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om-plete for a subset in
luding all atoms; (2) we prove that another subset,expressing only information on parallel orientations, is NP-
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S 
an be polynomially redu
ed to de
iding 
onsisten
y for a problem ex-pressed in S; and (4) we derive from the previous result that we \jump"from tra
tability to intra
tability if we add the universal relation to theset of all atoms of the RA. A 
omparison to the most 
losely related workin the literature indi
ates that the approa
h is promising.Keywords: Qualitative spatial reasoning, Relation algebra, Constraintsatisfa
tion, Orientation, Computational 
omplexity, Knowledge repre-sentation.1 Introdu
tionQualitative spatial reasoning (QSR) has be
ome an important and 
hallengingresear
h area of Arti�
ial Intelligen
e. An important aspe
t of it is topologi
alreasoning (see the survey in [5℄). However, many appli
ations (among whi
hare robot navigation [22℄, reasoning about shape [34℄, route des
ription [7, 17℄)require the representation and pro
essing of orientation knowledge. A varietyof approa
hes to this have been proposed: the so-
alled CYCORD theory for
y
li
 ordering of 2D orientations [27, 31, 32℄, global referen
e system modelsfor reasoning about 
ardinal dire
tions [8, 9℄, relative orientation models [11,12, 18, 40℄, and models for the representation of a panorama [33℄.One may want to des
ribe a 
on�guration of points in the plane as viewedfrom a global point of view; this 
ould, for instan
e, 
orrespond to the situationwhen a robot has to be lo
ated with respe
t to a number of known landmarks:su
h a des
ription may 
onsist of spe
ifying the 
y
li
 order of triples of obje
tsin the 
on�guration with respe
t to the viewpoint at the robot's lo
ation. TheCYCORD theory [31, 32℄ and S
hlieder's system of panorama representation[33℄ may be used for su
h a task. However, in addition to providing the 
y
li
order for triples of orientations, many appli
ationsmay need the spe
i�
ation forpairs of orientations in the 
on�guration of whether one orientation is to left of,to the right of, opposite to, or equal to, the other orientation. This feature is not
aptured by the system in [31, 32℄ nor by the one in [33℄: indeed, these negle
twhat 
ould be 
alled the left/straight/right di
hotomy determined by an observerpla
ed at the point of view and looking in the dire
tion of the referen
e obje
t;this di
hotomy, whi
h 
orresponds to the partitioning of the plane into thedire
ted line point-of-view{referen
e-obje
t, the left open half-plane delimitedby that line, and the right open half-plane delimited by the same line, allows,when 
aptured by a model, for some kind of 
ognitively plausible reasoning(some aspe
ts of 
ognitive plausibility of orientationmodels in qualitative spatialreasoning are dis
ussed in [11, 12℄).To illustrate, 
onsider the simple natural language senten
e \You see boththe university and the hill on your left when you walk down to the station":the CYCORD theory fails to provide a representation of this des
ription. An-other limitation of the CYCORD theory appears when we 
onsider the same-dire
tion/opposite-dire
tion di
hotomy determined by the same observer referred2



to above, whi
h splits the dire
ted line point-of-view{referen
e-obje
t into thepositive part, i.e., the part the observer is looking at, and the negative part, i.e.,the part at the ba
k of the observer. This se
ond di
hotomy is also importantfor qualitative spatial reasoning appli
ations, as illustrated by the des
riptions\The 
inema is on the way to the university", or \To get to the 
inema fromthe station, walk in the opposite dire
tion to the university". This motivatesthe need for a new, �ner grained, approa
h to 
y
li
 ordering of 2D orientations,whi
h is what we propose in the paper. The new approa
h, whi
h is an atomi
relation algebra (RA) whose universe is a set of ternary relations on 2D orien-tations, over
omes the above limitations; furthermore, as it turns out, its atomsform a tra
table subset, whi
h is important for at least two reasons:1. Complete information 
an be 
he
ked for 
onsisten
y in polynomial time.2. De
iding 
onsisten
y for a general problem expressed in the RA, whi
hwe show is NP-
omplete, 
an be a
hieved using a ba
ktra
king sear
hpro
edure, whi
h re�nes at ea
h node of the sear
h tree the relation on atriple of 'variables' to an atom.The RA represents knowledge on 
y
li
 ordering of 2D orientations as aternary 
onstraint satisfa
tion problem (ternary CSP) of whi
h:1. the variables range over the set of 2D orientations, whi
h, as we will seelater, is isomorphi
 to the set of points of a �xed 
ir
le, as well as to theset of dire
ted lines 
ontaining a �xed point; and2. the 
onstraints give for triples of the variables the relation of the RA theyshould satisfy.We �rst de�ne a binary RA and, based on that, develop our new approa
h to
y
li
 ordering. Among other things, we provide a 
omposition table for thebinary RA. One reason for doing this �rst is that it will then be
ome easy tounderstand how the relations of the ternary RA are obtained.The binary RA 
an model the qualitative 
on�guration of two orientations.It is based on the left/straight/right and same-dire
tion/opposite-dire
tion di-
hotomies mentioned earlier, both determined by an observer pla
ed at the pointof view and looking in the dire
tion of the referen
e obje
t. The point of view,say P , is global, and we make the realisti
 assumption that if a 
olle
tion ofpoint obje
ts is to be qualitatively des
ribed relative to P then all obje
ts inthe 
olle
tion are di�erent from P . The point of view may, for instan
e, be arobot and the obje
ts in the 
olle
tion landmarks: equality of the position ofthe robot and that of one of the landmarks would 
orrespond to a 
ollision! Inthis way, given two obje
ts A and B, it makes sense to 
onsider the orienta-tions z1 and z2 of the dire
ted lines (PA) and (PB), respe
tively, whi
h 
anbe qualitatively 
ompared a

ording to the two di
hotomies mentioned above:z2 is e(qual) to, to the l(eft) of, o(pposite) to, or to the r(ight) of, z1. To3
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Figure 1: Lo
alisation of a robot R with respe
t to four landmarksL1; L2; L3; L4.illustrate, 
onsider the situation in Figure 1 where a robot R has to be qualita-tively lo
alised relative to four landmarks L1; L2; L3; L4. This 
an be a
hievedby 
onsidering the orientations Z1; Z2; Z3; Z4 of the dire
ted lines (RL1); (RL2);(RL3); (RL4), respe
tively, joining the robot to the landmarks. We 
an then usethe binary RA to represent the situation as a des
ription spe
ifying the relationholding on ea
h pair of the four orientations. For instan
e, to \the robot is tothe right of the dire
ted line (L1L2)" 
orresponds the relation r(Z2; Z1), statingthat orientation Z2 is to the right of orientation Z1.So far, 
onstraint-based approa
hes to QSR have mainly used 
onstraintpropagation methods a
hieving path 
onsisten
y. These methods have beenborrowed from qualitative temporal reasoning �a la Allen [1℄, and make use ofa 
omposition table. It is, for instan
e, well-known from works of van Beekthat path 
onsisten
y a
hieves global 
onsisten
y for CSPs of Allen's 
onvexrelations. The proof of this result, given in [36, 37℄, shows that it is mainlydue to the 1-dimensional nature of the temporal domain. The proof uses thespe
ialisation of Helly's theorem [4℄ to n = 1: \If S is a set of 
onvex regionsof the n-dimensional spa
e IRn su
h that every n+ 1 elements in S have a nonempty interse
tion then the interse
tion of all elements in S is non empty".For the 2-dimensional spa
e (n = 2), the appli
ation of the theorem gets a bitmore 
ompli
ated, sin
e one has to 
he
k non emptiness of the interse
tion ofevery three elements, instead of just every two; we will use this to show that a
onstraint propagation pro
edure to be given for the ternary RA, whi
h a
hievesstrong 4-
onsisten
y, has a similar behaviour for a subset in
luding all atomsas path 
onsisten
y for Allen's 
onvex relations: the pro
edure a
hieves global
onsisten
y.The paper is organised as follows. Se
tion 3 provides some ba
kgroundon 
onstraint satisfa
tion problems (CSPs) and 
onstraint matri
es. Se
tion 4provides some ba
kground on relation algebras (RAs), and fo
usses on binaryRAs and ternary RAs. Se
tion 5 presents our �rst RA of 2D orientations,4



CYCb, whi
h is binary. The se
ond RA, CYCt, whi
h is ternary, is presented indetail in Se
tion 6. We then 
ome ba
k, in Se
tion 7, to CSPs with a fo
us onCSPs of 2D orientations: CYCb-CSPs, i.e., CSPs of whi
h the 
onstraints areCYCb relations on pairs of the variables; and CYCt-CSPs, i.e., CSPs of whi
h the
onstraints are CYCt relations on triples of the variables. The se
tion provides anexample showing that path 
onsisten
y is not suÆ
ient for de
iding 
onsisten
yfor a CSP of CYCb atoms; then a 
onstraint propagation pro
edure a
hievingstrong 4-
onsisten
y for CYCt-CSPs, whi
h we show is polynomial; and �nally,a pro
edure to sear
h for a strongly 4-
onsistent, thus 
onsistent, s
enario of ageneral CYCt-CSP. In Se
tion 8, we show that a subset of CYCt in
luding allatoms is tra
table; spe
i�
ally, we show that our strong 4-
onsisten
y pro
edure
an de
ide 
onsisten
y for a CSP expressed in the subset. In Se
tion 9, wepresent some intra
tability results:1. From the NP-
ompleteness of the CYCORD theory [15℄, we derive thatCYCt is NP-
omplete.2. We show that a subset of CYCt expressing only information on parallelorientations is NP-
omplete.3. We show that provided that a subset S of CYCt in
ludes two spe
i�
 ele-ments, de
iding 
onsisten
y for a CSP expressed in the 
losure of S underthe di�erent CYCt operations 
an be polynomially redu
ed to de
iding
onsisten
y for a CSP expressed in S.4. From the previous result, we derive that for both RAs the set obtained byadding the universal relation to the set of all atoms is NP-
omplete.Se
tion 10 
ompares our approa
h to the most 
losely related ones in the liter-ature. Dire
tions for future work are dis
ussed in Se
tion 11. Finally, Se
tion12 summarises the paper.We �rst need to motivate the use of ternary relations.2 Motivation of the use of ternary relationsWe make the assumption that the 2D spa
e is asso
iated with a referen
e system(O; x; y), and refer to the 
ir
le 
entred at O and of unit radius as CO;1, and tothe set of 2D orientations as 2DO. Three natural isomorphisms will be of usein the rest of the paper. In order to fa
ilitate their de�nitions,we introdu
e thefollowing sets:1. R0;1 is the set of all radii of CO;1 ex
luding the 
entre O but 
losed at theother endpoint.2. dLO is the set of all dire
ted lines 
ontaining O.5



D1D2 D2

D1Figure 2: The angle (D1; D2) determined by two dire
ted lines D1 and D2 isthe one 
orresponding to the move in an anti
lo
kwise dire
tion from D1 to D2.De�nition 1 The isomorphisms f2DO!1 , f2DO!2 and f2DO!3 are de�ned asfollows: f2DO!1 : 2DO ! R0;1 (1)f2DO!1 (z) is the radius (OPz ℄ 2 R0;1 su
h that the orientation of the ve
tor��!OPz is z. f2DO!2 : 2DO ! CO;1 (2)f2DO!2 (z) is the point Pz 2 CO;1 su
h that the orientation of the ve
tor ��!OPz isz. f2DO!3 : 2DO ! dLO (3)f2DO!3 (z) is the line `O;z 2 dLO of orientation z.De�nition 2 The angle determined by two dire
ted lines D1 and D2, denoted(D1; D2), is the one 
orresponding to the move in an anti
lo
kwise dire
tion fromD1 to D2 (see Figure 2). The angle (z1; z2) determined by orientations z1 and z2is the angle (`O;z1 ; `O;z2), where `O;z1 = f2DO!3 (z1) and `O;z2 = f2DO!3 (z2).The set 2DO 
an thus be viewed as the set of radii of CO;1 (or, indeed, of any�xed 
ir
le), as the set of points of CO;1 (or of any �xed 
ir
le), or as the set ofdire
ted lines 
ontaining O (or any �xed point). We will not restri
t ourselvesto any of these sets; however:1. in order to illustrate the relation holding between 2D orientations, it seemsmore intuitive to look at orientations as dire
ted lines 
ontaining a �xedpoint, for instan
e O (isomorphism f2DO!3 ). For example, an orientationz1 is to the left of an orientation z2 if the angle (z2; z1) belongs to (0; �);and2. for the proof of Theorem 6, we will look at an orientation as a radius ofCO;1 ex
luding the 
entre O (isomorphism f2DO!1 ).6



The aim of this work, as stated in the introdu
tion, is to provide a rela-tion algebra (RA) for representing and reasoning about 
y
li
 ordering of 2Dorientations. For qualitative ordering of elements of a linear universe, su
h asthe standard time line, it is suÆ
ient to use a binary relation over the universe;however, ordering elements of a 
y
li
 universe, su
h as the universe of 2D ori-entations (or any of the isomorphi
 universes R0;1, CO;1 and dLO), requires theuse of a relation of arity at least equal to three. Together with a 
onventionsaying whi
h of the anti
lo
kwise and 
lo
kwise dire
tions 
orresponds to thepositive dire
tion, a ternary relation with the aim of qualitatively ordering 2Dorientations would give for triples (z1; z2; z3) of orientations whi
h of z2 andz3 is met �rst when we move in the positive dire
tion starting from z1. Thisshows the importan
e of ternary relations for our purpose. On the other hand,many appli
ations, in
luding those mentioned in the introdu
tion, may require�ner knowledge on triples (z1; z2; z3) of orientations than just the (qualitative)
y
li
 order of z1, z2 and z3: for instan
e, they may require for some or allpairs (zi; zj) of orientations in fz1; z2; z3g the additional knowledge of whetherzi is equal to, to the left of, opposite to, or to the right of, zj . As alluded tobrie
y in the introdu
tion, the partitioning of the universe of 2D orientationsinto the orientation that is equal to, the orientations that are to the left of,the orientation that is opposite to, and the orientations that are to the rightof, a given orientation (parent orientation) is important be
ause of its 
ognitiveplausibility [11, 12℄: the parent orientation might 
orrespond to the orientationof the dire
ted line (PR) joining a parent obje
t P to a referen
e obje
t R;then an observer pla
ed at the parent obje
t and looking in the dire
tion of thereferen
e obje
t 
an des
ribe a primary obje
t S relative to the referen
e obje
tR in the following, 
ognitively plausible, way, where z(PR) and z(PS) stand forthe orientations of the dire
ted lines (PR) and (PS), respe
tively: S may be infront of the observer, 
olinear with P and R (equal(z(PS); z(PR))); to the leftof R (left(z(PS); z(PR))); at the ba
k of the observer, 
olinear with P and R(opposite(z(PS); z(PR))); or to the right of R (right(z(PS); z(PR))). Thus what isneeded is to 
ombine a 
y
li
 ordering, thus ternary, relation with these other,binary, relations, equal, left, right, and opposite, in order to o�er the possibil-ity of expressing �ner grained knowledge than just 
y
li
 ordering. This paperprovides a 
al
ulus to satisfy this need.3 Constraint satisfa
tion problemsA 
onstraint satisfa
tion problem (CSP) of order n 
onsists of a �nite set of nvariables x1; : : : ; xn, a set U (
alled the universe of the problem), together witha set of 
onstraints on values from U whi
h may be assigned to the variables.The problem is solvable if the 
onstraints 
an be satis�ed by some assignementof values a1; : : : ; an 2 U to the variables x1; : : : ; xn, in whi
h 
ase the sequen
e(a1; : : : ; an) is 
alled a solution. Two problems are equivalent if they have the7



