppose that the instantiation (X;,, X;,,..., X, ) =
(21,22,...,2k), k > 4, is a solution to the k-variable sub-CSP (7(P))|(x,, ... x:, }
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of 7(P). We need to prove that the partial solution can be extended to any
(k 4 1)st variable, say X;, ,,, of 7(P).* This is equivalent to showing that the
following sectors have a non empty intersection (see Figure 13 for illustration):
sect(z1, (MY P\ i), sect(za, (MY P, i), sect (2, (MY )Y, L),

Since the (MV(P))ik+1ij,j = 1...k, belong to BC'H, each of these sectors
is:

1. a convex subset of the plane; or

2. almost equal to the surface of circle Co 1 (its topological closure is equal
to that surface).

We split these sectors into those verifying condition (1) and those verifying
condition (2). We assume, without loss of generality, that the first m verify
condition (1), and the last £k —m verify condition (2). We write the intersection
of the sectors as I = I, N Iy, with Iy = ([ sect(z;, (MVP)) I =
n_l;:m+1 SeCt(zja (MV(P))ikJrﬂj )

Due to strong 4-consistency, every three of these sectors have a non empty
intersection. If any of the sectors is a radius (the corresponding relation is either
e or o) then the entire intersection must be equal to that radius since the sector
intersects with every other two.

We now need to show that when no sector reduces to a radius, the intersec-
tion is still non empty:

ik+1ij)

Case 1: m=k

This means that all sectors are convex. Since every three of them have a non
empty intersection, Helly’s theorem immediately implies that the intersection
of all sectors is non empty.

Case 2: m=0

This means that no sector is convex; which in turn implies that each sector is
such that its topological closure covers the entire surface of Cp 1. Hence, for all
j=1...k:

1. the sector sect(zj, (MV(P)); . ;.) is equal to the entire surface of Co
minus the centre (the relation (MF);, . i, is equal to BIN); or

2. the sector sect(z;,(MV ("), . ;) is equal to the entire surface of Co 1
minus the centre and one or two radii (the relation (M) is equal to

{e,l,7}, {l,0,r} or {I,7}).

4Since the CYC;-CSP P is projectable, any solution to any sub-CSP of the projection 7(P)
is solution to the corresponding sub-CSP of P. This would not be necessarily the case if P
were not projectable.

Th41%j
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So the intersection of all sectors is equal to the entire surface of Cp,; mi-
nus the centre and a finite number (at most 2k) of radii. Since the surface is
of dimension 2, a radius of dimension 1, and the centre of dimension 0, the
intersection must be non empty (of dimension 2).

Case 3: 0<m<k

This means that some sectors (at least one) are convex, the others (at least
one) are such that their topological closures cover the entire surface of Co 1.
The intersection I; is non empty due to Helly’s theorem, since every three
sectors appearing in it have a non empty intersection. We need to consider two
subcases.

Subcase 3.1: [ is a single radius, say ¢

Since no sector reduces to a radius, and the sectors appearing in I; are less than
7, there must exist two sectors, say s; and ss, appearing in I; such that their
intersection is ¢. Since, due to strong 4-consistency, s; and s» together with any
sector appearing in Is form a non empty intersection, the whole intersection,
i.e., I, must be equal to .

Subcase 3.2: [; is a 2-dimensional (convex) sector

The intersection I is the entire surface of Cp 1 minus the centre and a finite
number (at most 2(k — m)) of radii. Since the centre is of dimension 0, a finite
union of radii is of dimension 0 or 1, and the intersection I; is of dimension 2,
the whole intersection I must be non empty (of dimension 2).

The intersection of all sectors is non empty in all cases. The partial solution
can therefore be extended to variable X;, ,, (which can be instantiated with any
orientation in the intersection of the k sectors). m

It follows from Theorems 2 and 6 that if the TC H subclass is closed under
strong 4-comnsistency, it must be tractable. Unfortunately, as illustrated by the
following example, TC'H is not so closed.

Example 6 (non closure of TCH under strong 4-consistency) The CYCy-
CSP depicted in Figure 14 can be represented as the projectable CYCy-CSP P
verifying the following: (MF)193 = lll, (MP) 194 = TU(I, {l, 7}, {l,7}), (MT)134 =
Pysgy = (1,1, {l,7}). Applying the propagation procedure sdc() to P leaves un-
changed (MF)193, (M) 134, (MT)934, but transforms (MT)154 into the relation
{ll,llr,lrr}, which is not projectable: this is done by the operation (MT)154 <
(MFP)124 N (MP)123 0 (MF)134.

Indeed, as we will show, the subset TC H is not tractable. Even worse, we will
prove that the strict subset A7 U {T ER} is already NP-complete (Corollary
4).
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Figure 14: Illustration of non closure of TC'H under strong 4-consistency.

0 Ire rir I({l,o,r},1,7)

eee Irl rol Ii({e,l,r},1,10) gg:’l{l{;i’}g)
ell Irr rrl n({i,r},L,r) H(l7r7 {8’ LT
€00 oeo rro n({i,r},r,r) 1'[(7'7 {7l 7'7} ’l)
err olr rrr 1i({l,o,r},r10) H(lv{lvr}vl)
lel ooe (1, {e,1,7},10) I({i,r},r10) 1'[(7'7 - 7{l ;n})
i orl (1, {l,o,r},7) I({il,r},L,1) H(l7{2 riﬁ =
llo rer (r, {e,l,r},7) (r, I, {e,l,r}) H(r’l ’{l 1:})
lr rle I(r, {l,0,r},1) (r,r, {l,0,7}) H(l’r7 {lwr})
lor ril I({e,l,r},r,7) (1,1, {l,0,r}) L

Figure 15: Enumeration of (A7 ;)%.

The set (AT:)**¢ includes all 28 entries of the CYC; composition tables: the
24 atoms together with the relations (I, {e, {,7},1),II(l, {l, 0,7}, 7), H(r, {e,l,r},7),
M(r,{l,0,7},1). Furthermore, enumerating (A7 ;)** leads to 49 relations (in-
cluding the empty relation), all of which are {convex,holed} relations (belong

to TCH). This immediately gives the following corollary, stating tractability of
(ATt)S4C-

Corollary 1 (tractability of (A7;)**¢) Let P be a CYC;-CSP expressed in
(AT )% (Vi, 5, k) (MT)iji € (AT+)**). Deciding consistency for P is tractable.

Proof. Immediate from Theorems 2 and 6. m
The enumeration of (A7 ;)% is given in Figure 15.

