
Universität Hamburg
 Department Informatik
 Vogt-Kölln-Str. 30
 D-22527 Hamburg

Bericht 290

Proceedings of the Fourth
International Workshop on
Modelling of Objects,
Components and Agents
MOCA´09

FBI-HH-B-290/09

 Editors:
 Michael Duvigneau
 Daniel Moldt

 Universität Hamburg
 Department Informatik

 In die Reihe der Berichte des Fachbereichs
 Informatik aufgenommen durch
 Prof. Dr. R. Valk
 Prof. Dr. W. Lamersdorf

 September 2009

Abstract
This report contains the proceedings of the fifth International Workshop on Mod-
elling of Objects, Components and Agents (MOCA’09) that took place in Ham-
burg, Germany on September 11, 2009. Modelling is the central task in informat-
ics. Objects, components, and agents are fundamental units to organise models.
The workshop comprises a wide variety of contributions that address all rela-
tions between theoretical foundations of models on the one hand and objects,
components, and agents on the other hand with respect to modelling in general.

Zusammenfassung
Dieser Bericht enthält die Proceedings des fünften internationalen Workshops
über das Modellieren von Objekten, Komponenten und Agenten (MOCA’09),
der am 11. September 2009 in Hamburg stattfand. Objekte, Komponenten und
Agenten sind fundamentale Einheiten von Modellen. Der Workshop umfasst ein
breites Spektrum an Beiträgen, welche alle Beziehungen zwischen theoretischen
Grundlagen von Modellen auf der einen Seite und Objekten, Komponenten und
Agenten auf der anderen Seite im generellen Zusammenhang des Modellierens
angehen.

iii

Editors: Michael Duvigneau and
Daniel Moldt

Proceedings of the Fifth
International Workshop on

M odelling of
O bjects
C omponents and
A gents

MOCA’09

University of Hamburg
Department of Informatics

vi

Preface

This booklet contains the proceedings of the International Workshop on Mod-
elling of Objects, Components and Agents (MOCA’09) in Hamburg, Germany,
September 11, 2009. It is a co-located events of MATES 2009, the seventh
German conference on Multi-Agent System Technologies and CLIMA-X 2009
the tenth international workshop on Computational Logic in Multi-Agent Sys-
tems.

More information about the workshop, like online-proceedings, can be
found at

http://www.informatik.uni-hamburg.de/TGI/events/moca09/

Modelling is the central task in informatics. Models are used to capture, anal-
yse, understand, discuss, evaluate, specify, design, simulate, validate, test, ver-
ify and implement systems. Modelling needs an adequate repertoire of con-
cepts, formalisms, languages, techniques and tools. This enables addressing
distributed, concurrent and complex systems.

Objects, components, and agents are fundamental units to organise mod-
els. They are also fundamental concepts of the modelling process. Even though
software engineers intensively use models based on these fundamental units,
and models are the subjects of theoretical research, the relations and potential
mutual enhancements between theoretical and practical models have not been
sufficiently investigated. There is still the need for better modelling languages,
standards and tools. Important research areas are for example UML, BPEL,
Petri nets, process algebras, or different kinds of logics. Application areas like
business processes, (Web) services, production processes, organisation of sys-
tems, communication, cooperation, cooperation, ubiquity, mobility etc. will
support the domain dependent modelling perspectives.

Therefore, the workshop addresses all relations between theoretical foun-
dations of models on the one hand and objects, components, and agents on
the other hand with respect to modelling in general. The intention is to gather
research and application directions to have a lively mutual exchange of ideas,
knowledge, viewpoints, and experiences.

The multiple perspectives on modelling and models in informatics are most
welcome, since the presentation of them will lead to intensive discussions. Also
the way objects, components, and agents are use to build architectures / gen-
eral system structures and executing units / general system behaviours will
provide new ideas for other areas. Therefore, we invited a wide variety of
contributions, which were reviewed by an international programme commi-
tee, which was supported by several other international experts, resulting in
at least four reviews per submitted paper. The programme commitee mem-

vii

bers reflect important areas and perspectives for the Modelling of Objects,
Components, and Agents (MOCA).

The program committee consists of:

Bernhard Bauer (Germany) Olivier Boissier (France)
Rafael Bordini (Brazil) Piotr Chrzastowski-Wachtel (Poland)
Jose-Manuel Colom (Spain) Mehdi Dastani (The Netherlands)
Jörg Desel (Germany) Michael Duvigneau (Germany) (Chair)
Torsten Eymann (Germany) Berndt Farwer (UK)
Jorge C. A. de Figueiredo (Brasil) Guy Gallasch (Australia)
Paolo Giogini (Italy) Esther Guerra (Spain)
Xudong He (USA) Vincent Hilaire (France)
Koen Hindriks (The Netherlands) Benjamin Hirsch (Germany)
Astrid Kiehn (India) Franziska Klügl (Sweden)
Radek Koci (Czech Republic) Michael Köhler-Bußmeier (Germany)
Johan Lilius (Finland) Daniel Moldt (Germany) (Chair)
Andrea Omicini (Italy) Pascal Poizat (France)
Birna van Riemsdijk (The Netherlands) Heiko Rölke (Germany)
Yann Secq (France) Alexei Sharpanskykh (The Netherlands)
Mark-Oliver Stehr (USA) Harald Störrle (Germany)
Catherine Tessier (France) Rainer Unland (Germany)
Michael Wahler (Switzerland) Danny Weyns (The Netherlands)
Manuel Wimmer (Austria) Christian Zirpins (Germany)

We received 13 high-quality contributions. The program committee has ac-
cepted six of them for full presentation. Furthermore the committee accepted
three papers as short presentations.

The international program committee was supported by the valued work of
Tina Balke as an additional reviewer. Her work is highly appreciated.

Furthermore, we would like to thank the organizational team of VSIS in Ham-
burg for their general organizational support.

Without the enormous efforts of authors, reviewers, PC members and the orga-
nizational teams this workshop wouldn’t provide such an interesting booklet.

Thanks!

Michael Duvigneau and Daniel Moldt
Hamburg, September 2009

PS: This is the second edition of the workshop proceedings. It includes
changes to the ACTAS paper that reached us too late for inclusion in the
original printed edition of the proceedings. Furthermore, the document now
includes navigation facilities for electronic publication.

viii

Contents

Part I Invited Talk

Modelling and Verification of Resource-Bounded Multi-Agent
Systems
Berndt Farwer . 3

Part II Full Presentations

Visual Representation of Mobile Agents
Lawrence Cabac, Daniel Moldt, Matthias Wester-Ebbinghaus and Eva
Müller . 7

A Centralized Petri Net- and Agent-based Workflow
Management System
Thomas Wagner . 29

Identifying the structure of a narrative via an agent-based
logic of preferences and beliefs: Formalizations of episodes
from CSI: Crime Scene Investigation
Benedikt Löwe, Eric Pacuit and Sanchit Saraf . 45

A Petri Net based Prototype for MAS Organisation
Middleware
Michael Köhler-Bußmeier and Matthias Wester-Ebbinghaus 65

Generalized Hypernets and their Semantics
Marco Mascheroni . 87

Nets in nets with SNAKES
Franck Pommereau . 107

Part III Short Presentations

From Service-Oriented Architecture via Coloured Petri Nets
to Java Code
Zheng Liu and Kees van Hee . 129

-ACTAS- Adaptive Composition and Trading Based on
Agents
Reinhold Kloos, Rainer Unland and Cherif Branki . 151

On Time in Games
Rustam Tagiew and Heinrich Jasper . 173

x

Part I

Invited Talk

Modelling and Verification of
Resource-Bounded Multi-Agent Systems

Berndt Farwer

Durham University
School of Engineering and Computing Sciences

South Road, Durham DH1 3LE, UK
berndt.farwer@durham.ac.uk

Abstract. We survey approaches to multi-agent systems’ specification
and verification. In real-world systems, the notions of resource and loca-
tion represent important constraints that need to be considered at both
the specification level and the verification level. When applying model-
checking techniques to multi-agent systems or programs, properties are
usually formalised in a modal logic language. We argue that it is im-
perative to introduce a native concept of resource into such property
specification languages.

Part II

Full Presentations

Visual Representation of Mobile Agents
Modeling Mobility within the Prototype Mapa

Lawrence Cabac, Daniel Moldt, Eva Müller, Matthias Wester-Ebbinghaus

University of Hamburg
Faculty of Mathematics, Informatics and Natural Sciences

Department of Informatics
http://www.informatik.uni-hamburg.de/TGI/

Abstract. Mobile agents in dynamic and open systems are still a chal-
lenge, not only within the process of developing mobile agents but also in
integrating these in multi-agent systems. Graphical modeling facilitates
the development of mobile and concurrent agents within a multi-agent
system.
This paper picks up the approach of modeling mobility by the use of ref-
erence nets as a high-level Petri net. Hence, these are chosen as the formal
basic principle, which incorporates the “nets within nets” paradigm as a
suitable framework for mobility. Furthermore, this paper introduces the
prototype of the framework Mapa – an architecture for multi-agent sys-
tems supporting mobility and its visualization.
The underlying formal principles are depicted by an extended household
robot system, introduced in [14]. The enhancement of this case study
is based upon and accompanied by Mapa. Mapa not only provides a
visual representation of (mobile) agents but also a routing agent, which
computes routes between connected platforms. In addition, Mapa allows
the use of two tools, namely MulanViewer and Sniffer. The MulanViewer
allows the user to keep track of the primary reference nets and the Sniffer
tool logs the message flow during run-time.

Key words: mobility, agent, multi-agent system, reference net, Petri
net, routing agent

1 Introduction

Talking about multi-agent systems means talking about topics such as agent,
concurrency, mobility, distributed systems, communication or autonomy, to name
just a few examples. Any of these keywords correlate in a certain manner. Due
to the fact that this paper focuses on mobility and its visualization within the
context of open multi-agent systems, the particular emphasis is placed on mo-
bility, communication and agent.
We conceptualize the use of the term agent by taking Wooldridge’s definition:
“An agent is a computer system that is situated in some environment and that
is capable of autonomous action in this environment in order to meet its design
objectives. ”[25, p. 29]

As a start, we conceive a multi-agent system as a representation of social and/or
geographical structures. In general, the environment, e.g. an area or room, repre-
sents the agent platform where agents may reside. For the first time, the Founda-
tion for Intelligent Physical Agents (FIPA) standardized the term agent platform
in 2002. The aim was to ensure the interoperability between applications which
were developed independently. The current standard of 2004 defines: “An Agent
Platform (AP) provides the physical infrastructure in which agents can be de-
ployed. The AP consists of the machine(s), operating system, agent support
software, FIPA agent management components (DF1, AMS2 and MTS3) and
agents.” [10, cf. document SC00023K]
To understand the meanings as well as the constraints of (the visual representa-
tion of) mobility within multi-agent systems, an examination of the underlying
concepts and formalisms is necessary.
The prototype of a multi-agent system framework that we present in this paper
uses reference nets [16] as the underlying modeling and implementation tech-
nique. Reference nets are particularly suitable since they carry forward the “nets
within nets” paradigm of Valk [12] and for that reason are able to implement
multi-agent systems as defined by the Mulan-reference model [13]. As a matter
of course, the migration of an agent between platforms in a multi-agent system
characterizes mobility. Even though, we consider not only the migration of an
agent but also the transmission of any entity4 between agents in the context of
the Mulan-reference model as mobility.
The here presented prototype supports the visual representation of (migrating)
agents and bears the name Mapa (Mobile Agent Platform Architecture). For
this, we restructure the already developed framework of a multi-agent system,
namely Capa [8], concerning the support of agent visualization. The idea of
developing such a prototype arose from the examination of the conceptual and
prototypical addressing of mobility in [14]. Herein, the visual representation of
mobility was dealt with. However, Mapa perceives itself as a consolidation of
previous ideas. We aim to visualize (mobile) agents from top to bottom of the
Mulan-reference model, i.e. the multi-agent system, the platforms as well as the
agents residing on the platform and to provide flexibility with respect to future
applications using Mapa as much as possible.
Structure of the paper. In Section 2 we present the main concepts. First of all,
we give a short introduction to the formalism of reference nets. Subsequently,
we describe the reference architecture Mulan and its implementation Capa. Fi-
nally, we state the use of the term mobility relating to this paper. The case-study
of a mobile household robot, which was introduced in [14], will be outlined and
discussed in Section 3. The results are carried forward to some requirements for
the prototype Mapa, we specify in Section 4. Further on, we outline the main
features of our prototype. Afterwards, we join and illustrate the results of the

1 Abbreviation of Directory Facilitator.
2 Abbreviation of Agent Management System.
3 Abbreviation of Message Transport Service.
4 Hence, entities are (for example) messages, artifacts or resources.

8 MOCA’09 – Modelling of Objects, Components and Agents

previous sections by a modified version of the case-study of a mobile household
robot using Mapa. Section 5 discusses related work. We close this paper with
Section 6. Herein, we summarize the achievements and give an outlook on further
work.

2 Basic Principles

The modeling as well as the visual representation of (mobile) agents requires a
formalism in order to provide some kind of graphical representation of the used
entities. Also, it has to support complex, concurrent processes. In addition, the
incorporation of the “nets within nets” paradigm is necessary in order to model
hierarchical structures as specified in the Mulan architecture.

Reference nets. The formalism of reference nets offers some interesting and
useful features of which the framework Mapa takes advantage. The extensions
regarding (colored) Petri nets5 are the creation of net instances during run-time,
the incorporation of the “nets within nets” paradigm and the possibility to com-
municate through synchronized channels. For that reason, reference nets are a
special kind of colored Petri nets and provide serveral advantageous graphical
notation in order to visualize mobility.
The “nets within nets” paradigm formalizes the modeling of tokens as any kind
of data type or net [23]. So, the token of a Petri net arises from a usual black
token to an (active) entity, which may dynamically act itself or even represent
a Petri net. This fact enables the modeling of the hierarchical structures of a
multi-agent system via reference nets. Thus, entities may be Petri nets, which
reside in another Petri net as tokens and therefore also describe the marking of
this Petri net.

Due to the above mentioned features, reference nets are object-based and exe-
cutable by the simulation engine Renew [17]. Within reference nets, tokens may
represent references to other entities6. If the referenced entity is a net itself, it
is possible that more than one token references this entity, regardless of which
net the token belongs to. For this reason, a dynamical composition is possible
during run-time. In this regard, one may also refer to nets as system-net and
object-net. The system-net contains the token, which references the object-net.
One can also say that the object-net resides within the system-net. If the object-
net holds a reference to another net by a token in turn, the denotation is up
to the users point of view. Obviously, this relationship between system-net and
object-net refers back to the “nets within nets” paradigm in turn.

Mulan – Multi Agent Nets. The framework Mulan was presented in [13] and
is an implementation of the Mulan-reference model by means of reference nets
5 We assume that (colored) Petri nets are well-known. See also [19,11,15].
6 These entities are control flow token, data types or nets, for instance.

Cabac et al.: Visual representation of mobile agents 9

Fig. 1. Agent system as nets within nets

. Mulan establishes the basic principle of the presented agent platform Mapa
due to the fact that Mulan is a multi-agent system and incorporates the “nets
within nets” paradigm. Therefore, it provides the possibility to model the hier-
archical structures of the Mulan-reference model, which is depicted in Figure 1.
As mentioned above, each box in Figure 1 “describes one level of abstraction in
terms of a system net” [14, p. 128]. As well, each system-net accommodates an
object-net. This relationship is represented by the dashed ZOOM arrows. Even
though Figure 1 constitutes the Mulan-reference model, it is also a simplified
version of the framework Mulan, which is executable if all inscriptions and
synchronous channels are replenished. The Multi-Agent System net is capable
of storing Agent Platform nets as tokens in given places. The transition Com-
munication Structure as well as the transition Mobility Structure establish the
infrastructure of the multi-agent system in terms of the direct communication
between agents residing on a platform. However, the given Multi-Agent System
net exemplifies communication structures and is not implemented in Mulan.
The token on place Platform3 in the Multi-Agent System net is described in
more detail in the Agent Platform net. By zooming into this token, the gen-
eral structure is made observable. The place Agents stores the agents, which
are actually residing on this platform. New agents are created by the transition

10 MOCA’09 – Modelling of Objects, Components and Agents

New and destroyed by the transition Destroy. As well, agents are migrate onto
this platform or leave the platform by the transitions Receive Agent and Send
Agent. The communication between two agents on the same platform is realized
by the transition Internal Communication. The overall platform communication
between two agents on different platforms is provided by the transition External
communication. The structure of an agent or rather its agent net becomes visible
by zooming into the token on the place Agents. The agent is able to commu-
nicate with other agents by the transitions Receive and Send. The intelligent
and autonomous behavior of an agent is modeled by the place Knowledge Base
and the transitions Reactive and Proactive. These two transitions have access to
protocol templates on the place Protocols, which are as well nets and model the
behavior of the agents. These protocols are instantiated by the two transitions
Reactive and Proactive as a result of an incoming message. The instantiated
protocol nets are stored in the place Protocol Instances / Conversations and
are part of an ongoing conversation. The protocol instance can be inspected by
zooming into its token on the place Protocol Instances / Conversations. The
exemplified structure of a protocol instance is given in the net Protocol.

A more detailed description of the four layers, which cover representations of
the multi-agent system, platforms, agents and protocols (agent internals), can
be found in [13,20]. Mulan uses reference nets to implement these hierarchical
structures. According to this, the internal communication structure of Mulan is
modeled as a net, too. Unfortunately, this implementation results in an overall
platform communication, which requires the very same simulation engine for any
participating platform [13]. This lack of interoperability between participating
remote platforms led to the development of Capa.

Capa – Concurrent Agent Platform Architecture. Capa [8] is a Java
and Petri net based implementation of the framework Mulan. Capa enables
an overall platform communication beyond used simulation engines, i.e. par-
ticipating agents neither have to use the same simulation engine nor the same
framework. For that purpose, Mulan’s conceptional platform net was enlarged
as a FIPA-compatible implementation. During the design and implementation
process, the most important aspect was to facilitate a high grade of concurrency.
Capa is composed of the platform Capa and the agents AMS (Agent Manage-
ment System) and DF (Directory Facilitator). In addition, Capa provides an
internal Message Transport Services (MTS) and an interface to enable an over-
all communication, the ACC (Agent Communication Channel). For a detailed
specification of Capa see [9] and the respective Fipa-specifications [10].

Mobility. The migration or movement of an entity from one location to an-
other is intuitively associated with mobility. Though, we have to distinguish
between two kinds of mobility. The first kind refers to physical entities, such
as mobile phones and is called physical mobility. The other kind characterizes
so-called “logical computing entities”, such as network applications. In this pa-
per, we term this kind as logical mobility and stress it regarding agent-oriented

Cabac et al.: Visual representation of mobile agents 11

software engineering.
In order to talk about mobility, we limit its scope to location7, agent8 and object9
as defined in [14]. According to the term object, the meaning of communication as
a particular kind of mobility is more comprehensive if you consider messages as
objects, which are exchanged – in terms of sending a message – between agents.
In addition, we differentiate between four types of movement, namely subjective,
objective, spontaneous and consensual movement10. In the context of the “nets
within nets” paradigm and the relationship between system-net and object-net,
the subjective movement is triggered by the object-net so that the object-net is
moved within the system-net. For instance, an agent starts its migration from
one location to another. On the contrary, the objective movement is triggered
by the system-net such as message passing. If there is no control with regard to
the movement of the object-net within the system-net, this is called spontaneous
movement. On the other hand, the consensual movement requires an agreement
between system-net and object-net on the object-nets’ movement.

3 Case Study of a Household Robot Using Mulan

In the following section, we discuss the implementation of the case-study of a
mobile household robot, presented in [14,20]. The case-study describes a mo-
bile household robot that receives and executes assignments. For that purpose,
the mobile software entity – the agent robot – migrates between rooms within
the house. The house represents the overall system and constitutes the multi-
agent system according to the previously introduced Mulan architecture. The
system is executed within the framework Mulan and is illustrated in Figure
2. Every location in the system – hall, kitchen, living room, next room
and frontyard – is embodied by an agent platform of the multi-agent system11.
The agent robot migrates between these platforms12. The migration process is
based on reference net semantics, where the robot (agent) token flows through
the multi-agent system net, from platform to platform (where each platform
rests on a location-place, cf. Figure 2). During run-time, the initialized agent
platforms are referenced by so-called text-token at the respective location-place.
For example, the text-token “platform2[745]”13 at the location-place frontyard
7 Locations are bordered, host agents and differ in respect to their control capabilities.
8 Agents are (mobile) software entities which are able to perform actions.
9 Objects represent different kinds of physical or data resources, which can be moved
and exchanged between agents.

10 To be within the scope of this paper, we refer you to [14] for a more detailed exam-
ination.

11 Each platform offers dedicated services, e.g. fetch coffee, serve coffee, fetch mail,
open or close the door.

12 The route between start platform and destination platform was given by internal
protocol nets of the agent robot.

13 The number in the brackets states the reference to the respective net instance during
a specific simulation being set up for the screen shot.

12 MOCA’09 – Modelling of Objects, Components and Agents

Fig. 2. Snapshot of system at start of the simulation

references the platform net frontyard.

Visual representation of mobility. As a fundamental approach concerning
the visualization of mobility, [14] introduces the representation of (mobile) agents
by a so-called image-token, in addition to the textual representation. For in-
stance, the arrival of a new letter at the platform frontyard is illustrated by an
image-token as shown in Figure 2. The agent robot resides at the platform next
room. This fact is represented by an image-token as well in Figure 2. If the agent
robot migrates, e.g. from platform next room to platform kitchen, the image-
token of the location-place next room is replaced by an ordinary text-token, while
the text-token “platform2[743]” of the location-place kitchen is replaced by an
image-token. Thus, the robot ’s movement through the house can be visualized
during run-time and an overview of the system’s current state is possible.

Discussion. All in all, the presented case-study provides a convincing demon-
stration of modeling mobility by the “nets within nets” paradigm. The intuitive
representation of mobile entities by the usage of image-tokens is a nice feature
of visualizing mobility at run-time.
However, the visualization of robot (agent) tokens at the level of the multi-agent
system is at odds with the architectural design of Mulan’s multi-agent system.

Cabac et al.: Visual representation of mobile agents 13

The problem is that robot (agent) image-tokens are used as platform references.
This is somewhat counter-intuitive as such a token does rather suggest a refer-
ence to the robot/agent itself. In addition, a multi-agent system net hosts objects
(mail, coffee, etc.) that are not platforms. Thus, the multi-agent system level is
not in accordance with the Mulan architecture. Furthermore, the modeling and
implementation of the case-study in such a manner is not suitable for more than
one agent per platform. As a related issue, the transport of entities such as a
letter by the agent robot is not displayable within the current implementation.

4 Mapa – Mobile Agent Platform Architecture

The examination of the case-study in Section 3 has led to the idea of developing
a dynamic framework that stresses the visual representation of (mobile) agents
and is based upon the Mulan-reference model. The visualization of mobility, as
presented in Section 3, is not directly implementable in the framework Capa.
This is owed to the fact that the top layer of the Mulan architecture, the multi-
agent system, is represented indirectly by the Agent Communication Channel
(ACC [9]). Consequently, this layer is not an explicit part of Capa. Instead of
being embedded in a particular infrastructure – as proposed by the Mulan-
reference model – all platforms in Capa are just exhaustively connected with
each other. Introducing constraints on communication and mobility channels at
the multi-agent system level are not as easily expressed in Capa as in Mulan.
In Capa, they have to be addressed at the agent level instead. To conclude, the
original Mulan architecture offers a more immediate support of inter-platform
infrastructures and thus offers a more expressive basis for mobility.
Due to this deficiency of Capa, the prototype of the framework Mapa (Mobile
Agent Platform Architecture) has been implemented. Mapa joins the advan-
tages of both architectures Mulan (explicit multi-agent system infrastructure,
usage of images-tokens) and Capa (implementation of the FIPA-guidelines for
interoperability purposes). Furthermore, this consolidation allows the usage of
certain tools such as the MulanViewer14 and the Sniffer15, which were first de-
veloped as Capa-plug-ins. Before we start with a more detailed specification of
the prototype Mapa, we define some necessary requirements.

Requirements relating to Mapa. An intuitive association of mobility within
agent-oriented software engineering is the migration of an agent between two
platforms, which are hosted on different clients. If the multi-agent system sup-
ports multiple mobile agents, some interfaces for communication, coordination
and cooperation are necessary. This is already implemented due to the fact that
Mapa enhances Capa, which provides these interfaces.
As well, Mapa has to represent the top layer of the Mulan-reference model
14 The MulanViewer is a tool-kit to display every set up platform, its agents and (active)

protocols.
15 The Sniffer is a monitoring tool in order to log the messages, which were exchanged

between agents.

14 MOCA’09 – Modelling of Objects, Components and Agents

in an appropriate way. Also, the system net of the multi-agent system has to
visualize the migration of an agent. If the migrating agent transports further
entities then the visualization of these would be a nice feature, too.
Thus, the implementation of the visual representation of agents within a multi-
agent system is an indispensable requirement due to the fact that this is the
fundamental basis for any future framework. This comes along with the visu-
alization of multiple agents at one platform. To facilitate re-usability and sus-
tainability of the prototype, it has to provide flexibility concerning its usage by
different applications. So, the prototype has to be adaptable and reusable by
different applications. This also implies that possible routes between connected
platforms are being computed automatically.

Mapa utilizes the simulation engine Renew as IDE (Integrated Development
Environment). The plug-in based architecture [22,3,21,4] of Renew allows the
development of Mapa as a plug-in itself. The resulting compatibility facilitates
the development of further applications, which are able to use the framework
Mapa. During the development process of the prototype, an explicit separation
was forced between a user view and developer view. The developer view is ac-
cessible by the MulanViewer, which allows the survey of (active) protocols and
existing (agent-) nets. At this view, a visualization of (mobile) agents has not
been implemented.
At the user view, the visual representation of (mobile) agents has been imple-
mented by the use of image-tokens. This means that image-tokens are used as
platform references at the multi-agent system. In addition, agents residing on
a certain platform are represented by image-tokens as well. This is done by a
vertical-hierarchical structuring of the involved platform image-token and its
agents image-tokens16. In contrast to the implementation of the visual represen-
tation in Section 3, the visualization already starts on the level of the multi-agent
system. It follows that not only (mobile) agents will be represented by image-
tokens but also platforms. Furthermore, the transport of an entity by an agent
is illustrated by a labeled image-token. Thus, a four-level, vertical-hierarchical
representation arises: multi-agent system → platform → agent → transported
entity.
Another particular trait of the Mapa prototype is the implemented routing
agent. On the level of the multi-agent system, all platforms are connected by
transitions and synchronous channels. The registration of a platform at the
multi-agent system causes the routing agent to add every directly connected
platform of this newly added platform to its knowledge base as a route. Thus,
an agent requests possible routes from the routing agent and migrates, having
received a suitable route. The routing agent computes every possible, acyclical
route whenever it has no suitable route with regard to the request. The computed
route between start platform and destination platform is subsequently stored in
its knowledge base.

16 This form of visualization will be presented on the basis of the modified case-study
(see Section 3) at the end of this section.

Cabac et al.: Visual representation of mobile agents 15

Fig. 3. Multi-agent system’s net template.

Execution of the Modified Case-Study by Using Mapa. The conversion of
the case-study of a mobile household robot to the prototype Mapa requires some
modifications. On the one hand, the multi-agent system at the user view has to
be re-structured in such a way that platforms are representable by image-tokens.
On the other hand, platforms have to be connected explicitly and the update
of image-tokens has to be ensured whenever the system state changes. Figure
3 illustrates the adapted multi-agent system. It shows the explicit connection
of the platforms so that the routing agent is able to compute possible routes
between them. The migration of an agent between two platforms will be done
by firing the respective move-transition. The platforms itself at the multi-agent
system are initialized as objects when the multi-agent system is initialized. If a
new platform is started, the update-transition will be fired in order to update
its image-tokens at the multi-agent system level. Additionally, every arriving
or leaving agent at one platform triggers the firing of the respective update-
transition. Furthermore, agents obtain their own image-token while residing on
a platform. The agent image-tokens are placed on top of the image-token of the
platform, as you can see in Figure 6 for instance. Therefore, the separation be-
tween user and developer view is necessary. Figure 4 depicts this separation.
The net instance Bureau[1787] illustrates the user view of the platform Bureau
and its residing agents. For this case-study, the solely information regarding the
platform Bureau are the residing agents. Another application may show further
or other information. On the contrary, the net instance mapa[1785] displays the
developer view of the platform Bureau. This net instance is based on Mapa’s
default net template mapa, which provides and displays the overall structure of
a platform. This net template should not be changed.

16 MOCA’09 – Modelling of Objects, Components and Agents

Fig. 4. Illustration of user view (net instance Bureau[1787]) and developer view
(net instance mapa[1785]) for platform Bureau after system initialization.

Setting. The following execution setting was chosen: The multi-agent system
is initialized with six platforms, namely Room, Bureau, Livingroom, Kit-
chen, Hall and Frontyard as illustrated in Figure 517. Afterwards the two
agents Robot and Postman are started. Figure 6 shows that the agent Robot
resides on the platform Bureau and the agent Postman resides on the platform
Frontyard. The important point regarding Figure 3 is based on the fact that,
for instance, the image-token for platform Bureau has an image-token for the
agent Robot on its top. Nevertheless, the place Bureau as shown in Figure 3
contains exactly one token, namely the image-token for the platform Bureau.
However, Mapa facilitates the representation of hosted agents with additional
image-tokens. In other word, the image-token of the system-net has the image-
tokens of its hosted object-nets on its top (cf. Section 2, page 4f).
In this case-study, the agent Robot, residing on the platform Bureau, is waiting
for an assignment. The agent Postman resides on the platform Frontyard and
is transporting a letter (cf. Figure 6). In order to deliver the attached letter, the

17 Figure 5 is the net instance of the net template in Figure 3. The platforms are
represented by image-tokens.

Cabac et al.: Visual representation of mobile agents 17

Fig. 5. User view on multi-agent system after system initialization and the start
of all platforms.

agent Postman initializes a protocol. This protocol assigns the agent Robot to
fetch the letter. Once the agent Robot receives the assignment, it queries the
routing agent of the multi-agent system about a suitable route from start plat-
form (Bureau) to destination platform (Frontyard). Having received the route,
namely Bureau → Hall → Frontyard, the agent Robot migrates to platform
Frontyard via platform Hall as this is the shortest way (cf. Figure 3). There,
the agent Postman and the agent Robot exchange the letter as illustrated in
Figure 7. Also, Figure 8 gives an overview of the related net instances. The in-
spection of the image-token of the platform Frontyard shows the net instance
Frontyard[187], where all hosted agents are displayed. Furthermore, the inspec-
tion of the image-token of the agent Robot returns the net instance Robot[4216].
This net instance is accessible as well by the examination of the Robot agents’
image-token in the net instance Frontyard[187].

18 MOCA’09 – Modelling of Objects, Components and Agents

Fig. 6. User view on multi-agent system with agents Robot and Postman.

Analysis Using the Tool MulanViewer. The Capa plug-in MulanViewer enables
another visualization of the multi-agent system. Due to the implementation of
Mapa, as an enhancement of Capa, the MulanViewer is applicable for Mapa as
well. This is demonstrated in the Figures 9, 10 and 1118.
On the one hand, the MulanViewer displays all set up platforms, agents, deci-
sion components and (active) protocols. On the other hand, it may be used as a
debugging tool [2,6] during run-time.
The overall system state at startup is illustrated in Figure 9 for the previously
specified setting. At platform Frontyard, the following agents reside: Post-
man#1@Frontyard, Frontyard, ams@Frontyard and Letter#2@Postman#1 19.
The signifier of the agent Letter denotes its residing on the platform Front-
yard20. The implementation of objects as agents themselves, such as the agent

18 Figure 9, 10 and 11 only display a clipping of the MulanViewer for purposes of clarity.
19 Within the MulanViewer, the syntax of all listed agents (except the platform agent)

complies with the following scheme: <name_agent>#<no>@<name_platform>.
20 So here we have an implementation of units such as letter as agents. Actually, we

have started to soften the four-layer restriction of the Mulan reference model in

Cabac et al.: Visual representation of mobile agents 19

Fig. 7. User view of multi-agent system after exchange.

Letter, results from the consideration to soften the Mulan-reference model con-
cerning its hierarchy in order to transport operational agents. Also, this consid-
eration follows up from the discussion about the topic "Everything is an agent"
(see [20, p. 183f])21. Nevertheless it is a tentative design choice for the first pro-
totype.
Having arrived at platform Frontyard, the agent Robot requests the letter
from the agent Postman. This is illustrated in Figure 10 by the active proto-
col moveObject at agent Postman.
Concluding, Figure 11 points out the overall system state at the end of the sce-
nario. Platform Frontyard is still hosting the agents Postman#1@Frontyard,
Frontyard and ams@Frontyard. In addition, the platform Frontyard is now
hosting the agent Robot#1@Frontyard as well. After processing the protocol

order to be able to regard a specific unit as both an agent and a platform, so that
the agent is able to host other agents. This opens up the possibility to build deeper
hierarchies of Mulan reference units. However, an in-depth discussion of this topic is
beyond the scope of this paper, see [20, p. 183f] and [21] for more details.

21 The discussion of this topic goes beyond the scope of this paper and is therefore
omitted.

20 MOCA’09 – Modelling of Objects, Components and Agents

Fig. 8. User view of multi-agent system after exchange with the related net
instances.

moveObject, the agent Letter has been assigned to agent Robot. Due to assign-
ment, the signifier of the agent Letter has been changed from Letter#2@ Post-
man#1 to Letter#2@Robot#1.
Analysis Using the Tool Sniffer. The Capa plug-in Sniffer [2,6] is a monitoring
tool in order to log the message exchange between agents. For the given setting,
the migration route of the agent Robot was traced and is illustrated in Figure 12.
Figure 12 shows the filtered22 trace-log as an Agent Interaction Protocol (AIP)
[5,1]. Herein, the migration of the agent Robot is illustrated relating to the nec-
essary protocols. Initially, the agent Robot (Robot#1@Bureau) sends a “move”-
request to its relating AMS (ams@Bureau). The AMS processes the request,
sends a “transmit-agent”-request to the remote AMS (ams@Hall) and deregis-
ters the agent Robot (Robot#1@Bureau) afterwards. Meanwhile, the AMS at

22 The filter was set to the keywords “transmit-agent” and “move” in order to refine the
generated AIP.

Cabac et al.: Visual representation of mobile agents 21

Fig. 9. View on MulanViewer after system initialization.

the platform Hall sets up the agent Robot (Robot#1@Hall). Due to a partic-
ular knowledge base entry, the agent Robot (Robot#1@Hall) sends a “move”-
request to the AMS (ams@Hall) in turn. The AMS processes the request, sends
a “transmit-agent”-request to the remote AMS (ams@Frontyard) and deregisters
the agent Robot (Robot#1@Hall) afterwards, as well. Meanwhile, the AMS at
the platform Frontyard sets up the agent Robot (Robot#1@Frontyard).

Discussion. As demonstrated by the execution of the case-study within the
prototype Mapa, the visual representation of mobility is realizable with a pre-
cise separation between a user view and developer view in terms of the Mulan-
reference model. As previously mentioned, on the one hand Capa is an en-
hancement of Mulan concerning the implementation of the Fipa guidelines. On
the other hand, Capa loses the representation of the top layer of the Mulan-
reference model, the multi-agent system and therefore an appropriate system
overview. Due to the consolidation of Mulan and Capa, Mapa is able to repre-
sent the vertical nesting of the Mulan-reference model by the usage of image-
tokens. Therefore, it illustrates the intuitive association with an agent residing
on a platform.
In addition, the representation of multiple agents at one platform can be done
without major difficulties, at least if the number of agents is not too large.
As well, the implementation of the routing algorithm of the routing agent turned

22 MOCA’09 – Modelling of Objects, Components and Agents

Fig. 10. View on MulanViewer before
assignment.

Fig. 11. View on MulanViewer after
assignment.

out to be effective within different executed settings. If the routing agent com-
putes more than one route between start and destination platform, the first
route is chosen in this prototype. Hence, the previously claimed requirements
(see Section 3) are successfully fulfilled for this first prototype.
However, the implementation of the prototype and the testing of different set-
tings have pointed out some further issues. First of all, we have to consider an
advisable recursion depth for the relationship between platform and agent in
the Mulan-reference model, as suggested in [20, p. 156ff]. For instance, if the
agent Postman, which is residing at the platform Frontyard, is transporting a
parcel that contains multiple envelopes, each with a letter and another entity,
then a visualization of the vertical nesting of all participating entities is most
challenging.

5 Related Work

Ambient calculus. The Ambient calculus [7] is a process calculus for describ-
ing mobility within a system. An ambient is defined as a bounded place where
computation happens and which may contain one or more processes and/or
sub-ambients that run in parallel within the ambient. A single framework is

Cabac et al.: Visual representation of mobile agents 23

Fig. 12. Filtered message trace using Sniffer.

considered that encompasses movement of ambients and interaction of ambients
and processes within ambients. An ambient can move as a unit inside or outside
other ambients. Main concepts considered in the Ambient calculus are location,
mobility and authorization to move. The calculus models access control and mo-
bility in a way that an ambient may move into or out of a particular ambient
only if it possesses an appropriate capability. A process is considered to run
inside an ambient. Processes within an ambient may do many activities: cause
its enclosing ambient to move; open sub-ambients, which means that a process
dissolves an ambient boundary and causes the contents of that ambient to spill
into the enclosing ambient; communicate by anonymous asynchronous messages,
dropped into the local area. An ability to move and open an ambient is regu-
lated by capabilities that processes must possess by prior knowledge or acquire
by communication. A process inside an ambient can be the parallel composition
of several processes.
Although the grounded formalism of this paper, namely reference nets, is simi-
lar to Mobile Ambients, there are differences. Reference nets, which incorporate
the “nets within nets” paradigm, define a model for distributed and mobile pro-
cesses. The hierarchy of the Mulan-reference model corresponds to the hierarchy
of administrative domains of Mobile Ambients. Even though subjective and ob-
jective movements are considered in the Ambient calculus as well, the concept
of objective movement differs. The difference is when an entity is moved by its
environment, it can continue its execution as long as it does not require any
resources. The focus of the Ambient calculus is on security and covers the area
of process algebra. In our approach concerning Mapa, security is not covered by
the formalism of reference nets since it is considered as an application topic that
have to be build on top of the introduced case-study23.

Seal calculus. The Seal calculus [24] is a calculus for mobile computations.

23 In order to be within the scope of the paper and since there is still an ongoing
discussion about security issues, this topic is not covered within this paper.

24 MOCA’09 – Modelling of Objects, Components and Agents

It represents an extension of the π-calculus with mobility, distribution and pro-
tection mechanisms. A seal is defined as a named, hierarchically structured lo-
cation where computation happens. The seal may contain one or more processes
and/or sub-seals. The concept of control access to resources is considered. It
is based on portals. Portals are defined as linear revocable capabilities, where
linear means that an agent is allowed to use a given resource only once. A hier-
archical protection model is proposed: a seal controls all external resources that
are used by processes and/or sub-seals residing within the seal. Seals may move
(enter/leave) only with the explicit permission of its parent seal. This kind of
movement is equivalent to objective movement touched in the paper. Communi-
cation between seals is restricted within a single level of hierarchy and is under
control of parent seal. A seal may protect itself from parent seal by controlling
visibility and access to its own resources (via portals). The model of Petri net for
mobility is similar to JavaSeal, a mobile agent platform [24], in the following. In
the JavaSeal each agent executes within a protection domain and cannot directly
view or modify the data of another object. Protection domains are structured
in hierarchy. Communication between objects is based on channels. An agent
protection domain can only send a message to its parent domain or to its chil-
dren. A message sent between two domains is routed through the ancestor of the
domains. The main difference between the Seal calculus and reference nets is in
the subjective movement that is not allowed within the Seal calculus.

IMAGO Prolog. Inter-agent communication in IMAGO Prolog [18] is exclu-
sively based upon so-called messengers. These messengers are thin, mobile and
anonymous agents which aim a reliable message delivery. Thus, they are dedi-
cated to track receiving agents within a dynamic environment. The used agent
communication language is based on first order logic regarding Prolog. In order
to exchange data or synchronize, the messengers use logic terms and unifica-
tion. IMAGO Prolog supports (a)synchronous messaging as well as broadcasting
and multicasting. Hence, participating agent servers have to provide information
about the location of every agent.
In contrast to IMAGO Prolog, the prototype Mapa uses the Fipa-ACL. The
inter-agent communication within one platform is realized by the internal Mes-
sage Transport Service. Due to the fact that Mapa is an enhancement of Capa
the overall platform communication is possible as well24. Therefore, Mapa does
not require specialized agents for communication. But the first prototype of the
framework Mapa lacks the ability to track receiving agents as IMAGO Protolog’s
messengers provide. Nevertheless, this is a feature which has to be discussed and
for what IMAGO Prolog provides helpful suggestions.

6 Conclusion

As stated in this paper, the prototype of the framework Mapa is a substan-
tial progress towards the visual representation of mobility within the user view.
24 For a detailed description of the overall platform communication see [8].

Cabac et al.: Visual representation of mobile agents 25

Beside the dynamical computation of routes as a major feature of the frame-
work, the visual representation of mobility succeeded by the implementation of
a vertical-hierarchical structuring of image-tokens. As well, the embedding of the
prototype into the simulation engine Renew provides flexibility in the develop-
ment of new applications as much as possible.
Despite the convincing illustration of mobility in the context of the prototype
Mapa, some issues are still unsolved. The co-existence of multiple robot agents
remains unexplained at the multi-agent system presented in Section 4. In ad-
dition, an applicable implementation of an effective order maintenance for any
operative, mobile agent within the application is necessary. This is required in
order to avoid redundant commissioning. In order to gain performance, efficiency
and reduction of network traffic in terms of a minimized movement of the operat-
ing agents, the movement of an idle agent has to be discussed as well. Therefore,
the implementation of a diagnostic tool-kit would be advantageous. This tool
may be used in order to locate possible bottle-necks within the usage of mobile
agents.
Since the prototype is simply defined and implemented within a local and private
system, the problem of connecting remote platforms remains unsolved. I.e. the
enhancement to an open network has to be developed. Also, the representation
of the movement of a mobile agent between distributed platforms or multi-agent
systems poses still a challenge. Not least, this requires an examination of relevant
security aspects. If an agent is transporting an entity and wants to migrate to
another platform, the agent has to remain in quarantine, for instance, until the
content has been successfully checked.

References
1. Lawrence Cabac. Generating code structures for Petri net-based Agent Interaction

Protocols using Net Components. In Workshop: Algorithms and Tools for Petri
Nets, September 2003.

2. Lawrence Cabac and Till Dörges. Tools for testing, debugging and monitoring
multi-agent applications. In Daniel Moldt, Fabrice Kordon, Kees van Hee, José-
Manuel Colom, and Rémi Bastide, editors, Proceedings of the International Work-
shop on Petri Nets and Software Engineering (PNSE’07), pages 209–213, Siedlce,
Poland, June 2007. Akademia Podlaska.

3. Lawrence Cabac, Michael Duvigneau, Daniel Moldt, and Heiko Rölke. Agent tech-
nologies for plug-in system architecture design. In Proceedings of the Workshop on
Agent-oriented Software Engineering (AOSE), Utrecht, Netherlands, 2005.

4. Lawrence Cabac, Michael Duvigneau, Daniel Moldt, and Benjamin Schleinzer.
Plugin-agents as conceptual basis for flexible software structures. In Multi-Agent
Systems and Applications V. Fifth International Central and East European Con-
ference, CEEMAS’07, Leipzig. Proceedings, volume 4696 of Lecture Notes in Com-
puter Science, pages 340–342, Berlin, Heidelberg, New York, 2007. Springer-Verlag.

5. Lawrence Cabac, Daniel Moldt, and Heiko Rölke. A proposal for structuring Petri
net-based agent interaction protocols. In Wil van der Aalst and E. Best, editors,
24th International Conference on Application and Theory of Petri Nets, Eind-
hoven, Netherlands, June 2003, volume 2679 of Lecture Notes in Computer Science,
pages 102–120. Springer-Verlag, June 2003.

26 MOCA’09 – Modelling of Objects, Components and Agents

6. Lawrence Cabac, Daniel Moldt, and Jan Schlüter. Adding runtime net manipu-
lation features to mulanviewer. In 15. Workshop Algorithmen und Werkzeuge für
Petrinetze, AWPN’08, volume 380 of CEUR Workshop Proceedings, pages 87–92.
Universität Rostock, September 2008.

7. Luca Cardelli and Andrew Gordon. Mobile ambients. In Foundations of Software
Science and Computation Structures, pages 140–155. Springer, 1998.

8. Michael Duvigneau. Bereitstellung einer Agentenplattform für petrinetzbasierte
Agenten. Diplomarbeit, Universität Hamburg, Fachbereich Informatik, Vogt-Kölln
Str. 30, D-22527 Hamburg, December 2002.

9. Michael Duvigneau, Daniel Moldt, and Heiko Rölke. Concurrent architecture for
a multi-agent platform. In Fausto Giunchiglia, James Odell, and Gerhard Weiß,
editors, Agent-Oriented Software Engineering III. Third International Workshop,
Agent-oriented Software Engineering (AOSE) 2002, Bologna, Italy, July 2002. Re-
vised Papers and Invited Contributions, volume 2585 of Lecture Notes in Computer
Science, pages 59–72, Berlin, Heidelberg, New York, 2003. Springer-Verlag.

10. FIPA. Foundation for Intelligent Physical Agents. Specifications.
http://www.fipa.org, 2001.

11. Kurt Jensen. Coloured Petri nets: basic concepts, analysis methods, and practical
use. Springer, 1992.

12. Eike Jessen and Rüdiger Valk. Rechensysteme: Grundlagen der Modellbildung.
Studienreihe Informatik. Springer-Verlag, Berlin, Heidelberg, New York, 1987.

13. Michael Köhler, Daniel Moldt, and Heiko Rölke. Modelling the structure and
behaviour of Petri net agents. In J.M. Colom and M. Koutny, editors, Proceedings
of the 22nd Conference on Application and Theory of Petri Nets 2001, volume 2075
of Lecture Notes in Computer Science, pages 224–241. Springer-Verlag, 2001.

14. Michael Köhler, Daniel Moldt, and Heiko Rölke. Modelling mobility and mobile
agents using nets within nets. In Wil van der Aalst and Eike Best, editors, Pro-
ceedings of the 24th International Conference on Application and Theory of Petri
Nets 2003 (ICATPN 2003), volume 2679 of Lecture Notes in Computer Science,
pages 121–139. Springer-Verlag, 2003.

15. Olaf Kummer. Introduction to Petri nets and reference nets. Sozionik Aktuell,
1:1–9, 2001. ISSN 1617-2477.

16. Olaf Kummer. Referenznetze. Logos Verlag, Berlin, 2002.
17. Olaf Kummer, Frank Wienberg, and Michael Duvigneau. Renew – User Guide.

University of Hamburg, Faculty of Informatics, Theoretical Foundations Group,
Hamburg, release 2.1.1 edition, 2008. Available at: http://www.renew.de/.

18. Xining Li and Guillaume Autran. Inter-agent communication in IMAGO prolog.
In Programming Multi-Agent Systems, pages 163–180. 2005.

19. Wolfgang Reisig. Petri nets: an introduction. Springer-Verlag New York, Inc. New
York, NY, USA, 1985.

20. Heiko Rölke. Modellierung von Agenten und Multiagentensystemen – Grundlagen
und Anwendungen, volume 2 of Agent Technology – Theory and Applications. Logos
Verlag, Berlin, 2004.

21. Benjamin Schleinzer. Flexible und hierarchische Multiagentensysteme – Model-
lierung und prototypische Erweiterung von Mulan und Capa. Diplomarbeit, Uni-
versität Hamburg, Department Informatik, Vogt-Kölln Str. 30, D-22527 Hamburg,
December 2007.

22. Jörn Schumacher. Eine Plugin-Architektur für Renew – Konzepte, Methoden,
Umsetzung. Diplomarbeit, Universität Hamburg, Fachbereich Informatik, Vogt-
Kölln Str. 30, D-22527 Hamburg, October 2003.

Cabac et al.: Visual representation of mobile agents 27

23. Rüdiger Valk. Object Petri Nets – Using the Nets-within-Nets Paradigm. In
Jörg Desel, Wolfgang Reisig, and Grzegorz Rozenberg, editors, Advances in Petri
Nets: Lectures on Concurrency and Petri Nets, volume 3098 of Lecture Notes in
Computer Science, pages 819–848. Springer-Verlag, Berlin, Heidelberg, New York,
2004.

24. Jan Vitek and Giuseppe Castagna. Seal: A framework for secure mobile computa-
tions. Lecture Notes in Computer Science, 1686:47–77, 1999.

25. M. Wooldridge and N. R Jennings. Intelligent agents: Theory and practice. Knowl-
edge engineering review, 10(2):115–152, 1995.