same set of solutions.An m-ary 
onstraint is of the form R(xi1 ; � � � ; xim), and asserts that them-tuple of values assigned to the variables xi1 ; � � � ; xim must lie in the m-aryrelation R (an m-ary relation over the universe U is any subset of Um). Anm-ary CSP is one of whi
h the 
onstraints are m-ary 
onstraints. We will be
on
erned ex
lusively with binary CSPs and ternary CSPs.A unary relation, say R, is equivalent to the binary relation f(a; a) : a 2 Rg,and to the ternary relation f(a; a; a) : a 2 Rg. In turn, a binary relation R isequivalent to the ternary relation f(a; b; a) : (a; b) 2 Rg.3.1 Operations on binary relationsA binary relation is a set of ordered pairs, denoted (a; b). For any two binaryrelations R and S, R \ S is the interse
tion of R and S, R [ S is the union ofR and S, R Æ S is the 
omposition of R and S, and R^ is the 
onverse of R;these are de�ned as follows:R \ S = f(a; b) : (a; b) 2 R and (a; b) 2 Sg;R [ S = f(a; b) : (a; b) 2 R or (a; b) 2 Sg;R Æ S = f(a; b) : for some 
; (a; 
) 2 R and (
; b) 2 Sg;R^ = f(a; b) : (b; a) 2 Rg:Three spe
ial binary relations over a universe U are the empty relation ; whi
h
ontains no pairs at all, the identity relation IbU = f(a; a) : a 2 Ug, and theuniversal relation >bU = U � U .3.2 Operations on ternary relationsA ternary relation is a set of ordered triples, denoted (a; b; 
). For any twoternary relations R and S, R \ S is the interse
tion of R and S, R [ S is theunion of R and S, R Æ S is the 
omposition of R and S, R^ is the 
onverse ofR, and R_ is the rotation of R; these are de�ned as follows:R \ S = f(a; b; 
) : (a; b; 
) 2 R and (a; b; 
) 2 Sg;R [ S = f(a; b; 
) : (a; b; 
) 2 R or (a; b; 
) 2 Sg;R Æ S = f(a; b; 
) : for some d; (a; b; d) 2 R and (a; d; 
) 2 Sg;R^ = f(a; b; 
) : (a; 
; b) 2 Rg;R_ = f(a; b; 
) : (
; a; b) 2 Rg:In terms of expressiveness, it should be said that the 
onverse and the rota-tion of a relation R re
ord the same information as R itself. For binary rela-tions, a 
onverse operation is suÆ
ient be
ause there are two possible orderedpairs involving two obje
ts, say x and y: (x; y) and (y; x); the 
onverse oper-ation alone allows going from one of the two pairs to the other. For ternaryrelations, a 
onverse operation is no longer suÆ
ient be
ause there are al-together six possible ordered triples involving three obje
ts, say x, y and z:8



(x; y; z); (x; z; y); (y; x; z); (y; z; x); (z; x; y); (z; y; x). The 
onverse operation al-lows going from an ordered triple (x; y; z) to the ordered triple (x; z; y), but doesnot allow going to the other four ordered triples. With the addition of the ro-tation operation, we 
an move as well to (y; z; x); then from (y; z; x) to (y; x; z)using 
onverse, and to (z; x; y) using rotation; and from (x; z; y) to (z; y; x) usingrotation.Three spe
ial ternary relations over a universe U are the empty relation ;whi
h 
ontains no triples at all, the identity relation ItU = f(a; a; a) : a 2 Ug,and the universal relation >tU = U � U � U . Another spe
ial ternary relation,whi
h expresses equality of the last two arguments and will be needed later, isIt23U = f(a; b; b) : a; b 2 Ug.The �eld of a binary relation R is field(R) = fa : for some b; (a; b) 2R or (b; a) 2 Rg; the �eld of a ternary relation R is field(R) = fa : for some band 
; (a; b; 
) 2 R or (b; a; 
) 2 R or (b; 
; a) 2 Rg. The �eld of a set A of rela-tions is the union of the �elds of the relations in A: field(A) = [R2Afield(R).3.3 Constraint matri
esLet P be a CSP of order n, with variables x1; : : : ; xn and universe U .3.3.1 The 
ase of a binary CSPLet xi; xj be two variables. If a 
onstraint of P is given on the ordered pair(xj ; xi), spe
ifying that (xj ; xi) should belong to a relation R, this 
an be 
on-verted into a 
onstraint on the ordered pair (xi; xj): (xi; xj) 2 R^. Therefore,we 
an assume that if m 
onstraints involve the variables xi and xj then these
onstraints 
onsist of binary relations R1; : : : ; Rm the ordered pair (xi; xj) isrequired to belong to. These m 
onstraints are then 
onverted into the single
onstraint (xi; xj) 2 R1\ : : :\Rm. We 
an therefore, without loss of generality,make the assumption that for any two variables xi and xj , there is at most one
onstraint involving xi and xj .A binary 
onstraint matrix of order n over U is an n � n-matrix of binaryrelations over U verifying the following:(8i � n)(Mii � IbU ) (the diagonal property);(8i; j � n)(Mij = (Mji)^) (the 
onverse property):A binary CSP P over a universe U 
an be asso
iated with the following binary
onstraint matrix, denoted MP :1. Initialise all entries to the universal relation: (8i; j � n)((MP )ij  >bU )2. Initialise the diagonal elements to the identity relation: (8i � n)((MP )ii  IbU )3. For all pairs (xi; xj) of variables on whi
h a 
onstraint (xi; xj) 2 R isspe
i�ed: (MP )ij  (MP )ij \ R; (MP )ji  ((MP )ij)^.9



3.3.2 The 
ase of a ternary CSPLet xi; xj ; xk be three variables; there are altogether six possible ordered tripleson them: (xi; xj ; xk); (xi; xk; xj); (xj ; xi; xk); (xj ; xk; xi); (xk ; xi; xj); (xk ; xj ; xi).If a 
onstraint of P involving xi, xj and xk is given on an ordered triple otherthan (xi; xj ; xk), this 
an be 
onverted into a 
onstraint on the ordered triple(xi; xj ; xk) by using a �nite 
ombination of the 
onverse and rotation opera-tions. For instan
e, a 
onstraint of the form (xk ; xj ; xi) 2 R is equivalent to(xi; xj ; xk) 2 (R^)_. We 
an therefore assume that if m 
onstraints of P in-volve the variables xi; xj ; xk then these 
onsist of ternary relations R1; : : : ; Rmthe ordered triple (xi; xj ; xk) is required to belong to. These m 
onstraints arethen 
onverted into the single 
onstraint (xi; xj ; xk) 2 R1 \ : : : \ Rm. We 
antherefore, without loss of generality, make the assumption that for any threevariables xi; xj ; xk, there is at most one 
onstraint involving them.A ternary 
onstraint matrix of order n over U is an n � n � n-matrix ofternary relations over U verifying the following:(8i � n)(Miii � ItU ) (the identity property);(8i; j; k � n)(Mijk = (Mikj)^) (the 
onverse property);(8i; j; k � n)(Mijk = (Mkij)_) (the rotation property):A ternary CSP P over a universe U 
an be asso
iated with the following ternary
onstraint matrix, denoted MP :1. Initialise all entries to the universal relation:(8i; j; k � n)((MP )ijk  >tU )2. Initialise the diagonal elements to the identity relation:(8i � n)((MP )iii  ItU )3. For all triples (xi; xj ; xk) of variables on whi
h a 
onstraint (xi; xj ; xk) 2 Ris spe
i�ed:(MP )ijk  (MP )ijk \ R; (MP )ikj  ((MP )ijk)^;(MP )jki  ((MP )ijk)_; (MP )jik  ((MP )jki)^;(MP )kij  ((MP )jki)_; (MP )kji  ((MP )kij)^:We make the assumption that, unless expli
itly spe
i�ed otherwise, a CSP isgiven as a 
onstraint matrix.3.4 Strong k-
onsisten
y, re�nementLet P be a CSP of order n, V its set of variables and U its universe. Aninstantiation of P is any n-tuple (a1; a2; : : : ; an) of Un, representing an assign-ment of a value to ea
h variable. A 
onsistent instantiation is an instantiation(a1; a2; : : : ; an) whi
h is a solution:� If P is a binary CSP: (8i; j � n)((ai; aj) 2 (MP )ij);10



� If P is a ternary CSP: (8i; j; k � n)((ai; aj ; ak) 2 (MP )ijk).P is 
onsistent if it has at least one solution; it is in
onsistent otherwise. The
onsisten
y problem of P is the problem of verifying whether P is 
onsistent.Let V 0 = fxi1 ; : : : ; xijg be a subset of V . The sub-CSP of P generated by V 0,denoted PjV 0 , is the CSP with set of variables V 0 and whose 
onstraint matrixis obtained by proje
ting the 
onstraint matrix of P onto V 0:� If P is a binary CSP then: (8k; l � j)((MPjV 0 )kl = (MP )ikil)� If P is a ternary CSP then: (8k; l;m � j)((MPjV 0 )klm = (MP )ik ilim)P is k-
onsistent [13, 14℄ if for any subset V 0 of V 
ontaining k�1 variables, andfor any variable X 2 V , every solution to PjV 0 
an be extended to a solution toPjV 0[fXg. P is strongly k-
onsistent if it is j-
onsistent, for all j � k.1-
onsisten
y, 2-
onsisten
y and 3-
onsisten
y 
orrespond to node-
onsisten
y,ar
-
onsisten
y and path-
onsisten
y, respe
tively [26, 28℄. Strong n-
onsisten
yof P 
orresponds to what is 
alled global 
onsisten
y in [6℄. Global 
onsisten
yfa
ilitates the important task of sear
hing for a solution, whi
h 
an be done,when the property is met, without ba
ktra
king [14℄.A re�nement of P is a CSP P 0 with the same set of variables and su
h that� (8i; j)((MP 0)ij � (MP )ij), in the 
ase of binary CSPs.� (8i; j; k)((MP 0)ijk � (MP )ijk), in the 
ase of ternay CSPs.4 Relation algebrasWe will be using unary operators (�, ^ and _) and binary operators (�, � andÆ). In expressions without full parentheses, unary operators should be 
omputed�rst, followed by Æ, �, and �, in that order.A Boolean algebra with universe B is an algebra of the form hB;�;�;� ;?;>iwhi
h satis�es the following properties, for all R;S; T 2 B:R� (S � T ) = (R � S)� T;R� S = S �R;R� S �R = R;R� S � T = (R� T )� (S � T );R�R = >:Of parti
ular interest to this work are Boolean algebras of the form h2A;[;\;� ;;; Ai, where A is a nonempty �nite set.We will 
onsider ex
lusively relation algebras (hen
eforth, RAs) of whi
h theuniverse is a set of binary relations, and RAs of whi
h the universe is a set ofternary relations; we refer to the former as binary RAs, to the latter as ternaryRAs. 11



4.1 Binary RAsU is a binary RA with universe A if:1. A is a set of binary relations; and2. U = hA;�;�;� ;?;>; Æ;^ ; Ii where hA;�;�;� ;?;>i is a Boolean alge-bra (
alled the Boolean part, or redu
t, of U), Æ is a binary operation,^ is a unary operation, I 2 A, and the following identities hold for allR;S; T 2 A: (R Æ S) Æ T = R Æ (S Æ T );(R� S) Æ T = R Æ T � S Æ T;R Æ I = I ÆR = R;(R^)^ = R;(R� S)^ = R^ � S^;(R Æ S)^ = S^ ÆR^;R^ ÆR Æ S � S = ?:The properties that hold for a binary RA 
an be seen as the minimal propertiesthat hold for an RA whose universe is a set of m-ary relations, with m � 2.These 
orrespond to the list of properties of RAs given by Tarski [35℄. Whenthe universe is a set of m-ary relations, with m � 3, further properties arise,due to further operations. Tarski provided for RAs the above list of propertiesbe
ause he was interested mainly in formalising the theory of binary relations.We now des
ribe ternary RAs, whi
h need an additional operation (rotation)and therefore additional properties.4.2 Ternary RAsU is a ternary RA with universe A if:1. A is a set of ternary relations; and2. U = hA;�;�;� ;?;>; Æ;^ ;_ ; Ii where hA;�;�;� ;?;>i is a Booleanalgebra (
alled the Boolean part, or redu
t, of U), Æ is a binary operation,^ and _ are unary operations, I 2 A, and the following identities holdfor all R;S; T 2 A:(R Æ S) Æ T = R Æ (S Æ T );(R � S) Æ T = R Æ T � S Æ T;R Æ I = I ÆR = R;(R^)^ = R;(R � S)^ = R^ � S^;(R Æ S)^ = S^ ÆR^;R^ ÆR Æ S � S = ?; ((R_)_)_ = R;(R � S)_ = R_ � S_:12



4.3 Atomi
 RAAn atom of an RA U is a minimal nonzero element, i.e., R is an atom if R 6= ?and for every S 2 A, either R�S = ? or R�S = ?. An RA is atomi
 if everynonzero element has an atom below it; i.e., if for all nonzero elements R, thereexists an atom A su
h that A�R = A.In the rest of the paper, we fo
us on atomi
, �nite RAs of whi
h the Booleanpart is of the form h2>;[;\;� ; ;;>i:1. The top element > is a �nite set of atoms; the bottom element ? is theempty set ;; the universe is the set 2> of all subsets of >; and2. the operations �, � and � are the usual set-theoreti
 operations of union([), interse
tion (\) and 
omplement (�) with respe
t to > (i.e., (8R 22>)(R = > nR)).A �nite RA is atomi
, and its Boolean part is 
ompletely determined by itsatoms. Furthermore, in an atomi
 RA, the result of applying any of the opera-tions of the RA to any elements 
an be obtained from the results of applying thedi�erent operations to the atoms. Spe
ifying a �nite, thus atomi
, RA redu
esthus to spe
ifying the identity element and the results of applying the di�erentoperations to the di�erent atoms.5 An atomi
 binary RA of 2D orientationsWe introdu
e in this se
tion the �rst RA of 2D orientations.5.1 The �eldThe �eld field(U) of an RA U with universe A is the union of the �elds ofthe relations in A; i.e., field(U) = SR2A field(R). The �eld of the RA to beintrodu
ed is the set 2DO of 2D orientations.5.2 The universeGiven an orientation X of the plane, another orientation Y 
an form with Xone of the following qualitative 
on�gurations:1. Y is equal to X : the angle (X;Y ) is equal to 0.2. Y is to the left of X : the angle (X;Y ) belongs to (0; �).3. Y is opposite to X : the angle (X;Y ) is equal to �.4. Y is to the right of X : the angle (X;Y ) belongs to (�; 2�).13



b e l o rb^ e r o l Æ e l o re e l o rl l fl; o; rg r fe; l; rgo o r e lr r fe; l; rg l fl; o; rgFigure 3: (Left) The 
onverse b^ of a CYCb atom b; (Right) The 
ompositionfor every pair of CYCb atoms: the entry on row i, 
olumn j is the CYCb relation
onsisting of the 
omposition of the leftmost element of the row and the topelement of the 
olumn.We denote the four 
on�gurations by e(Y,X), l(Y,X), o(Y,X) and r(Y,X), re-spe
tively. The 
on�gurations are Jointly Exhaustive and Pairwise Disjoint(JEPD): given any two orientations of the plane, they stand in one and onlyone of the 
on�gurations.De�nition 3 (the atoms) The RA 
ontains four atoms: e; l; o; r. We willrefer to the set of all atoms as BIN .BIN is the universal binary relation over 2DO: BIN � >b2DO � 2DO� 2DO.De�nition 4 (the universe) The universe of the RA, i.e., the set of all itsrelations, is the set of subsets of BIN . An element B of the universe is to beinterpreted as follows: (8X;Y 2 2DO)(B(Y;X), Wb2B b(Y;X))We refer to the set of singleton relations as AT b: AT b = ffeg; flg; fog; frgg.We noti
e that AT b is a set of relations, whereas BIN is a relation. When thereis no risk of 
onfusion, we omit the bra
es in the representation of a singletonrelation.5.3 The operations applied to the atomsFigure 3(Left) gives the 
onverse for ea
h of the atoms. Figure 3(Right) givesthe 
omposition for every pair of atoms.5.4 The identity elementThe identity element is the atom e; the 
omposition table of Figure 3(Right)
an be used to verify that: (8R 2 2BIN)(R Æ e = e ÆR = R).The RA so de�ned is an atomi
 binary RA, whi
h we name CYCb: CYCb =h2BIN ;[;\;� ; ;; BIN;^ ; ei. BIN is the universal CYCb relation: (8X;Y 22DO)(BIN(Y;X)). 14



