
Learning a Knowledge Base of Ontological

Concepts for High-Level Scene Interpretation

Johannes Hartz, Bernd Neumann

Cognitive Systems Laboratory

Department of Informatics

Hamburg University

{hartz, neumann}@informatik.uni-hamburg.de

July 9, 2007

1



Zusammenfassung

Ontologische Konzeptbeschreibungen von Aggregaten spielen eine
wesentliche Rolle bei modellbasierter Szeneninterpretation. Ein Ag-
gregat spezifiziert eine Objektmenge mit bestimmten Eigenschaften
und Beziehungen, die zusammengenommen ein bedeutungstragender
Bestandteil einer Szene sind. In diesem Bericht zeigen wir, wie Ag-
gregatkonzepte von Objekten mit räumlichen Beziehungen von posi-
tiven und negativen Beispielen erlernt werden können. Unser Ansatz
basiert auf dem von Mitchell ([1]) eingeführten Version Space Learning
und zeichnet sich durch eine ausdrucksstarke Repräsentationssprache
mit quantitativen sowie qualitativen Attributen und Relationen aus.
Anhand von Beispielen aus der Gebäudedomäne zeigen wir, dass Ag-
gregatkonzepte für Fensterreihen, Balkons und andere Strukturen in
der Tat anhand von annotierten Bildern gelernt und erfolgreich in der
konzeptuellen Wissensbasis eines Szeneninterpretationssystems einge-
setzt werden können. Darüber hinaus legen wir dar, dass unser Ansatz
verwendet werden kann um ontologische Konzepte jeder Art zu lernen,
mit sehr wenigen Einschränkungen.

2



Abstract

Ontological concept descriptions of scene objects and aggregates
play an essential role in model-based scene interpretation. An aggre-
gate specifies a set of objects with certain properties and relations
which together constitute a meaningful scene entity. In this paper
we show how ontological concept descriptions for spatially related ob-
jects and aggregates can be learnt from positive and negative exam-
ples. Our approach, based on Version Space Learning introduced by
Mitchell ([1]), features a rich representation language encompassing
quantitative and qualitative attributes and relations. Using examples
from the buildings domain, we show that aggregate concepts for win-
dow arrays, balconies and other structures can in fact be learnt from
annotated images and successfully employed in the conceptual knowl-
edge base of a scene interpretation system. Furthermore we argue
that our approach can be extended to cover ontological concepts of
any kind, with very few restrictions.

3



1 Introduction

In computer vision, growing interest in artificial cognitive systems has brought

about increased efforts to extend vision systems towards capabilities for high-

level vision or scene interpretation. These are terms commonly used for

vision tasks going beyond single-object recognition, such as inferring the

existence and location of occluded aggregate parts from already observed

ones. As explicated in [3], scene interpretation can be modelled formally as

a knowledge-based process. The burden of the interpretation process lies on

the conceptual descriptions, and the richer a domain, the more demanding

is the task of designing these descriptions. It is foreseeable that designing

knowledge bases for larger applications using a handcrafting approach will

be prohibitively costly and error-prone.

We therefore started to investigate supervised learning in the eTRIMS project,

with the belief that in the long run high-level vision can only be achieved by

leading the system through a supervised learning phase where the concepts

for a particular domain are acquired based on examples. Different from a

probabilistic approach (e.g. [4], [5], [6]), we chose the representation language

used in our scene interpretation system SCENIC [7], [20] which represents

variability in terms of ranges with crisp boundaries or enumeration of possible

values. Apart of the fact that this way we can evaluate the learnt concepts

by applying them to real-world scenes through the SCENIC system, this

approach also allows us to invoke and extend well-known learning methods

from symbolic AI.

Our approach is in the spirit of the seminal work of Winston [18] who showed

how spatial structures in the blocks-world could be learnt. We rephrase this

problem for a more general domain by using the Version Space Learning

framework.

Our main contributions are

• developing a description language for spatial object arrangements,

• applying the learning procedure to a concrete real-world domain, and

• evaluating the results in an operational scene interpretation system.