28 MOCA’09 – Modelling of Objects, Components and Agents

A Centralized Petri Net- and Agent-based
Workflow Management System

Thomas Wagner

University of Hamburg
Faculty of Mathematics, Informatics, and Natural Sciences

Department of Informatics
http://www.informatik.uni-hamburg.de/TGI/

Abstract. In this contribution a prototypical agent-based workflow man-
agement system is presented. It was modeled using the Mulan and Capa
agent architectures and uses workflow nets to realize workflow logic. The
system will be described in detail, including the different agent types, the
user interface and an example of how the system is used. Concluding the
contribution will be a short look at future developments of the system
and related work.

1 Introduction

Business process management (BPM) is an important part of any modern com-
pany. Generally a business process (BP) is a process inside a company, which,
directly or indirectly, adds to the production of goods and services. Companies
are very interested in executing their BPs in an efficient way in order to minimize
the time needed to complete a process, so that costs can be reduced and profits
can be raised. An obvious way to efficiently support the execution of BP is to
use computer systems to assist in the execution and, if possible, automate parts
of the process, like the transmission of data between steps or the coordination of
work units. If a BP, or just a part of a BP, is facilitated or automated by a com-
puter system, this is defined by the Workflow Management Coalition (WfMC),
as a workflow ([5]). Advantages gained through the computerization and au-
tomation of BP through workflows include higher efficiency and productivity in
the execution of BPs and the ability to analyze and optimize BPs through the
use of formal techniques and methods ([15]).

In order to fully realize the potential of BPs and workflows, computerized
environments must exist that support the creation, administration, maintenance
and execution of workflows. These environments are called workflow management
systems (WFMS). They take care of the distribution and assignment of work
units, as well as providing necessary information to the user.

One way to model a WFMS is described in this contribution. The core func-
tionality of the system is provided on one computer, but it is possible for users
to start a client on their computer and log into the system via network access.
The WFMS uses a Petri net formalism similar to the workflow nets introduced

in [14] to model the processes and a multi-agent system built on the Mulan and
Capa architectures to implement the WFMS functionality.

The reason these technologies were chosen is that the system is aimed at pro-
viding a technological foundation for future research and development concerning
agents and workflows. These developments will be based upon the theoretical
architecture introduced in [11] and [10] and will be shortly described in a later
section of this paper. Since this theoretical architecture is modeled with Mu-
lan, Capa and the variation of workflow nets in mind, the selection of these
particular technologies for the WFMS is obvious.

The WFMS was developed in a project course at the University of Hamburg
and is currently still in a prototypical stage, so it does not yet offer the full
functionality that is needed to be used in real-life practical applications. It does
however already offer basic workflow functions and will be extended in the future.
A more detailed description of the WFMS can be found in [16].

The paper is divided up into five sections. Section 2 gives a short general
overview about the technologies used in the creation of this paper’s prototype.
Section 3 gives some examples of and comparisons to other agent-based WFMS.
Section 4 presents the main contribution of this paper and contains the descrip-
tion of the prototype. In Sect. 5 a short practical example for the WFMS is
given to illustrate the use of the system and Sect. 6 describes the plans and
possibilities for future enhancements of the system. The connections to related
work will also be described in that section.

2 Technological Foundations

The WFMS presented in this paper is built using the Mulan and Capa agent
architectures. Mulan is an acronym for Multi-agent nets, which precisely sums
up the main idea behind it. It was presented in [12]. Every element of Mulan
is modeled using the reference Petri net formalism introduced in [8], which fol-
lows the nets-within-nets paradigm like the object nets introduced in [13]. To
realize communication between nets synchronous channels are used. These chan-
nels are used to synchronize actions between different nets, as well as transmit
information. They are similar to the channels described in [2]. All agents share
the same net structure, but are distinguished by their knowledge and behavior.
Agent behavior is modeled through so called protocol nets, that can be started
as a reaction to incoming messages or proactively by the agent itself. Proto-
col nets make use of the net components introduced in [1]. Capa (Concurrent
Agent Platform Architecture) is an extension of Mulan, which was introduced
in [3]. It is mostly focused on platform external communication and making the
Mulan principles fully compliant with the standards of the Foundation for In-
telligent Physical Agents (FIPA). The reference net tool Renew serves as both
development and runtime environment for the WFMS. A description of Renew
can be found in [8] and [9].

Within the WFMS workflows are modeled using a variation of the workflow
nets described in [14]. This variation of workflow nets uses the task transition

30 MOCA’09 – Modelling of Objects, Components and Agents

from [6]. This task transition is represented like a regular transition with two
thick sidebars. It actually represents three regular transitions and a place. The
three transitions model the request of a work item and the cancellation or con-
firmation of an activity, while the place indicates that the activity is currently
being worked on.

3 Other Agent-based WFMS

This section will give a short description of two other agent-based WFMS devel-
oped by other researchers. The goal of this section is to put this paper’s WFMS,
described in the next section, into a wider context and to show other approaches
to the provision of WFMS functionality through multi-agent technology.

The ADEPT WFMS described in [7] uses so-called agencies to execute work-
flows. These agencies consist of one “responsible agent”, a number of “subsidiary
agencies” and a set of tasks and resources that the responsible agent controls.
The agencies have full control over their own tasks and resources, so the only way
interactions between different agencies work is through negotiation for services.
A service in this context is (part of) a workflow, that is being managed within
the system and can be provided by multiple agencies and their subsidiary agen-
cies. All agents in ADEPT possess the same structure and consist of a number of
modules that are responsible for communication, message routing, negotiations,
monitoring, task execution, et cetera. The ADEPT system differs greatly from
the system described in this paper. The biggest difference is that it only uses
one kind of agent to provide WFMS functionality. The agencies are responsible
for every aspect of the execution of a workflow, including the negotiation and
execution of tasks through services. In contrast to that this paper’s WFMS uses
several different agent types, all with different responsibilities, and offers task
functionality through the user interface.

The JBees WFMS described in [4] uses a number of different agent types to
provide WFMS functionality. The execution of workflows is handled in the fol-
lowing way: Management agents, which also offer the administration interface,
initiate new workflow instances by creating new process agents. These process
agents gather the necessary data from other agents within the system. A resource
broker agent then allocates resource agents to that process. Resource agents rep-
resent the resources in the system and provide the interface for human users.
These allocated resources then execute the process. Other agents in the system
are responsible for storing information and monitoring and controlling the sys-
tem. The JBees WFMS structure is more similar to the WFMS described in this
paper than the ADEPT system. It uses different agent types to provide WFMS
functionality, but uses a different division of responsibilities. The use of agents
to encapsulate processes is not yet implemented into this paper’s WFMS, but is
planned for the future (see Sect. 6).

T. Wagner: A centralized Petri net- and agent-based WfMS 31

4 Description of the Prototype

The entire functionality of the WFMS is provided by a number of agents active
within the system. These agents are all responsible for one aspect of the WFMS
and will be presented in detail later in this section. Different actions between
the agents are modeled as a number of interactions that involve multiple pro-
tocols in multiple agents. The interactions will be described at the end of this
section. Information needed for workflow execution is stored in a database that
can be accessed and edited through an administration interface. The tables of
this database contain information about users, roles, workflow definitions, tasks,
forms, et cetera. When the system is started the necessary agents are set up and
the system is ready for users to log into. This can happen locally (on the same
computer the system’s core is executed on), but also remotely through a network.
When an user is successfully logged into the system he can, depending on his
role, instantiate workflows, request and work on tasks or access administration
functions.

Workflows are represented as workflow nets. For each new workflow instance
a new workflow net is created and maintained by the workflow engine. Available
work items are displayed and users can choose which work items to request. There
are currently two types of tasks within the system. Simple tasks can merely be
requested and then confirmed or canceled by the user. They represent tasks,
which are not supported by functions of the WFMS and have to be completed
manually by the user. Form tasks on the other hand open a new window when
accepted, in which the user can enter data. Forms are attached to tasks through
inscriptions in the workflow net and consist of an arbitrary number of labels,
text boxes, check boxes and radio buttons which are aligned vertically. A typical
form window can be seen in Fig. 5. When the user finishes a form task, the
information from the form window is transmitted to the system and can be
used in later tasks. The information is stored as a form object which can be
transformed for another task with a different form by using form transformation
rules. These rules are also stored in the database and define which data from
an old form will appear in which position of a new form. Tasks themselves are
derived from task definitions within the database, which contain a description
of the task, as well as information about which users are allowed to execute a
task. When a workflow instance reaches the end of its execution the workflow
net is removed from the workflow engine.

The user interface of the WFMS, shown in Fig. 1, provides the basic functions
for all user roles. It is the same for all roles, but certain functions are not available
for particular roles (i.e. workflow executors are not allowed to edit database
tables or initiate workflows). The main interface contains two areas. The upper
one lists the currently available work items and the lower area lists the current
activities of an user. The user can request work items, instantiate workflows,
confirm or cancel activities and enter the administration window by pressing the
corresponding buttons in the main interface.

The WFMS consists of eight types of agents. Fig. 2 gives an overview about
the different agents of the system. Except for the user agents, all of the agents are

32 MOCA’09 – Modelling of Objects, Components and Agents

Fig. 1. User interface of the WFMS

unique in one instance of the WFMS. The division of the WFMS functionality
was chosen for two reasons. On the one hand this division is very natural, as the
agents responsibilities do not overlap and every agent is responsible for a distinct
area of the functionality. On the other hand parts of the division were chosen
to correspond to elements of the WfMC’s workflow reference model described in
[5]. It should be noted that the WFMS does follow the reference model but does
not yet provide all the interfaces or integrate them fully into one unit. Interface
1 (Process Definition Tools) is given by Renew, which serves as the environ-
ment to model workflow nets. Interfaces 2 (Workflow Client Applications) and
5 (Administration & Monitoring Tools) are modeled through the user interface
of the WFMS and tools provided by Renew, which allow monitoring the sys-
tem’s internal state. Interfaces 3 (Invoked Applications) and 4 (Other Workflow
Enactment Services) are not yet implemented. The eight individual agent types
will now be described in detail.

WFMS Agent. This agent serves as a kind of container for all the other agents of
the WFMS. It is responsible for starting and setting up all other agents within
the system. During its initialization the setupAgent interaction is called, which
creates the other agents, except for user agents, which are only created when an
user wishes to log in. At the end of this interaction the WFMS is completely
setup and ready for users to initiate and execute workflows. Besides these setup
duties this agent also serves as the WFMS’s interface, which user agents use to
log into and out of the system. It can also be queried for the individual agent’s
addresses in the system, of which it holds a registry.

T. Wagner: A centralized Petri net- and agent-based WfMS 33

Fig. 2. Overview over the WFMS agents

User Agent. The user agent serves as an interface between the WFMS and one
particular user. As mentioned before, this agent is not started along with the rest
of the WFMS’s agents, but is only created when an user wishes to log into the
system. For each user a new user agent is instantiated. The agent then requests to
be logged into the system through the WFMS agent and, if the user’s credentials
(username and password) are valid, connects to the work item dispatcher within
the system, to receive work items and activities. Every action the user performs
in the graphical user interface (GUI) initiates an interaction, which is started
by the user agent. This includes the initiation of workflow instances, requests
for work items, the confirmation or cancellation of activities and administrative
access to the database (if the user has the required privileges). The user agent is
also involved in interactions that are aimed at providing information about the
current state of the system to the user. These include updates to the currently
available work items, the user’s current activities and information for the user
about the end of a workflow instance he initiated. This means that this agent is
involved in many of the WFMS’s interactions, though its role is mostly limited to
initiating an interaction or receiving some kind of data to display in the GUI. The
connection between the agent and the Java GUI is modeled through a decision
component (DC). In general a decision component is a constantly active protocol
Petri net within an agent, which can communicate with other active protocols
via synchronous channels as it is the usual communication within an agent for
all its components. This particular DC transforms and handles the data which
is exchanged between the GUI and the agent.

Workflow Enactment Service (WFES) Agent. The WFES agent is responsible
for managing the execution of workflows within the WFMS. It can be viewed as
an interface between the internal execution of workflows by the workflow engine
and the external (towards the user) management of work items and activities by

34 MOCA’09 – Modelling of Objects, Components and Agents

the work item dispatcher. Its main duty is to accept incoming requests from the
user (via the work item dispatcher) like the instantiation of a workflow or the
confirmation or cancellation of an activity and forward them to the workflow
engine, while maintaining its own information about the current state of the
WFMS. Theoretically it is also responsible for distributing the different workflow
instances on the different workflow engines, but since there is only one workflow
engine active in the current version of the WFMS, this aspect, though already
partially modeled through the chooseWFE interaction, does not yet apply. The
WFES agent mostly corresponds to the WFES element of the WfMC’s reference
model. It does not contain the actual workflow engine(s) but does manage them.

Workflow Engine Agent. Workflow engine agents realize the functionality of
workflow engines according to the reference model of the WfMC ([5]). As such,
they are responsible for the actual execution of workflow instances. Currently
only one workflow engine agent is active in one instance of the WFMS at any
time, but the system can easily be extended to contain multiple workflow en-
gines. Workflow engine agents have some very important functions within the
WFMS. As the workflow execution units, they are responsible for instantiating
the workflow nets representing a workflow instance and for removing them when
execution has finished. During the initiation of a workflow instance, the workflow
engine also registers itself as a listener with this instance. The agent’s decision
component then uses synchronous channels to detect changes in the available
work items and current activities, in order to initiate update interactions with
other agents, if they are necessary. The firing of the internal transitions of a
task transition is also handled by the workflow engine agent. As stated before,
the task transition used in the system’s workflow nets consists of three indi-
vidual transitions that represent the assignment/request of work items and the
confirmation or cancellation of an activity. When the interactions modeling this
behavior are started by an user agent, the work item dispatcher informs the
WFES agent, which in turn informs the workflow engine. In this last step the
internal transitions are fired by the workflow engine, after which confirmations
or disconfirmations are sent to the other agents depending on whether or not
the firing was successful.

Work Item Dispatcher Agent. The work item dispatcher agent is responsible for
the distribution of work items and activities to the users. During login every
user agent registers with this agent and begins, if the user has appropriate roles,
receiving updates about available work items and requested activities. Whenever
the state of work items or activities within the system changes, the workflow
engine informs the work item dispatcher (via the WFES agent). The work item
dispatcher then updates his internal lists, as well as the lists of the appropriate
users.

Account Manager Agent. The account manager agent is designed to manage
access to the WFMS and maintain a directory of all logged-in users. It is mainly
responsible for validating if an user has a queried role or privilege. This is done

T. Wagner: A centralized Petri net- and agent-based WfMS 35

through the authenticate interaction. This interaction can be initiated by any
agent that wants to know if an user is allowed to do what he tries to do. For
example the work item dispatcher agent has to check the credentials of an user
before a work item request can be processed further.

Rules Roles Rights (RRR) Manager Agent. This agent is responsible for the
database tables about users, roles and task execution rules. Within the system
there are two different types of roles an user has. The first type is the user role.
This describes the general function the user has within the system. These user
roles are the same for every workflow or application created with the WFMS.
Currently there are three different user roles and users are allowed to be assigned
more than one. Workflow administrators are responsible for managing and main-
taining the system, as well as the database. Workflow initiators have privileges
to initiate workflow instances. Workflow executors are responsible for actually
working on and completing tasks within a workflow instance. The second type
of role is the application role. This is unique to every workflow or application
created with the WFMS (though it can of course be reused). An application role
defines which tasks in particular a workflow executor is allowed to request. For
example application roles can be based on different departments of a company
that are all involved in one workflow. The connection between application roles
and tasks is made through task execution rules. Every task definition contains
the identifier of such a rule. The rules consist of the set of application roles that
are allowed to request the tasks that possess this rule. The only interactions
this agent is involved in are database access interactions concerning the tables
it is responsible for (dbEdit interaction) and the interaction to retrieve the set
of rules a particular user satisfies (getSatisfiedRules interaction).

Workflow Definition Database Agent. This agent is responsible for accessing the
database’s table for workflow definitions. It is called only to supply the workflow’s
definition when a new workflow is instantiated, and when the tables are edited.
In future enhancements to the WFMS, this agent could for example also be used
to handle workflow adaptivity functionality.

The work cycle within the WFMS can be illustrated by following the order in
which the user roles become active. At first a workflow administrator has to input
the workflow definition into the system’s database. This includes the workflow
net, appplication roles, the task definitions, task execution rules, form defini-
tons and form transformation rules. When all the necessary data is available
in the system, a workflow initiator can start an instance of the workflow. After
the instantiation has completed work items, which are activated in the workflow
net, are offered to the eligible workflow executors logged into the system. These
executors can then request available work items and execute the corresponding
activities. When the workflow instance reaches the end of its execution the orig-
inal workflow initiator is informed about this, which completes the execution of
this workflow instance. Currently there is no way for workflow instances to access

36 MOCA’09 – Modelling of Objects, Components and Agents

results from previous/other workflow instances. This functionality is planned for
future versions of the system.

To complete and conclude the description of the WFMS the different inter-
actions of the system will now be described. Figure 3 gives an overview of how
the interactions are connected to the agents. The rows represent the interactions
and the columns represent the agents. A “X” in the figure means that the col-
umn’s agent is involved in the row’s interaction. The detailed description of the
interactions will now follow.

WFMS WFES WFEngine Work Item User Account RRR WF Def.
Agent Agent Agent Dispatcher Agent Manager Manager DatabaseA

login X X X
logout X X X
connectToDispatcher X X
disconnectFromDispatcher X X

authenticate X
getSatisfiedRules X X

setupAgent X (X) (X) (X) (X) (X) (X)

dbEdit X X X X X

instantiateWorkflow X X X X
chooseWFE X

updateWorkitemList X X X
offerWorkitemList X X
updateActivityList X X X
offerActivityList X X

requestWorkitem X X X X
confirmActivity X X X X
cancelActivity X X X X

workflowEndReached X X X

Fig. 3. The relationship between agents and interactions (Modified from [16])

Login Interaction. The login interaction models the behavior of the system when
an user wishes to log in. A newly instantiated user agent requests to be logged in
at a WFMS agent. The WFMS agent then queries the account manager agent,
which checks if the user’s username and password are correct and if he is already
logged into the system. If the account manager confirms the user’s login request,
the WFMS agent completes this interactions.

Logout Interaction. The logout interaction models the process of logging an user
out of the system. When the user closes the main GUI window, this interaction

T. Wagner: A centralized Petri net- and agent-based WfMS 37

is automatically started. Basically it removes the user agent from the internal
lists of the WFMS agent and the account manager agent.

ConnectToDispatcher Interaction. The connectToDispatcher interaction is au-
tomatically called, when an user with the workflow executor user role is logged
into the system. It registers the user agent with the work item dispatcher agent,
which can then begin to offer work items and activities to the user. During
the course of this interaction the authenticate and getSatisfiedRules interactions
are called to verify the user and determine the task execution rules he satisfies
respectively.

DisconnectFromDispatcher Interaction. When a workflow executor user logs out
of the system the disconnectFromDispatcher interaction is automatically called
to remove him from the work item dispatcher’s internal list of connected users.

Authenticate Interaction. The authenticate interaction models the authentica-
tion of an user within the system. The initiator of this interaction, which can be
any agent that needs to authenticate an user, sends a message to the account
manager agent containing the unique agent identifier of the user agent, the user’s
credentials and the privileges, identified by a set of roles, this user is supposed
to have. The account manager then tests if the user’s credentials are valid, if the
user is currently logged into the system and if the roles are correct. It then sends
a confirm or disconfirm message to the initiator.

GetSatisfiedRules Interaction. In this interaction the RRR manager agent ac-
cesses the database to retrieve and determine the set of task execution rules
a given user satisfies. This set of rules is then returned to the initiator of the
interaction, which is currently only the work item dispatcher during the connect-
ToDispatcher interaction.

SetupAgent Interaction. The setupAgent interaction is started automatically
when the system is started and the WFMS agent is initiated. Basically the
WFMS agent starts all other agents of the system (except user agents) and
stores their addresses in internal lists.

DbEdit Interaction. The dbEdit interaction implements the database access
(read or write) of the system. It is started from the administration window.
The user agent of the administrator sends the access request to the WFMS
agent, which initiates an authentication of the user and then redirects the re-
quest to the agent in charge of the particular table of the database. That agent
then accesses the database and returns the result to the user agent.

InstantiateWorkflow Interaction. The instantiateWorkflow interaction models
the instantiation of a new workflow instance. A workflow initiator’s user agent
requests the instantiation from the WFES agent. The WFES agent then gathers
the workflow net definition from the workflow definition database agent and

38 MOCA’09 – Modelling of Objects, Components and Agents

forwards this definition to the workflow engine agent. The workflow engine agent
uses this to create a new workflow net instance and registers as a listener with
this net in order to be able to react to changes (e.g. newly activated work items)
in that net.

ChooseWFE Interaction. The chooseWFE interaction will model the selection
of one of multiple workflow engines active in the system. Currently it is used in
the instantiateWorkflow interaction by the WFES agent, but only returns the
one active workflow engine of the system. This will be extended in the future.

UpdateWorkitemList Interaction. The updateWorkitemList interaction is started
whenever the available work items have changed in any way (i.e. an activity has
been requested, confirmed or canceled or a new workflow has been instantiated).
The changes are detected by the workflow engine which determines the exact
set of changed work items and initiates this interaction. The workflow engine
informs the WFES agent and the work item dispatcher, which distributes the
work items to eligible users by starting the offerWorkitemList interaction.

OfferWorkitemList Interaction. The offerWorkitemList interaction models the
distribution of work items to the user. It merely accepts the message send by
the work item dispatcher to a particular user agent at the end of the update-
WorkitemList interaction and forwards it to the DC responsible for the GUI
connection. The DC then initiates the display of these work items in the GUI.

UpdateActivityList Interaction. The updateActivityList interaction is the equiva-
lent of the updateWorkitemList interaction for activities. Whenever the activities
within the system change in any way (i.e. an activity is successfully requested,
completed or canceled) the workflow engine detects these changes and initiates
this interaction. As in the updateWorkitemList interaction the WFES and work
item dispatcher agents are informed and the latter informs the users of their
activities by initiating the offerActivityList interaction.

OfferActivityList Interaction. As with the offerWorkitemList interaction the of-
ferActivityList interaction merely accepts the message containing a particular
user’s current activities and forwards it to the DC, to be displayed in the user’s
GUI.

RequestWorkitem Interaction. The requestWorkitem interaction models the be-
havior of the system when an user requests a work item. Basically the user agent
requests the work item from the work item dispatcher, which initiates the au-
thenticate interaction and, if the user was successfully authenticated, forwards
the request to the WFES agent. The WFES agent then tasks the workflow en-
gine to fire the task’s internal transition that represents the request of the work
item. If every step of this interaction is successful the activity is assigned to the
user and update interactions are automatically started.

T. Wagner: A centralized Petri net- and agent-based WfMS 39

ConfirmActivity Interaction. The confirmActivity interaction implements the
successful completion of an activity. Internally it works the same way as the
requestWorkitem interaction, only that it fires the internal transition that rep-
resents the completion of the activity.

CancelActivity Interaction. The cancelActivity interaction models the cancella-
tion of an activity. It follows the same internal structure as the requestWorkitem
and confirmActivity interactions, but fires the internal transition representing
the cancellation of the activity. This causes the workflow net to revert (locally)
to the state before the activity was requested.

WorkflowEndReached Interaction. The workflowEndReached interaction is au-
tomatically started when the end of a workflow instance is reached. It removes
the references to the workflow instance from the WFES agent and informs the
initiator of the workflow that it has been completed.

5 Example Workflow

To exemplify the use of the WFMS, a short example of how to use it will now
be given. The workflow net for this example is shown in Fig. 4. It represents
a very simple process that models the behavior of a kind of technical hotline.
Costumers of a product call this hotline to report bugs or other problems with
the product. Call center employees then gather all the necessary data that is
needed by the developers to fix the problem. After the problem is fixed (also if
it couldn’t be fixed) the developer will write a report to finish the process.

Fig. 4. Example workflow net

The workflow net of Fig. 4 consists of three different tasks. The first task,
called “GatherData”, represents the call center employee gathering all the nec-
essary data. It is a form task, that opens the form “requestForm”, in which the
employee enters the data. This form is shown in Fig. 5. It contains one label
“New Request” and three text boxes. The call center employee enters a request
number, the name of the user and a description of the problem. He can cancel
the task by pressing the “Cancel” button or finish the task by pressing the “OK”

40 MOCA’09 – Modelling of Objects, Components and Agents

button. When the task is completed the data from the form window will be used
to create the result object inputForm. The second task, called “FixProblem”, is a
simple task and models the developer’s work on the problem. This task does not
have a result parameter. The inputForm object is merely passed through the task
transition. While it is not explicitly supported by the system, the information
in this object is available to the developer during the execution of the task. The
final task is called “WriteReport”. It models the last part of the process, in which
the developer writes a report about the problem, what he did to fix it and if he
was successful. It uses the data from inputForm as input data for its own form
called “reportForm”. When the task is finished a new object resultReportForm is
created with data from the form window. The process is then finished.

Fig. 5. A typical form window

In this example the system is designed to work in the following way. There
are two different application roles: Call center employee and developer. Call
center employees are workflow initiators and executors, while developers are only
workflow executors. When a call center employee takes a call and ascertains that
the problem has to be looked into by a developer, he initiates a new workflow
instance. Since in this case he is also the executor of the first task the work item
is displayed for him and he requests the work item and begins to fill out the
form that is automatically opened. When he is done he closes the form window
and confirms the task. The second task then appears on the developer’s work
item list. He can request it and begin to fix the problem with the (externally)
provided information. When he is done he confirms this task and the final task
appears in his work item list. He then requests this work item, writes the report
into the form and confirms the task. This finishes the process.

A snapshot of execution of this process is shown in Fig. 1. This figure is taken
from an user with the developer application role. It shows that the developer
is currently fixing a problem, which is shown by the “FixProblem” entry in his
activity list, and can request another problem to fix and one report to write,
which is shown by the two entries in his work item list.

T. Wagner: A centralized Petri net- and agent-based WfMS 41

6 Future Developments and Related Work

Further enhancements to the system will mostly aim at providing a higher degree
of distribution. Currently, the agent technology used in the system is not yet used
to its full potential. The agents provide an explicit structure to the system, by
clearly encapsulating the different parts of the WFMS, but agent principles do
not greatly contribute to the system. This will change with the introduction
of the agent-workflow. This agent will encapsulate a single workflow instance,
which is being executed in the system. In contrast to the current system, it
will be possible for workflows using agent-workflows to be executed on different
instances of the WFMS, thus turning the centralized version described in this
contribution into a much more distributed system.

One way to model this is to use an agent, which is basically responsible for the
execution of the structure of the workflow. The agent executes his own version
of the workflow net, but for every task he activates, he starts a new workflow
instance locally (i.e. the way it is done in the current version) on the WFMS
instance the task should be executed on. After completion, the agent receives
the result to complete his own version of the task. These local workflows can be
generic mini-workflows, which always have the same structure and only change
the one particular task, or complex sub-workflows. It is also possible to extend
the system even further and have the sub-workflows be executed by agents as
well to create a complex hierarchy.

There are more ways to use the agent technology already in place to improve
on the system. For example mobile agents can be used to make the system
more flexible or autonomous agents can be used to automate certain parts of
a workflow or even the entire system. It is also possible to exploit Petri net
features in order to enhance the system. For example the workflow nets could
be analyzed and optimized in order to raise the efficiency of execution or the
workflow nets could be used to visualize information for the workflow executors
about their current process.

Of course there are many more areas, like usability or efficiency, which can be
improved in future versions. For example the display of work items and activities
could be extended to show information specific to a particular work item or
activity. At the moment, only the general information of work items or activities
is displayed (as seen in Fig. 1).

Strongly related to this contribution is the work presented in [11] and [10].
In it, an architecture is introduced that aims to merge both workflow and agent
technology. This architecture consists of five stages, with each stage being based
on the previous one. Starting from pure WFMS and agent management systems
on stage one, each consecutive stage merges the technologies more, until in the
final stage both technologies are completely integrated into each other and both
are fully available to the user. The WFMS described in this contribution rep-
resents a practical implementation of a system, that can be classified as lying
somewhere between the second and third stage of this theoretical architecture.
The implementation of the third and fourth stages are the topic of the author’s

42 MOCA’09 – Modelling of Objects, Components and Agents

diploma thesis. This paper’s WFMS serves as the technological foundation for
that thesis.

7 Summary

In this contribution a centralized workflow management system based on Petri
nets and multi-agent technology was presented. After giving a short overview
of the particular technologies that were used in the creation of the WFMS and
describing some examples of other agent-based WFMS, the prototype was de-
scribed in detail. The structure of the overall system, as well as the individual
agents making up the system, was depicted in the main section. The graphical
user interface was also briefly described and the section was concluded with an
overview of the interactions within the system. A short example was then given
to illustrate how the system can be used in practice. The contribution concluded
with an outlook at planned and possible future developments of the system and
related work.

The centralized WFMS described in this contribution does not yet fully ben-
efit from the advantages of the agent technology, which was used to model it.
As such the system described in this text is more of a kind of groundwork for
future development and enhancement. Such further development will turn the
WFMS into a more versatile and distributed system and can also make use of
other aspects of the agent-oriented paradigm, such as autonomy and mobility,
to improve the system. Such improvement will be eased by the fact that the
agent-technology is already in place and the resulting system will make full use
of the benefits of this programming paradigm.

References

1. Lawrence Cabac. Entwicklung von geometrisch unterscheidbaren Komponenten
zur Vereinheitlichung von Mulan-Protokollen. Bachelor thesis (equiv.), University
of Hamburg, Department of Computer Science, 2002.

2. Soren Christensen and Niels Damgaard Hansen. Coloured Petri nets extended
with channels for synchronous communication. Lecture Notes in Computer Science,
815/1994:159–178, 1994. Application and Theory of Petri Nets 1994.

3. Michael Duvigneau. Bereitstellung einer Agentenplattform für petrinetzbasierte
Agenten. Diploma thesis, University of Hamburg, Department of Computer Sci-
ence, Vogt-Kölln Str. 30, D-22527 Hamburg, Germany, December 2002.

4. Lars Ehrler, Martin Fleurke, Maryam Purvis, and Bastin Tony Roy Savarimuthu.
Agent-based workflow management systems (WfMSs) - JBees: a distributed and
adaptive WfMS with monitoring and controlling capabilities. Information Systems
and E-Business Management, 4, Number 1 / January, 2006:5–23, 2005.

5. David Hollingsworth. The Workflow Reference Model. Workflow Management
Coalition. Available at http://www.wfmc.org/.

6. Thomas Jacob. Implementierung einer sicheren und rollenbasierten
Workflowmanagement-Komponente für ein Petrinetzwerkzeug. Diploma the-
sis, University of Hamburg, Department of Computer Science, Vogt-Kölln Str. 30,
D-22527 Hamburg, 2002.

T. Wagner: A centralized Petri net- and agent-based WfMS 43

7. N. R. Jennings, T.J. Norman, and P. Faratin. Adept: An agent-based approach to
business process management. ACM SIGMOD Record, 27:32–39, 1998.

8. Olaf Kummer. Referenznetze. Logos Verlag, Berlin, 2002.
9. Olaf Kummer, Frank Wienberg, Michael Duvigneau, Jörn Schumacher, Michael

Köhler, Daniel Moldt, Heiko Rölke, and Rüdiger Valk. An extensible editor and
simulation engine for Petri nets: Renew. Lecture Notes in Computer Science,
3099/2004:484–493, 2004.

10. Christine Reese. Prozess-Infrastruktur für Agentenanwendungen. PhD thesis, Uni-
versity of Hamburg, Department of Informatics, Vogt-Kölln Str. 30, D-22527 Ham-
burg, Germany, 2009. submitted; not yet published.

11. Christine Reese, Matthias Wester-Ebbinghaus, Till Dörges, Lawrence Cabac, and
Daniel Moldt. Introducing a process infrastructure for agent systems. Lecture
Notes in Computer Science, 5118/2008:225–242, 2008.

12. Heiko Rölke. Modellierung von Agenten und Multiagentensystemen – Grundlagen
und Anwendungen, volume 2 of Agent Technology – Theory and Applications. Logos
Verlag, Berlin, 2004.

13. Rüdiger Valk. On processes of object Petri nets. Report of the Department of
Informatics FBI-HH-B-185/96, University of Hamburg, Department of Computer
Science, Vogt-Kölln Str. 30, D-22527 Hamburg, Germany, June 1996.

14. Wil M.P. van der Aalst. Verification of workflow nets. Lecture Notes in Computer
Science, 1248/1997:407–426, 1997. Application and Theory of Petri Nets 1997.

15. Wil M.P. van der Aalst and Kees van Hee. Workflow Management - Models,
Methods, and Systems. The MIT Press, 2002.

16. Thomas Wagner. Modeling of a centralized Petri net- and agent-based workflow
management system. Bachelor thesis (equiv.), University of Hamburg, Department
of Informatics, 2009.

44 MOCA’09 – Modelling of Objects, Components and Agents

Identifying the structure of a narrative via an
agent-based logic of preferences and beliefs:
Formalizations of episodes from CSI: Crime

Scene Investigation™

Benedikt Löwe1,2,3, Eric Pacuit4,5, Sanchit Saraf6?

1Institute for Logic, Language and Computation, Universiteit van Amsterdam,
Postbus 94242, 1090 GE Amsterdam, The Netherlands

2Department Mathematik, Universität Hamburg, Bundesstrasse 55, 20146 Hamburg,
Germany

3Mathematisches Institut, Rheinische Friedrich-Wilhelms-Universität Bonn,
Endenicher Allee 60, 53115 Bonn, Germany;

4 Department of Philosophy, Stanford University, Building 90, Stanford, CA
94305-2155, United States of America

5Center for Logic and Philosophy of Science, Tilburg University, PO Box 90153, 5000
LE Tilburg, The Netherlands

6Department of Mathematics and Statistics, Indian Institute of Technology, Kanpur
208016, India

bloewe@science.uva.nl, epacuit@stanford.edu, sanchit@iitk.ac.in

Abstract. Finding out what makes two stories equivalent is a daunt-
ing task for a formalization of narratives. Using a high-level language of
beliefs and preferences for describing stories and a simple algorithm for
analyzing them, we determine the doxastic game fragment of actual nar-
ratives from the TV crime series CSI: Crime Scene Investigation™, and
identify a small number of basic building blocks sufficient to construct
the doxastic game structure of these narratives.

1 Introduction

1.1 General Motivation

As theorists working on narrative-based computer games, we are interested in
understanding the relevant structural properties that makes narratives more or
less interesting, or more or less interesting for a particular target group, or, in
general, to understand our notion of two stories being “essentially the same”

? The research project reported on in this paper was partially supported by the Eu-
ropean Commission (Early Stage Research Training Mono-Host Fellowship GLoRi-
Class MEST-CT-2005-020841). The third author would like to thank the Institute
for Logic, Language and Computation of the Universiteit van Amsterdam and the
Department Mathematik of the Universität Hamburg for their hospitality during the
time the formalizations for this paper were done.

that human agents seem to be able to grasp easily but which escapes a proper
formalization so far.1

Any formalization of narratives provides an obvious answer to this most
general question: given a formal language to describe narratives, two narratives
are “essentially the same” if they are structurally isomorphic in that formal
language. Whether the answer given by a fixed formalization is good depends
very much on the formal language chosen. If you choose too rich a language,
then minute differences between narratives become expressible, and thus the
derived notion of isomorphism will fail to identify some narratives as identical
even though human readers would think that they are “essentially the same”.
On the other hand, if your language is not very expressive, then all too many
narratives will be considered equivalent by the system.

So, what is the right level of detail that allows us to identify the right notion of
isomorphism? Only an empirical investigation of narratives and our willingness
to identify them as equivalent will help.

Beyond the obvious general interest in understanding our perception of nar-
ratives as structurally equivalent, there are various applications for such an un-
derstanding. If we had empirical data on which structural elements tend to make
a narrative more interesting, or which structural elements would be more appro-
priate for certain genres or audiences, we could use this in combination with
existing story synthesis engines (e.g., Mexica [19] or Façade [15]; both of which
still use human intervention for story creation) for automated story production
in computer games.

1.2 This paper

We do not claim that we have a definitive or good answer to our above questions:
the formalization given in this paper gives a first approximation based on an
agent-language with beliefs and preferences that might be a step towards a more
complete description.

In [13], the authors proposed a simple algorithm for analyzing narratives in
terms of belief states based on notions of doxastic logic. The algorithm requires
focusing on the purely doxastic part of the narratives, i.e., the game structure
in which all actions are determined by iterated beliefs about preferences of the
agents. Then, the narrative can be analyzed as a perfect information game in
which all agents may be mistaken about their iterated beliefs.

Whereas in [13, § 4], the algorithm was used to analyze a fictitious narra-
tive about love and deceit, in this paper, we focus on narratives commercially
produced for television broadcasting. In a descriptive-empirical approach we
investigate their common structural properties based on a formalization in our
system, reducing the rich narrative structure of the stories to their doxastic game
trees. The empirical results of this paper point towards the possible conclusion

1 Cf. the discussions of the notion of “analogy” in the cognitive science literature
[22,10]; cf. [11, p. 791–792] for an overview of existing formal models.

46 MOCA’09 – Modelling of Objects, Components and Agents

that from a large number of possible formal structures, commercial crime narra-
tives only use a very small number of doxastically simple basic building blocks
(§ 2.4).

1.3 Related Work and Background.

We are interested in a fragment of the formal structure of narratives, so we aim
at ignoring their presentation (i.e., choice of actors, details of dialogue, facial ex-
pressions of actors, lighting, cuts, etc.) unless it is relevant for determining the
formal structure. In narratology, these components are normally called “story”
and “discourse” (alternatively, “fabula”/“s��et” or “histoire”/“récit”) [4].
From now on, we shall use the term “discourse” to refer to the presentation
of the narrative. The abstraction of a narrative to a part of its formal structure
relates our research to the vast literature on “Story Understanding”2 which has
made tremendous progress towards analysing and synthetizing narratives:

“there is now a considerable body of work in artificial intelligence and
multi-agent systems addressing the many research challenges raised by
such applications, including modeling engaging virtual characters ... that
have personality ..., that act emotionally ..., and that can interact with
users using spoken natural language.” [26, p. 21]

Most of the work on Story Understanding goes into far more detail than
our formalization, including the discourse of the narrative. Especially applica-
tions of logic for Story Understanding deal with the understanding of the gram-
matical structure of the discourse (cf. [25]). Even models just focusing on the
story/fabula in general take more into account than our doxastic fragment.3

In terms of Mueller’s “shallow”/“deep” distinction [16, § 1.3], the depth of our
formalization is below that of the shallow understanding. Relatively close to
our approach are Story Grammars [23], invented by Rumelhart inspired by the
structuralist investigation of fairy tales by the Russian narratologist Propp [21],
the Story Beats in Façade [15], and Lehnert’s Plot units [12].

Almost none of these approaches model beliefs and knowledge of agents in
an explicit way4. A rare exception is the AIIDE 2008 paper by Chang and Soo
[3] which is very programmatic and preliminary. The restrictions to doxastically
simple building blocks and explicit modelling of theories of mind clearly relates
our formalization to work in cognitive science. For these relations, cf. § 5.1.

2 There is “a great variety of applications, which differ widely in the way they use,
create or tell stories [24]”. Cf. [1,17] for surveys, and [6,7,27] for work on interactive
story telling (“Interactive story creation ... takes place in role-playing games that
can be seen as emergent narratives of multiple authorship. ... Interactive story telling
instead relies on a predefined story, a specific plot concerning facts and occurrences.
[27, p. 32]”).

3 Cf. Young’s characterization of the story/discourse divide: “A story consists of a
complete conceptualization of the world in which the narrative is set [32]”.

4 Cf. [31] for a discussion of the lack of modelling of higher order knowledge in artificial
intelligence.

B. Löwe, E. Pacuit and S. Saraf: Structure of a narrative via agent-based logic 47

1.4 Structure of the Paper.

In §2 of this paper, we shall introduce our system, modified from [13, § 3] to in-
corporate event nodes (at which no agent is playing) and partial states. We also
discuss the basic building blocks of belief structures that we shall later encounter
in the analyzed narratives. In §3, we discuss the process of taking an actual nar-
rative and transforming it into a game of mistaken and changing beliefs, focusing
in particular about the restrictions that we imposed upon ourselves by the choice
of our formal framework. Finally, in §4, we then present the formalization of six
narratives from the first four episodes of the TV series CSI: Crime Scene Inves-
tigation™ in which we can see that the eight doxastic building blocks from § 2.4
are enough to formalize all narratives. In § 5, we summarize the findings of the
paper, connect them to phenomena in cognitive science about iterated beliefs
(§ 5.1), and discuss future directions (§ 5.2).

2 Definitions and fundamental structures

2.1 Definitions

We give a short version of the definitions from [13, § 3]. As opposed to the
discussion there, we shall explicitly use event nodes, i.e., nodes in which none of
the agents makes a decision, but instead an event happens. Structurally, these
nodes do not differ from the standard action nodes, but beliefs about events are
theoretically on a lower level (of theory of mind5) than beliefs about beliefs.

Let I be the finite set of agents whom we denote with boldface capital letters.
We reserve the symbol E ∈ I for the event nodes. If ~P = 〈P0, ...,Pn〉 is a finite

sequence of agent symbols, we write ~PP for the extension of the sequence by
another player symbol P, i.e.,

~PP := 〈P0, ...,Pn,P〉.

A tree T is a finite set of nodes together with an edge relation (in which any two
nodes are connected by exactly one path). Let tn(T) denote the set of terminal
nodes of T , and for t ∈ T , let succT (t) denote the set of immediate T -successors
of t. The depth of the tree T is the number of elements of a longest path in T ,
and we denote it by dp(T).

We fix I and T and a moving function µ : T\tn(T) → I, where µ(t) =
P indicates that it is P’s move at node t. If µ(t) = E we call t an event
node, otherwise we call it an action node. We call total orders � on tn(T)
preferences and denote its set by P. A map � : I → P is called a description.
We call functions

S : T × I≤dp(T) → PI

states, interpreting the description S(t,∅) as the true state of affairs at

position t. If S(t, ~P) is one of the descriptions defined by the state S, we interpret

S(t,P~P) as player P’s belief about S(t, ~P).

5 Cf. §§ 2.4 and 5.1.

48 MOCA’09 – Modelling of Objects, Components and Agents

2.2 The analysis

Given a tuple 〈I, T, µ, S〉, we can now fully analyze the game and predict its
outcome (assuming that the agents follow the backward induction solution). In
order to do this analysis, we shall construct labellings `S~P : T → tn(T) where

`S~P is interpreted as the subjective belief relative to ~P of the outcome of the
game if it has reached the node t. For instance, `SA

(t) = t∗ ∈ tn(T), then player
A believes that if the game reaches t, the eventual outcome is t∗.

The labelling algorithm If t is a terminal node, we just let `U := t for all states
U . In order to calculate the label of a node t controlled by player P, we need the
P-subjective labels of all of its successors. More precisely: if t ∈ T , µ(t) = P and
we fix a state U , then we can define `U as follows: find the U -true preference of
player P, i.e., �= U(t,∅)(P). Then consider the labels `UP

(t′) for all t′ ∈ succ(t)
and pick the �-maximal of these, say, t∗. Then `U (t) := t∗. Concisely, `U (t) is
the U(t,∅)(µ(t))-maximal element of the set {`Uµ(t)(t′) ; t′ ∈ succ(t)}.

Computing the true run of the game After we have defined all subjective la-
bellings, the true run can be read off recursively. Since our labels are the terminal
nodes, for each t with µ(t) = P and S, there is a unique t′ ∈ succ(t) such that
`SP

(t′) = `S(t). Starting from the root, take at each step the unique successor
determined by `S(t) until you reach a terminal node.

2.3 Partial states, notation, and isomorphism

Note that in actual narratives (as opposed to narratives invented for the purpose
of formalization, such as the narrative in [13, § 2]), we cannot expect to have full
states. Instead, we shall have some information about agents’ preferences and
beliefs that is enough to run the algorithm described in § 2.2. If Pp is the set
of partial preferences (i.e., linear orders of subsets of tn(T)) and PF(X,Y) is
the set of partial functions from X to Y , then we call partial functions from
T × Idp(T) to PF(I,Pp) partial states.

In the following, we shall use the letters vi for non-terminal nodes of T and
ti for terminal nodes. If we write

S(vi, ~P)(P) = (ti0 , ti1 , ..., tin),

we mean that in the ordering � := S(vi, ~P)(P), we have ti0 � ti1 � ... � tin . If
in such a sequence, we include a non-terminal node vi, e.g.,

S(vi, ~P)(P) = (tj , vk),

we mean that tj is preferred over all nodes following vk. Similarly,

S(vi, ~P)(P) = (vj , vk)

means that every outcome following vj is preferred over every outcome following
vk. We normally phrase preferences in these terms. When we are drawing our

B. Löwe, E. Pacuit and S. Saraf: Structure of a narrative via agent-based logic 49

game trees, we represent non-terminal nodes by vi P indicating µ(vi) = P. In
our discussions, we shall assume introspection of all agents, i.e., agents are aware
of their own preferences and iterations thereof, even though there is evidence
that introspection is not necessarily a feature of human mental processes and
awareness [18]. This simplifies notation considerably, and there are no indications
that failure of introspection is relevant in any of the narratives we analyzed.

To illustrate this, let us look at the two building blocks Expected Event and
Unexpected Event in Figure 1. In both cases, agent P prefers outcome t1 over t0.
Also in both cases, he thinks that the event will produce outcome t1 (expressed
in our language, somewhat awkwardly, as “the event agent prefers t1 over x”).
In ExEv(P), the latter belief is correct; in UnEv(P), it is incorrect.

t0 t1

v0 P //
44hhhhhhh
v1 E //

44jjjjjj
x

ExEv(P): S(v0,∅)(P) = (t1, t0); S(v0,P)(E) = (t1, x); S(v1,∅)(E) = (t1, x)
UnEv(P): S(v0,∅)(P) = (t1, t0); S(v0,P)(E) = (t1, x); S(v1,∅)(E) = (x, t1)

Fig. 1. The basic building blocks ExEv(P) and UnEv(P) of Expected Event and Un-
expected Event.

The notion of partial states give an obvious definition of isomorphism of
two formalized versions of narratives: if 〈I, T, µ, S〉 and 〈I∗, T ∗, µ∗, S∗〉 describes
two narratives (where S and S∗ are partial states), then they are isomorphic if
there are bijections π0 : I → I∗ and π1 : T → T ∗ such that

1. π1 is an isomorphism of trees,
2. π0(E) = E,
3. µ∗(π1(x)) = π0(µ(x)), and

4. S∗(π1(x), π0(~P))(π0(P)) = (π1(t), π1(t′)) if and only if S(x, ~P)(P) = (t, t′)
(where π0(~P) is the obvious extension of π0 to finite sequences of elements
of I).

2.4 Building blocks of narratives

While working with the actual narratives, we identified a number of fundamental
building blocks that recur in the investigated narratives and that can describe
all of the narratives under discussion. For our reconstruction of the narratives,
we need eight building blocks.

These building blocks can be stacked. We use the symbol x in our building
blocks to indicate that this could either be a terminal node (at the end of the
narrative) or a non-terminal node which would now become the top node of the
next stack. If the last node of a building block is controlled by an agent, then
the doxastic structure of the building blocks overlaps, as the first node of the

50 MOCA’09 – Modelling of Objects, Components and Agents

second block becomes the last node of the first block. In the case of blocks of
length 3, there could also be larger overlap, but we did not find instances of this
in the narratives investigated.

x0

v0 X //
44iiiiii
x1

S(v0,∅)(X) = (x1, x0)

Fig. 2. The basic building block Act(X) of Action.

The trivial building blocks are just actions that happen with no relevant
reasoning about them (described in Figure 2); these could be called doxastic
blocks of level −1. We denote it by Act(P) for an action by player P. Typical
examples are actions where agents just follow their whim without deliberation.
Note that being represented by a building block of level −1 does not mean that
the discourse of the narrative shows no deliberation; in fact, in our investigated
narratives we find examples of CSI agents discussing whether they should follow
their beliefs (i.e., perform a higher level action) or not, and finally decide to
perform the action without taking their beliefs into account. These would still
be formalized as blocks of level −1.

The next level of basic building blocks are those that have reasoning based
on beliefs, but not require any theory of mind at all, i.e., building blocks of level
0. The two fundamental building blocks here are expected event (ExEv(P)) and
unexpected event (UnEv(P)), explained before and described in Figure 1.

t0 t1

v0 P //
44hhhhhhh
v1 Q //

44jjjjjj
x

ExAc(P,Q): S(v0,∅)(P) = (t1, t0); S(v0,P)(Q) = (t1, x); S(v1,∅)(Q) = (t1, x)
UnAc(P,Q): S(v0,∅)(P) = (t1, t0); S(v0,P)(Q) = (t1, x); S(v1,∅)(Q) = (x, t1)

Fig. 3. The basic building blocks ExAc(P,Q) and UnAc(P,Q) of Expected Action and
Unexpected Action.