The stru
ture of CYCb is very similar to Allen's algebra of temporal intervals[1℄, presented by Ladkin and Maddux as an atomi
 binary RA [20℄. In AppendixA, we verify the RA properties for CYCb.5.5 Additional de�nitionsWe make use of the isomorphism f2DO!1 alluded to earlier, from the set 2DOonto the set of radii of 
ir
le CO;1: as we have seen, given an orientation z,f2DO!1 (z) is the radius (OPz ℄ of CO;1, ex
luding the 
entre O, su
h that theorientation of the ve
tor ��!OPz is z.De�nition 5 (se
tor of a CYCb relation) The se
tor determined by an ori-entation z and a CYCb relation B, denoted se
t(z;B), is the se
tor of 
ir
leCO;1, ex
luding the 
entre O, representing the set of orientations z0 related to zby the relation B: se
t(z;B) = ff2DO!1 (z0)jB(z0; z)g.Remark 1 The se
tor determined by an orientation and a CYCb relation doesnot in
lude the 
entre O of 
ir
le CO;1. Therefore, given n orientations z1; : : : ; znand n CYCb relations B1; : : : ; Bn, the interse
tion n\i=1 se
t(zi; Bi) is either theempty set or a set of radii:1 this 
annot be equal to the 
entre O, whi
h would bepossible if the se
tor determined by an orientation and a CYCb relation in
ludedO. This is important for the understanding of the proof of Theorem 6.De�nition 6 Let B be a CYCb relation:1. B is 
onvex if for all orientations z, se
t(z;B) is a 
onvex part of theplane.2. The dimension of B is the dimension of the se
tor it determines with anyorientation.3. B is holed if:(a) it is equal to BIN ; or(b) the di�eren
e BIN n B is a CYCb relation of dimension 1 (is equalto e, o or fe; og).The two atoms e and o of CYCb are of dimension 1, the other two (l and r)of dimension 2. Moreover, the dimension of a CYCb relation in general is thegreatest of the dimensions of its atoms.1A set of radii represents, a

ording to our 
onvention (De�nition 1), a set of orientationvalues. 15



b2

X

b1

Y

b3

ZFigure 4: The ternary relation indu
ed from three CYCb atoms: b1b2b3(X;Y; Z)i� b1(Y;X) ^ b2(Z; Y ) ^ b3(Z;X).Intuitively, a CYCb relation is holed if the se
tor it determines with anyorientation is almost equal to the entire surfa
e of 
ir
le CO;1; i.e., the topologi
al
losure of the se
tor is equal to the entire surfa
e.We will refer to the set of all CYCb relations whi
h are either 
onvex or holedas BCH . BCH splits into:1. eight 
onvex relations: feg; flg; fog; frg; fe; lg; fe; rg; fl; og; fo; rg; and2. four holed relations: fl; rg; fe; l; rg; fl; o; rg; fe; l; o; rg.Noti
e that neither of the CYCb relations fe; l; og and fe; o; rg is 
onvex. Forinstan
e, the se
tor determined by an orientation, say z, and the former relation,fe; l; og, is equal to � minus the 
entre of C0;1.De�nition 7 (indu
ed ternary relation) Given three CYCb atoms b1; b2; b3,we de�ne the indu
ed ternary relation b1b2b3 as follows (see Figure 4):(8X;Y; Z)(b1b2b3(X;Y; Z), b1(Y;X) ^ b2(Z; Y ) ^ b3(Z;X))The CYCb 
omposition table (Figure 3(Right)) has 12 entries 
onsisting ofatoms, the remaining four 
onsisting of three-atom relations. Therefore anythree 2D orientations stand in one of the following 24 JEPD 
on�gurations:eee, ell, eoo, err, lel, lll, llo, llr, lor, lre, lrl, lrr, oeo, olr, ooe, orl, rer, rle, rll,rlr, rol, rrl, rro, rrr. A

ording to De�nition 7, rol(X,Y,Z), for instan
e, meansr(Y;X) ^ o(Z; Y ) ^ l(Z;X).The 
omposition table rules out the other, (4� 4� 4)� 24, indu
ed ternaryrelations b1b2b3; these are in
onsistent: no triple (z1; z2; z3) of orientations existssu
h that for su
h an indu
ed relation one has b1(z2; z1)^ b2(z3; z2)^ b3(z3; z1).
16



6 An atomi
 ternary RA of 2D orientationsAs we will see, the CYCORD relation 
y
 [31, 32℄ holds on a triple (z1; z2; z3)of 2D orientations if the images Pz1 , Pz2 and Pz3 of z1, z2 and z3, respe
tively,of the isomorphism f2DO!2 (De�nition 1) are:1. pairwise distin
t, and2. su
h that Pz2 is met before Pz3 when we s
an the 
ir
le CO;1 in a 
lo
kwisedire
tion starting from Pz1 .The RA CYCb 
annot represent the relation 
y
. However, we 
an de�ne anatomi
 ternary RA of whi
h the atoms are the \indu
ed ternary relations" de-s
ribed above, whi
h will have 
y
 as one of the elements of its universe.6.1 The �eldAs for CYCb, the �eld of this new RA, whi
h we name CYCt, is the set 2DO of2D orientations.6.2 The universeDe�nition 8 (the atoms) An atom of CYCt is any of the 24 JEPD 
on�gu-rations a triple of 2D orientations 
an stand in. We denote the set of all atomsby TER: TER = feee; ell; eoo; err; lel; lll; llo; llr; lor; lre; lrl; lrr; oeo; olr; ooe;orl; rer; rle; rll; rlr; rol; rrl; rro; rrrg.TER is the universal ternary relation over 2DO: TER � >t2DO � 2DO �2DO � 2DO.De�nition 9 (The universe) The universe of the ternary RA, i.e., the set ofall its relations, is the set of subsets of TER. An element T of the universe isto be interpreted as follows: (8X;Y; Z 2 2DO)(T (X;Y; Z), Wt2T t(X;Y; Z))We refer to the set of singleton relations as AT t: AT t = fftg : t 2 TERg.When there is no risk of 
onfusion, we omit the bra
es in the representation ofa singleton relation.6.3 The operations applied to the atomsFigure 5 gives the 
onverse and the rotation for ea
h of the 24 atoms.In order to give a simple way of writing the 
omposition tables, we haveto look 
losely at how 
omposition is 
omputed. Given four 2D orientationsX;Y; Z;W and two atoms t1 and t2, 
orresponding, respe
tively, to the indu
edternary relations b1b2b3 and b01b02b03, the 
onjun
tion t1(X;Y; Z)^ t2(X;Z;W ) isin
onsistent if b3 6= b01 (see Figure 6 for illustration); this is be
ause the CYCb17



t t^ t_eee eee eeeell lre lreeoo ooe ooeerr rle rlelel lel errlll lrl lrr
t t^ t_llo orl lorllr rrl llrlor rol olrlre ell rerlrl lll rrrlrr rll rlr

t t^ t_oeo oeo eooolr rro lloooe eoo oeoorl llo rrorer rer ellrle err lel
t t^ t_rll lrr lrlrlr rrr lllrol lor orlrrl llr rrlrro olr rolrrr rlr rllFigure 5: The 
onverse t^ and the rotation t_ of a CYCt atom t.

.
��������������.............R

............}�������...........� ������� .......................�6 b2b02 Z
X b1b01 b3 YW b03

Figure 6: The 
onjun
tion b1b2b3(X;Y; Z) ^ b01b02b03(X;Z;W ) is in
onsistent ifb3 6= b01.
18



atoms are JEPD. Stated otherwise, when b3 6= b01 we have t1 Æ t2 = ;. Thus
omposition splits into four 
omposition tables, 
orresponding to the followingfour 
ases:1. Case 1: b3 = b01 = e. This 
orresponds to t1 2 feee; lre; ooe; rleg andt2 2 feee; ell; eoo; errg.2. Case 2: b3 = b01 = l. This 
orresponds to t1 2 fell; lel; lll; lrl; orl; rll; rol; rrlgand t2 2 flel; lll; llo; llr; lor; lre; lrl; lrrg.3. Case 3: b3 = b01 = o. This 
orresponds to t1 2 feoo; llo; oeo; rrog andt2 2 foeo; olr; ooe; orlg.4. Case 4: b3 = b01 = r. This 
orresponds to t1 2 ferr; llr; lor; lrr; olr; rer;rlr; rrrg and t2 2 frer; rle; rll; rlr; rol; rrl; rro; rrrg.Figure 7 presents the four 
omposition tables.26.4 The identity elementGiven a universe U , we have de�ned the relation It23U as f(a; b; b) : a; b 2 Ug.It23U expresses equality of the last two arguments, and leaves unspe
i�ed therelation between the �rst two. Sin
e b1b2b3(X;Y; Z), where b1b2b3 is a CYCtatom, represents the 
onjun
tion b1(Y;X)^b2(Z; Y )^b3(Z;X), this means thatif Y and Z are equal then for b1b2b3(X;Y; Z) to hold, b2 must be e, and b1 andb3 must be identi
al. Thus, when U 
oin
ides with 2DO, we get:It232DO = feee; lel; oeo; rergUsing the 
omposition tables, we 
an verify that It232DO is an identity elementfor CYCt: (8R 2 2TER)(R Æ It232DO = It232DO ÆR = R)This 
ompletes the presentation of CYCt:CYCt = h2TER;[;\;� ; ;; TER;^ ;_ ; It232DOiTER is the universal CYCt relation: (8X;Y; Z 2 2DO)(TER(X;Y; Z)).In Appendix B, we verify the RA properties for an atomi
 ternary RA.2Alternatively, one 
ould de�ne one single 
omposition table for CYCt. Su
h a table wouldhave 24 � 24 entries, most of whi
h (i.e., 24 � 24� (16 + 64 + 16 + 64)) would be the emptyrelation.
19



Æ eee ell eoo erreee eee ell eoo errlre lre flel; lll; lrlg llo fllr; lor; lrrgooe ooe orl oeo olrrle rle frll; rol; rrlg rro frer; rlr; rrrgÆ lel lll llo llr lor lre lrl lrrell ell ell eoo err err eee ell errlel lel lll llo llr lor lre lrl lrrlll lll lll llo fllr,lor,lrrg lrr lre flel,lll,lrlg lrrlrl lrl flel,lll,lrlg llo llr llr lre lrl fllr,lor,lrrgorl orl orl oeo olr olr ooe orl olrrll rll frll,rol,rrlg rro rrr rrr rle rll frer,rlr,rrrgrol rol rrl rro rrr rer rle rll rlrrrl rrl rrl rro frer,rlr,rrrg rlr rle frll,rol,rrlg rlrÆ oeo olr ooe orleoo eoo err eee ellllo llo fllr; lor; lrrg lre flel; lll; lrlgoeo oeo olr ooe orlrro rro frer; rlr; rrrg rle frll; rol; rrlgÆ rer rle rll rlr rol rrl rro rrrerr err eee ell err ell ell eoo errllr llr lre lrl fllr,lor,lrrg lrl flel,lll,lrlg llo llrlor lor lre lrl lrr lel lll llo llrlrr lrr lre flel,lll,lrlg lrr lll lll llo fllr,lor,lrrgolr olr ooe orl olr orl orl oeo olrrer rer rle rll rlr rol rrl rro rrrrlr rlr rle frll,rol,rrlg rlr rrl rrl rro frer,rlr,rrrgrrr rrr rle rll frer,rlr,rrrg rll frll,rol,rrlg rro rrrFigure 7: The CYCt 
omposition tables: 
ase 1, 
ase 2, 
ase 3 and 
ase 4,respe
tively, from top to bottom.
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Figure 8: Graphi
al illustration of the 24 CYCt atoms: from top to bottom,left to right, the atoms are lrl; orl; rll; rol; rrl; rro; rrr; lll; llo; lrr; lor; llr; olr; rlr;eee; ell; eoo; err; lel; oeo; rer; lre; ooe; rle.
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6.5 ExamplesExample 1 For ea
h CYCt atom t, Figure 8 presents a 
on�guration of orien-tations X, Y and Z su
h that t(X;Y; Z) holds:� The top row illustrates, from left to right, the atoms lrl; orl; rll; rol; rrl; rro;rrr.� The se
ond row from the top illustrates, from left to right, the atomslll; llo; lrr; lor; llr; olr; rlr.� The third row from the top illustrates, from left to right, the atoms eee; ell;eoo; err; lel; oeo; rer.� Finally, the bottom row illustrates, from left to right, the atoms lre; ooe; rle.Example 2 Consider again Figure 8:1. Ea
h atom illustrated on the se
ond and fourth rows from the top is the
onverse of the atom illustrated just above it, on the pre
eding row.2. The �rst and last three illustrations of the third row from the top havenothing underneath them, on the bottom row: ea
h of the 
orrespondingatoms is its proper 
onverse.3. Consider the relation 
y
 de�ned on the set 2DO as follows:(8X;Y;Z 2 2DO)(
y
(X ;Y ;Z ), Y 6= X ^ Z 6= Y ^ Z 6= X ^ 
w(X ;Y ;Z ))The relation 
w holds on a triple (X;Y; Z) of 2D orientations if andonly if we �rst meet Y and then Z when we move in a 
lo
kwise dire
tionstarting from X. Thus the relation 
y
 expresses stri
t betweenness in a
lo
kwise dire
tion. This relation is the unique relation of the CYCORDtheory [31, 32℄, and is indeed an element of CYCt: 
y
 = flrl; orl; rll; rol;rrl; rro; rrrg (the set of all atoms illustrated on the top row).4. The 
onverse of 
y
 is the set of all atoms illustrated on the se
ond rowfrom the top: 
y
^ = flll; llo; lrr; lor; llr; olr; rlrgExample 3 The 
omposition rule for the CYCORD theory is as follows, and
an be veri�ed using the CYCt 
omposition tables:(8X;Y;Z;W )(
y
(X ;Y ;Z ) ^ 
y
(X;Z;W)) 
y
(X ;Y ;W ))
22



6.6 Additional de�nitionsDe�nition 10 (
ross produ
t of CYCb relations) The 
ross produ
t ofthree CYCb relations B1; B2; B3, denoted �(B1; B2; B3), is the CYCt relation
onsisting of those atoms b1b2b3 su
h that b1 2 B1; b2 2 B2; b3 2 B3:�(B1; B2; B3) = fb1b2b3 : b1 2 B1; b2 2 B2; b3 2 B3g \ TERDe�nition 11 Let R be a CYCt relation:1. The �rst, se
ond and third proje
tions of R are the CYCb relations 51(R),52(R) and 53(R), respe
tively, de�ned as follows:51(R) = fb1 2 BIN : (9b2; b3 2 BIN)(b1b2b3 2 R)g;52(R) = fb2 2 BIN : (9b1; b3 2 BIN)(b1b2b3 2 R)g;53(R) = fb3 2 BIN : (9b1; b2 2 BIN)(b1b2b3 2 R)g2. R is proje
table if R = �(51(R);52(R);53(R)).3. R is 
onvex if it is proje
table, and ea
h of its proje
tions is a 
onvex CYCbrelation.4. R is said to be f
onvex,holedg (
onvex or holed) if it is proje
table, andea
h of its proje
tions is a CYCb relation whi
h is either 
onvex or holed(belongs to BCH).We noti
e that, given a CYCt relation R, 51(R), 52(R) and 53(R) are themost spe
i�
 CYCb relations su
h that:(8X;Y; Z)(R(X;Y; Z))51(R)(Y;X) ^52(R)(Z; Y ) ^53(R)(Z;X))Example 4 1. �(fe; og; flg; fl; rg) = fell; olrg.2. Let R = fell; llog. We have the following: 51(R) = fe; lg, 52(R) = flgand 53(R) = fl; og.3. The 
ross produ
t of the three proje
tions of the relation R above is�(51(R);52(R);53(R)) = �(fe; lg; flg; fl; og) = fell; lll; llog. Thus R 6=�(51(R);52(R);53(R)), and R is not proje
table.The set of all proje
table CYCt relations 
an be enumerated by 
omputing forevery three CYCb relations their 
ross produ
t. The set 
ontains 1518 elements,in
luding the empty relation.We will refer to the subset of all f
onvex,holedg CYCt relations as TCH .De�nition 12 (
losures) Let S denote a subset of CYCt. The weak 
losure ofS is the smallest subset Sw
 of CYCt verifying the following properties:(P1) S � Sw
; and 23



