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Abstract

Object Nets belong to a class of Petri nets allowing for a two-level way of
modeling by giving tokens of a Petri net the structure of a Petri net again.
The usefulness of this approach has been shown in numerous case stud-
ies, ranging from modeling distributed algorithms to workflow and flexible
manufacturing systems. It allows for the modeling of real world objects
by tokens having their own dynamical behavior. As it is well-known from
the field of distributed systems in general, (at least) two different ways
of object management are of interest when implementing remote access:
either by referencing to a single representation or by creating copies which
are treated in a consistent way. In analogy to programming language con-
structs, this is denoted by reference and value semantics, respectively. In
this contribution value and reference semantics of object nets are formally
defined. Conditions are presented that allow the transfer from one of these
semantics to the other. While the proof techniques strongly rely on partial
orders (causal nets), the comparison is made on the basis of occurrence
sequences, which serve as a common description language.

Zusammenfassung

Objektnetze gehören zu einer Klasse von Petrinetzen, die eine zweistu-
fige Modellierungstechnik dadurch unterstützen, dass die Marken selbst
wieder Petrinetze sein dürfen. Dies hat sich bereits in umfangreicher Mo-
dellierung für Workflow- und flexible Fertigungs-Systeme als sehr vorteil-
haft erwiesen. Objekte der realen Welt wie Aufträge oder Fertigungstei-
le werden dabei mit ihrem Bearbeitungsplan und ihrer Fortentwicklung
dargestellt. Im Kontext verteilter Systeme sind als Zugriffsart für nicht-
lokale Objekte bekanntlich (mindestens) zwei Formen von Interesse: die
Referenz auf eine einzige zentrale Objektrepräsentation oder die Erzeugung
und konsistente Pflege von Kopien in unterschiedlichen Systemteilen. In
Analogie zur Programmiersprachenterminologie werden diese als Referenz-
bzw. Wert-Semantik bezeichnet. In diesem Bericht werden Referenz-
und Wert-Semantik von Objektnetzen formal eingeführt. Außerdem wer-
den Bedingungen für einen konsistenten Wechsel zwischen ihnen bewiesen.
Während die Beweise intensiv von partiellen Ordnungen (Kausalnetzen)
Gebrauch machen, basiert der Vergleich der Semantiken auf Ausführungs-
folgen.
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8 1 INTRODUCTION

1 Introduction

The class of object nets has been shown to be very useful in modeling application
systems using the object oriented modeling paradigm. Object-oriented modeling
means that software is designed as the interaction of discrete objects, incorpo-
rating both data structure and behavior [Ra91]. From a Petri net point of view
dynamical objects are modeled as nets which are token objects in a general system
Petri net. They can be seen as tokens of a particular form of high level nets. In
contrast to Colored Nets, however, the tokens have the structure of a net again.
We therefore distinguish the base nets, called System Nets or Environment Nets
from its tokens in net form, called Object Nets or Token Nets.

Object nets move through a system net like ordinary tokens. In the current
formalism they are able to change their marking, but not their structure. The
change of the object net marking can be independent from the system net. Such
a step is called an autonomous occurrence of the transition. If this change is
triggered by the system net, it is called interaction. Interaction is formalized as
the incidental occurrence of a system net transition t and an object net tran-
sition e. Sometimes this form of synchronization is called a “rendez-vous”. In
workflow-like applications interaction mostly means the execution of a subtask e
by a functional unit t. In a different context it could mean that an operation is
performed on an object. If there is no (internal) change of the object net mark-
ing, we call the effect a transport. This notion suggest an interpretation of mobile
systems, but is clearly more general, as a topological structure of the system net
is not necessarily assumed.

As in preceding papers we restrict both net types to elementary net systems
and call them Elementary Object Nets (EOS). They have been studied as task
systems in earlier papers ([Val87a], [Val87b]). In ([Val98],[Val99b]) applications
to the modeling of work flow and flexible manufacturing system are given. In the
latter case the system net models the environment of machines, robots, conveyors
etc. whereas the object nets are execution plans containing the current state of
processing. The papers mentioned also contain a distributed version of the Five
Philosophers Problem. Object nets in this example are philosophers that can
enter or leave the dining room, and trolleys for requesting a missing fork from a
neighbor. In [MV00] and [AMVW99] applications to business process modeling
are given.

The difference of reference and value semantics for object nets may be infor-
mally described as follows. By some transition occurrence of an elementary object
system a particular object net may appear in different places of the system net.
In reference semantics these appearances consist of a reference to a single object
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net, whereas in value semantics these instances of the object net are considered
as independent copies. The copies are identical in their net structure but may
differ in their current marking.

Reference semantics has been formalized as bi-markings in [Val98] and
[Val99b]. It is also the leading paradigm of reference nets as introduced in
[Kum98] or as implemented in the Renew tool [KW99]. Value semantics was
used when working with process markings (p-markings) in [Val98] and [Val99b].
Recently a different formalization using Linear Logic is given in [Far99]. The
paper, presented here, is an extension of a report [Val99a] by elaborated proofs
and new results.

The distinction between reference and value semantics corresponds to the
distinction between local and distributed information in a distributed system and
is therefor a central characteristics of communication based systems. Dynamic
objects may be stored in a central way with respect to a node in a computer
network (see Figure 1), but must be represented as consistent copies in different
nodes. Concurrent work on separated copies may even be necessary in a single
site as represented in the lower part of Figure 1.

In this paper we formally study differences and similarities of reference and
value semantics for elementary object systems. This is motivated by the impor-
tance of the topic in general and by specific needs in practical work. To give an
example for the latter, we refer to the workflow example of Figure 8 in [Val98].
The concurrent action of the transitions “secretary” and “official 2” is given there
with respect to value semantics, but may be simulated with the Renew tool, which
implements reference semantics. Hence, in this example the two semantics result
in the same behavior. There are, however, numerous examples where different
behavior is observed. The purpose of this paper is to discuss reasons for such
differences and to give criteria for a similar behavior. To keep the presentation
less complex we are restricted to the case where only one single object net exists.
This model is called Unary Elementary Object System.

2 Unary Elementary Object Systems

In this section Unary Elementary Object Systems are introduced, consisting of a
system net SN and an object net ON , both being elementary net systems. These
are used in their standard form as given in [Thi87]. An Elementary Net System
(EN system) N = (B, E, F, C) is defined by a finite, non-empty set of places (or
conditions) B , a finite, non-empty set of transitions (or events) E, disjoint from
B , a flow relation F ⊆ (B × E) ∪ (E × B) and an initial marking (or initial
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Figure 1: Central and distributed object reference
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case) C ⊆ B. In addition to the usual condition dom (F ) ∪ range(F ) = B ∪ E
we assume E ⊆ range(F ), i.e. •e 6= ∅ for all e ∈ E. For the definition of •e, the
domain dom and range of a relation see the appendix. The occurrence relation
for markings C1, C2 and a transition t is written as C1 →t C2. If t is enabled
in C1 we write C1 →t. These notions are extended to words w ∈ E∗, as usual,
and written as C1 →w C2. FS(N) := {w ∈ E∗ | C →w} is the set of firing or
occurrence sequences of N , and R(N) := {C1 | ∃w : C →w C1} is the set of
reachable markings (or cases), also called the reachability set of N (cf. [Roz87]).
We will also use processes of EN systems in their standard definition [Roz87].
Their definition is given in the appendix.

Definition 2.1 A unary elementary object system is a tuple EOS =
(SN, ON, ρ) where

• SN = (P, T, W,M0) is an EN system, called system net of EOS,

• ON = (B, E, F,m0) is an EN system, called object net of EOS, and

• ρ ⊆ T × E is the interaction relation.

Throughout this paper the symbols P, T, W and B, E, F will be used to dis-
tinguish the system from the object net. Figure 2 gives an example of a unary
elementary object system with the components of an object net ON on the left
and a system net SN on the right. The interaction relation ρ is given by labels
< in > at t and e iff (t, e) ∈ ρ (“in” stands for interaction number n, which has
no other meaning apart from specifying interacting transitions).