Moving beyond zeroth order theory of mind, we now proceed to building
blocks that require beliefs about beliefs. There are two such building blocks used
in our narratives, Expected Action (ExAc(P,Q)), Unexpected Action
(UnAc(P,Q)), and Collaboration gone wrong (CoGW(P,Q)) whose structure
we give in Figures 3 and 4. Let us give examples from the investigated narratives
from § 4. In the narrative The severed leg (cf. Figure 14), agent Willows informs
the victim’s husband of the state of the investigation. Based on this information,
the husband concludes that the current suspect Phil Swelco has murdered his

B. Löwe, E. Pacuit and S. Saraf: Structure of a narrative via agent-based logic 51

wife and kills Swelco. In the tree in Figure 3, the node t0 corresponds to “Wil-
lows does not give information to the husband” and t1 corresponds to “Willows
is nice to the husband, and the husband does not do anything with the informa-
tion given to him”, whereas x is the actual outcome. Willows believes that the
husband prefers t1 over x and prefers t1 over t0 herself.

t0 t1 t2

v0 P //
44hhhhhhh
v1 Q //

44hhhhhhh
v2 E //

44jjjjjj
x

S(v0,∅)(P) = (t2, t0); S(v0,P)(Q) = (t2, t1); S(v1,∅)(Q) = (t2, t1)
S(v0,P)(E) = (t2, x); S(v0,PQ)(E) = (t2, x); S(v1,Q)(E) = (t2, x)

S(v2,∅)(E) = (x, t2)

Fig. 4. The basic building block CoGW(P,Q) of Collaboration gone wrong.

The building block Collaboration gone wrong is discussed in more detail in
§ 3.3. Kyle kills James and expects Matt to cooperate in covering up the murder
as a suicide. Matt actually helps Kyle in that respect, but it doesn’t work, as
the autopsy reveals that James did not hang himself (cf. Figure 15).

Finally, we move to the building blocks that use second order beliefs. In our
narratives, there are only two such building blocks: Betrayal (Betr(P,Q)) and
Unsuccessful Collaboration with a Third (UnCT(P,Q,R)) (given in Figures 5
and 6).

t0 t1 t2

v0 P //
44hhhhhhh
v1 Q //

44hhhhhhh
v2 P //

44jjjjjj
x

S(v0,∅)(P) = (x, t0); S(v0,P)(Q) = (t2, t1); S(v1,∅)(Q) = (t2, t1)
S(v0,PQ)(P) = (t2, x); S(v1,Q)(P) = (t2, x); S(v2,∅)(P) = (x, t2)

Fig. 5. The basic building block Betr(P,Q) of Betrayal.

To give an example for Betrayal from the narrative Faked Kidnapping (cf.
Figure 12): Chip and Laura plan to fake a kidnapping of Laura in order to get
money from Laura’s husband. Laura agrees to this, but Chip betrays her and
buries her in a crate in the Nevada desert. Notice that we model the joint plan
to fake the kidnapping as a sequence of actions by Chip (“proposing the faked
kidnapping”) and Laura (“agreeing to the faked kidnapping”) with outcomes x
(“Laura is buried in the desert”), t2 (“Laura and Chip get the money from her
husband”), t1 (“Laura does not want to be part of the faked kidnapping”), and
t0 (“Chip does not propose a faked kidnapping”).

52 MOCA’09 – Modelling of Objects, Components and Agents

t0 t1 t2

v0 P //
44hhhhhhh
v1 Q //

44hhhhhhh
v2 R //

44jjjjjj
x

S(v0,∅)(P) = (t2, t0); S(v0,P)(Q) = (t2, t1); S(v1,∅)(Q) = (t2, t1)
S(v0,P)(R) = (t2, x); S(v0,PQ)(R) = (t2, x); S(v1,Q)(R) = (t2, x)

S(v2,∅)(R) = (x, t2)

Fig. 6. The basic building block UnCT(P,Q,R) of Unsuccessful Collaboration with a
Third.

3 Methodological issues

In the introduction (§ 1.1), we pointed out that finding the right notion of formal
representation for narratives is subtle and difficult. If you allow your formal
language to be too expressive, then narratives that are considered “equivalent”
by human audiences would be separated, whereas if your language is too coarse,
then non-identical narratives will be identified.

It is not at all obvious what elements a formalization with the right balance
should contain, and we consider this study as part of the endeavour of finding
out how much detail we need. Certainly, the system we propose here errs on the
side of being too coarse: Already separating story from discourse is a difficult
task, and reducing the narrative to our parsimonious doxastic fragment from
§2 requires a number of hand-crafted modelling decisions in order to fit the
narratives into our framework. In this section, we discuss a number of issues
related to the formalization of narratives in our formal language.6

3.1 The sequence of events

The narrative of a TV crime episode rarely proceeds chronologically. Often,
it starts when the corpse is found, and then proceeds to tell the story of the
detectives unearthing the sequence of events that led to the murder. Sometimes,
we see scenes of the past in flashbacks, sometimes, they are being reported by
agents. We consider all this part of the discourse of the narrative and shall
build our structures of actions and events in chronological order. Note that one
consequence of this is that our models do not take into account the beliefs of the
audience.

3.2 Imperfect or incomplete information

Our model is based on perfect information games with mistaken beliefs. However,
in many cases, imperfect or incomplete information can be mimicked in our
system by event nodes. Let us give a simple examples:

6 The corresponding caveat for Lehnert’s set-up of Plot units is the problem of “Rec-
ognizing plot units” [12, § 10].

B. Löwe, E. Pacuit and S. Saraf: Structure of a narrative via agent-based logic 53

Example. Detective Miller thinks that Jeff is Anne’s murderer while, in fact, it is Peter. Miller
believes that Jeff will show up during the night in Anne’s apartment to destroy evidence and thus
hides behind a shower curtain to surprise Jeff. However, Peter shows up to destroy the evidence,
and is arrested.

The natural formalization would be an imperfect or incomplete information
game, but the structure given in Figure 7 can be used to formalize the narrative
with M representing Miller, J Jeff, and P Peter. The event node v1 should be
read as “Peter turns out to be Anne’s murderer”. Nodes t1 and t3 are “Peter
(Jeff) is the murderer, returns to the apartment and is caught”, respectively;
nodes t2 and t4 are “Peter (Jeff) is the murderer and does not return to the
apartment”.

We let S(v0,M)(E) = (v3, v2) (i.e., Miller believes that Jeff will turn out to
be the murderer), S(v3,M)(J) = t3, S(v1,∅)(E) = (v2, v3) (i.e., Peter is the
actual murderer), and S(v2,∅)(P) = (t1, t2) (i.e., Peter in fact plans to return
to the apartment).

t0 v2 P //

))RRRRRR t1

v0 M //

44jjjjjjj
v1 E

))TTTTTT

55jjjjjj
t2

v3 J //
**TTTTTT t3

t4

Fig. 7. Mimicking imperfect information by an event node v1 representing “Peter turns
out to be the murderer”.

Note that this is not a natural way of modelling imperfect information and
future proposals for a formalization would have to deal with this by having a more
liberal underlying structure. However, we found that for the chosen narratives
from the series CSI: Crime Scene Investigation™, the impact on the adequacy
of our formalizations was relatively minor.7

3.3 Not enough information

As mentioned in § 2.3, we often do not have enough information to give the full
state, but only enough of the state that allows us to formally reconstruct the
sequence of events and actions. In general, this is not a problem, but sometimes,
the narrative is ambiguous on what happened or why it happened, and we are
not even able to reconstruct the formal structure without any doubts.

7 We suspect that one of the reasons is that “strictly go by the evidence” is one of
the often repeated explicit creeds of the CSI members, prohibiting the actors from
letting beliefs about facts influence their actions. This has its formal reflection in
the fact that the investigators play only a minor rôle in our formalizations, often
occurring in event nodes, and rarely making any decisions.

54 MOCA’09 – Modelling of Objects, Components and Agents

We can give an example from the narratives investigated in § 4: In the nar-
rative Pledging gone wrong, we see in a brief flashback scene that (the student)
Kyle murders (his fellow student) James. There is a cut, and after that we see
that (the student) Matt enters, and Kyle and Matt discuss what to do. The
whole scene lasts but a few seconds, and the narrative does not give any clue
whether Kyle was expecting Matt to enter or not. There are various different
ways to formalize this brief sequence of events as described in Figure 8. In option
(a), we consider Kyle’s action almost as a joint action: he is murdering James
under the (correct and never discussed) assumption that Matt will help him
to cover this up. In option (b), we allow Matt to consider not helping Kyle,
and then have to model Kyle as correctly assuming that Matt will help him,
i.e., S(v1,K)(M) = (x, t1) and S(v1,∅)(M) = (x, t1). In option (c), we now
model the entering of Matt after the murder as an event and have to decide
whether Kyle expected that this happens or not. One could take the casual tone
of Kyle when Matt enters as an indication of lack of surprise, and therefore
choose S(v1,K)(E) = (v2, t1).

(a) t

v0 K

44jjjjjj // x

(b) t0 t1

v0 K //
44hhhhhhh
v1 M //

44jjjjjj
x

(c) t0 t1 t2

v0 K //
66llll
v1 E //

66llll
v2 M //

77oo
x

Fig. 8. Three different formalizations of the interaction between Kyle and Matt in the
narrative Pledging gone wrong.

Which of the three options is correct? We believe that there is no good answer
that does not take into account the narrative as a whole. In this particular
case (see § 4), we decided to go with option (b), as Matt’s decision is explicitly
relevant in the last scenes of the narrative when Matt decides to tell the truth. We
therefore decided that having a decision node for Matt represents the character
of the narrative most appropriately. It is unlikely that modelling decisions like
this can always be uncontroversial. The problem of judging what is the natural
formalization from the narrative is exemplified once more in § 3.4.

3.4 Relevant information

In § 3.3 we have seen that the narrative sometimes does not allow us to uncontro-
versially choose the formalization. The dual problem to this is that the discourse
is often much richer than the structure necessitates. Let us explain this in the
following three examples:

B. Löwe, E. Pacuit and S. Saraf: Structure of a narrative via agent-based logic 55

Example 1. John and Sue are a happily married couple when John’s old friend, Peter, suddenly
shows up after no contact for seven years, inviting himself for dinner. Peter asks John for a large
amount of money without giving any reasons. Sue had always disliked Peter, and after Peter had
left, Sue urged her husband not to give him any money. After a long discussion, John sighs and
agrees to Sue’s request. The couple goes to bed, but after Sue is sound asleep, John sneaks into
the living room, gives Peter a call and promises to pay. After two weeks, Sue finds out that a
large amount of money is missing from their joint bank account.

Example 2. ... The couple goes to bed, but after Sue is sound asleep, John sneaks into the living
room, gives Peter a call and promises to pay. Peter is honestly surprised, as he had not expected
this after the rather icy atmosphere at the dinner table. After two weeks, ...

Example 3. ... John sneaks into the living room, and gives Peter a call, intending to give him
the money. However, John did not know how deep in trouble Peter was. After Peter noticed the
icy atmosphere at the dinner table, he had taken the elevator to the rooftop of John’s apartment
building. There, he takes John’s call, says “Good bye, John, you were always a good friend”, and
jumps, before John can tell him that he’ll give him the money. John shouts “I’ll give you the
money” into the phone, but it is too late. When he turns around, Sue is standing behind him.

t0

v0 J

55jjjjjj // t1

Fig. 9. The tree diagram for all three example narratives about John, Sue and Peter.

The tree structure of all of these narratives is the same, viz. the one de-
picted in Figure 9. Only the partial states differ slightly. In Example 1, we have
S(v0,S)(J) = (t0, t1) and S(v0,∅)(J) = (t1, t0) which explains Sue’s surprise.
In Examples 2 and 3, we have in addition S(v0,P)(J) = (t0, t1) representing
Peter’s belief in both narratives that John will not give him the money.

Structurally, Examples 2 and 3 are isomorphic in the sense of § 2.3 and slightly
different from Example 1. However, we are sure that most readers will agree that
Examples 1 and 2 are closer to each other than to Example 3. This difference does
not lie in the event and action structure of the narratives, but in the discourse.
In Example 3, Peter’s disbelief in John giving him the money intensifies the
emotional difference between the terminal nodes t0 and t1, and thus creates a
different feeling. As the modeller, we should have to make the decision of whether
we include S(v0,P)(J) = (t0, t1) in the formalization of Example 2.

4 The six narratives formalized

In this section, we shall give the formal structure of six narratives from the first
four episodes of season one of the drama series CSI: Crime Scene Investigation™.
These four episodes contain ten narratives some of which involved material from
other episodes than the first four and others had interlinking events between
narratives; we left these unconsidered for the sake of simplicity.8

8 Cf. [2]. Episode 1, entitled “Pilot”, was written by Anthony E. Zuiker and directed
by Danny Cannon; Episode 2, entitled “Cool Change” was written by Anthony E.
Zuiker and directed by Michael W. Watkins; Episode 3, entitled “Crate ’n Burial”,

56 MOCA’09 – Modelling of Objects, Components and Agents

Trick roll (episode 1; agents victim, V, Kristy Hopkins, K)

A prostitute, Kristy Hopkins, puts the drug scopolamine on her breasts to knock out
her customers and steal their possessions. A victim is found robbed at a crime scene by
agent Nick Stokes with a discolouration around his mouth. Shortly afterwards, Hopkins
loses consciousness while driving. Agent Stokes connects the two cases and finds a similar
discoloration on Hopkins’s breast.

Winning a fortune (episode 2; agents Jamie Smith, J, Ted Sallanger, T)

Jamie Smith and her boyfriend Ted Sallanger are gambling in Las Vegas. Smith urges
Sallanger to continue and Sallanger wins the $40 million jackpot. Shortly afterwards, Sal-
langer breaks up with Smith, and they have a fight during which she hurts him with a
bottle and leaves the apartment. Later on, she returns to kill him with a candlestick. Her
return is not properly filed by the key card system of the hotel, so at first the key card
records of the hotel seem to confirm her story that she did not return to the room after
the fight.

Faked kidnapping (episode 3; agents Chip Rundle, C, Laura Garris, L, the CSI
unit, U)

Chip Rundle and Laura Garris plan to fake a kidnapping and get a ransom from Garris’s
husband. However, after the staged kidnapping, Rundle turns on Garris and buries her in
a crate in the Nevada desert. Based on some dirt on the bedroom carpet, the CSI unit
manages to find Garris before she dies. In the meantime, Garris’s husband has paid the
ransom. When he collects the ransom, Rundle is arrested. Confronted with the facts, Garris
does not tell the police that Rundle was the kidnapper, but his voice is matched to the
voice of the ransom phone call. The CSI unit decides to investigate further and finds that
the evidence is not consistent with a real kidnapping. A blood test confirms that Garris
was never drugged and leads to Garris’s arrest.

Hit and run (episode 3; agents Charles Moore, C, James Moore, J)

The young James Moore kills a young girl in a car accident and flees the scene. The CSI
unit finds an imprint of the license plate on a bruise on the body of the victim and traces
Moore. Moore’s grandfather Charles wants to protect his grandson and claims that he was
the driver. The CSI unit finds that the position of the car seat is not consistent with this
claim. The grandfather modifies the story and claims that he was the driver at the time of
the accident, but after that, the grandson took the wheel as Charles had banged his head
during the accident. Further investigation brings forward a piece of tooth that the driver
lost during the accident and the CSI unit matches this to James Moore.

The severed leg (episode 4; agents Catherine Willows, C, Winston Barger, W)

A female body with a severed leg is found in Lake Mead. Her stomach contents lead the
CSI to a restaurant near the lake where it is established that she had dinner with a Phil
Swelco. Swelco admits that he was having an affair with the victim. The discussion between
the CSI and Swelco is observed by the victim’s husband, Winston Barger, who asks how
Swelco is related to Wendys death. CSI Willows informs Barger about the state of the
investigation. The CSI find the boat and establish that the victim tried to restart the
engine, dislocated her shoulder, lost her balance, hit her head, and fell into the water.
When the CSI come to Swelco, they find him dead in his house, murdered by Barger who
thought he was avenging his wife.

was written by Ann Donahue and directed by Danny Cannon; Episode 4, entitled
“Pledging Mr. Johnson”, was written by Josh Berman and Anthony E. Zuiker and
directed by Richard J. Lewis.

B. Löwe, E. Pacuit and S. Saraf: Structure of a narrative via agent-based logic 57

Pledging gone wrong (episode 4; agents James Johnson, J, Jill Wentworth, W,
Kyle Travis, K, Matt Daniels, M)

During a pledging ceremony in a fraternity, James Johnson is being bullied by Kyle Travis.
The new students have to go to a sorority and get some body part signed by the female
students. Johnson asks Travis’s girlfriend, Jill Wentworth, to sign his private parts and she
agrees. Travis is very angry and asks Johnson privately to allow him to insert a piece of
raw liver on a noose. When Travis tries to pull it out, the noose breaks and Johnson chokes
to death while Travis watches. Matt Daniels enters and is convinced by Travis to cover
up the murder. They stage Johnson’s death as a hanging suicide. However, the autopsy
reveals that the death was not death by hanging, and the piece of raw liver is found. Travis
and Daniels change their story and tell that they tried to save Johnson by performing the
Heimlich maneuver, but no evidence of this is found. The CSI unit finds out that the
signature on Johnson’s private parts belongs to Travis’s girlfriend, and finally Daniels tells
the truth.

t0 t1 t2

v0 V //
44hhhhhhh
v1 K //

44hhhhhhh
v2 E //

44jjjjjj
t3

S(v0,J)(K) = (t1, v2); S(v1,∅)(K) = (t2, t1); S(v1,K)(E) = (t2, t3)
S(v2,∅)(E) = (t3, t2)

Fig. 10. The formalization of Trick roll, consisting of UnAc(V,K) and UnEv(K).

t0 t1 t2 t3 t4 t5

v0 J //
66mmmm
v1 T //

66mmmm
v2 E //

66mmmm
v3 T //

66mmmm
v4 J //

66mmmm
v5 E //

77pp
t6

S(v0,J)(T) = (t1, v2); S(v1,∅)(T) = (v2, t1); S(v0,∅)(J) = (t1, t0)
S(v2,T)(E) = (t2, v3); S(v1,∅)(T) = (t2, t1); S(v2,∅)(E) = (v3, t2)
S(v3,T)(J) = (t4, v5); S(v3,∅)(T) = (t4, t3); S(v4,∅)(J) = (t5, t4)
S(v4,J)(E) = (t5, t4); S(v4,∅)(J) = (t5, t4); S(v5,∅)(E) = (t4, t5)

Fig. 11. The formalization of Winning a fortune, consisting of ExAc(J,T), UnEv(T),
UnAc(T,J, and UnEv(J).

Here, we shall reconstruct all six narratives in terms of the basic building
blocks given in § 2.4.

One of our narratives does not even contain first-order beliefs: Hit and run,
formalized as Figure 13.

Half of our narratives involves basic building blocks of at most level 1, for-
malized in Figures 10, 11, and 14. The remaining two narratives have blocks of
level 2. These are Faked kidnapping, formalized in Figure 12 and Pledging gone
wrong, formalized in Figure 15.

58 MOCA’09 – Modelling of Objects, Components and Agents

t0 t1 t2 t3 t4 t5 t6 t7

v0 C //
66mmmm
v1 L //

66mmmm
v2 C //

66llll
v3 E //

66mmmm
v4 L //

66mmmm
v5 E //

66llll
v6 U //

66llll
v7 E //

77pp
t8

S(v0,∅)(C) = (t3, t2, t0, t1); S(v2,∅)(C) = (t3, t2); S(v2,C)(E) = (t3, v4)
S(v0,C)(L) = (t2, t1, v3); S(v0,CL)(C) = (t2, v3); S(v1,L)(C) = (t2, v3)

S(v1,∅)(L) = (t2, t1, v3); S(v3,∅)(E) = (v4, t3)
S(v4,L)(E) = (t5, v6); S(v4,∅)(L) = (t5, t4); S(v5,∅)(E) = (v6, t5)

S(v6,∅)(U) = (v7, t6); S(v7,∅)(E) = (t7, t8)

Fig. 12. The formalization of Faked kidnappping, consisting of Betr(C,F), UnEv(C),
UnEv(J), and ExEv(U).

t0 t1 t2 t3 t4 t5

v0 J //
66mmmm
v1 E //

66llll
v2 C //

66llll
v3 E //

66llll
v4 C //

66llll
v5 E //

77pp
t6

S(v0,J)(E) = (t1, v2); S(v0,∅)(J) = (t1, t0); S(v1,∅)(E) = (v2, t1)
S(v2,C)(E) = (t3, v4); S(v2,∅)(C) = (t3, t2); S(v3,∅)(E) = (v4, t3)
S(v4,C)(E) = (t5, t6); S(v4,∅)(C) = (t5, t4); S(v5,∅)(E) = (t6, t5)

Fig. 13. The formalization of Hit and run, consisting of UnEv(J), UnEv(C), and
UnEv(C).

t0 t1

v0 C //
44hhhhhhh

v1 W //
44iiiiii
t2

S(v0,C)(W) = (t1, t2); S(v0,∅)(C) = (t1, t0); S(v1,∅)(W) = (t2, t1)

Fig. 14. The formalization of The severed leg, consisting of UnAc(C,W).

5 General conclusion

In § 4, we have seen that ten narratives from a crime series commercially pro-
duced for TV entertainment show a lot of recurring structures. A total number
of eight basic building blocks is able to describe the event and action structure
of all of the six narratives; most of the building blocks involve only zeroth- and
first-order beliefs, and there are only two instances of genuine second-order be-
liefs. Not surprisingly, we see that second-order beliefs typically show up in those
parts of the crime narratives that do not directly related to solving the crime,
but to interpersonal interaction between the agents. While mistaken belief is a
relatively common phenomenon, changing preferences and beliefs did not occur
in any of the formalized narratives.

5.1 Restrictions on orders of theory of mind

The fact that in concretely given narratives, we only encounter building blocks
of level 2 and lower corresponds very well to experimental research in orders of

B. Löwe, E. Pacuit and S. Saraf: Structure of a narrative via agent-based logic 59

t0 t1 t2 t3 t4 t5 t6 t7

v0 J //
66llll

v1 W //
55llll
v2 K //

55llll
v3 M //

66llll
v4 E //

66llll
v5 K //

66llll
v6 E //

66llll
v7 M //

77oo
t8

S(v0,J)(W) = (t2, t1); S(v0,JW)(K) = (t2, v3); S(v0,J)(K) = (t2, v3)
S(v0,∅)(J) = (t2, t0, t1); S(v1,∅)(W) = (t2, t1)

S(v2,K)(M) = (t4, t3); S(v2,K)(E) = (t4, v5); S(v2,KM)(E) = (t4, v5)
S(v2,∅)(K) = (t4, t2, t3); S(v3,∅)(M) = (t4, t3); S(v4,∅)(E) = (v5, t4)
S(v5,K)(E) = (t6, v7); S(v5,∅)(L) = (t6, t5); S(v6,∅)(E) = (v7, t6)

S(v7,∅)(M) = (t7, t8)

Fig. 15. The formalization of Pledging gone wrong, consisting of UnCT(J,W,K),
CoGW(K,M), UnEv(K), and Ac(M).

theory of mind. Both in experimental game theory (as a reaction to the fact
that human beings do not seem to follow the mathematical predictions of game
theory) and in psychology and cognitive science, researchers have investigated
the limits of the capacity of human cognition to reason about iterated beliefs.

In game theory, this led to Herbert Simon’s notion of “Bounded Rationality”.
Stahl and Wilson have investigated levels of belief in games [29] and identified
“most participants’ behavior ... as being observationally equivalent with one
specific type” from their list of five types: ‘level–0’, ‘level–1’, ‘level–2’, ‘näıve
Nash’, and ‘worldly’. There is evidence from evolutionary game theory [28] that
even in a population with players of arbitrary depth of theories of mind, the
simple types will never be driven out of the population (this argument is the
foundation of the decision of Stahl and Wilson to restrict their attention to the
above mentioned five types as there is little advantage to move beyond level–2
[29, p. 220]).

In psychology, the study of the development and use of second-order be-
liefs started with Perner and Wimmer [20] and was continued in experiments
by Hedden and Zhang [8], Keysar, Lin, and Barr [9], Verbrugge and Mol [30],
and Flobbe, Verbrugge, Hendriks, and Krämer [5], to name but a few. The ex-
perimental evidence suggests that many adults only apply first-order theory of
mind (even this is not always done without errors, cf. [9, Experiment 1]) and few
progress to second-order theory of mind and beyond. Our results are perfectly
in line with this.

5.2 Future work

A lot of the suspense and enjoyment in crime narratives comes from the fact
that the audience (and the detectives) do not know who committed the crime.
As a consequence, the most natural way to model crime narratives would be by
imperfect information games or incomplete information games or games involv-
ing awareness. Our formal model described in § 2 is purely based on a perfect
information game model. In § 3.2, we saw that this was not a serious restriction
for the investigated narratives, but in general, we feel that a formal language

60 MOCA’09 – Modelling of Objects, Components and Agents

should be able to express these phenomena. We see it as a major task for the
future to develop a version of our formal model that incorporates some aspects
of imperfect or incomplete information or awareness. Such a model would be
able to deal much more easily and naturally with the issues discussed in § 3.2.
Another component that could turn out to be important is the representation of
plans of agents (cf. [33] for the inclusion of planning into a story engine, and [14]
for the inclusion of a planning engine for artificial agents) in the formal language.
This leads to the natural proposal to enhance our formal system by including
these aspects; however, this will have to be done with caution in order to retain
the simplicity of the system: there are many formal models that can powerfully
deal with various aspects of communication and reasoning, but we do not want
to jeopardize perspicuity and ease of use of our formal system.

Once a system has been developed that can capture many relevant aspects
of narratives, larger numbers of narratives, also from different genres could be
translated into this formal system in order to form a corpus for investigating
various important and wide-ranging empirical questions.

References

1. R. Alterman. Understanding and summarization. Artificial Intelligence Review,
5:239–254, 1991.

2. D. Cannon, M. W. Watkins, R. J. Lewis, L. Antonio, K. Fink, M. Shapiro, T. J.
Wright, and O. Scott, directors. CSI : Crime Scene Investigation™. Seizoen Één.
Aflevering 1.1–1.12. CBS Broadcasting Inc./RTL Nederland B.V., 2008. DVD.

3. H.-M. Chang and V.-W. Soo. Simulation-based story generation with a theory
of mind. In M. Mateas and C. Darken, editors, Proceedings of the Fourth Arti-
ficial Intelligence and Interactive Digital Entertainment International Conference
(AIIDE 2008), pages 16–21. AAAI Press, 2008.

4. S. B. Chatman. Story and Discourse: Narrative Structure in Fiction and Film.
Cornell University Press, 1980.

5. L. Flobbe, R. Verbrugge, P. Hendriks, and I. Krämer. Children’s application of
theory of mind in reasoning and language. Journal of Logic, Language and Infor-
mation, 2008. to appear.

6. D. Grasbon. Konzeption und prototypische Implementation einer Storyengine:
Dynamisch-reaktives System zum Erzählen nichtlinear-interaktiver Geschichten
bei größtmöglicher Spannung, gedanklicher Immersion, Identifikation und Moti-
vation des Spielers, 2001. Diplomarbeit, Technische Universität Darmstadt.

7. D. Grasbon and N. Braun. A morphological approach to interactive storytelling.
netzspannung.org/journal, special issue:337–340, 2001. Proceedings: cast01 // liv-
ing in mixed realities, September 21 22, 2001, Schloss Birlinghoven, Conference
on artistic, cultural and scientific aspects of experimental media spaces.

8. T. Hedden and J. Zhang. What do you think I think you think? Strategic reasoning
in matrix games. Cognition, 85:1–36, 2002.

9. B. Keysar, S. Lin, and D. J. Barr. Limits on theory of mind use in adults. Cognition,
89:25–41, 2003.

10. S. Lam. Affective analogical learning and reasoning. Master’s thesis, School of
Informatics, University of Edinburgh, 2008.

B. Löwe, E. Pacuit and S. Saraf: Structure of a narrative via agent-based logic 61

11. L. B. Larkey and B. C. Love. CAB: Connectionist analogy builder. Cognitive
Science, 27:781–794, 2003.

12. W. G. Lehnert. Plot units and narrative summarization. Cognitive Science, 4:293–
331, 1981.

13. B. Löwe and E. Pacuit. An abstract approach to reasoning about games with
mistaken and changing beliefs. Australasian Journal of Logic, 6:162–181, 2008.

14. M. Magnusson. Deductive planning and composite actions in Temporal Action
Logic, 2007. Licentiate Thesis, Linköping University.

15. M. Mateas and A. Stern. Integrating plot, character and natural language pro-
cessing in the interactive drama Façade. In S. Göbel, N. Braun, U. Spierling,
J. Dechau, and H. Diener, editors, Technologies for Interactive Digital Storytelling
and Entertainment. TIDSE 03 Proceedings, volume 9 of Computer Graphik Edi-
tion. Fraunhofer IRB Verlag, 2003.

16. E. T. Mueller. Story understanding through multi-representation model construc-
tion. In S. Nirenburg, editor, Human Language Technology Conference, Proceedings
of the HLT-NAACL 2003 workshop on Text meaning – Volume 9, pages 46–53. As-
sociation for Computing Machinery, 2003.

17. E. T. Mueller. Story understanding. In L. Nadel, editor, Encyclopedia of Cognitive
Science. John Wiley & Sons, Inc., 2008.

18. R. E. Nisbett and T. D. Wilson. Telling more than we can know: Verbal reports
on mental processes. Psychological Review, 84:231–259, 1977.

19. R. Pérez y Pérez and M. Sharples. Mexica: A computer model of a cognitive
account of creative writing. Journal of Experimental and Theoretical Artificial
Intelligence, 13(2):119–139, 2001.

20. J. Perner and H. Wimmer. “John thinks that Mary thinks that ...”, Attribution of
second-order beliefs by 5- to 10-year-old children. Journal of Experimental Child
Psychology, 39:437–471, 1985.

21. V. Propp. Morfologi� skazki. Akademija, Leningrad, 1928.
22. M. J. Rattermann and D. Gentner. Analogy and similarity: Determinants of acces-

sibility and inferential soundness. In Proceedings of the Ninth Annual Conference of
the Cognitive Science Society, pages 23–35, Hillsdale NJ, 1987. Lawrence Erlbaum.

23. D. E. Rumelhart. Notes on a schema for stories. In D. G. Bobrow and C. A.
M., editors, Representation and Understanding: Studies in cognitive science, pages
211–236. Academic Press, 1975.

24. L. Schäfer. Models for digital storytelling and interactive narratives. In A. Clarke,
editor, COSIGN 2004 Proceedings, pages 148–155, 2004.

25. L. K. Schubert and C. H. Hwang. Episodic Logic meets Little Red Riding Hood:
A comprehensive natural representation for language understanding. In L. Iwan-
ska and S. C. Shapiro, editors, Natural language processing and knowledge repre-
sentation: Language for Knowledge and Knowledge for Language, pages 111–174.
MIT/AAAI Press, 2000.

26. M. Si, S. C. Marsella, and D. V. Pynadath. Thespian: Using multi-agent fitting to
craft interactive drama. In M. Pechoucek, D. Steiner, and S. Thompson, editors,
International Conference on Autonomous Agents. Proceedings of the fourth inter-
national joint conference on Autonomous agents and multiagent systems. Utrecht,
The Netherlands, July 25–29, 2005, pages 21–28, 2005.

27. U. Spierling, D. Grasbon, N. Braun, and I. Iurgel. Setting the scene: playing
digital director in interactive storytelling and creation. Computers & Graphics,
26(1):31–44, 2002.

28. D. O. Stahl. Evolution of smartn players. Games and Economic Behaviour, 5:604–
617, 1993.

62 MOCA’09 – Modelling of Objects, Components and Agents

29. D. O. Stahl and P. W. Wilson. On players’ models of other players: Theory and
experimental evidence. Games and Economic Behavior, 10:218–254, 1995.

30. R. Verbrugge and L. Mol. Learning to apply theory of mind. Journal for Logic,
Language and Information, 2008. to appear.

31. A. Witzel and J. Zvesper. Higher-order knowledge in computer games. In
F. Guerin, B. Löwe, and W. Vasconcelos, editors, AISB 2008 Convention. Com-
munication, Interaction and Social Intelligence, 1st–4th April 2008, University of
Aberdeen. Volume 9: Proceedings of the AISB 2008 Symposium on Logic and the
Simulation of Interaction and Reasoning, pages 68–72, Aberdeen, 2008.

32. R. M. Young. Story and discourse: A bipartite model of narrative generation in
virtual worlds. Interaction Studies, 8:177–208, 2007.

33. R. M. Young, M. O. Riedl, M. Branly, A. Jhala, R. Martin, and C. Saretto. An
architecture for integrating plan-based behavior generation with interactive game
environments. Journal of Game Development, 1, 2004.

B. Löwe, E. Pacuit and S. Saraf: Structure of a narrative via agent-based logic 63

64 MOCA’09 – Modelling of Objects, Components and Agents

A Petri Net based Prototype
for MAS Organisation Middleware

Michael Köhler-Bußmeier, Matthias Wester-Ebbinghaus

University of Hamburg, Department for Informatics
Vogt-Kölln-Str. 30, D-22527 Hamburg

(koehler,wester)@informatik.uni-hamburg.de

Abstract. This contribution presents a prototype middleware for the
complete organisational teamwork, like team formation, negotiation, team
planning, coordination, and transformation.
Organisations are modelled in Sonar, a Petri net based specification
formalism for multi-agent organisations.
Sonar models are specific enough to generate all the configuration data
– in the spirit of the model driven architecture idea – for our middleware
in an automated way.

1 Organisation-centered Design of Multi-Agent Systems

Organisation-oriented software engineering is a discipline which incorporates re-
search trend from distributed artificial intelligence, agent-oriented software engi-
neering, and business information systems (cf. [1, 2] for an overview). The basic
metaphors built around the interplay of the macro level (i.e. the organisation)
and the micro level (i.e. the agent). Organisation-oriented software models are
very interesting especially for self- and re-organising systems since the systems
structure is taken into account by representing it explicitly.

The following work is based on the organisation model Sonar which we
have presented in [3], and its theoretical properties in [4]. The paper presents a
prototype middleware for the complete organisational teamwork.

First of all we like to have a rapid development of our middleware prototype.
Therefore we need a specification language with powerful and high-level features,
like pattern matching or synchronisation patterns. As a second requirement we
like the specifications to be executable. As a third requirement we are interested
in well established analysis techniques to study the prototype’s behaviour. As a
fourth requirement we like the specification to be as close to the formal Sonar
model as possible. And as a fifth requirement we want that the middleware can
be generated from the Sonar model automatically.

Since Sonar-models are based on Petri nets we have chosen high-level Petri
nets [5] as our specification language, so we can reuse the models basic struc-
tures by enriching them with high-level features, like data types, arc inscription
function etc. Petri nets are well known for their precise and intuitive semantic

and their well established analysis techniques, including model checking or lin-
ear algebraic techniques. We choose the formalism of reference nets, a dialect of
high-level nets which are simulated by the Renew simulator [6].

The contribution is structured as follows: Section 2 gives a formal model of
organisations based on Petri nets. The set of possible teams is modelled as a so-
called R/D net. Section 3 describes stratified Sonar models which are used for
self-organisation where the higher-levels of the system reorganise the lower ones.
Section 4 illustrates the structure of our target system: Sonar-models are com-
piled into a multi-agent system consisting of so called Position-Agents, i.e. agents
that are responsible for the organisational constraints. Section 5 describes the
middleware prototype generated from Sonar-models. The middleware executes
and controls all the organisational activities, like team formation, negotiation,
team planning, coordination, and transformation. The paper closes with a con-
clusion and an outlook.

2 The Underlying Theoretical Model: SONAR

In the following we give a short introduction into our modelling formalism, called
Sonar. A detailed discussion of the formalism can be found in [3], its theoretical
properties are studied in [4]. A Sonar-model encompasses (i) a data ontology,
(ii) a set of interaction models (called distributed workflow nets), (iii) a model,
that describes the team-based delegation of tasks (called role/delegation nets),
(iv) a network of organisational positions, and (v) a set of transformation rules
(cf. [4, 3] for details).

Fig. 1. A Sonar-Model

Figure 1 illustrates the relationship between the Sonar interaction model,
the delegation model and the position network (aspects (ii) to (iv), omitting
data-related aspects (i) and deferring transformation rules (v) until Section 3).
It describes the relationship between some positions (broker, virtual firm, re-
quester, etc.) in terms of their respective roles (Producer, Consumer etc.) and

66 MOCA’09 – Modelling of Objects, Components and Agents

associated delegation links. In this scenario, we have a requester and two suppli-
ers of some product. Coupling between them is provided by a broker. (Note that
for this simplified model brokerage is an easy job, since there are exactly two pro-
ducers and one consumer. In general, we have several instances for both groups
with a broad variety of quality parameters making brokerage a real problem.)
From a more fine-grained perspective, the requester and one of the suppliers
consist of delegation networks themselves. For example, in the case of the virtual
firm supplier, we can identify a management level and two subcontractors. The
two subcontractors may be legally independent firms that integrate their core
competencies in order to form a virtual enterprise (e.g. separating fabrication of
product parts from their assembly). The coupling between the firms constitut-
ing the virtual enterprise is apt to be tighter and more persistent than between
requester and supplier at the next higher system level, which provides more of
a market-based and on-the-spot connection.

Basic Notations Sonar relies on the formalism of Petri nets. A Petri net is a
tuple N = (P, T, F) where P is a set of places, T is a set of transitions, disjoint
from P , i.e. P∩T = ∅, and F ⊆ (P×T∪T×P) is the flow relation. In the following
we identify the relation F with its characteristic function F : (P ×T ∪T ×P) →
{0, 1}. A Petri net K = (B, E, l) is called a causal net whenever l∗ is a partial
order. A marking m : P → N assigns to each place the number of tokens lying
there. The preset of a node y is •y := (_ F y) and postset is y• := (y F _). The
set of places with empty preset is ◦N = {x ∈ P ∪ T | •x = ∅}. The set of places
with empty postset is N◦ = {x ∈ P ∪ T | x• = ∅}. For causal nets ◦N are the
minimal and N◦ the maximal elements. A transition t ∈ T of a net N is enabled
in the marking m iff ∀p ∈ P : m(p) ≥ F (p, t) holds. The successor marking
when firing t is m′(p) = m(p)−F (p, t)+F (t, p). We denote the enabling of t in
marking m by m

t−→
N

. Firing of t is denoted by m
t−→
N

m′. The net N is omitted if
it is clear from the context. The notation is extended to words w = t1 · · · tn ∈ T ∗

of transitions in the obvious way. For a general introduction into Petri nets we
refer to [5].

Role/Delegation Nets In Sonar a formal organisation is characterised as a net-
work of organisational positions . Each position is responsible for the execution
or delegation of several tasks. In our model Role/Delegation (R/D) nets [4] are
used to describe all the information about task delegation. A R/D net is a Petri
net (P, T, F) where each task is modelled by a place p and each task implementa-
tion (delegation/execution) is modelled by a transition t. A place p with •p = ∅
models an initial task , while •p 6= ∅ models a subtask . Transitions t ∈ T with
t• 6= ∅ are called delegative, transitions with t• = ∅ are called executive. Each
place p is labelled by a role R(p) and each transition t with a DWF net D(t) (see
below). An example R/D net is given on the left side of Figure 1. The positions
of our example model in Figure 1 are drawn as grey boxes. It has the positions:
broker, virtual firm, requester, etc.

M. Köhler-B. and M. Wester-E.: MAS organisation middleware 67

Distributed Workflow Nets A distributed workflow net (DWF net) is a multi-
party version of the well-known workflow nets [7] where the parties are called
roles. Roles are used in DWF nets to abstract from concrete agents. For example,
the two roles Producer and Consumer have the same form of trading interaction
no matter which agent is producing or consuming. The right side of Figure 1
shows the DWF net PC that describes the interaction between both roles: First
the producer executes the activity produce, then sends the produced item to the
consumer, who receives it. The consumer sends an acknowledge to the producer
before he consumes the item.1 Technically speaking roles are some kind of type
for an agent describing its behaviour. Note that agents usually implement several
roles.

Positions and Organisations Positions define which entity is responsible for the
existing delegation tasks.2 This relationship is modelled as a set of disjoint sub-
sets of the nodes P ∪ T of the R/D net.3 Each initial task (i.e. the places p with
•p = ∅) are the starting points of organisational activity.

Definition 1. Let D be a DWF universe and R the role universe. A (formal)
organisation net is the tuple Org = (N, O, R, D) where:

1. N = (P, T, F) is a Petri net with |p•| > 0 for p ∈ P and |•t| = 1 for t ∈ T .
2. O is a partition on the set P ∪ T . An element O ∈ O is called position.
3. R : P → R is the role assignment.
4. D : T → D is the DWF net assignment.

In a well-formed organisation the roles of the DWF net D(t) are consistently
related to the roles of the places in the preset and the postset of t such that no role
behaviour is lost or added during the delegation. In a well-formed organisation,
termination of the interaction described by a DWF net is guaranteed. Cf. [4] for
details.

In general a delegation t comes along with a behaviour refinement. In our example,
the position requester implements the role Cons by generating subtasks for the roles
Cons 1, DM, and Cons 2. These subtasks are handled by the positions sub 1, adm,
and sub 2 that implement their respective roles according to the DWF PC 2 (given in
Figure 2) which decomposes the behaviour of role Cons into the composition of Cons 1,

1 To simplify the presentation we have omitted all data-related aspects in our discus-
sion of distributed workflow nets. In Sonar each DWF net uses data object based
on the model’s ontology.

2 The main distinction between roles and position ist that – unlike roles – positions
are situated in the organisational network, they implement roles and are equipped
with resources.

3 There is a close connection between organisation nets and the commonly used or-
ganisation charts. In fact, organisation charts are a special sub-case of our model.
Organisation nets encode the information about delegation structures – similar to
charts – and also about the delegation/execution choices of tasks, which is not present
in charts. If one fuses all nodes of each position O ∈ O into one single node, one ob-
tains a graph which represents the organisation’s chart. Obviously, this construction
removes all information about the organisational processes.

68 MOCA’09 – Modelling of Objects, Components and Agents

send receive

acknowledge

receive

ackowledge

start

stop

item

[]

[]

Producer

[] []

stop

startstart

Consumer2Consumer1

consume

stop

Decision Maker

Consumer

produce

consume

start

stop

black box
acknowledgement

Fig. 2. Protocol with Refined Consumer Role

DM, and Cons 2. The role Prod is defined equally in both DWFs PC and PC2. In well
formed organisations it is guaranteed that the service generated from the refined DWF
PC 2 and the roles Cons 1, DM, and Cons 2 has the same communication behaviour
as the service generated from the original DWF PC and the role Cons:

PC [Cons] ' PC 2[Cons1,DM,Cons2]

Similarily we have a DWF PC 3 (not shown here) which decomposes the behaviour of
role Prod into Prod1 and Prod 2. This refinement is used by the positions firm 1 and
firm 2 in Figure 1.

Teams Team formation can be expressed in a very elegant way: If one marks one
initial place of an organisation net Org with a token, each firing process of the
Petri net models a possible delegation process. More precisely, the token game
is identical to the team formation process (cf. Theorem 4.2 in [4]). It generates
a team net and a team DWF : Teams are modelled as an acyclic R/D nets. More
precisely: An R/D net G is called a team net if it is a connected causal net (i.e.
an acyclic net) with exactly one minimal node: |◦G| = 1.4 The team DWF is
derived from the DWF inscriptions D(t) of the team’s maximal nodes t ∈ G◦,
i.e. the leaves of the team net.

3 Stratified SONAR-Models

As another aspect, Sonar-models are equipped with transformation rules. Trans-
formation rules describe which modifications of the given model are allowed.
They are specified as graph rewrite rules [8]. The minimal requirement for rules
in Sonar is that they must preserve the correctness of the given organisational
model. Cf. [3] for more details.
4 As a nice theoretical byproduct we can generate all the team nets using unfoldings,

a well known construction for Petri nets (cf. [4] for details).

M. Köhler-B. and M. Wester-E.: MAS organisation middleware 69

In Sonar transformations are not performed by the modeller – they are part
of the model itself. Therefore we assume that a Sonar model is stratified by
models of different levels. The main idea is that the parts of an organisation
model that belong to the level n are allowed to modify those parts that belong
to levels k < n but not to higher ones.

To define a stratified model we start to define Petri nets of level n. For each
n ∈ N we assume a countable infinite set of places, denoted Pn, and a countable
infinite set of transitions of level n, denoted by Tn. We assume that for all m
and n Pm and Tn are disjoint.

The universe of places is Pu :=
⋃

n∈N Pn and the universe of transitions is
Tu :=

⋃
n∈N Tn.

A Petri net N = (P, T, F) is of level n whenever its places and transitions
are, i.e. if P ⊆ Pn and T ⊆ Tn hold.

Roles are typed, too. For each n ∈ N we assume the roleset of level n, denoted
Rn. The whole role universe is R :=

⋃
n∈N Rn.

Now we define the set of allowed transformations of level n, which is denoted
T Mn. Assume that we have already defined the set of transformations T Mk

for each level k < n. A pair (D, λ) is called a DWF of level n, whenever D is
a DWF and λ : TD →

(
{id} ∪ ⋃n−1

k=1 T Mk

)
is a transformation mapping, that

assigns to each transition t of the net D a transformation λ(t) of a level less than
n. The set of all DWF nets of level n > 0 is denoted by Dn. The whole DWF
net universe is D :=

⋃
n∈N Dn.

We can assume that the organisation (N, O, R, D) as defined in Def 1 is a
model over the unions, i.e. over P , T , R and D.

We define an organisation of level n > 0 as the following special case.

Definition 2. An organisation (N, O, R, D) is of level n > 0, whenever:

1. N = (P, T, F) is a Petri net of level n, i.e. P ⊆ Pn and T ⊆ Tn.
2. R is of level n, i.e. we have R : PN → Rn.
3. D is of level n, i.e. we have D : TN → Dn.

The set of all organisations of level n is denoted by ORGn. The set of all
organisations by ORG.

A transformation of level n > 0 is a function that maps the set ORGn

onto itself: fn : ORGn → ORGn. With T Mn we denote the set of all these
transformations.

Note that we have a cyclic dependency on the concepts: Transformations
modify organisations and organisations are built up from DWF nets, that in-
corporate transformations. This definitorial cycle is broken by the stratification,
since transformations of level n are defined on organisations of level n which
incorporate DWF nets that must have transformations of a level less than n.

Definition 3. For an organisation Org = (N, O, R, D) with N = (P, T, F) we
define for each n ∈ N the restriction to the level n as:

Orgn := (Nn, On, R|Pn, D|Tn)

70 MOCA’09 – Modelling of Objects, Components and Agents

1. Nn := (Pn, Tn, Fn) with Pn := P ∩Pn, Tn := T ∩Tn and Fn := F ∩(Pn∪Tn)2.
2. On := {O ∩ (Pn ∪ Tn) | O ∈ O}

A stratified organisation is an organisation Org∗ = (N, O, R, D) such that
each restriction Orgn is an organisation of level n and there are no “mixed” arcs,
i.e. F ⊆ ⋃

n∈N(Pn × Tn) ∪ (Tn × Pn) holds.
The set of all stratified organisations is denoted by ORG∗.

A stratified organisation Org∗ can be understood by the set of its restric-
tions: Figure 3 shows the restriction Org1, Figure 4 is the restriction Org2. For
both restrictions we have depicted the portions which are global for the whole
organisation.

PC

Prod1

PC

PC

PC3

p1 p2

p3 p4

t1

ConsProd

PC3

t4

Prod2

t8

p0

PC t3

 O2: firm1

Prod,
Const5

O5: firm2

PC

O3: virtual firm O4: requester

t2

O6: firm3

O1: broker

t9

 SONAR-model, n=1

Fig. 3. The Organisation Model Org1

 O2: firm1

O5: firm2

O3: virtual firm O4: requester

O6: firm3

O1: broker

TD

p10TD
t12

master TD
p12

slave
p11

 SONAR-model, n=2

master,

slave

t11

t13

Fig. 4. The Organisation Model Org2

M. Köhler-B. and M. Wester-E.: MAS organisation middleware 71

For the level n = 2 the DWF nets are label by transformations λ(t). Figure 5
shows a DWF net of level n = 2. It has the two roles master and slave . The
master has the objective to delete the transition t5 of the organisation model
Org1, while slave has the objective to delete all referencing arcs to t5 (here: the
arc from p1 to t5). It is clear that the position that implements the role master
has to be the position that owns t5, i.e. O(t5) = O3. Similarly, the role slave has
to be implemented from the position that references t5, i.e. O(•t5) = O1. These
constraints are directly expressed by the model Org2 in Figure 4.

start

modify update

start

stop stop

[] []

t1 t4
remove-pointers-to(t_5)remove(t_5)

master slave

Fig. 5. A Transformation DWF Net

Note that for all practical models most of the restrictions Orgn must be
empty since Org is a finite net.

Each transformation fn : ORGn → ORGn is extended to a transformation
f̂ : ORG∗ → ORG∗ on the whole class, by choosing the identity for all the other
elements:

f̂(x) =

{
fn(x), if x ∈ ORGn

id , otherwise

Note that the organisational teamwork respects the stratification: Assume
a given stratified organisation Org∗. Since there are no mixed arcs each team
G belongs to exactly one level n. This team generates a team transformation
λ(G) :

⋃n−1
k=1 ORGk → ⋃n−1

k=1 ORGk. By construction, this team transformation
effects only those parts of the organisation, that are of lower level, i.e. the models
(Orgk)k<n. The other ones (Orgk)k≥n remain unmodified.