(P2) (8R;S 2 Sw
)(R^ 2 Sw
; R_ 2 Sw
; R \ S 2 Sw
).The 
losure of S under strong 4-
onsisten
y, or s4
-
losure of S, is the smallestsubset Ss4
 of CYCt verifying the following properties:(P3) S � Ss4
; and(P4) (8R;S; T 2 Ss4
)(R^ 2 Ss4
; R_ 2 Ss4
; R\ S 2 Ss4
; R Æ S \ T 2 Ss4
).The 
losure of S is the smallest subset S
 of CYCt verifying the following prop-erties:(P5) S � S
; and(P6) (8R;S 2 S
)(R^ 2 S
; R_ 2 S
; R \ S 2 S
; R Æ S 2 S
).Given a subset S of CYCt, we have Sw
 � Ss4
 � S
. The relations in S

an be viewed as resulting from the \exe
ution" of (well-formed) expressions
onstru
ted from the alphabet VS = S [ f^;_ ;\; Æ; (; )g; we refer to su
hexpressions as S
-expressions, and to the set of all of them as Xp(S
).De�nition 13 Xp(S
) is the smallest set of expressions over VS verifying thefollowing two properties:1. a CYCt relation belonging to S belongs to Xp(S
); and2. if e1 and e2 belong to Xp(S
) then so do (e1)^; (e1)_; e1 \ e2; e1 Æ e2.We suppose the reader familiar with (labelled) binary trees (ea
h node of su
ha tree has at most two immediate su

essors). If a (binary) tree t redu
es to aleaf labelled with R, we represent it as R; otherwise, let r be the root of t and� the label of r:1. if r has one immediate su

essor then we represent t as h�; t0i, where t0 is(the representation of) the subtree rooted at the immediate su

essor ofr;2. if r has two immediate su

essors then we represent t as ht1; �; t2i, wheret1 and t2 are (the representations of) the subtrees rooted, respe
tively, atthe left immediate su

essor and at the right immediate su

essor of r.De�nition 14 (tree) The tree, tS(e), and the number of subtrees, nstS(e), ofan S
-expression e are de�ned re
ursively as follows:1. for all R 2 S, tS(R) = R and nstS(R) = 1;2. tS(e^) = h^; tS(e)i and nstS(e^) = 1 + nstS(e);3. tS(e_) = h_; tS(e)i and nstS(e_) = 1 + nstS(e);24



4. tS(e1\e2) = htS(e1);\; tS(e2)i and nstS(e1\e2) = 1+nstS(e1)+nstS(e2);and5. tS(e1Æe2) = htS(e1); Æ; tS(e2)i and nstS(e1Æe2) = 1+nstS(e1)+nstS(e2).Thus the leaves of the tree of an S
-expression are labelled with elements ofS, and the internal nodes with the operators ^, _, \ and Æ. The number ofsubtrees, nstS(e), of an S
-expression e is the sum of the number, nlS(e), ofleaves of tS(e) and the number, noS(e), of operators of e: nstS(e) = nlS(e) +noS(e); noS(e) indi
ates the number of internal nodes of tS(e), i.e., the numberof operators to apply in order to get the 
orresponding element of S
. Thepro
edure enumerate() in Figure 9 enumerates the 
losure of a subset S ofCYCt: the elements of S are supposed ordered. When the pro
edure 
ompletes,variable size indi
ates the number of relations in the 
losure of S, the array 

ontains the elements of the 
losure of S, and for ea
h i = 1 : : : size, t[i℄ is thetree of an S
-expression whose \exe
ution" gives 
[i℄, nst[i℄ is the number ofsubtrees of t[i℄.Remark 2 In the remainder of the paper, and parti
ularly in the proof of The-orem 9, we refer to the tree t[i℄ as the tree, tS(
[i℄), of the relation 
[i℄ ofS
, and to nst[i℄ as the number of subtrees, nstS(tS(
[i℄)), of tS(
[i℄): t[i℄ =tS(
[i℄); nst[i℄ = nstS(tS(
[i℄)).7 CSPs on 
y
li
 ordering of 2D orientationsWe de�ne a CYCb-CSP as a CSP of whi
h the 
onstraints are CYCb relations onpairs of the variables; a CYCt-CSP as a CSP of whi
h the 
onstraints are CYCtrelations on triples of the variables. For both types of CSPs, the universe is theset 2DO of 2D orientations. We use the term CYC-CSP to refer to a CSP whi
his either a CYCb-CSP or a CYCt-CSP.A CYCb-matrix (resp. CYCt-matrix) of order n is a 
onstraint matrix oforder n of whi
h the entries are CYCb (resp. CYCt) relations. The 
onstraintmatrix asso
iated with a CYCb-CSP (resp. CYCt-CSP) is a CYCb-matrix (resp.CYCt-matrix).A s
enario of a CYC-CSP is a re�nement P 0 su
h that all entries of MP 0 areatoms. A 
onsistent s
enario is a s
enario whi
h is 
onsistent.If we make the assumption that a CYC-CSP does not in
lude the empty
onstraint, whi
h indi
ates a trivial in
onsisten
y, then a CYCb-CSP is strongly2-
onsistent and a CYCt-CSP is strongly 3-
onsistent.7.1 A
hieving path 
onsisten
y for a CYCb-CSPA simple adaptation of Allen's 
onstraint propagation algorithm [1℄ 
an be usedto a
hieve path 
onsisten
y (hen
e strong 3-
onsisten
y) for CYCb-CSPs. Ap-plied to a CYCb-CSP P , su
h an adaptation would repeat the following steps25



Input: a subset S = fR1; : : : ; Rmg of CYCt (S � 2TER).Output: enumeration of the 
losure S
.pro
edure enumerate(S; 
; t; nst);1. for i 1 to mf
[i℄ Ri;t[i℄ Ri;nst[i℄ = 1;g2. size m;3. i 1;4. while(i � size)f5. R (
[i℄)^;6. if(R =2 
)fsize++;
[size℄ R;t[size℄ h^; t[i℄i;nst[size℄ 1+nst[i℄;g7. R (
[i℄)_;8. if(R =2 
)fsize++;
[size℄ R;t[size℄ h_; t[i℄i;nst[size℄ 1+nst[i℄;g9. j  1;10. while(j � i)f11. R 
[i℄ \ 
[j℄;12. if(R =2 
)fsize + +;
[size℄  R;t[size℄  ht[i℄;\; t[j℄i;nst[size℄  1 +nst[i℄ + nst[j℄;g13. R 
[i℄ Æ 
[j℄;14. if(R =2 
)fsize + +;
[size℄  R;t[size℄  ht[i℄; Æ; t[j℄i;nst[size℄  1 +nst[i℄ + nst[j℄;g15. R 
[j℄ Æ 
[i℄;16. if(R =2 
)fsize + +;
[size℄  R;t[size℄  ht[j℄; Æ; t[i℄i;nst[size℄  1 +nst[j℄ + nst[i℄;g17. j ++;18. g19. i++;20. g Figure 9: Enumeration of the 
losure of a subset of CYCt.26
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Figure 10: (I) The `Indian tent'; and (II) its asso
iated CYCb-CSP: the CSP ispath 
onsistent but not 
onsistent (path 
onsisten
y does not dete
t in
onsis-ten
y even for CYCb-CSPs entirely labelled with atoms).until either stability is rea
hed or the empty relation is dete
ted (indi
atingin
onsisten
y):1. Consider a triple (Xi; Xj ; Xk) of variables verifying (MP )ij 6� ((MP )ik Æ(MP )kj)2. (MP )ij  (MP )ij \ (MP )ik Æ (MP )kj3. If ((MP )ij = ;) then exit (the CSP is in
onsistent).Example 5 (the `Indian tent') The `Indian tent' 
onsists of a 
lo
kwise tri-angle (ABC), together with a fourth point D whi
h is to the left of ea
h of thedire
ted lines (AB) and (BC) (see Figure 10(I)).The knowledge about the `Indian tent' 
an be represented as a CYCb-CSPon four variables, X1, X2, X3 and X4, representing the orientations of thedire
ted lines (AB), (AC), (BC) and (BD), respe
tively. From (ABC) beinga 
lo
kwise triangle, we get a �rst set of 
onstraints: fr(X2; X1); r(X3; X1);r(X3; X2)g. From D being to the left of ea
h of the dire
ted lines (AB) and(BC), we get a se
ond set of 
onstraints: fl(X4; X1); l(X4; X3)g.If we add the 
onstraint r(X4; X2) to the CSP, whi
h states that the point Dshould be to the right of the dire
ted line (AC), this leads to an in
onsisten
y.R�ohrig [32℄ has shown that using the CYCORD theory one 
an dete
t su
h anin
onsisten
y, whereas this 
annot be dete
ted using 
lassi
al 
onstraint-basedapproa
hes su
h as those in [8, 9, 18℄.The CYCb-CSP is represented graphi
ally in Figure 10(II): a CYCb 
onstraintR(X;Y ) is represented as the dire
ted edge (X;Y ) labelled with R. The CSP ispath-
onsistent: (8i; j; k)(Pij � Pik Æ Pkj).3 However, as mentioned above, theCSP is in
onsistent. Therefore:3This 
an be easily veri�ed using the CYCb 
omposition table.27



Theorem 1 Path-
onsisten
y does not dete
t in
onsisten
y even for CYCb-CSPs entirely labelled with atoms.7.2 A
hieving strong 4-
onsisten
y for a CYCt-CSPA 
onstraint propagation pro
edure, s4
(), for CYCt-CSPs is given in Figure 11;the pro
edure is an adaptation of Allen's algorithm [1℄ to ternary relations. Theinput is a CYCt-CSP P of order n. When the pro
edure 
ompletes, P veri�esthe following: (8i; j; k; l � n)((MP )ijk � (MP )ijl Æ (MP )ilk).The pro
edure makes use of a queue Queue. Initially, we 
an assume that alltriples (Xi; Xj ; Xk) su
h that 1 � i � j � k � n are entered into Queue. Thepro
edure removes one triple from Queue at a time. When a triple (Xi; Xj ; Xk)is removed from Queue, the pro
edure eventually updates the relations on theneighbouring triples (triples sharing two variables with (Xi; Xj ; Xk)). If su
ha relation is su

essfully updated, the 
orresponding triple is sorted, in su
h away to have the variable with the smallest index �rst and the variable with thegreatest index last, and the sorted triple is pla
ed in Queue (if it is not alreadythere) sin
e it may in turn 
onstrain the relations on neighbouring triples: thisis done by add-to-queue(). The pro
ess terminates when Queue be
omes empty.Theorem 2 The 
onstraint propagation pro
edure s4
() a
hieves strong 4-
onsisten
yfor the input CYCt-CSP, and runs into 
ompletion in O(n4) time, where n isthe number of variables of the CSP.Proof. A CYCt-CSP is strongly 3-
onsistent. Pro
edure s4
() a
hieves 4-
onsisten
y, therefore it a
hieves strong 4-
onsisten
y. The number of variabletriples (Xi; Xj ; Xk) is O(n3). A triple may be pla
ed in Queue at most a 
on-stant number of times (24, whi
h is the total number of CYCt atoms). Everytime a triple is removed from Queue for propagation, the pro
edure performsO(n) operations.7.3 A 
onsistent s
enario sear
h algorithm for CYCt-CSPsWe will show that the task of 
he
king 
onsisten
y for a general CYCt-CSP isNP-
omplete; thus, with the assumption P 6= NP , no polynomial algorithm 
anbe found for that task. On the other hand, we will show that the set of CYCtatoms is tra
table; spe
i�
ally, we will show that a CYCt-CSP for whi
h everythree variablesX;Y; Z are involved in a 
onstraint of the form t(X;Y; Z), where tis a CYCt atom, 
an be 
he
ked for 
onsisten
y using the s4
() pro
edure, whi
hperforms in polyomial time. We 
an thus use a ba
ktra
king sear
h pro
edureto 
he
k 
onsisten
y for a general CYCt-CSP, whi
h will sear
h for a s
enario,if any, of the input CYCt-CSP whi
h is strongly 4-
onsistent, thus 
onsistent.Su
h a sear
h pro
edure is provided in Figure 12, whi
h is similar to the one ofLadkin and Reinefeld [21℄ for temporal interval networks, ex
ept that:28



Input: a CYCt-CSP P .Output: the CSP P made strongly 4-
onsistent.pro
edure s4
(P );1. initialise Queue;2. repeatf3. get next triple (Xi; Xj ; Xk) from Queue;4. for m 1 to nf5. Temp (MP )ijm \ (MP )ijk Æ (MP )ikm;6. If Temp = ; then exit (the CSP is in
onsistent);7. if Temp 6= (MP )ijm8. fadd-to-queue(Xi; Xj ; Xm);update(P; i; j;m; Temp);g9. Temp (MP )ikm \ (MP )ikj Æ (MP )ijm;10. If Temp = ; then exit (the CSP is in
onsistent);11. if Temp 6= (MP )ikm12. fadd-to-queue(Xi; Xk; Xm);update(P; i; k;m; Temp);g13. Temp (MP )jkm \ (MP )jki Æ (MP )jim;14. If Temp = ; then exit (the CSP is in
onsistent);15. if Temp 6= (MP )jkm16. fadd-to-queue(Xj; Xk; Xm);update(P; j; k;m; Temp);g17. g18. g19. until Queue is empty;pro
edure update(P; i; j; k; T );1. (MP )ijk  T ; (MP )ikj  T^; (MP )jki  T_;2. (MP )jik  ((MP )jki)^; (MP )kij  ((MP )jki)_; (MP )kji  ((MP )kij )^;Figure 11: A 
onstraint propagation pro
edure for CYCt-CSPs.29



Input: A CYCt-CSP P ;Output: true if and only if P is 
onsistent;fun
tion 
onsistent(P );1. s4
(P );2. if(P 
ontains the empty relation)return false;3. else4. if(P 
ontains triples labelled with relations other than atoms)f5. 
hoose su
h a triple, say (Xi; Xj ; Xk);6. T  (MP )ijk ;7. for ea
h atom t in Tf8. re�ne (MP )ijk to t (i.e., (MP )ijk  t);9. if(
onsistent(P ))return true;10. g11. (MP )ijk  T ;12. return false;13. g14. else return true;Figure 12: A 
onsistent s
enario sear
h algorithm for CYCt-CSPs.
30