2.1 Reference Semantics

Before proceeding to the formalization we describe the intuition behind the oc-
currence rule to be defined next. The token in the place p1 of the system net in
Figure 2 should be thought of as a reference to the object net ON . After the
occurrence of the transport t1 the places p2 and p4 are marked. These tokens can
be seen as references to the same object net ON , which is still in its initial mark-
ing. Then two interactions [t2, e2] and [t3, e3] may occur leading to the marking
M = {p3, p5}. Both markings form references to the object net ON being now
in the marking m = {b3, b5}. Both markings form together the global marking
of the EOS, which is called a “bi-marking” and will be denoted by (M,m). The
successor bi-marking after the occurrence of [t4, e4] is (M1,m1) with M1 = {p6}
and m1 = {b6}.
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e1e2 e3e4b1b3 b4 b5b6b2
t1 t2 t4p1 p2 p3p5<i2>t3 <i3> <i4>

<i2> <i3><i4>t5 p6p4 e5
S

N
O

N

Figure 2: Elementary object system con-task
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In the definitions of the occurrence rule we will use the following well-known
notions for a binary relation ρ. For t ∈ T and e ∈ E let tρ := {e ∈ E | (t, e) ∈ ρ}
and ρe := {t ∈ T | (t, e) ∈ ρ}. Then tρ = ∅ means that there is no element in the
interaction relation with t.

Definition 2.2 A bi-marking of a unary elementary object system EOS =
(SN, ON, ρ) is a pair (M,m) where M is a marking of the system net SN and
m is a marking of the object net ON .

a) A transition t ∈ T is activated in a bi-marking (M,m) of EOS if tρ = ∅
and t is activated in M. Then the successor bi-marking (M′,m′) is defined

by M t
−→M′ (w.r.t. SN) and m = m′. We write (M,m) [t,λ]

−→(M′,m′) in
this case.

b) A pair [t, e] ∈ T×E is activated in a bi-marking (M,m) of EOS if (t, e) ∈ ρ
and t and e are activated in M and m, respectively. Then the successor bi-
marking (M′,m′) is defined by M →t M′ (w.r.t. SN) and m →e m′ (w.r.t.

ON). We write (M,m) [t,e]
−→(M′,m′) in this case.

c) A transition e ∈ E is activated in a bi-marking (M,m) of EOS if ρe = ∅
and e is activated in m. Then the successor bi-marking (M′,m′) is defined

by m e
−→m′ (w.r.t. ON) and M′ = M. We write (M,m) [λ,e]

−→(M′,m′) in
this case.

In transition occurrences of type b) both the system and the object net partic-
ipate in the same event. Such an occurrence is therefore called an interaction. By
an occurrence of type c), however, the object net changes its state without mov-
ing to another place of the system net. It is therefore called object-autonomous
or autonomous for short. The symmetric case in a) is called system-autonomous
or transport, since the object net is transported to a different place without per-
forming an action.

Definition 2.3 The successor bi-marking relation (M,m) [α,β]
−→(M′,m′) is induc-

tively extended to finite sequences w̃ ∈ Γ∗ ( where Γ := (T∪{λ})×(E∪{λ}))\[λ, λ]
and [λ, λ] denotes the neutral element of the free monoid Γ∗):

• (M,m) [α,β]
−→ref (M,m) if [α, β] = [λ, λ] and

• (M,m)w̃[α,β]
−→ ref (M

′,m′) if ∃(M′′,m′′). (M,m) w̃
−→ref (M

′′,m′′) and

(M′′,m′′) [α,β]
−→(M′,m′) for w̃ ∈ Γ∗ and [α, β] ∈ Γ



14 2 UNARY ELEMENTARY OBJECT SYSTEMS
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t1 <i2>y2
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earth II earth III

alpha centauri I alpha centauri II

e1 e2

b1 b2 b3<i1> <i2>t2
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Figure 3: Elementary object system alpha centauri



  

2.2 Value Semantics 15

FSref := FSref (EOS) := {w̃ ∈ Γ∗ | ∃(M′,m′). (M0,m0)
w̃

−→ref (M
′,m′)}

denotes the set of occurrence sequences (firing sequences) of EOS with respect
to the reference semantics. We will use the projections pri(w̃)(1 ≤ i ≤ 2) of w̃
to its components, i.e. the maps pr1(w̃) ∈ T ∗ and pr2(w̃) ∈ E∗ induced by the
homomorphisms [t, x] 7→ t, [λ, x] 7→ λ and [x, e] 7→ e, [x, λ] 7→ λ, respectively. We
also use the notations w̃T := pr1(w̃) and w̃E := pr2(w̃).

For the EOS of Figure 2 the following occurrence sequence is obtainable:

[λ, e1], [t1, λ], [t3, e3], [t2, e2], [t4, e4], [λ, e5], [t5, λ] ∈ FSref (con − task).

After this sequence, the initial bi-marking is reached again.

2.2 Value Semantics

Reference semantics and bi-markings, however, do not adequately reflect the na-
ture of distributed computing. Consider for instance The EOS alpha centauri in
Figure 3. Transition t1 is interpreted as the beginning of a mission from earth to
the star Alpha Centauri having an instance of the object system ON on board.
After the occurrence sequence [t1, λ], [t2, λ], [t3, λ], [t4, λ] the “task” e1 is activated
in interaction with the alpha-centauri-event y1. After the occurrence of [y1, e1] the
bi-marking (M1,m1) with M1 = {earth II, alpha centauri II} and m1 = {b2} is
reached, as shown in Figure 4a. Next [y2, e2] is activated, which is quite strange
for an observer on earth as there is no (modeled) communication from Alpha
Centauri to earth.

Having such distributed applications in mind value semantics is more ad-
equate. With the occurrence of transition t1 two copies are generated in the
output places which eventually reach the position as shown in Figure 4b. The
last step before reaching the shown marking was the occurrence of [y1, e1] which
had an effect only on the copy of the object systems on Alpha Centauri. In con-
sistency with our intuition transition y2 on earth is not activated. It has been
shown in [Val98] that a distributed analogy to bi-markings is not adequate here.
Moreover, the marking of the object system is substituted by the process leading
to this marking. Such markings are called process-marking or p-marking.

To give an example, in Figure 5 a p-marking is given for the EOS con-
task, corresponding to the marking reached after the occurrence sequence
[λ, e1], [t1, λ], [t3, e3], [t2, e2]. It shows the (partial) processes of concurrent task
execution in the input places of transition t4. (For a definition of processes we re-
fer to the appendix.) Different to bi-markings, the history of the partial execution
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is recorded, which allows for a more adequate detection of “fork/join-structures”.
(The small white circles in the places b1 and p1 indicate the initial marking.)

As in the case of a bi-marking we distinguish three cases: a) interaction,
b) transport (or system autonomous transition) and c) autonomous (or object
autonomous) transition. An interaction [t, e] is activated if all input places in
•t contain a process of the object net ON such that the input processes can be
composed to a consistent process. This is formalized by the least upper bound
“lub” of these processes. The lub of a set of processes is the smallest process which
is a continuation of all these processes. The corresponding relation, denoted by ¹,
is formally introduced in the appendix: for processes proc1, proc2 ∈ PROC(ON)
the holding of proc1 ¹ proc2 denotes that proc1 is an initial subprocess of proc2.
The lub-operation is also introduced in the appendix. lub(proc1, proc2) does not
necessarily exist, but if it exists it is a “consistent” composition of both processes,
which can be interpreted as the “join” with respect to a “fork” in the past.

Definition 2.4 A process-marking (p-marking) of a unary elementary ob-
ject system EOS = (SN, ON, ρ), where SN = (P, T, W,M0) and ON =
(B, E, F,m0), is a partial mapping µ : P →֒ PROC(ON), giving to each place
p ∈ dom µ of the system net a process µ(p) of the object net. dom µ ⊆ P is
the associated system net marking. For the initial p-marking µ0 we assume dom
µ0 = M0 and µ0(p) = procm0

for each p ∈ dom µ, where marking is the ini-
tial process corresponding to m0 (for the definition of dom and procm0

see the
appendix).