4



In the next section we present Mitchell’s Version Space Learning framework

and the basic types of our representation language. The language comprises

conventional symbolic descriptions as well as ranges of numerical values and

spatial relations designed to allow realistic concept descriptions. Section 3

deals with the problem of hypothesis selection which arises when several con-

cept descriptions correctly cover all positive and negative examples. This is

the rule rather than the exception in Version Space Learning. In Section

4 we argue that a comprehensive knowledge base of ontological concepts of

any kind can be learnt in a Version Space framework, given general-specific

orderable concept attributes and a finite set of concept relations. We also

introduce the term concept differentiation as a quality measure for a concep-

tual knowledge base and present an approach for learning maximally diverse

concepts. In Section 5 we present experimental results for the application

domain of building facades. Section 6, finally, presents conclusions and an

outlook on further work.

Figure 1: Annotated training image with four instances of aggregate ”En-
trance”

5



2 Version Space Learning of ontological con-

cepts

2.1 Learning Procedure

Version Space Learning ([1], [2]) is a framework for supervised concept learn-

ing, i.e. learning by means of positive and negative examples given by a

teacher. During the learning process, the space of possible concept hypothe-

ses V S is implicitly represented through an upper and a lower bound on the

generality of the hypotheses h ∈ V S. The General Boundary GB contains

all maximally general members of V S, the Specific Boundary SB contains

all maximally specific members of V S. GB and SB completely determine

V S as the set of hypotheses h being more-general-or-equal to an element of

SB and more-specific-or-equal to an element of GB.

Initially, GB includes all possible training examples and SB excludes all pos-

sible training examples. As a positive example e+ is presented, SB has to

be generalised to include e+. As a negative example e− is presented, GB

must be specialised to exclude e−. Both, generalisation and specialisation

steps, are chosen to be minimal in the sense that as few instances as pos-

sible besides e+ or e− are included or excluded, respectively. In contrast to

minimal generalisations, the minimal specialisation of a hypothesis h leads

to a set of hypotheses {h′, h′′, ...}, at least for non-trivial cases. For the sake

of compactness, more elaborated representation schemes ([8], [9], [10]) and

training procedures (([11], [12]) for Version Space Learning are omitted here.

Theoretic considerations for inductive concept learning can be found in [13].

The representation of the Version Space by the two boundaries, together with

an appropriate revision strategy, allows every hypothesis that is consistent

with the training data to be generated. Note, that what is required in order

to realise this type of representation is a concept language that constitutes

concepts which satisfy the properties of a concept lattice ([14]), i.e. a partial

general-specific ordering can be imposed on them.

For the application to the eTRIMS domain, annotated images of building fa-

cades are used as input for the learning process. In these images meaningful

6



scene objects have been segmented and labeled (Fig. 1). Scene aggregates

are specified solely through a set description of their parts.

For the actual training process we use a concept language with attribute

types presented in Section 2.2. To give an intuition of the nature of the

concept language beforehand, we present an abbreviated concept description

for the aggregate ”Entrance”, generalised from the four positive examples in

Fig. 1:

Size and configuration

Aggregate Width = [184..216] cm

Aggregate Height = [299..366] cm

Composition

Has-Parts = [3..4]
door = [1..1]
stairs = [1..1]
canopy = [0..1]
railing = [0..1]
sign = [0..1]

Symbolic attributes

Shape = { Quadratic }

Internal spatial relations

(stairs011) BelowNeighbourOf [0..2] (door012)

(door012) AboveNeighbourOf [0..2] (stairs011)

Table 1: Generalised aggregate description ”En-
trance”

2.2 Representation

In this section we describe the attribute types used to formulate concept

descriptions. We also specify generalisation and specialisation criteria which

can be used to determine their general-specific ordering (denoted ≤ and

≥). A methodology to compute minimal concept attribute generalisations

(denoted ↑) is presented, which is needed to extend attributes of concept hy-

7



potheses h ∈ SB to cover attribute values of positive examples e+
i . Speciali-

sation methods (denoted ↓) to exclude attribute values of negative examples

e−i from attributes in concept hypotheses h ∈ GB are also presented.

2.2.1 Symbol set type

The symbol set type describes disjunctive symbolic or discrete numerical

attribute values.