If we look at the definition we can see that the basic organisational models
can be seen as a stratified organisation which consists of level n = 1 only.

4 Organisational Position Network Activities

Now that we have obtained a precise picture of what constitutes a formal or-
ganisation according to our approach, we can elaborate on the activities of a
multi-agent systems behaving according to a Sonar-model. The basic idea is

72 MOCA’09 – Modelling of Objects, Components and Agents

quite simple: With each position of the Sonar-model we associate one dedi-
cated agent, called the organisational position agent (OPA).

Figure 6 illustrates our specific philosophy concerning MAS organisations
utilising the middleware approach. In Sonar, we describe a formal organisation
in terms of interrelated organisational positions. Compared to other middleware
layers, we advocate complete distribution. Instead of introducing one or more
middleware managers that watch over the whole organisation (cf. the manager
in S-MOISE+ [9]) or at least over considerable parts (cf. institution, scene,
transition managers in Amelie [10]), we associate each position with its own
OPA.5

Operator BOperator A

Alice

Executive

organisational

 membership

organisational

 position

organisational

position agent

organisational

member agent

pos

formal channel

informal channel

external agent

Formal Organisation
Coordinator

Group 2Group 1

ElvisCharly

Deborah

Bob

Fiona

Sub-Organisation

Organisation
Multi-Agent System

Fig. 6. An Organisation as an OPA/OMA Network

An OPA network embodies a formal organisation. An OPA represents an or-
ganisational artifact and not a member/employee of the organisation. However,
each OPA represents a conceptual connection point for an organisational mem-
ber agent (OMA). An organisation is not complete without OMAs. It depends
on domain agents that actually carry out organisational tasks, make decisions
where required and thus implement/occupy the formal positions. Note that an
OMA can be an artificial as well as a human agent. An OPA both enables and
constrains organisational behaviour of its associated OMA. Only via an OPA
an OMA can effect the organisation and only in a way that is in conformance
with the OPA’s specification. In addition, the OPA network as a whole relieves
its associated OMAs of a considerable amount of organisational overhead by au-
tomating coordination and administration. To put it differently, an OPA offers
its OMA a “behaviour corridor” for organisational membership. OMAs might of
course only be partially involved in an organisation and have relationships to
multiple other agents than their OPA (even to agents completely external to the
organisation). From the perspective of the organisation, all other ties than the
OPA-OMA link are considered as informal connections.

To conclude, an OPA embodies two conceptual interfaces, the first one be-
tween micro and macro level (one OPA versus a network of OPAs) and the
5 We provide a more detailed comparison of our approach to other MAS middleware

approaches in [11] where we also derive conclusions concerning best fits between
different approaches and application contexts.

M. Köhler-B. and M. Wester-E.: MAS organisation middleware 73

second one between formal and informal aspects of an organisation (OPA versus
OMA). We can make additional use of this twofold interface. Whenever we have
a system of systems setting with multiple scopes or domains of authority (e.g.
virtual organisations strategic alliances, organisational fields), we can let an OPA
of a given (sub-)organisation act as a member towards another OPA of another
organisation. This basically combines the middleware perspective with a holonic
perspective (cf. [12]) and is not as easily to be conceptualised in the context of
other middleware approaches that take a less distributed/modular perspective.
In this paper the aspect of holonic systems is not discussed any further – cf. [13]
for an in depth discussion.

4.1 Organisational Teamwork

As explicated in Section 3, positions are global for all levels of a stratified formal
organisation. Consequently, a position agent network as described in the previous
subsection is re-used for any level of a stratified organisation. For each given
level n, we distinguish between organisational activities of first- and of second-
order (where second-order activities correspond to first-order activities of levels
k > n). First-order activities are carried out within the same organisational
level n and this level is referred to as a static context.

– Team Formation: Teams are formed in the course of an iterated delegation
procedure in a top-down manner. Starting with an initial organisational task
to be carried out, successive task decompositions (i.e. role refinements) are
carried out and subtasks (i.e. sub-roles to be implemented) are delegated fur-
ther. A team net according to Section 2 results that consists of the positions
that were involved in the delegation procedure.

– Team Plan Formation: After a team has been formed, a compromise has
to be found concerning how the corresponding team DWF (cf. Section 2)
is to be carried out as it typically leaves various alternatives of going one
way or the other. A compromise is found in a bottom-up manner. The “leaf”
positions of the team net (those that actually participate in the DWF) tell
their preferences and the intermediary team positions iteratively seek com-
promises between the preferences/compromise results of subordinates. The
final compromise is the team plan.

– Team Plan Execution: As the team plan is still a DWF (cleansed of ambigui-
ties) that describes interactions between team positions, team plan execution
follows straightforward.6

– Hierarchic propagation: If a holonic approach as illustrated in Figure 6 is
chosen, team activities that span multiple organisations are propagated ac-
cordingly.

Second-order activities of level n (first-order activities of level k > n) target
at the reorganisation of level n. In this case, level n is consequently regarded as
a variable.
6 For the time being, we do not address the topic that team plan execution might fail

and what rescue efforts this might entail.

74 MOCA’09 – Modelling of Objects, Components and Agents

– Evaluation: Organisational performance is monitored and evaluated in or-
der to estimate prospects of transformations. To estimate whether an or-
ganisational transformation would improve organisational performance, we
introduce metrics that assign a multi-dimensional assessment to a formal
organisation. In addition to the Petri net-based specifications of the previ-
ous section, there may exist additional teamwork constraints and parameters
that may be referred to. How to measure the quality of an organisational
structure is generally a very difficult topic and highly contingent. We will
not pursue it further in this paper.

– Organisational Transformations: As described in Section 2, transformations
can either be applied to a formal organisation externally or be carried out
by the positions themselves as transformation teams (cf. exogenous versus
endogenous reorganisation [14]). In the latter case, transformations are typi-
cally triggered by the above mentioned evaluations. But it might also be the
case that a new constraint or directive has been imposed and the organisation
has to comply.

So far we have described the activities just with reference to positions. But
actually, each position consists of a formal (the OPA as an organisational arti-
fact) and an informal part (the OMA as a domain member). We have further
stated that an OPA network relieves its associated OMAs of a great part of
the organisational overhead by automation of administrative and coordination
activities. It is exactly the generic part of the above mentioned activities that
is automated by the OPA network: Team formation, team plan formation, team
plan execution and applying given metrics always follow the same mechanics and
OMAs only have to enter the equation where domain actions have to be carried
out or domain-dependent decisions have to be made.

In the following section we present the specification of the OPA teamwork.
All OPAs share a common structure which we call the generic OPA (GOPA).
An OPA O is an instance of this GOPA that is parametrised by that part of
the organisational model that describes O, i.e. its inner structure (subtask and
delegation/execution activities) and all the surrounding OPAs. In the follow-
ing presentation we will focus on the interaction between position agents and
will neither discuss the internal architecture of OPAs (i.e. their reasoner etc.)
nor the OPA-OMA interaction itself. A more detailed discussion of the GOPA-
architecture can be found in [15].

5 The Middleware Prototype based on High-Level Nets

In the following we demonstrate the compilation of an organisation Sonar-model
Org∗ into a middleware that executes the associated teamwork. A Sonar-model
is semantically rich enough to provide all the information to perform this MDA-
like operation. The aspects of this compilation and the resulting prototype are
discussed using the stratified organisation as introduced above in Figures 3 and 4.
The organisational model induces the complete teamwork, i.e. on level n = 1 the

M. Köhler-B. and M. Wester-E.: MAS organisation middleware 75

“basic” business processes (for the example defined by the DWF nets PC and
PC 3) and on level n = 2 the reorganisational processes (here: the transformation
by deleting t5 in the position virtual firm – specified by the DWF in Figure 5).

Sonar meta-level (2. level)

servicesagent plans

agents

meta-data Sonar (1. level)

data

system structure

meta-plans meta-service

global view

Fig. 7. Architecture of the Middleware generated from the Sonar-model of Fig. 3/4

The teamwork prototype generated from the Sonar-model of Fig. 3 and 4 is
specified by a high-level Petri net, namely as a reference net. This is beneficial for
two reasons: (i) the translation result is very close to the original specification,
since the prototype directly incorporates the main net structure of the Sonar-
model; and (2) the prototype is directly executable using the open-source Petri
net simulator Renew [6].

The middleware has a recursive system architecture, as depicted in Figure 7.
The subsystem for the level n = 1 contains all the position agents, the services
(i.e. the DWF nets), and the plans (i.e. objects that control the teamwork exe-
cution of the team DWF nets; team DWF nets allow multiple processes and this
nondeterminism is solved by plans). The execution of a team DWF has effects
on the agents’ local data and due to this also on the global view on the system
data.

On the meta-level, i.e. for the level n = 2, we have the same basic structure,
consisting of the same agents, their meta-services (i.e. their DWF nets used for
transformations), and the meta-plans. The meta-level teamwork has effects on
its data which is the complete model of level n = 1.

In the following we explain the high-level net specification. It is out of the
scope of this paper to explain every detail so we restrict ourself to an explanation
of the overall process.

First, we start with the team DWF nets. For their middleware versions we add
inscriptions which synchronise each instance of a team DWF net with the agents
implementing the net’s roles. More precisely: The team DWF net synchronises
with the agents’ plans. If an agent implements the role r in a team DWF net N
it generates a plan c (short for controller). The plan c selects among all possible
events assigned to r the next event to be executed. Since a team DWF net
usually has several roles it is synchronised with several plans. In general, each
agent may participate in several team DWFs at the same time. It lies in the

76 MOCA’09 – Modelling of Objects, Components and Agents

start

produce

send receive

acknowledge
receive

ackowledge

consume

start

stop

stop

item

acknowledgment

ConsumerProducer

[]

[]

[r,c]

t1

t2

t3

t4

t5

t6

:ok("prod","t1")

:ok("prod","t2")

:ok("prod","t3")

:ok("cons","t4")

:ok("cons","t5")

this:ok(r,t);

c:isAllowed(t)

["prod",c1];

 ["cons",c2]

Controler

:new(c);

c = [["prod",c1], ["cons",c2]];

c1:getAgentDesc(desc1,a1);

c2:getAgentDesc(desc2,a2);

:stop()

:ok("cons","t6")

 Setup

:ag(r,a)

[r,O,a]

["prod",desc1,a1];

["cons",desc2,a2]

:ctrl(r,c)

[r,c]

Team

this:ctrl("cons",c); c:updateWB()

Fig. 8. Prototype: The controlled DWF net PC

start

receive

receive

ackowledge

start

stop

item

acknowledgement

[] []

Producer 1

[]
start

Producer 2

Consumer

consume

stop

produce 2

receive

stop

acknowledge

order

item

Producer

[r,c]
this:ok(r,t);

c:isAllowed(t)

:ok("cons","t11")t11

t12

t13

t1

t2

t3

t5

t6

t4

t8

t9 :ok("cons","t12")

:ok("cons","t13")

:ok("prod2","t1")

:ok("prod2","t3")

:ok("prod2","t2")

:ok("prod1","t5")

:ok("prod1","t6")

:ok("prod1","t9")

:ok("prod1","t8")

 ["prod1",c1];

["prod2",c2];

 ["cons",c3]

Team

Controler

:new(c);

c=[[["prod1",c1], ["prod2",c2]], ["cons",c3]];

c1:getAgentDesc(desc1,a1);

c2:getAgentDesc(desc2,a2);

c3:getAgentDesc(desc3,a3)["prod1",desc1,a1];

["prod2",desc2,a2];

["cons",desc3,a3]

receive t20

t21

t22

:ok("prod2","t20")

item

send

t7

order

item

:ok("prod2","t22")

:ok("prod2","t21")

:ok("prod1","t7")

:ok("prod1","t4")

req 2

req 1

:stop()

:ag(r,a)

[r,O,a]

this:ctrl("cons",c); c:updateWB()

[r,c]

:ctrl(r,c)

produce 2

 Setup

Fig. 9. Prototype: The controlled DWF net PC 3

M. Köhler-B. and M. Wester-E.: MAS organisation middleware 77

start

modify update

start

stop stop

[] []

[r,c]

t1 t4

:ok(r,t);

c:isAllowed(t)

["master",c1];

 ["slave",c2]

Controler

:new(c);

c = [["master",c1], ["slave",c2]];

c1:getAgentDesc(desc1,a1);

c2:getAgentDesc(desc2,a2);

:stop()

 Setup

:ag(r,a)

[r,O,a]

["master",desc1,a1];

["slave",desc2,a2]

slave

this:ctrl("slave",c); c:updateWB()

y="sonar1modell2";

:modify(x,y)

this:ok("slave","t4")

:ctrl(r,c)

[r,c]

Team

master

this:ag("master",a); a:updateWB()

this:ok("master","t1")

:modify(x,y);y=x

Fig. 10. Prototype: The Transformation DWF net

agent’s responsibility to coordinate all its plans, e.g. to avoid race conditions,
dirty read/writes etc.

For the team DWF nets PC and PC 3 of our running example the result is
shown in Fig. 8 and Fig. 9. The synchronisation with the plan is provided by
synchronisations channels of the form :ok(prod, t1) at the DWF net’s event t1.
To enable the event t1 the plan c has to enable the counterpart of this channel
at his side: c:isAllowed(t1). For the team DWF net used for the transformation,
given in Fig. 5, we obtain the prototype from Fig. 10. In all cases, we omit details
concerning data exchange between agents.

In Sonar, teams, team DWFs and team plans are the result of organisational
processes. Organisational processes are identical for all levels. They consists of
the following phases:

1. In the first phase the organisation is explored to select the team agents.
2. In the second phase the team as an object of discurs is generated by com-

posing teamtrees recursively .
3. The teamtree is announced among all the team member agents, starting at

the root of the teamtree.
4. The executing team agents (i.e. the leaves of the teamtree) construct partial

local plans related to the team DWF net. These partial plans are recursively
processed via negotiation by the ancestors in the team tree, resulting in a
global plan. This global plan is a compromise of the partial local plans.

5. The global teamplan is send back to all the team members and localised by
them.

6. The team generates an instance of the team DWF net, assigns all the local
plans to it, and starts the execution.

The prototype directly expresses these six phases. The translation of the
organisation model Org1 is shown in Figures 11/12. One clearly recognises six
parts of the nets which all share the basic structure of the original specification
of Org1 in Figure 3. Similarly we obtain the prototype of Figure 13/14 from the
specification Org2 in Fig. 4.

78 MOCA’09 – Modelling of Objects, Components and Agents

PC

Prod1

PC

PC

PC3

p1 p2

p3 p4

t1

t9

ConsProd

PC3

t4

Prod2

t8

p0

PC t3

 O2: firm1

PC

Prod1

PC

PC

PC3

p1 p2

p3 p4

t2

t1

t9

ConsProd

PC3

t4

Prod2

t8

p0

O6: firm3

PC t3

[x,"O5"] [x,"O6"]

[x,["t8"]] [x, ["t9"]]

[x, ["t2", u, v]]

this:blatt(x,"t3")

:blatt(x,"t3")

:blatt(x,"t4")

PC

Prod1

PC

PC

PC3

p1 p2

p3 p4

t2

t1

ConsProd

PC3

t4

Prod2

p0
PC t3

[x,u] [x,v]

[x,s] [x,s]

[x,b]

:bekanntmachen(y)

[x,s]

Prod,
Cons

:blatt(x,"t9"):blatt(x,"t8")

O5: firm2

Prod,
Cons

s = ["t3"]

PC

Prod1

PC

PC

PC3

p1 p2

p3 p4

t1

ConsProd

PC3

t4

Prod2

t8

p0
PC t3

[x, c] [x, c]

[x, c]

[x, c]

Prod,
Cons

[x,u] [x,v]

this:bekanntmachen(y)

[x, c]

O1: broker

t5

PC t5

:blatt(x,"t5")

[x,["t5"]]

PC t5

[x,s]

PC t5

[x, c]

y

O5: firm2

aa PC

[x,"O3"][x,"O3"]

[x,O2][x,O1]

O3: virtual firm

a

a a

a

agent

agent

a
:initAgent(a,"requester")

:initAgent(a,"broker")

O4: requester[x,"O4"]

O1: broker

a

[x,O2][x,O1]

[x,O1]

[x,"O1"]

a

agentt2

a

a:askImpl("t1");

a:askPartner("p1", O1); a:askPartner("p2", O2);

a:askImpl("t2");

a:askPartner("p3", O1);

a:askPartner("p4", O2)

[x,"O2"]

O6: firm3

agent a

a:askImpl("t3")

:initAgent(a,"firm1")
a

agent agent

:initAgent(a,"firm2")

:initAgent(a,"firm3")

a

a

a:askImpl("t5")
this:blatt(x,"t5")

a:askImpl("t8")
this:blatt(x,"t8") this:blatt(x,"t9")

a:askImpl("t9")

this:blatt(x,"t4")
a:askImpl("t4")

[x,v][x,u]

[x, ["t1", u, v]]

Prod,
Cons

agenta

y=[x,b]
a:storeTeam(x, b)

s = ["t4"]
a:storeTeam(x, s)
this:controler("t4",x)

a

agent a

s = ["t1", u, v]
a:storeTeam(x, s)

O6: firm3

agenta a

[x,s]

s = ["t2", u, v];

a: storeTeam(x,s)

[x,s]

s = ["t5"]
a: storeTeam(x,s)

this:controler("t5",x)

[x,u] [x,v]

[x,s]

O3: virtual firmO2: firm1

O1: broker

O5: firm2

agent a

a: storeTeam(x,s)
this:controler("t3",x)

aagent

s = ["t8"]
a:storeTeam(x, s)

this:controler("t8",x)

s = ["t9"]
a:storeTeam(x, s)

this:controler("t9",x)

t8 t9 agenta

3) Announce team

1) Explore organisation

2) Construct team

agent a

:controler("t3", x)
a:provideCtrl("t3", x, null, ctrl)

c = ["prod", ctrl]

agent a

:controler("t8",x)

c = ["prod1", ctrl]

agentt9 a

:controler("t9",x)
a:provideCtrl("t9", x, null, ctrl)

c = ["prod2", ctrl]

O2: firm1

t2 a a

O6: firm3O5: firm2

[x, c1] [x, c2]
:controler("t5",x)

a:provideCtrl("t5", x, null, ctrl)
c = ["prod", ctrl]

a:provideCtrl

("t2", x, [c1, c2], c)

a:provideCtrl

("t1", x, [c1, c2], c)

:controler("t4",x)
a:provideCtrl("t4", x, null, ctrl)

c = ["cons", ctrl]

agent

agent a

O1: broker

agent

a

[x, c]
[x, c]

a:provideCtrl("t8", x, null, ctrl)

[x, c2][x, c1]

4) Compute global plan from local plans by negotiation

O3: virtual firm

5) Distribute team-plan and localise it

PC

Prod1

PC

PC

PC3

p1 p2

p3 p4

t2

t1

t9

ConsProd

PC3

t4

Prod2

t8

p0

O6: firm3

PC
t3

[x,c] [x,c]

[x,c] [x,c]

O5: firm2

[x,c2]

PC
t5

[x,c]

[x,c2][x,c1]

Prod,
Cons

[x,c]

[x,c]

a

a

a

aa

a

a

O1: broker

a:getTeam(x, ["t3"]);

a:storeCtrl(x,c,"p1");

this:execute(x,"t3")

a:getTeam(x, ["t9"]);

a:storeCtrl(x,c,"p4");

this:execute(x,"t9")

a:getTeam(x, ["t8"]);

a:storeCtrl(x,c,"p3");

this:execute(x,"t8")

[x,c]

[x,c1] a:getTeam(x, ["t4"]);

a:storeCtrl(x,c,"p2");

this:execute(x,"t4")

agent

agent agent

agent agent

agent

PC

Prod1

PC

PC

PC3

p1 p2

p3 p4

t1

t9

ConsProd

PC3

t4

Prod2

t8

p0

PC t3

 O2: firm1

x

:execute(x,"t3")

Prod,
Cons

t5

O5: firm2

aa PC

xx
O3: virtual firm

a

a a

a

x

O1: broker

xx

x

a

t2

x

O6: firm3

a

:execute(x,"t8") :execute(x,"t9")

[x,p]

[x,p]

stop

[x,p]

agent

agent

agent agent

agent

a:getTeam(x, ["t5"]);

a:storeCtrl(x,c,"p1");

this:execute(x,"t5")

:execute(x,"t5")
[x,c]

a

a:storeCtrl(x,c,"p0");

this:ch(x,c)

:ch(x,c);

a:getTeam(x, ["t1",u,v]);

a:storeCtrl(x,c,"p0");

c1=c;c2=c

a:getTeam(x, ["t2",u,v]);

a:storeCtrl(x,c,"p1");

c1=c;c2=c

x x

x

agent

a:getCtrl(x,c,"p0")

x

a

[x, c]

[x, c]
c= [["prod",c1], ["cons",c3]]

p:new pc11(c)

teamwork started

x
logsteamwork started

[x,p]

a

a

a

a

a

a

:initAgent(a,"virtual firm")

a:askPartner("p0", O1);

:getTeamID(n); this:incRTC();

x = [n,"p10",a]

x 0 cc
:decRTC();

 guard(c>0)

c+1

:isZeroRTC()

0c-1

:incRTC()

 Setup

:removeAgent(a,"firm3");

this:isZeroRTC()

:removeAgent(a,"requester");

this:isZeroRTC()

:removeAgent(a,"firm2");

this:isZeroRTC()

:removeAgent(a,"firm1");

this:isZeroRTC()

:removeAgent(a,"virtual firm");

this:isZeroRTC()

:removeAgent(a,"broker");

this:isZeroRTC()

O2: firm1

[x,["t4"]]

O3: virtual firm
[x,["t3"]]

O4: requester

O4: requester

O4: requester

O4: requester

:execute(x,"t4")

p:new pc31(c)
start

O3: virtual firmO2: firm1

O4: requester

running

teams

6) Execute team-plan

c = [[["prod1",c1], ["prod2",c2]],

["cons",c3]]

team services

p:stop();

this:decRTC()

Fig. 11. Sonar-middleware for the organisation Org1 of Fig. 3

M. Köhler-B. and M. Wester-E.: MAS organisation middleware 79

PC

Prod1

PC

PC

PC3

p1 p2

p3 p4

t1

t9

ConsProd

PC3

t4

Prod2

t8

p0

PC t3

 O2: firm1

PC

Prod1

PC

PC

PC3

p1 p2

p3 p4

t2

t1

t9

ConsProd

PC3

t4

Prod2

t8

p0

O6: firm3

PC t3

[x,"O5"] [x,"O6"]

[x,["t8"]] [x, ["t9"]]

[x, ["t2", u, v]]

this:blatt(x,"t3")

:blatt(x,"t3")

:blatt(x,"t4")

PC

Prod1

PC

PC

PC3

p1 p2

p3 p4

t2

t1

ConsProd

PC3

t4

Prod2

p0
PC t3

[x,u] [x,v]

[x,s] [x,s]

[x,b]

:bekanntmachen(y)

[x,s]

Prod,
Cons

:blatt(x,"t9"):blatt(x,"t8")

O5: firm2

Prod,
Cons

s = ["t3"]

PC

Prod1

PC

PC

PC3

p1 p2

p3 p4

t1

ConsProd

PC3

t4

Prod2

t8

p0
PC t3

[x, c] [x, c]

[x, c]

[x, c]

Prod,
Cons

[x,u] [x,v]

this:bekanntmachen(y)

[x, c]

O1: broker

t5

PC t5

:blatt(x,"t5")

[x,["t5"]]

PC t5

[x,s]

PC t5

[x, c]

y

O5: firm2

aa PC

[x,"O3"][x,"O3"]

[x,O2][x,O1]

O3: virtual firm

a

a a

a

agent

agent

a
:initAgent(a,"requester")

:initAgent(a,"broker")

O4: requester[x,"O4"]

O1: broker

a

[x,O2][x,O1]

[x,O1]

[x,"O1"]

a

agentt2

a

a:askImpl("t1");

a:askPartner("p1", O1); a:askPartner("p2", O2);

a:askImpl("t2");

a:askPartner("p3", O1);

a:askPartner("p4", O2)

[x,"O2"]

O6: firm3

agent a

a:askImpl("t3")

:initAgent(a,"firm1")
a

agent agent

:initAgent(a,"firm2")

:initAgent(a,"firm3")

a

a

a:askImpl("t5")
this:blatt(x,"t5")

a:askImpl("t8")
this:blatt(x,"t8") this:blatt(x,"t9")

a:askImpl("t9")

this:blatt(x,"t4")
a:askImpl("t4")

[x,v][x,u]

[x, ["t1", u, v]]

Prod,
Cons

agenta

y=[x,b]
a:storeTeam(x, b)

s = ["t4"]
a:storeTeam(x, s)
this:controler("t4",x)

a

agent a

s = ["t1", u, v]
a:storeTeam(x, s)

O6: firm3

agenta a

[x,s]

s = ["t2", u, v];

a: storeTeam(x,s)

[x,s]

s = ["t5"]
a: storeTeam(x,s)

this:controler("t5",x)

[x,u] [x,v]

[x,s]

O3: virtual firmO2: firm1

O1: broker

O5: firm2

agent a

a: storeTeam(x,s)
this:controler("t3",x)

aagent

s = ["t8"]
a:storeTeam(x, s)

this:controler("t8",x)

s = ["t9"]
a:storeTeam(x, s)

this:controler("t9",x)

t8 t9 agenta

3) Announce team

1) Explore organisation

2) Construct team

agent a

:controler("t3", x)
a:provideCtrl("t3", x, null, ctrl)

c = ["prod", ctrl]

agent a

:controler("t8",x)

c = ["prod1", ctrl]

agentt9 a

:controler("t9",x)
a:provideCtrl("t9", x, null, ctrl)

c = ["prod2", ctrl]

O2: firm1

t2 a a

O6: firm3O5: firm2

[x, c1] [x, c2]
:controler("t5",x)

a:provideCtrl("t5", x, null, ctrl)
c = ["prod", ctrl]

a:provideCtrl

("t2", x, [c1, c2], c)

a:provideCtrl

("t1", x, [c1, c2], c)

:controler("t4",x)
a:provideCtrl("t4", x, null, ctrl)

c = ["cons", ctrl]

agent

agent a

O1: broker

agent

a

[x, c]
[x, c]

a:provideCtrl("t8", x, null, ctrl)

[x, c2][x, c1]

4) Compute global plan from local plans by negotiation

O3: virtual firm

5) Distribute team-plan and localise it

PC

Prod1

PC

PC

PC3

p1 p2

p3 p4

t2

t1

t9

ConsProd

PC3

t4

Prod2

t8

p0

O6: firm3

PC
t3

[x,c] [x,c]

[x,c] [x,c]

O5: firm2

[x,c2]

PC
t5

[x,c]

[x,c2][x,c1]

Prod,
Cons

[x,c]

[x,c]

a

a

a

aa

a

a

O1: broker

a:getTeam(x, ["t3"]);

a:storeCtrl(x,c,"p1");

this:execute(x,"t3")

a:getTeam(x, ["t9"]);

a:storeCtrl(x,c,"p4");

this:execute(x,"t9")

a:getTeam(x, ["t8"]);

a:storeCtrl(x,c,"p3");

this:execute(x,"t8")

[x,c]

[x,c1] a:getTeam(x, ["t4"]);

a:storeCtrl(x,c,"p2");

this:execute(x,"t4")

agent

agent agent

agent agent

agent

PC

Prod1

PC

PC

PC3

p1 p2

p3 p4

t1

t9

ConsProd

PC3

t4

Prod2

t8

p0

PC t3

 O2: firm1

x

:execute(x,"t3")

Prod,
Cons

t5

O5: firm2

aa PC

xx
O3: virtual firm

a

a a

a

x

O1: broker

xx

x

a

t2

x

O6: firm3

a

:execute(x,"t8") :execute(x,"t9")

[x,p]

[x,p]

stop

[x,p]

agent

agent

agent agent

agent

a:getTeam(x, ["t5"]);

a:storeCtrl(x,c,"p1");

this:execute(x,"t5")

:execute(x,"t5")
[x,c]

a

a:storeCtrl(x,c,"p0");

this:ch(x,c)

:ch(x,c);

a:getTeam(x, ["t1",u,v]);

a:storeCtrl(x,c,"p0");

c1=c;c2=c

a:getTeam(x, ["t2",u,v]);

a:storeCtrl(x,c,"p1");

c1=c;c2=c

x x

x

agent

a:getCtrl(x,c,"p0")

x

a

[x, c]

[x, c]
c= [["prod",c1], ["cons",c3]]

p:new pc11(c)

teamwork started

x
logsteamwork started

[x,p]

a

a

a

a

a

a

:initAgent(a,"virtual firm")

a:askPartner("p0", O1);

:getTeamID(n); this:incRTC();

x = [n,"p10",a]

x 0 cc
:decRTC();

 guard(c>0)

c+1

:isZeroRTC()

0c-1

:incRTC()

 Setup

:removeAgent(a,"firm3");

this:isZeroRTC()

:removeAgent(a,"requester");

this:isZeroRTC()

:removeAgent(a,"firm2");

this:isZeroRTC()

:removeAgent(a,"firm1");

this:isZeroRTC()

:removeAgent(a,"virtual firm");

this:isZeroRTC()

:removeAgent(a,"broker");

this:isZeroRTC()

O2: firm1

[x,["t4"]]

O3: virtual firm
[x,["t3"]]

O4: requester

O4: requester

O4: requester

O4: requester

:execute(x,"t4")

p:new pc31(c)
start

O3: virtual firmO2: firm1

O4: requester

running

teams

6) Execute team-plan

c = [[["prod1",c1], ["prod2",c2]],

["cons",c3]]

team services

p:stop();

this:decRTC()

Fig. 12. Sonar-middleware for the organisation Org1 of Fig. 3 (continued)

80 MOCA’09 – Modelling of Objects, Components and Agents

4) Compute global plan from local plans by negotiation

manual

O

O

[x,p]

stop

[x,p]

logs
[x,p]

p:modify(s1,s2)

O

[a,O]

O

[]

[]

[]

[]

[]

[]

:initAgent(a,O); O="requester"

:initAgent(a,O); O="virtual firm"

a

a

a

a

a

a

:initAgent(a,O); O="broker"

:initAgent(a,O); O="firm1"

:initAgent(a,O); O="firm2"

:initAgent(a,O); O="firm3"

requester

broker

virtual firm

firm1

firm2

firm3

TD
t11

p10TD
t12

master

TD

p12
slave

master,

slave

p11 [x,O1] [x,O2]

requester

broker

virtual firm

firm1

firm2

firm3

a

a

a:askImpl("t12")
this:blatt(x,"t12") a a

wait until all

agents are unset

[a,O]

TD

TD

p11 p12

t11

slavemaster

t13
[x,["t13"]]

:blatt(x,"t13")

this:bekanntmachen(y)

TD
t12

:blatt(x,"t12")

[x,["t12"]]

y

[x,v][x,u]

master,slave

 2) Construct transformation-team

p10

[x, ["t11", u, v]]

[x,b]

:bekanntmachen(y)
y=[x,b]

a:storeTeam(x, b)

O3: virtual firm

TD
t11

p10
TD

master TD
t13p12

slave

master,slave

p11

broker

virtual firm

a

[x,v][x,u]

[x,s]

[x,s]

a

a

a

s = ["t12"]; a:storeTeam(x, s)
this:controler("t12",x)

s = ["t11", u, v];

 a:storeTeam(x, s)

s = ["t13"]; a:storeTeam(x, s)
this:controler("t13",x)

3) Announce transformation-team

TD

TD

p11 p12

t11

slavemaster

t13
[x,c]

TD
t12

[x,c2][x,c1]

master,slave
p10

a:provideCtrl

("t11", x, [c1, c2], c)

[x, c]:controler("t12",x)
a:provideCtrl("t12", x, null, ctrl)

c = ["master", ctrl]

:controler("t13",x)
a:provideCtrl("t13", x, null, ctrl)

c = ["slave", ctrl]

a:storeCtrl(x,c,"p10");

this:ch(x,c)

broker

virtual firm

a

a

a

a

[x,c]

[x,c]

5) Distribute team-plan and localise it

[x,c]

TD
t11

p10
TD

master

TD

p12
slave

master,slave

p11 [x,c1][x,c1]

[x,c]

[x,c]

:ch(x,c);

a:getTeam(x, ["t11",u,v]);

a:storeCtrl(x,c,"p10");

c1=c;c2=c

t13

a:getTeam(x, ["t13"]);

a:storeCtrl(x,c,"p12");

this:execute(x,"t13")

t12

[x,c]

a:getTeam(x, ["t12"]);

a:storeCtrl(x,c,"p11");

this:execute(x,"t12")

[x,s]

t12

broker

virtual firm

a

a

a

TD

TD

p11 p12

t11

slavemaster

t13
x

TD
t12

xx

master,slave
p10

x

x

:execute(x,"t12")

:execute(x,"t13")

O3: virtual firm

[x,c]

start
p:new transformation(c)

x

modify 1st-level

spec

[x,c]x

[x,"O1"]

a:askImpl("t13")

broker

virtual firm
a

a:getCtrl(x,c,"p10")

broker

virtual firm

[x,O1]

started

teamtransformations

0
[]

started

teamtransformations

SONAR spec, n=1

m

m:initAgent(a,O)

Agenten
m

SONAR model, n=1

no activity

is running

this:isZeroRTC();
x = "sonar1modell2";
m:new sonar1modell2

x

"requester";
"broker";

"virtual firm";
"firm1";
"firm2";
"firm3";

in level 1

unset

positions

in level 1

set

positions

"requester";
"broker";

"virtual firm";
"firm1";
"firm2";
"firm3";

SONAR model, n=1

"sonar1modell"

s1

s2

m:removeAgent(a,O);

no transformation

is running

x

0

start formation

SONAR spec, n=1

m

m

m

wait for end of

transformations;

generate model

x

m1
m1

n

generate

team id

mn

meta activity

disabled;

activity enabled
m:getTeamID(n)

n+1

n

nn

"requester";
"broker";

"virtual firm";
"firm1";
"firm2";
"firm3";

wait for end of

team activities

wait until all

agents are set

old SONAR

 model, n=1

meta activity

enabled;

activity disabled

cc
:decRTC();

 guard(c>0)

c+1

:isZeroRTC()

0

this:isZeroRTC();
x = "sonar1modell";
m:new sonar1modell

a:askPartner("p10", O1);

:getTeamID(n); this:incRTC();

x = [n,"p10",a]

c-1

:incRTC()# running teams

p:stop();

this:decRTC()

[] manual

m

 Setup

 Activity Control (1st level)

O3: virtual firm

O3: virtual firm

O3: virtual firm

O1: broker

O3: virtual firm

O1: broker

O1: broker

O1: broker

[x,"O1"][x,"O3"]

O1: broker

[a,O]

[a,O]

[a,O]

Agenten

[a,O]

[a,O]

[a,O]

this:blatt(x,"t13")
t13

a:askImpl("t1");

a:askPartner("p11", O1); a:askPartner("p12", O2);

transformation services
[x,p]

 1) Explore organisation for transformation

O1: broker
6) Execute team-plan

Fig. 13. Sonar-middleware for the organisation Org2 of Fig. 4

M. Köhler-B. and M. Wester-E.: MAS organisation middleware 81

4) Compute global plan from local plans by negotiation

manual

O

O

[x,p]

stop

[x,p]

logs
[x,p]

p:modify(s1,s2)

O

[a,O]

O

[]

[]

[]

[]

[]

[]

:initAgent(a,O); O="requester"

:initAgent(a,O); O="virtual firm"

a

a

a

a

a

a

:initAgent(a,O); O="broker"

:initAgent(a,O); O="firm1"

:initAgent(a,O); O="firm2"

:initAgent(a,O); O="firm3"

requester

broker

virtual firm

firm1

firm2

firm3

TD
t11

p10TD
t12

master

TD

p12
slave

master,

slave

p11 [x,O1] [x,O2]

requester

broker

virtual firm

firm1

firm2

firm3

a

a

a:askImpl("t12")
this:blatt(x,"t12") a a

wait until all

agents are unset

[a,O]

TD

TD

p11 p12

t11

slavemaster

t13
[x,["t13"]]

:blatt(x,"t13")

this:bekanntmachen(y)

TD
t12

:blatt(x,"t12")

[x,["t12"]]

y

[x,v][x,u]

master,slave

 2) Construct transformation-team

p10

[x, ["t11", u, v]]

[x,b]

:bekanntmachen(y)
y=[x,b]

a:storeTeam(x, b)

O3: virtual firm

TD
t11

p10
TD

master TD
t13p12

slave

master,slave

p11

broker

virtual firm

a

[x,v][x,u]

[x,s]

[x,s]

a

a

a

s = ["t12"]; a:storeTeam(x, s)
this:controler("t12",x)

s = ["t11", u, v];

 a:storeTeam(x, s)

s = ["t13"]; a:storeTeam(x, s)
this:controler("t13",x)

3) Announce transformation-team

TD

TD

p11 p12

t11

slavemaster

t13
[x,c]

TD
t12

[x,c2][x,c1]

master,slave
p10

a:provideCtrl

("t11", x, [c1, c2], c)

[x, c]:controler("t12",x)
a:provideCtrl("t12", x, null, ctrl)

c = ["master", ctrl]

:controler("t13",x)
a:provideCtrl("t13", x, null, ctrl)

c = ["slave", ctrl]

a:storeCtrl(x,c,"p10");

this:ch(x,c)

broker

virtual firm

a

a

a

a

[x,c]

[x,c]

5) Distribute team-plan and localise it

[x,c]

TD
t11

p10
TD

master

TD

p12
slave

master,slave

p11 [x,c1][x,c1]

[x,c]

[x,c]

:ch(x,c);

a:getTeam(x, ["t11",u,v]);

a:storeCtrl(x,c,"p10");

c1=c;c2=c

t13

a:getTeam(x, ["t13"]);

a:storeCtrl(x,c,"p12");

this:execute(x,"t13")

t12

[x,c]

a:getTeam(x, ["t12"]);

a:storeCtrl(x,c,"p11");

this:execute(x,"t12")

[x,s]

t12

broker

virtual firm

a

a

a

TD

TD

p11 p12

t11

slavemaster

t13
x

TD
t12

xx

master,slave
p10

x

x

:execute(x,"t12")

:execute(x,"t13")

O3: virtual firm

[x,c]

start
p:new transformation(c)

x

modify 1st-level

spec

[x,c]x

[x,"O1"]

a:askImpl("t13")

broker

virtual firm
a

a:getCtrl(x,c,"p10")

broker

virtual firm

[x,O1]

started

teamtransformations

0
[]

started

teamtransformations

SONAR spec, n=1

m

m:initAgent(a,O)

Agenten
m

SONAR model, n=1

no activity

is running

this:isZeroRTC();
x = "sonar1modell2";
m:new sonar1modell2

x

"requester";
"broker";

"virtual firm";
"firm1";
"firm2";
"firm3";

in level 1

unset

positions

in level 1

set

positions

"requester";
"broker";

"virtual firm";
"firm1";
"firm2";
"firm3";

SONAR model, n=1

"sonar1modell"

s1

s2

m:removeAgent(a,O);

no transformation

is running

x

0

start formation

SONAR spec, n=1

m

m

m

wait for end of

transformations;

generate model

x

m1
m1

n

generate

team id

mn

meta activity

disabled;

activity enabled
m:getTeamID(n)

n+1

n

nn

"requester";
"broker";

"virtual firm";
"firm1";
"firm2";
"firm3";

wait for end of

team activities

wait until all

agents are set

old SONAR

 model, n=1

meta activity

enabled;

activity disabled

cc
:decRTC();

 guard(c>0)

c+1

:isZeroRTC()

0

this:isZeroRTC();
x = "sonar1modell";
m:new sonar1modell

a:askPartner("p10", O1);

:getTeamID(n); this:incRTC();

x = [n,"p10",a]

c-1

:incRTC()# running teams

p:stop();

this:decRTC()

[] manual

m

 Setup

 Activity Control (1st level)

O3: virtual firm

O3: virtual firm

O3: virtual firm

O1: broker

O3: virtual firm

O1: broker

O1: broker

O1: broker

[x,"O1"][x,"O3"]

O1: broker

[a,O]

[a,O]

[a,O]

Agenten

[a,O]

[a,O]

[a,O]

this:blatt(x,"t13")
t13

a:askImpl("t1");

a:askPartner("p11", O1); a:askPartner("p12", O2);

transformation services
[x,p]

 1) Explore organisation for transformation

O1: broker
6) Execute team-plan

Fig. 14. Sonar-middleware for the organisation Org2 of Fig. 4 (continued)

82 MOCA’09 – Modelling of Objects, Components and Agents

The six parts are not independent – they are connected via synchronisa-
tion inscriptions, so the end of an phase is synchronised with the start of the
succeeding phase.

The six parts share the same net structure but have different inscriptions.
This reflects the fact that all teamwork is generated from the organisational
structure, but in different phases different information is needed. Also if one
carefully investigates the prototype one will recognise that all the arcs for parts
of phases 2, 4, and 6 are reverted since in the phases 1, 3, and 5 the information
flows from the root to the leaves, but in phases 2, 4, and 6 the flow is in the
opposite direction.

We now discuss the six phases in more detail. In the initial phase the Renew
simulator generates an instance of the meta-level model, i.e. the net in Fig. 13
together with six agents – one for each position – and registers them. The position
agents are modelled again as nets (not shown here). After this the meta-level
instance for Org2 generates an instance for Org2 and registers all the agents
there as well. After this step the initialisation is finished and the teamwork may
start.

For the given Sonar-model at level n = 1 we have only one position, that
is able to start a team: O4 since it is the only position having a place with an
empty preset (i.e. the place p0). Whenever the position agent O4 decides to begin
teamwork it starts the first phase: exploration. The only possibility for the task
p0 is to delegate it further to O1 which delegates further via t1 and generates
the two subtasks p1 and p2. The agent O1 chooses the agents these subtasks are
delegated to. For p1 he has a choice between O2 and O3, but for p2 there is only
one partner: O4. In the prototype the agents are queried for partner choices via
a synchronisation a:askPartner(p, O) which means that the agent a provides a
binding for the partner O whenever the task p has to be delegated. Assume that
the agent O1 decides in favour of O3, then the control is handed over to O3 which
has a choice how to implement the task: either by t2 or by t5. These decision is
transferred into the model via the channel a:askImpl(t) which is activated by the
agent a only if t has to be used for delegation/implementation.

After this iterated delegation has come to an end – which is guaranteed
for well-formed Sonar-models – all subtask have been assigned to team agents
and the first phase ends. At this point the agents know whether they are team
members or not, but they do not know each other by now. To establish such
mutual knowledge we start the second phase and traverse the team tree in reverse
order, from the leaves to the root. At the root we have generated an object that
represents the team tree.

In the third phase this team tree object is sent from the root to the leaves.
After this all members know each other and they know the team structure, too.
The formation of the team is complete.

After team formation we start the fourth phase: the team negotiation. The
executing agents, i.e. the leaves in the tree, generate a partial local plan for
the team DWF net D(G). The plans are local in the sense that they describes
only actions relevant for the particular role each agents plays in the team. They

M. Köhler-B. and M. Wester-E.: MAS organisation middleware 83

are partial since they integrate different possibilities, like the best choice, the
second best etc. A plan is considered as a controller since it is useful only when
combined with the team DWF net it has been created for. Each agent a provides
such a plan/controller via the channel a:provideCtrl() (we omit technical details
concerning exchanged parameters). These plans are objects so they can be sent
to the direct ancestors in the teamtree which compute a compromise from these
local plans. The result is again a local plan, but now for this subtree. If this
process reaches the root we have computed a local plan for the whole team, i.e.
a global plan.

The global plan is yet unknown within the team. So we start the fifth phase
and publish the global plan from the root to the leaves. Each position agent
computes the part from it that is relevant for his respective role, i.e. its local
plan, which is no longer partial anymore.

After this negotiation phases, team DWF execution starts in the sixth phase.
An instance of the team DWF net is generated on the place team services and
this instance is coupled with all the agents’ plans/controllers. The team DWF
net instance starts and the actions selected by the local plans are carried out.

The meta-level teamwork is more or less the same. The main difference is
that the actions executed in the team DWF net instance manipulate not only
data but the organisation itself, here: the organisation of level n = 1. The model
Org2 defines a transformation that deletes the transition t5 in the model Org1.

To perform such a transformation we assume that there are no ongoing team
activities in the instance of level n = 1. So a meta-level team activity disables
the start of new low-level team activities, waits until the end of all currently
ongoing low-level team activities, and then deregisters all the position agents
from level n = 1. This is all done by the block activity control in Figure 13.
It then starts its own (level 2) six phases: a transformation team is formed, a
transformation plan is negotiated, a transformation DWF net is instantiated and
executed. The transformation DWF net is shown in Fig. 10. The main difference
when executing the transformation DWF net is that it modifies the model Org1.
In the prototype we have the channel modify(s1, s2), which couples the DWF
with the meta-model Org2. This channel has the effect that is replaces the old
specification s1 with the result of the transformation s2 = λ(G)(s1).

6 Conclusion

In this paper, we have built upon our previous work Sonar on formalising or-
ganisational models for MAS by means of Petri nets [4, 3]. Here, we have supple-
mented our original formal model with a recursive approach for reorganisation.
We have introduced stratified Sonar models with multiple organisational lev-
els where an organisation of a given level is allowed to transform organisational
models of lower levels.

In addition, we have presented a prototypical middleware for our formal
model. As Sonar specifications are formalised with Petri nets, they inherently

84 MOCA’09 – Modelling of Objects, Components and Agents

have an operational semantics and thus already lend themselves towards im-
mediate implementation. We have taken advantage of this possibility and have
chosen the reference net formalism as an implementation means. Reference nets
implement the nets-in-nets concept [16] and thus allow us to build stratified
Sonar organisations as nested Petri net systems. In addition, the reference net
tool Renew [6] offer a comprehensive integration of the JAVA programming
language, allowing us to refine/extend the Sonar specifications into fully exe-
cutable prototypes.

This leaves us with a quite close link between a Sonar specification of an or-
ganisation and its accompanying middleware implementation. The structure and
behaviour of the resulting software system is directly derived and compiled from
the underlying formal model. For example, we have explicitly shown how the or-
ganisation net of a formal Sonar specification can be utilised for the middleware
support of six different phases of teamwork. In each phase, the original net is used
differently (with different inscriptions and arrow directions) but nonetheless, it
ís always the same underlying organisation net. Basically, this MDA approach of
deploying Sonar models does not only relieve the developer of much otherwise
tedious programming. It also allows to preserve desirable properties that could
be proven for the formal model and that now carry over to the software technical
implementation.

Concerning future work, there exist several driving forces. First of all, we
need to elaborate and extend our prototype with convenient tools for modelling,
monitoring and controlling Sonar organisations. In addition, the mechanism for
generating a reference nets implementation from a formal Sonar models is not
generic enough at the moment.

Secondly, our purely Petri net-based approach will carry us only so far. Con-
trary to our philosophy of a (also physically) distributed OPA network from
Section 4, our current Renew middleware prototype is of course centralised.
Nevertheless, we expect to be able to reuse a great deal of our prototypical basis
when transferring it to a distributed MAS framework.

Finally, although we have introduced stratified Sonar models in this pa-
per, this stratification deals with levels of reorganisation authority. We have not
addressed the topic of organisations that exhibit multiple system levels where or-
ganisational units of one system level embed organisational units of lower system
level. Such a form of layering is orthogonal to the stratification introduced in this
paper. We study this this subject in [17], but on an even more abstract/generic
level than Sonar offers. Nevertheless, we have already begun to transfer the
results to Sonar.