We will use the following definition of the set of input- and output-processes
of a given transition t: ⊕t := {µ(p) | p ∈ •t ∩ dom µ} and t ⊕ := {µ(p) | p ∈
t• ∩ dom µ}.

Definition 2.5 Given an unary elementary object system EOS as in Definition
2.4, a system net transition t, an object net transition e and a p-marking µ. To

define the successor marking relations µ [t,e]
−→µ′, µ [t,λ]

−→µ′ and µ [λ,e]
−→µ′ we proceed in

three steps:

a) Interaction: t ∈ T , e ∈ E, (t, e) ∈ ρ

1. [t, e] is activated in µ (µ [t,e]
−→), if •t ⊆ dom µ, t• ∩ dom µ = ∅ hold and

both ⊔ ⊕t and (⊔ ⊕t)◦e exist. (i.e. all input places of t contain processes
and the output places are empty. Their lub exists and activates e. For
the definition of the lub-operation ⊔ see the appendix.)

2. [t, e] occurs and transforms µ into the successor p-marking µ′:

(µ [t,e]
−→µ′), if [t, e] is activated in µ and µ′ is defined by dom µ′ :=
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e1.1 e2.1b1.1 b3.1b2.1 e1.1 e3.1b1.1 b5.1b2.1t1t2 t4p1 p2p3 p5<i2> t3 <i3><i4>t5p6 p4SNe1 e2e3 e4b1 b3b4 b5 b6b2 <i2><i3> <i4>e5ON

b4.1 b4.1
Figure 5: Elementary object system con-task with P-markingt1t2 t4p1 p2p3 p5<i2> t3 <i3><i4>t5p6 p4SNe1 e2e3 e4b1 b3b4 b5 b6b2 <i2><i3> <i4>e5ON e1.1 e2.1e3.1 e4.1b1.1 b3.1b4.1 b5.1 b6.1b2.1

Figure 6: Successor p-marking of Figure 5
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(dom µ\ •t) ∪ t• and for p ∈ dom µ′ let be

µ′(p) :=
{

(⊔ ⊕t) ◦ e for p ∈ t•

µ(p) otherwise

b) Transport: t ∈ T , tρ = ∅

See part a) 1. and 2. and substitute λ for e. Then ⊔( ⊕t) = ⊔( ⊕t) ◦ λ and
the corresponding conditions coincide. For the definition of proc ◦ λ see the
appendix. (A transport is like an interaction but without the prolongation
of the object net process by e.)

c) Object-autonomous event: e ∈ E, ρe = ∅

1. [λ, e] is activated in µ (µ [λ,e]
−→) , if for some p ∈ dom µ the process

µ(p) ◦ e exists. (e is activated in µ(p).)

2. [λ, e] occurs and transforms µ into the successor p-marking µ′:

(µ [λ,e]
−→µ′), if [λ, e] is activated in µ and µ′ is defined by domµ′ := domµ

and for p1 ∈ dom µ′ let be µ′(p1) :=
{

µ(p) ◦ e for p = p1

µ(p1) otherwise
.

(A single process in a place p is enlarged by e.)

According to case a) of Definition 2.5 the pair [t4, e4] is activated in the p-
marking of Figure 5. The successor p-marking is given in Figure 6. With the
slight modification of the object net EOS con-task-mod in Figure 7 a p-marking
is given that is not activated for [t4, e4] as the processes in the input places of t4
have no lub.

Definition 2.6 The successor p-marking relation µ [α,β]
−→µ′ is inductively extended

to finite sequences w̃ ∈ Γ∗ (where Γ := (T ∪ {λ}) × (E ∪ {λ}))\[λ, λ] and [λ, λ]
denotes the neutral element of the free monoid Γ∗):

• µ [α,β]
−→valµ if [α, β] = [λ, λ] and

• µw̃[α,β]
−→ valµ

′ if ∃µ′′. µ w̃
−→valµ

′′ ∧ µ′′ [α,β]
−→µ′ for w̃ ∈ Γ∗ and [α, β] ∈ Γ

FSval := FSval(EOS) := {w̃ ∈ Γ∗ | ∃µ′. µ0
w̃

−→valµ
′} denotes the set of occur-

rence sequences (firing sequences) of EOS with respect to the value semantics.
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3 Processes of Elementary Object Systems

For the rest of the paper, we will use the following notations whenever possible.
For an elementary object system EOS = (SN, ON, ρ)

• a process procSN ∈ PROC(SN) of the system net SN = (P, T, W,M0) is
denoted by procSN = (XP , YT , ZW , φSN) with φSN : XP ∪ YT → P ∪ T .
<procSN

:= Z+
W is the causal ordering.

• a process procON ∈ PROC(ON) of the object net ON = (B, E, F,m0) is
denoted by procON = (XB, YE, ZF , φON) with φON : XB ∪ YE → B ∪ E.
<procON

:= Z+
F is the causal ordering.

• ρ ⊆ T × E is the interaction relation.

Definition 3.1 A triple Θ := (procSN , procON , ϕ) is called a process pair of
EOS if procSN ∈ PROC(SN), procON ∈ PROC(ON) and ϕ : YT →֒ YE is
a partial mapping with dom(ϕ) = φ−1

SN(dom ρ), range(ϕ) = φ−1
ON(range ρ) and

(φSN(y), φON(ϕ(y)) ∈ ρ for all y ∈ dom ϕ.

Definition 3.2 Given a unary elementary object system EOS (as above) and
an occurrence sequence w̃ = [α1, β1][α2, β2] . . . [αn−1, βn−1] ∈ FSref (EOS) leading
to the bi-marking (M,m) w.r.t. the reference semantics, we inductively define
a ref-process procref (w̃) = (procSN , procON , ϕ), where procSN and procON are
processes of SN and ON , respectively, and ϕ : YT →֒ YE.

a) If n = 1 (i.e. w̃ = [λ, λ]) then procref (w̃) = (procM0
, procm0

, ∅)

b) If n > 1 and procref (w̃) = (proc1, proc2, ϕ) then for (M,m)[αn,βn]
−→ we define

procref (w̃[αn, βn]) := (proc1 ◦ αn, proc2 ◦ βn, ϕ ∪ A) with

A :=
{
{(χ(proc1, t), χ(proc2, e))} for [αn, βn] = [t, e]
∅ otherwise

Remark For the definition of χ see the appendix (χ(proc, t) denotes the name
of the transition that enlarges the process proc, when the occurrence of t is
represented, i.e. φ(χ(proc, t)) = t). Note that the ref-process procref (w̃) of w̃ is
uniquely defined and ϕ is injective. Figure ?? shows a ref-process for the EOS
con-task.
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Definition 3.3 Given a unary elementary object system EOS with initial p-
marking and an occurrence sequence w̃ = [α1, β1][α2, β2] . . . [αn−1, βn−1] ∈
FSval(EOS) leading to the p-marking µ w.r.t. the value semantics, we induc-
tively define a set of val-processes procval(w̃) = (procSN , η), where procSN =
(XP , YT , ZW , φSN) is a process of SN and η : XP → 2PROC(ON) is a mapping.

a) If n = 1 (i.e. w̃ = [λ, λ]) then procval(w̃) = (procM0
, η0) where η0(x) :=

procm0
for all x ∈ Min(procM0

)

b) If n > 1 and procval(w̃) = (proc1, η), then for µ[t,βn]
−→ with βn ∈ E ∪ {λ} we

define procval(w̃[t, βn]) = (proc1◦t, η′) with η′(x) = η(x) for places in proc1.
To define η′(x) for the new places of proc1 ◦ t, let t.n := χ(proc1, t). Then

η′(x1) := (⊔x∈ •tη(x)) ◦ βn for x1 ∈ (t.n)•.

c) If n > 1 and procval(w̃) = (proc1, η), then for µ [λ,e]
−→ a transition e is acti-

vated in some process procON ∈ µ(p).
We define procval(w̃[λ, e]) := (proc1, η

′) with

η′(x) :=

{
η(x) ∪ {procON ◦ e} when x ∈ Max(proc1) ∩ φ−1

SN(p)
η(x) otherwise

for x ∈ XP of proc1.