Example 7 Transforming the CYCy-CSP of the ‘Indian tent’ into a CYC;-CSP,
say P', leads to (M" )125 = rrr, (M* 124 = rrl,(M* )134 = rll,(M* )a34 =
rlr. P' lies in (AT:)**¢, hence the propagation procedure sdc() must detect
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its inconsistency. Indeed, the operation (MPI)124 — (MP')124 N (MP')123 o
(MPF")134 leads to the empty relation, since rrr o rll = rll.

Corollary 2 (tractability of AT,) Let P be a CYCy-CSP expressed in AT p:
(Vi,7)((MF);; € AT}3). Deciding consistency for P is tractable.

Proof (sketch). Let P be a CYC,-CSP as stated in the corollary. Construct
from P the CYCy-CSP P’ of which P is the projection: (Vi,j,k)((MF )ijx =
((MFP)ji, (MP)g;, (MF);)). All entries of MT belong to AT ;. From Corollary
1, deciding consistency for P’, thus for P, is tractable. m

9 Intractability results

This section presents some intractability results:

1. We first show that the RA CYC; is NP-complete; this directly follows from
the NP-completeness of the CYCORD theory [15].

2. We show that the weak closure (PAR)™* of the subset PAR = {{oeo, ooe},
{eee, eoo, ooe}, {eee, eoo, oeo, ooe}} of CYC;, which expresses only informa-
tion on parallel orientations, is NP-complete. This gives an idea of how
hard reasoning within CYC; is: even if we restrict ourselves to a world of
parallel orientations, reasoning within that world is already NP-complete!

3. We show that provided that a subset S of C)YC; includes the relations
eee and TER, deciding consistency for a CSP expressed in §¢ can be
polynomially reduced to deciding consistency for a CSP expressed in S.

4. We use the previous result to prove that the set AT, = AT; U{TER},
i.e., the set obtained by adding the universal relation to the set of all CYC;
atoms, is NP-complete.

5. From NP-completeness of AT, we derive NP-completeness of AT} =
ATy U{BIN}, thus of the RA CYC,.

Theorem 7 Deciding consistency of a CYCy-CSP is NP-complete.

Proof: The set AT of all CYC; atoms is tractable (Corollary 1); thus, if a
CYC;-CSP is such that on every triple (X,Y, Z) there is a constraint of the
form ¢(X,Y, Z), where ¢ is an atom, deciding its consistency is polynomial, and
can be achieved using the s4c() procedure. Therefore, all we need to show is
that there exists a deterministic polynomial transformation of an instance of an
NP-complete problem to a CYC;-CSP [16].

The CYCORD theory is NP-complete [15]. The transformation of a problem
expressed in the CYCORD theory (a conjunction of CYCORD relations) into a
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problem expressed in CYC; (i.e., into a CYC;-CSP) is immediate from the rule il-
lustrated in Figure 8(top) (see Example 2(3)) transforming a CYCORD relation
into a CYC; relation. Specifically, such a problem, say P, can be transformed
into a CYC4-CSP, say P’', in the following way:

1. Initialise all entries of M  to the universal CYC; relation TER:

2. Initialise the diagonal elements to eee: (Vi)((M*');i; « eee);

3. For all CYCORD relation X;-X ;- X}, of P, stating that orientations X;, X,
X, are distinct from each other and encountered in that order when we
turn in a clockwise direction starting from X;, perform the following:

T + (MP’)ijk N cyc; update(P',i,5,k, T);

The procedure update() is defined in Figure 11, just after the procedure s4c().
By construction, M is a constraint matrix over CYC;. The transformation is
deterministic and polynomial, and P is satisfiable if and only if P’ is consistent.
[

Corollary 3 Let P be a CYC;-CSP expressed in CY CORD™T = {cyc, cyc™, eee,
TER}: (Vi,j, k)((MF);x € CYCORD™). Deciding consistency for P is NP-

complete.

Proof (sketch). In the proof of Theorem 7, the CYC;-CSP P’ associated

with a problem P expressed in the CYCORD theory is such that its constraint

matrix MF' is entirely expressed in {cyc,cyc™,eee, TER} (we notice that the

set {cyc, cyc ™, eee, TER, 0} is closed under intersection, rotation, and converse).

|

The weak closure of the set PAR = {{oeo, ooe}, { eee, eoo, ooe}, { eee, eoo, oeo,
ooe}} contains 15 of the 16 elements of 2{¢¢¢:c00.0¢0.00¢t. it can be easily enu-
merated:
(PAR)Ye ={ {},{eee}, {eoo}, {oeo},{ooe}, {eee, eoo},{eee, oeo},{eee, ooe},

{eoo, oeo}, {eoo, ooe}, {oeo, ooe}, {eee, evo, oeo}, {eee, eoo, ooe},
{eee, oeo, ooe}, {eee, eoo, oeo, ooe} }

Theorem 8 (NP-completeness of (PAR)") Let P be a CYCy-CSP expressed
in (PAR)"™®: (Vi,j,k)(MF)i € (PAR)“®). Deciding consistency for P is
NP-complete.

Proof. The subset (PAR)"“ belongs to NP, since solving a CYC;-CSP of atoms

is polynomial (Corollary 1). We need to prove that there exists a (determinis-

tic) polynomial transformation of an instance of an NP-complete problem (we

consider an instance of 3-SAT: a instance of SAT of which every clause contains

exactly three literals) into a CYC;-CSP expressed in (PAR)"¢ in such a way

that the former is satisfiable (has a model) if and only if the latter is consistent.
Suppose that S is an instance of 3-SAT, and denote by:
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1. Lit(S) = {¢1,...,£,} the set of literals appearing in S;
2. CI(S) the set of clauses of S; and

3. BinCI(S) the set of binary clauses which are subclauses of clauses in

cl(S).