References

1. Carley, K.M., Gasser, L.: Computational organisation theory. In Weiß, G., ed.:
Multiagent Systems. MIT Press (1999) 229–330

2. Dignum, V., ed.: Handbook of Research on Multi-Agent Systems: Semantics and
Dynamics of Organizational Models. IGI Global, Information Science Reference
(2009)

M. Köhler-B. and M. Wester-E.: MAS organisation middleware 85

3. Köhler-Bußmeier, M., Wester-Ebbinghaus, M., Moldt, D.: A formal model for
organisational structures behind process-aware information systems. Transactions
on Petri Nets and Other Models of Concurrency. Special Issue on Concurrency in
Process-Aware Information Systems 5460 (2009) 98–114

4. Köhler, M.: A formal model of multi-agent organisations. Fundamenta Informati-
cae 79(3-4) (2007) 415 – 430

5. Girault, C., Valk, R., eds.: Petri Nets for System Engineering – A Guide to Mod-
eling, Verification, and Applications. Springer (2003)

6. Kummer, O., Wienberg, F., Duvigneau, M., Schumacher, J., Köhler, M., Moldt,
D., Rölke, H., Valk, R.: An extensible editor and simulation engine for Petri nets:
Renew. In Cortadella, J., Reisig, W., eds.: Petri Nets 2004. Volume 3099 of LNCS,
Springer (2004) 484 – 493

7. Aalst, W.v.d.: Verification of workflow nets. In Azeme, P., Balbo, G., eds.: Petri
Nets 1997. Volume 1248 of LNCS, Springer (1997)

8. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of algebraic graph
transformation. Springer (2006)

9. Hübner, J.F., Sichman, J.S., Boissier, O.: S-moise: A middleware for developing
organised multi-agent systems. In: Organizations in Multi-Agent Systems: From
Organizations to Organization-Oriented Programming (OOOP 2005). (2005) 107–
120

10. Esteva, M., Rodriguez-Aguilar, J., Rosell, B., Arcos, J.: Ameli: An agent-based
middleware for electronic institutions. In Sierra, C., Sonenberg, L., Tambe, M.,
eds.: Autonomous Agents and Multi-Agent Systems (AAMAS 2004). (2004) 236–
243

11. Wester-Ebbinghaus, M., Köhler-Bußmeier, M., Moldt, D.: From multi-agent to
multi-organization systems: Utilizing middleware approaches. In Artikis, A., Pi-
card, G., Vercouter, L., eds.: Engineering Societies in the Agents World (ESAW
08). (2008)

12. Fischer, K., Schillo, M., Siekmann, J.: Holonic multiagent systems: A foundation
for the organization of multiagent systems. Industrial Applications of Holonic and
Multi-Agent Systems (HoloMAS). Volume 2744 of LNCS, Springer (2003) 71–80

13. Wester-Ebbinghaus, M., Moldt, D.: Modelling an open and controlled system
unit as a modular component of systems of systems. In Köhler-Bußmeier, M.,
Moldt, D., Boissier, O., eds.: International Workshop on Organizational Modelling
(OrgMod’09), University of Paris (2009) 81–100

14. Boissier, O., Hübner, J., Sichman, J.S.: Organization oriented programming: From
closed to open organizations. In O’Hare, G., Ricci, A., O’Grady, M., Dikenelli,
O., eds.: Engineering Societies in the Agents World VII. Volume 4457 of LNCS,
Springer (2007) 86–105

15. Köhler-Bußmeier, M., Wester-Ebbinghaus, M.: SONAR: A multi-agent infrastruc-
ture for active application architectures and inter-organisational information sys-
tems. In Lamersdorf, W. et al., eds.: Conference on Multi-Agent System Technolo-
gies, MATES 2009. LNAI (2009)

16. Valk, R.: Object Petri nets: Using the nets-within-nets paradigm. In Desel, J.,
Reisig, W., Rozenberg, G., eds.: Advanced Course on Petri Nets 2003. Volume 3098
of LNCS, Springer (2003) 819–848

17. Wester-Ebbinghaus, M., Moldt, D.: Structure in threes: Modelling organization-
oriented software architectures built upon multi-agent systems. In: 7th In-
ternational Conference an Autonomous Agents and Multi-Agent Systems (AA-
MAS’2008). (2008) 1307–1311

86 MOCA’09 – Modelling of Objects, Components and Agents

Generalized Hypernets and their Semantics

Marco Mascheroni

Dipartimento di Informatica, Sistemistica e Comunicazione
Università degli Studi di MilanoBicocca

Viale Sarca, 336, I-20126 Milano (Italy)??

Abstract. Hypernets were introduced for modelling systems of mobile
agents using the nets-within-nets paradigm. In this model agents are
structured in a containment hierarchy which can dynamically change.
In this paper, hypernets are generalized by relaxing some constraints.
The main results of the paper are the proof that the containment rela-
tion induces a tree structure on the hierarchy of agents in any reachable
configuration, and the translation of a generalized hypernet into a 1-safe
Petri net with an equivalent behavior.

1 Introduction

Systems of mobile agents have been widely studied by people who work in com-
puter science and software engineering areas in recent years. They are composed
of dynamic agents, which interact with each other and the environment, and
modify their behavior with respect to interactions happened, or take autonomous
decisions. Often, these agents are pieces of software travelling across a network of
hosts, where they can be executed in a local environment. Modeling such systems
is an important activity, and several models that deal with aspects of systems
of mobile agents have been defined in the past. The interest of this paper is on
Petri net based models that use the nets-within-nets paradigm.

With the nets-within-nets paradigm, tokens of a Petri net have the structure
of a Petri net themselves. This idea was introduced by Valk in 1987 [13], who
defined the model of Elementary Object Systems (EOS) in [14]. Other works
about EOS, related models (like Object Nets), and their properties have been
done by the same research group and can be found here for example: [15][16][9].
The nets-within-nets approach has been implemented in the tool RENEW ([11]).

Nested Petri nets was one of the first approaches that used the nets-within-
nets paradigm to model systems of mobile agents [12], whereas other approaches
were used in [8] and in [7].

Hypernets were introduced in [2] as a new nets-within-nets based framework
for modelling systems of mobile agents. Like in nested Petri nets each agent
is situated in one location in every marking, but agents cannot be created nor
destroyed. Moreover, two peculiar characteristics of hypernets are a non-static
hierarchical structure (agents can exchange tokens with their sub- or super-
agents, and thereby change the hierarchy arisen from the containment relation

?? Partially supported by MIUR and CNR - IPI PAN.

between agents) and the use of modularity (each agent is composed of modules of
a certain sort which are state machines and can communicate with other modules
of the same sort in other agents). Agents have a sort themselves, determining
in which module of other agents they can be located. The use of a dynamical
hierarchical structure has also been studied for Object Nets model [10].

Several works about Petri hypernets have been developed in the literature.
In [3] it was shown the existence of a morphism from hypernets to 1-safe Petri
nets. This translation allows us to reinterpret all the properties of the model
one can derive on the 1-safe net by means of the techniques developed in the
literature on hypernets. Moreover, a class of transition systems, called Agent
Aware Transition Systems, was defined in order to describe the behavior of
hypernets [4][1].

Hypernets have some constraints that limit their expressive power for mod-
elling purposes. For example, it is not possible to associate a weight to an arc of
a hypernet, and the modularity subdivision is sometimes too strict. Therefore, a
generalization of the basic model that relaxes these constraints was defined and
called generalized hypernets. In this paper, the 1-safe nets semantics is preserved,
as long as the tree-like structure of the hierarchy arising from the containment
relation between agents. Module subdivision is maintained too, replacing the
state machine module structure constraint with the notion of paths, which are
themselves of a certain sort. Generalized hypernets were employed, for exam-
ple, to model a class of P-Systems [4] (a computational model based upon the
architecture of a biological cell).

Section 2 discusses some basic concepts about generalized Hypernets which
are formalized in section 3. In Section 4 it is shown that markings of a hy-
pernet have always a tree structure. Finally, in Section 5 a theorem showing a
correspondence between a hypernet and a 1-safe Petri net is shown.

In the remainder the term Basic hypernets is used when referring to the
original version of the formalism, while the term hypernets is used when referring
to generalized hypernets.

2 Generalized Hypernet: Concepts

The focus of this paper is modeling systems of mobile agents using the nets-
within-nets paradigm. The term agent is used in this paper to denote a compo-
nent of a concurrent system, and it is not related to the concept of agent in other
disciplines such as Artificial Intelligence. Each agent is represented by an open
net, that is a Petri net enriched with particular places for managing the commu-
nication of tokens between agents. The characteristic that each agent is located
in another agent is reflected in the model by the fact that each net but one is
a token of another open net. The only exception is an agent A which contains,
directly or indirectly, all other agents. These agents are indirectly contained in
A if they are located in another agent distinct from A which in turn is direcly
or indirectly located in A

88 MOCA’09 – Modelling of Objects, Components and Agents

2.1 Paths

The first obvious difference between hypernets and Petri nets is that tokens can
be nets and have an identity. Indeed, there is a distinction between structured
tokens and simple tokens: simple tokens are very similar to black tokens in Petri
nets, while structured tokens have an internal state represented by a Petri net.
Structured tokens can either change their state by means of internal autonomous
transitions, or by means of interactions with other structured tokens. These
interactions can be enabled or disabled depending on the internal state of the
structured tokens and are performed using a token exchange mechanism between
structured tokens.

In Petri nets there is no distinction between tokens because a state is repre-
sented by a function which assigns the number of token to each place. Therefore,
each token is identical to others, but in hypernets this is not necessarily true be-
cause of the structure and the internal state of tokens. Thus, the way tokens are
manipulated in hypernets must be different. In the basic model it is not neces-
sary to distinguish between each single token. However, since hypernet tokens
are structured and have their own internal state, firing a simple transition that
takes a token from a place p putting it in another place could produce different
results if there are several tokens in p: moving a token instead of another one
could change the future behavior of the entire hypernet because certain future in-
teractions could be enabled or not, depending on the internal state of the moved
token. A mechanism to select which tokens will be moved when a transition is
fired is needed.

Another issue that must be taken into account is in which place a token must
be placed after the execution of a transition that has more than one output place.
Indeed, the way tokens are moved from input places to output places is also
important and could produce different results. Looking at picture 1 it is possible
to notice that again the usual Petri nets firing rule is not sufficient because it
does not contain informations about token identity. The two tokens in the place
p1 could be both moved to place p3 (figure 1(b)), or could be separated and
moved one to p3 and one to p4 (figure 1(c)).

(a) (b) (c)

Fig. 1.

To take into account these two problems paths are introduced. A path is a
triple place-transition-place that is used to uniquely identify which tokens will

M. Mascheroni: Generalized Hypernets and their Semantics 89

perform a transition (together with the γ function in the Definition 6) and where
each token will be placed after a transition is fired. In each of the two figures
1(b) and 1(c) there are three paths: two paths that insist on (p1, t, p3) and one
that insists on (p2, t, p4) in figure 1(b), and paths (p1, t, p3), (p1, t, p4), (p2, t, p3)
are present in figure 1(c). p1 and p2 are called input places of the path, whereas
p3 and p4 are called output places of the path. As it will be clearer later when
the graphical notation is introduced in example 4, the same effect of paths can
be obtained in high level nets using annotation on arcs: it is enough to connect
the input place of the path to the transition with an arc annotated g, and to
connect the transition to the output place of the path with an arc annotated
with the same label g.

Basic hypernets solve these problems by means of synchronized state ma-
chines. Each agent is made of a set of state machines that cooperate in per-
forming a transition. Since each transition in a state machine has exactly one
input place and one output place, then it is possible to identify which structured
token is moved and the place where it will be placed after the execution of the
transition. However, such state machines decomposition is too strict for some
application contexts, for instance, because of the needs of weighted arcs. For ex-
ample, in [4] transformation rules that take any quantity of molecules of several
types and put them out of a membrane were modeled. These kinds of rules are
easilly modeled if the formalism allows the use of weighted arcs, whereas with
synchronized state machines the model is more constrained.

2.2 Virtual Places

Each agent of a hypernet is located in another agent, with the exception of one
special agent that is considered as an environment. Thus, there is a containment
relation between nets that can be represented as a graph. This graph as it will
be demonstrated in theorem 1, is always a tree. Virtual places are introduced
to manage the passage of tokens between close structured tokens. Two tokens
are close when one is located in a place of the other or vice-versa. A virtual
place acts as a communication link between structured tokens and is graphically
represented with a triangle inscribed in a circle. Consider an example in which
a system with a structured token A that sends a simple token to a structured
token B is modeled. The simple token can be sent up if token A is located in
one place of token B 2(a), or down if token B is located in a place of token A
2(b). Thus, two kinds of virtual places are used: the one with the triangle’s base
on the bottom is used for down to up passage of token, while the one with the
triangle’s base on the top is used for up to down passage.

3 Generalized Hypernets: Formal Definition

3.1 Preliminaries

In the following it will be used the notation: f〈q0, q1, ... , qn〉 = 〈r0, r1, ... , rn〉
when f is a function f : Q → R and {q0, q1, ... , qn} ⊆ Q and {r0, r1, ... , rn}
⊆ R and f(q0) = r0, f(q1) = r1, ... , f(qn) = rn.

90 MOCA’09 – Modelling of Objects, Components and Agents

(a) (b)

Fig. 2.

A Petri net N is a tuple N = (P, T, F) where P is the set containing the
places of the net, T is the set containing transitions with P ∩ T = ∅, and
F : (P × Q) ∪ (Q × P) is the flow relation. A marked Petri net is a tuple
N = (P, T, F, M0) where N = (P, T, F) is a Petri net and m0 : P → N is the
initial marking assigning to each place the number of tokens. The input places
of a transition t, denoted •t, are p ∈ P : ∃t, (p, t) ∈ F . In a similar way output
places t• are defined. A transition t is enabled in a marking m, denoted m[t〉,
iff ∀p ∈ •t,m(p) > 0. Firing the enabled transition t leads to a new marking
m′ : ∀p ∈ •t\t•,m′(p) = m(p) − 1 ∧ ∀p ∈ t•\•t, m′(p) = m(p) + 1. A marking
m is reachable from m0 if there exists a sequence of transitions that lead to m.
A marked Petri net is 1-safe iff the number of tokens on each place is 0 or 1 in
every reachable marking.

3.2 Static Structure

Definition 1. An agent is a tuple Ai = (Pi, Ti, Gi, φi), where:

– Pi = Li ∪Vi is the set of local places Li and virtual places Vi (or communi-
cation places), with Li ∩ Vi = ∅; an agent can send tokens in two directions:
up or down, so it is possible to distinguish the two kinds of virtual places
V Up

i and V Down
i such that Vi = V Up

i ∪ V Down
i with V Up

i ∩ V Down
i = ∅

– Ti is the set of transitions with Ti ∩ Pi = ∅;
– Gi is the set of paths;
– φi : Gi → Pi×Ti×Pi is the path map that associates a triple place-transition-

place to each path in such a way that at least one of the two places in the
triple is local: φi(g) = (p, t, q) ⇒ ¬(p ∈ Vi ∧ q ∈ Vi).

Example 1. In figure 3 a simple agent with two transitions, three local places
and two virtual places is depicted. Unfortunately, if the graphical representation
of the agent is done in a classical Petri nets style, there is no way to know which
paths constitute the agent.

M. Mascheroni: Generalized Hypernets and their Semantics 91

Fig. 3. Agent A1

Thus, each input arc and each output arc of a transition is labelled with a
set of label in such a way that the labels of input arcs are pairwise disjoint and
the union of the labels of the input arcs is equal to the union of the labels of
the output arcs. If a transition has only one input arc and one output arc then
labels are not depicted. In figure 4 all possible path combinations of figure 3 are
represented with this graphical notation. There is only one net without a path
where both input and ouput places that are vitual. This is the only net that it
is an agent according to Definition 1.

Fig. 4. Notation used to represent possible paths of net in figure 3

92 MOCA’09 – Modelling of Objects, Components and Agents

Given a path g ∈ Gi, by •g the input place of path g is denoted, ie: p ∈ Pi :
φi(g) = (p, t, q) with t and q free. In the same way the output place of the path
is defined: g• = q ∈ Pi : φi(g) = (p, t, q) with t and p free. Notice that each
path has only one input place and one output place. Therefore, this notation is
slighty different from the one used from classical Petri nets because it returns a
single place instead of a set of places.

Given a set of agents X = {A1, A2, ..., An}, the following notation is used:

PX =
∪

Ai∈X

Pi, LX =
∪

Ai∈X

Li, VX =
∪

Ai∈X

Vi, TX =
∪

Ai∈X

Ti,

In a similar way V Up
X and V Down

X are defined.

Definition 2. Let N = {A1, A2, . . . , An} be a family of agents, Σ a finite set
of sorts, and Λ a finite set of transition labels.

A hypernet is a tuple H = (N , σN , σG, λ), where

– The agents in N have disjoint sets of places, paths, and transitions, i.e.:
∀Ai, Aj ∈ N , i 6= j =⇒ Pi ∩ Pj = ∅ ∧ Gi ∩ Gj = ∅ ∧ Ti ∩ Tj = ∅; agents that
represent usntructured tokens are also allowed empty;

– σN : N → 2Σ is a function that describes the sorts of each agent;
– σG : GN → Σ is a function that assigns a sort to each path;
– λ : TN → Λ is a function that assigns to each transition a label.

Example 2. Let A1 be the agent shown in figure 5(a), A2 the agent shown in
figure 5(b), A3 the agent shown in figure 5(c), and A4 and A5 two empty agents.
Let N = {A1, A2, A3, A4, A5} be a set of agents, GN be the set containing all
the paths of the agents in N , Σ = {α} be the set containing the only sort α,
and Λ = {l,m} be a set of labels. Moreover, let σN : N → 2Σ be a function
that assign to each element of the domain the element {α}, σG : GN → Σ be
a similar function, and λ〈t11, t12, t21, t22, t31, t32〉 = 〈l, m, l, l, l, l〉 be a function
that assigns to each transition the label l with the exception of transition t12.

The tuple H = (N , σN , σG, λ) is a hypernet.

(a) Agent A1 (b) Agent A2 (c) Agent A3

Fig. 5. A set of agents that toegether are an hypernet

M. Mascheroni: Generalized Hypernets and their Semantics 93

Definition 3. Let N = {A1, A2, . . . , An} be a family of agents. A map M :
{A2, . . . , An} −→ LN , assigning to each agent different from A1 the local place
where it is located, is a hypermarking of N iff, considering the relation ↑M⊆
N × N defined by : Ai ↑M Aj ⇔ M(Ai) ∈ Lj, then the marking graph (i.e.:
〈N , ↑M〉) is a tree with root A1.

Definition 4. A marked hypernet is a pair (H, M) where H is a hypernet and
M is a hypermarking defining the initial configuration.

Example 3. Consider the hypernet of Example 2. Three of the possible maps
from the agents to the local places of that hypernet are the following:

M1〈A2, A3, A4, A5〉 = 〈p11, p21, p31, p32〉
M2〈A2, A3, A4, A5〉 = 〈p11, p23, p31, p24〉
M3〈A2, A3, A4, A5〉 = 〈p11, p31, p31, p32〉

The three graphs in figure 6 correspond to the marking graphs 〈N , ↑M1〉,
〈N , ↑M2〉, 〈N , ↑M3〉 respectively.

Fig. 6. Possible marking graphs of the hypernet of Example 2

Since the latter marking graph is not a tree with root A1 only the two pairs
(H, M1), (H, M2) are marked hypernets.

3.3 Behavior

In order to discuss the dynamics of a hypernet, it is convenient to identify some
sets of paths which will be used in the formal definitions.

94 MOCA’09 – Modelling of Objects, Components and Agents

GLocal = {g ∈ GN : φN (g) = (p, t, q) ∧ p ∈ LN ∧ q ∈ LN }
GOut = {g ∈ GN : φN (g) = (p, t, v) ∧ v ∈ VN ∧ p ∈ LN }
GIn = {g ∈ GN : φN (g) = (v, t, p) ∧ v ∈ VN ∧ p ∈ LN }
GUp = {g ∈ GN : φN (g) = (p, t, q) ∧ (p ∈ V Up

N ∨ q ∈ V Up
N)}

GDown = {g ∈ GN : φN (g) = (p, t, q) ∧ (p ∈ V Down
N ∨ q ∈ V Down

N)}
Gt = {g ∈ GN : φN (g) = (p, t, q)}

Notice that in the first five definitions t is free, and in the last one t is fixed.
Let H = (N , σN , σG, λ), with N = {A1, A2, . . . , An}, be a hypernet.
A consortium is a set of interconnected active agents, cooperating in per-

forming a set of transitions with the same label l, and moving other passive
agents along the paths containing those transitions.

A notion of consistency between paths is introduced with the aim of iden-
tifying pairs of paths belonging to different agents, that could be associated to
exchange tokens. Two paths are consistent if they have the same sort and the
same direction. As it can be seen in the formal definition this notion is not a
simmetric relation because the first path belongs to the agent which sends the
token and the second path belongs to the agents which receive the token.

Definition 5. Two paths gi ∈ Gi and gj ∈ Gj are consistent (denoted by
cons(gi, gj)) ⇐⇒ Ai 6= Aj ∧ σG(gi) = σG(gj) ∧ ((gi ∈ GUp ∩ GOut ⇐⇒
gj ∈ GUp ∩ GIn) ∨ (gi ∈ GDown ∩ GOut ⇐⇒ gj ∈ GDown ∩ GIn))

Notice that the nature of the virtual places (up or down) of the two paths
involved in the token exchanging reflects the direction taken by the token.

Example 4. In figure 7 all the possible combinations of paths and the corre-
sponding values of the cons predicate are shown. It is supposed that all paths
have the same sort. If not, they are not consistent.

Definition 6. A consortium is a tuple Γ = (l, τ, C, δ, γ) where:

1. l ∈ Λ is the name of the consortium,
2. τ = {t0, ..., tm} is the set of transitions that will be fired. They must belong

to different agents and must have the same label, i.e.: ∀ti, tj ∈ τ , i 6= j ⇒
(ti ∈ Tz ⇒ tj /∈ Tz) ∧ λ(ti) = λ(tj) = l. With Gτ =

∪
tk∈τ Gtk the set of

paths involved in the consortium (i.e.: paths that contain transitions that are
in τ) are denoted

3. C ⊆ N is the set of passive agents
4. δ : GOut ∩ Gτ → GIn ∩ Gτ is a bijective correspondence such that: δ(g) =

g′ ⇒ cons (g, g′)
5. γ : C −→ Gτ\GIn is a bijective correspondence such that: γ(A) = g ⇒

σG(g) ∈ σN (A)

M. Mascheroni: Generalized Hypernets and their Semantics 95

Fig. 7. Possible combinations of paths and their consistency

6. Agents that receive tokens must not move in the hierarchy, i.e.: ∀Ai ∈ C :
∃g ∈ Gi ∩ GIn ∩ Gτ ⇒ γ(Ai) /∈ GOut

7. If an agent A1 sends a token to another agent A2 then either the contained
agent is a passive agent or the outer agent has no local paths containing the
transition which is being fired (see figure 8). Let g1 = (p1, t1, v1) ∈ A1 and
g2 = (v2, t2, p2) ∈ A2 then

δ(g1) = g2 ∧ g1 ∈ GUp =⇒ A1 ∈ C ∨ (Gt2 ∩ GLocal = ∅)

δ(g1) = g2 ∧ g1 ∈ GDown =⇒ A2 ∈ C ∨ (Gt1 ∩ GLocal = ∅)

8. the set of active agents is a minimal one, in the sense that they must be
interconnected through the interaction l, i.e.:

the undirected graph G = (τ, E) is connected,

where E = {(ti, tj) : ti ∈ Ai, tj ∈ Aj ∧ ∃ g ∈ Gti : δ(g) ∈ Gtj }

96 MOCA’09 – Modelling of Objects, Components and Agents

Fig. 8. If the path g exists then the inner agent has to belong to the set of
passive agents

Example 5. In the hypernet described in Example 2 with the marking M1 there
are four consortia associated to the label l, namely:

Γ1 = (l, {t21, t31}, {A4}, δ〈g21〉 = 〈g31〉, γ〈A3, A4, A5〉 = 〈g22, g31, g32〉)
Γ2 = (l, {t21, t32}, {A5}, δ〈g21〉 = 〈g32〉, γ〈A3, A4, A5〉 = 〈g22, g31, g32〉)
Γ3 = (l, {t22, t31}, {A4}, δ〈g24〉 = 〈g31〉, γ〈A3, A4, A5〉 = 〈g22, g31, g32〉)
Γ4 = (l, {t22, t32}, {A5}, δ〈g24〉 = 〈g32〉, γ〈A3, A4, A5〉 = 〈g22, g31, g32〉)

The set of all consortia of a hypernet H is denoted by CONS(H).

Definition 7. Let H = (N , σN , σG, λ) be a hypernet and M be a hypermarking.
A consortium Γ = (l, τ, C, δ, γ) is enabled in M , denoted M[Γ 〉, iff the

following three conditions hold

∀A ∈ C, •γ(A) = p ⇒ M(A) = p (1)

∀g ∈ Gi ∩ GUp : δ(g) ∈ Gj , Ai /∈ C ⇒ Ai ↑M Aj (2)

∀g ∈ Gj ∩ GDown : δ(g) ∈ Gj , Ai /∈ C ⇒ Ai ↑M Aj (3)

where ↑M was defined in Definition 3.

Definition 8. If M[Γ 〉, then the occurrence of Γ leads to the new hypermarking
M′, denoted M[Γ 〉M′, such that ∀A ∈ N :

M′(A) =





M(A) if A /∈ C

q if γ(A) ∈ GOut and (δ(γ(A)))• = q,

q′ if γ(A) /∈ GOut and γ(A)• = q′

Definition 9. Given a marked hypernet (H, M), a hypermarking Mn is reach-
able iff ∃Γ1, Γ2, ... , Γn ∈ CONS(H) : M0[Γ1〉M1[Γ2〉M2, ... , Mn−1 [Γn〉 Mn

M. Mascheroni: Generalized Hypernets and their Semantics 97

4 Preservation of the Tree-Like Structure of the
Hypermarking

When a consortium is fired it modifies the marking graph, the graph induced by
the containment relation between agents (Definition 3). The initial containment
relation between agents forms a tree (i.e., 〈N , ↑M〉 is a tree); is the containment
relation between agents a tree in all possible subsequent configurations of the
hypernet? The aim of this section is to prove that firing a consortium preserves
the tree structure of a hypermarking

This proof is not trivial because a consortium could correspond in several
contemporary movement of agents. Thus, some preliminary notions on tree must
be introduced. The first one is a notion of tree which has been adapted for the
purposes of this paper from standard definitions in the graph theory (which can
be found in [6] for instance).

Definition 10. A tree is a pair A = (V , p) where V is the set of verteces of the
tree and p : V \v0 → V is the father function that associates the father to each
vertex with the exception of the root of the tree which is v0. p must satisfies the
following property:

∀v ∈ V \v0 ∃k such that pk(v) = v0 with v0 ∈ V (4)

Notice that a tree A = (V , p) can be transformed in a graph G = (V , E)
with the same set of vertices V and a set of arcs E = {(v, v′) : p(v) = v′}. It is
easy to prove that any two vertices are linked by a unique path in G, which is
equivalent to say that G is a tree as in theorem 1.5.1 of [6].

As in graph theory, the height of a tree is the length of the longest path from
a leaf to the root.

Definition 11. The height of a tree A = (V , p) is the minimum number h such
that ∀v ∈ V : p(v)k = v0 ⇒ k ≤ h

The following definitions introduces the concept of move, distinct set of
moves, and application of a distinct set of moves to a tree. These concepts
are used to represent the changes made by a consortium to the graph induced
by the containment relation between agents. In particular, these changes can be
represented by the application of a distinct set of moves which are one-level and
non-cascading, as it is shown later in this chapter.

Definition 12. Let A = (V , p) be a tree. An A-move m is a pair (v , v′) such
that v ∈ V \v0 and v′ ∈ V . v is called the pivot of the move.

A move (v , v′) represents the atomic unit of transformation of a tree. It
simply changes the father of the pivot node v from a generic node x to v′ (see
figure 9), like a consortium can move an agent in such a way that its father change
(i.e.: the place in which it is marked belongs to another distinct agent after
executing the consortium). However, the effect of a consortium to the marking
graph is not represented by a single move, but by a set of moves which have
distinct pivots. Thus, sets of distinct moves are defined:

98 MOCA’09 – Modelling of Objects, Components and Agents

Fig. 9. A move with pivot v

Definition 13. A set of A-moves M = {(v0 , v′
0), (v1 , v′

1), ...,
(vn , v′

n)} is called distinct iff the moves have pairwise different pivots, i.e.:
v0 6= v1 6= ... 6= vn. With PV T (M) = {v0, v1, ..., vn} the pivot set of the distinct
set of moves M is denoted.

A set of distinct moves can be applied to a tree. They transform the tree
moving some of the edges that connect a vertex to its predecessor in the path
toward the root.

Definition 14. The application of a set of distinct A-moves M = {(v0 , v′
0),

(v1 , v′
1), ..., (vn , v′

n)} to the tree A = (V , p) is a graph G = (V, p′), i.e.:
M(A) = G, such that:

p′(v) =

{
v′ if (v, v′) ∈ M,

p(v) if v /∈ PV T (M),

The application of a set of distinct moves to a tree may not be a tree anymore.
For example, the application of the distinct set of moves M = {(5, 6), (3, 5)} to
the tree in figure 10(a) produces a graph that is not a tree anymore (see figure
10(b)).

(a) A tree on which moves
M = {(5, 6), (3, 5)} is be-
ing applied

(b) The graph is not a
tree anymore

Fig. 10. Example of moves application

M. Mascheroni: Generalized Hypernets and their Semantics 99

The next step is to recognize the type of moves a consortium results in, and
to prove a theorem that says that the application of such moves preserves the
tree structure of a graph. In particular, an agent can only move one level per
consortium, and the receiving agent must not move in the hierarchy.

Definition 15. A set of distinct A-moves M = {(v0 , v′
0), (v1 , v′

1), ...,
(vn , v′

n)} is one-level iff ∀vi ∈ {v0, v1, ..., vn}, (p2(vi) = v′
i) ∨ (p(vi) = p(v′

i))

A one level move changes the father of the pivot v either to the grand-father
of v or to a sibling of v. Moves depicted in figure 10 are not 1-level, whereas the
moves {(9, 8), (6, 1)} are 1-level.

Definition 16. A set of distinct A-moves M = {(v0 , v′
0), (v1 , v′

1), ...,
(vn , v′

n)} is non cascading iff {v0, v1, ..., vn} ∩ {v′
0, v

′
1, ..., v

′
n} = ∅

A set of moves M is not cascading if the new father of each pivot is not a
pivot itself in M .

Definition 17. Let A = (V , p) be a tree and let M = {(v0 , v′
0), (v1 , v′

1), ...,
(vn , v′

n)} be a set of moves. M[k,k′] = {(vi, v
′
i) ∈ M : pj(vi) = v0 ∧ k ≤ j ≤ k′}

denotes the moves whose pivot vi is at depth j : k ≤ j ≤ k′. If k = k′ notation
Mk is used instead of M[k,k′].

Finally, the following theorem can be proved:

Theorem 1. Let A = (V , p) be a tree of height h, and let M = {(v0 , v′
0),

(v1 , v′
1), ..., (vn , v′

n)} be a set of distinct, non-cascading, one-level A-moves.

M(A) = M[0,h](A) is a tree (5)

Proof. The proof is by induction on the height of the tree starting from the bot-
tom.
BASE CASE: M[h,h](A) is a tree.
M[h,h] are the moves whose pivots are the leaves of the tree. Since all the moves
are one-level, applying these kind of moves to the tree means that, after the move,
each leaf in PV T (M[h,h]) will be either connected to its grandfather or to an-
other leaf, a sibling. In the former case the tree structure is obviously preserved;
in the latter case the non-cascading property of the moves guarantees that the
path that connects the new father of each pivot to the root does not change after
the application of the moves M[h,h](A).
INDUCTIVE STEP: 0 < i ≤ h, M[i,h](A) is a tree ⇒ M[i−1,h](A) is a tree.

The inductive hypothesis written in an extended form says that M[i,h](A) =
(V, pi) is a tree, thus:

pi(v) =

{
v′ if ∃(v, v′) ∈ M[i,h],

p(v) if v /∈ PV T (M[i,h])

100 MOCA’09 – Modelling of Objects, Components and Agents

is such that condition 4 holds for pi.
The inductive thesis says that M[i−1,h] = Mi−1(M[i,h](A)) = (V, pi−1) is a tree,
thus:

pi−1(v) =

{
v′ if ∃(v, v′) ∈ Mi−1,

pi(v) if v /∈ PV T (Mi−1)

is such that condition 4 holds for pi−1.
Case a: ∃(v, v′) ∈ Mi−1

Since the moves are one level, then either v′ = pi−1(v) = p2
i (v) (up-move: fig-

ure 11(a)) or v′ = pi−1(v) and since the moves are non-cascading v′′ = pi(v
′) =

pi−1(v
′) which implies p2

i−1(V) = pi(v) (down-move figure 11(b)). As nodes v′

for the first case and v′′ for the latter are far i − 3 and i − 2 step from the root
respectively, it is possible to say that all nodes between them and the root are not
in PV T (Mi−1), thus the inductive hypothesis can be applyied to say that they
are connected to the root.

(a) Up-Move (b) Down-move

Fig. 11. Type of possible moves

Case b: v /∈ PV T (Mi−1)
if v /∈ PV T (Mi−1) there are two cases. If the vertex v does not encounter a
vertex in PV T (Mi−1) in the path toward the root, then the inductive hypothe-
sis applies directly. Otherwise the inductive hypothesis applies until the node in
PV T (Mi−1), and then the previous part of the demonstration holds.

As a direct consequence of theorem 1 the following theorem can be proved:

Theorem 2. Let H = (N , σN , σG, λ) be a hypernet, Γ be a consortium and M0

a hypermarking.

M0[Γ 〉M1 ⇒ M1is a hypermarking

M. Mascheroni: Generalized Hypernets and their Semantics 101

Proof. A set of moves can be associated to Γ for each passive agent A which
moves in the hierarchy, i.e.: γ(A) ∈ GOut. From the sixth condition of definition
6, which means that the moves associated to a consortium are non-cascading,
and from structure of the function δ, which guarantees that the moves are 1-
level, it is immediate to prove that the marking graph 〈N , ↑M1〉 is a tree. Thus,
M1 is a hypermarking.

5 1-Safe Nets Semantics

In this section it is shown how it is possible, starting from a hypernet, to build
a 1-safe Petri nets whose behavior is equivalent to the behavior of the hypernet.
The basic idea underlying this construction is to associate to each agent A and
to each place p of agents in N\A a place 〈A, p〉 which represents the presence of
agent A in the place p. A token in this place means that the agent A is located
at place p in the hypernet. Moreover, for each pair of agents Aj , Aj with i 6= j, a
place 〈Ai@Aj〉 is added in order to reflect the hierarchy structure of the agents
of the hypernet. Place 〈Ai@Aj〉 is marked if agent Ai is marked in a place of
agent Aj .

Definition 18. Given a hypernet H = (N , σN , σG, λ), its associated 1-safe net
is the net 1S(H) = (B, E, F), such that:

– B = {〈A, p〉 : p ∈ PN , A ∈ N , p /∈ PA} ∪ {Ai@Aj : Ai, Aj ∈ N ∧ i 6= j}
– E = {tΓ : Γ ∈ CONS(H)}

Given a consortium Γ = (l, τ, C, δ, γ) and its corresponding transition tΓ

– (〈A, p〉, tΓ) ∈ F ⇐⇒ A ∈ C ∧ •γ(A) = p
– (tΓ , 〈A, p〉) ∈ F ⇐⇒ γ(A) ∈ GOut ∧ (δ(γ(A)))• = p)
– (tΓ , 〈A, p〉) ∈ F ⇐⇒ γ(A) /∈ GOut ∧ γ(A)• = p

Moreover, a loop from consortium Γ to place 〈Ai@Aj〉 is added if agent Ai

sends/receive a token to/from agent Aj without being also a passive agent (see
figure 12):

– (〈Ai@Aj〉, tΓ) ∈ F ∧ (tΓ , 〈Ai@Aj〉) ∈ F ⇐⇒ ∃gj ∈ Gj ∩ GDown : Ai /∈
C ∧ δ(gj) ∈ Gi

– (〈Ai@Aj〉, tΓ) ∈ F ∧ (tΓ , 〈Ai@Aj〉) ∈ F ⇐⇒ ∃gi ∈ Gi ∩ GUp : Ai /∈
C ∧ δ(gi) ∈ Gj

Finally, the following arcs are added to update places 〈Ai@Aj〉 when a passive
agent moves in the hierarchy:

– (〈Ai@Aj〉, tΓ) ∈ F ⇐⇒ Ai ∈ C ∧ γ(Ai) ∈ GOut ∧ γ(Ai) ∈ Gj

– (tΓ , 〈Ai@Aj〉) ∈ F ⇐⇒ Ai ∈ C ∧ γ(Ai) ∈ GOut ∧ δ(γ(Ai)) ∈ Gj

Now, an association between hypermarking and marking of the 1-safe net is
defined:

102 MOCA’09 – Modelling of Objects, Components and Agents

Fig. 12. Situations where a loop is added

Definition 19. A marking M in a hypernet H = (N , σN , σG, λ) has a corre-
sponding marking m = 1SH(M), that is:

m(〈A, p〉) =

{
1 if M(A) = p

0 otherwise

m(〈Ai@Aj〉) =

{
1 if Ai ↑M Aj

0 otherwise

Notice that function 1SH from reachable hypermarking of H to reachable
marking of 1S(H) is injective, and the function between consortia of the hypernet
and corresponding transition of the 1-safe net is bijectivechee. In the following
theorem it is proved that the behavior of the 1-safe net simulates the behavior
of the associated hypernet.

Theorem 3. Let H = (N , σN , σG, λ) be a hypernet, M be a hypermarking and
Γ = (l, τ, C, δ, γ) ∈ CONS(H) be a consortium

M[Γ 〉M′ in hypernet H =⇒ 1SH(M)[tΓ 〉1SH(M′) in 1S(H)

1SH(M)[tΓ 〉m in 1S(H) =⇒ M[Γ 〉1S−1(m) in hypernet H

Proof. 1. M[Γ 〉M′ in hypernet H =⇒ 1SH(M)[tΓ 〉1SH(M′) in 1S(H)
First, it is shown that if consortium Γ is enabled in a hypermarking 1SH(M),
then the corresponding transition tΓ is enabled in the marking of the 1-safe
net 1SH(M):
M[Γ 〉 ⇒ 1SH(M)[tΓ 〉
Condition 1, condition 2, and condition 3 of Definition 7 hold for hypothesis.
It has to be shown that each input place of tΓ is marked in 1S(H).
There are two kind of input places of tΓ : places which have the 〈A, p〉 form,
and places which have the 〈Ai@Aj〉 form (Definition 18).
The first kind of places are added when there is a passive agent A that is
mapped via γ in a path which has an input place p. More precisely, there
is an arc between a place 〈A, p〉 and transition tΓ only when condition A ∈
C ∧ •γ(A) = p is true. Thus, if this condition hold, place 〈A, p〉 must be

M. Mascheroni: Generalized Hypernets and their Semantics 103

marked, i.e.: M(A) = p (Definition 19). But, this is true for hypothesis
because condition 1 of Definition 7 is true.
An arc between the 〈Ai@Aj〉 kind of places and tΓ are added in the followind
three situations:
(a) ∃gi ∈ Gi ∩ GUp : Ai /∈ C ∧ δ(gi) ∈ Gj

(b) ∃gj ∈ Gj ∩ GDown : Ai /∈ C ∧ δ(gj) ∈ Gi

(c) Ai ∈ C ∧ γ(Ai) ∈ GOut ∧ γ(Ai) ∈ Gj

Therefore, if these conditions hold the place 〈Ai@Aj〉 must be marked, i.e.:
Ai ↑M Aj (Definition 19). It is easy to see that if the first holds, then for
hypothesis (condition 2) Ai ↑M Aj also holds. The same is true for the
second case and condition 3. In the third case there exists a place p ∈ Aj

such that •γ(Ai) = p. For hypothesis M(Ai) = p (condition 1), which really
means that Ai ↑M Aj.
Then the first point of the theorem is proved:
M[Γ 〉M′ ⇒ 1SH(M)[tΓ 〉1SH(M′)
It must be shown that 1SH(M′) = 1SH(M)\•t ∪ t•, that is the result of
firing the consortium in the hypernet and firing the transition in the 1-safe
net is the same. Definition 8 distinguishes between passive agents and other
agents. If a non passive agent A is located in place p (i.e.: M(A) = p) before
the firing of the consortium in the hypernet, then it is also located in p after
the firing of Γ (first condition of Definition 8), as long as place 〈A, p〉 stay
marked in the 1-safe net (there is not an arc between 〈A, p〉 and tΓ because
A is not passive, i.e.: A /∈ C).
Passive agents are either marked in (δ(γ(A)))• or γ(A)• after the execution
of consotrium Γ , depending if γ(A) ∈ GOut or not. In the same way, the
corresponding places are marked in the 1-safe net because they are post-
condition of transition tΓ (see the fourth and fifth point of Definition 18)
.
The sixth and seventh conditions of Definition 18 are now analized. Loops
for places of type 〈Ai@Aj〉 leaves the place marked after the execution of
transition tΓ . In the same way in the hypernet, since Ai is not passive it is
marked in the same place of agent Aj both before and after the execution of
consortium Γ (Definition 8).
The last two conditions says that if agent Ai is passive (Ai ∈ C) and move
in the hierarchy (γ(Ai) ∈ GOut) then place 〈Ai@Aj〉 will not be marked any-
more if γ(Ai) ∈ Gj, but place 〈Ai@Ak〉 is marked instead, where δ(γ(Ai)) ∈
Gk. By analyzing the second condition of definition 8 it can be inferred that
agent A will be marked in the agent containing the place δ(γ(Ai))

• after the
execution of Γ .

2. 1SH(M)[tΓ 〉m in 1S(H) =⇒ M[Γ 〉1S−1
H (m) in hypernet H The proof of

the secon part of the theorem can be build observing that the correspondence
between the consortia of H and the transitions of 1S(H) is bijective, whereas
the correspondence between the hypermarkings of H and the markings of
1S(H) is injective. Since they are both invertible marking M and consor-
tium Γ can be retrieved. Analyzing the way the 1-safe net is built (Definition
18) it can be seen that marking m is itself the image of a hypermarking M′.

104 MOCA’09 – Modelling of Objects, Components and Agents

Indeed, places 〈A, p〉 which are preconditions of 1S(H) will not be marked
after the firing of transition tΓ because, by construction, the place marked is
〈A, p′〉 where p′ is the place where agent A is located after firing consotrium
Γ . In the same way places 〈Ai@Aj〉 are updated in such a way that the
hierarchical structure of the hypernet is reflected.

As a consequences of theorem 3 and of the fact that each agent is marked in
one place in every hypermarking, then it is possible to say that given a hypernet
H the corresponding net 1S(H) is 1-safe.

6 Conclusions

Hypernets were introduced in [2] for modeling systems of mobile agents, where
agents are structured in a containment hierarchy which can dynamically change.
In this paper an extension that relaxes some constraints has been considered.
It has been shown that the containment relation induces a tree-structure in the
agent’s hierarchy in any reachable configuration. Moreover it was shown that it
is possible to translate a hypernet into a 1-safe net with an equivalent behavior.

Hypernets have a “law of conservation of tokens” which prevents creation
and destruction of agents. From one point of view this is useful because it is
guaranteed that the number of tokens is limited. On the other hand, in certain
contexts, allowing the creation of new tokens can be useful. So, an interesting
research topic regards the question of how to add to the Hypernet model a
mechanism to create tokens maintaining a semantics expressed in terms of basic
Petri nets.

Another important research topic pertains to the definition of techniques of
behavioral analysis of systems modeled with hypernets. The translation into the
1-safe net and Theorem 3 guarantee that all analysis techniques studied for the
class of 1-safe nets can be redefined for the class of hypernets defined in this
paper. Invariant calculus and model checking are two of those techniques. To
this purpose algorithms for generating in an “optimal” way the corresponding
1-safe net should be developed.
Acknowledgements. I wish to thank Luca Bernardinello and Lucia Pomello
for their guidance and ideas.

References

1. M Bednarczyk, L Bernardinello, W Paw lowski, and L Pomello. Modelling and
analysing systems of agents by agent-aware transition systems. In F. Fogelman-
Soulie, editor, Mining Massive Data Sets for Security: Advances in Data Mining,
Search, Social Networks and Text Mining, and their Applications to Security, vol-
ume 19, pages 103–112. IOS Press, 2008.

2. Marek A. Bednarczyk, Luca Bernardinello, Wies law Paw lowski, and Lucia Pomello.
Modelling mobility with Petri Hypernets. In Recent Trends in Algebraic Develop-
ment Techniques, volume 3423/2005 of Lecture Notes in Computer Science, pages
28–44. Springer Berlin / Heidelberg, 2005.

M. Mascheroni: Generalized Hypernets and their Semantics 105

3. Marek A. Bednarczyk, Luca Bernardinello, Wies law Paw lowski, and Lucia Pomello.
From Petri hypernets to 1-safe nets. In Proceedings of the Fourth International
Workshop on Modelling of Objects, Components and Agents, MOCA’06, Bericht
272, FBI-HH-B-272/06, 2006, pages 23–43, Jun, 06.

4. Luca Bernardinello, Nicola Bonzanni, Marco Mascheroni, and Lucia Pomello. Mod-
eling symport/antiport p systems with a class of hierarchical Petri nets. In Mem-
brane Computing, volume Volume 4860/2007 of Lecture Notes in Computer Sci-
ence, pages 124–137. Springer Berlin / Heidelberg, 2007.

5. Jordi Cortadella and Wolfgang Reisig, editors. Applications and Theory of Petri
Nets 2004, 25th International Conference, ICATPN 2004, Bologna, Italy, June 21-
25, 2004, Proceedings, volume 3099 of Lecture Notes in Computer Science. Springer,
2004.

6. Reinhard Diestel. Graph Theory (Graduate Texts in Mathematics). Springer, 2005.
7. Michael Köhler and Berndt Farwer. Object nets for mobility. In Jetty Kleijn and

Alexandre Yakovlev, editors, ICATPN, volume 4546 of Lecture Notes in Computer
Science, pages 244–262. Springer, 2007.

8. Michael Köhler, Daniel Moldt, and Heiko Rölke. Modelling mobility and mobile
agents using nets within nets. In Wil M. P. van der Aalst and Eike Best, edi-
tors, ICATPN, volume 2679 of Lecture Notes in Computer Science, pages 121–139.
Springer, 2003.

9. Michael Köhler and Heiko Rölke. Properties of object Petri nets. In Cortadella
and Reisig [5], pages 278–297.

10. Michael Köhler-Bußmeier and Frank Heitmann. On the expressiveness of com-
munication channels for object nets. Fundamenta Informaticae, 93(1-3):205–219,
2009.

11. Olaf Kummer, Frank Wienberg, Michael Duvigneau, Jörn Schumacher, Michael
Köhler, Daniel Moldt, Heiko Rölke, and Rüdiger Valk. An extensible editor and
simulation engine for Petri nets: Renew. In Cortadella and Reisig [5], pages 484–
493.

12. Irina A. Lomazova. Nested Petri nets - a formalism for specification and verification
of multi-agent distributed systems. Fundam. Inform., 43(1-4):195–214, 2000.

13. Rüdiger Valk. Nets in computer organization. In Petri Nets: Applications and
Relationships to Other Models of Concurrency, volume Volume 255/1987 of Lecture
Notes in Computer Science, pages 218–233. Springer Berlin / Heidelberg, 1987.

14. Rüdiger Valk. Petri nets as token objects: An introduction to elementary object
nets. In Jörg Desel and Manuel Silva, editors, ICATPN, volume 1420 of Lecture
Notes in Computer Science, pages 1–25. Springer, 1998.

15. Rüdiger Valk. Concurrency in communicating object Petri nets. In Gul Agha,
Fiorella de Cindio, and Grzegorz Rozenberg, editors, Concurrent Object-Oriented
Programming and Petri Nets, volume 2001 of Lecture Notes in Computer Science,
pages 164–195. Springer, 2001.

16. Rüdiger Valk. Object Petri nets: Using the nets-within-nets paradigm. In Lectures
on Concurrency and Petri Nets, volume 3098/2004 of Lecture Notes in Computer
Science, pages 819–848. Springer Berlin / Heidelberg, 2004.

106 MOCA’09 – Modelling of Objects, Components and Agents

Nets-in-nets with SNAKES

Franck Pommereau

LACL. University Paris East
61 avenue du général de Gaulle

94010 Créteil. France
pommereau@univ-paris12.fr

Abstract. This paper presents the toolkit SNAKES, focusing on the
ability to model Petri nets whose tokens are Petri nets (so called nets-
in-nets). SNAKES is a general Petri net library that allows to model and
execute Python-coloured Petri nets: tokens are Python objects and net
inscriptions are Python expressions. Since SNAKES itself is programmed
in Python, Petri net inscriptions can handle Petri net objects as data
values, for instance as tokens.

1 Introduction

SNAKES is a general Petri net library designed with quick prototyping in mind.
For this aim, SNAKES offers a flexible architecture based on a core library, that
defines a basic Petri net structure, complemented with a variety of extension
modules (i.e., plugins), that introduce additional features. The core library pro-
vides a general model of Python-coloured Petri nets: tokens are Python objects,
transitions guards are Python expressions and arcs can be labelled with Python
expressions. The core model of SNAKES is very similar to Jensen’s well known
ML-coloured Petri nets [12] but using Python instead of ML as colour domain.

In this paper, we focus on the fact that, because SNAKES itself is pro-
grammed in Python, it is possible to exploit the features of SNAKES within a
Petri net inscriptions or tokens. In particular, we will show how to define Petri
nets whose tokens are Petri nets, i.e., nets-in-nets [27, 28, 13, 14, 25]. It is also
possible to define interactions between the nets at various levels: we will show
how to synchronise the firing of transitions in Petri nets used as tokens with the
firing of the transition that consumes or produces these token nets. Moreover,
we will show how to transform token nets at firing time and how to program
transitions that modify the structure of the nets when fired, similarly to what
happens in reconfigurable object nets [4, 11]. Our aim is to show the feasibility of
these features through very simple example, a real implementation would require
to design and program dedicated plugins in order to provide more general and
reusable features, which is out of the scope of the present paper.

In order to demonstrate these possibilities, the rest of the paper will focus on
concrete examples. The features and architecture of SNAKES will be introduced
when needed in the examples. A general presentation of SNAKES can be found
in [22, 23] and a tutorial is available at the SNAKES homepage [20]. Key features

of Python will be explained as needed and Python programs are very readable,
so programmers usually feel comfortable with simple Python code (like in this
paper). Thus, prior knowledge of Python or another imperative object-oriented
programming language is desirable to read the source code in this paper. A
good Python tutorial is available at the Python homepage [24]. The complete
source code of the examples is provided as an appendix at the end of the paper.
We assume that the reader is familiar with coloured Petri nets and nets-in-nets
models.