1. it re�nes the relation on a triple of variables at ea
h node of the sear
htree, instead of the relation on a pair of variables; and2. it makes use of the pro
edure s4
(), whi
h a
hieves strong 4-
onsisten
y,in the prepro
essing step and as the �ltering method during the sear
h,instead of a path 
onsisten
y pro
edure.The other details are similar to those of Ladkin and Reinefeld's algorithm.De�nition 15 Let P denote a CYCt-CSP of order n:1. P is proje
table if for all i; j; k, (MP )ijk is a proje
table CYCt relation.2. The proje
tion of P is the CYCb-CSP 5(P ) with the same set of variables,and su
h that: (8i; j � n)((M5(P ))ji = \k�n[51((MP )ijk)\52((MP )kij)\53((MP )ikj )℄).The next two theorems will be needed in the next se
tion, for the proof ofTheorem 6.Theorem 3 A proje
table CYCt-CSP is equivalent to its proje
tion.Proof. Let P be a proje
table CYCt-CSP; thus:(8i; j; k)[(MP )ijk � �(51((MP )ijk);52((MP )ijk);53((MP )ijk))℄In other words, the 
onstraint (MP )ijk(Xi; Xj ; Xk) 
an be equivalently writ-ten as the following 
onjun
tion of binary 
onstraints: 51((MP )ijk)(Xj ; Xi) ^52((MP )ijk)(Xk; Xj)^53((MP )ijk)(Xk; Xi). P 
an be written as the 
onjun
-tion ^i;j;k�n(MP )ijk(Xi; Xj ; Xk); repla
ing the 
onstraint (MP )ijk(Xi; Xj ; Xk)by the equivalent 
onjun
tion of binary 
onstraints, we get:P � ^i;j;k�n[51((MP )ijk)(Xj ; Xi) ^52((MP )ijk)(Xk ; Xj) ^53((MP )ijk)(Xk; Xi)℄Be
ause the 
onjun
tion 
onsiders all possible triples (i; j; k), with i; j; k � n,it 
an be split into:P � ^i;j;k�n51((MP )ijk)(Xj ;Xi)^ ^i;j;k�n52((MP )ijk)(Xk;Xj)^ ^i;j;k�n53((MP )ijk)(Xk;Xi)We 
onsider now the main three sub
onjun
tions and rename i; j; k as k; i; j,respe
tively, in the se
ond sub
onjun
tion, and as i; k; j, respe
tively, in thethird sub
onjun
tion; we get:P � ^i;j;k�n51((MP )ijk)(Xj ;Xi) ^ ^i;j;k�n52((MP )kij )(Xj ;Xi) ^ ^i;j;k�n53((MP )ikj )(Xj ;Xi)31



Putting ba
k the three sub
onjun
tions into one main 
onjun
tion, we get:P � ^i;j;k�n[51((MP )ijk)(Xj ; Xi)^52((MP )kij )(Xj ; Xi)^53((MP )ikj)(Xj ; Xi)℄whi
h is equivalent to:P � ^i;j�n[k̂�n51((MP )ijk)(Xj ; Xi) ^52((MP )kij)(Xj ;Xi) ^53((MP )ikj )(Xj ;Xi)℄whi
h in turn is equivalent to:P � ^i;j�n[\k�n[51((MP )ijk) ^52((MP )kij) ^53((MP )ikj )℄(Xj ; Xi)℄This 
orresponds exa
tly to the 
onstraint matrix of the proje
tion 5(P ) of P .Theorem 4 Let P denote a proje
table CYCt-CSP of order n. If P is strongly4-
onsistent then its proje
tion 5(P ) veri�es the following: (8i; j; k1; k2 � n)[(M5(P ))ji =51((MP )ijk1 ) =52((MP )k1ij) =53((MP )ik1j) = 51((MP )ijk2 )℄.Proof (sket
h). Strong 4-
onsisten
y of P implies its 
losure under the oper-ations of 
onverse and rotation, as well as under what we will refer to as theoperation of strong 4-
onsisten
y, or s4
-operation for short:(MP )ijk  (MP )ijk \ (MP )ijl Æ (MP )ilkFrom the 
losure under the operations of 
onverse and rotation, we get:(8b1b2b3 2 TER)(b1b2b3 2 (MP )ijk1 , b3(b2)^b1 2 (MP )ik1j , (b3)^b1(b2)^ 2 (MP )k1ij)whi
h implies the following:(8b1 2 BIN)[b1 2 51((MP )ijk1 ), b1 2 53((MP )ik1j), b1 2 52((MP )k1ij)℄Thus (8i; j; k1)[51((MP )ijk1 ) =52((MP )k1ij) =53((MP )ik1j)℄.Let b1 2 51((MP )ijk1 ), and suppose that for some k2 6= k1, b1 =2 51((MP )ijk2 ).We use the fa
t that given two CYCt atoms t1 and t2 and a CYCb atom b, if b =251(t1) then b =2 51(t1 Æ t2). We get that b1 =2 51((MP )ijk2 Æ (MP )ik2k1). Now
losure under the s4
-operation implies that (MP )ijk1 � (MP )ijk2 Æ (MP )ik2k1 .From b1 =2 51((MP )ijk2 Æ (MP )ik2k1), we derive that b1 =2 51((MP )ijk1 ), whi
h
ontradi
ts our supposition.A CYCb-CSP P 
an be transformed into an equivalent CYCt-CSP, say P 0, asfollows:1. P 0 has the same set of variables as P ; and2. (8i; j; k)((MP 0)ijk = �((MP )ji; (MP )kj ; (MP )ki).32
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........ .....................�.....................Y Xik+1(M5(P ))ik+1i1(M5(P ))ik+1ij(M5(P ))ik+1ik

Xi1 = z1Xij = zjXik = zkFigure 13: Illustration of the proof of Theorem 6.8 A tra
tability resultThe aim of this se
tion is to show that the 
losure under strong 4-
onsisten
y,(AT t)s4
, of the set AT t = fftg : t 2 TERg of all CYCt atoms is tra
table; morespe
i�
ally, using the terminology in [2℄, we show that the CYCt 
ompositiontables are 
omplete for (AT t)s4
. We �rst prove that if a CYCt-CSP expressedin TCH is strongly 4-
onsistent then it is globally 
onsistent, from whi
h theresult will follow. The proof will need Helly's 
onvexity theorem:Theorem 5 (Helly's Theorem [4℄) Let S be a set of 
onvex regions of then-dimensional spa
e IRn. If every n+1 elements in S have a non empty inter-se
tion then the interse
tion of all elements of S is non empty.For n = 2, the theorem states that if a set of 
onvex planar regions is su
h thatevery three regions in the set have a non empty interse
tion then the interse
tionof all regions in the set is non empty.Van Beek [36℄ has used the spe
ialisation to n = 1 of Helly's theorem toprove a tra
tability result for path 
onsistent CSPs of Allen's 
onvex relations.We will need the spe
ialisation to n = 2.Theorem 6 Let P be a CYCt-CSP expressed in TCH: (8i; j; k)((MP )ijk 2TCH). If P is strongly 4-
onsistent then it is globally 
onsistent.Proof. Sin
e P is expressed in TCH and is strongly 4-
onsistent, we have thefollowing:1. P is equivalent to its proje
tion 5(P ), whi
h is a CYCb-CSP expressed inBCH : (8i; j)((M5(P ))ij 2 BCH).2. The proje
tion 5(P ) is strongly 4-
onsistent.So the problem be
omes that of showing that 5(P ) is globally 
onsis-tent. For this purpose, we suppose that the instantiation (Xi1 ; Xi2 ; : : : ; Xik ) =(z1; z2; : : : ; zk); k � 4, is a solution to the k-variable sub-CSP (5(P ))jfXi1 ;:::;Xikg33



of 5(P ). We need to prove that the partial solution 
an be extended to any(k + 1)st variable, say Xik+1 , of 5(P ).4 This is equivalent to showing that thefollowing se
tors have a non empty interse
tion (see Figure 13 for illustration):se
t(z1; (M5(P ))ik+1i1); se
t(z2; (M5(P ))ik+1i2); : : : ; se
t(zk; (M5(P ))ik+1ik).Sin
e the (M5(P ))ik+1ij ; j = 1 : : : k, belong to BCH , ea
h of these se
torsis: 1. a 
onvex subset of the plane; or2. almost equal to the surfa
e of 
ir
le CO;1 (its topologi
al 
losure is equalto that surfa
e).We split these se
tors into those verifying 
ondition (1) and those verifying
ondition (2). We assume, without loss of generality, that the �rst m verify
ondition (1), and the last k�m verify 
ondition (2). We write the interse
tionof the se
tors as I = I1 \ I2, with I1 = Tmj=1 se
t(zj ; (M5(P ))ik+1ij ); I2 =Tkj=m+1 se
t(zj ; (M5(P ))ik+1ij ).Due to strong 4-
onsisten
y, every three of these se
tors have a non emptyinterse
tion. If any of the se
tors is a radius (the 
orresponding relation is eithere or o) then the entire interse
tion must be equal to that radius sin
e the se
torinterse
ts with every other two.We now need to show that when no se
tor redu
es to a radius, the interse
-tion is still non empty:Case 1: m=kThis means that all se
tors are 
onvex. Sin
e every three of them have a nonempty interse
tion, Helly's theorem immediately implies that the interse
tionof all se
tors is non empty.Case 2: m=0This means that no se
tor is 
onvex; whi
h in turn implies that ea
h se
tor issu
h that its topologi
al 
losure 
overs the entire surfa
e of CO;1. Hen
e, for allj = 1 : : : k:1. the se
tor se
t(zj ; (M5(P ))ik+1ij ) is equal to the entire surfa
e of CO;1minus the 
entre (the relation (MP )ik+1ij is equal to BIN); or2. the se
tor se
t(zj ; (M5(P ))ik+1ij ) is equal to the entire surfa
e of CO;1minus the 
entre and one or two radii (the relation (MP )ik+1ij is equal tofe; l; rg, fl; o; rg or fl; rg).4Sin
e the CYCt-CSP P is proje
table, any solution to any sub-CSP of the proje
tion 5(P )is solution to the 
orresponding sub-CSP of P . This would not be ne
essarily the 
ase if Pwere not proje
table. 34



So the interse
tion of all se
tors is equal to the entire surfa
e of CO;1 mi-nus the 
entre and a �nite number (at most 2k) of radii. Sin
e the surfa
e isof dimension 2, a radius of dimension 1, and the 
entre of dimension 0, theinterse
tion must be non empty (of dimension 2).Case 3: 0 < m < kThis means that some se
tors (at least one) are 
onvex, the others (at leastone) are su
h that their topologi
al 
losures 
over the entire surfa
e of CO;1.The interse
tion I1 is non empty due to Helly's theorem, sin
e every threese
tors appearing in it have a non empty interse
tion. We need to 
onsider twosub
ases.Sub
ase 3.1: I1 is a single radius, say tSin
e no se
tor redu
es to a radius, and the se
tors appearing in I1 are less than�, there must exist two se
tors, say s1 and s2, appearing in I1 su
h that theirinterse
tion is t. Sin
e, due to strong 4-
onsisten
y, s1 and s2 together with anyse
tor appearing in I2 form a non empty interse
tion, the whole interse
tion,i.e., I , must be equal to t.Sub
ase 3.2: I1 is a 2-dimensional (
onvex) se
torThe interse
tion I2 is the entire surfa
e of CO;1 minus the 
entre and a �nitenumber (at most 2(k �m)) of radii. Sin
e the 
entre is of dimension 0, a �niteunion of radii is of dimension 0 or 1, and the interse
tion I1 is of dimension 2,the whole interse
tion I must be non empty (of dimension 2).The interse
tion of all se
tors is non empty in all 
ases. The partial solution
an therefore be extended to variableXik+1 (whi
h 
an be instantiated with anyorientation in the interse
tion of the k se
tors).It follows from Theorems 2 and 6 that if the TCH sub
lass is 
losed understrong 4-
onsisten
y, it must be tra
table. Unfortunately, as illustrated by thefollowing example, TCH is not so 
losed.Example 6 (non 
losure of TCH under strong 4-
onsisten
y) The CYCb-CSP depi
ted in Figure 14 
an be represented as the proje
table CYCt-CSP Pverifying the following: (MP )123 = lll; (MP )124 = �(l; fl; rg; fl; rg); (MP )134 =P234 = �(l; l; fl; rg). Applying the propagation pro
edure s4
() to P leaves un-
hanged (MP )123; (MP )134; (MP )234, but transforms (MP )124 into the relationflll; llr; lrrg, whi
h is not proje
table: this is done by the operation (MP )124  (MP )124 \ (MP )123 Æ (MP )134.Indeed, as we will show, the subset TCH is not tra
table. Even worse, we willprove that the stri
t subset AT t [ fTERg is already NP-
omplete (Corollary4). 35
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losure of TCH under strong 4-
onsisten
y.;eeeelleooerrlellllllollrlor
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.The set (AT t)s4
 in
ludes all 28 entries of the CYCt 
omposition tables: the24 atoms together with the relations �(l; fe; l; rg; l);�(l; fl; o; rg; r);�(r; fe; l; rg; r);�(r; fl; o; rg; l). Furthermore, enumerating (AT t)s4
 leads to 49 relations (in-
luding the empty relation), all of whi
h are f
onvex,holedg relations (belongto TCH). This immediately gives the following 
orollary, stating tra
tability of(AT t)s4
.Corollary 1 (tra
tability of (AT t)s4
) Let P be a CYCt-CSP expressed in(AT t)s4
: (8i; j; k)((MP )ijk 2 (AT t)s4
). De
iding 
onsisten
y for P is tra
table.Proof. Immediate from Theorems 2 and 6.The enumeration of (AT t)s4
 is given in Figure 15.Example 7 Transforming the CYCb-CSP of the `Indian tent' into a CYCt-CSP,say P 0, leads to (MP 0)123 = rrr; (MP 0 )124 = rrl; (MP 0 )134 = rll; (MP 0)234 =rlr. P 0 lies in (AT t)s4
, hen
e the propagation pro
edure s4
() must dete
t36



its in
onsisten
y. Indeed, the operation (MP 0)124  (MP 0)124 \ (MP 0)123 Æ(MP 0)134 leads to the empty relation, sin
e rrr Æ rll = rll.Corollary 2 (tra
tability of AT b) Let P be a CYCb-CSP expressed in AT b:(8i; j)((MP )ij 2 AT b). De
iding 
onsisten
y for P is tra
table.Proof (sket
h). Let P be a CYCb-CSP as stated in the 
orollary. Constru
tfrom P the CYCt-CSP P 0 of whi
h P is the proje
tion: (8i; j; k)((MP 0)ijk =�((MP )ji; (MP )kj ; (MP )ki)). All entries ofMP belong toAT t. From Corollary1, de
iding 
onsisten
y for P 0, thus for P , is tra
table.9 Intra
tability resultsThis se
tion presents some intra
tability results:1. We �rst show that the RA CYCt is NP-
omplete; this dire
tly follows fromthe NP-
ompleteness of the CYCORD theory [15℄.2. We show that the weak 
losure (PAR)w
 of the subset PAR = ffoeo; ooeg;feee; eoo; ooeg; feee; eoo; oeo; ooegg of CYCt, whi
h expresses only informa-tion on parallel orientations, is NP-
omplete. This gives an idea of howhard reasoning within CYCt is: even if we restri
t ourselves to a world ofparallel orientations, reasoning within that world is already NP-
omplete!3. We show that provided that a subset S of CYCt in
ludes the relationseee and TER, de
iding 
onsisten
y for a CSP expressed in S
 
an bepolynomially redu
ed to de
iding 
onsisten
y for a CSP expressed in S.4. We use the previous result to prove that the set AT +t = AT t [ fTERg,i.e., the set obtained by adding the universal relation to the set of all CYCtatoms, is NP-
omplete.5. From NP-
ompleteness of AT +t , we derive NP-
ompleteness of AT +b =AT b [ fBINg, thus of the RA CYCb.Theorem 7 De
iding 
onsisten
y of a CYCt-CSP is NP-
omplete.Proof: The set AT t of all CYCt atoms is tra
table (Corollary 1); thus, if aCYCt-CSP is su
h that on every triple (X;Y; Z) there is a 
onstraint of theform t(X;Y; Z), where t is an atom, de
iding its 
onsisten
y is polynomial, and
an be a
hieved using the s4
() pro
edure. Therefore, all we need to show isthat there exists a deterministi
 polynomial transformation of an instan
e of anNP-
omplete problem to a CYCt-CSP [16℄.The CYCORD theory is NP-
omplete [15℄. The transformation of a problemexpressed in the CYCORD theory (a 
onjun
tion of CYCORD relations) into a37