The CYC;-CSP, Ps, we associate with S is as follows. Its set of variables is
V = {X,;|c € Lit(S)UBinCI(S)} U{Xo}. Xp is a truth determining variable: all
orientations which are equal to X correspond to elements of Lit(S)U BinCI(S)
which are true, the others (those which are opposite to Xy) to elements of
Lit(S) U BinC1(S) which are false. The constraint matrix of Pg, MTs is re-
garded as being indexed with elements from {0} U Lit(S) U BinCI(S), and the
entry (MTs),p. stands for the relation on triple (X,, X3, X,):

1. Initialise all entries of M to {eee, eoo, oeo, ooe}:
(Va, b, c)((MP5)h. + {eee, eoo, oeo, 0oe})

2. Initialise the diagonal elements to eee: (Va)((M"5)40a < eee);

3. for all pairs (X, X3) of variables such that {p,5} C Lit(S), p and p should
have complementary truth values; hence X, and Xz should be opposite
to each other in Ps: T « (MFs)g5, N {eoo, 0oe}; update(Ps,0,p,p, T);

4. for all variables X, , X, such that (c1 Ve¢a) is a clause of S, ¢; and ¢ can-
not be simultaneously false; translated into Ps, X., and X, should not be
both opposite to Xo: T' < (MT5)q.,.,N{eee, eco, ooe}; update(Ps,0, ¢y, c2, T);

5. for all variables X (y,\,), Xy, , if £1 is true then so is (¢; V £3); translated
into Ps, Xo and X, should not be both opposite to X(s,v,):
T « (MPS)(glvgz)glg N {eee, eoo, ooe}; update(Ps, b1 V €3, 01,0,T);

Again, the procedure update() is defined in Figure 11, just after the procedure
s4c(). The transformation is deterministic and polynomial. Moreover, since
(PAR)™¢ is closed under intersection, converse and rotation, the final matrix
MPs is a constraint matrix over (PAR)™¢. If M is a model of S, it is mapped to
a solution of Ps as follows. X is assigned any value of [0, 27). For all £ € Lit(S),
X, is assigned the same value as X if M assigns the value true to literal ¢, the
value opposite to that of X otherwise. For all (¢; V £a) € BinCI(S), X(s,ve,)
is assigned the same value as X if either X,, or X, is assigned the same value
as X, the opposite value otherwise. On the other hand, any solution to Ps can
be mapped to a model of S by assigning to every literal ¢ the value true if and
only if the variable X, is assigned the same value as X;,. m

Before going further in the presentation of our intractability results, we want
to be clear with respect to the issue of representing a CYC;-CSP. The most
convenient way for representing such a CSP is certainly the use of an n x n X n-
matrix, where n is the order of the CSP; one reason for this is that the standard
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way for constraint propagation algorithms and for solution search algorithms,
which constitute the main reasoning tools for constraint-based frameworks, to
deal with a CSP is to have it represented as a matrix. We have assumed so far
that the matrix associated with a CYC;-CSP was a constraint matrix; i.e., it
verifies the diagonal property, the converse property, and the rotation property.
However, in terms of solutions, if we associate with a CYC;-CSP P the n xn x n-
matrix M2 defined as follows:

1. Initialise all entries to the universal relation TER: (Vi, j, k) ((MF2)1, +
TER)

2. Initialise all diagonal elements to eee: (Vi)((MT?2);;; + eee)

3. For all triples (X;, X, X},) of variables such that a constraint R(X;, X;, X})
is specified: (MP’2)7',jk — (MP’2)ijk NR

then the matrices MT and MP? are equivalent, i.e., they have the same set of
solutions.

Binary CSPs of Allen’s relations on pairs of interval variables in which every
two variables are involved in exactly one constraint are called normalised sets
of interval formulas in [30].

Definition 16 An orientation formula is a CYC; relation on a triple of vari-
ables, i.e., a constraint of the form R(X,Y,Z), where R is a CYC; relation. A
normalised set of orientation formulas is a CYCy-CSP given as a set of con-
straints in which every three variables are involved in exactly one constraint.

Given a CYC4-CSP P, the matrix M* is closed under the operations of converse
and rotation; this is not necessarily the case for the matrix MP2: in particular,
if P is a normalised set of orientation formulas then for any three variables X;,
X; and X, at most one element in the set {(M %), : {l,m,n} = {i, 5, k}} is
not the universal relation.

Remark 3 If a subset S of CYC; includes the relations eee and TER then a
normalised set of orientation formulas, say P, which is entirely expressed in S
is such that its associated matriz M2 is also entirely expressed in S.

Theorem 9 Let S be a subset of CYC; such that eee € S and TER € S.
Deciding consistency for a normalised set of orientation formulas expressed in
S¢ can be polynomially reduced to deciding consistency for a normalised set of
orientation formulas expressed in S.

Proof. We have seen how, given a subset & of CYC;, to associate with each
relation R in the closure §¢ a tree ts(R) in such a way that the “execution”
of ts(R) gives R itself (see Definition ?? and Remark 2). We use the tree of a
relation in S¢ to transform a normalised set of orientation formulas expressed
in 8¢ into an equivalent set of orientation formulas, g(P), expressed in S and
in which every three variables are involved in at most one constraint:
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1. g({R(X,Y, Z)}) = h(ts(R)(X,Y, Z)), for all R € ¢

2. g{R(X,Y,Z)}UP") =g({R(X,Y,Z)})Ug(P'), where R € §° and P' is
a non empty set of orientation formulas expressed in S°.

The mapping h is defined as follows:
1. h(R(X,Y,2)) ={R(X,Y,Z)},forall Re S

(
2. h((=,1)(X,Y, 2)) = h(t(X, Z,Y))
(

3. h((™,B(X, Y, 2)) = h(t(Z, X, V)

4. h({t1,N, t2)(X,Y, Z)) = h(t1(X,Y, Z)) Uh(t2(X,Y, Z")) U {eee(Z,Z', Z)},
where Z' is a fresh variable

5. h((t1,0,t2)(X,Y, Z)) = h(t1(X,Y,W)) U h(t2(X,W, Z)), where W is a
fresh variable.

By construction, g(P) is a set of orientation formulas expressed in S with the
property that every three variables are involved in at most one formula. g(P) is
transformed into an equivalent normalised set of orientation formulas by creating
for every three variables X, Y, Z not already involved in any formula the formula
TER(X,Y, Z).

Let m denote the number of orientation formulas in P, and refer to the orien-
tation formulas as f1(X1,, X1,, X15),- -+, [i( Xy Xiny Xig)s - o5 Frn (Xny s Xonos X )-
For each i = 1...m, let s; denote the size of f;, i.e., the number, nsts(f;), of
subtrees of f; (see Remark 2): s; = nsts(f;). If s is the greatest of the s;’s then
the construction takes O(ms) time; the transformation is thus polynomial. m

We are now in a position to derive that for both of the presented RAs, C)YC,
and CYC;, we “jump” from tractability to intractability if add the universal
relation to the set of all atoms.

Corollary 4 The subset AT} = AT; U{TER} of CYC; is NP-complete.