Remark Note that due to the choice of the place p in step c) in Definition
3.3 the val-process procval(w̃) of w̃ is not uniquely defined and defines a set of
val-processes. Figure 8 shows a val-process for the EOS con-task. η(p1.1) and
η(p1.2) are sets with more than one element due to the autonomous transitions
e1.1 and e5.1, respectively.

Definition 3.4 Let procval(w̃) = (procSN , η) be the val-process of a unary EOS,
as introduced in Definition 3.3, such that the lub procω := ⊔{η(x) | x ∈ XP}
exists. Then the triple procrv(w̃) = (procSN , procON , ϕ) is called a rv-process-
representation, if procON = procω and ϕ is defined as follows. Define ϕ := ∅
initially and construct ϕ with the inductive creation of procω in Definition 3.3 by
adding the pair (y, y′) in each step when applying case b) with βn = e ∈ E, y as

defined there and y′ := χ(⊔x∈ •tη(x)), e).

Figure ?? shows a rv-process-representation of the val-process in Figure 8,
which is also a ref-process in this particular case.
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t1.1t2.1 t3.1t4.1 p1.1p2.1 p3.1 p5.1p6.1 p4.1t5.1p1.2 [t1,e1][t2,e2] [t3,e3][t 4,e 4][t 5,λ]
Figure 9: A process of con-task in value semantics



   

25

4 Characterizing ref-processes

In [Val98] a sufficient condition was given for a triple Θ := (procSN , procON , ϕ)
(Definition 3.1) to be a val-process. Here we discuss the same question for ref-
processes.

Definition 4.1 Given a triple Θ := (procSN , procON , ϕ) as defined in the begin-
ning of section 3. The following relation strongly before (denoted: ≪) is defined
on the transition set YE of procSN :

∀y1, y2 ∈ YT .y1 ≪ y2 ⇔: ∃k > 1. ∃ȳ1, ȳ2, . . . ȳk ∈ YT .y1 ≤procSN
ȳ1∧

ϕ(ȳ1) <procON
ϕ(ȳ2) ∧ ȳ2 ≤procSN

ȳ3∧
ϕ(ȳ3) <procON

ϕ(ȳ4) ∧ ȳ4 ≤procSN
ȳ5∧

. . .
ϕ(ȳk−3) <procON

ϕ(ȳk−2) ∧ ȳk−2 ≤procSN
ȳk−1∧

ϕ(ȳk−1) <procON
ϕ(ȳk) ∧ ȳk ≤procSN

y2

Theorem 4.2 : Let Θ := (procSN , procON , ϕ) be a process pair of an EOS
(Def.3.1) such that the partial mapping ϕ : YT →֒ YE is injective. Then Θ is a
ref-process (Def.3.2) iff the following “reference semantics consistency condition”
(RSCC) holds:

∀y1, y2 ∈ dom(ϕ). ϕ(y1) <procON
ϕ(y2) ⇒ ¬(y2 ≪ y1)

Proof

Let be Θ := (procSN , procON , ϕ) process pair of an EOS (Def.3.1) such that
procSN ∈ PROC(SN), procON ∈ PROC(ON) and the partial mapping ϕ : YT →֒ YE

is injective. Assuming the property RCSS of Theorem 4.2 we have to show that Θ is a
ref-Process (Definition 3.2). We therefore inductively construct an occurrence sequence
w̃ = [α1, β1][α2, β2] . . . [αn, βn] ∈ FSref (EOS) leading to the bi-marking (M,m) w.r.t.
the reference semantics such that Θ = procref (w̃).

For k = 0 we obviously have w̃k = [λ, λ].

For 0 ≤ k < n we assume Θk := (prock
SN , prock

ON , ϕk) with prock
SN ¹ procSN ,

prock
ON ¹ procON and ϕk is a restriction of ϕ. By induction hypothesis there is

a sequence w̃k = [α1, β1][α2, β2] . . . [αk, βk] ∈ FSref (EOS) leading to the bi-marking
(Mk,mk) such that Θk = procref (w̃k).

We have to construct a prolongation [αk+1, βk+1] of w̃k such that

1) prock
SN ◦ y ¹ procSN with y ∈ {φSN (αk+1), λ}

2) prock
ON ◦ v ¹ procON with v ∈ {φON (βk+1), λ} and
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Figure 10: Symbolic representation of subcase 2.2 of the proof of Theorem 4.2
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3) ϕk is a restriction of ϕ.

case 1: There is a prologation by an autonomous transition, i.e. y /∈ dom φ with
prock

SN ◦ y ¹ procSN or v /∈ range φ with prock
ONm ◦ v ¹ procON . Then we choose the

appropriate prologation of w̃ by [αk+1, βk+1] = [t, λ] or [αk, βk] = [λ, e].
case 2: not case 1:
subcase 2.1: There are t ∈ T and e ∈ E satisfying (t, e) ∈ ρ with prock

SN ◦ y ¹
procSN for φSN (y) = t and prock

ON ◦ v ¹ procSN for φON (v) = e. Then we choose
[αk+1, βk+1] = [t, e].

subcase 2.2: There is no such prolongation of the processes as in the cases 1 and 2.1.
We will prove that this subcase is in contradiction with the assumed property RCSS.

Define Ỹ := {y | prock
SN ◦y ¹ procSN} as the set of transitions activated in prock

SN

and similarly Ũ := {u | prock
ON ◦ u ¹ procON} as the set of transitions activated in

prock
ON . Both sets are nonempty as k < n and ϕ : YT →֒ YE is injective. For each

y ∈ Ỹ we have ϕ(y) /∈ Ũ as we would be in case 2.1 otherwise. Furthermore ϕ(y) cannot
lie in prock

ON . Hence there is some u ∈ Ũ with u ≤ON ϕ(y). For each y ∈ Ỹ the choice
of such a transition u is denoted by γ(y). (See the symbolic representation of these
constructions in Figure 9.) Since γ(y) ∈ range(ϕ) and ϕ is injective, we can define
δ(y) := ϕ−1(γ(y)) /∈ Ỹ , where δ(y) /∈ Ỹ holds as case 2.1 is excluded here. By a similar
argument as before we can find an element ω(y) ∈ Ỹ such that ω(y) ≤SN δ(y). We
thus have constructed a mapping ω : Ỹ → Ỹ which certainly contains a permutation

(
y1 y2 . . . yr

ω(y1) ω(y2) . . . ω(yr)

)

on a subset of Ỹ i.e. there is a fixpoint ŷ ∈ Ỹ satisfying ωn(ŷ) = ŷ for some n ≥ 1.
We have ϕ(δ(ŷ)) ≤ON ϕ(ŷ) and we will prove next that ŷ ≪ ϕ(ŷ), which is in con-

tradiction to the assumption of the property RSCC. Therefore case 2.2 is impossible.
To show ŷ ≪ δ(ŷ) let be ỹ := ω(ŷ) = ωn−1(ŷ). Furthermore we define:

ȳ1 := δ(ỹ) = δ(ωn−1(ŷ)) ¯̄y1 := ωn−1(ŷ)
ȳ2 := δ(ωn−1(ŷ)) ¯̄y2 := ωn−2(ŷ)
. . . . . .

ȳn−1 := δ(ωn−(n−1)(ŷ)) ¯̄yn−1 := ω(ŷ)
ȳn := δ(ŷ)

This finally gives:

ŷ ≤SN ȳ1 = δ(ŷ) ∧ ϕ(ȳ1) ≤ON ϕ(¯̄y1) ∧ ¯̄y1 ≤SN ȳ2

∧ ϕ(ȳ2) ≤ON ϕ(¯̄y2) ∧ ¯̄y2 ≤SN ȳ3

. . .
∧ ϕ(ȳn−1) ≤ON ϕ(¯̄yn−1) ∧ ¯̄yn−1 ≤SN ȳn = δ(ŷ)

♦
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In Figure 10 a counter example is given. The system net SN as well as
the object net ON are causal nets and they are isomorphic to their unique
maximal processes. But with the represented mapping ϕ the process pair
Θ := (procSN , procON , ϕ) is not a ref-process since the condition RSCC is vio-
lated: ϕ(y′

2) <procON
ϕ(y1) but y1 <procSN

y′
1 ∧ ϕ(y′

1) <procON
y2 ∧ y2 <procSN

y′
2

hence y1 ≪ y′
2.