Example: Colour = {Red, Green, Blue}

• General-specific ordering of symbol sets S1 and S2 of disjoint symbols

{s1, s2, ...}:

– Iff S1 ⊇ S2: S1 ≥ S2

• Obtaining symbol set S3 from S1 ∈ h ↑ S2 ∈ e+:

S3 = S1 ∪ S2

• Obtaining symbol sets Si from S1 ∈ h ↓ S2 ∈ e−:

∀si ∈ S1 ∧ si ∈ S2 : Si = S1 \ {si}

2.2.2 Range type

The range type describes a convex range of metric attribute values. Special-

ized ranges can have (half) open boundaries due to the exclusion of discrete

values. Ranges can contain symbolic infinity values -INF and INF.

Example: Aggregate Height = [160..INF]

• General-specific ordering for ranges R1 = [l1..u1] and R2 = [l2..u2]:

– Iff R1 ⊇ R2: R1 ≥ R2

• Obtaining range R3 from R1 ∈ h ↑ R2 ∈ e+:

– Iff l2 < l1: R3 = [l2..u1]

– Iff u2 > u1: R3 = [l1..u2]

– Iff l2 < l1 ∧ u2 > u1: R3 = [l2..u2]

8



• Obtaining range R3 from R1 ∈ h ↓ R2 ∈ e−:

– Iff u1 > u2 ∧ l1 ≤ u2: R3 =]u2..u1]

– Iff l1 < l2 ∧ u1 ≥ l2: R3 = [l1..l2[

Note that theoretically the two cases of specialisation may be applicable at

the same time, but because the Version Space enforces all hi ∈ GB to be more

general than any hi ∈ SB, at most one of the two possible specialisations is

valid.

2.2.3 Composition type

The composition type describes

1. the number of aggregate parts by the range attribute N and

2. the different part types by the symbol set attribute TN and

3. the number of parts of each type by the subordinate range attributes T1..n

in TN .

N = [MAXi∈n(li) ≤ nl ≤ Σi∈n(li)..MINi∈n (ui) ≤ nu ≤ Σi∈n(ui)]
1

TN = {T1 = [l1..u1], T2 = [l2..u2],..., Tn = [ln..un]}

Example: Has − Parts = [3..6]
Triangle = [2..3]
Square = [1..3]

• General-specific ordering for compositions C1 and C2:

– Iff N1 ≥ N2 ∧ ∀Ti ∈ TN2 ≥ Ti ∈ TN1: C1 ≥ C2

To generalise the compositional properties of an aggregate, all ranges in the

composition can be treated individually.

• Obtaining composition C3 from C1 ∈ h ↑ C2 ∈ e+:

– N3 = N1 ↑ N2, TN3 = TN1,

∀Ti ∈ TN3 = Ti ∈ TN1 ↑ Ti ∈ TN2

1The actual values of nl and nu depend on preceding generalisation or specialisation
steps

1The actual values of nl and nu depend on preceding generalisation or specialisation
steps

9



When specialising the composition we have to consider dependencies between

the total number of parts and the number of parts per type explicitly.

• Obtaining C3 from N1 ∈ h ↓ N2 ∈ e− might lead to the same speciali-

sation step for subranges Ti in set TN3:

– Iff nu1 > nu2 ∧ nl1 ≤ nu2: N3 = ]nu2..nu1],

TN3 = TN1

– Iff nl1 < nl2 ∧ nu1 ≥ nl2: N3 = [nl1..nl2[,

TN3 = TN1, ∀Ti ∈ TN3: Ti = [li.. MIN(ui, nl2)[

• Obtaining C3 from Ti ∈ TN1 ∈ h ↓ Ti ∈ TN2 ∈ e− might lead to a

specialisation step of N3:

– Iff u1i > u2i ∧ l1i ≤ u2i:

N3 = [MAX(nl1, Σi∈n(l3i))..nu1],

TN3 = TN1, Ti ∈ TN3 = ]u2i..u1i]

– Iff l1i < l2i ∧ u1i ≥ l2i:

N3 = [nl1..MIN(nu1, Σi∈n(u3i))],

TN3 = TN1, Ti ∈ TN3 = [l1i..l2i[

2.2.4 Predicate type

The predicate type represents a freely definable n-ary boolean function over

part attribute values. Predicates p1..pn are organised in a set P .