Proof. Any set of orientation formulas over AT, can be converted into an
equivalent normalised set of orientation formulas over A7 ;. The subset A7}
includes the relations eee and TER. From Corollary 3 and Theorem 9, and the
closure of (A7} )" under converse, it is sufficient to show that the relation cyc
belongs to (AT )°. The following sequence shows that this is indeed the case:

1. Ry =1lll,Ry =llr,R3 = rll

2. Ry = Ry o Ry = {llr,lor,lrr}

3. Rs = (Ry)™ = {llr,olr,rir}

4. R = Rs o R3 = {lrl,orl,rll,rol,rrl}
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5. Ry = (Re)™ = {lrl,orl,rrl,rro,rrr}
6. Rs = Ry 0o Ry ={lrl,orl,rll,rol,rrl,rro,rrr} = cyc. m
Corollary 5 The subset AT} = AT, U{BIN} of CYCy is NP-complete.

Proof. A CYC,-CSP of atoms can be solved in polynomial time (Corollary 2).
Thus we need to show that there is a polynomial deterministic transformation
of an instance of an NP-complete problem into a problem expressed in AT;r.
We consider a normalised set, P, of orientation formulas expressed in AT?'.
According to Corollary 4, deciding consistency for P is NP-complete. The
set AT U {0} is closed under converse, rotation and intersection (in other
words, (AT} U {0})*¢ = AT U {0}); therefore, the constraint matrix M¥ is
entirely expressed in AT . Finally, P is projectable, and is therefore equivalent
to its projection s7(P). </(P), by definition, verifies the following: (Vi,j <
n) (MYP) i = N o [T P)iji) 072 (MP) i) 073 ((MF)ing)]). Because
each of the projections 7}(R), v2(R) and v3(R) of any CYC; relation R in
AT is either a CYCy, atom or the relation BIN, the CYC,-CSP v7(P) is entirely
expressed in AT;. [

10 Related work

We compare our approach to cyclic ordering of 2D orientations with the most
closely related research in the literature.

10.1 The CYCORD theory

The CYCORD theory [27, 31, 32] expresses cyclic ordering of 2D orientations; it
contains only one relation, namely the relation cyc we have already mentioned
and translated into the CYC; RA (see Example 2(3)). The main disadvantage of
the theory is that real applications generally need to represent finer knowledge
than just what could be called, as we saw in Example 2(3), strict betweenness
in a clockwise direction.

10.2 Representation of a panorama

In [22], Levitt and Lawton discussed QUALNAV, a qualitative landmark navi-
gation system for mobile robots. One feature of the system is the representation
of the information about the order of landmarks as seen by the visual sensor
of a mobile robot. Such information provides the panorama of the robot with
respect to the visible landmarks.

Figure 16 illustrates the panorama of an object S with respect to five refer-
ence objects (landmarks) A, B,C, D, E in Schlieder’s system [33] (page 527).
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Figure 16: The panorama of a location.

The panorama is described by the total cyclic order, in a clockwise direc-
tion, of the five directed lines (SA), (SB),(SC),(SD),(SE), and the directed
lines which are opposite to them, namely (Sa), (Sb), (Sc¢), (Sd), (Se): (SA)-(Sc)-
(Sd)-(SB)-(Se)-(Sa)-(SC)-(SD)-(Sb)-(SE). By using the RA CYCy, only the
five lines joining S to the landmarks are needed to describe the panorama:
{r((SB), (SA)),7((SC), (SB)), r((SD), (SB)),7((SD), (SC)), L((SE), (SB)),
I((SE),(SA))}; using the RA CYC;, the description can be given as a 2-relation
set: {rll((SA),(SB), (SE)),rrr((SB),(SC),(SD))}.

Schlieder’s system makes an implicit assumption, which is that the object
to be localised (i.e., S) is not on any of the lines joining pairs of the reference
objects — such a fact cannot be represented within his system. This assumption
can be made explicit (or indeed could be explicitly contradicted) in the RA
CYC, representation of the problem (the relations e(qual) and o(pposite) can be
used to describe object S being on a line joining two reference objects). Note
that Schlieder does not describe the important task of how to reason about a
panorama description.

10.3 Cardinal direction models and relative orientation
models

Frank’s models of cardinal directions in 2D [8, 9] are illustrated in Figure 17.
They use a partition of the plane into regions determined by lines passing
through a reference object, say S. Depending on the region a point P belongs to,
the position of P relative to S is North, North-East, East, South-East, South,
South-West, West, North-West, or Equal. Each of the two models can thus be
seen as a binary RA, with nine atoms. Both use a global, West-East/South-
North, reference system. The projection-based model has been assessed as be-
ing cognitively more plausible [8, 9] (cognitive plausibility of spatial orientation
models are discussed in [11, 12]), and its computational properties have been
studied by Ligozat [24]. In particular, Ligozat made use of tractability results
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Figure 17: Frank’s cone-shaped (left) and projection-based (right) models of
cardinal directions.

known for Allen’s interval algebra [1] and Vilain and Kautz’s point algebra [39]
to find a maximal tractable subset including all atoms (maximal in the sense
that adding any other relation to the subset leads to an NP-hard subset). The
drawback of Frank’s models is that they use a global reference system.

The RA CYCy we have presented can be used for the representation of relative
orientation knowledge about a configuration of 2D points. Such knowledge
would contain for pairs (A, B) of objects in the configuration the position of
(the primary object) B relative to (the reference object) A, as viewed from a
global point of view, say S: B is on line (SA) on the same side of S as A, to
the left of A, on line (SA) on the side of S opposite to that of A, or to the right
of A. The drawback here is that the point of view is global.

Thus the common points of Frank’s models and our RA CYC, are (1) the
use of a global concept (a global reference system in the former case, a global
viewpoint in the latter); and (2) the representation of knowledge as binary rela-
tions describing a primary object relative to a reference object. Their resepctive
expressive powers are however incomparable.

A well-known model of relative orientation of 2D points is the Double-Cross
calculus defined by Freksa [11], and developed further by Zimmermann and
Freksa [40]. The calculus can be looked at as a ternary RA, with 15 atoms
corresponding to the 15 regions of a specific partition of the plane determined
by a parent object, say A, and a reference object, say B (Figure 18(d)). The
partition is based on the following;:

1. the left/straight /right dichotomy determined by an observer placed at the
parent object and looking in the direction of the reference object (Figure
18(a));

2. the front/neutral/back dichotomy determined by the same observer (Fig-
ure 18(b)); and
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Figure 18: The partition of the universe of 2D positions on which is based the
Double-Cross calculus in [11, 40].