5 From Reference Semantics to Value Seman-

tics

In this section we give a sufficient condition for an occurrence sequence with
respect to the reference semantics to be also an occurrence sequence with respect
to the value semantics.

Definition 5.1 Given a triple Θ := (procSN , procON , ϕ) (Def. 3.1), such that
ϕ is injective. Then a (total) mapping ψ : YE → XP ∪ YT is said to have the full
morphism property (FMP) if

a) ∀e ∈ YE. e ∈ range ϕ ⇒ ψ(e) ∈ YT ∧ ψ(e) = ϕ−1(e)

b) ∀e ∈ YE. e /∈ range ϕ ⇒ ψ(e) ∈ XP

c) ∀e1, e2 ∈ YE. e1 ≤ON e2 ⇒ ψ(e1) ≤SN ψ(e2)

A partial mapping ψ0 : YE →֒ XP ∪YT is said to be fully extensible iff there
is an extension to a full morphism.

The existence of a morphism as given by the full morphism property is charac-
teristic for an occurrence sequence w.r.t. the value semantics. To give an example
consider the EOS alpha centauri under reference semantics in Fig. 4a). As the
mapping ψ of Def. 5.1 has to extend ϕ−1 with ϕ−1(e1) = y1, ϕ

−1(e2) = y2 it
cannot be a morphism.

Theorem 5.2 Let EOS be a unary elementary object system (as before) and let
w̃ ∈ FSref (EOS) be an occurrence sequence w.r.t. the reference semantics. If
for the corresponding ref-process procref (w̃) = (procSN , procON , ϕ) (Def. 3.2) the
partial mapping ϕ−1 is fully extensible (Def. 5.1), then w̃ is also an occurrence
sequence w̃ ∈ FSval(EOS) w.r.t. the value semantics and procref (w̃) is a val-
process in rv-process-representation.
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ψψ

procSN(wn-1)
~

procON(wn-1)
~

e1

b1

e2

t2

p1

x

p2

Figure 12: Symbolic representation of cases a) and b) of the proof of Theorem
5.2.
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Proof

To prove the theorem from w̃ ∈ FSref (EOS) and its ref-process procref (w̃) =
(procSN , procON , ϕ) we will construct a val-process (Def. 3.3) (proc′, η), such that
procval(w̃) = (proc′, η). Define proc′ := procSN and η : XP → 2PROC(ON) as follows.

First we have to introduce some notation w.r.t. the process procON =
(XB, YE , ZF , φON ) (which applies to all processes as a general definition, however). The
open closure of a set X ⊆ XB∪YE is the set ocl(X) :=

⋃
{ •x | x ∈ X∩YE}∪

⋃
{x• | x ∈

X∩YE}∪X. Intuitively the open closure is obtained by attaching all input and output
places to the transitions of X. Using this notation, for a set A ⊆ YE of transitions of
the process procON we define the net cl(procON , A) by attaching all input and output
places, i.e.:

cl(procON , A) := (X1, Y1, Z1, φ1) with :

• X1 := ocl(A) ∩ XB

• Y1 := A

• Z1 := ZF ∩ ((X1 × A) ∪ (A × X1))

• φ1 := φON |(X1∪A)

When procON is obvious from the context we will write cl(A) for cl(procON , A).
We now proceed in the definition of the map η : XP → 2PROC(ON). For each

x ∈ XP the set η(x) will contain at least one process of ON, which is called input

process of x and is denoted by procα(x). It is defined by

procα(x) := cl(Aα(x))) (1)

with

Aα(x) := {ψ−1(y) | y ∈ YT ∪ XP ∧ y <SN x} ⊆ YE (2)

Intuitively, the input process of x is the process that marks x at the first. Anal-
ogously, the output process will be the process that is added to x at the last. The
input and output processes only differ in autonomous transitions. The output process
is defined by enlarging procα(x) by autonomous transitions:

procω(x) := cl(Aω(x))) (3)

with

Aω(x) := {ψ−1(y) | y ∈ YT ∪ XP ∧ y ≤SN x} ⊆ YE (4)

Intuitively {e1.n1, e2.n2, . . . , ek.nk} := ψ−1(x) is the set of autonomous transitions that
occur when the process is in the place x. Therefore procα(x) = procω(x) if k = 0 i.e.
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ψψ

procSN(wn-1)
~

procON(wn-1)
~

e1

b1

e2

p1

x

Figure 13: Illustration of case c) of the proof of Theorem 5.2.
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ψ−1(x) = ∅. This follows also formally from the equations (2) and (4). If ψ−1(x)) 6= ∅
then the set {e1.n1, e2.n2, . . . , ek.nk} is totally ordered by the order < := <w̃E

induced
by the projection pr2(w̃) = w̃E , say ei1 < ei2 < . . . < eik (see appendix for the induced
order <w and the text after Def. 2.3 for the projection pr2(w̃) = w̃E). We will show
that ei1 is activated in procα(x), ei2 is activated in procα(x) ◦ ei1 , ... , eik is activated
in procα(x) ◦ ei1 ◦ ei2 ◦ . . . ◦ eik−1

. The last process in this sequence is procω(x). η(x)
should contain at least Min(procON ).

The definition of η(x) is now obtained by

η(x) := Min(procON ) ∪ {procα(x)} ∪ {procα(x) ◦ ei1 ◦ ei2 ◦ . . . ◦ eij | 1 ≤ j ≤ k} (5)

where {e1.n1, e2.n2, . . . , ek.nk} = ψ−1(x) and ei1 < ei2 < . . . < eij

is ordered as φON (e1), φON (e2), . . . , φON (ej) in w̃, i.e. there is a subsequence
[λ, φON (e1)], [λ, φON (e2)], . . . , [λ, φON (ej)] in w̃, such that φON (ei) corresponds to the
ni-th occurrence of ei in pr2(w̃). All processes in η(x) are ordered by ¹. As η(x) 6= ∅
the lub ⊔{η(x)} always exist. Hence in expressions like ⊔{η(x) | x ∈ •t2} the set η(x)
is to be replaced by its lub.

It remains to prove:

1. Each element of η(x) is a subprocess of procON .

2. procval(w̃) = (procSN , η).

ad 1.: By definition procα(x) is a causal net (as a particular subnet of a causal
net), but not necessarily a subprocess of procON . It remains to show that there are no
“gaps”, i.e. for each transition e2 of procα(x) each transition e1 satisfying e1 ≤ON e2

should also be a transition of procα(x) . This easily follows from the property FMP of
ψ (Def. 5.1) which gives : e1 ≤ON e2 ⇒ ψ(e1) ≤SN ψ(e2). We have assumed that e2

is in procα(x), hence ψ(e2) ≤SN x and ψ(e1) ≤SN ψ(e2) ≤SN x. From the definition
of Aα(x) (equation (2)) we conclude that e1 also belongs to procα(x). All processes of
η(x) are of the form procα(x) ◦ e1 ◦ e2 ◦ . . . ◦ ej . As we will prove later ei is activated in
procα(x) ◦ e1 ◦ e2 ◦ . . . ◦ ei−1 (1 ≤ i ≤ j). Therefore all elements of η(x) are subprocesses
of procON .

ad 2.: Assume w̃n−1 = [α1, β1][α2, β2] . . . [αn−1, βn−1] ∈ FSref (EOS) and
procref (w̃n−1) = (procSN (w̃n−1), procON (w̃n−1), ϕ(w̃n−1)). We prove by induction on
n that

procval(w̃n−1) = (procSN (w̃n−1), η). (6)

where η is defined as before (equation (5)).
If n = 1 then w̃n−1 = [λ, λ], hence by Definition 3.3: procval([λ, λ]) = (procM0