Example: Predicates = {FuzzyEqual(Parts − Area)}

Note that since predicates constrain attribute values, they behave contrarily

to symbol sets!

• General-specific ordering for predicates in sets P1 and P2:

– Iff P1 ⊆ P2: P1 ≥ P2

• Obtaining predicate set P3 from P1 ∈ h ↑ P2 ∈ e+:

– P3 = P1 ∩ P2

10



• Obtaining predicate set P3 from P1 ∈ h ↓ P2 ∈ e−:

– ∀pi /∈ P2 : Pi = P1 + pi

2.2.5 Spatial relation type

Spatial relations are learnt between the parts of an aggregate and between the

aggregate and possible sourrounding entities, which might be scene objects

or other aggregates. To represent the spatial relation between two objects,

we employ an 8-neighbourhood to obtain a finite set of possible relations. For

this purpose the bounding box of an object induces the eight octants of its

neighbourhood: {Left, AboveLeft, Above, AboveRight, Right, BelowRight,

Below, BelowLeft}. To quantise spatial relations we use the Euclidean dis-

tance d between the related objects’ boundaries.

Example: SR = {(triangle003) Above [45..45] (Square012)}2

Each spatial relation is a 4-tuple. Spatial relations l1..ln are organized in a

set L and are treated like predicates.

li∈n = (object p1, relation r, object p2, range d)

L = {l1, l2, .., ln}

In general, for object p1 and relation type rj several relations li = (p1, rj, pi, di)

involving different objects pi may be possible. The relation minimising di is

called the neighbour relation. Neighbour relations are a specialisation of

spatial relations, hence spatial relations form their own general-specific hi-

erarchy. This hierarchy must be considered when performing generalisation

and specialisation steps on spatial relations.

• General-specific ordering for spatial relations in sets L1 and L2:

– Iff L1 ⊆ L2 ∧ ∀li ∈ L1 ≥ li ∈ L2 : L1 ≥ L2

• Obtaining spatial relation set L3 from L1 ∈ h ↑ L2 ∈ e+:

– L3 = L1 ∩ L2, ∀li ∈ L3 = li ∈ L1 ↑ li ∈ L2

2For a textual representation of spatial relations, arbitrary object indices are kept to
disambiguate relational structures

11



• Obtaining spatial relation set L3 from L1 ∈ h ↓ L2 ∈ e−:

– L3 = L1, ∀li ∈ L3 = li ∈ L1 ↓ li ∈ L2

– ∀li /∈ L2 : L3 = L1 + li, di = [0..INF]3

Note that the particular spatial relation type presented here is just one ex-

ample of how to impose a symbolic relation. Any other finite set of symbolic

relations could be treated accordingly. The spatial relation type includes a

range attribute to represent the parts distance. In general, a relation can

be enhanced with concept attributes of any type, however the specialization

methodology needs to be enhanced then, too.

2.3 Dependencies between attributes

After adopting the above attribute types to constitute our concept language

we have to consider dependencies between certain attribute types. Obviously

the spatial relation attribute depends not only on the presence of a certain

spatial relation, but primary on the presence of the parts forming the rela-

tion. Thus we have to keep in mind that if we specialize spatial relations we

also have to specialize possible composition attributes to keep the resulting

concept description coherent, i.e. we have to demand a part to be present

if we introduce a spatial relation containing it (otherwise the partonomy at-

tribute type would dominate the spatial relation attribute type).

In addition to the above dependency which is inherent in our selection of

attribute types, one might introduce attributes of the above types which are

also dependant on each other. A simple example would be introducing a

range w for the width and h for the height of an object. If we now introduce

a predicate c testing if h = 2 ∗ w holds, we have a dependency between c

and w and h. As long as the dependency is based on a monotonous relation

between the attributes (as in the above case) resulting concept descriptions

will always be coherent. If we allow predicates imposing non-monotonous

relations between attributes we need to track this dependency manually and

3The range is opened maximally to satisfy the requirement for minimal specialisation

12



update dependant predicates if we generalize or specialize attributes on which

they depend.