3. the similar front/neutral /back dichotomy obtained when we swap the roles
of the parent object and the reference object (Figure 18(c)).

Combining the three dichotomies (a), (b) and (c) of Figure 18 leads to the
partition of the universe of 2D positions on which is based the calculus in [11, 40]
(Figure 18(d)).

Our RA CYC; can be used for the description of a configuration of 2D points
as viewed from a global viewpoint; the model is thus more suited for a panorama-
like description. Freksa’s calculus, on the other hand, is more suited for the
description of a configuration of 2D points (a spatial scene) relative to one
another. The two calculi are thus incomparable in terms of expressive power.
We have shown that the atoms of C)YC; form a tractable subset, from which
derives a complete solution search procedure for a general problem expressed in
the RA. For the Double-Cross calculus, however, no tractable procedure for the
subset of all atoms is known.

11 Future work

There has been much work on Allen’s interval algebra [1]. For instance:

e The algebra has been shown to be NP-complete [39]. This gave rise to
considerable work on tractable subsets of the algebra (see, for instance,
[3, 30, 36]); the most important is certainly Nebel and Biirckert’s ORD-
Horn subclass [30], shown by the authors to be the unique maximal subset
among all tractable subsets containing all 13 atomic relations.

e The concept of a conceptual neighbourhood, which is closely related to
tractable reasoning, has been extensively investigated for the algebra [10,
11, 23].

Most of this work could be adapted to the two RAs of 2D orientations we have
defined. Notice, however, that from corollaries 4 and 5 follows that a tractable
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subset of either RA including all atoms cannot include the universal relation,
and vice-versa. In terms of expressiveness, the minimal condition for a subset
of an RA to be useful is to include all atoms as well as the universal relation;
this can be justified thus: (1) it is important for real applications to be offered
the possibility of expressing complete information, which is made possible only
if all atoms are present; and (2) it is important as well for real applications
to be offered the possibility of providing no information on some tuples of the
manipulated objects, which is made possible only if the universal relation is
present. In the light of these comments, we are committed to face intractability
if what we want is to get expressively useful subsets of either RA.

We have provided for the ternary RA a polynomial constraint propagation
procedure, which is incomplete in the general case (the RA has been shown to
be NP-complete), but still complete for a subset including all atoms. Problems
corresponding to actual data (or most randomly generated data) may not lie in
the subset. As a consequence, it would be interesting to study the behaviour of
a general solution search algorithm, such as the one we have provided (which is
exponential in the general case, but solves any problem expressed in the RA),
on actual or most randomly generated instances. Again, extensive work on this
issue has been done for CSPs of Allen’s interval relations [19, 21, 29, 38].

The RAs we have presented do not take into account the front/neutral/back
dichotomy determined by an observer placed at the point of view and looking
in the direction of the reference object; i.e., the dichotomy corresponding to the
partition of the plane into the half-plane consisting of the front of the observer,
the half-plane consisting of the back of the observer, and the borderline between
the two half-planes. Augmenting the binary RA with this feature would lead
to eight atoms (equal, left-front, left, left-back, opposite, right-back, right and
right-front). The corresponding ternary RA we would lead to has 80 atoms,
which can be enumerated by appropriately refining the illustrations of the CYC;
atoms depicted in Figure 8. For instance, refining the leftmost configuration of
the top row in Figure 8 leads to five configurations (see Figure 19). We plan to
investigate the computational properties of this finer-grained calculus.

One of the biggest challenges for qualitative spatial reasoning is the inte-
gration of qualitative distance and qualitative orientation. A formalism with
such a characteristic would, for instance, allow for the representation of natural
language descriptions such as “B is closer than, and to left of, A” (B lies within
an appropriate sector of the disc centred at the speaker’s location, say S, and of
radius SA). This challenge has been discussed by many authors [8, 9, 12], and
one recent and promising work addressing the issue is [25].

Finally, a calculus of 3D orientations, similar to the ternary RA of 2D ori-
entations we have presented, might be developed.
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Figure 19: (Top) The CYC; atom Irl, and (Bottom) its refinement resulting
from adding the front/neutral/back dichotomy to the relation algebras we have
presented.
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Summary

We have provided a new approach to cyclic ordering of 2D orientations, consist-
ing of a relation algebra (RA) whose universe is a set of ternary relations. We
have investigated for the RA several algorithmic and computational properties;
in particular:

1.

We have provided a constraint propagation procedure achieving strong 4-
consistency for a CSP expressed in the RA; and shown that the procedure
is polynomial, and complete for a subset including all atoms.

. We have shown that a subset expressing only information on parallel ori-

entations is NP-complete.

We have shown that provided that a subset S of C)YC; includes two specific
elements, deciding consistency for a CSP expressed in the closure of S
under the different operations of the RA can be polynomially reduced to
deciding consistency of a CSP expressed in S.

From the previous result, we have derived that the set obtained by adding
the universal relation to the set of all atoms of the RA is NP-complete.

From the previous result, we have derived that a much less expressive RA,
whose universe is a set of binary relations on 2D orientations, is already
NP-complete.

We have discussed briefly how this work could be extended, and pointed out
to work done so far for other formalisms, such as tractability issues for Allen’s
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algebra of temporal intervals [1], that could be adapted to the two relation
algebras we have presented.
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A Verifying the RA properties for C)C,

For the RA CYC;, presented in Section 6, which is strictly more expressive than
CYC,, we will verify all the RA properties. Thus, it is not necessary to verify
them for CYC,. We observe, however, that one has to check, at the level of
atoms, that the results of applying the operations of converse and composition
to the different atoms are correct; in other words, we have to check for CYC,
the following;:

1. the entries of the converse table: the entry C'onv(b) on row b of the con-
verse table must be equal to the converse b~ of b, i.e., we must have
Conv(b) = b~ = {(z,y) : (y,z) € b}; and

2. the entries of the composition table: the entry T'(b1,b2) on row b; and
column by of the composition table must be equal to the composition,
by o by, of atoms b; and by, i.e., we must have T'(by,b) = by 0ba = {(z,y) :
(32) (b1 (2, 2) Aba(z,y))}-

We will show that this is indeed the case for CYC;. As we saw before, given two
orientations X and Y:

e(Y, X) iff (X,Y) € {0} (4)
I(Y, X) iff (X,Y) € (0, 7) (5)
oY, X) iff (X,Y) € {r} (6)
r(Y,X) iff (X,Y) € (m,2n) (7)

In other words, the atoms e, [, o, r correspond, respectively, to the convex subsets
{0}, (0, 7), {=}, (7, 27) of [0, 27).