problem expressed in CYCt (i.e., into a CYCt-CSP) is immediate from the rule il-lustrated in Figure 8(top) (see Example 2(3)) transforming a CYCORD relationinto a CYCt relation. Spe
i�
ally, su
h a problem, say P , 
an be transformedinto a CYCt-CSP, say P 0, in the following way:1. Initialise all entries of MP 0 to the universal CYCt relation TER:(8i; j; k)((MP 0)ijk  TER)2. Initialise the diagonal elements to eee: (8i)((MP 0)iii  eee);3. For all CYCORD relationXi-Xj-Xk of P , stating that orientationsXi; Xj ;Xk are distin
t from ea
h other and en
ountered in that order when weturn in a 
lo
kwise dire
tion starting from Xi, perform the following:T  (MP 0)ijk \ 
y
; update(P 0; i ; j ; k ;T );The pro
edure update() is de�ned in Figure 11, just after the pro
edure s4
().By 
onstru
tion, MP 0 is a 
onstraint matrix over CYCt. The transformation isdeterministi
 and polynomial, and P is satis�able if and only if P 0 is 
onsistent.Corollary 3 Let P be a CYCt-CSP expressed in CY CORD+ = f
y
; 
y
^; eee;TERg: (8i; j; k)((MP )ijk 2 CY CORD+). De
iding 
onsisten
y for P is NP-
omplete.Proof (sket
h). In the proof of Theorem 7, the CYCt-CSP P 0 asso
iatedwith a problem P expressed in the CYCORD theory is su
h that its 
onstraintmatrix MP 0 is entirely expressed in f
y
; 
y
^; eee;TERg (we noti
e that theset f
y
; 
y
^; eee;TER; ;g is 
losed under interse
tion, rotation, and 
onverse).The weak 
losure of the set PAR = ffoeo; ooeg; feee; eoo; ooeg; feee; eoo; oeo;ooegg 
ontains 15 of the 16 elements of 2feee;eoo;oeo;ooeg; it 
an be easily enu-merated:(PAR)w
 = f fg; feeeg; feoog; foeog; fooeg; feee; eoog; feee; oeog; feee; ooeg;feoo; oeog; feoo; ooeg; foeo; ooeg; feee; eoo; oeog; feee; eoo; ooeg;feee; oeo; ooeg; feee; eoo; oeo; ooeggTheorem 8 (NP-
ompleteness of (PAR)w
) Let P be a CYCt-CSP expressedin (PAR)w
: (8i; j; k)((MP )ijk 2 (PAR)w
). De
iding 
onsisten
y for P isNP-
omplete.Proof. The subset (PAR)w
 belongs to NP, sin
e solving a CYCt-CSP of atomsis polynomial (Corollary 1). We need to prove that there exists a (determinis-ti
) polynomial transformation of an instan
e of an NP-
omplete problem (we
onsider an instan
e of 3-SAT: a instan
e of SAT of whi
h every 
lause 
ontainsexa
tly three literals) into a CYCt-CSP expressed in (PAR)w
 in su
h a waythat the former is satis�able (has a model) if and only if the latter is 
onsistent.Suppose that S is an instan
e of 3-SAT, and denote by:38



1. Lit(S) = f`1; : : : ; `ng the set of literals appearing in S;2. Cl(S) the set of 
lauses of S; and3. BinCl(S) the set of binary 
lauses whi
h are sub
lauses of 
lauses inCl(S).The CYCt-CSP, PS , we asso
iate with S is as follows. Its set of variables isV = fX
j
 2 Lit(S)[BinCl(S)g[fX0g. X0 is a truth determining variable: allorientations whi
h are equal to X0 
orrespond to elements of Lit(S)[BinCl(S)whi
h are true, the others (those whi
h are opposite to X0) to elements ofLit(S) [ BinCl(S) whi
h are false. The 
onstraint matrix of PS , MPS , is re-garded as being indexed with elements from f0g [ Lit(S) [ BinCl(S), and theentry (MPS )ab
 stands for the relation on triple (Xa; Xb; X
):1. Initialise all entries of MPS to feee; eoo; oeo; ooeg:(8a; b; 
)((MPS)ab
  feee; eoo; oeo; ooeg)2. Initialise the diagonal elements to eee: (8a)((MPS )aaa  eee);3. for all pairs (Xp; Xp) of variables su
h that fp; pg � Lit(S), p and p shouldhave 
omplementary truth values; hen
e Xp and Xp should be oppositeto ea
h other in PS : T  (MPS )0pp \ feoo; ooeg;update(PS; 0; p; p; T );4. for all variablesX
1 ; X
2 su
h that (
1_
2) is a 
lause of S, 
1 and 
2 
an-not be simultaneously false; translated into PS , X
1 and X
2 should not beboth opposite toX0: T  (MPS )0
1
2\feee; eoo; ooeg;update(PS; 0; 
1; 
2; T );5. for all variables X(`1_`2); X`1 , if `1 is true then so is (`1 _ `2); translatedinto PS , X0 and X`1 should not be both opposite to X(`1_`2):T  (MPS )(`1_`2)`10 \ feee; eoo; ooeg;update(PS; `1 _ `2; `1; 0; T );Again, the pro
edure update() is de�ned in Figure 11, just after the pro
edures4
(). The transformation is deterministi
 and polynomial. Moreover, sin
e(PAR)w
 is 
losed under interse
tion, 
onverse and rotation, the �nal matrixMPS is a 
onstraint matrix over (PAR)w
. IfM is a model of S, it is mapped toa solution of PS as follows. X0 is assigned any value of [0; 2�). For all ` 2 Lit(S),X` is assigned the same value as X0 if M assigns the value true to literal `, thevalue opposite to that of X0 otherwise. For all (`1 _ `2) 2 BinCl(S), X(`1_`2)is assigned the same value as X0 if either X`1 or X`2 is assigned the same valueas X0, the opposite value otherwise. On the other hand, any solution to PS 
anbe mapped to a model of S by assigning to every literal ` the value true if andonly if the variable X` is assigned the same value as X0.Before going further in the presentation of our intra
tability results, we wantto be 
lear with respe
t to the issue of representing a CYCt-CSP. The most
onvenient way for representing su
h a CSP is 
ertainly the use of an n�n�n-matrix, where n is the order of the CSP; one reason for this is that the standard39



way for 
onstraint propagation algorithms and for solution sear
h algorithms,whi
h 
onstitute the main reasoning tools for 
onstraint-based frameworks, todeal with a CSP is to have it represented as a matrix. We have assumed so farthat the matrix asso
iated with a CYCt-CSP was a 
onstraint matrix; i.e., itveri�es the diagonal property, the 
onverse property, and the rotation property.However, in terms of solutions, if we asso
iate with a CYCt-CSP P the n�n�n-matrix MP;2 de�ned as follows:1. Initialise all entries to the universal relation TER: (8i; j; k)((MP;2)ijk  TER)2. Initialise all diagonal elements to eee: (8i)((MP;2)iii  eee)3. For all triples (Xi; Xj ; Xk) of variables su
h that a 
onstraintR(Xi; Xj ; Xk)is spe
i�ed: (MP;2)ijk  (MP;2)ijk \Rthen the matri
es MP and MP;2 are equivalent, i.e., they have the same set ofsolutions.Binary CSPs of Allen's relations on pairs of interval variables in whi
h everytwo variables are involved in exa
tly one 
onstraint are 
alled normalised setsof interval formulas in [30℄.De�nition 16 An orientation formula is a CYCt relation on a triple of vari-ables, i.e., a 
onstraint of the form R(X;Y; Z), where R is a CYCt relation. Anormalised set of orientation formulas is a CYCt-CSP given as a set of 
on-straints in whi
h every three variables are involved in exa
tly one 
onstraint.Given a CYCt-CSP P , the matrixMP is 
losed under the operations of 
onverseand rotation; this is not ne
essarily the 
ase for the matrixMP;2: in parti
ular,if P is a normalised set of orientation formulas then for any three variables Xi,Xj and Xk, at most one element in the set f(MP;2)lmn : fl;m; ng = fi; j; kgg isnot the universal relation.Remark 3 If a subset S of CYCt in
ludes the relations eee and TER then anormalised set of orientation formulas, say P , whi
h is entirely expressed in Sis su
h that its asso
iated matrix MP;2 is also entirely expressed in S.Theorem 9 Let S be a subset of CYCt su
h that eee 2 S and TER 2 S.De
iding 
onsisten
y for a normalised set of orientation formulas expressed inS
 
an be polynomially redu
ed to de
iding 
onsisten
y for a normalised set oforientation formulas expressed in S.Proof. We have seen how, given a subset S of CYCt, to asso
iate with ea
hrelation R in the 
losure S
 a tree tS(R) in su
h a way that the \exe
ution"of tS(R) gives R itself (see De�nition ?? and Remark 2). We use the tree of arelation in S
 to transform a normalised set of orientation formulas expressedin S
 into an equivalent set of orientation formulas, g(P ), expressed in S andin whi
h every three variables are involved in at most one 
onstraint:40



1. g(fR(X;Y; Z)g) = h(tS(R)(X;Y; Z)), for all R 2 S
2. g(fR(X;Y; Z)g [ P 0) = g(fR(X;Y; Z)g) [ g(P 0), where R 2 S
 and P 0 isa non empty set of orientation formulas expressed in S
.The mapping h is de�ned as follows:1. h(R(X;Y; Z)) = fR(X;Y; Z)g, for all R 2 S2. h(h^; ti(X;Y; Z)) = h(t(X;Z; Y ))3. h(h_; ti(X;Y; Z)) = h(t(Z;X; Y ))4. h(ht1;\; t2i(X;Y; Z)) = h(t1(X;Y; Z)) [ h(t2(X;Y; Z 0)) [ feee(Z;Z 0; Z)g,where Z 0 is a fresh variable5. h(ht1; Æ; t2i(X;Y; Z)) = h(t1(X;Y;W )) [ h(t2(X;W;Z)), where W is afresh variable.By 
onstru
tion, g(P ) is a set of orientation formulas expressed in S with theproperty that every three variables are involved in at most one formula. g(P ) istransformed into an equivalent normalised set of orientation formulas by 
reatingfor every three variablesX;Y; Z not already involved in any formula the formulaTER(X;Y; Z).Letm denote the number of orientation formulas in P , and refer to the orien-tation formulas as f1(X11 ; X12 ; X13); : : : ; fi(Xi1 ; Xi2 ; Xi3); : : : ; fm(Xm1 ; Xm2 ; Xm3).For ea
h i = 1 : : :m, let si denote the size of fi, i.e., the number, nstS(fi), ofsubtrees of fi (see Remark 2): si = nstS(fi). If s is the greatest of the si's thenthe 
onstru
tion takes O(ms) time; the transformation is thus polynomial.We are now in a position to derive that for both of the presented RAs, CYCband CYCt, we \jump" from tra
tability to intra
tability if add the universalrelation to the set of all atoms.Corollary 4 The subset AT +t = AT t [ fTERg of CYCt is NP-
omplete.Proof. Any set of orientation formulas over AT +t 
an be 
onverted into anequivalent normalised set of orientation formulas over AT +t . The subset AT +tin
ludes the relations eee and TER. From Corollary 3 and Theorem 9, and the
losure of (AT +t )
 under 
onverse, it is suÆ
ient to show that the relation 
y
belongs to (AT +t )
. The following sequen
e shows that this is indeed the 
ase:1. R1 = lll; R2 = llr; R3 = rll2. R4 = R1 ÆR2 = fllr; lor; lrrg3. R5 = (R4)_ = fllr; olr; rlrg4. R6 = R5 ÆR3 = flrl; orl; rll; rol; rrlg41



5. R7 = (R6)_ = flrl; orl; rrl; rro; rrrg6. R8 = R7 ÆR7 = flrl; orl; rll; rol; rrl; rro; rrrg = 
y
.Corollary 5 The subset AT +b = AT b [ fBINg of CYCb is NP-
omplete.Proof. A CYCb-CSP of atoms 
an be solved in polynomial time (Corollary 2).Thus we need to show that there is a polynomial deterministi
 transformationof an instan
e of an NP-
omplete problem into a problem expressed in AT +b .We 
onsider a normalised set, P , of orientation formulas expressed in AT +t .A