1.1 Related works

The tool Renew [26] implements reference nets [16, 17], which can be seen as
a variant of nets-in-nets where places carry references to Petri nets instead of
Petri nets objects. To this respect, the techniques presented in this paper allow
to implement reference nets since the programmer can choose to handle Petri
net objects by reference of to copy them (see Section 3). Renew also implements
asynchronous communication through fusion places and synchronous commu-
nication through channels. Both these aspects are left out of the scope of this
paper. However, it is likely that they can be implemented using SNAKES: fu-
sion places may be implemented by sharing place objects among several nets,
and channels can be seen as a generalisation of the much simpler synchronisa-
tion mechanism presented in Section 5. To the best of our knowledge, Renew
does not support Petri nets transformations like those presented in Sections 4
and 6. Renew is programmed in Java, it is actively developed and released as
open source software with a specific licence.

JFern [19] is another Java tool to model Petri nets in which tokens are Java
object and annotations are Java bytecode. This should allow to implement the
features demonstrated in this paper, possibly with less flexibility since Python is
more dynamic than Java. Unfortunately, to the best of our knowledge, JFern is
almost not documented yet. The latest release (3.0.1) of JFern is dated of January
2006 but the project looks still active and patches are regularly contributed. Like
SNAKES, JFern is free software released under the GNU LGPL [10].

Another similar project is PNtalk [15] that uses Smalltalk as colour domain.
The latest version of PNtalk has been released in December 2008 and this is also
free software distributed under the MIT licence [18].

Reconfigurable object nets, or RONs [11], have been implemented as an
Eclipse extension presented in [4]. Using this tool, net transformation are de-
fined graphically as local graph transformation rules associated to dedicated
transitions. When such a transition fires, the attached rules are applied to the
disjoint union of the Petri nets that the transitions consumes as tokens, produc-
ing a new Petri net to the post-places. In comparison, the approach presented in
Section 4 allows to program directly in Python arbitrary transformations and to
attach them to arbitrary transitions, which generalises the approach of RONs.
Moreover, as shown in Section 6, transformations can also be applied to the
Petri net the fired transition belongs to (and not only to the Petri nets used as

108 MOCA’09 – Modelling of Objects, Components and Agents

tokens). It can even be envisaged that the firing of a transition at any level of
nesting can transform a Petri net at any other level, including an upper level.

Finally, we may consider COOPNBuilder [7] that implements the COOPN
formalism [6] in which algebraic Petri nets are encapsulated into objects, the
latter being then integrated into a context layer to specify their compositions.
With respect to nets-in-nets, no nesting of Petri nets is allowed and three dif-
ferent classes of objects are involved (Petri nets objects, abstract data types
and contexts). So, although COOPN has many similarities with the nets-in-nets
variants addressed in this paper, COOPN is quite a distinct model. In particu-
lar, the context level involves coordination techniques that are completely out of
the scope of SNAKES. The latest version of COOPNBuilder (1.0.7-β) has been
released in March 2006 (but source code for version 1.0.11-β is available since
July 2009). COOPNBuilder is free software distributed under the GNU GPL [9].

2 SNAKES overview

To start with, we define a very simple Petri net, which allows to introduce
SNAKES by demonstrating how the well-known colored Petri nets concepts are
implemented in SNAKES. This section thus shows how to:

– load SNAKES with plugins;
– build a Petri net using SNAKES;
– draw a Petri net using a plugin;
– fire transitions;
– change the marking of a net;
– compute the whole state space of a Petri net.

2.1 Loading SNAKES

First, we load SNAKES. If no plugin is needed, its enough to import module
snakes.nets that exposes the core model of SNAKES and whose structure is
depicted at the top of Figure 1. However, we would like to be able to draw Petri
nets so we need to load a plugin called gv that uses GraphViz [1] in order to
layout nets and print pictures of them.

Listing 1. basic.py — loading plugins.

1

∣∣ import snakes.plugins
2

∣∣ snakes.plugins.load("gv", "snakes.nets", "nets")
3

∣∣ from nets import ∗
Line 1 loads module snakes.plugins in order to allow to call its function load in
Line 2. (Notice that Python statements extend until the end of the line, with no
semi-colon or other terminator.) This function load expects three arguments:

1. The name of the plugin to load, or a list of plugin names. Here, we load a
single plugin called gv.

F. Pommereau: Nets in nets with SNAKES 109

2. The name of the module being extended. This is almost always snakes.nets
since it provides all the core library.

3. The name of the module created by extending snakes.nets with plugin gv.
Here we call nets this freshly created module.

Thanks to this function call, a module called nets is now loaded and Line 3 allows
to access directly to its content from our program.

Essentially, a plugin is implemented as a Python module with a function that
can create sub-classes of classes from the extended module (here snakes.nets), or
define completely new classes. Function snakes.plugins.load takes care to load
the required modules, call the function to build the new classes, create a module
with all the API in; it also avoids loading a plugin twice and manages plugins
dependencies. This is illustrated in Figure 1 where module snakes.nets is ex-
tended by snakes.plugins.clusters, yielding a new module that is itself extended by
snakes.plugins.gv. Plugin cluster is automatically involved by snakes.plugins.load
since plugin gv depends on it. The module nets created in the above listing in-
cludes all the classes from the three modules depicted in Figure 1, taking into
account the down-most version of classes PetriNet and StateGraph. Notice that
this could not be achieved through standard Python import mechanism because
the class hierarchy is defined dynamically, depending on which plugins are loaded
by the program.

2.2 Building a Petri net

The next step is to create a Petri net as an instance of class PetriNet (Line 4),
and add nodes (Lines 5–7) and arcs to it (Lines 8–9):

Listing 2. basic.py — building the Petri net.

4

∣∣ n = PetriNet("mynet")
5

∣∣ n.add place(Place("p1", [dot]))
6

∣∣ n.add place(Place("p2"))
7

∣∣ n.add transition(Transition("t"))
8

∣∣ n.add input("p1", "t", Value(dot))
9

∣∣ n.add output("p2", "t", Value(dot))

The created net is given the name "mynet". Then, each place is created as
an instance of class Place whose constructor expects a name and an optional
collection of tokens. Notice that, in this context, the name of a place (or of a
transition), plays the role of an identifier that must be unique within a given
Petri net. So, the first place is called "p1" and initially marked by a single black
token (given as a list with only one dot item); the second place is called "p2"

and is not initially marked. The black token value is available as name dot in
SNAKES. Each place is added to the net using the dedicated method add place.
Line 7, a transition called "t" is added to the net. As usual with coloured Petri
nets, a transition may be equipped with a guard that stands for a firing condition;
if none is provided, like in this example, True is assumed. Arcs are divided into
input arcs, i.e., from a place toward a transition, and output arcs, i.e., from a

110 MOCA’09 – Modelling of Objects, Components and Agents

NetElement ArcAnnotation

Node

Place Transition

Value Variable Expression Test MultiArc

MarkingPetriNet StateGraph

snakes.nets

PetriNet

snakes.plugins.clusters

Cluster

PetriNet StateGraph

snakes.plugins.gv

Fig. 1. Loading plugin gv, that depends on plugin clusters, on the top of module
snakes.nets. (Picture from [22].)

transition toward a place. Line 8, an input arc is added from "p1" to "t" and
labelled by Value(dot); this means that the arc can consume (because it is an
input arc) a single token whose value is the black token dot. Similarly, an output
arc is added in order to produce a black token into "p2" when "t" fires.

Thanks to plugin gv, a PetriNet instance is equipped with a method draw
that allows to layout and draw the net. So, a picture of our net can be produced
with a single statement:

Listing 3. basic.py — drawing the net.

10

∣∣ n.draw("mynet.ps")

The result is shown on the left of Figure 2. Here, PostScript output has been re-
quested by providing file extension “.ps”, but many other formats are supported
by GraphViz (in particular, PNG and JPEG).

2.3 Firing transitions

The firing of a transition can be decomposed in two steps:

F. Pommereau: Nets in nets with SNAKES 111

(a)

p2
{ }

p1
{ d o t }

t
True

 dot

 dot

(b)

p2
{ d o t }

p1
{ }

t
True

 dot

 dot

(c)

0: Marking({’p1’: MultiSet([dot])})

1: Marking({’p2’: MultiSet([dot])})

t
{ }

Fig. 2. (a) our first Petri net as drawn by GraphViz; (b) the same net after its transition
has fired; (c) the corresponding marking graph. Each place is labelled by its name and
marking (in set-like notation); each transition is labelled by its name and guard; each
state in the marking graph is labelled by its number and marking; each edge in the
marking graph is labelled by a transition name and a mode that correspond to the
firing.

1. Possible modes are computed: a mode is binding of the variables in the
transition guard and the annotations of its adjacent arcs that enables the
transition.

2. A mode is chosen in order to actually fire the transition, i.e., consume and
produce tokens according to input and output arcs.

This is reflected by the following code:

Listing 4. basic.py — firing a transition.

11

∣∣ t = n.transition("t")
12

∣∣ m = t.modes()
13

∣∣ t . fire (m.pop())

Line 11, the transition object for "t" is fetched from the net and stored in
variable t for an easier access to it. Then, its modes are computed and stored into
variable m. Since the transition involves no variable, only one mode is possible
to fire it and this is the empty binding; so, m holds a single value. Last, the
transition is fired with a mode picked from m (m.pop() removes and returns a
value from m, that is here the unique value). In general, any mode from m could
be chosen for firing and m is just a regular Python list. In particular, if t has no
mode, then m is the empty list [], resulting in an exception on m.pop(). If the
net is drawn again, we get the picture displayed in the middle of Figure 2. By
iterating over all the transitions of a Petri net, one may collect all the possible
firings that may occur at a given marking.

112 MOCA’09 – Modelling of Objects, Components and Agents

2.4 Computing the state space

In order to reset the marking, we can use the following:

Listing 5. basic.py — resetting the marking.

15

∣∣ n.set marking(Marking(p1=MultiSet([dot]), p2=MultiSet([])))

Method set marking expects a Marking instance as its argument, which is con-
structed by providing for each place the multiset of its tokens.

Then, instead of manually computing modes and firing transitions, we can use
class StateGraph in order to compute all the reachable states from the provided
initial marking. The resulting graph can be drawn thanks to plugin gv. For
instance:

Listing 6. basic.py — building and drawing the state space.

16

∣∣ g = StateGraph(n)
17

∣∣ for i in g :
18

∣∣ g.net.draw("mynet-%s.ps" % i)
19

∣∣ g.draw("mynet-states.ps")

The constructor of class StateGraph expects the marked net whose state space
has to be computed. Lines 17–18, a loop iterates over the states of g, numbered
from zero. The body of the loop just contains Line 18 (Python defines block
through indentation) that draws the net in each reached state: i is the state
number and operator % allows to substitute the value of i inside the template
string "mynet-%s.ps" (similarly to printf in C) with an automatic coercion of
integer i to a string. Notice that g.net.draw is called, and not n.draw as one could
expect; indeed, g uses a copy of n so that n is not affected when the marking
of the copy is modified as the state space is explored. The resulting pictures are
exactly the same as in Figure 2. Finally, the state space itself is drawn, which
results in the picture shown on the right of Figure 2. Notice that the state space is
constructed on-the-fly, i.e., the successors of each state are computed only when
the state is iterated over. This is useful, for instance, to display a progression of
state space computation or to check a property on-the-fly.

3 Petri nets as tokens

In this section, we use instances of class PetriNet as tokens. For simplicity, we
consider two levels: the token level where Petri nets use dot as their tokens, and
an upper level that uses the nets of the token level as tokens. So, we call token
nets the Petri nets used as tokens, and container nets the Petri nets whose places
carry token nets. In general, any depth of nesting could be used by applying
exactly the same technique. In order to produce the token nets, we define a
function token net:

Listing 7. toknets.py — defining a token net factory.

5

∣∣ def token net (name) :

F. Pommereau: Nets in nets with SNAKES 113

6

∣∣ a, b, t = "a%s" % name, "b%s" % name, "t%s" % name
7

∣∣ net = PetriNet(name)
8

∣∣ net.add place(Place(a, [dot]))
9

∣∣ net.add place(Place(b))
10

∣∣ net.add transition(Transition(t))
11

∣∣ net.add input(a, t, Value(dot))
12

∣∣ net.add output(b, t, Value(dot))
13

∣∣ return net

This function (whose body, as usual, is delimited by indentation) expects as its
sole argument a string that is used to define nodes names and that becomes the
name of the returned Petri net. For instance, if name="foo" then Line 6 results
in a="afoo", b="bfoo" and t="tfoo".

Then, a container Petri net is defined with a similar structure:

Listing 8. toknets.py — building the container net.

15

∣∣ n = PetriNet("container")
16

∣∣ n.add place(Place("p1", [token net("Toknet")]))
17

∣∣ n.add place(Place("p2"))
18

∣∣ n.add transition(Transition("t"))
19

∣∣ n.add input("p1", "t", Variable("x"))
20

∣∣ n.add output("p2", "t", Expression("x.copy()"))

Line 16, a new token net is created for the marking of place "p1". Line 19,
the input arc is labelled by a variable called "x"; this allows to consume one
token from the input place while binding its name to a variable x. Line 20, the
output arc is labelled by an expression; this allows to compute a new token to
be produced in the output place. Here, we simply copy the token net bound to
x by calling its method copy.

Copying net tokens may be important in order to avoid unwanted side effects.
For instance: suppose that we add an output arc from the transition toward "p1"

in order to reproduce the consumed token net, and suppose that we do not copy
token nets (e.g., by using "x" instead of "x.copy()" on the output arcs). Then,
after firing the container’s transition, the two places of the container net would
hold each a reference to the same token net. Firing the transition of one of these
token nets would thus modify the marking in both places of the container net.
This may be desirable or not, and this can be controlled by choosing to produce
either copies of token nets or references to them. For instance, to implement
reference nets [16, 17], it may be chosen to produce references to Petri net objects
instead of copies.

The rest of the program builds the marking graph, drawing the container net
in each state as well as all the token nets in each place. This is made by iterating
over every state and then over every token in every place at each given state.
The resulting pictures are displayed in Figure 3.

114 MOCA’09 – Modelling of Objects, Components and Agents

(a)

p2
{ }

p1
{Toknet}

t
True

 x

 x.copy()

(b)

p2
{Toknet}

p1
{ }

t
True

 x

 x.copy()

(c)

aToknet
{ d o t }

tToknet
True

 dot

bToknet
{ }

 dot

(d)

aToknet
{ d o t }

tToknet
True

 dot

bToknet
{ }

 dot

Fig. 3. (a) the initial state of the container net; (b) the state of the container net after
firing; (c) the token net from place "p1" in (a); (d) the token net from place "p2" in
(b), which is a copy of that in (c).

4 Transforming token nets

In this section, we elaborate on the previous example and consider a more com-
plex case where two token nets are composed in order to produce a new one.
This is one particular case of net transformation and, more generally, arbitrary
transformations may be used.

For this example, we make use of Petri net compositions defined in the Petri
Box Calculus (PBC) and its variants [2, 3, 8, 21] and implemented in SNAKES.
These composition operations have been chosen here because they are already
implemented in SNAKES, which is not the case of, e.g., those from BPMN or
BPEL [29, 5]. In a nutshell, each place in PBC is labelled with a status, allowing
to distinguish entry places, internal places and exit places. All together, these
places form the control flow of a Petri net and PBC defines binary operators to
compose nets with respect to their control flow. If N1 and N2 are two PBC nets:

– the sequential composition N1 & N2 allows to execute N1 once, followed by
one execution of N2;

– the choice N1 +N2 allows to execute once either N1 or N2;
– the iteration N1 ∗N2 allows to execute repeatedly N1, followed by one exe-

cution N2;
– the parallel composition N1 | N2 allows to execute both N1 and N2 concur-

rently. This latter operation simply consists of a disjoint union of the two
composed nets.

Notice that these operators are denoted above as implemented in SNAKES,
instead of as originally defined in PBC (SNAKES uses Python operators).

We now consider token nets similar to the previous ones, with input places
(the a· · · ones) being labelled as entry places, and output places (the b· · · ones)

F. Pommereau: Nets in nets with SNAKES 115

labelled as exit places. The container net consists of one transition with two
input places holding one token net each, and one output place to receive the
parallel composition of the two token nets consumed upon firing.

The program starts with the loading a SNAKES extended with plugins gv
(to draw nets) and ops (to support PBC operations). Then, function token net
is defined just as before except that it assigns statuses to the places (Lines 8–9):

Listing 9. compose.py — loading plugins and defining token nets factory.

1

∣∣ import snakes.plugins
2

∣∣ snakes.plugins.load(["gv", "ops"], "snakes.nets", "nets")
3

∣∣ from nets import ∗
4

∣∣
5

∣∣ def token net (name) :
6

∣∣ a, b, t = "a%s" % name, "b%s" % name, "t%s" % name
7

∣∣ net = PetriNet(name)
8

∣∣ net.add place(Place(a, [dot], status=entry))
9

∣∣ net.add place(Place(b, status=exit))
10

∣∣ net.add transition(Transition(t))
11

∣∣ net.add input(a, t, Value(dot))
12

∣∣ net.add output(b, t, Value(dot))
13

∣∣ return net

Then, the container net, called "composer", is created as explained above:

Listing 10. compose.py — building the container net.

15

∣∣ n = PetriNet("composer")
16

∣∣ n.add place(Place("left", [token net("foo")]))
17

∣∣ n.add place(Place("right", [token net("bar")]))
18

∣∣ n.add place(Place("parall"))
19

∣∣ n.add transition(Transition("t"))
20

∣∣ n.add input("left", "t", Variable("x"))
21

∣∣ n.add input("right", "t", Variable("y"))
22

∣∣ n.add output("parall", "t", Expression("x|y"))

Lines 20–21, notice the arcs labelled by variables allowing to bind the two token
nets to different names x and y. Line 22, the parallel composition of these two
token nets is computed by simply providing expression “x|y” on the output arc.

The rest of the program builds the state space and draws all the container
and token nets at each state as previously. This results in the pictures shown in
Figure 4. It may be noted that node names in a compound net are systematically
obtained from the node names of its components; for instance, “[x|]” denotes a
new node obtained from a node called x in the left operand of the parallel
composition (read this name as “x” on the left of “|”, with “[· · ·]” around to
handle nested compositions). Similarly, the name of the compound net “foo|bar”
is derived from that of its components. This renaming is made systematically by
plugin ops to ensure that only disjoint nets are composed.

116 MOCA’09 – Modelling of Objects, Components and Agents

(a)

r ight
{ b a r }

t
True

 y

parall
{ }

 x|y

left
{foo}

 x

(b)

r ight
{ }

t
True

 y

parall
{(foo|bar)}

 x|y

left
{ }

 x

(c)

afoo
{ d o t }

tfoo
True

 dot

bfoo
{ }

 dot

(d)

aba r
{ d o t }

t b a r
True

 dot

bbar
{ }

 dot

(e)

[|abar]
{ d o t }

[| tbar]
True

 dot

[|bbar]
{ }

 dot

[afoo|]
{ d o t }

[tfoo|]
True

 dot

[bfoo|]
{ }

 dot

Fig. 4. (a) the initial state of the container net; (b) the container net after firing; (c)
the token net from place "left" in (a); (d) the token net from place "right" in (a);
(e) the token net from place "parall" in (b), which is the parallel composition of the
token nets in (c) and (d).

F. Pommereau: Nets in nets with SNAKES 117

5 Synchronising firing

Let us consider again the example from Section 3. In this section, we elaborate
on it to enforce synchronised firing between transitions at the two levels.

The beginning of this program is exactly as in Listing 7 (see Listing 17).
Then, after the definition of function token net, we also define a function ready
to check whether transitions from a token net are ready to fire. This function
consists of iterating over given transitions and for each, test if it has no mode and
if so, returns False. If none of the provided transition is inactive, then function
ready returns True. A second helper function called synchro is needed to produce
a copy of a net in which specified transitions have been fired. This function does
not check whether firing the given transitions is possible (if not, an exception will
occur) and we assume that function ready has been used appropriately for this
purpose. Indeed, this is checked in the guard of the transition in the container
net:

Listing 11. synchro.py — building the container net.

29

∣∣ n = PetriNet("synchroniser")
30

∣∣ n.globals ["ready"] = ready
31

∣∣ n.globals ["synchro"] = synchro
32

∣∣ n.add place(Place("p1", [token net("Toknet")]))
33

∣∣ n.add place(Place("p2"))
34

∣∣ n.add transition(Transition("t", Expression("ready(x,’tToknet’)")))
35

∣∣ n.add input("p1", "t", Variable("x"))
36

∣∣ n.add output("p2", "t", Expression("synchro(x,’tToknet’)"))

Lines 30–31, the defined functions are declared in the execution environment of
the container net. Function ready is used Line 34 in the guard of the transition
(provided by an Expression object as the second argument of the constructor of
class Transition). Function synchro is used on the output arc in order to pro-
duce a copy of the net taken from the input place (as x) in which the transition
"tToknet" has fired. We known that this firing is possible since transition "t"

is guarded by ready(x,’tToknet’) that exactly checks this. Notice that Python
accepts both single and double quotes to delimit strings, which is very conve-
nient to embed in a string Python expressions that involve string literals (like
in Lines 34 and 33 above).

The rest of the program draws states as previously in order to produce the
pictures shown in Figure 5.

6 Self-modifying nets

As a last example, we consider a Petri net whose structure is modified by the
firing of its transitions. We start with a net that has the same structure as that
of Figure 2(a). When its transition "t" fires, it creates a new transition (called
"back") and arcs in order to reset the marking. When this transition "back"

fires, it removes itself from the net.

118 MOCA’09 – Modelling of Objects, Components and Agents

(a)

p2
{ }

p1
{Toknet}

t
ready(x, ’tToknet’)

 x

 synchro(x, ’tToknet’)

(b)

p2
{Toknet}

p1
{ }

t
ready(x, ’tToknet’)

 x

 synchro(x, ’tToknet’)

(c)

aToknet
{ d o t }

tToknet
True

 dot

bToknet
{ }

 dot

(d)

aToknet
{ }

tToknet
True

 dot

bToknet
{ d o t }

 dot

Fig. 5. (a) the initial state of the container net; (b) the state of the container net after
firing; (c) the token net from place "p1" in (a); (d) the token net from place "p2" in
(b), which is exactly that from (c) after the firing of its transition. With respect to
Figure 3, notice in (d) that the transition as fired.

In order to achieve such an effect, we extend twice class Transition in order to
redefine its method fire: a first class BackwardTransition is used to implement the
transition added to the net; a second class ForwardTransition is used to implement
the adding of a BackwardTransition.

Listing 12. modify.py — defining transition classes for net transformation.

5

∣∣ class BackwardTransition (Transition) :
6

∣∣ def fire (self , binding) :
7

∣∣ Transition. fire (self , binding)
8

∣∣ self .net.remove transition(self .name)
9

∣∣
10

∣∣ class ForwardTransition (Transition) :
11

∣∣ def fire (self , binding) :
12

∣∣ Transition. fire (self , binding)
13

∣∣ self .net.add transition(BackwardTransition("back"))
14

∣∣ self .net.add input("p2", "back", Value(dot))
15

∣∣ self .net.add output("p1", "back", Value(dot))

The method fire of class Transition or one of its sub-classes is passed two ar-
guments: self is the instance whose method has been called (this is an explicit
argument in Python and corresponds to this in Java) and binding is the mode
under which the transition is fired. Line 7, method fire from the super-class
Transition is called in order to achieve the actual firing. Line 8, the transition
removes itself from the Petri net that is available as attribute net. Notice that
removing a transition also removes all its arcs. Class ForwardTransition is defined

F. Pommereau: Nets in nets with SNAKES 119

similarly, the only difference is that it adds a BackwardTransition and arcs to the
net instead of removing them.

The rest of the code is dedicated to build the net and draw the two states of
the net, resulting in the pictures shown in Figure 6.

Listing 13. modify.py — building the self-modifying net and firing a transition.

17

∣∣ n = PetriNet("modifier")
18

∣∣ n.add place(Place("p1", [dot]))
19

∣∣ n.add place(Place("p2"))
20

∣∣ n.add transition(ForwardTransition("t"))
21

∣∣ n.add input("p1", "t", Value(dot))
22

∣∣ n.add output("p2", "t", Value(dot))
23

∣∣
24

∣∣ n.draw("modifier-0.ps")
25

∣∣ n. transition ("t").fire (n. transition ("t").modes().pop())
26

∣∣ n.draw("modifier-1.ps")

Notice Line 20 that we use ForwardTransition instead of Transition.
To build a meaningful state space of such a net, it is necessary to update the

notion of state. Indeed, a marking is not enough to know the possible successor
states but we need to store in each state the full Petri net, including its structure
and marking.

(a)

p2
{ }

p1
{ d o t }

t
True

 dot

 dot

(b)

p2
{ d o t }

back
True

 dot

p1
{ }

 dot

t
True

 dot

 dot

Fig. 6. (a) the initial state of the self-modifying net; (b) the state of the self-modifying
net after firing the forward transition. Firing the backward transition from (b) would
result in net (a) again.

120 MOCA’09 – Modelling of Objects, Components and Agents

7 Conclusion

In this paper, we have presented the toolkit SNAKES, focusing on its ability to
represent and execute Petri whose tokens are Petri nets. In particular, we have
shown that it is easy to perform transformations on nets at different levels of
nesting at firing time, and to synchronise the firing of the transitions at different
levels.

The code presented throughout the paper should be considered as a proof of
concept rather than as a guideline about how to implement these features in a
real tool. For such a use case, it would be better to carefully design and program
a plugin for SNAKES in order to provide a solution that would be both more
general and easier to use. The design phase in particular seems crucial for both
generality and robustness, it’s likely that it requires a good background about
nets-in-nets. Any contribution to SNAKES or collaboration proposal toward
adding such a plugin will be welcomed.

Future works will be dedicated to model more complex and realistic exam-
ples from the domain of objects, components, agents and services. This will
allow in particular to draw comparison with existing tools in terms of ease of
use, expressive power and performances. Moreover, we implemented here only
primitive features, not directly relating them to any particular model. It will be
interesting to consider a selection of well-established and theoretically founded
models and implement them using SNAKES. Considering existing models will
allow to clearly fix the requirements for the various features envisaged (e.g., in-
formation exchange between synchronised transitions is formalised as channels
in reference nets [16]). For these future works also, any collaboration proposal
will be welcomed.

References

1. AT&T Research. GraphViz, graph visualization software. 〈http://www.graphviz.
org〉.

2. E. Best, R. Devillers, and J. Hall. The Petri box calculus: a new causal algebra
with multilabel communication. In Advances in Petri Nets 1992, volume 609 of
LNCS. Springer, 1992.

3. E. Best, R. Devillers, and M. Koutny. Petri net algebra. Springer, 2001.
4. E. Biermann, C. Ermel, F. Hermann, and T. Modica. A visual editor for reconfig-

urable object nets based on the ECLIPSE graphical editor framework. In G. Juhas
and J. Desel, editors, AWPN’07, Universität Koblenz-Landau, Germany, 2007.

5. Business process execution language for Web services (BPEL), version 1.1. 〈http:
//www.ibm.com/developerworks/library/ws-bpel〉.

6. D. Buchs and N. Guelfi. A formal specification framework for object-oriented
distributed systems. IEEE Trans. Software Eng., 26(7), 2000.

7. COOPNBuilder. 〈http://smv.unige.ch/research-projects/co-opn〉.
8. R. Devillers, H. Klaudel, M. Koutny, and F. Pommereau. Asynchonous box calcu-

lus. Fundamenta Informaticae, 54(1), 2003.
9. F. S. Foundation. GNU general public license. 〈http://www.fsf.org/licensing/

licenses/gpl.html〉.

F. Pommereau: Nets in nets with SNAKES 121

10. F. S. Foundation. GNU lesser general public license. 〈http://www.fsf.org/
licensing/licenses/lgpl.html〉.

11. K. Hoffmann, T. Mossakowski, and H. Ehrig. High-level nets with nets and rules
as tokens. In ICATPN’05, volume 3536 of LNCS. Springer, 2005.

12. K. Jensen and L. M. Kristensen. Coloured Petri Nets: modelling and validation of
concurrent systems. Springer, 2009.

13. M. Köhler and H. Rölke. Concurrency for mobile object-net systems. Fundamenta
Informaticae, 54(2–3), 2003.

14. M. Köhler and H. Rölke. Properties of object Petri nets. In ICATPN’04, volume
3099 of LNCS. Springer, 2004.

15. R. Koč́ı. Towards model-based design with PNtalk. In MOSMIC’05, Žilina, Slo-
vakia, 2005.

16. O. Kummer. Simulating synchronous channels and net instances. In J. Desel,
P. Kemper, E. Kindler, and A. Oberweis, editors, 5. Workshop Algorithmen und
Werkzeuge für Petrinetze. Universität Dortmund, Fachbereich Informatik, 1998.

17. O. Kummer. Tight integration of Java and Petri nets. In J. Desel and A. Ober-
weis, editors, 6. Workshop Algorithmen und Werkzeuge für Petrinetze. Goethe-
Universität, Institut für Wirtschaftinformatik, Frankfurt am Main, Fachbereich
Informatik, 1999.

18. MIT licence. 〈http://www.opensource.org/licenses/mit-license.php〉.
19. M. Nowostawski. JFern, Java-based Petri net framework. 〈http://sourceforge.

net/projects/jfern〉.
20. F. Pommereau. SNAKES is the net algebra kit for editors and simulators. 〈http:

//lacl.univ-paris12.fr/pommereau/soft/snakes〉.
21. F. Pommereau. Versatile boxes: a multi-purpose algebra of high-level Petri nets.

In DASDS’04. SCS/ACM, 2004.
22. F. Pommereau. Quickly prototyping Petri nets tools with SNAKES. Petri net

newsletter, September 2008.
23. F. Pommereau. Quickly prototyping Petri nets tools with SNAKES. In PNTAP’08,

ACM Digital Library. ACM, 2008.
24. Python Software Foundation. Python programming language. 〈http://www.

python.org〉.
25. R. Sánchez-Herrera, N. Villanueva-Paredes, and E. López-Mellado. High-level mod-

elling of cooperative mobile robot systems. In Distributed Autonomous Robotic
Systems 6. Springer, 2007.

26. Theoretical Foundations Group, Department for Informatics, University of Ham-
burg. Renew: The reference net workshop. 〈http://www.renew.de〉.

27. R. Valk. Petri nets as token objects: an introduction to elementary object nets. In
ICATPN’98. Springer-Verlag, 1998.

28. R. Valk. Object Petri nets: Using the nets-within-nets paradigm. In Advanced
course on Petri nets, volume 3098 of LNCS, pages 819–848. Springer, 2003.

29. S. White. Business process modeling notation (BPMN), version 1.0. 〈http://www.
bpmi.org〉.

122 MOCA’09 – Modelling of Objects, Components and Agents

A Complete source code of the examples

A.1 Basic example

Listing 14. basic.py

1

∣∣ import snakes.plugins
2

∣∣ snakes.plugins.load("gv", "snakes.nets", "nets")
3

∣∣ from nets import ∗
4

∣∣ n = PetriNet("mynet")
5

∣∣ n.add place(Place("p1", [dot]))
6

∣∣ n.add place(Place("p2"))
7

∣∣ n.add transition(Transition("t"))
8

∣∣ n.add input("p1", "t", Value(dot))
9

∣∣ n.add output("p2", "t", Value(dot))
10

∣∣ n.draw("mynet.ps")
11

∣∣ t = n.transition("t")
12

∣∣ m = t.modes()
13

∣∣ t . fire (m.pop())
14

∣∣ n.draw("mynet-bis.ps")
15

∣∣ n.set marking(Marking(p1=MultiSet([dot]), p2=MultiSet([])))
16

∣∣ g = StateGraph(n)
17

∣∣ for i in g :
18

∣∣ g.net.draw("mynet-%s.ps" % i)
19

∣∣ g.draw("mynet-states.ps")

A.2 Nets as tokens

Listing 15. toknets.py

1

∣∣ import snakes.plugins
2

∣∣ snakes.plugins.load("gv", "snakes.nets", "nets")
3

∣∣ from nets import ∗
4

∣∣
5

∣∣ def token net (name) :
6

∣∣ a, b, t = "a%s" % name, "b%s" % name, "t%s" % name
7

∣∣ net = PetriNet(name)
8

∣∣ net.add place(Place(a, [dot]))
9

∣∣ net.add place(Place(b))
10

∣∣ net.add transition(Transition(t))
11

∣∣ net.add input(a, t, Value(dot))
12

∣∣ net.add output(b, t, Value(dot))
13

∣∣ return net
14

∣∣
15

∣∣ n = PetriNet("container")
16

∣∣ n.add place(Place("p1", [token net("Toknet")]))
17

∣∣ n.add place(Place("p2"))

F. Pommereau: Nets in nets with SNAKES 123

18

∣∣ n.add transition(Transition("t"))
19

∣∣ n.add input("p1", "t", Variable("x"))
20

∣∣ n.add output("p2", "t", Expression("x.copy()"))
21

∣∣
22

∣∣ g = StateGraph(n)
23

∣∣ for i in g :
24

∣∣ g.net.draw("%s-state%s.ps" % (g.net.name, i))
25

∣∣ for place in g.net.place() :
26

∣∣ for j , tok in enumerate(place.tokens) :
27

∣∣ tok.draw("%s-state%s-place%s-token%s.ps"
28

∣∣ % (g.net.name, i, place.name, j))

A.3 Composing token nets

Listing 16. compose.py

1

∣∣ import snakes.plugins
2

∣∣ snakes.plugins.load(["gv", "ops"], "snakes.nets", "nets")
3

∣∣ from nets import ∗
4

∣∣
5

∣∣ def token net (name) :
6

∣∣ a, b, t = "a%s" % name, "b%s" % name, "t%s" % name
7

∣∣ net = PetriNet(name)
8

∣∣ net.add place(Place(a, [dot], status=entry))
9

∣∣ net.add place(Place(b, status=exit))
10

∣∣ net.add transition(Transition(t))
11

∣∣ net.add input(a, t, Value(dot))
12

∣∣ net.add output(b, t, Value(dot))
13

∣∣ return net
14

∣∣
15

∣∣ n = PetriNet("composer")
16

∣∣ n.add place(Place("left", [token net("foo")]))
17

∣∣ n.add place(Place("right", [token net("bar")]))
18

∣∣ n.add place(Place("parall"))
19

∣∣ n.add transition(Transition("t"))
20

∣∣ n.add input("left", "t", Variable("x"))
21

∣∣ n.add input("right", "t", Variable("y"))
22

∣∣ n.add output("parall", "t", Expression("x|y"))
23

∣∣
24

∣∣ g = StateGraph(n)
25

∣∣ for i in g :
26

∣∣ g.net.draw("%s-state%s.ps" % (g.net.name, i))
27

∣∣ for place in g.net.place() :
28

∣∣ for j , tok in enumerate(place.tokens) :
29

∣∣ tok.draw("%s-state%s-place%s-token%s.ps"
30

∣∣ % (g.net.name, i, place.name, j))

124 MOCA’09 – Modelling of Objects, Components and Agents

A.4 Synchronised firing

Listing 17. synchro.py

1

∣∣ import snakes.plugins
2

∣∣ snakes.plugins.load("gv", "snakes.nets", "nets")
3

∣∣ from nets import ∗
4

∣∣
5

∣∣ def token net (name) :
6

∣∣ a, b, t = "a%s" % name, "b%s" % name, "t%s" % name
7

∣∣ net = PetriNet(name)
8

∣∣ net.add place(Place(a, [dot]))
9

∣∣ net.add place(Place(b))
10

∣∣ net.add transition(Transition(t))
11

∣∣ net.add input(a, t, Value(dot))
12

∣∣ net.add output(b, t, Value(dot))
13

∣∣ return net
14

∣∣
15

∣∣ def ready (net, ∗names) :
16

∣∣ for n in names :
17

∣∣ if not net.transition(n).modes() :
18

∣∣ return False
19

∣∣ return True
20

∣∣
21

∣∣ def synchro (net, ∗names) :
22

∣∣ net = net.copy()
23

∣∣ for n in names :
24

∣∣ t = net.transition(n)
25

∣∣ m = t.modes()
26

∣∣ t . fire (m.pop())
27

∣∣ return net
28

∣∣
29

∣∣ n = PetriNet("synchroniser")
30

∣∣ n.globals ["ready"] = ready
31

∣∣ n.globals ["synchro"] = synchro
32

∣∣ n.add place(Place("p1", [token net("Toknet")]))
33

∣∣ n.add place(Place("p2"))
34

∣∣ n.add transition(Transition("t", Expression("ready(x,’tToknet’)")))
35

∣∣ n.add input("p1", "t", Variable("x"))
36

∣∣ n.add output("p2", "t", Expression("synchro(x,’tToknet’)"))
37

∣∣
38

∣∣ g = StateGraph(n)
39

∣∣ for i in g :
40

∣∣ g.net.draw("%s-state%s.ps" % (g.net.name, i))
41

∣∣ for place in g.net.place() :
42

∣∣ for j , tok in enumerate(place.tokens) :
43

∣∣ tok.draw("%s-state%s-place%s-token%s.ps"

F. Pommereau: Nets in nets with SNAKES 125

44

∣∣ % (g.net.name, i, place.name, j))

A.5 Self-modifying net

Listing 18. modify.py

1

∣∣ import snakes.plugins
2

∣∣ snakes.plugins.load("gv", "snakes.nets", "nets")
3

∣∣ from nets import ∗
4

∣∣
5

∣∣ class BackwardTransition (Transition) :
6

∣∣ def fire (self , binding) :
7

∣∣ Transition. fire (self , binding)
8

∣∣ self .net.remove transition(self .name)
9

∣∣
10

∣∣ class ForwardTransition (Transition) :
11

∣∣ def fire (self , binding) :
12

∣∣ Transition. fire (self , binding)
13

∣∣ self .net.add transition(BackwardTransition("back"))
14

∣∣ self .net.add input("p2", "back", Value(dot))
15

∣∣ self .net.add output("p1", "back", Value(dot))
16

∣∣
17

∣∣ n = PetriNet("modifier")
18

∣∣ n.add place(Place("p1", [dot]))
19

∣∣ n.add place(Place("p2"))
20

∣∣ n.add transition(ForwardTransition("t"))
21

∣∣ n.add input("p1", "t", Value(dot))
22

∣∣ n.add output("p2", "t", Value(dot))
23

∣∣
24

∣∣ n.draw("modifier-0.ps")
25

∣∣ n. transition ("t").fire (n. transition ("t").modes().pop())
26

∣∣ n.draw("modifier-1.ps")

126 MOCA’09 – Modelling of Objects, Components and Agents

Part III

Short Presentations

From Service-Oriented Architecture via
Coloured Petri Nets to Java Code

Zheng Liu and Kees M. van Hee

Department of Mathematics and Computer Science
Eindhoven University of Technology

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
z.liu3@tue.nl, k.m.v.hee@tue.nl

Abstract. In software engineering we have many methods to design
systems at different levels of abstraction. One of the main problems is
to transform a design at one level to a design at another level. In this
paper we consider system design at two levels: system modelling and
code design. For the first level we use coloured Petri nets as a modelling
language and Service Oriented Architecture as a style of modelling. For
the second level we use Java as a language and the object-oriented style
of programming. We show how one can transform system models into
programmes.

Keywords: Code generation; SOA; Coloured Petri nets; Java

1 Introduction

At a high level, software systems are often described by their architecture con-
sisting of components, also called modules, services or even agents, and their
relationships. Service-Oriented Architecture (SOA) is a popular style of archi-
tecture, which is underlied by different technologies, i.e., SOAP [2], BPEL [3],
WSDL [4] and etc. SOA has at least five important characteristics: (1) asyn-
chronous communication, (2) a clear separation of functional specification and
internal structure, (3) service discovery, (4) dynamic service binding, and (5) use
of XML-based standards. When specifying, modelling, and analysing a complex
system, we need a language in which we express the static and dynamic prop-
erties of the system. Petri nets, in particular coloured Petri nets ([18], [19], and
[20]), are widely used for this purpose. Petri nets have the advantage over other
process languages that they have clear semantics. There are many methods to
analyse models, and there are software tools (i.e., CPN Tools [1]) to facilitate
the modelling and analysis including the animation and simulation of the de-
signed system. However, a system model has to be transformed into programme
code for deployment in real life. This is a non-trivial task because the styles of
modelling and programming are often different. There are many papers on code
generation from Petri nets, [12] provides an overview. In this paper we use the
SOA style for modelling with coloured Petri nets and the Object-Oriented (OO)
style of programming using Java.

Today the OO style has been widely used in programming. There is, how-
ever, a gap between the SOA style, Petri net modelling, and object-oriented
programming. Object-oriented programming languages and Petri nets are based
upon different concepts. On the one hand, some concepts of the object-oriented
paradigm such as encapsulation, inheritance, and etc are widely used in system
modelling. On the other hand, Petri nets do not fully support all the major con-
cepts of the object-oriented paradigm (i.e., for inheritance in Petri nets see [9]).
How to integrate Petri nets with object-oriented concepts is still a rich research
domain [12].

The goal of this paper is to bridge the gap between system modelling at the
architectural level using coloured Petri nets and software design using an object
oriented language. We provide a systematic approach for the component-based
modelling with coloured Petri nets and the transformation from the component
models into Java code. The model-to-code transformation is achieved in this pa-
per manually, and is illustrated by an example. In principle, the code generation
can be done (partly) automatically, but that is out of scope of this paper.

The rest of the paper is organised as follows. A background upon coloured
Petri nets and Java language is provided in Section 2. How to model components
with coloured Petri nets is discussed in Section 3. In Section 4 we introduce the
rules to transform component-based coloured Petri nets to Java code. We present
other related work in Section 5. Finally, Section 6 concludes the paper.

2 Background

We provide a short introduction to coloured Petri nets and the Java programming
language. More information can be found in [18], [19], [20] for Petri nets, and in
[17], [25] for Java programming. The classical Producer-Consumer model is our
leading example.

2.1 Coloured Petri nets

Petri nets are mathematically precise models of discrete event systems. A Petri
net is a graph consisting of two types of nodes: places and transitions, connected
by directed arcs only between nodes of different types. The places neighbouring
a transition are called input or output places depending upon the arc direction.
The state, called marking, of a Petri net is a distribution of tokens over places.
A place may contain zero or more tokens. Tokens either are indistinguishable
objects (in classical Petri nets) or have a data value (in coloured Petri nets).
The value of a token belongs to a certain type, called colour set, associated to
the place where the token resides. A transition may cause a discrete event, called
a firing, which changes the state. In coloured Petri nets the arcs are associated
with variables and formulae, called arc inscriptions. The variables are bound to
values by the proposed input tokens. The produced tokens by firing transitions
obtain a value by the inscriptions on the arcs to the output places. In addition
a transition can have a guard, which is a predicate and only if the predicate

130 MOCA’09 – Modelling of Objects, Components and Agents

evaluates to true, using the binding of the variables provided by the input tokens,
the transition may fire.

Coloured Petri nets, used in CPN Tools, have data values for tokens, as well
as time stamps for tokens and hierarchy. The arc inscriptions are specified in the
functional programming language ML [21]. Hierarchy in Petri nets allows one
to refine a transition to a separate component, called subnet or in CPN-Tools,
subpage. This allows one to build a model in either a top-down or a bottom-up
manner.

Fig. 1 depicts our Producer-Consumer example. This example consists of two
components for a producer and a consumer, respectively. Each component has
a place called idle, it holds the identity of component instances. The Producer
receives an external user input value and stores it in the place userInput. The
Producer keeps generating a random value till the value generated is less than
the user input. Then the Producer sends the last generated value to the place
item in buffer. The place item in buffer and the place buffer free space together
represent a buffer, where the place item in buffer holds the elements stored in
the buffer, and the place buffer free space holds the available space in the buffer.
The Producer calculates the total value of the production, and stores the value in
the place total. Finally, the Producer returns the value of its identity to the place
idle. The Consumer retrieves data from the buffer, so the available buffer space
is increased after each retrieval. If the retrieved data value is less than or equal to
a predetermined value (25 in this example), then the place num1 is increased by
1, otherwise the place num2 is increased by 1. Finally, the Consumer returns the
value of its identity to the place idle. The Producer and the Consumer interact
through exchange of tokens via a pair of places: item in buffer and buffer free
space.

2.2 Java programming language

Java is a high-level general-purpose object-oriented programming language. The
main idea of object orientation is to design software around objects it manipu-
lates, rather than the actions it performs. A class is a blueprint describing the
state and behaviour of the created instances. A class can create one or more
instances, or called objects. A class has a set of static fields and static methods
merely associated with the class, and shared by all its objects. In contrast, each
object of a class owns a set of instance fields and instance methods, separated
among the objects. A class has one or more constructors to initialise the instance
fields of its objects. Encapsulation provides the basis for modularity by hiding
information from external access and attaching the information to the methods
that need access to it only. Therefore, an object has an internal structure hidden
from the outside world, and a well defined behaviour.

Java provides a mechanism for better hierarchical organisation of a pro-
gramme, called class nesting. In class nesting, one class (called nested class)
is defined within another class (called enclosing class). Class nesting represents
a composition relationship, as a nested class is a member of its enclosing class.

Z. Liu and K. van Hee: From SOA via Coloured Petri Nets to Java Code 131

Fig. 1. A Prodcuer-Consumer Example

132 MOCA’09 – Modelling of Objects, Components and Agents

Multithreading allows two or more units of the same programme to run con-
currently on multiple processors which can be simulated on one processor. Such
a programme unit is called a thread. To create a thread, a class has to implement
Java Runnable interface (or inherit Java Thread class), which has a single method
called run(). The code belonging to the thread is placed into the run() method.
When a thread is started, the run() method is executed. A thread terminates
normally when its run() method terminates. When a thread is interrupted, the
most common response is to terminate the run() method. Threads communicate
primarily by sharing access to a BlockingQueue, which is a Java public interface
with various implementation classes since Java Development Kit (JDK) 1.5.

3 Modelling a Service Oriented Architecture with
Coloured Petri Nets

The architecture of a system is a model consisting of components and their
relationships. Relationships denote either hierarchy (one component is part of
another) or they denote communication between two components. Components
can be atomic or composed by other components. Our component model is ex-
pressed using coloured Petri nets. A good introduction regarding SOA is provided
in [10]. In this section we briefly summarise the necessary concepts for our com-
ponent modelling based on [7]. Also, we will introduce a systematic approach to
model components.

3.1 SOA concepts

The component model presents an abstract view upon the components of a sys-
tem as well as the interactions between components by message exchange. In
the SOA paradigm a component delivers services to other components while
it makes use of services of other components. A component can be treated as
either a black box or a white box. For a black box, the internal knowledge of
a component is hidden, and is viewed in terms of its input, output and trans-
fer characteristics. For a white box, the architecture of a component is used
as a blueprint for the component development. Components are differentiated
between atomic components and composite components. An atomic component
is composed of a process (which is a set of activities), data variables, methods,
and ports. A composite component describes a hierarchical relationship between
components.

The interfaces between a component and other components in its environ-
ment are represented by ports. A port can specify either the services requested
(called a buy-side port) or the services provided (called a sell-side port).

An activity in one component may exchange messages via a port with an-
other component. An activity can access the data variables defined in the same
atomic component as the activity itself and it can transform them. An activity
is considered to be atomic, so execution could not be interrupted. There are two
types of data variables, persistent and volatile. The persistent variables are for

Z. Liu and K. van Hee: From SOA via Coloured Petri Nets to Java Code 133

the component itself, whereas the volatile variables are for an instance of the
component. Each component has one process which describes a set of activities
and determines the order of execution. So the process takes care of the orches-
tration (also called workflow) of the component. This process also describes the
relation between activities and data variables. We assume that a component
can be instantiated multiple times. Once a component has been initialised, the
process and the variables belonging to it are initialised as well. The component
afterwards can be instantiated to create new instances by a dedicated enter ac-
tivity; each instance is identified by a unique instance identity. Note that we
assume one process and possibly many instances. A process instance can access
(volatile) data variables of its instance as well as the (persistent) data variables
of the component. When an instance finishes by the exit activity, it is destroyed.
On the other hand, a component only ends when the component itself is deac-
tivated.

When a message is exchanged between instances, the instance identity should
be either an explicit part of the message or can be derived from it. When a
message arrives, there could be two possibilities. Firstly, if there is exactly one
instance which can handle the request, then it is handled immediately or at
a later stage. Secondly, if there are multiple instances which can handle the
request, then it is delivered to one of them, i.e., non-deterministically.

Another issue is the integration of different components. There are two kinds
of connections between two components: horizontal connections between two
components at the same level of the hierarchy and vertical connections between
a component and one of its sub components. Vertical integration means fusing
ports of a subcomponent and a super component, while horizontal integration is
achieved by fusing ports of two components at the same hierarchical level. Note
that we only consider asynchronous communication.