3 Hypothesis selection

After the learning process has been conducted, the boundary sets SB and

GB contain the minimally and the maximally generalised concept hypotheses

over all training examples. The space of applicable hypotheses V S covers

these two boundary sets and the space in between them. In principle, one

could use any member of V S as a classifier. To use the whole V S as a

classifier, one could employ a voting scheme.

For high-level scene interpretation, however, we are interested in a concise

concept description which can be included in the conceptual knowledge base.

To achieve this, we have to define additional criteria by which to select a

concept description.

3.1 Learning objective

Assuming a set of positive and negative examples as training data we propose

the following learning objective:

For a given set of training examples we want to learn a defined concept
description with the most specific representation of attributes descriminat-
ing positive from negative examples, and the most general representation
of all others.

3.2 Selection methods

Trivially, every hypothesis hi ∈ GB satisfies our learning objective. If the

set GB has converged to one concept hypothesis, this hypothesis is chosen as

concept description for the knowledge base. If GB contains multiple concepts

(which is likely considering [15]), we need a selection method to choose a

concept hypothesis from GB. But since the hypotheses h ∈ GB cannot be

ordered in a general-specific manner, there is no preference measure to choose

13



a concept hypothesis that can be derived from our learning objective. Several

approaches can be considered to overcome this selection problem:

1. A concept hypothesis can be chosen randomly from GB, as proposed

in [16], [17].

2. The minimum amount of attribute specialization can be considered to

be the selection criterion. This criterion is not applicable for concept

languages with a mixture of symbolic and metric attribute types, be-

cause these types cannot be compared with regard to the amount of

specialisation.

3. The logical conjunction of all hi ∈ GB yields a single hypothesis hc.

Hypothesis hc is the most general concept hypothesis excluding nega-

tive examples through all discriminating attributes. Hypothesis hc is

defined for any state of GB, hence it can be chosen as concept hypoth-

esis.

Since every form of hypothesis selection is in fact a form of biasing, we

consider the last approach to be the soundest, because it emphasises all

attributes that have been used to discriminate negative examples. Approach

1. and 2. (if applicable) lead to an arbitrary selection of discriminating

attributes. A refinement of the selected concept is possible for all above

approaches via feedback learning as presented in Section 5.4.

4 Building a Knowledge Base of Ontological

Concepts

An ontological concept consists of concept attributes and relations to other

concepts. Concept attributes can be represented as shown in 2.2 - more

elaborated attribute types can also be employed, as long as a general-specific

ordering can be imposed. Basic relations between ontological concepts are

compositional relations and taxonomical relations. The composition of con-

cepts is learnt as presented in 2.2.3. Taxonomical relations between con-

cepts can be inferred after learning by applying the general-specific ordering

14



methodology to concepts. Further symbolic relations between concepts can

be represented and learnt analogous to the spatial relation type presented in

2.2.5. Any symbolic relation can be enriched with further attribute types as

mentioned above.

So far, we have considered learning and hypothesis selection with the goal

of establishing individual concept descriptions. For scene interpretation and

many other applications, however, we want to learn a comprehensive knowl-

edge base of ontological concepts. Since our learning approach covers all

properties of individual ontological concepts, learning a set of concepts of

this type yields a comprehensive knowledge base of concepts with a multitude

of possible relations between them. This knowledge base can be exploited

through any form of ontology reasoning, which is typically performed using

description logics and a constraint system solver.

For our application to the eTRIMS domain, the learnt concepts in the knowl-

edge base are related compositionally, taxonomically and through spatial

relations (Table 2). An additional composition attribute is kept to trace

transitive compositional relations (e.g. object o1 is part of o3 through be-

ing part of o2), which simplifies interpretation. The interpretation process is

performed by the SCENIC system.

A basic property of ontological concepts in a knowledge base is disjointness.

To test two concepts for disjointness one can simply construct the logical con-

junction of these concepts and check the resulting concept for consistency.

If the resulting concept description is inconsistent, the basic concepts are

disjoint. Disjointness of concepts is important for our approach to concept

differentiation, which is presented in the next section.