Checking the entries of the converse table: By definition, e~ = {(z,y) : (y,z) €
eh 17 ={(z,y) : (y,2) € I},07 ={(z,y) : (y,2) € o}, v~ ={(z,9) : (y,2) €
r}. Using the four equivalences 4-7, we get the following: e~ = {(z,y) :
(z,y) € {0}}, 17 = {(=,9) : (z,9) € (0,m)},07 ={(z,y) : (z,y) € {m}},r~
{(z,y) : (z,y) € (m,2m)}. The assertions (z,y) € {0}, (z,y) € (0,7),(z,y)
{r},(z,y) € (m,2m) being equivalent, respectively, to (y,z) € {0}, (y, =)
(m,2m), (y,z) € {n}, (y,z) € (0,7), we get: e~ = {(z,y) : (y,2) € {0}},1~

I mm
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Figure 20: Illustration of the proof of Theorem 10.

{(z,9) : (,2) € (m,2m)},07 =A{(2,9) : (y,7) € {m}}, 7™ = {(z,9) : (y,2) €
(0,7)}. Using again the equivalences 4-7, we get that the converse table records
the exact converses of the atoms: e~ = {(z,y) : e(z,y)} = e, 1™ = {(z,y) :
r(z,y)} =07 ={(z,y) : o(z,y)} = 0,r" = {(2,y) : l(z,y)} = L.
Checking the entries of the composition table: In order to check that T'(by, b2) =

b1 o by, it is sufficient to use the following sound inference rule, in which A and

B denote convex subsets of [0, 27), and size(X) is the maximum of all y — z for
z,y € X:

[(X,Z2) € AN(Z,Y) € BAsize(A) < mAsize(B) <m] = (X,Y) € A+, B] (8)

where +, is set addition (composition): A +; B = {c : (da € A,3 €
B)(c = a + b)}. We claim that the inference rule is 3-complete for A, B €
{{0}, (0, 7),{n}, (m,27)}; i.e., for any such A and B, we have the following:
VX, V[(X,Y)e A+, B= (32)((X,Z) € AN (Z,Y) € B)].

Theorem 10 The inference rule (8) is 3-complete for A,B € {{0},(0,n),
{m}, (m,2m)}.

Proof. We proceed by enumerating all possible cases. Cases (1) and (6) in the
enumeration are illustrated in Figure 20:

1. If A = {0} then A+, B = B. For all X,Y such that (X,Y) € B, if we
take Z = X then (X,Z) = (X, X)=0€ A and (Z,Y) = (X,Y) € B (see
Figure 20(a)).

2.1f A= {r} then A+, B ={n+(: 5 € B}. Let X,Y be such that
(X, Y)e A+,B: (3 € B)((X,Y) =7+ (). We take Z = X + m; then
from (X,Y) =7+ and Z = 7 + X, we infer that (X,Z) =7 € A and
(Z,Y) =B € B.

3. If B = {0} then A+; B = A. For all X,Y such that (X,Y) € A, if we
take Z =Y then (X,Z)=(X,Y)€ Aand (Z,Y) = (Y,Y)=0¢€ B.
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.If B ={r} then A+; B ={a+7:a € A}. Let X,Y be such that
(X,)Y)€e A+sB: (Ja € A)((X,Y) = a+m). We take Z =Y + m; thus
Y = Z+m, from which we can infer (Z,Y) =7 € B. From (X,Y) = a+n
and (Y, Z) = 7, we infer (X,Z) = a € A.

.If A= (0,7) and B = (0,7) then A+, B = {a+ 0 :a € (0,7),5 €
(0,7)} = (0,2x). For all X and Y such that (X,Y’) € (0, 2r), we can find
7 such that (X, 7) € (0,7) and (Z,Y) € (0,7): take Z in such a way that
(X,Z)=(2,Y) (i.e., Z is the bisector of (X,Y)).

.If A= (0,7) and B = (m,27) then A+; B ={a+f:a € (0,7),8 €
(m,2m)} = (m,37) = [0, 7) U (7, 27). For all X and Y such that (X,Y) €
[0,7) U ( ,2m), we can find Z such that (X,Z) € (0,7) and (Z,Y) €
(m,2m): if (X,Y) € (m,2n) (see Figure 20(b)), take Z in such a way
that (X,Z) = (Z,Y’), where Y' is the orientation opposite to Y (i.e
(Y, Y") = 7r) f (X,Y) = 0 (see Figure 20(c)), take Z in such a way that
(X,Z) =m/2; and 1f (X,Y) € (0,m) (see Figure 20(d)), take Z in such a
way that (Y, Z) = (Z, X' ) where X' is the orientation opposite to X (i.e.,
(X, X" =m).

.If A= (mr,27) and B = (0,7) then A+; B={a+f:a € (1,27),0 €
(0,m)} = (m,37) = [0,m) U (7, 27). For all X and Y such that (X,Y) €
(m,37), we can find Z such that (X,Z) € (m,27) and (Z,Y) € (0,7):
if (X,Y) € (m,2m), take Z in such a way that (X', Z) = (Z,Y) (i.e.,
Z is the bisector of (X',Y)), where X' is the orientation opposite to X
(i.e., X' is such that (X,X') = =); if (X,Y) = 0, take Z in such a
way that (X, Z) = 3x/2; and if (X,Y) € (0,n), take Z in such a way
that (Y',Z) = (Z, X) (i.e., Z is the bisector of (Y’, X)), where Y’ is the
orientation opposite to Y (i.e., Y’ is such that (Y,Y') = ).