, η0)
where η0(x) := procm0

for all x ∈ Min(procM0
). On the other hand we have

procSN (w̃n−1) = Min(procSN ) = procM0
. For x ∈ Min(procSN ) we obtain by equa-

tion (5): η(x) = Min(procON )∪{procα(x)} = Min(procON )∪cl(∅) = Min(procON ) =
procm0

, which implies the induction hypothesis (equation (6)) for n = 1.
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For the induction step assume n ≥ 1 and w̃n = w̃n−1[αn, βn]. We distinguish the
following three cases:

a) [αn, βn] = [t, e], t ∈ P, e ∈ E

b) [αn, βn] = [t, λ], t ∈ T

c) [αn, βn] = [λ, e], e ∈ E

case a): [αn, βn] = [t, e], t ∈ P, e ∈ E

In this case, by w̃n = w̃n−1[αn, βn] ∈ FSref (EOS) transition t is activated in
procSN (w̃n−1) and e is activated in procON (w̃n−1), ϕ(t) = e, i.e. procSN (w̃n) =
procSN (w̃n−1) ◦ t and procON (w̃n) = procON (w̃n−1) ◦ e exist. For the correspond-
ing elements of these process enlargements t2 := χ(procSN (w̃n−1), t) and e2 :=
χ(procON (w̃n−1), e) we have ψ(e2) = t2.

We have to show that the lub of all processes in the input places of t2 activates e2

(i.e. ⊔{η(x) | x ∈ •t2} activates e2) and ⊔{η(x) | x ∈ •t2} ◦ e2 ∈ η(y) for the output
places y ∈ t2

•.

The first part of this statement holds if each input place b1 ∈ •e2 is contained in a
process of η(x) for at least one input place p1 ∈ •t2. If •b1 = ∅ then b1 ∈ Min(procON )
which is contained in each process of any place of procval(w̃n−1) by construction. If
•b1 6= ∅ then there is a transition e1 ∈ •b1 and we have e1 ≤ON e2 ( see the symbolic
representation in Figure 11). By property FMP (Def. 5.1) of ψ it follows ψ(e1) ≤SN

ψ(e2) = t2. There is an input place p1 such that ψ(e1) ≤SN p1 ≤SN t2. By the
definition of η (equation (5)) η(p1) contains e1 as desired.

We finish the discussion of case a) by showing that the definition of η(p2) (equation
(5)) for the output places p2 ∈ t2

• coincides with the p-marking occurrence rule (Def.
2.5) and the related definition of a val-process (Def. 3.3). According to these definitions
p2 should contain as the input process the process that is generated (by the operation
cl as in equation (1)) from the union of all transitions in processes in input places
together with ψ−1(t2) = e2 itself. As all lines passing through p2 also meet the input
places, this is in accordance with the definition of η(x). More formally we compute:
procα(p2) ∈ η(p2) with

procα(p2) = cl(Aα(p2))) (7)

and

Aα(p2) = {ψ−1(y) | y ∈ YT ∪ XP ∧ y <SN p2} = {ψ−1(t2)} ∪
⋃

p1∈ •t2

Aα(p1) (8)

case b): [αn, βn] = [t, λ], t ∈ T

This case is similar to case a). The only difference that ψ−1(t2) = e2 is omit-
ted in equation (8). In this case, by w̃n = w̃n−1[αn, βn] ∈ FSref (EOS) transition
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e is activated in procON (w̃n−1), i.e. procON (w̃n) = procON (w̃n−1) ◦ e exist. Let be
χ(procON (w̃n−1), e) := e2 the corresponding element of the process enlargement.

case c): [αn, βn] = [λ, e], e ∈ E

We will show that e2 is activated in some process proc ∈ η(p1) where p1 = ψ(e2).
This is true if proc contains all input places b1 ∈ •e2 (see the symbolic representation in
Figure 12). If •b1 = ∅ then b1 ∈ Min(procON (w̃n−1) which is contained in each process
of any place of procval(w̃n−1) by construction. If •b1 6= ∅ then there is a place e1 ∈ •b1

and we have e1 ≤ON e2. By property FMP (Def. 5.1) of ψ it follows ψ(e1) ≤SN ψ(e2).
By the definition of η (equation (5)) η(p1) and the discussion between equation (4) and
equation (5) e1 is contained in procω(p1). Hence there is some 1 ≤ j ≤ k such that
proc = procα(p1) ◦ e1 ◦ e2 ◦ . . . ◦ ej and ej = e2.

♦

We illustrate the theorem for the occurrence sequence

w̃ = [λ, e1], [t1, λ], [t3, e3], [t2, e2], [t4, e4], [t5, λ], [λ, e5] ∈ FSref (con − task)

of the EOS con-task in Figure 2. The corresponding ref-process is shown in Figure
??. The mapping ϕ−1 = {(e2.1, t2.1), (e3.1, t3.1), (e4.1, t4.1)} is fully extensible by
{(e1.1, p1.1), (e5.1, p1.2)}, hence w̃ ∈ FSval(EOS). The val-process constructed
in the proof of the theorem is given in Figure 8.

For better understanding the proof of Theorem 5.2, the EOS WILD in Figure
13 may be helpful. Both nets, the system net SN as well as the object net ON ,
are finite causal nets and thereby coincide with their maximal processes. Together
with the given mapping ϕ they form a triple in rv-process-representation (Def.
3.4).

The inverse ϕ−1, which is fully extensible. A possible extension is given in
Figure 14 by dashed arrows. It may be checked that ψ satisfies the morphism
property from part c) of Definition 5.1. To illustrate the construction of the map
η : XP → 2PROC(ON) we give two elements of its value set: by the construction
η(p10) contains the process with the transition set Aα(p10) := {ψ−1(y) | y ∈
YT ∪ XP ∧ y <SN p10} = {1, 2, 4, 7, 8, 10}. It also contains the process generated
by the transitions of Aω(p10) := {ψ−1(y) | y ∈ YT ∪ XP ∧ y ≤SN p10} =
{1, 2, 4, 7, 8, 10, 9, 11, 12}. The other elements of η(p10) are those that lie between
these two processes (w.r.t. the partial ordering ≺). To give another value of η(x),
the set η(p4) contains a single element, namely the process cl({1, 2, 7, 10}). The
full construction is given in Figure 15.

By the proof of Theorem 10 also a characterization of val-processes can be
derived that is the analogon of Theorem 4.2. In a restricted form, namely when
autonomous transitions are excluded, this result is published in [Val99b].
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6 From Value Semantics to Reference Seman-

tics

In this section we discuss the reverse problem of the previous section, namely un-
der which conditions an occurrence sequence with respect to the value semantics
is also an occurrence sequence with respect to the reference semantics.

The occurrence sequence

w̃ = [λ, e1], [t1, λ], [t2, e2], [t3, e3], [t4, e3], [t5, e2], [t6, e4], [t7, λ], [λ, e5] ∈ FSval(ser−task)

of the EOS ser-task in Figure 16 is not an occurrence sequence following
the reference semantics (i.e. w̃ /∈ FSref (ser − task)) as after the prefix
[λ, e1], [t1, λ], [t2, e2], [t3, e3] transition e3 is not activated any more. The reason for
this is that value semantics allows for “redundant execution” of object net transi-
tions but reference semantics does not. Another source for a similar incompatibil-
ity is nondeterminism. To give an example consider the EOS con-task-mod from
Fig. 7. Here the occurrence sequence [λ, e1], [t1, λ], [t2, e2], [t3, e6] ∈ FSval(EOS)
is legal w.r.t. the value semantics but not for the reference semantics. The reason
is that value semantics allows for different decisions of a conflict in different copies
of the of object net, whereas w.r.t. reference semantics only one copy exists and
the conflict cannot be resolved twice.