3.2 Component modelling in coloured Petri nets

In this section, we introduce how to model components and their interactions in
coloured Petri nets. We assume each component to be one subnet with a special
structure, called workflow net. A workflow net here is a Petri net with one initial
transition called enter, one final transition called exit, and any internal place or
transition in the net is on a path from the initial to the final transition. More
details are explained in Section 3.3.

Each transition in the workflow net of a component models an activity in
the component. Transitions are triggered by receiving tokens. A token can be
either a message or an internal control flow token. Each net starts with an enter
transition and ends in an exit transition. The enter transition creates a new
instance with a unique identity. The exit transition destroys an instance and
does a clean-up job if necessary (we explain this in Section 3.3).

Each place can be a data store place, an interface place, or a control flow
place. Firstly, an internal place can be a data store place which represents a data
variable, its colour set is the data type, and its token stores the current value
of the data variable. These places are connected to transitions with two arcs:

134 MOCA’09 – Modelling of Objects, Components and Agents

an input as well as an output arc. So the token is consumed and (re-)produced
in the same transition, which mimics the update of the data variable. Secondly,
a set of interface places can be a port for communication by message exchange
with one another component. Thirdly, the remaining internal places are control
flow places, they determine the order of execution of transitions. The marking
of all places together models the state of a component.

Each instance of a component is also an instance of the workflow net of the
component. An instance can be represented by one or more tokens in a net. For
example, if there is a concurrent behaviour, then an instance is represented by
multiple tokens. Every instance has a unique identity, so the tokens belonging to
the same instance have the same identity. Only the tokens having the same iden-
tity (with the exception of message tokens) can be consumed and produced by
the transitions that consume multiple tokens at the same time. An instance may
have volatile data variables. Any volatile data variables are created (destroyed)
by the enter (exit) transition and have the same identity as all other tokens of
the instance. All instances can access the persistent data variables. Persistent
data variables are created at the initiation of the component and are the only
token in their place.

Since we only consider asynchronous communication, our workflow nets have
input and output places forming ports for communication. These so-called open
Petri nets [8] can be glued (or composed) by fusing input/output places with
the same name. Composability must be assured before any integration of the
nets. Two nets are considered to be composable if they do not share any inter-
nal places, input places and output places. Horizontal connection between two
components at the same level is modelled by fusing (may be after renaming of
places) input places of one component with output places having the same name
of the other component. Vertical connection between a component and one of
its sub components is modelled by fusing (may be after renaming of places)
input places of one component with input places having the same name of its
sub component as well as output places of the component with output places
with the same name of the sub component. It is important that the composed
components are able to terminate in a proper way (see e.g. [8]); we consider this
problem in Section 3.3.

3.3 Workflow nets

A workflow net in this paper is a slight variation of the standard workflow net
[5]. The main difference is that we fused the initial and final places into a place
called idle and we allow more than one initial token. A workflow net (see Fig. 2)
has internal places and interface places (internal places could be either control
flow places or data store places). A workflow net has one enter transition and
one exit transition, as well as one place called idle that is the only internal
input place for the enter transition and the only internal output place for the
exit transition. The place idle contains the number of free (idle) instances of the
component. The enter (exit) transition may also have an input (output) place
in the interface. Further each other (internal) place or transition is on a directed

Z. Liu and K. van Hee: From SOA via Coloured Petri Nets to Java Code 135

path from enter to exit. The workflow net takes care of the orchestration of the
component. We assume the workflow nets are safe, i.e., if started with only one
token in idle in each reachable state there will be at most one token per place.

Fig. 2. A workflow net

In this paper, we restrict our workflow nets to be well-structured only. The
class of well-structured workflow nets is the same as the class of models that
can be expressed in BPEL (see [15]). Hence, on the one hand, it is sufficiently
expressive. On the other hand, it enforces the designer to work in a structured
way, i.e., by stepwise refinement principles. There are several (equivalent) ways
to introduce a well-structured workflow net, we recommend [11], [15], and [24].
We restrict ourselves to refine transitions only. A single transition can be refined
by one of the four rules: sequence, iteration, parallel, and condition. They are
depicted in Fig. 3. We may apply the rules recursively, starting with a particular
net called (1) displayed in Fig. 4. This net has three transitions(enter, t1, and
exit), only t1 can be refined. In this case, we refine t1 with the Parallel rule,
and then we get (2) in Fig. 4. Any net constructed in this way is called a well-
structured net. Note that the dummy transitions are only used for control flow,
and they are not refined. After generating a well-structured workflow net, data
store places and interface places may be added. As in (3) in Fig. 4, two data
store places, persistent data store and volatile data store, are added, persistent
data store and volatile data store model a component variable and an instance
variable, respectively. Also an output interface place, port, is added as well to
model a port for sending messages.

In order to generate component models in a structured way, there are three
steps involved. Firstly, describe the internal workflow of each component using
well-structured workflow net. The workflow net is generated by means of step-
wise refinement, applying the refinement rules to non-dummy transitions only.

136 MOCA’09 – Modelling of Objects, Components and Agents

Fig. 3. Refinement rules

Fig. 4. Generation of a well-structured workflow net by refinement rules

Z. Liu and K. van Hee: From SOA via Coloured Petri Nets to Java Code 137

Secondly, for each component, add data store places for data variables, one place
for one variable, as well as a set of interface places for a port for communicat-
ing with another component. Thirdly, connect ports of different components for
integration.

An important property of workflow nets is proper termination. This means
that when starting in the initial state with only one token in the idle place,
in each reachable state (marking) of the workflow net, it must be possible to
reach the final state, having only one token in the idle place. Proper termination
for the original notion of workflow nets is introduced in [6] and is part of the
soundness property. For the situation where there are more instances, the notion
of generalised soundness applies (see [16]), which states that if in the initial
state there are k tokens, then it is always possible to end in a state with exactly
k tokens in the final place, for each k. For well-structured nets it is proven
in [15] that they have the generalised soundness property, so our components
have the proper termination property and therefore we do not have to worry
about garbage collection at the end of execution (garbage collection takes care of
tokens in places other than the place idle). Note that the results on (generalised)
soundness hold for classical Petri nets, so colour is discarded. Colouring could
destroy the proper termination property, however (generalised) soundness can
be considered as a general sanity check for workflow nets.

In Appendix A, we show how we could construct the Producer-Consumer
example depicted in Fig. 1 using the refinement rules.

4 Transform Coloured Petri Net Models to Java Code

Based upon the modelling techniques introduced in Section 3, once a model
is ready it should be transformed into code. In this section we will present a
rule-based approach to transform such a net into Java code. We will illustrate
our approach using the Producer-Consumer example in Appendix B. We give
the transformation only for well-structured workflow nets. It is also possible to
transform other workflow nets into Java (see Section 5), which is out of scope of
this paper.

We define the model-to-code transformation in 6 steps.

– Step 1
Each component at the highest level runs on a thread to enable concurrency
between components. We create a class that implements the Runnable inter-
face (or extends the Thread class) for each component at the highest level.
Any components which are not contained in other components are at the
highest level. Concurrency is also allowed at low level. Recall that the paral-
lel workflow pattern is defined in Fig. 3. Each concurrent path in the parallel
workflow pattern runs on a separate thread to enable concurrency between
methods. The parallel workflow pattern is the only case that concurrency is
allowed at low level (see Step 5 for more details).

138 MOCA’09 – Modelling of Objects, Components and Agents

– Step 2
A subcomponent is converted into a nested class. We use class nesting to
convert a hierarchical structure, where the super component is transformed
into the enclosing class and the subcomponent is transformed into the nested
class. In a hierarchical net, a transition (and its surrounding arcs) in the su-
per net can be replaced with a subnet providing the same services, so a
method in the enclosing class can be replaced with a nested class. An enclos-
ing class and its nested class run on the same thread. Hence the workflow
of a nested class is implemented in its constructor. When an object of the
nested class is created, an instance of its workflow is started. Fig. 5 describes
a hierarchical structure in Java. In this figure, the SuperNet class runs on a
thread, its workflow starts in the thread’s run() method. The SuperNet class
has a nested class called SubNet, which is created in the methodReplaced-
WithSubnet() method of the SuperNet class and can replace this method.
The enclosing class SuperNet and the nested class SubNet run on the same
thread, the workflow of the SubNet class is implemented in its constructor.

Fig. 5. Convert hierarchy to Java code

– Step 3
Data store places are converted into fields of a class. Data store places hold-
ing persistent data variables are converted into static fields (prefixed with
the keyword static). Data store places holding volatile data variables are

Z. Liu and K. van Hee: From SOA via Coloured Petri Nets to Java Code 139

converted into instance fields. The colour set of each place is converted into
the data type of each field. The label of each place is converted into the
name of each field. For each instance of any component, we give it a unique
identity. This identity is converted into an instance field called identity.

– Step 4
Each transition, unless it is a control flow dummy, is converted into one
method. Control flow dummies do not correspond to any methods. The en-
ter transition is converted into a constructor. All instance fields are ini-
tialised in a constructor (static fields are initialised when they are converted
in step 3). In a constructor, besides initialisation of instance fields, the thread
on which the class code will runn is also started by the statement new
Thread(this).start(). As introduced in Section 2.2, the code for a thread to
run is placed in the run() method, a run() method is provided for each class
running on a thread (Note that this run() method is not modelled in a net,
as it does not belong to a class, it belongs to the environment running the
class instead). The workflow net of a component is explicitly implemented
in the run() method (see Fig. 6). The advantage of this explicit implemen-
tation of a component workflow net is that the control flow is clear, so it is
easy to detect any structural problems of the component. Therefore, when
an instance is created, its constructor is invoked, the constructor starts the
thread by calling the start() method, which subsequently invokes the run()
method, consequently an instance of the component workflow is started.
The exit transition, the last activity of a component in its lifecycle, does
the general purpose clean-up. However, the orchestration process is sound
by construction, so this is not necessary.

Fig. 6. Run a component on a thread

140 MOCA’09 – Modelling of Objects, Components and Agents

– Step 5
The four basic patterns of the workflow (sequence, condition, iteration, and
parallel depicted in Fig. 3) are translated into standard programming con-
structs, also called patterns. We employ the same stepwise refinement ap-
proach that we introduced in Section 3.3. We always replace a method by
a piece of code realising one of the patterns. A sequence pattern is con-
verted into two methods separated and followed by a semicolon ;. They are
executed sequentially. A condition pattern is converted into if...else... state-
ments. If the condition is true, then the control flow executes one method,
if false the method of the alternative path is executed. If there are two or
more alternative paths in a model, if...else... statements are replaced with
if...elseif...else... statements or switch statements. An iteration pattern is
converted into a while statement. The control flow loops through the method,
while a specified condition is true. A parallel pattern is converted into mul-
tithreading. A thread is created for each concurrent path in a model. Once a
thread has been started, the isAlive() method (from Java API) is employed
to test whether the thread is still alive. If all threads are dead, the concurrent
paths join again. Fig. 7 presents the code for different workflow patterns.

Fig. 7. Code for workflow patterns

– Step 6
Each interface place is converted into one instance of a BlockingQueue. In
the model of a system, nets communicate asynchronously by means of the
interface places in the ports. In Java we model this by means of glue code,
i.e. we use the Java interface BlockingQueue (with its implementation classes
provided by Java) and we create for each interface place (of all components
together) one instance of a BlockingQueue as a static field. In each class
modelling a component we refer to these instances by the take() and put()
methods of the BlockingQueue.

Table 1 summarises the mapping of concepts among SOA, CPN, and Java. In
Appendix B we show how our Producer-Consumer example is transformed into
Java code.

Z. Liu and K. van Hee: From SOA via Coloured Petri Nets to Java Code 141

Service Oriented Architecture Coloured Petri Nets Java

Atomic component Subnet Nested class

Composite component Composite coloured Petri net Enclosing class

Orchestration process Workflow net Constructor/run() method

Hierarchy Super nets and sub nets Class nesting

Activity Transition Method
(with guard) (with ifelse statement)

Port Set of interface places Instance of the BlockingQueue

Asynchronous communication Place fusion Put() or take() methods of the
BlockingQueue

Exception handling Transition Exception handler

Data variable Data store place Data variable

Component variable Without instance identity Static element

Instance variable With instance identity Instance element

Table 1. Concepts mapping among SOA, CPN, and Java

5 Related work

In [22] and [23], three approaches of generating code from a Petri net have been
discussed. One approach makes use of the structure of a net. This is what we
did: we used well structured subnets and we transformed them into code frag-
ments. Another approach employs the reachability graph of a Petri net and runs
this as a state machine. This is only possible for any net with a finite reacha-
bility graph. The last approach called simulation uses a Petri net simulator to
determine in each step which transition is enabled. The first approach, which we
adopted, gives good readable Java code that is understandable without knowing
the transformation made. While the second and third approaches are inefficient
and require a kind of simulation engine in the Java code, which typically depends
on modelling approach. Still [23] advocates the simulation approach because it
is so flexible that it can handle all Petri nets, without structural restrictions.
We are in favour of the structural approach since it is a good practice to model
in a structured way and the SOA approach implies that the orchestration of
components should be done according to this approach (if the BPEL language
is used then automatically the same structuring is obtained). Another difference
with [23] is that we do not use Petri nets to model atomic methods, while [23]
uses Petri nets for that purpose specifically.

In [13] and [14], an approach similar to ours is presented. They let com-
ponents communicate by connecting input places of one component to output
transitions of another, but we fuse interface places of the two components. They
use Petri nets at the interface level only and do not consider the orchestration
of components.

In Chapter 21 of [12] an approach for code generation is also presented. It
mainly focuses on the identification of components that have a state machine
character. To this end they use place invariant techniques. The difference with
our approach is that we start with modelling components, so we do not have

142 MOCA’09 – Modelling of Objects, Components and Agents

to discover them. Their approach is not intended to generate efficient code but
to generate a prototype of the intended system for analysis purpose and not for
execution.

6 Conclusion

In this paper we introduced an approach to model systems in coloured Petri
nets using the SOA style, and we presented a way to transform these Petri
net models into Java code. In modelling, we require the component models are
well-structured workflow nets. To generate such workflow nets, we introduced
a set of rules for the stepwise refinement of transitions by four basic workflow
patterns. For representing hierarchy we used nested classes and for asynchronous
communication between components we used a queuing mechanism offered by
Java. We illustrated the approach by a variant of the well-known Producer-
Consumer example. As future work we plan to make the transformation from
CPN to Java as much as possible automatically.

References

1. CPN Tool Version 2.2.0, 2006. URL: http://wiki.daimi.au.dk/cpntools/cpntools.wiki
[Accessed on 25/08/2009].

2. SOAP Version 1.2, 2007. URL: http://www.w3.org/TR/soap12-part1/ [Accessed
on 25/08/2009].

3. Web Service Business Process Execution Language Version 2.0, 2007. URL:
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf [Accessed on 25/08/2009].

4. Web Services Description Language (WSDL) Version 2.0, 2007. URL:
http://www.w3.org/TR/wsdl20/ [Accessd on 25/08/2009].

5. W. M. P. van der Aalst. Verification of workflow nets. In Proceedings of the
18th International Conference on Application and Theory of Petri Nets, Toulouse,
France, 1997.

6. W. M. P. van der Aalst. The application of petri nets to workflow management.
The Journal of Circuits, Systems and Computers, 8(1):21–66, 2001.

7. W. M. P. van der Aalst, M. Beisiegel, K. M. van Hee, D. Konig, and C. Stahl.
An soa-based architecture framework. International Journal of Business Process
Integration and Management, 2(2):91–101, 2007.

8. W. M. P. van der Aalst, K. M. van Hee, P. Massuthe, N. Sidorova, and J. M.
van der Werf. Compositional service tree. In Proceedings of 30th International
Conference, PETRI NET 2009, Paris, France, 2009.

9. T. Basten and W. M. P. van der Aalst. Inheritance of dynamic behavior: Devel-
opment of a groupware editor. In Concurrent Object-Oriented Programming and
Petri Nets, pages 391–405, 2001.

10. M. Bell. Service-Oriented Modeling (SOA): Service Analysis, Design, and Archi-
tecture. John Wiley & Sons, 2008.

11. P. Chrzastowski-Wachtel, B. Benatallah, R. Hamadi, M. ODell, and A. Susanto.
A top-down petri net-based approach for dynamic workflow modeling. In Business
Process Management, Lecture Notes in Computer Science, volume 2678, pages 336–
353. Springer-Verlag, 2003.

Z. Liu and K. van Hee: From SOA via Coloured Petri Nets to Java Code 143

12. C. Girault and R. Valk, editors. Petri Nets for System Engineering: A Guide to
Modelling, Verification, and Applications. Springer-Verlag, 2002.

13. N. Hagge and B. Wagner. Mapping reusable control components to java language
constructs. In Proceedings of 2nd IEEE International Conference on Industrial
Informatics (INDIN), Berlin, Germany, 2004.

14. N. Hagge and B. Wagner. Java code patterns for petri net based behavioral models.
In Proceedings of 3rd IEEE International Conference on Industrial Informatics
(INDIN), Perth, Australia, 2005.

15. K. M. van Hee, J. Hidders, G. Houben, J. Paredaens, and P. Thiran. On the
relationship between workflow models and document types. Information Systems,
2008.

16. K. M. van Hee, N. Sidorova, and M. Voorhoeve. Generalised soundness of workflow
nets is decidable. In Proceedings of the 25th International Conference, ICATPN’04,
Bologna, Italy, 2004.

17. C. Hortsmann and G. Cornell. Core Java Volume I Fundamentals. Prentice Hall,
8 edition, 2007.

18. K. Jensen. Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical
Use (Basic Concepts, Monographs in Theoretical Computer Science), volume 1.
Springer-Verlag, 1997.

19. K. Jensen. An introduction to the practical use of coloured petri nets. In Lectures
on Petri Nets II: Applications, Lecture Notes in Computer Science, volume 1492,
pages 237–292. Springer-Verlag, 1998.

20. L. M. Kristensen, S. Christensen, and K. Jensen. The practitioner’s guide to
coloured petri nets. International Journal on Software Tools for Technology Trans-
fer, pages 98–132, 1998.

21. G. Michaelson. Elementary Standard ML. UCL Press, 1995.
22. S. Philippi. Seamless object-oriented software development on a formal base. In

DAIMI PB: Workshop Proceedings Software Engineering and Petri Nets, Aarhus,
Denmark, 2000.

23. S. Philippi. Automatic code generation from high-level petri-nets for model driven
systems engineering. Journal of Systems and Software, 79:1444–1455, 2006.

24. H. A. Reijers. Design and control of workflow processes: Business process man-
agement for the service industry. In Lecture Notes in Computer Science, volume
2617. Springer-Verlag, 2003.

25. R. Simmons. Hardcore Java. O’Reilly, 2004.

Appendix

A Example of component modelling

We reconstruct the Producer model and the Consumer model (in Fig. 1) using
stepwise refinement with the four rules. Fig. A1 depicts the stepwise refinement
for generating the Producer component model.

We start with the workflow net as described in net (1). Transition t1 is refined
by using the Sequence Rule, then we get produce, t2, send, add transitions in net
(2). Subsequently, transition t2 is refined by using Iteration Rule, then we get
produce transition and two dummy transitions (which are only for the control
flow) in net (3). Then we reduce the net by removing the dummy transitions, and

144 MOCA’09 – Modelling of Objects, Components and Agents

fusing the input/output places of the dummy transitions. Finally, we add a data
store place total for a persistent data variable, and a data store place userInput
for a volatile data variable, an input interface place user input. In addition, we
add an input interface place buffer free space and an output interface place item
in buffer for a port, then we get net (4). The model generated is a well-structured
workflow net starting with the enter transition and ending in the exit transition.
Every transition models an atomic activity. The place total holds persistent data,
the place userInput holds volatile data. The places buffer free space and item in
buffer model a buffer for asynchronous communication.

Fig.A1. Stepwise refinement for Producer component model

Fig. A2 illustrates how to generate the workflow net for the Consumer. In
order to glue components, the item in buffer place in the Producer model is
fused with the item in buffer place in the Consumer model, and the two buffer
free space places in both component models are fused as well.

Z. Liu and K. van Hee: From SOA via Coloured Petri Nets to Java Code 145

Fig.A2. Stepwise refinement for Consumer component model

B Example of code generation

In this section, we use our Producer-Consumer example to illustrate how to
transform a component model to Java code. Fig. B1 and Fig. B2 present the
code for the Producer model and the code for the Consumer model, respectively.
The code transformation for the Producer component is discussed in detail.

We generate code according to the 6 steps defined in Section 4. Step 1, we
realise a class called Producer that implements the Runnable interface to create
a thread. The Producer will run on this thread. We skip Step 2, as the Producer
itself is an atomic component and does not have any subcomponents. Step 3,
we convert the data store places into code. We declare a static field total and
an instance field userInput. The data type of total is long and the data type
of userInput is int in Java. We also declare an instance field identity with the
data type of int, as an identity is required for each object. Step 4, we convert
all non-dummy transitions into code. The enter transition is converted into a
constructor. In this constructor we initialise all the instance fields declared in
Step 3, and start the thread by calling the start() method using the following
statement new Thread(this).start(). As the start() method invokes the run()
method (see Section 2.2), we provide a run() method for the Producer. Subse-
quently, we transform the produce transition into the method produce, the send
transition into the method send, and the add transition into the method add.
Because the orchestration process is sound by construction, so clean-up is not

146 MOCA’09 – Modelling of Objects, Components and Agents

necessary, and the transition exit is ignored. Step 5, in the run() method, we
realise the orchestration process, and transform the basic workflow patterns into
code based on Fig. 7. For example, we can identify an iteration pattern in the
Producer. We use a while block to implement the iteration pattern. In this block,
the produce() method is executed repeatedly untill the loop condition becomes
false. Step 6, we use the BlockingQueue to enable asynchronous communication.
As a pair of the item in buffer place and the buffer free space place models a
buffer, we transform such a pair into an object of one of the BlockingQueue
implementation classes provided by Java (Java implements five BlockingQueue
classes, namely ArrayBlockingQueue, DelayQueue, LinkedBlockingQueue, Prior-
ityBlockingQueue, SynchronousQueue, respectively. See [17] for more details).
We declare an object of a BlockingQueue implementation class (which is Array-
BlockingQueue) called buffer as a static field in the Producer. Then we use its
put() method to put a data into the buffer.

Z. Liu and K. van Hee: From SOA via Coloured Petri Nets to Java Code 147

Fig. B1. Java code for Producer

148 MOCA’09 – Modelling of Objects, Components and Agents

Fig. B2. Java code for Consumer

Z. Liu and K. van Hee: From SOA via Coloured Petri Nets to Java Code 149

-ACTAS- ADAPTIVE COMPOSITION AND
TRADING BASED ON AGENTS

Reinhold Kloos1,2, Rainer Unland2, and Cherif Branki3

1 Department of Computing, SOI, City University London
Northampton Square, London, EC1V, United Kingdom

r.kloos@soi.city.ac.uk
2 DAWIS, Institute for Computer Science and Business Information Systems

University of Essen-Duisburg, Schützenbahn 70, 45117 Essen, Germany
(Kloos, UnlandR)@cs.uni-due.de

3 School of Computing, University of Paisley, Paisley PA1 2BE, Scotland
cherif.branki@uws.ac.uk

Abstract. Challenges for approaches, dealing with services, Service Com-
position, and Service Coordination, are the complex aspects of a (com-
posite) service and its domain specific constrains. Ideas of services and
policies of different domains are often incompatible. Service Grounding
and Service Deployment as well as the observation of non-functional
service characteristics are additional reasons for the complexity of ser-
vice composition in practice. For a general understanding, the different
aspects of a service are discussed. In order to take advantage of well-
established methods, the paper proposes a framework based on agents,
called ACTAS, for the pre-selection of Service Providers on the basis
of principally compatible and available services. Compatibility and ser-
vices are described with semantic characteristics in a declarative way.
The adaptability of the composition is created through the behavioural
semantic of the Service Properties defined in the context of the char-
acteristics. The behavioural semantic allows the use of well-established
methods for dealing with relevant Service Properties. We suggest onto-
logical repositories, containing service description components instead of
complete Service Descriptions.

1 Introduction

Daily, we discover, compose, and consume services performed by agents with
different backgrounds and skills. We do not need a complete knowledge about the
services. We rely and trust on the established interfaces, policies, and methods.
The agents often do negotiation and planning of services on our behalf. However,
the automatic Service Discovery and Service Composition of electronic services
(e-services) originated in different domains can be a challenge.

Languages like Interface Description Language (IDL) for CORBA or Web
Service Description Language (WSDL) for Web Services, which are used for the
description of interfaces of Remote Procedure Calls (RPC) or Message Exchange,
are examples for functional descriptions of services. The research of Semantic

Web Services introduces semantic descriptions for an improved compatibility
description. One example are IOPE-capability descriptions of OWL-S [1]: (Input,
Output, Precondition, and Effect), which allow a workflow like composition.
Other approaches determine compatibility of services through testing if their
communication protocols can be coordinated [2]. Service composition approaches
can be categorized in AI planning based [3–5], workflow based [6, 7], ontology
based [6,8], multi-agent based [9,10], or based on miscellaneous concepts [11,12].

Approaches, which discover and compose services of different domains, should
take advantage of well-established methods. Our approach is a Service Discov-
ery framework built on a multi-agent system (MAS) using existing solutions
offered through a Facility Agent (FA) by the Service Provider. We called the
approach ACTAS - Adaptive Composition and Trading based on Agents. AC-
TAS uses simple semantic characteristics for the pre-selection of available and
principally compatible services. Two services are principally compatible when
they hold the same semantic characteristics. ACTAS distinguishes between the
Service Model (SModel) and the Composition Model (CModel). The SModel is
for the description of the service and its Service Modes. The CModel defines
the principal compatibility and the solution of constraints for the composition.
These constraints are partly described with methods, which are defined together
with Service Properties in the context of a semantic characteristic. The meth-
ods create semantic behaviours for Service Properties, their merge and exchange
of values. The introduced semantic behaviour enables ACTAS to be adaptable.
For instance, methods for dealing with IOPE-capability descriptions or WSDL
descriptions could be included in the Service Descriptions through Service Prop-
erties classes holding such descriptions.

ACTAS distinguishes between Service Templates (ST) and Service Offers
(SO) managed by the FA. The later published through a Service Offer Export
Record (SOER) only exists, when the service is available. A SO is based on a
ST and enumerates the available Service Modes and their current values of the
Service Properties. Thus, depending on the (resource) management abilities of
the FAs, the SModel of ACTAS supports information about the availability of the
service (a non-functional Service Property). The Composition-Model (CModel)
uses the Service Offers (SO) for solving the constraints. The SO contains objects
with the mentioned methods. Trading Agents (TrA) and Composition Agents
(CoA), which could have their own policies, allow their application.

The wrapping of several Service Modes in one Service Description (ST, SO),
the direct support of availability aspects, and the adaptability through the se-
mantic behaviour in the Service Description is unique to our best of knowledge.
ACTAS suggests to manage ontological repositories for the components of the
SModel ((semantic) characteristics and classes of methods) instead of having
(only) repositories for complete Service Descriptions. In this way, Service De-
scriptions become comparable and adaptable through standardized entities. In
many approaches based on MAS, the services themselves are represented through
software agents, which try to find direct compositions of the services through
negotiation [9, 10]. In [13, 14], the authors follow a similar concept. They show

152 MOCA’09 – Modelling of Objects, Components and Agents

that service-oriented computing can benefit from MAS technology by adopting
the coordination mechanisms, interaction protocols, and decision making tools
designed for MAS.

The paper discusses several aspects of services, which lead to the unavoidable
complexity of Service Descriptions. The introduction of our approach follows.
The application of the introduced models and future research concludes the
paper.

2 Service

Definition 1 (Service).

A Service consists of actions performed by an entity on behalf of another. It
is an asset with an inherent value. The consumption of a service involves the
transfer of value and (mostly) the generation of cost with the consequent need of
its settlement. A Service has functional and non-functional properties. A Service
(Composite Service) can be composed of several Component Services.

The existence of a common service definition and unique characteristics
could simplify the design of general service composition environments. Therefore,
Justin O’Sullivan, David Edmondy and Arthur H. M. ter Hofstede [15] called
for an accurate service description, in order to reduce the gap between man-
ual and electronic services. Definition 1 gives a general definition of a service.
For a clear distinction of a service from the production of a commodity or good,
many researchers name the following characteristics of Services as unique: (a) in-
tangibility, (b) heterogeneity, (c) inseparability of production and consumption,
(d) perishability (cannot be inventoried), and (e) the ownership is unchange-
able. However, Prof. Lovelock [16] shows that these characteristics do not hold
in all cases. For example the production and consumption can be separated in
Example 2.

Different research domains of Computer Science developed their own ideas
and policies for services. A distinction between Business Services and Technical
Services became apparent. Software Engineering sees services as a new software
paradigm and distribution model. The electronic processing of services enables
on one hand the processing and collection of information about services, and
on the other hand the support of communication, cooperation, and composition
of services. The standardization of Web Services made the construction of Dis-
tributed Information Systems (DIS) more feasible. An intensive research in the
area of Semantic Web Services (SWS) (OWL-S, WSMO) [17–19] and dynamic
Service Oriented Architectures (SOA) [20], often based on multi-agent systems,
show the urge for an improvement of description and handling of e-services with
extended logic (similar Enterprise Application Integration (EAI) in the context
of DIS). In the following sections we have a closer look at aspects of a service,
which makes their handling complex.

R. Kloos, R. Unland and C. Branki: -ACTAS- 153

2.1 1st aspect of service: Service Description depend on view

The description of a service depends on the view on a service. On one hand,
the view changes with the application domain. On the other hand, a Service
Provider has another view on a service than a Service Requester.

A service in a technical domain (Technical Service) can be distinguished from
a service in a mainly business oriented domain (Business Service). Additionally,
various definitions of the term service and specific constrains exist in the different
domains of business (cf. [16, 21–24]).

Example 1 shows that a (composite) Business Service can consist of several
dynamically selected component services. The component services have directed
server-client relationships among each other. The server or client role of a com-
ponent service is not fixed and depends on the relationship.

Example 2 introduces a simple Technical Service for audio communication
using a gateway service. From one point of view, a Technical Service can be
treated as a Business Service, since it has to be paid for the use of a telephone.
From another point of view, the Technical Service consists also of several com-
ponent services for the realisation of the technical function. The relationships
between the component services of a Technical Service are non-directed, when
the component services have a peer-to-peer like relationship, which is for instance
the case for the realisation of the H.323 communication between the service of
the IP-phone and the service of the gateway in Example 2.

In order to reflect the different views of Service Provider and Service Re-
quester, Business Services distinguish between Business to Customer (B2C) and
Business to Business (B2B) relationships. A similar distinction is made for Tech-
nical Services since the technical side of a Technical Service is transparent for the
customer. The Service Provider (in Example 2 the telecommunication provider),
has the responsibility for the acceptance, transmission and delivery of the infor-
mation. The example of the Technical Service also shows that a composite service
might have several Service Clients in the service consumption phase. The main
research in the context of (Semantic) Web Services is in the area of Business
Services. An approach for using Web Services in the area of Technical Services
is UWS [17].

Example 1 (Booking of a travel). The Composite Service “Booking a travel”
Fig. 1 consists of different Component Services: Inquiry, Booking (When inquiry
was successful), Billing (the Travel Agency is now the client), paying (The Bank
is a completely new Service Provider).

Example 2 (Telecommunication with gateway). Fig. 2 illustrates an exam-
ple of a Technical Service including the service of a gateway or gatekeeper for the
conversion of signals and protocols with different telecommunication standards.
The standardized telecommunication protocol H.323 [25] allows the voice over
IP communication. The composed Technical Service consists of the Component
Services of a mobile, gateway, and IP-phone. The use of the gateway is transpar-
ent for the two Service Clients (named A and B in the figure). It is likely that

154 MOCA’09 – Modelling of Objects, Components and Agents

Bank

2-booking

3-billing

4-paying

Travel Agency 2

Travel Agency 1

Service Client 1-Inquiry

�
Fig. 1. - simple Business Service

Service Client B

Mobile
Gateway

IP-Phone

H.323 Phone

Service Client A

�
Fig. 2. - simple Technical Service

only one Service Requester (A, B, or an external agent) requested the service. A
planning program for the scheduling of conversations could be such an external
agent.

2.2 2nd aspect of service: An entity for Software Engineering

Software Engineering has its own views on services. It looks at Software Services
as a distribution model [26] and as a software paradigm [27]. Due to the loose
coupling, Software Services as a software paradigm can be easier reused than
objects or components, although their granularity is rather coarse. As a distri-
bution model, the applying software can subscribe to the whole functionality of
a software service, or it restricts its subscription to parts of the functionality.
The distribution model leads to Service Oriented Architecture (SOA). SOA pro-
vides a standard programming model that allows software components, residing
on any network, to be published, discovered, and invoked by each other as ser-
vices. Therefore, Service Traders or Service Registries provide a vital aspect of
a SOA. An intensive research for intelligent service discovery frameworks took
place from the beginning of the nineties [28–38]. There is an ongoing research
interest in Service Trading with agents [39,40].

Software Services as e-services need an agent for their realisation and con-
sumption. Even hardware and manual services are represented through an agent,
in order to enable their planning through e-services. The agent sends and receives
messages, while the Service Description (e.g. WSDL in case of a Web Service) is
the resource. The realising agent can be an autonomous software agent, with its
features of autonomy, re-activeness, pro-activeness, and communicativeness. In
this way, (group) policies, planning, negotiating, and learning can be integrated
in the distribution model of Software Services.

With the standardization of Web Services, Distributed Information Systems
(DIS), which traditionally dealt with e-business services, became more feasi-
ble (cf. [41]). A main step in the development of DIS was the development of
the vision of Enterprise Application Integration (EAI). In EAI, the middleware
approach was extended with business-logic (e.g. workflow) and basic interop-
erability support (e.g. message brokering), in order to allow the integration of
various applications. A result was the development of Application Servers and

R. Kloos, R. Unland and C. Branki: -ACTAS- 155

SOAs with integrated layers for business logic. With a similar motivation, the
research in the area of Semantic Web Services allowed an improved support for
Business Services through the combination of semantic descriptions with meth-
ods of workflow management and AI [3, 6, 7].

2.3 3rd aspect of a service: Service Life Cycle

On one hand, the service Life Cycle can be described in several processes from the
perspective of the Service Provider (Service Definition, Property Provision, Ser-
vice Delivery) as well as from the perspective of the Service Requester (Provider
Discovery, Property Discovery, Service Call). The Property Discovery and Prop-
erty Provision are negotiating processes for the refinement of the Service Proper-
ties. Service Call and Service Delivery are corresponding processes for the Service
Consumption.

On the other hand, the Life Cycle can also be described in six phases: Phase
1 - Service Management, Phase 2 - Service Trading and Service Planning, Phase
3 - Service Discovery, Phase 4 - Checking of Service Properties and Constraints,
Phase 5 - Service Grounding, and Phase 6 - Service Consumption and Feedback.

In Phase 1 (Service Management) the process of Service Definition is done.
The SOA enables the publishing, planning, and trading with the Service Defini-
tions in Phase 2. Service Trading and Service Planning are in principal indepen-
dent from a concrete Service Request. The Service Request is the starting point
of Phase 3. When no fitting Service Provider is known, the Service Requester
will use the SOA for the Provider Discovery process, in order to find a Service
Provider offering a service, which matches the Service Request. The phases 4
and 5 are necessary for the refinement of Service Properties, when the Service
Requester does not have enough information for the Service Call process, in
order to start the Service Consumption phase (phase 6).

Phase 4 is dealing with semantic and functional constraints. Service Ground-
ing (phase 5) is solving the system specific constraints for the Service Delivery
like e.g. resource management. Due to the inherent complexity of a service (5th

aspect of a service) the Service Grounding can involve the coordination and
scheduling of (new) Component Services. The phases 3 to 5 must be repeated,
if (component) services do not fulfil some constraints turning up during the re-
finement of the Service Properties. A feedback for learning and keeping up the
Service Quality might be provided at the end of phase 6.

The service description and the constraints become more detailed and more
system/domain specific with the progress of the mostly domain specific refine-
ment process. Therefore, the exchange between service descriptions and concepts
gets more complicated in the later phases of the Life Cycle.

2.4 4th aspect: Non-Functional Properties

Non-functional properties are considered [15] to be constraints over the function-
ality of the service. Non-functional properties like availability of a service have
to be considered, in order to ensure that the component services are still callable

156 MOCA’09 – Modelling of Objects, Components and Agents

in phase 6. Temporal and spatial representation, channels (usually a channel de-
scribes the way how a service is delivered), trust, and security are non-functional
properties, which are important for serveral phases of the Life Cycle of a ser-
vice. For instance in Example 2, it would be unacceptable for Service Discovery,
if the IP-phone was not accessible for spatial or security reasons. The dealing
with non-functional properties like Service Quality, Settlement, or Warranty can
involve new Component Services. Therefore, the support of non-functional prop-
erties increases the inherent complexity of a service. The observation of Service
Quality may lead to a stop of the Service Delivery (phase 6), when the detected
values fall under a given threshold. A possible reaction to an interruption is the
Service Substitution. In the worst case of substitution, the phases 3 to 6 have
to be repeated, in order to discover and deliver a new (component) service. The
non-functional property availability describes a domain independent concept for
every service.

2.5 5th aspect: The inherent complexity of a service

The inherent complexity of a service is tackled through Service Composition
(phase 3, phase 4, and phase 5) and Service Coordination (phase 5), i.e. that a
service can consist of several component services, which have to coordinate their
message exchange in order to achieve the goal state of the service.

A choreography, which is also called a coordination protocol [41,42] is a model
of the global sequence of operations, states, and conditions that control the in-
teractions involved in the participating services. The interaction prescribed by a
choreography results in the completion of some useful common business goal. Ex-
ample 1 shows a simple choreography. A choreography may be described through
a choreography description language (e.g. WS-CDL [43,44]). A choreography de-
scription language permits the description of how Web services can be composed,
how service roles and associations in Web services can be established, and how
the state, if any, of composed services is to be managed.

A choreography can be distinguished from an orchestration, which also takes
place in phase 5. An orchestration describes from the local perspective of the
calling service how different services are composed into a coherent whole. The
orchestration specifies the order, in which services are invoked, and the condi-
tions under which a certain service may or may not be invoked; in particular,
it defines the sequence and conditions in which one Web service invokes other
Web services in order to realize some useful local business goal. The Business
Process Modelling Language (for Web Services) (BPEL, BPEL4WS) [45–47] is
an example for an orchestration language.

The Service Compositions of phase 5 (choreography and orchestration) is
often transparent for the Service Client/Requester due to e.g. company policies
or security reasons. For the design of generic domain independent concepts, it is
an advantage to support the description of compatibility in the earlier phase 3
of the Life Cycle.

R. Kloos, R. Unland and C. Branki: -ACTAS- 157

3 ACTAS Approach

The discussion of the various aspects of a service showed that the lack of general
descriptive service information is a result of several factors:

1. The heterogeneous nature of services in different domains
2. The different views on a service
3. The lack of generic domain independent concepts for describing services
4. The inherent complexity of services
5. The system-specific challenges of Service Grounding
6. Non-functional service properties including Service Quality and trust
7. Intentional behaviour on behalf of some Service Providers to limit a Ser-

vice Requestor’s ability to compare services due to company policy, patent-
protection, or security

The weight of these factors increases in the later phases of the Life Cycle of a
(composite) service. The reflection also showed that the goal of ongoing research
is the improvement of Service Discovery and Service Composition with methods
and descriptions beyond a purely functional one. Possibilities for dealing with
non-functional properties, learning of preferences, and planning of services open
up. However, the complexity of the description is also increasing and generates
demands for mediation. In this sense, the advantage of the standardisation of
Web Services for DIS is declining. On the other hand, perfect, domain-specific so-
lutions became possible keeping up the dream of SOA (cloud computing, Web3.0,
ITIL).

Alternatively, the paper proposes a framework environment called ACTAS
(Adaptive Composition and Trading based on Agents), which allows a pre-
selection of available, principally compatible services of different domains through
semantic characteristics. Reasoning for solving of constraints gains new informa-
tion about the Composite Service. The next sections introduce ACTAS.

3.1 The Data Models of ACTAS

Definition 2 (Components of SModel).

1. Service Template, (ST :== (FA-ID, GCh-set, SM-set))
2. Service Offer Export Record, (SOER :== (FA-ID, ST-ID, Co-set))
3. Service Offer, (SO), like ST with objects
4. Service Mode, (SM :== (GCh-set, SP-set))
5. Service Port, (SP :== (CCh-set, Option-slots))
6. General Characteristic, (GCh :== (Name, GCh-Property-set, Co-set))

(GCh-Property :== (Property-Name, Property-Class))
7. Compatibility Characteristic, (CCh :== (Name, CCh-Property-set, Co-set))

(CCh-Property :== (Property-Name, Property-Class, Property-Merge-Class))
8. Request Characteristic (RCh) is a Compatibility Characteristic describing a

compatibility from the perspective of a Service Requester

158 MOCA’09 – Modelling of Objects, Components and Agents

SOER

General Characteristic

Properties
with

Property
Constraints

Property Class
with

Attribute Constraints

Property Merge Class
for

Merge Constraints

Compatibil ity Characteris tic

Properties
with

Property
Constraints

Property Description
Class-based beh avioural
description of the
properties, their merge, and
their exchange

Semantic Description
Characteristics declare
properties in a semantic
context

Service Description
Availability, Variety,
and Compatibility

Service Offer
 Service Modes

 Service Ports

Property-Exchange Class
with

Exchange Constraints

Service
Template

 Service Modes

Service Ports

�
Fig. 3. - ACTAS Data Components for Service Description (SModel)

In Fig. 3 and in Definition 2, the components of the Service-Model (SModel)
of ACTAS are listed. ACTAS does not publish complete Service Descriptions in a
static repository , but (certified) components for the Service Definition. Semantic
Characteristics are the central component. Through the publication in ontologi-
cal repositories, the semantics of the characteristics is commonly agreed. A char-
acteristic creates a semantic context for the definition of its Service Properties.
ACTAS distinguishes between General Characteristics (GCh) and Compatibility
Characteristics (CCh). The characteristic also defines sets of constraints (Co-set
in Definition 2) for its properties. General Characteristics contain information
about the service. Compatibility Characteristics are additionally used for the
description of (principal) compatibility between services.

Besides the characteristics, the Service Management of ACTAS publishes
classes for the property description. Property Classes are used for the definition
of properties in the characteristics (GCh-Property). The methods of the Property
Class create a behavioural semantic for the attributes of a property, including
value constraints. Unchangable value constraints can directly be implemented in
the property class (attribute constraints) or are given in the semantic context of
the characteristic (property constraints), when the Service Property is defined
through the class. The value constraints can lead to several valid variants of the
property.

Example 3 (Service Property for keeping of temperatures). A property
class for keeping temperatures could contain methods for dealing with units
of measurement like Celsius or Fahrenheit. Such a property could also deal
with value constraints if only information about possible temperature ranges
are known.

Example 4 (Possible Characteristics for the examples). Compatibility Charac-
teristics could be introduced for the agency service or banking service in Exam-

R. Kloos, R. Unland and C. Branki: -ACTAS- 159

Service Offer ACTOR
Service Offer

ASO
Box Shapes
for Service
Offers:

netmeeting

IP-
Telephony

Service
Template

ST2H.323-Compliant DeviceAudio Communication Request, INR
IP-

AudioVideo

H.323-Compliant DeviceAV Communication Request, INR
CompatibilityCharacteristic of Service Port Option-Slots of Service Port Option-Slots of Service Mode Option-Slots of Service Template

Request Port General Characteristics of Service Mode General Characteristics of whole ST
�

Fig. 4. - Service Symbols

ple 1. Compatibility Characteristics describing the technical component services
in Example 2 are further examples. A Compatibility Characteristic for security
could wrap properties, which describe what kind of authentification and mem-
bership are necessary for using the service. A possible General Characteristic
contains standardized information about the Service Provider.

The Property-Merge Class checks constraints for the compatibility of two
properties of the same class. The Property-Merge Class is part of the prop-
erty definition in a Compatibility Characteristic (CCh-Property). The Property-
Exchange Classes can be used for the definition of constraints, which concern
one or several properties in the resulting composite data structure (Composite
Structure). The Composite Structure and the objects of the property classes
(Property Class, Property-Merge Class, and Property-Exchange Class) are ele-
ments of the CModel of ACTAS.

A Service Template (ST) describes for the different Service Modes (SM)
the constraints and compatibilities. For instance, Fig. 4 is an illustration of
a Technical Service description, which has two possible Service Modes for the
support of IP-telephony (one supports audio-video). Thus, several variants of
a service can be kept in one Service Description, which can be useful for the
resource management.

Each Service Mode (SM in Definition 2) has at least one Service Port (SP).
Each Service Port describes the compatibility to another service through Com-

160 MOCA’09 – Modelling of Objects, Components and Agents

patibility Characteristics and Option-slots. The Compatibility Characteristics
ensure that only services with semantically matching Service Properties can be
related. The Option-slots determine options for the relationship of compatible
services. For example the “direction Option-slot” of a Service Port declares that
the Service Port demands a directed relationship (OUT for the client role, IN for
the server role). Thus, in a directed relationship (IN, OUT) or (OUT, IN) are
matching pairs for the direction Option-slots. The Service Mode “IP-Telephony”
in Fig. 4 offers (direction Option-slot IN) a service for Audio-Communication and
needs for its realisation the service of a H.323 device (second non-directed Service
Port). The Option-slots are like pre-conditions for the relationships of services.
The checking of compatibility is task of the Composition Model (CModel) (cf.
sections 3.3, 3.4).

3.2 Phase 1, Phase 2: Framework for Service Model (SModel)

Fig. 5 shows the system architecture/framework of ACTAS. In phase 1 (Ser-
vice Management), administrators design the components of ACTAS and export
them in ontological repositories (1 in Fig. 5). The Service Provider uses these
components, in order to design Service Templates (ST) (2 in Fig. 5). ACTAS
assumes that a Service Provider knows the Service Grounding and Service De-
ployment of the provided services. ACTAS enables the Service Provider to offer
a ST of a service through a Facility Agent (FA)(FA-ID in ST, cf. Definition 2).
The Service Template (ST) enumerates the different Service Modes (SM). For the
Service Discovery and Service Composition, each SM offers the service through
its Service Ports (SP) with some selected Characteristics.

In order to keep track of the availability, ACTAS distinguishes between Ser-
vice Templates (ST) and Service Offers (SO). A SO is build from a ST with a
Service Offer Export Record (SOER). A SOER (cf. Definition 2) declares in its
constraints-set (Co-set), which Service Modes of a Service Template are currently
valid and which value constraints for the Service Properties given in the ST shall
be applied. Service Offers contain objects for the classes of Service Properties.

In phase 2 (Service Trading and planning) the Trader Agents (TrA) get in
touch with the Facility Agents (FA). As autonomous software agents, the Trader
Agents can comply with trading policies. They can do their trading with Service
Templates for planning or Service Offers (SO) (3 in Fig. 5). A Trader Agent
(TrA) can support automatic service composition through composing of new
Service Offers. In this case, the Trader Agent (TrA) would be the Facility Agent
(FA) for a new built Service Offer.

3.3 ACTAS phase3: Principally compatible services (CModel)

Definition 3 (Components of CModel).

1. Service Request, SRe :== (ReA-ID, ClRe-set)
2. Client Request, ClRe :== (PA-ID, ReP-set)
3. Request Port, ReP :== (RCh-set, Option-slots)

R. Kloos, R. Unland and C. Branki: -ACTAS- 161

Service Provider Y
Service Templates Facility Agent (FA)

ACTAS Manageme
nt Central Data Ontological Repository of Properties and Characteristics Class Repository

ACTAS Administrator
Application Environ

ment Service Requester (ReA)
MAS of Application PA APA BService Client AService Client B

Service Grounding
Service Provider X Facility Agent (FA)Service Administrator

Service Templates Facility Agent (FA)
Deployed Service

ACTAS Service Co
mpositionAgent (C

oA)
Composition Process

Composite Services Component Services
Service TemplatesSO

ERsServ
ice Offers

ACTAS Service Tra
der Agent U (TrA)

Service TemplatesSO
ERsServ

ice Offers
Trading ProcessACTAS Service Tra

der Agent S (TrA)
Service TemplatesSO

ERsServ
ice Offers

Trading Process

2
1 1

1 1 3a
3b

4b
5a

5a

5b
4a

66
6

7 8 8Data Flow Agent Communicat
ion

Fig. 5. - ACTAS system architecture

162 MOCA’09 – Modelling of Objects, Components and Agents

4. Composite Structure :== (Actors, SM-set, MP-set, Me-Co-set, Ex-Co-set)
5. merged Service Ports, (MP :== (SPa, SPb))
6. Merge Constraint, (Me-Co :== (P-Objecta, P-Objectb, Property-Merge-Object))
7. Exchange Constraint,

(Ex-Co :== (Pre-Condition, Ex-Rule, Property-Exchange-Object))

In the third phase, the Request Agent (ReA) is contacted through the appli-
cation environment. The Request Agent is integrated in the applying environ-
ment. The ReA creates the Composition Agent (CoA) and the Service Request
(SRe) on behalf of the Service Client(s) (4 in Fig. 5). The Service Request is
used for the initialisation of the Composite Structure (cf. Definition 3). The CoA
finds the candidates for Component Services with the help of the Facility Agents
and the Trader Agents (5 in Fig. 5).