ording to Corollary 4, de
iding 
onsisten
y for P is NP-
omplete. Theset AT +t [ f;g is 
losed under 
onverse, rotation and interse
tion (in otherwords, (AT +t [ f;g)w
 = AT +t [ f;g); therefore, the 
onstraint matrix MP isentirely expressed in AT +t . Finally, P is proje
table, and is therefore equivalentto its proje
tion 5(P ). 5(P ), by de�nition, veri�es the following: (8i; j �n)((M5(P ))ji = Tk�n[51((MP )ijk) \ 52((MP )kij ) \53((MP )ikj )℄). Be
auseea
h of the proje
tions 51(R), 52(R) and 53(R) of any CYCt relation R inAT +t is either a CYCb atom or the relationBIN , the CYCb-CSP5(P ) is entirelyexpressed in AT +b .10 Related workWe 
ompare our approa
h to 
y
li
 ordering of 2D orientations with the most
losely related resear
h in the literature.10.1 The CYCORD theoryThe CYCORD theory [27, 31, 32℄ expresses 
y
li
 ordering of 2D orientations; it
ontains only one relation, namely the relation 
y
 we have already mentionedand translated into the CYCt RA (see Example 2(3)). The main disadvantage ofthe theory is that real appli
ations generally need to represent �ner knowledgethan just what 
ould be 
alled, as we saw in Example 2(3), stri
t betweennessin a 
lo
kwise dire
tion.10.2 Representation of a panoramaIn [22℄, Levitt and Lawton dis
ussed QUALNAV, a qualitative landmark navi-gation system for mobile robots. One feature of the system is the representationof the information about the order of landmarks as seen by the visual sensorof a mobile robot. Su
h information provides the panorama of the robot withrespe
t to the visible landmarks.Figure 16 illustrates the panorama of an obje
t S with respe
t to �ve refer-en
e obje
ts (landmarks) A;B;C;D;E in S
hlieder's system [33℄ (page 527).42
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Figure 16: The panorama of a lo
ation.The panorama is des
ribed by the total 
y
li
 order, in a 
lo
kwise dire
-tion, of the �ve dire
ted lines (SA); (SB); (SC); (SD); (SE), and the dire
tedlines whi
h are opposite to them, namely (Sa); (Sb); (S
); (Sd); (Se): (SA)-(S
)-(Sd)-(SB)-(Se)-(Sa)-(SC)-(SD)-(Sb)-(SE). By using the RA CYCb, only the�ve lines joining S to the landmarks are needed to des
ribe the panorama:fr((SB); (SA)); r((SC); (SB)); r((SD); (SB)); r((SD); (SC)); l((SE); (SB));l((SE); (SA))g; using the RA CYCt, the des
ription 
an be given as a 2-relationset: frll((SA); (SB); (SE)); rrr((SB); (SC); (SD))g.S
hlieder's system makes an impli
it assumption, whi
h is that the obje
tto be lo
alised (i.e., S) is not on any of the lines joining pairs of the referen
eobje
ts { su
h a fa
t 
annot be represented within his system. This assumption
an be made expli
it (or indeed 
ould be expli
itly 
ontradi
ted) in the RACYCb representation of the problem (the relations e(qual) and o(pposite) 
an beused to des
ribe obje
t S being on a line joining two referen
e obje
ts). Notethat S
hlieder does not des
ribe the important task of how to reason about apanorama des
ription.10.3 Cardinal dire
tion models and relative orientationmodelsFrank's models of 
ardinal dire
tions in 2D [8, 9℄ are illustrated in Figure 17.They use a partition of the plane into regions determined by lines passingthrough a referen
e obje
t, say S. Depending on the region a point P belongs to,the position of P relative to S is North, North-East, East, South-East, South,South-West, West, North-West, or Equal. Ea
h of the two models 
an thus beseen as a binary RA, with nine atoms. Both use a global, West-East/South-North, referen
e system. The proje
tion-based model has been assessed as be-ing 
ognitively more plausible [8, 9℄ (
ognitive plausibility of spatial orientationmodels are dis
ussed in [11, 12℄), and its 
omputational properties have beenstudied by Ligozat [24℄. In parti
ular, Ligozat made use of tra
tability results43
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one-shaped (left) and proje
tion-based (right) models of
ardinal dire
tions.known for Allen's interval algebra [1℄ and Vilain and Kautz's point algebra [39℄to �nd a maximal tra
table subset in
luding all atoms (maximal in the sensethat adding any other relation to the subset leads to an NP-hard subset). Thedrawba
k of Frank's models is that they use a global referen
e system.The RA CYCb we have presented 
an be used for the representation of relativeorientation knowledge about a 
on�guration of 2D points. Su
h knowledgewould 
ontain for pairs (A;B) of obje
ts in the 
on�guration the position of(the primary obje
t) B relative to (the referen
e obje
t) A, as viewed from aglobal point of view, say S: B is on line (SA) on the same side of S as A, tothe left of A, on line (SA) on the side of S opposite to that of A, or to the rightof A. The drawba
k here is that the point of view is global.Thus the 
ommon points of Frank's models and our RA CYCb are (1) theuse of a global 
on
ept (a global referen
e system in the former 
ase, a globalviewpoint in the latter); and (2) the representation of knowledge as binary rela-tions des
ribing a primary obje
t relative to a referen
e obje
t. Their resep
tiveexpressive powers are however in
omparable.A well-known model of relative orientation of 2D points is the Double-Cross
al
ulus de�ned by Freksa [11℄, and developed further by Zimmermann andFreksa [40℄. The 
al
ulus 
an be looked at as a ternary RA, with 15 atoms
orresponding to the 15 regions of a spe
i�
 partition of the plane determinedby a parent obje
t, say A, and a referen
e obje
t, say B (Figure 18(d)). Thepartition is based on the following:1. the left/straight/right di
hotomy determined by an observer pla
ed at theparent obje
t and looking in the dire
tion of the referen
e obje
t (Figure18(a));2. the front/neutral/ba
k di
hotomy determined by the same observer (Fig-ure 18(b)); and 44
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Figure 18: The partition of the universe of 2D positions on whi
h is based theDouble-Cross 
al
ulus in [11, 40℄.3. the similar front/neutral/ba
k di
hotomy obtained when we swap the rolesof the parent obje
t and the referen
e obje
t (Figure 18(
)).Combining the three di
hotomies (a), (b) and (
) of Figure 18 leads to thepartition of the universe of 2D positions on whi
h is based the 
al
ulus in [11, 40℄(Figure 18(d)).Our RA CYCt 
an be used for the des
ription of a 
on�guration of 2D pointsas viewed from a global viewpoint; the model is thus more suited for a panorama-like des
ription. Freksa's 
al
ulus, on the other hand, is more suited for thedes
ription of a 
on�guration of 2D points (a spatial s
ene) relative to oneanother. The two 
al
uli are thus in
omparable in terms of expressive power.We have shown that the atoms of CYCt form a tra
table subset, from whi
hderives a 
omplete solution sear
h pro
edure for a general problem expressed inthe RA. For the Double-Cross 
al
ulus, however, no tra
table pro
edure for thesubset of all atoms is known.11 Future workThere has been mu
h work on Allen's interval algebra [1℄. For instan
e:� The algebra has been shown to be NP-
omplete [39℄. This gave rise to
onsiderable work on tra
table subsets of the algebra (see, for instan
e,[3, 30, 36℄); the most important is 
ertainly Nebel and B�ur
kert's ORD-Horn sub
lass [30℄, shown by the authors to be the unique maximal subsetamong all tra
table subsets 
ontaining all 13 atomi
 relations.� The 
on
ept of a 
on
eptual neighbourhood, whi
h is 
losely related totra
table reasoning, has been extensively investigated for the algebra [10,11, 23℄.Most of this work 
ould be adapted to the two RAs of 2D orientations we havede�ned. Noti
e, however, that from 
orollaries 4 and 5 follows that a tra
table45



subset of either RA in
luding all atoms 
annot in
lude the universal relation,and vi
e-versa. In terms of expressiveness, the minimal 
ondition for a subsetof an RA to be useful is to in
lude all atoms as well as the universal relation;this 
an be justi�ed thus: (1) it is important for real appli
ations to be o�eredthe possibility of expressing 
omplete information, whi
h is made possible onlyif all atoms are present; and (2) it is important as well for real appli
ationsto be o�ered the possibility of providing no information on some tuples of themanipulated obje
ts, whi
h is made possible only if the universal relation ispresent. In the light of these 
omments, we are 
ommitted to fa
e intra
tabilityif what we want is to get expressively useful subsets of either RA.We have provided for the ternary RA a polynomial 
onstraint propagationpro
edure, whi
h is in
omplete in the general 
ase (the RA has been shown tobe NP-
omplete), but still 
omplete for a subset in
luding all atoms. Problems
orresponding to a
tual data (or most randomly generated data) may not lie inthe subset. As a 
onsequen
e, it would be interesting to study the behaviour ofa general solution sear
h algorithm, su
h as the one we have provided (whi
h isexponential in the general 
ase, but solves any problem expressed in the RA),on a
tual or most randomly generated instan
es. Again, extensive work on thisissue has been done for CSPs of Allen's interval relations [19, 21, 29, 38℄.The RAs we have presented do not take into a

ount the front/neutral/ba
kdi
hotomy determined by an observer pla
ed at the point of view and lookingin the dire
tion of the referen
e obje
t; i.e., the di
hotomy 
orresponding to thepartition of the plane into the half-plane 
onsisting of the front of the observer,the half-plane 
onsisting of the ba
k of the observer, and the borderline betweenthe two half-planes. Augmenting the binary RA with this feature would leadto eight atoms (equal, left-front, left, left-ba
k, opposite, right-ba
k, right andright-front). The 
orresponding ternary RA we would lead to has 80 atoms,whi
h 
an be enumerated by appropriately re�ning the illustrations of the CYCtatoms depi
ted in Figure 8. For instan
e, re�ning the leftmost 
on�guration ofthe top row in Figure 8 leads to �ve 
on�gurations (see Figure 19). We plan toinvestigate the 
omputational properties of this �ner-grained 
al
ulus.One of the biggest 
hallenges for qualitative spatial reasoning is the inte-gration of qualitative distan
e and qualitative orientation. A formalism withsu
h a 
hara
teristi
 would, for instan
e, allow for the representation of naturallanguage des
riptions su
h as \B is 
loser than, and to left of, A" (B lies withinan appropriate se
tor of the dis
 
entred at the speaker's lo
ation, say S, and ofradius SA). This 
hallenge has been dis
ussed by many authors [8, 9, 12℄, andone re
ent and promising work addressing the issue is [25℄.Finally, a 
al
ulus of 3D orientations, similar to the ternary RA of 2D ori-entations we have presented, might be developed.
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k di
hotomy to the relation algebras we havepresented.12 SummaryWe have provided a new approa
h to 
y
li
 ordering of 2D orientations, 
onsist-ing of a relation algebra (RA) whose universe is a set of ternary relations. Wehave investigated for the RA several algorithmi
 and 
omputational properties;in parti
ular:1. We have provided a 
onstraint propagation pro
edure a
hieving strong 4-
onsisten
y for a CSP expressed in the RA; and shown that the pro
edureis polynomial, and 
omplete for a subset in
luding all atoms.2. We have shown that a subset expressing only information on parallel ori-entations is NP-
omplete.3. We have shown that provided that a subset S of CYCt in
ludes two spe
i�
elements, de
iding 
onsisten
y for a CSP expressed in the 
losure of Sunder the di�erent operations of the RA 
an be polynomially redu
ed tode
iding 
onsisten
y of a CSP expressed in S.4. From the previous result, we have derived that the set obtained by addingthe universal relation to the set of all atoms of the RA is NP-
omplete.5. From the previous result, we have derived that a mu
h less expressive RA,whose universe is a set of binary relations on 2D orientations, is alreadyNP-
omplete.We have dis
ussed brie
y how this work 
ould be extended, and pointed outto work done so far for other formalisms, su
h as tra
tability issues for Allen's47
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e Re-sear
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e, 6:49{58, 1996.A Verifying the RA properties for CYCbFor the RA CYCt, presented in Se
tion 6, whi
h is stri
tly more expressive thanCYCb, we will verify all the RA properties. Thus, it is not ne
essary to verifythem for CYCb. We observe, however, that one has to 
he
k, at the level ofatoms, that the results of applying the operations of 
onverse and 
ompositionto the di�erent atoms are 
orre
t; in other words, we have to 
he
k for CYCbthe following:1. the entries of the 
onverse table: the entry Conv(b) on row b of the 
on-verse table must be equal to the 
onverse b^ of b, i.e., we must haveConv(b) = b^ = f(x; y) : (y; x) 2 bg; and2. the entries of the 
omposition table: the entry T (b1; b2) on row b1 and
olumn b2 of the 
omposition table must be equal to the 
omposition,b1 Æ b2, of atoms b1 and b2, i.e., we must have T (b1; b2) = b1 Æ b2 = f(x; y) :(9z)(b1(x; z) ^ b2(z; y))g.We will show that this is indeed the 
ase for CYCb. As we saw before, given twoorientations X and Y : e(Y;X) i� (X;Y ) 2 f0g (4)l(Y;X) i� (X;Y ) 2 (0; �) (5)o(Y;X) i� (X;Y ) 2 f�g (6)r(Y;X) i� (X;Y ) 2 (�; 2�) (7)In other words, the atoms e; l; o; r 
orrespond, respe
tively, to the 
onvex subsetsf0g; (0; �); f�g; (�; 2�) of [0; 2�).Che
king the entries of the 
onverse table: By de�nition, e^ = f(x; y) : (y; x) 2eg; l^ = f(x; y) : (y; x) 2 lg; o^ = f(x; y) : (y; x) 2 og; r^ = f(x; y) : (y; x) 2rg: Using the four equivalen
es 4{7, we get the following: e^ = f(x; y) :(x; y) 2 f0gg; l^ = f(x; y) : (x; y) 2 (0; �)g; o^ = f(x; y) : (x; y) 2 f�gg; r^ =f(x; y) : (x; y) 2 (�; 2�)g: The assertions (x; y) 2 f0g; (x; y) 2 (0; �); (x; y) 2f�g; (x; y) 2 (�; 2�) being equivalent, respe
tively, to (y; x) 2 f0g; (y; x) 2(�; 2�); (y; x) 2 f�g; (y; x) 2 (0; �), we get: e^ = f(x; y) : (y; x) 2 f0gg; l^ =51
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Figure 20: Illustration of the proof of Theorem 10.f(x; y) : (y; x) 2 (�; 2�)g; o^ = f(x; y) : (y; x) 2 f�gg; r^ = f(x; y) : (y; x) 2(0; �)g: Using again the equivalen
es 4{7, we get that the 
onverse table re
ordsthe exa
t 
onverses of the atoms: e^ = f(x; y) : e(x; y)g = e; l^ = f(x; y) :r(x; y)g = r; o^ = f(x; y) : o(x; y)g = o; r^ = f(x; y) : l(x; y)g = l:Che
king the entries of the 
omposition table: In order to 
he
k that T (b1; b2) =b1 Æ b2, it is suÆ
ient to use the following sound inferen
e rule, in whi
h A andB denote 
onvex subsets of [0; 2�), and size(X) is the maximum of all y�x forx; y 2 X :[(X;Z) 2 A ^ (Z; Y ) 2 B ^ size(A) < � ^ size(B) < �℄) (X;Y ) 2 A+s B℄ (8)where +s is set addition (
omposition): A +s B = f
 : (9a 2 A; 9b 2B)(
 = a + b)g. We 
laim that the inferen
e rule is 3-
omplete for A;B 2ff0g; (0; �); f�g; (�; 2�)g; i.e., for any su
h A and B, we have the following:(8X;Y )[(X;Y ) 2 A+s B ) (9Z)((X;Z) 2 A ^ (Z; Y ) 2 B)℄.Theorem 10 The inferen
e rule (8) is 3-
omplete for A;B 2 ff0g; (0; �);f�g; (�; 2�)g.Proof. We pro
eed by enumerating all possible 
ases. Cases (1) and (6) in theenumeration are illustrated in Figure 20:1. If A = f0g then A +s B = B. For all X;Y su
h that (X;Y ) 2 B, if wetake Z = X then (X;Z) = (X;X) = 0 2 A and (Z; Y ) = (X;Y ) 2 B (seeFigure 20(a)).2. If A = f�g then A +s B = f� + � : � 2 Bg. Let X;Y be su
h that(X;Y ) 2 A +s B: (9� 2 B)((X;Y ) = � + �). We take Z = X + �; thenfrom (X;Y ) = � + � and Z = � +X , we infer that (X;Z) = � 2 A and(Z; Y ) = � 2 B.3. If B = f0g then A +s B = A. For all X;Y su
h that (X;Y ) 2 A, if wetake Z = Y then (X;Z) = (X;Y ) 2 A and (Z; Y ) = (Y; Y ) = 0 2 B.52



4. If B = f�g then A +s B = f� + � : � 2 Ag. Let X;Y be su
h that(X;Y ) 2 A +s B: (9� 2 A)((X;Y ) = � + �). We take Z = Y + �; thusY = Z+�, from whi
h we 
an infer (Z; Y ) = � 2 B. From (X;Y ) = �+�and (Y; Z) = �, we infer (X;Z) = � 2 A.5. If A = (0; �) and B = (0; �) then A +s B = f� + � : � 2 (0; �); � 2(0; �)g = (0; 2�). For all X and Y su
h that (X;Y ) 2 (0; 2�), we 
an �ndZ su
h that (X;Z) 2 (0; �) and (Z; Y ) 2 (0; �): take Z in su
h a way that(X;Z) = (Z; Y ) (i.e., Z is the bise
tor of (X;Y )).6. If A = (0; �) and B = (�; 2�) then A +s B = f� + � : � 2 (0; �); � 2(�; 2�)g = (�; 3�) � [0; �) [ (�; 2�). For all X and Y su
h that (X;Y ) 2[0; �) [ (�; 2�), we 
an �nd Z su
h that (X;Z) 2 (0; �) and (Z; Y ) 2(�; 2�): if (X;Y ) 2 (�; 2�) (see Figure 20(b)), take Z in su
h a waythat (X;Z) = (Z; Y 0), where Y 0 is the orientation opposite to Y (i.e.,(Y; Y 0) = �); if (X;Y ) = 0 (see Figure 20(
)), take Z in su
h a way that(X;Z) = �=2; and if (X;Y ) 2 (0; �) (see Figure 20(d)), take Z in su
h away that (Y; Z) = (Z;X 0), where X 0 is the orientation opposite to X (i.e.,(X;X 0) = �).7. If A = (�; 2�) and B = (0; �) then A +s B = f� + � : � 2 (�; 2�); � 2(0; �)g = (�; 3�) � [0; �) [ (�; 2�). For all X and Y su
h that (X;Y ) 2(�; 3�), we 
an �nd Z su
h that (X;Z) 2 (�; 2�) and (Z; Y ) 2 (0; �):if (X;Y ) 2 (�; 2�), take Z in su
h a way that (X 0; Z) = (Z; Y ) (i.e.,Z is the bise
tor of (X 0; Y )), where X 0 is the orientation opposite to X(i.e., X 0 is su
h that (X;X 0) = �); if (X;Y ) = 0, take Z in su
h away that (X;Z) = 3�=2; and if (X;Y ) 2 (0; �), take Z in su
h a waythat (Y 0; Z) = (Z;X) (i.e., Z is the bise
tor of (Y 0; X)), where Y 0 is theorientation opposite to Y (i.e., Y 0 is su
h that (Y; Y 0) = �).8. If A = (�; 2�) and B = (�; 2�) then A +s B = f� + � : � 2 (�; 2�); � 2(�; 2�)g = (2�; 4�) � (0; 2�). For all X and Y su
h that (X;Y ) 2 (0; 2�),we 
an �nd Z su
h that (X;Z) 2 (�; 2�) and (Z; Y ) 2 (�; 2�): if (X;Y ) 2(�; 2�), take Z in su
h a way that (Y; Z) = (Z;X) (i.e., Z is the bise
torof (Y;X)); if (X;Y ) = �, take Z in su
h a way that (X;Z) = 3�=2; andif (X;Y ) 2 (0; �), take Z in su
h a way that (X 0; Z) = (Z; Y 0) (i.e., Z isthe bise
tor of (X 0; Y 0)), where X 0 is the orientation opposite to X (i.e.,(X;X 0) = �) and Y 0 is the orientation opposite to Y (i.e., (Y; Y 0) = �).B Verifying the RA properties for an atomi
ternary RA1. (R Æ S) Æ T = R Æ (S Æ T )?(a) Let (a; b; 
) 2 (R ÆS) Æ T . Thus (9d)((a; b; d) 2 (R ÆS)^ (a; d; 
) 2 T ).53