We conclude that a condition for an occurrence sequence with respect to the
value semantics to be also an occurrence sequence with respect to the reference
semantics is that the “global information” given in reference semantics has to be
simulated. The notion of least upper bound gives some kind of consistency test on
related copies of object nets. However, this test is restricted to the input places
of a system net transition. In the given context it is therefore natural to extent
the range of the lub-operation to all places in the system net.

Definition 6.1 : Let µ : P →֒ PROC(ON) be a p-marking of a unary elemen-
tary object system EOS = (SN, ON, ρ), where SN = (P, T, W,M0) and ON =
(B, E, F,m0) and e ∈ E is a transition of ON . Then µ is said to satisfy the global
consistency condition (notation: CONSIST (µ)) if

⊔
µ(P ) :=

⊔
{µ(p) | p ∈ P}

exists. The pair (µ, e.n) with e ∈ E, n ∈ IN is said to satisfy the global consistency
condition (notation: CONSIST ((µ, e.n))) if CONSIST (µ) and (

⊔
µ(P ))◦e ex-

ists (and consequently CONSIST ((
⊔

µ(P )) ◦ e)) and χ(
⊔

µ(P ), e) = e.n.

Recall, that in χ(proc, e) = e.n the expression e.n denotes the name of the
transition that extends the process proc by the occurrence of the object net
transition e. It is the n-th occurrence of e (see appendix).
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Figure 17: The Elementary object system ser-task.
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Definition 6.2 : Given an unary elementary object system EOS as in Definition
2.4, a system net transition t, an object net transition e and a p-marking µ.
To define the strong successor marking relations µ−→[t,e]

strg µ′, µ−→[t,λ]

strg µ′ and µ−→[λ,e]

strg µ′ we
proceed in three steps:

a) Interaction: t ∈ T , e ∈ E, (t, e) ∈ ρ

[t, e] strongly occurs in µ and transforms µ into the successor p-marking µ′

(µ−→[t,e]

strg µ′), if there is some n ∈ IN with:

1. •t ⊆ domµ and t• ∩ domµ = ∅,

2. CONSIST (µ, e.n) holds,

3. ⊔ ⊕t and (⊔ ⊕t) ◦ e exist with χ(⊔ ⊕t, e) = e.n ,

4. µ′ is defined by dom µ′ = (dom µ\ •t) ∪ t• and for p ∈ dom µ′ let be

µ′(p) :=
{

(⊔ ⊕t) ◦ e for p ∈ t•

µ(p) otherwise

b) Transport: t ∈ T , tρ = ∅

[t, λ] strongly occurs in µ and transforms µ into the successor p-marking µ′

(µ−→[t,λ]

strg µ′), if

1. •t ⊆ domµ and t• ∩ domµ = ∅,

2. CONSIST (µ) holds,

3. ⊔ ⊕t exists,

4. µ′ is defined by dom µ′ = (dom µ\ •t) ∪ t• and for p ∈ dom µ′ let be

µ′(p) :=
{
⊔ ⊕t for p ∈ t•

µ(p) otherwise

c) Object-autonomous event: e ∈ E, ρe = ∅

[λ, e] strongly occurs in µ and transforms µ into the successor p-marking
µ′ (µ−→[λ,e]

strg µ′), if there are p ∈ P and n ∈ IN with:

1. CONSIST (µ, e.n) holds,

2. µ(p) ◦ e exists with χ(µ(p), e) = e.n,

3. µ′ is defined by dom µ′ := (dom µ\ •t) ∪ t• and for p1 ∈ dom µ′ let be

µ′(p1) :=
{

µ(p) ◦ e for p1 = p
µ(p1) otherwise
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Figure 18: Elementary object system alpha centauri extended.
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Definition 6.3 The strong successor p-marking relation µ−→[α,β]

strg µ′ is inductively
extended to finite sequences w̃ ∈ Γ∗ (where Γ := (T ∪ {λ}) × (E ∪ {λ}))\[λ, λ]
and [λ, λ] denotes the neutral element of the free monoid Γ∗):

• µ [α,β]
−→strgµ if [α, β] = [λ, λ] and

• µw̃[α,β]
−→ strgµ

′ if ∃µ′′. µ w̃
−→strgµ

′′ ∧ µ′′−→[α,β]

strg µ′ for w̃ ∈ Γ∗ and [α, β] ∈ Γ

FSstrg := FSstrg(EOS) := {w̃ ∈ Γ∗ | ∃µ′. µ0
w̃

−→strgµ
′} denotes the set of oc-

currence sequences (firing sequences) of EOS with respect to the value semantics.

Theorem 6.4 Let EOS be a unary elementary object system and let w̃ ∈
FSval(EOS) be an occurrence sequence w.r.t. the value semantics. If w̃ sat-
isfies the strong value semantics occurrence rule i.e. w̃ ∈ FSstrg(EOS), then w̃
is also an occurrence sequence w̃ ∈ FSref (EOS) w.r.t. the reference semantics.

Proof

For the proof of this theorem the following mapping strg gives for any process-marking
µ the corresponding bi-marking (M,m) by the maximal cut of the lub of all processes
of µ:

strg : µ 7→ strg(µ) := (M,m) := (dom µ, Max(⊔µ(P ))) (9)

Using this definition the theorem is proved by establishing the following implication,

where strg(µ)
[x,y]
−→ strg(µ′) is the successor bi-marking relation of Definition 2.2:

µ −→[x,y]

strg µ′ ⇒ strg(µ)
[x,y]
−→ strg(µ′) (10)

For the proof of this statement, the details of which are omitted, it is important to
note that for each occurrence in the cases of a) (interaction) and c) (autonomous) the
process Max(⊔µ(P ) is effectively enlarged, which is fulfilled the definition of the strong
occurrence rule (Definition 6.2), in particular by the conditions a) 3. and 4. as well
as c) 2. and 3. By these conditions the enlargement of the process is performed with
the same copy of the transition e that satisfies the global consistency condition i.e.
CONSIST (µ, e.n) = true. There are examples where confusion is possible. ♦

To give some examples consider the Alpha Centauri example again. The
occurrence sequence w̃1 := [t1, λ], [t2, λ], [t3, λ], [t4, λ], [y1, e1] ∈ FSval (see Fig-
ure 3) is also strong, i.e. w̃1 ∈ FSstrg, and therefore legal w.r.t. the refer-
ence semantics: w̃1 ∈ FSref . This is, however, not the case for its prologation
w̃2 := w̃1[y2, e2] /∈ FSstrg which is is not valid w.r.t. the strong occurrence
rule. Now let us extend the EOS in such a way that there is “a message back to
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Figure 19: Processes of Figure 17 in rv-representation.
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earth” as shown in Figure 17. This figure gives a process representation of the
occurrence sequence w̃3 := [t1, λ], [t2, λ], [t3, λ], [t4, λ], [y1, e1], [y2, e2] ∈ FSval. As
it is valid w.r.t. the strong occurrence rule (w̃3 ∈ FSstrg) it is also valid w.r.t.
the reference semantics (w̃3 ∈ FSref ).

In Figure 18 the corresponding rv-representation is shown. As the map ϕ−1 is
fully extensible also Theorem 5.2 can be applied. Hence this example provides an
instance where both Theorems 5.2 and 6.4 hold, i.e. both transitions from value
to reference semantics and vice versa are valid.

7 Conclusion

With this paper the semantics of object nets is further elaborated. Reference
and value semantics are introduced, motivated and formally defined. Besides
interleaving representations by occurrence sequences also a partial order repre-
sentation by processes is given for both semantics. A characterizing condition
for processes w.r.t the reference semantics is derived. A corresponding result
for processes in value semantics has been established by the author in an earlier
paper.

The relation of both semantics is studied by showing under which conditions
one may pass from one to the other. While the proofs are based on partial orders
the behavioral equivalence is stated by using occurrence sequences, which serve
as common description language.

Given an object net behavior w.r.t. the reference semantics the transition to
value semantics requires the distribution of state information to different places.
This is done by using the notion of morphism that preserves the causal dependen-
cies. In the literature such morphisms are used to formalize the simulation of one
system by an other one and the given condition could be interpreted in a similar
way. It says that the causal dependencies of the object net are to be preserved by
the system net. In other words, the executing functional units cannot be more
concurrent than the executed tasks.