The Service Request (SRe) consists of one Client-Request (ClRe) for each
Service Client. Every Client Request holds Request Ports (ReP), which are Ser-
vice Ports that contain only Request Characteristics (RCh, cf. Definition 2). A
Request Characteristic (RCh) is a special kind of Compatibility Characteristic,
which is used for the description of services from the view of a Service Requester.
In this way, ACTAS distinguishes between the Service Requester (B2C relation-
ship) and Service Provider (B2B relationship) view. A Request Port describes
automatically a directed relationship through the direction Option-slot OUT
indicating the role of a client. The Client Request is not a complete Service
Description, but allows the pre-selection of services fulfilling the given charac-
teristics.

Each Client Request (ClRe) is used for the creation of a Actor Service Offer
(ASO) (Service Client is seen as actor). ASO is the dual element to a Service
Offer (SO) and the starting point of the Composite Structure for a Composite
Service candidate. An Actor Service Offer (ASO) could be created from an Actor
Service Template (AST), which collects (learnt) preferences of the Service Client
as “Request Modes”. The learning of preferences is part of our future research.

In the end, Definition 4 specifies the ”principal compatibility of services”
with the principal compatibility of Service Ports and the selection of the Service
Modes, to which the Service Ports belong. Principally compatible services in
ACTAS simply held the same sets of Compatibility Characteristics and matching
sets of Option-slots.

A Service Port, which is not merged with a principally compatible Service
Port in the Composite Structure, is called an “Open Port”. The positive result
of phase 3 is a Composite Structure with no Open Ports, holding the Actors (the
Service Clients in the current version of ACTAS), the selected Service Modes, a
set of merged Service Ports (MP), and sets of constraints, which are solved in
the next phase of the Life Cycle (cf. section 3.4).

Definition 4 (Principal Compatibility). Two services (a and b) are prin-
cipally compatible (pcompatible(a,b)) iff their Service Offers (SOa and SOb) are
principally compatible (pcompatible(SOa, SOb)).

R. Kloos, R. Unland and C. Branki: -ACTAS- 163

Travel
Travel Insurance

JourneyCostPolicy
Travel AgencyService Mode xRPIN

Travel
Travel Insurance

JourneyCostPolicy
Service ClientInitial ModeRPOUT

Phone Device ProviderSpeedmobile 167Service Mode xSP 2 Quality
Phone DeviceProviderSpeed plg124ServiceMode kSP 1Quality

Property Merge ObjectTravel - JourneyProperty Merge ObjectTravel - CostProperty Merge ObjectTravel Insurance - Policy
Property Merge ObjectPhone Device - ProviderProperty Merge ObjectPhone Device - SpeedProperty Merge ObjectPhone Device - Quality

Directed Composition
Non-Directed Composition

Fig. 6. - ACTAS Compatibility

Two Service Offers SOa :== (FA-IDa, GCh-seta, SM-seta) and SOb :== (FA-
IDb, GCh-setb, SM-setb) are principally compatible, iff they have two principally
compatible Service Modes SMa ∈SM-seta and SMb ∈SM-setb:
pcompatible(SOa, SOb) :⇐⇒ pcompatible(SMa, SMb))

Two Service Modes SMa :== (GCh-seta, SP-seta) and SMb :== (GCh-setb,
SP-setb) are principally compatible, iff they have two principally compatible Ser-
vice Ports SPa ∈SP-seta and SPb ∈SP-setb :
pcompatible(SMa, SMb) :⇐⇒ pcompatible(SPa, SPb)).

Principally compatible Service Ports (SPa :== (CCh-seta, Option-slotsa),
SPb :== (CCh-setb, Option-slotsb)) have matching sets of Compatibility Char-
acteristics and Option-slots.
Two sets of Compatibility Characteristics (CCh-seta, CCh-setb,
#CCh-seta = #CCh-setb) match, iff for every Compatibility Characteristic in
one set (CCha :== (Namea, CCh-Property-seta, Co-seta) ∈ CCh-seta) exists a
matching Compatibility Characteristic in the other set (CChb:== (Nameb, CCh-
Property-setb, Co-setb) ∈ CCh-setb). Only Compatibility Characteristics with the
same kind/name match (Namea = Nameb).
Two sets of Option-slots (Option-slotsa and Option-slotsb) are compatible iff no
incompatible pairs of Option-slots of the same kind can be build.

3.4 ACTAS phase4: Solving constraints (CModel)

In phase 4 (Checking Constraints), the Composition Agent checks the constraints
with the declarative Composite Structure of the Composite Service. Possibly, the
Facility Agents or Personal Agents are involved. The Facility Agents can be used

164 MOCA’09 – Modelling of Objects, Components and Agents

for the reservation of resources. The Personal Agent is like a Facility Agent for
the ASO of the Service Client. During checking of constraints, the Composition
Agent can get in touch with the Personal Agent and/or contact the human being
behind the Personal Agent, in order to involve them in the negotiations of the
Property Discovery process. This policy of a CoA can be adapted through the
behavioural semantics of the property description (Fig. 3).

ACTAS distinguishes between Merge-Constraints (Me-Co) and Exchange-
Constraints (Ex-Co). Merge Constraints “merge” the Service Properties (P-
Objecta, P-Objectb) of matching Compatibility Characteristics (cf. Fig. 6) of
principally compatible Service Ports (SPa, SPb). The merge process of a Service
Property is defined through the merge method of the Property Merge Object
(merge(P-Objectolda , P-Objectoldb ,P-Objectnewa , P-Objectnewb ,Variant)). The re-
sult of a successful merge are two new objects, which are possibly identical. For
the support of backtracking in the reasoning, the merge process can determine
possibly existing variants for the application of the constraints.

A merge of two properties depends on the semantic context and the direc-
tion of the relationship. Since the Property-Merge-Class of the Property-Merge-
Object is given with the Compatibility Characteristic, the sematic context is
observed. The eventually existing direction Option-Slots of the principally com-
patible Service Ports determine the direction (cf. section 3.2). In the case of
the property in Example 3, the merge method will try to find a common value
(range) for the temperature, which complies to the value constraints of both ob-
jects. In a directed relationship one property object contains the requested values
and the other one the offered values. A directed relationship could be used for
the merge of properties containing IOPE-capability descriptions (Semantic Web
Service descriptions, OWL-S (cf. 2.5)). The merge method would determine if
the capability descriptions are compatible.

The Me-Co-set with its merged Service Property objects is the “information
container” of the Composite Structure. The Exchange Constraints (Ex-Co) in
the Ex-Co-set describe constraints upon these Service Properties. In the rest of
phase 4, ACTAS tries to solve the Exchange Constraints. The next Exchange
Constraint for solving is selected with the Pre-Condition and performed with the
Ex-Rule. Property-Exchange Object(s) can be used for solving of more compli-
cated Exchange Constraints since the Service Properties are objects themselves.
Exchange Constraints are described in the Service Definition of a Service Tem-
plate. The Pre-Condition could ensure that the involved Service Properties have
a fixed/set value or that they fulfill given value constraints. The gained new
objects of the Ex-Rule will be checked again, if they still comply with its Merge
Constraint. An Exchange Constraint is applied only once. Phase 4 ends when
all Exchange Constraints with fulfilled Pre-Condition were applied.

The behavioural semantics of the elements of the Property Description Fig. 3
adapts the reasoning behaviour of ACTAS in phase 4 and allow e.g. the inclusion
of estabished methods of semantic web. The result of the reasoning of phase 4
is the gain of new information in the Composite Structure.

R. Kloos, R. Unland and C. Branki: -ACTAS- 165

Phone Device ProviderSpeedplg124Service Mode kSP1 Quality
Phone DeviceProviderSpeed mobile 167Service Mode xSP2QualityProperty Merge ObjectPhone Device - ProviderProperty Merge ObjectPhone Device - SpeedProperty Merge ObjectPhone Device - Quality

Audio Communication FeatureService Client ARequest ModeRequestPortOUT Quality
Audio CommunicationFeature mobile 167ServiceMode xSP1INQualityProperty Merge ObjectAudio Communication -Feature Property Exchange Object

GCh * Audio Communication –Quality
Phone Device –Quality

Phone Device -Speed
Property Merge ObjectAudio Communication -Quality

R Service Modexmobile 167

Exchange Rule
Fig. 7. - ACTAS Exchange Rule

Example 5 (Exchange Constraint for temperatures). The temperature prop-
erty of Example 3 could be in a Compatibility Characteristic, which describes
the service of a radiator. The Service Requester is not interested in the readiator,
he/she asks simply for a “warm” sleeping room or living room. The Exchange
Constraint ensures that the temperature description of the Request Character-
istic is translated into the right temperature value (range) for the radiators in
the specified rooms.

3.5 The framework character of ACTAS

The framework character of ACTAS enables on one hand its reasoning and the
pre-selection of Composite Service candidates. On the other hand, it allows the
use of established service environments for the subsequent refinement of the
Service Properties in the Life Cycle of the service. Fig. 5 gives an overview
of the multi-agents system realising the framework character of ACTAS. AC-
TAS is based on following agents: Facility Agents (FA, Interface to the Service
Provider), Trader Agents (TrA), Request Agents (ReA, Interface to the applica-
tion environment), and Composition Agents (CoA). In an MAS environment of
the service requesting application, Personal Agents (PA) and Group Agents of-
ten exist, which could support ACTAS. The Personal Agents represent potential
Service Clients.

ACTAS assumes that the specific characteristics of an offered service are
known to its Service Provider. The Service Provider is responsible for the Re-
source Management and automatic deployment of the service, even when its con-
sumption is delayed. ACTAS improves the possibilities for a preemptive Resource
Management by the Service Provider. Resources for selected Service Modes
can be reserved for the Service Grounding process. Simultaneously, the Ser-
vice Provider can adapt the advertisements of Service Offer accordingly through

166 MOCA’09 – Modelling of Objects, Components and Agents

exporting new Service Offer Export Records (SOER). For non-functional prop-
erties, domain specific Compatibility Characteristics could be introduced and
included in the description of a Service Port for Service Composition.

The Service Provider controls the Facility Agents. Facility Agents (FA) ex-
port the Service Templates (ST) and Service Offer Export Records (SOER).
They also provide the access to the service and initiate the necessary Service
Grounding process (phase 5). Service Grounding for ACTAS likely means the
transparent call of other service environments. Special Compatibility Charac-
teristic can ensure that services of the right Service Environments are selected.
The agents of ACTAS provide (new) information gained through the reasoning
process of phase 3 and phase 4. ACTAS could support Service Substitution and
the learning of preferences based on the feedback.

In a successful case, the gained information is provided for the Facility
Agents, in order to support the subsequently Service Grounding in phase 5 (6,
7 in Fig. 5). The Service Grounding is independent from ACTAS and can be
done with the established methods ((Semantic) Web Services, MAS, EAI) and
the negotiating support of the Facility Agents.

In phase 6 (Service Consumption), the agents of ACTAS can still be contacted
for information or feedback to the application environment.

The pre-selection is (a early) part of the Property Provision process in the
Life Cycle of a service (cf. 2.3). It makes the SModel and CModel of ACTAS
independent from the challenges of the Service Grounding, which continues the
Property Provision process. The framework design of ACTAS, which is based
on so-called Facility Agents (FA), relies on the ability of the agents to negotiate
for the realisation of the Service Grounding. The Facility Agents are part of the
Service Provision. The Service Grounding of ACTAS can be for instance the call
of a manual service, or the start of a new Service Composition initiated by the
Service Provider. ACTAS discovers (principal) compatible services and enables
their providing Facility Agents to get in touch for follow-up negotiation. ACTAS
supports this process with gained information about the selected Service Mode
and the property values found through reasoning over the constraints. When
the Service Grounding does not lead to a successful Service Deployment or the
Service Quality is below a threshold, the framework of ACTAS can be asked for
a backtracking, in order to look for an alternative Composite Service. However,
these decisions are out of the control of ACTAS and have to be initiated by the
FAs.

3.6 Application of ACTAS

Fig. 8 and Fig. 9 show schematically service compositions (principal compatibil-
ity) of ACTAS for Example 2 and Example 1, respectively. In the case of Tech-
nical Service (Example 2), Actor Service Offers (ASO) for the Service Clients A
and B are the initialisation of the Composite Structure. Service Client A has cur-
rently access to his/her mobile (Service Offer ”mobile167”), and Service Client
B can use the Cisco IP-phone (Service Offer ”c11”). Option-slots could be in-
troduced for checking of non-functional properties (spatial or security), in order

R. Kloos, R. Unland and C. Branki: -ACTAS- 167

�
Fig. 8. - ACTAS Technical Service

Fig. 9. - ACTAS Business Service with two Service Modes for the ASO

to ensure early that the service is accessible. The same can be achieved with
adding of appropiate Compatibility Characteristis, of which the constraints are
checked in phase 4 (cf. 3.4). An available H.323-gateway (Service Offer ”plg124”)
completes the Composite Structure. The selected Service Mode of the gateway
service supplies the connection service of a H.323-compliant device and the con-
nection service of a phone-device.

In case of the Composite Service for the Business Service (Fig. 9), the Service
Request did not only contain a Request Characteristic for a ”Travel” service, but
additionally the Request Characteristic ”Travel Insurance”, which semantically
could mean (depends on the common ontological repository) that the travel
service has to include travel insurance. Another possible way to express this
constraint of the request could be the inclusion of appropriate Service Properties
for Travel Insurance in the Request Characteristic ”Travel”.

The Actor Service Offer (ASO) for the Service Client Request was the ini-
tialization of the Composite Structure. ACTAS supports through backtracking
the inquiry process of Example 1, if the inquiry process is not a separate service.
Following the example, the first candidate Component Service would be Travel
Agency 1. However the checking of the merge constraints of its Service Properties
in phase 4 will reveal that Travel Agency 1 is not an appropiate service. The be-
havioural semantic of the Property Merge object (or Property Exchange object)
could include a consulting with the Personal Agent (PA) of the Service Client,

168 MOCA’09 – Modelling of Objects, Components and Agents

possibly involving the Service Client himself/herself. The algorithm of ACTAS
backtracks to phase 3 and discovers with Travel Agency 2 a new candidate for
the Component Service.

The principally compatible Service Mode of the travel agency includes a Ser-
vice Port with the Compatibility Characteristic for ”Billing”. A special directive
of an Option-slot links back to the Service Client and asks for a new Service
Mode of its ASO. An Actor Service Offer (ASO) can be extended with a new
Service Mode, possibly with the help of the Personal Agent. This new Service
Mode includes a new Service Port with the Request Characteristic ”Paying”,
which is composed through a directed composition with the principally compat-
ible Service Mode of a suitable bank.

4 Conclusion and Future Research

The reflections of the five aspects of a service showed that a general description
of a service considering all demands is not possible due to several factors. Al-
ternatively, the paper proposed an environment called ACTAS, which enables
a simple pre-selection and composition with commonly agreed semantic charac-
teristics. Directed and non-directed relationships are supported. Characteristics
can be defined for a B2C (Request Characteristic) and for a B2B relationship.
Through the distinction between Service Offers and Service Templates, the non-
functional property availability is integrated. The framework character is created
through a multi-agent system (MAS), which allows the integration of existing,
domain-specific solutions. The Software agent paradigm supports the use of var-
ious policies for the trading and composition. These policies can be adapted
through behavioural semantics. In this way, the behaviour of Service Properties,
the Service Composition, and the dealing with constraints for the whole Com-
posite Structure are adaptive for the current semantic context. The inclusion
of Trading Agents enables the Automatic Service Compostion, i.e. new services
are dynamically build and offered. In the end, additional information for the
subsequent Service Grounding can be provided.

Future research will be an extension of our declarative testing environment
and its integration in multi-agent environments. Automation of the Service
Grounding with established Service Composition methods is another goal of
our research.

R. Kloos, R. Unland and C. Branki: -ACTAS- 169

References

1. Owl-s 1.2 release: (pre release), http://www.ai.sri.com/daml/services/owl-s/
1.2/

2. Wu, Z., Deng, S., Li, Y., Wu, J.: Computing compatibility in dynamic service
composition. Knowledge and Information Systems (2008)

3. Wu, Z., Ranabahu, A., Gomadam, K., Sheth, A.P., Miller, J.A.: Automatic
composition of semantic web services using process and data mediation: Tech-
nical report, http://knoesis.cs.wright.edu/library/publications/download/
SWSChallenge-TR-METEOR-S-Feb2007.pdf (2007)

4. Pistore, M., Bertoli, P., Cusenza, E., Marconi, A., Traverso, P.: Ws-gen: A tool for
the automated composition of semantic web services: Iwcs 2004, http://iswc2004.
semanticweb.org/demos/26/paper.pdf (2004)

5. Lécué, F., Léger, A.: A formal model for semantic web service composition. The
Semantic Web - ISWC 2006 (LNCS) (4273) (2006) 385–398

6. Cabral, L., Domingue, J., Motta, E., Payne, T., Hakimpour, F.: Approaches to
semantic web services: an overview and comparisons. The Semantic Web: Research
and Applications (LNCS) (3053) (2004) 225–239

7. Kvaloy, T.A., Rongen, E., Tirado-Ramos, A., Sloot, P.: Automatic composition
and selection of semantic web services. Lecture Notes in Computer Science (LNCS)
vol 3470/2005 (2005) 184–192

8. Gomez-Perez, A., Gonzalez-Cabero, R., Lama, M.: Ode sws: A framework for
designing and composing semantic web services. IEEE Intelligent Systems 19(4)
(2004) 24–31

9. Küngas, P., Matskin, M.: Semantic web service composition through a p2p-based
multi-agent environment. Agents and Peer-to-Peer Computing (LNCS) (4118)
(2006) 106–119

10. Burstein, M., Bussler, C., Finin, T., Huhns, M.N., Paolucci, M., Williams, S.,
Zaremba, M., Sheth, A.P.: A semantic web services architecture. Internet Com-
puting, IEEE 9 (2005) 72–81

11. Honavar, V., Basu, S., Lutz, R.: Algorithms and software for interactive discov-
ery and composition of semantic web services: Project summary, http://www.cs.
iastate.edu/~honavar/ailab/projects/services.html (06.08.2008)

12. Sattanathan, S., Narendra, N.C., Maamar, Z.: Conwesc - context-based se-
mantic web services composition: Icsoc, 05, http://www-rocq.inria.fr/who/

Sattanathan.Subramanian/Sattanathan_ICSoC2005.pdf (2005)
13. Bromuri, S., Urovi, V., Morge, M., Stathis, K., Toni, F.: A multi-agent system

for service discovery, selection and negotiation. In: Proceedings of The 8th Inter-
national Conference on Autonomous Agents and Multiagent Systems. Volume 2.
International Foundation for Autonomous Agents and Multiagent Systems, Bu-
dapest, Hungary (2009) 1395–1396

14. Toni, F., Grammatikou, M., Kafetzoglou, S., Lymberopoulos, L., Papavassileiou,
S., Gaertner, D., Morge, M., Bromuri, S., McGinnis, J., Stathis, K., Curcin, V.,
Ghanem, M., Guo, L.: The argugrid platform: An overview. In Hutchison, D.,
Altmann, J., Fahringer, T., Kanade, T., Kittler, J., Kleinberg, J.M., Mattern, F.,
Mitchell, J.C., Naor, M., Neumann, D., Nierstrasz, O., eds.: Grid Economics and
Business Models. Springer-11645 /Dig. Serial]. Springer-Verlag Berlin Heidelberg,
Berlin, Heidelberg (2008) 217–225

15. O’Sullivan, J., Edmond, D., Hofstede, ter, A.H.M.: What’s in a service?: Towards
accurate description of non-functional service properties: Service description: A

170 MOCA’09 – Modelling of Objects, Components and Agents

survey ot the general nature of services: Kluwer academic. Distributed and Parallel
Databases (DAPD) 12(2/3) (2002) 117–133

16. Lovelock, C., Gummesson, E.: Whither services marketing? in search of a new
paradigm and fresh perspectives. In Parasuraman, A., Lemon, K.N., eds.: Journal
of Service Research. Volume Volume 7, No. 1, August 2004. SAGE publications
(2004) 20–41

17. Owl-s 1.1 release, http://www.daml.org/services/owl-s/1.1/

18. Domingue, J., Roman, D., Stollberg, M., eds.: Web service modeling ontology
(wsmo) - an ontology for semantic web services: Position paper at the w3c work-
shop on frameworks for semantics in web services, june 9-10, 2005, innsbruck, aus-
tria, http://www.w3.org/2005/04/FSWS/Submissions/1/wsmo_position_paper.

html (2005)

19. Kumar, S.: Semantic web service composition. Institution of Electronics and
Telecommunication Engineers (Vol. 25, No. 3 (2008)) (2008) 105–122

20. Stoutenburg, S., Obrst, L., Nichols, D., Ken Samuel and Paul Franklin: Applying
semantic rules to achieve dynamic service oriented architectures. In Eiter, T., ed.:
Second International Conference on Rules and Rule Markup Languages for the
Semantic Web, Las Alamitos, Calif., IEEE Computer Society (2006) 75–82

21. Deschrevel, E., Crespi, J.P.: Service definition for next generation networks:
Networking, international conference on systems and technologies 23-29 april.
ICN/ICONS/MCL (194) (2006) 22

22. Zeithaml, V., Bitner, M.: Services Marketing. McGraw-Hill, New York (1996)

23. Kotler, P.: Marketing Management Analysis, Planning, Implementation, and Con-
trol. 6 edn. Prentices-Hall International (1988)

24. Kotler, P.: Marketing Management. 11 edn. Prentices-Hall International, Upper
Saddle River, NJ, USA (2003)

25. H.323 (white paper): On-line education: Tutorial, http://www.iec.org/online/
tutorials/h323/index.asp

26. Elfatatry, P., Layzell, A.: Software as a service negotiation perspective: Computer
software and application conference, 26-29 august. COMPSAC Proceedings 26
(2002) 501–506

27. Saeed, M., Jaffar-Ur-Rehmann, M.: Enhancement of software engineering by shift-
ing from software product to software service: Information and communication
technology, first international conference 27.-28. august. ICICT Proceedings (2005)
302–308

28. Bearman, M., Raymond, K.: Federating traders: an odp adventure. In de Meer,
J., Heymer, V., Roth, R., eds.: Open distributed processing. IFIP Transactions.
North-Holland, Amsterdam (1992) 125–143

29. Christoffel, M.: Cooperations and federations of traders in an information market.
In Schroeder, M., Stathis, K., eds.: Proceedings of the AISB’01. AISB01, Agents
& Cognition. University of York, Heslington, York, England (2001) 51–60

30. Jacob, B.L., Mudge, T.: The trading function in action. In Herbert, A., Tanen-
baum, A.S., eds.: Proceedings of the 7th ACM SIGOPS European Workshop.
ACM, Connemara, Ireland (1996) 241–247

31. Jacob, B.L., Mudge T.: Support for nomadism in a global environment. In: Work-
shop on Object Replication and Mobile Computing (ORMC’96). ACM, San Jose,
CA, USA (1996)

32. Geihs, K., Farsi, R.: Sevice trading in electronic market. In: International Journal
of Electronic Market. Springer (1997) number 3

R. Kloos, R. Unland and C. Branki: -ACTAS- 171

33. Kostkova, P., Wilkinson, T.: Magnet: A virtual shared tuplespace resource man-
ager. In Paprzychi, M., ed.: International Journal on Parallel and Distributed
Computing. Volume 1 of International Journal on Parallel and Distributed Com-
puting. NOVA Science Books, Commack, New York (1998)

34. Marvie, R., Merle, P., Geib, J., Leblanc, S.: 3.3.8 torba: Trading contracts for
corba. In: 6th USENIX Conference on Object-Oriented Technologies and Systems.
The USENIX Association, San Antonio, Texas, USA (2001)

35. Puder, A., Markwitz, S., Gudermann, F., Geihs, K.: Ai-based trading in open
distributed environments. In: International Conference on Open Distributed Pro-
cessing (ICODP’95). Chapman and Hall (1995)

36. Richman, A., Hoang, D.: Accomplishing distributed traders utilizing the x.500
directory. In: MICC’95. Kluwer Academic Publishers, Malaysia (1995)

37. Vogel, A., Beitz, A., Ianella, R.: Discovery and Access of Services in Globally
Distributed Systems. DSTC Symposium. DSTC Pty. Ltd., Brisbane, Australia
(1995)

38. Vogel, A., Bearman, M., Beitz, A.: Enabling interworking of traders. In Raymond,
K., Amstrong E., eds.: Open Distributed Processing III. Chapman & Hall, London
(1995)

39. Preist, C., Bartolini, C., Byde, A.: Agent-based service composition through si-
multaneous negotiation in forward and reverse auctions. In: Proceedings of the
4th ACM Conference on Electronic Commerce, New York, NY, ACM Press (2003)
55–63

40. Trastour, D., Preist, C., Coleman, D.: Using semantic web technology to enhance
current business-to-business integration approaches. In: Proceedings, Los Alamitos,
Calif., IEEE Computer Society (2003) 222

41. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services: Concepts, Architec-
tures and Applications. Data-Centric Systems and Applications. Springer, Berlin,
Heidelberg (2004)

42. Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M., Ferris, C., Or-
chard, D., eds.: Web services architecture: W3c working group note 11 february
2004, http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/ (08.02.2004)

43. Kang, Z., Wang, H., Hung, P.C.: Ws-cdl+ for web service collaboration. Informa-
tion Systems Frontiers 9 (2007) 375–389

44. Kavantzas, N., Burdett, D., Ritzinger, G., eds.: Web services choreography de-
scription language version 1.0: W3c working draft 27 april 2004, http://www.w3.
org/TR/2004/WD-ws-cdl-10-20040427/ (27.04.2004)

45. Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu,
K., Roller, D., Smith, D., Thatte, S., Trickovic, I., Weerawarana, S.: Bpel v1-1:
Business process execution language (bpel4ws), http://download.boulder.ibm.
com/ibmdl/pub/software/dw/specs/ws-bpel/ws-bpel.pdf (06.05.2003)

46. Mandell, D.J., McIlraith, S.A.: Adapting bpel4ws for the semantic web: The
bottom-up approach to web service interoperation. In Dieter Fensel, Katia P.
Sycara, John Mylopoulos, Fensel, D., eds.: The Semantic Web - ISWC 2003, Sec-
ond International Semantic Web Conference, Sanibel Island, FL, USA, October
20-23, 2003, Proceedings /// The semantic Web. Volume 2870 of Lecture notes in
computer science. Springer, Berlin (2003) 227–241

47. Vasiliev, Y.: SOA and WS-BPEL: Composing Service-Oriented Architecture So-
lutions with PHP and Open-Source ActiveBPEL. Packt Publishing (2007)

172 MOCA’09 – Modelling of Objects, Components and Agents

On Time in Games

Rustam Tagiew, Heinrich Jasper

Institute for Computer Science of TU Bergakademie Freiberg, Germany

Abstract. Our work considers finite strategic games for needs of AI,
i.e. their formal definition as well as their implementation using agent
based techniques. This allows for both, the interaction with people as
”natural” players as well as gaming in an all artificial environment with
artificial agents as players. This paper concentrates on the formal lan-
guage for the specification of discrete time depending elements of finite
strategic games. Based on a Petri Net approach we investigate how to
neatly integrate delays, timeouts and sudden events in a general game
playing formalism. Upon that we will find a game theoretic solution for
timed games. This is the basis for an algorithm for a game server that
implements an environment for strategic game playing with arbitrary
natural or artificial agents or both. Concrete application examples show
the feasibility of our approach.

1 Introduction

Finite strategic games are interactions of a finite amount of agents, where every
agent’s payoff depends on actions of other agents. The payoff is the quantified
value of the achieved result or also the degree of fulfilling the goals. Every agent
has a finite amount of actions and there is a finite amount of states. This inter-
action is called strategic, because agents anticipate goals of other agents and can
predict their actions. Strategic reasoning is a nested reasoning about reasoning
of other agents. This reasoning is best defined by epistemic logic [1]. A finite
strategic game has a least one solution [2]. This solution is called equilibrium in
game theory and is a combination of the players’s strategies. If all players are
rational, none of them benefits if he deviates. In AI, games have at least two
research threads - mechanism design and agent design [3, p.632]. For mechanism
design, we must invent game rules for a specified behavior. In agent design, we
have game rules and must compute adequate behavior. These two tasks can be
computed in a theoretical way by running routines over a game tree or in prac-
tical way by building an environment where different real players can interact.

For the definition of such games in a formal language as well as for the anal-
ysis of actual games carried out in our environment arguing about time is a
crucial thing. When specifying the rules for a strategic game one might want
to express things like ”the next turn has to be carried out within 20 seconds
after the previous turn finished”. In other games one might want to monitor the
timely behavior of natural agents, i.e. how many seconds a person ”thinks” on
her or his next turn, in order to calculate game theoretic equilibria.

Our ontology of time is based on real or physical time as considered for ex-
ample in planning or modelling scenarios. Physical time can be characterized
as linear, forward branching or parallel. Whereas linear time provides a total
ordering on time the others allow divergent non-comparable time occurrences.
Although the latter two are necessary for the modeling of non-predictive future
worlds or the Einstein Universe we concentrate for simplicity on linear time.

Linear time in turn can be either bounded, one-side unbounded or generally
unbounded. We do not consider a minimal or maximal instant of time, thus
our model copes with unbounded linear time - of course up to implementation
limitations due to data representation in the game server. Furthermore, time
can be continuous i.e. isomorphic to real numbers or discrete. Discrete time can
be subdivided into time with known minimal resolution (isomorphic to natu-
ral numbers) or with arbitrary solution (isomorphic to rational number). For
practical reasons in the implementation we use a minimal, system dependent
resolution of some milliseconds, called the chronon.

At least we have to define the ontological primitives for the modeling of
time. These are time points which are one instant of time with predefined accu-
racy, that is a interval of ”surrounding chronons” which might collapse to one
chronon in the case of maximal accuracy. A time point is specified from year to
millisecond via the mask ”YYYY.MM.DD:hh:mm:ss-msec”. The second repre-
sentational primitive is the time interval, a continuous sequence in time bounded
by the lower and upper time point. The third concept is that of duration, for
example to model delays or to compute time points or time intervals from other
time points or time intervals, respectively. Durations are represented by numbers
accompanied with the appropriate unit, e.g. ”6 hours” or ”5 seconds”.

All three time primitives presented above are necessary in finite strategic
games. Time points are for example used for specifying the temporal aspect of
start and stop events or are part of the description of each players turn. Time
intervals are used to describe or to monitor the physical temporal dimensions of
each turn in a game carried out by our game management agent. Calculations on
physical time need of course durations, for example to calculate the time point
for ”twenty seconds after the next turn of player a”.

2 Related Work

We found two well-known independent approaches in modelling general games.
Both cannot be used for the definition of time dependent elements of a game.
GALA (game-theoretic analysis for a large class of games) language is the first
one [4]. It is logic-based and is considered for general definition and solving of
games. In the GALA language, games are represented as branching programs.
Every branching node in a game tree is a call of a function and also a logic
proposition, which can be satisfied in a couple of ways (branches). The support-
ing system for GALA is prolog. The GALA system generates a game tree using
a definition of a game. The generated game tree is forwarded to GAMBIT[5].

174 MOCA’09 – Modelling of Objects, Components and Agents

GAMBIT is state-of-art open source game solving system. GALA can also solve
games itself using commercial linear programming libraries. GALA can represent
finite games of imperfect information. There is no approach to the definition of
game server based on GALA.

The second work is general game playing (GGP) [6]. It considers finite games
of perfect information, which are called deterministic in game theory. The main
idea of GGP is providing an environment for conducting contests between dif-
ferent artificial agents. GGP provides a game model. The game model is a graph
consisting of game states connected by actions. Actions are the transitions be-
tween states. The game model can include cycles. States are explained to be not
monolithic. That means that they consist of a couple of separately changeable
items like a database. GGP provides a logic-based language GDL for the defi-
nition of the game model. They use a vocabulary of predicates. A transition is
performed as an update of the dynamic knowledge base. The GGP environment
is based on web services.

We use a Petri Nets (PN) based approach for our work. There exists a huge
amount of proposals for the modeling of temporal aspects in Petri Nets, see for
example the overview in [7]. None of the approaches uses a time model as elab-
orated as ours. This is due to the fact that our model has been used in various
practical applications and these showed the necessity of such a full-fledged ap-
proach for the modeling of ”real” time, see for example [8]. Furthermore, within
the community of Time Petri Nets the term ”interval” is usually used for the
specification of some ”amount of time” or delays that has to be considered when
firing or not-firing a transition. This contradicts to the typical practical experi-
ence that intervals and durations must not be intermixed and there should be a
clear notation on this as defined in our ontology of time above.

3 Game Examples

In real-life situations, many decisions must be done in a bounded time period.
For instance, a car driver noticed a deaf cyclist on his lane and that his brakes
fail. He can only turn right or continue ahead. If he turns right, he can probably
survive a collision with a tree. If he continues ahead, the cyclist can perhaps sur-
vive a collision with the car. The time in this example is not discrete, but it can
be modelled to be discrete, if we choose high resolution. We are not interested
in searching a correct decision for this situation, but in its formal representa-
tion. Fig.1(right) shows this situation as a game in extensive form. Fig.1(left)
shows a state transition diagram of this situation. Driving ahead happens, if the
driver decides to do that or if he stays undecided till the deadline t1. He can
also repeal his decision by turning back to the road. In real-life, the car can be
on infinitely many positions between road and land and might hit both, cyclist
and tree. We reduced the number of states to be finite. In result, the driver has
only two alternatives - hit the cyclist or hit the tree. And he has a couple of
milliseconds to choose his destiny. Game theoretic solutions do not depend on

R. Tagiew and H. Jasper: On Time in Games 175

road

cyclist

land

tree

time=t1
time=t1

left

right

ahead right

Fig. 1. Failing brakes.

the length of time periods for decisions. But, if one considers real agents and
knows something about their reasoning dynamics, one can predict the outcome
of a game depending on the length of the time periods given for decisions.

One another example is the well-known muddy children puzzle [9]. There is
a couple of children, whose faces have a characteristic property to become some-
times dirty which is not noticed by the children itself. The children are honest
and intelligent, but they never speak with each other about the state of their
faces. If an elder person asks children with a dirty face to step forward, they
do it only, if they are sure. If there are n dirty children, the elder person has
to ask them n times till all dirty children step forward. This is a description, as
it is used in most of the works considering muddy children puzzle as example
for epistemic logic. But, why has the elder person to repeat himself? After the
first question, he can also say something like ’Tick!’. Each question of the of the
elder person is like an event, which stimulates children to make one further step
in nested reasoning. If there is only one dirty child, he sees nobody else besides
him and steps forward. If there are two dirty children, every dirty child sees the
another dirty child and thinks that this child is perhaps the only one. In the
case with two dirty children, the elder person can stay still. If all children are
equally intelligent, they need for the first step of reasoning the same period of
time. After the first step, both muddy children notices that nobody steps for-
ward. Then they perform the second step and do the right thing. The asking of
the elder person is not required, if children have the same reasoning speed and
have a common knowledge about it.

4 PNSI

We use transition systems (TS) of PN for modelling games [10]. PNSI1 is a
combination of two elements - PN [11] and SI (strategic interaction) - PNSI =

1 ["pEn"zaI]

176 MOCA’09 – Modelling of Objects, Components and Agents

(P,Q, F,W,M, I, C,N,
D,A,O,H,B). P - set of places; Q - set of transitions, where P ∩Q = � holds;
F ⊆ (P ×Q)∪ (Q×P) - set of directed arcs; W : F → N+

1 - function for weights

at the arcs; M ∈ N|P | - current assignment of places; I - set of agents, empty ele-
ment ε stands for environment or also nature; C ⊂ (Q∗)∗ - subset of sequences of
transitions, called choice sets; Every transition is a member of only one element
of C; N : C → N - numbering function, which is not injective; D : N → (R1

0)n

- function for firing probability distribution in a choice set, where
∑

(D()) = 1
and n is number of elements of the related choice sets; O : N → I ∪ ε denotes
ownership; A : Q → R|I| - payoff vector of a transition, if it fires; H : P → I∗

provides for every place a subset of agents for which it is hidden. Agents can alter
D for own numbers and see all unhidden places; B : I → R - current account
balance of agents.

The main idea for PNSI is the concept of numbered choice sets. A choice set is
a set of transitions, in which only one transition can be fired exclusively in a step.
Every choice set has a number. Multiple choice sets can also have the same num-
ber. A number can have an owner and a firing probability distribution over the
transitions in corresponding choice sets. If a number has an owner then the owner
can alter the distribution of his number. Further, we can calculate the proba-

bility for every arc → in TS - probability(
t1...tn→) =

∏n
i=1 D(N(c))[position(ti)],

where c[position(ti)] = ti and n ≤ |C|.
Hiding places is useful for modelling imperfect information. Payoffs can not

be hidden – there is no reason, why a player should not know the payoff, he
actually gets. To construct a default PNSI structure for a concrete game, one
has to create a transition for every action and a place for every state. Every arc
of this PN is weighted with 1. States are created as assignments of places. All
places of a state have zero tokens, except of the place, which corresponds to this
state. Outgoing and incoming arcs for a transition can be derived on the basis of
two connected states. But one can easily find a game, where one can construct
more than one PNSI structure.

PNSI is able to model time dependent elements of games such as timeouts,
delays and sudden events. In games, actions cause events (also effects). For in-
stance, an action a1 causes an event e3. The event e3 must happen in same
chronon or after the action a1. The events e1 and e2 are the bounds of the time
period in which the action a1 can cause the event e3. There is no relation between
time points of the events e2 and e3. The action can be also performed by the en-
vironment. Summarized that means chronon(e1) ≤ chronon(a1) ≤ chronon(e2)
and chronon(a1) ≤ chronon(e3), where chronon() is the time point of the event.
Using this model, we can define, what time dependent elements are. e2 is a time-
out for a1, chronon(e3)−chronon(a1) is a delay and if the action belongs to the
environment, it is a sudden event. Fig.2 shows a PNSI structure for modeling a
timed action. Timepoints for events are coded as weights at the arcs. The dashed
box around two transitions is a choice set. A dashed box for a choice set is used
only if the choice set has more than one transition. Transitions with prefix ’tick’
fire every chronon.

We propose a game server, which iterates Alg.1. One iteration of the algo-
rithm needs exactly one chronon. There are two details of the algorithm which
need further discussion. The first is that a transition for a choice set is chosen
independently of proving sufficiency of incoming tokens (in lines 15-20). This de-

R. Tagiew and H. Jasper: On Time in Games 177

Fig. 2. Timed Action.

chronon(e1)

None

a1

chronon(e2)

tick1

e2 e3
delay

tick2

tail enables representing of pause actions like None in the timed action example.
If a player sets 1 as probability for None, no actions will be performed. The same
lines show that for identically numbered choice sets, transitions can be chosen
from different positions. This is done to avoid useless operations. Because of
practical considerations, the distributions of owned numbers are restricted to be
∈ N1

0. That means that every player can only choose the position for his number,
i.e. where to set 1. Then, there is no need to run the loop on numbers instead
of choice sets. Every position of an owned number gets additionally an alias. An
altering command of a player consists of number and action alias.

M , B and D can be changed in a running game. It is possible to stop the
game server, save the current state of PNSI, load it again and restart the game
server. This makes game management based on PNSI persistent. Further, one
can record updates of (M,B,D) as events in the game. It is done by the func-
tion record in lines 4, 43 and 47. That can be used for analyzing behavior of real
agents like human players.

To solve a PNSI declared game, we use a transformation to a GAMBIT
acceptable format. GAMBIT accepts two kinds of game representation - the
strategic form and the extensive form. The game representation in extensive
form used by GAMBIT is a game tree with repeated states. This representation
is called EFG. EFG is a tree with three kinds of nodes - chance node, personal
node and terminal node. Every node contains an outcome, which is a payoff
vector sized according to number of players. Chance nodes contain addionally a
vector of probabilities for outgoing nodes. Personal nodes contain the owner and
a vector of names for actions. Personal nodes can be connected in case of imper-
fect information. An already existing algorithm for constructing EFG based on
PNSI for a couple of chronons is not provided in this work.

Alg.1: Game Server Iteration

Data: PNSI

1 While not a_chronon_expired { 24 While not fired.empty {

2 commands = receive_commands; 25 tp = fired.remove_first;

3 PNSI.implement(commands); 26 PNSI.produce_outgoing(tp);

4 record(commands);} 27 changed.add(ta.outgoing);

5 create_set(active); 28 PNSI.produce_payoffs(tp);}

6 Foreach t in PNSI.transitions 29 Foreach a in PNSI.agents {

178 MOCA’09 – Modelling of Objects, Components and Agents

7 If PNSI.enough_incoming_tokens(t) 30 Foreach p in changed {

8 active.add(t); 31 If not PNSI.hidden(p, a)

9 If active.empty 32 add2message(a, p);

10 complete_game; 33 record(p);}

11 create_list(tobefired); 34 Foreach p in amounts {

12 Foreach c in PNSI.choice_sets { 35 add2message(a, p);

13 th = c.choose_randomly_transition; 36 record(p);}

14 If active.contains(th) 37 send_message(a);}

15 tobefired.add(th);}

16 create_list(fired);

17 create_set(changed);

18 While not tobefired.empty {

19 ta = tobefired.remove_at_index(random);

20 If PNSI.enough_incoming_tokens(ta)}{

21 PNSI.abolish_incoming_tokens(ta);

22 changed.add(ta.incoming);

23 fired.add(ta);}}

5 Application

[Right, Ahead]

LeftRight

land

road

tree

cyclist

-10000

-100

rest ch

rest ch

tick
time

Fig. 3. Failing brakes in PNSI.

Fig.3 shows a model of the failing brakes example in PNSI. You see a choice
set owned by the driver, which allows to switch a token between land and road.
The transition tick fires every chronon and fills the empty place time. At a time
point, when there are rest ch tokens in the place time, the car hit one of the pos-
sible targets and the driver gets his payoff. The dashed diamond is the account
of the driver.

R. Tagiew and H. Jasper: On Time in Games 179

Start
unsureB

unsureA

dirtyAlice dirtyBothdirtyBob

StepA StayA

StepB StayB

{Bob}
{Alice}

Bob
0

Alice

dirtyB

cleanB

dirtyA

cleanA
steppedBsteppedA

P4

P1

P2

P3

+100

0

+100

-10000 -10000

Alice

[Step, Stay]
Bob

[Step, Stay]

Fig. 4. Muddy Children Puzzle in PNSI.

Fig.4 shows a model of the muddy children puzzle with two children (Alice
and Bob) in PNSI. It is modelled as a game, where a correct decision is rewarded
and a wrong punished. The place Start has one token at start. There are three
possible states - ’Alice is dirty’, ’Bob is dirty’ or ’Both are dirty’. There is a
choice set controlled by chance with three transitions for these three possibili-
ties. There are four places for decoding the current state of the world - cleanA,
cleanB, dirtyA and dirtyB. Places dirtyA and cleanA are hidden (dashed rectan-
gles around places) for Alice and places dirtyB and cleanB are hidden for Bob.
Unhidden are the places beginning with ’unsure’ or ’stepped’. Every player has
a choice between Step and Stay. Transitions P1 till P4 defines rewards and pun-
ishments. We transformed PNSI for a number of chronons in an EFG, and could
find the nash equilibrium using GAMBIT. GAMBIT transforms games in exten-
sive form into games in strategic form, as it is common for solving games [12]. A
subset of nash equilibria of the game in strategic form are sequential equilibria
in extensive form. Calculated sequential equilibrium of muddy children puzzle is
identical to the behavior predicted by epistemic logic.

GAMBIT has an ability to generate a colored image for an EFG. A freely
downloadable poster [13] shows the game tree generated over 4 chronons using
PNSI for the muddy children puzzle. These 4 chro-nons are needed for calculating
the equilibrium in this game. The 4 chronons are the decision of the environment,
first iteration for players’s decisions, second iteration for players’s decisions and
the payoff chronon. Due to the fact that one can not use colors in this paper
format, we could not include the entire tree in this work. Without colors, the
image becomes remarkably harder to conceive. Fig.5 shows the tree for first two
chronons (black for players, gray for environment). Annotation ’A:B’ at a node
means that this node belongs to a set of indistinguishable nodes of the player

180 MOCA’09 – Modelling of Objects, Components and Agents

Fig. 5. Muddy Children Puzzle in EFG.

R. Tagiew and H. Jasper: On Time in Games 181

A with the number B. Bob is the first player and Alice is the second. At the
second chronon, personal nodes nd2, nd4 and nd3 belong to Bob and the nodes
on the ends of Bob’s decisions belong to Alice. Every action of the environment
is denoted by transitions, which are to be fired. Every node has a payoff vector
(Bob, then Alice). Information sets are depicted by thin parallel lines. Nodes nd2
and nd4 are connected, because in these nodes Alice is dirty - these nodes are
indistinguishable for Bob. The unique pure strategy equilibrium of this game is
depicted on the tree through probabilities at the actions. For instance, the arc
from nd3 to nd25 has the probability 1. As you also see, the game tree can be
continued infinitely, if all players stay at their positions.

6 Conclusion

PNSI has a couple of advantages for modelling timed games. PNSI representation
is more compact than EFG. It provides a graphical representation, which is not
available using logic-based approaches. It enables modelling of time in a game,
what is not available neither in EFG nor in contemporary logic based game
description languages. It satisfies both game computing tasks - game solver and
game server definition. It provides an ability of game protocoling and persistent
game computing.

The only bottleneck is the size of the representation, which is significantly
bigger than in logic-based approaches. For instance, if one intends to model chess
with a clock, one needs to create 13 places for every cell of the board (12 kinds
of pieces plus empty). This makes 832 places only for representing assignment of
the board. The other case is representing of payoff matrixes. Every entry in such
a matrix needs a transition. But some big payoff matrixes can be summarized by
a couple of simple rules. However, PNSI is still useful in practice [14]. As future
work, we plan to reproduce our experiences in PNSI for constructing a logic-
based representation language for games with time. This new language will have
a possibility of graphical representation for understanding of time dependent
processes running in a game.

References

1. Fagin, R., Halpern, J., Moses, Y., Vardi, M.: Reasoning about Knowledge. The
MIT Press, Cambridge, Massachusetts, London, England (1995)

2. Nash, J.: Non-cooperative games. Annals of Mathematics (54) (1951) 286 – 295
3. Russel, S., Norvig, P.: Artificial Intelligence. Pearson Education (2003)
4. Koller, D., Pfeffer, A.: Representations and solutions for game-theoretic problems.

Artificial Intelligence 94(1-2) (1997) 167–215
5. McKelvey, R.D., McLennan, A.M., Turocy, T.L.: Gambit: Software tools for game

theory, version 0.2007.01.30. www.gambit-project.org (2007)
6. Genesereth, M.R., Love, N., Pell, B.: General game playing: Overview of the aaai

competition. AI Magazine 26(2) (2005) 62–72

182 MOCA’09 – Modelling of Objects, Components and Agents

7. Cassez, F., Roux, O.H.: From time petri nets to timed automata. Journal of
Systems and Software 79 (2005) 1456–1468

8. Jasper, H., Zukunft, O., Behrends, H.: Time issues in advanced workflow man-
agement applications of active databases. In: Active and Real-Time Database
Systems, Springer (1995)

9. Meyer, J., van der Hoek, W.: Epistemic Logic for Computer Science and Artificial
Intelligence. Cambridge University Press (1995)

10. Tagiew, R.: Multi-agent petri-games. In: CIMCA, IEEE (2008) 130–135
11. Priese, L., Wimmel, H.: Petri-Netze. Springer (2008)
12. McKelvey, R.D., McLennan, A.: Computation of equilibria in finite games. 87–142
13. Tagiew, R., Jasper, H.: Games with time. Poster at IK (2009)
14. Tagiew, R.: Towards a framework for management of strategic interaction. In:

ICAART, INSTICC (2009) 587–590

R. Tagiew and H. Jasper: On Time in Games 183

	Frontmatter
	Report Title
	Abstract
	Title
	Preface
	Contents

	Part I Invited Talk
	Modelling and Verification of Resource-Bounded Multi-Agent Systems
	Berndt Farwer

	Part II Full Presentations
	Visual Representation of Mobile Agents
	Lawrence Cabac, Daniel Moldt, Matthias Wester-Ebbinghaus and Eva Müller
	A Centralized Petri Net- and Agent-based Workflow Management System
	Thomas Wagner
	Identifying the structure of a narrative via an agent-based logic of preferences and beliefs: Formalizations of episodes from CSI: Crime Scene Investigation
	Benedikt Löwe, Eric Pacuit and Sanchit Saraf
	A Petri Net based Prototype for MAS Organisation Middleware
	Michael Köhler-Bußmeier and Matthias Wester-Ebbinghaus
	Generalized Hypernets and their Semantics
	Marco Mascheroni
	Nets in nets with SNAKES
	Franck Pommereau

	Part III Short Presentations
	From Service-Oriented Architecture via Coloured Petri Nets to Java Code
	Zheng Liu and Kees van Hee
	-ACTAS- Adaptive Composition and Trading Based on Agents
	Reinhold Kloos, Rainer Unland and Cherif Branki
	On Time in Games
	Rustam Tagiew and Heinrich Jasper