. If A= (m2n) and B = (7,27) then A+; B ={a+f:a € (n,27),0 €
(m,2m)} = (2m,47) = (0,27). For all X and Y such that (X,Y) € (0, 2m),
we can find Z such that (X, Z) € (r,2n) and (Z,Y) € (m,27): if (X,Y) €
(mw,2m), take Z in such a way that (Y, Z) = (Z, X) (i.e., Z is the bisector
of (Y, X)); if (X,Y) = «, take Z in such a way that (X, Z) = 37/2; and
if (X,Y) € (0,7), take Z in such a way that (X', Z) = (Z,Y’) (i.e., Z is
the bisector of (X',Y")), where X' is the orientation opposite to X (i.e.,
(X, X') = m) and Y’ is the orientation opposite to Y (i.e., (Y,Y')=7). m

Verifying the RA properties for an atomic
ternary RA

. (RoS)oT =Ro(SoT)?
(a) Let (a,b,c) € (RoS)oT. Thus (3d)((a,b,d) € (RoS)A(a,d,c) € T).
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(a,b,d) € (RoS) implies (Je)((a,b,e) € RA(a,e,d) € S). From (a,e,d) €
S and (a,d,c) € T, we infer (a,e,c) € (SoT). From (a,b,e) € R and
(a,e,c) € (S oT), we infer (a,b,c) € Ro (S oT). Therefore (RoS)oT C
o(SoT).

(b) Now let (a,b,c) € Ro (S oT). Thus (3d)((a,b,d) € R A (a,d,c) €
(SoT)). (a,d,c) € (SoT) implies (Je)((a,d,e) € S A (a,e,c) € T).
From (a,b,d) € R and (a,d,e) € S, we infer (a,b,e) € (Ro S). From
(a,b,e) € (ROS) and (a,e,c) € T, we infer (a,b,c) € (RoS)oT. Therefore
(RoS)oT DRo(SoT). m

(
(

RUS)oT =(RoT)U(SoT)?

RUS)oT = {(a,b,c) : (3d)((a,b,d) € (RUS) A (a,d,c) € T)} =
{(a,b,¢c) : (3d)([(a,b,d) € RV (a,b,d) € S]) A (a,d,c) € T} = {(a,b,c) :
(3d)((a,b,d) € RA(a,d,c) € T)}U{(a,b,c) : (3d)((a,b,d) € SA(a,d,c) €
T)}=(RoT)U(SoT). m

.RoZT=T70R=R?

We prove this for 7 = I{?“ = {(a,b,b) : a,b € U}. The reason for this is
that the identity element of the atomic ternary RA of our interest, C)YCy,
is Zo7),, (U = 2DO).

RoZ = {(a,b,c) : (3d)((a,b,d) € R A (a,d,c) € T)}. But (a,d,c) € T
implies (d = ¢); thus RoZ = {(a,b,¢) : (a,b,c) € RA (a,c,c) € Z}. Since
(Va,c)((a,c,c) € I), we infer RoZ = {(a,b,c) : (a,b,c) € R} = R. On
the other hand, Z o R = {(a,b,¢) : (3d)((a,b,d) € T A (a,d,c) € R)}. But
(a,b,d) € Z implies (d = b); thus Zo R = {(a, b,¢) : (a,b,b) € ZA(a,b,c) €

b,c

R}. Since (Ya,b)((a,b,b) € Z), we infer Zo R = {(a,b,¢) : (a,b,c) € R} =
R m

. (R7)” =R?
(R7)~ ={(a,b,¢) : (a,c,b) € R~}. But (a,c,b) € R~ is equivalent to
(a,b,c) € R. Therefore (R™)~ = {(a,b,¢) : (a,b,c) E R} =R. m

. (RUS)"=R-US?
(RUS)™ ={(a,b,¢) : (a,c,b) € RUS} = {(a,b,¢) : (a,c,b) € RV(a,c,b) €

S} ={(a,b,¢) : (a,c,b) € R} U{(a,b,c): (a,c,b) e S}=R-US". m

.(RoS)"=8"0oR?
(RoS)~ = {(a,b,¢) : (a,c,b) € Ro S} = {(a,b,c) : (3d)((a,c,d)
R A (a,d,b) € S)} = {(a,b,¢) : (3d)((a,d,c) € R A (abd)E )}
{(a,b,¢) : (3d)((a,b,d) € S~ A (a,d,c) e R7)} =S~ oR~.

.R"0RoSNS =07
Let (a,b,c) € R~ o RoS. Thus (3d)((a,b,d) € R~ A (a,d,c) € RoS).

€

(a,d,c) E R o S is equivalent to (a,d,c) ¢ Ro S, which in turn implies
(Ve)((a, ) ¢ R (a e,c) ¢ S). Now consider the special case e = b:
from (a,b,d) € R~, we derive (a,d,b) € R; thus (a,b,c) ¢ S. m
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8.

10.

(RT)7)” =R?

(R7)7)” = A{(a,b,¢) : (c,a,b) € (RT)"}. But (c,a,b) € (RT)7 is
equivalent to (b,c,a) € R™, which in turn is equivalent to (a,b,c) € R.
Therefore ((R™)7)" = {(a,b,¢) : (a,b,c) € R} =R. m

(RUS) " =R US™?
(RUS)™ ={(a,b,¢) : (c,a,b) € RUS} ={(a,b,¢) : (¢,a,b) € RV(c,a,b) €
S} ={(a,b,c) : (¢,a,b) € R}U{(a,b,c): (c,a,b) e S}=RTUS". m

Checking the entries of the different tables: Similarly to CYC,, we have to
check that the converse table, the rotation table and the composition ta-
bles of CYC; record the exact converses, the exact rotations and the exact
compositions of the atoms.

The converse table and the rotation table: From the fact that the CYC,
converse table records the exact converses of the atoms, we derive straight-
forwardly that the converse table and the rotation table of CYC; record
the exact converses and the exact rotations of the atoms. We illustrate
this with the atom lrr. By definition, (Irr)~ = {(z,y, 2) : (z, z,y) € lrr}.
Applying the definition of a CYC; atom, we get: (Irr)~ = {(z,y,2) :
(z,z) € LA (y,2) € A (y,z) € r}. Reordering the elements of the con-
junction (z,z) € A (y,2) € 7 A (y,z) € r, we get: (Irr)™ = {(z,y,2) :
(y,z) € r A(y,2) € r A(z,z) € [}. Thanks to the fact that the CYC,
converse table records the exact converses of the atoms, we derive that
(y,2) € riff (z,y) € I, from which we get: (Irr)~ = {(z,9,2) : (y,z) €
r A (z,y) € LA (2,z) € I}. Now the set {(z,y,2) : (y,2) € 7 A (2,y) €
I A (z,z) € 1} corresponds exactly the CYC; atom rll, which implies that
(lrr)~ = rll. By definition of the rotation operation, we get: (lrr)™ =
{(z,y,2) : (2,2,y) € lrr}. Using the definition of a CYC; atom, we get:
(rr)~ = {(2,9,2) : (2.2) € LA (3,2) € 7 A (3,2) € r}. Reordering
the elements of the conjunction (z,z) € I A (y,z) € r A (y,2) € r, we
get: (Irr)~ = {(2,,2) : (4y,a) € 1 A (y,2) € 1 A (2,2) € I}. Thanks,
again, to the fact that the CYC, converse table records the exact con-
verses of the atoms, we get that the assertions (y,2) € r and (z,2) € I
are equivalent, respectively, to (z,y) € [ and (z,z) € r, which implies:
(Irr)”™ = {(z,y,2) : (y,z) € r A (2,y) € L A(2,z) € r}. Now the set
{(z,y,2) : (y,z) € r A (2,y) € I A (2,2) € r} corresponds exactly to the
CYC; atom rir; thus (Irr)™ = rir.