Such a relation is not needed for reference semantics as there is a global
representation of the current object net marking. Contrary to the previous case
the passing from value semantics to reference semantics does not require the
distribution of process information but a check on their consistency. This is
formalized by the strong occurrence rule. An implementation of this semantics
allows for a distributed storage of data but requires a global consistency check.
This is similar to large scale distributed data bases where each modifying access
is protected by consistency tests.
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The results, obtained in this paper, will enable us to formulate a common
model for object nets that includes both, reference and value semantics. In such
a model a partition on the set of all places of the system net is assumed, reflecting
the locality structure like in Figure 1, i.e. all places that can be associated to a
node of a network are considered to be in the same class of the partition. Then for
the transition rule we apply the strong occurrence rule with respect to all places in
such a class and the value semantics occurrence rule for places in different classes.
The case of reference semantics, as studied in this paper, becomes a special case,
where the partition consists in only one class. In the same way value semantics
is obtained if each place in its own class. Such a model would unify the theory
and reflect the real world situation as discussed in connection with Figure 1.

8 Appendix: Processes and other formal nota-

tions

For a binary relation R ⊆ A×B the domain is defined by domR := {a ∈ A | ∃b ∈
B. (a, b) ∈ R} and the range by range R := {b ∈ B | ∃a ∈ A. (a, b) ∈ R}. This
notion is also used with brackets: dom(R), range(R). The definition is also used
for relations which are a mapping f : A → B. A partial mapping is denoted by
f : A →֒ B, i.e. a mapping from dom f to B. For a partial mapping f : A →֒ B
and an element x ∈ A\dom f the union f ∪ (x, y) is defined as an extension
g : A →֒ B by dom g := dom(f) ∪ {x} and g(a) := if a = x then y else f(a)
fi for a ∈ dom g.

The non-sequential behavior of EN systems is given by causal nets (occurrence
nets, cf [GR83], [BM85], [Roz87]). A process of an EN system EN = (B, E, F, C)
is defined by a node-labeled causal net procEN = (XB, YE, ZF , φ) such that φ :
XB ∪ YE → B ∪ E satisfies

• φ(XB) ⊆ B ∧ φ(YE) ⊆ E

• ∀x1, x2 ∈ XB : φ(x1) = φ(x2) ⇒ x1 < x2 ∨ x2 < x1 ∨ x1 = x2

(φ is injective on every B-cut of procEN)

• ∀y ∈ YE : φ( •y) = •φ(y) ∧ φ(y•) = φ(y)•

• φ(Min(procEN)) = C

As usual, in this definition for an element x ∈ B ∪E the set of input elements
is the set •x := {y ∈ B ∪ E | (y, x) ∈ F} and x• := {y ∈ B ∪ E | (x, y) ∈ F} is
the set of output elements of x. Furthermore in this definition Min(procEN) :=
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{x ∈ XB | •x = ∅} is the set of minimal elements of the process. In the same way
Max(procEN) := {x ∈ XB | x• = ∅} is the set of maximal elements. In this paper
we always assume E ⊆ range(F ) (see [GR83]) and all processes to be finite. It
follows that the set Min(procEN) is not empty. If Min(procEN) = procEN , then
procEN is called initial process. Since it consists of a set of places, in bijection
with C, it is denoted by procC . The partial order of causality is denoted by
< := F+ and ≤ := F ∗ is the reflexive closure. If not excluded explicitly, a
unique naming scheme is used for the places and transitions XB ∪ YE of procEN

by defining φ−1(x) := {x.1, x.2, . . . , x.k}(x ∈ B ∪ E, k = |φ−1(x)|) such that
x.1 < x.2 < . . . < x.k. Intuitively, x.i denotes the i-th occurrence of x in the
causal net procEN . This is well-defined, as each set φ−1(x) is totally ordered by
the causal relation <.

With li := ≤ ∪ ≤−1 and co := (X × X)\li ∪ idX (where X := XB ∪ YE).
c ⊆ X is a co − set (anti-chain) iff ∀x, y ∈ c : x co y. c is a cut if it is a maximal
co-set (i.e. ∀z ∈ X\c .∃y ∈ c. z li y); the set of cuts of procEN will be denoted by
C = C(procEN). A cut containing only elements of XB (i.e. c ⊆ XB) is a B-cut
and BC(procEN) denotes the set of all B-cuts of procEN .

For A ⊆ X let ↓A := {y ∈ X | ∃x ∈ A. y ≤ x} and ↑A := {y ∈ X |
∃x ∈ A. ≤ y}. A partial order is defined on the on the set PROC(EN) of
all processes of EN as follows. Given two processes proc1 = (X1, Y1, Z1, φ1) and
proc2 = (X2, Y2, Z2, φ2) of EN , we define proc1 ¹ proc2 ( proc1 is an initial
subprocess of proc2) by ∃A ∈ BC(proc2) : X1 = X2∩ ↓A, Y1 = Y2∩ ↓A, Z1 =
Z2∩A↓and φ1 = φ2|A↓, where A↓ :=↓A× ↓A. The preceding definitions are similar
to an introduction in [BM85]. The notion of lub is used there to define infinite
processes. Here, we are more interested in least upper bounds of finite sets of
finite processes.

For any two processes proc1, proc2 ∈ PROC(EN) the set PR := {proc ∈
PROC(EN) | proc ¹ proc1 ∧ proc ¹ proc2} is non-empty (since procC ∈ PR)
and contains an unique maximal element (since for B-cuts Max(proci) and
Max(procj) also ↓ (Max(proci) ∩ Max(procj)) defines an initial subprocess of
proc1 and proc2). This unique process is denoted by proc1⊓proc2. In the “union”
of two processes proc1 ∪ proc2 := (X1 ∪X2, Y1 ∪Y2, Z1 ∪Z2, φ1 ∪φ2) the elements
of proc1 ⊓ proc2 are identified by the naming convention. In this construction the
union φ1∪φ2 is understood as an union of the corresponding relations and is also
a well-defined map again. proc1 ∪ proc2 is not necessarily a process, however.

Let PR = {proci | proci = (Xi, Yi, Zi, φi), i ∈ I} be a finite set of
processes of EN . A process proc0 such that proci ¹ proc0 for all i ∈ I
is said to be an upper bound of PR. Then, with respect to the order ¹,
there exists a least upper bound (lub) ⊔(PR) of PR. Define the net union
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⋃
(PR) := (∪i∈IXi,∪i∈IYi,∪i∈IZi,∪i∈Iφi) by extending the union of processes

introduced above. Then PR has a lub iff
⋃

(PR) is a process of EN . In this case
⊔(PR) =

⋃
(PR).

Next we define the prolongation of a process by a transition occurrence. Let
procEN = (XB, YE, ZF , φ) be a process of the (contact free) EN system EN =
(B, E, F, C) and let e ∈ E be a transition, that has concession in the marking
m = φ(Max(procEN)). Then in {proc | proc ∈ PROC(EN), procEN ¹ proc}
there is a unique process having YE ∪ {y} as a set of transitions, where y /∈ YE

is a new element with φ(y) = e. The new element y is denoted by χ(procEN , e).
Its identifier is unique by the naming convention and has the form e.n for some
n ∈ IN. This process is the prolongation of procEN by e and is denoted by
procEN ◦ e. For any occurrence sequence w = e1e2 . . . ek ∈ F (EN) the process
proc(w) := procC ◦ e1 ◦ e2 ◦ . . . ◦ ek ∈ PROC(EN) is said to be the process
corresponding to w. (Recall that procC is the initial process of EN .) Vice versa,
w is obtained from proc(w) as w = φ(yi1)φ(yi2) . . . φ(yik) by choosing on the set
{y1, y2, . . . , yk} of transitions of proc(w) a total order yi1 , yi2 , . . . , yik , such that
yip < yiq implies p < q for all p, q ∈ {1, . . . , k}. The resulting total order is
denoted by yip <w yiq .
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