4.1 Concept differentiation

Learnt concept descriptions must be evaluated with respect to existing con-

cepts. Intuitively, we want to make sure that the conceptual descriptions in

the knowledge base do not only reflect arbitrarily chosen positive and neg-

ative examples but are also constructed to differentiate between each other.

We call this quality criterion concept differentiation.

15



Fortunately, the concept learning process can be controlled to yield a knowl-

edge base of maximally differentiated concepts by selecting training examples

in a prudent way. Note that positive examples represent information about

intra-concept similarities, whereas negative examples represent information

about inter-concept differentiation. Hence to achieve a set of maximally dif-

ferentiated concept descriptions, one can employ all positive examples of a

given concept as negative examples for all other disjoint concepts. Further-

more one can employ any given ontological concept as negative example for

any other disjoint ontological concept.4 Since the learning objective presented

above leads us to a selection of a concept hypothesis from the boundary set

GB, all inter-concept discriminating attributes introduced through these neg-

ative examples will be represented in the selected concept hypothesis. This

provides a theoretic foundation for learning a knowledge base of maximally

differentiated concept descriptions.

5 Experimental results

5.1 Application to eTRIMS domain

In the context of the eTRIMs project, the concept learning approach pre-

sented here has been applied to the domain of terrestrial views of building

facades. Typical aggregates of this domain are window arrays (consisting

of aligned and regularly spaced windows as parts), balconies (consisting of

railing, door and optional windows) or entrances (consisting of a door, stairs

and ground).

To conduct the actual training sequence, positive learning examples are ex-

tracted from annotated pictures directly. An enriched instance description

of the positive example is generated from the information contained in the

annotation of the aggregate parts.

We automatically generate negative examples from annotated pictures by

selecting random sets of parts. To be precise, we select a negative example

N as any set of annotated objects that is not a subset or equal to a positive

4A formal description of specialization through concepts is omitted, but very similar
to specialization through examples (2.2)

16



example P in the same picture. This requires, of course, that positive ex-

amples are annotated to their maximal extent. Following Winston’s insight

about ”near-miss” examples [18], one can assume a negative example N to

be most useful if it differs from a positive example P as little as possible.

Hence an ideal negative example differs from a positive example only in one

discriminating attribute. This kind of negative example leads to the genera-

tion of a most general concept description which is only specialised to exclude

the attribute value of the discriminating attribute in the negative example.

A straight-forward approach to generate negative examples with near-miss

properties is to define a distance metric d for N and P , to randomly generate

possible training examples N1..Nn and finally choose the examples minimiz-

ing d. This approach is computationally inexpensive as the distance measure

from Ni to P is available at nearly no cost (compared to the training proce-

dure). Hence a large number of negative examples can be evaluated for their

near-miss properties.

For a typical training sequence, about 10 to 15 positive examples are used.

Since negative examples have stronger concept differentiation qualities, we

apply about 100 to 300, keeping a ratio between positive and negative exam-

ples of 1/10 to 1/20.

5.2 Example concept

As an example result of the learning process we present the General Boundary

conjunction hypothesis for the aggregate ”Window Array”, learnt from 13

annotated positive examples and 260 generated negative examples:

Size and configuration

Aggregate Width = ]549..INF] cm

Aggregate Height = [0..208[ cm

Parts Width = [0..INF] cm

Parts Height = [0..INF] cm

Parts Top-Left-X Variance = ]131..INF] cm

Parts Top-Left-Y Variance = [0..33[ cm

Parts Bottom-Right-X Variance = ]115..INF] cm

Parts Bottom-Right-Y Variance = [0..9[ cm

17



Composition

Has-Parts = [3..INF]

window = [3..INF]

door = [0..0]

Part-Of = [1..1]

facade = [0..1]

roof = [0..1]

Symbolic attributes

Shape = { Protracted-X }

Attribute predicates

Fuzzy-Equal (top-left-y)

Fuzzy-Equal (bottom-right-y)

Fuzzy-Equal (parts-height)

Fuzzy-Equal (parts-distance-x)

Value-Equal (parts-type)