The composition tables: We say that the CYC; composition tables are
sound if for any two atoms ¢; and ¢, it is the case that T'(¢1,%2) D t1 o ¢,
where T'(t1,t2) is the entry on the row labelled with ¢; and the column
labelled with #5; if the tables are sound, we say that they are 4-complete
if for any two atoms ¢, and to, it is the case that T'(t1,t2) C 1 o ts.
Soundness implies that if we know that a triple (z,y, w) belongs to ¢; o to,
which, by definition, means that we can find z such that (z,y,2) € &
and (z,z,w) € t2, then it must be the case that the triple (z,y,w) also
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belongs to the entry T'(¢1, t2); if 4-completeness also holds then the triples
(z,y,w) in the relation recorded by an entry correspond exactly to the
actual composition of the corresponding atoms. We show how to com-
pute the entries of the composition tables; this will at the same time show
4-completeness of the tables. For this purpose, we consider two atoms
t1 = b1bebs and ty = bibybs. As we saw before, due to the fact that the
CYC;, atoms are JEPD, t; oty = ( if b3 # b} (again, refer to Figure 6
for illustration); so we suppose b3 = b} = b, which leads to t; = b1bsb,
to = bbhby, and ¢4 o to = {(z,y, w) : (32)((y,z) € b1 A (2,y) Eba A(2,2) €
bA(w,z) € by A (w,z) € by)}. We will need the isomorphim ¢ from
2DO x 2DO onto 2DO x 2D0O, defined as follows: ¢((z,y)) = (z',v),
where z' the orientation opposite to z, i.e., =’ is such that o(z,z'); the
isomorphism is extended to subsets of 2DO x 2D O in the following natural
way: ¢(S) = {é((z,y)) : (z,y) € S}; for the CYC;, atoms, which are par-
ticular subsets of 2DO x 2D O, we get ¢(e) = o, (1) = r, d(0) = e, P(r) = 1.
We proceed by enumerating all possible cases:

(a) if by = e then t; oty = ebybs;

(b) if b2 = e then tl o t2 = tz;

(c) if by = e then t1 oty = t1;

(d) if by = e then t1 oty = by (b1) ¢

(e) if by = o then from (y,z) € o A (w,z) € by we get (w,y) € ¢(bs);
thus t1 oty = {(z,y,w) : (y,7) € by A (w,y) € $(b3) A (w,z) € by} =
b1 (b5 )bs;

(f) if b5 = o then from (z,y) € (b1)~ A (w,z) € o we get (w,y) €
¢((b1)7); thus ty 0 by = {(z,y,w) : (y,7) € by A (w,y) € ¢((b1) ™) A
(w,z) € by} = b1g((b1) ~)bs;

(g) if by = o then from (w,z) € by A (2,y) € o we get (w,y) € ¢(bh);
thllS tl o t2 = {(mayaw) : (y,m) € bl A ('LU,y) € ¢(bl2) A (’LU,I) € bIB} =
b1¢(b5)b3;

(h) if b5 = o then from (z,y) € by A (w,2) € o we get (w,y) € ¢(b2);
thllS tl o t2 = {(m,y,w) : (y,m) € bl A ('LU,y) € ¢(b2) A (’LU,I) € bIB} =
b1¢(b2)bs;

(i) if b = e then JEPDness of the CYC;, atoms gives by = (b1)~ and
by = by; this leads to t; oty = II(by, b} o (b1) ", b4) (4-completeness
comes from 3-completess of the CYC;, composition table: each entry
records the exact composition of the corresponding CYC;, atoms);

(j) In a similar way, if b = o then we infer that by = ¢(b}) and b; =

d((b2)7); thus t; oty = II(by, b} o (b1) 7, bs). Again, 4-completeness

stems from 3-completeness of the CYC;, composition table.
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Figure 21: Tllustration of 4-completeness of the CYC; composition tables.

The remaining cases are those when each of b1,bs,b,b), b5 belongs to
{l,r}. These cover altogether 32 entries of the composition tables: 16
of these consist of atoms, the other 16 of 3-atom relations. We prove
4-completeness for one 1-atom entry and for one 3-atom entry; the 4-
completeness proof for the other entries is similar. We consider the entries
T(llr,rll) =lrl and T(llr,rlr) = {llr,lor,lrr}.

T(lr,rll) =1rl?

Consider four orientations z, y, z, w such that llr(x,y, z) Arll(z, z,w). This
is illustrated in Figure 21(left). Orientation w is forced to be between-in-
a-clockwise-direction the orientation opposite to z and orientation z. The
illustration clearly indicates that the relation on triple (z,y, w) is irl. Con-
versely, consider a configuration of three orientations z, y and w such that
Irl(z,y,w). We can always find z such that llr(z,y,2) A rll(z, z,w): for
instance, we can take z such that o(z,z'), where 2’ in turn is such that
(w, 2") = (2',y) (' is the bisector of (w,y)).

T(lr,rlr) = {llr,lor,lrr}?

Consider four orientations z, y, z, w such that llr(z, y, 2)Arlr(z, z, w). This
is illustrated in Figure 21(right). Orientation w is forced to be to the left
of, opposite to, or to the right of, y; thus the relation on triple (z,y, w)
is (1, {l,0,7r},7) = {lir,lor,lrr}. Conversely, consider a configuration of
three orientations z, y and w such that {lir,lor,lrr}(z,y,w). We can al-
ways find z such that lir(z,y, 2) Arlr(z, z,w): if llr(z,y,w) or lor(z,y,w)
then take z such that (z,2) = (z,w), where z' is such that o(z,z'); oth-
erwise, take z such that (z',z) = (z,y’), where 2’ and y' are such that
o(z,z') and o(y,y’). m
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