(a; b; d) 2 (RÆS) implies (9e)((a; b; e) 2 R^ (a; e; d) 2 S). From (a; e; d) 2S and (a; d; 
) 2 T , we infer (a; e; 
) 2 (S Æ T ). From (a; b; e) 2 R and(a; e; 
) 2 (S Æ T ), we infer (a; b; 
) 2 R Æ (S Æ T ). Therefore (R Æ S) Æ T �R Æ (S Æ T ).(b) Now let (a; b; 
) 2 R Æ (S Æ T ). Thus (9d)((a; b; d) 2 R ^ (a; d; 
) 2(S Æ T )). (a; d; 
) 2 (S Æ T ) implies (9e)((a; d; e) 2 S ^ (a; e; 
) 2 T ).From (a; b; d) 2 R and (a; d; e) 2 S, we infer (a; b; e) 2 (R Æ S). From(a; b; e) 2 (RÆS) and (a; e; 
) 2 T , we infer (a; b; 
) 2 (RÆS)ÆT . Therefore(R Æ S) Æ T � R Æ (S Æ T ).2. (R [ S) Æ T = (R Æ T ) [ (S Æ T )?(R [ S) Æ T = f(a; b; 
) : (9d)((a; b; d) 2 (R [ S) ^ (a; d; 
) 2 T )g =f(a; b; 
) : (9d)([(a; b; d) 2 R _ (a; b; d) 2 S℄) ^ (a; d; 
) 2 Tg = f(a; b; 
) :(9d)((a; b; d) 2 R^ (a; d; 
) 2 T )g[f(a; b; 
) : (9d)((a; b; d) 2 S ^ (a; d; 
) 2T )g = (R Æ T ) [ (S Æ T ).3. R Æ I = I ÆR = R?We prove this for I = It23U = f(a; b; b) : a; b 2 Ug. The reason for this isthat the identity element of the atomi
 ternary RA of our interest, CYCt,is It232DO (U = 2DO).R Æ I = f(a; b; 
) : (9d)((a; b; d) 2 R ^ (a; d; 
) 2 I)g. But (a; d; 
) 2 Iimplies (d = 
); thus R Æ I = f(a; b; 
) : (a; b; 
) 2 R ^ (a; 
; 
) 2 Ig. Sin
e(8a; 
)((a; 
; 
) 2 I), we infer R Æ I = f(a; b; 
) : (a; b; 
) 2 Rg = R. Onthe other hand, I Æ R = f(a; b; 
) : (9d)((a; b; d) 2 I ^ (a; d; 
) 2 R)g. But(a; b; d) 2 I implies (d = b); thus I ÆR = f(a; b; 
) : (a; b; b) 2 I^(a; b; 
) 2Rg. Sin
e (8a; b)((a; b; b) 2 I), we infer I ÆR = f(a; b; 
) : (a; b; 
) 2 Rg =R.4. (R^)^ = R?(R^)^ = f(a; b; 
) : (a; 
; b) 2 R^g. But (a; 
; b) 2 R^ is equivalent to(a; b; 
) 2 R. Therefore (R^)^ = f(a; b; 
) : (a; b; 
) 2 Rg = R.5. (R [ S)^ = R^ [ S^?(R[S)^ = f(a; b; 
) : (a; 
; b) 2 R[Sg = f(a; b; 
) : (a; 
; b) 2 R_(a; 
; b) 2Sg = f(a; b; 
) : (a; 
; b) 2 Rg [ f(a; b; 
) : (a; 
; b) 2 Sg = R^ [ S^.6. (R Æ S)^ = S^ ÆR^?(R Æ S)^ = f(a; b; 
) : (a; 
; b) 2 R Æ Sg = f(a; b; 
) : (9d)((a; 
; d) 2R ^ (a; d; b) 2 S)g = f(a; b; 
) : (9d)((a; d; 
) 2 R^ ^ (a; b; d) 2 S^)g =f(a; b; 
) : (9d)((a; b; d) 2 S^ ^ (a; d; 
) 2 R^)g = S^ ÆR^.7. R^ ÆR Æ S \ S = ;?Let (a; b; 
) 2 R^ Æ R Æ S. Thus (9d)((a; b; d) 2 R^ ^ (a; d; 
) 2 R Æ S).(a; d; 
) 2 R Æ S is equivalent to (a; d; 
) =2 R Æ S, whi
h in turn implies(8e)((a; d; e) =2 R _ (a; e; 
) =2 S). Now 
onsider the spe
ial 
ase e = b:from (a; b; d) 2 R^, we derive (a; d; b) 2 R; thus (a; b; 
) =2 S.54



8. ((R_)_)_ = R?((R_)_)_ = f(a; b; 
) : (
; a; b) 2 (R_)_g. But (
; a; b) 2 (R_)_ isequivalent to (b; 
; a) 2 R_, whi
h in turn is equivalent to (a; b; 
) 2 R.Therefore ((R_)_)_ = f(a; b; 
) : (a; b; 
) 2 Rg = R.9. (R [ S)_ = R_ [ S_?(R[S)_ = f(a; b; 
) : (
; a; b) 2 R[Sg = f(a; b; 
) : (
; a; b) 2 R_(
; a; b) 2Sg = f(a; b; 
) : (
; a; b) 2 Rg [ f(a; b; 
) : (
; a; b) 2 Sg = R_ [ S_.10. Che
king the entries of the di�erent tables: Similarly to CYCb, we have to
he
k that the 
onverse table, the rotation table and the 
omposition ta-bles of CYCt re
ord the exa
t 
onverses, the exa
t rotations and the exa
t
ompositions of the atoms.The 
onverse table and the rotation table: From the fa
t that the CYCb
onverse table re
ords the exa
t 
onverses of the atoms, we derive straight-forwardly that the 
onverse table and the rotation table of CYCt re
ordthe exa
t 
onverses and the exa
t rotations of the atoms. We illustratethis with the atom lrr. By de�nition, (lrr)^ = f(x; y; z) : (x; z; y) 2 lrrg.Applying the de�nition of a CYCt atom, we get: (lrr)^ = f(x; y; z) :(z; x) 2 l ^ (y; z) 2 r ^ (y; x) 2 rg. Reordering the elements of the 
on-jun
tion (z; x) 2 l ^ (y; z) 2 r ^ (y; x) 2 r, we get: (lrr)^ = f(x; y; z) :(y; x) 2 r ^ (y; z) 2 r ^ (z; x) 2 lg. Thanks to the fa
t that the CYCb
onverse table re
ords the exa
t 
onverses of the atoms, we derive that(y; z) 2 r i� (z; y) 2 l, from whi
h we get: (lrr)^ = f(x; y; z) : (y; x) 2r ^ (z; y) 2 l ^ (z; x) 2 lg. Now the set f(x; y; z) : (y; x) 2 r ^ (z; y) 2l ^ (z; x) 2 lg 
orresponds exa
tly the CYCt atom rll, whi
h implies that(lrr)^ = rll. By de�nition of the rotation operation, we get: (lrr)_ =f(x; y; z) : (z; x; y) 2 lrrg. Using the de�nition of a CYCt atom, we get:(lrr)_ = f(x; y; z) : (x; z) 2 l ^ (y; x) 2 r ^ (y; z) 2 rg. Reorderingthe elements of the 
onjun
tion (x; z) 2 l ^ (y; x) 2 r ^ (y; z) 2 r, weget: (lrr)_ = f(x; y; z) : (y; x) 2 r ^ (y; z) 2 r ^ (x; z) 2 lg. Thanks,again, to the fa
t that the CYCb 
onverse table re
ords the exa
t 
on-verses of the atoms, we get that the assertions (y; z) 2 r and (x; z) 2 lare equivalent, respe
tively, to (z; y) 2 l and (z; x) 2 r, whi
h implies:(lrr)_ = f(x; y; z) : (y; x) 2 r ^ (z; y) 2 l ^ (z; x) 2 rg. Now the setf(x; y; z) : (y; x) 2 r ^ (z; y) 2 l ^ (z; x) 2 rg 
orresponds exa
tly to theCYCt atom rlr; thus (lrr)_ = rlr.The 
omposition tables: We say that the CYCt 
omposition tables aresound if for any two atoms t1 and t2, it is the 
ase that T (t1; t2) � t1 Æ t2,where T (t1; t2) is the entry on the row labelled with t1 and the 
olumnlabelled with t2; if the tables are sound, we say that they are 4-
ompleteif for any two atoms t1 and t2, it is the 
ase that T (t1; t2) � t1 Æ t2.Soundness implies that if we know that a triple (x; y; w) belongs to t1 Æ t2,whi
h, by de�nition, means that we 
an �nd z su
h that (x; y; z) 2 t1and (x; z; w) 2 t2, then it must be the 
ase that the triple (x; y; w) also55



belongs to the entry T (t1; t2); if 4-
ompleteness also holds then the triples(x; y; w) in the relation re
orded by an entry 
orrespond exa
tly to thea
tual 
omposition of the 
orresponding atoms. We show how to 
om-pute the entries of the 
omposition tables; this will at the same time show4-
ompleteness of the tables. For this purpose, we 
onsider two atomst1 = b1b2b3 and t2 = b01b02b03. As we saw before, due to the fa
t that theCYCb atoms are JEPD, t1 Æ t2 = ; if b3 6= b01 (again, refer to Figure 6for illustration); so we suppose b3 = b01 = b, whi
h leads to t1 = b1b2b,t2 = bb02b03, and t1 Æ t2 = f(x; y; w) : (9z)((y; x) 2 b1 ^ (z; y) 2 b2 ^ (z; x) 2b ^ (w; z) 2 b02 ^ (w; x) 2 b03)g. We will need the isomorphim � from2DO � 2DO onto 2DO � 2DO, de�ned as follows: �((x; y)) = (x0; y),where x0 the orientation opposite to x, i.e., x0 is su
h that o(x; x0); theisomorphism is extended to subsets of 2DO�2DO in the following naturalway: �(S) = f�((x; y)) : (x; y) 2 Sg; for the CYCb atoms, whi
h are par-ti
ular subsets of 2DO�2DO, we get �(e) = o; �(l) = r; �(o) = e; �(r) = l.We pro
eed by enumerating all possible 
ases:(a) if b1 = e then t1 Æ t2 = eb03b03;(b) if b2 = e then t1 Æ t2 = t2;(
) if b02 = e then t1 Æ t2 = t1;(d) if b03 = e then t1 Æ t2 = b1(b1)^e;(e) if b1 = o then from (y; x) 2 o ^ (w; x) 2 b03 we get (w; y) 2 �(b03);thus t1 Æ t2 = f(x; y; w) : (y; x) 2 b1 ^ (w; y) 2 �(b03) ^ (w; x) 2 b03g =b1�(b03)b03;(f) if b03 = o then from (x; y) 2 (b1)^ ^ (w; x) 2 o we get (w; y) 2�((b1)^); thus t1 Æ t2 = f(x; y; w) : (y; x) 2 b1 ^ (w; y) 2 �((b1)^) ^(w; x) 2 b03g = b1�((b1)^)b03;(g) if b2 = o then from (w; z) 2 b02 ^ (z; y) 2 o we get (w; y) 2 �(b02);thus t1 Æ t2 = f(x; y; w) : (y; x) 2 b1 ^ (w; y) 2 �(b02) ^ (w; x) 2 b03g =b1�(b02)b03;(h) if b02 = o then from (z; y) 2 b2 ^ (w; z) 2 o we get (w; y) 2 �(b2);thus t1 Æ t2 = f(x; y; w) : (y; x) 2 b1 ^ (w; y) 2 �(b2) ^ (w; x) 2 b03g =b1�(b2)b03;(i) if b = e then JEPDness of the CYCb atoms gives b2 = (b1)^ andb02 = b03; this leads to t1 Æ t2 = �(b1; b03 Æ (b1)^; b03) (4-
ompleteness
omes from 3-
ompletess of the CYCb 
omposition table: ea
h entryre
ords the exa
t 
omposition of the 
orresponding CYCb atoms);(j) In a similar way, if b = o then we infer that b03 = �(b02) and b1 =�((b2)^); thus t1 Æ t2 = �(b1; b03 Æ (b1)^; b03). Again, 4-
ompletenessstems from 3-
ompleteness of the CYCb 
omposition table.56
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Figure 21: Illustration of 4-
ompleteness of the CYCt 
omposition tables.The remaining 
ases are those when ea
h of b1; b2; b; b02; b03 belongs tofl; rg. These 
over altogether 32 entries of the 
omposition tables: 16of these 
onsist of atoms, the other 16 of 3-atom relations. We prove4-
ompleteness for one 1-atom entry and for one 3-atom entry; the 4-
ompleteness proof for the other entries is similar. We 
onsider the entriesT (llr; rll) = lrl and T (llr; rlr) = fllr; lor; lrrg.T (llr; rll) = lrl?Consider four orientations x; y; z; w su
h that llr(x; y; z)^rll(x; z; w). Thisis illustrated in Figure 21(left). Orientation w is for
ed to be between-in-a-
lo
kwise-dire
tion the orientation opposite to z and orientation x. Theillustration 
learly indi
ates that the relation on triple (x; y; w) is lrl. Con-versely, 
onsider a 
on�guration of three orientations x, y and w su
h thatlrl(x; y; w). We 
an always �nd z su
h that llr(x; y; z) ^ rll(x; z; w): forinstan
e, we 
an take z su
h that o(z; z0), where z0 in turn is su
h that(w; z0) = (z0; y) (z0 is the bise
tor of (w; y)).T (llr; rlr) = fllr; lor; lrrg?Consider four orientations x; y; z; w su
h that llr(x; y; z)^rlr(x; z; w). Thisis illustrated in Figure 21(right). Orientation w is for
ed to be to the leftof, opposite to, or to the right of, y; thus the relation on triple (x; y; w)is �(l; fl; o; rg; r) = fllr; lor; lrrg. Conversely, 
onsider a 
on�guration ofthree orientations x, y and w su
h that fllr; lor; lrrg(x; y; w). We 
an al-ways �nd z su
h that llr(x; y; z)^rlr(x; z; w): if llr(x; y; w) or lor(x; y; w)then take z su
h that (x0; z) = (z; w), where x0 is su
h that o(x; x0); oth-erwise, take z su
h that (x0; z) = (z; y0), where x0 and y0 are su
h thato(x; x0) and o(y; y0).
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