Internal spatial relations

(window000) LeftNeighbourOf [132..324] cm (window001)

(window000) LeftOf [339..649] cm (window002)

(window001) LeftNeighbourOf [206..325] cm (window002)

(window001) RightNeighbourOf [132..324] cm (window000)

(window002) RightNeighbourOf [206..325] cm (window001)

(window002) RightOf [339..649] cm (window000)

External spatial relations

(concept013) BelowOf [44..1865] cm (sky020)

(sky020) AboveOf [44..1865] cm (concept013)

Table 2: Learnt aggregate description ”Window Ar-
ray”

5.3 Evaluation

A simple kind of evaluation is to test learnt concepts on instances from anno-

tated images which have not been used for training (Table 3). This method

evaluates how many false negative detections occur. An evaluation of false

18



Aggregate Instances Detections Success Ratio

”window array” 18 18 1

”balcony” 14 13 0.93

”entrance” 9 7 0.78

Table 3: Preliminary evaluation results

positive detections is not possible this way, but will be performed on anno-

tated instances of disjoint concepts.

Ontological concepts can also be evaluated using the interpretation facil-

ities of the SCENIC system. The scene interpretation process is based on

the hypothesise-and-test paradigm. Hypotheses are posed mainly through

part-whole-reasoning, which emphasises the role of conceptual aggregate de-

scriptions. Fig. 2 shows the result of an interpretation process applying

the learnt concept description in Table 2 to an image, where scene objects

have been automatically detected ([19], [20]). The interpretation system tries

to interpret the scene by finding object aggregations based on the detected

scene objects and the ontological aggregate descriptions in the knowledge

base. SCENIC infers four instances of the window array concept and poses

four additional window hypotheses:

Figure 2: Detected scene objects and SCENIC interpretation result

19



5.4 Feedback learning

Refinement of learnt concepts is possible through an interpretation process

applying them to annotated pictures which have not been used for training.

The results of the interpretation process are automatically evaluated against

the ground truth given by the annotation.

There are two possible cases of misinterpretation:

• An annotated instance of the concept to be evaluated is not recognised.

• A set of annotated objects is wrongly interpreted as an instance of the

aggregate concept to be evaluated.

Both cases may lead to an automatic feedback learning step. In the case

of false negative recognition (i.e. an annotated instance is not recognized

based on the learnt concept), the learnt concept description is too specific.

As a feedback step, the unrecognised aggregate instance is introduced to the

learning module as a positive example, generalising the learnt concept de-

scription. In the case of false positive recognition (i.e. a set of annotated

objects is wrongly interpreted as an instance of the evaluated concept), the

learnt concept description is too general. As a feedback step, this set of

annotated objects is introduced to the learning module as a negative ex-

ample, specialising the learnt concept description. For both cases another

misclassification of this instance becomes impossible, regardless which con-

cept hypothesis is chosen from V S after feedback learning.

6 Conclusions

We have shown that conceptual descriptions for real-world knowledge-based

scene interpretation can be obtained by Version Space Learning. A concept

description language has been presented which allows to express quantita-

tive as well as qualitative attributes and relations suitable for the descrip-

tions of ontological concepts. Novel results also pertain to concept selection

and concept differentiation for a conceptual knowledge base. Version Space

20



Learning can be used to obtain maximally differentiated concepts. The suc-

cess of learning has been demonstrated by scene interpretation experiments

employing the learnt concepts. By making use of annotated images, an au-

tomatic feedback learning cycle can be entered where wrong interpretations

serve as correcting examples. An extended evaluation using a database of

several hundred annotated facade images will be carried out soon.

Version Space Learning is attractive for stepwise extension and refinement

of conceptual knowledge bases because individual examples count and mis-

takes can be easily corrected by feedback learning. As a drawback, standard

Version Space Learning is highly sensitive to bad teaching. A single incon-

sistent example, wrongly annotated as positive or negative, may cause the

version space to collapse. Methods for extending Version Space Learning to

cope with noisy data are known in the literature (e.g. [9], [11]), and will be

exploited for our concept learning approach.

We consider learning the aggregate storey as a future effort, which yields

a machine learnt concept description very similar to a basic component of

human scene interpretation in this domain. An interesting topic for further

research is to use the knowledge about near-miss properties of negative exam-

ples to derive an approach to Active Learning. If a model of best near-miss

examples can be generated from a given concept description, the learner

will be able to actively choose appropriate negative examples to learn a

most discriminating concept description. In fact, the learner will transfer his

knowledge about intra-concept similarity to derive a model for inter-concept

discrimination.

References

[1] T.M. Mitchell, ”Version spaces: A candidate elimination approach for

rule learning”, Proc. of the International Joint Conference on Artificial

Intelligence, pp. 305–310, 1977.

[2] T.M. Mitchell, ”Version Spaces: An Approach to Concept Learning”,

PhD thesis, Stanford University, Cambridge, MA, 1978.

21



[3] B, Neumann, ”A Conceptual Framework for High-level Vision”, Technical

report FBI-HH-B-241/02, Universität Hamburg, 2002.

[4] K. Sage, J. Howell, H. Buxton, ”Recognition of Action”, Activity

and Behaviour in the ActIPret Project, Künstliche Intelligenz, 2/2005,

BöttcherIT Verlag, Bremen, pp. 30–33.

[5] K. Murphy, A. Torralba, and W. T. Freeman, ”Using the forest to see the

trees: A graphical model relating features, objects, and scenes”, Proc. of

Neural Information Processing Systems, 2003.

[6] M. Boutell, J. Luo, ”Scene parsing using region-based generative models”,

IEEE Transactions on Multimedia 9(1), pp. 136-146, 2007.

[7] L. Hotz, B. Neumann, ”Scene Interpretation as a Configuration Task”,

Künstliche Intelligenz, 3/2005, BöttcherIT Verlag, Bremen, pp. 59–65.

[8] H. Hirsh, ”Polynomial-Time Learning with Version Spaces”, National

Conference on Artificial Intelligence, pp. 117–122, 1992.

[9] H. Hirsh, N. Mishra, L. Pitt, ”Version Spaces without boundary sets”,

Proc. AAAI-97, pp. 491-496, 1997.

[10] M. Sebag, ”Using Constraints to Building Version Spaces”, Proc. of the

7th European Conference on Machine Learning, pp. 257-271, 1994.

[11] T.-P. Hong, S.-S. Tseng, ”A Generalized Version Space Learning Algo-

rithm for Noisy and Uncertain Data”, IEEE Transactions on Knowledge

And Data Engineering, Vol. 9, No. 2, 1997.

[12] L. De Raedt, S. Kramer, ”The Levelwise Version Space Algorithm and

its Application to Molecular Fragment Finding”, Proc. of the Interna-

tional Joint Conference on Artificial Intelligence, pp. 853–862, 2001.

[13] R.S. Michalski, ”A Theory and Methodology of Inductive Learning”,

Machine Learning - An Artificial Intelligence Approach, pp. 83–143, 1983.

22



[14] B. Ganter, R. Wille, ”Formal Concept Analysis - Mathematical Foun-

dations”, Springer Verlag, 1999.

[15] D. Haussler, ”Quantifying inductive bias: AI learning algorithms and

Valiant’s learning framework”, Artificial Intelligence 36, pp. 177–221,

1988.

[16] S.W. Norton, H. Hirsh, ”Classifier learning from noisy data as reason-

ing under uncertainty”, Proc. of the National Conference on Artificial

Intelligence, 1992.

[17] S.W. Norton, H. Hirsh, ”Learning DNF via probabilistic evidence combi-

nation”, Machine Learning: Proc. of the Seventh Internation Conference,

1990.

[18] P.H. Winston, ”Learning structural descriptions from examples”, The

psychology of computer vision, pp. 157–209, 1975.

[19] J. Šochman, J. Matas, ”WaldBoost - Learning for Time Constrained

Sequential Detection”, Proc. of the Conference on Computer Vision and

Pattern Recognition, pp. 150–157, 2005.

[20] L. Hotz, B. Neumann, K. Terzic, J. Šochman, ”Feedback between Low-

Level and High-Level Image Processing”, eTRIMS Project Deliverable

D2.4, 2007.

23


