Cooperation Support for an Open Service Market!

M. Merz, W. Lamersdorf

Hamburg University - Department of Computer Science - Databases and Information Systems,
Vogt-KolIn-Str. 30 - D-22527 Hamburg, [merz|lamersd]@dbis1.informatik.uni-hamburg.de

Open communicationgechnologyallows the interconnectingof great multitudesof client
applicationswith varietiesof servicesin what can be considereda Common Open Service
Market (COSM). In a COSM, applicationdevelopmentanprofit from existingservicesused
asbuilding blocksfor the developmenbf individual integratedapplications Decisivefor the
succes®f this softwaredevelopmenprocesss the identificationandrelatingof conforming
cooperationpartnerswith each other through an appropriate trading mechanism. The
additionaleffort for a client to utilize remoteserversor to switch betweendifferentproviders
of a distinct service is calldadansition effort. This effort shouldbe reducedoy the underlying
support system as much as possible.

This paperseekso derivedesignprinciplesfor distributedapplicationdevelopmentrom an
economicsopen market analogy. A Service Interface Description Language (SDL) is
presentedasthe basisfor minimizing transitioncostsfor distributedapplications.t is used
for the tradingprocessaswell asthe creationof graphicallocal user interfaces for arbitrary
remoteservicesat binding time. Finally, the paperoutlinesthe currentstatusof a distribued
prototype system which implements cooperation support for a COSM.

Keyword Codes: C.2.4,H.4,H.5.0

Keywords: Distributed Systems, Communications Applications, Information
Interfaces and Presentation, General

1. INTRODUCTION

Today's wide-spreadavailability and use of high-bandwidthcommunicationstechnology
makes various kinds of innovatiepen computing environments for cost-effectivedistributed
applicaion programmingfeasibleand desirable.Opendistributed computingenvironments
provide a basisfor increasedspecializationof offered services.Increasedspecialization,
however requiresadequatecommunicéion and cooperatiorsupportin orderto allow nodes
to offer their respective services uniformly to one another.

Major problemsof realizing opendistributedconmputing environmentswith minimal effort
for eachsingle applicationcomponenitare causedby the high numberand heterogeneityof
nodeswhich may patentially participate.Solutionsfor suchproblemsrequireimprovedand
additional system componentsin the areasof communication and cooperation in open
distributed systems.

1 Appeared in: Proc. Int. IFIP Congress on ODP, North-Holland, 1993

Making specializedserviceson dedicatednodesavailableto utilizing applicationsrequires
considerableffort for combininga given setof basicfunctionsinto anintegrateddistributed
application.In traditionalenvironmentsthis integrationeffort is oftendueto a multitude of -

in mostcasesndependentlydeveloped softwaremoduleswhich haveto be configuredand
adaptecexplicitly for eachactualclient/serverrelationship.In this processa greatvariety of

different interface standardshas to be taken into account [ODP92a]. This leads to

considerabl@daptatior(or: transition) costsfor eachsinglecomponenin suchanintegrated
opensystemsenvironmentas depictedin Figure 1a[Herb91]. As depictedin Figure 1b, he
COSM approachriesto tie togethersemanticof the userinterface,client andinfrastructure
components based on an adequate interface description of remote services.

U=l B.sU - E

User uiMs Communication Service

User COSM Infrastructure Server Application
Client Application Server Application

a) b)
Fig. 1. Components of remote client/server interaction: a) traditional vs. b) COSM approach

Therestof the paperis organizedas follows: The secondsectionmotivatessystemsupport
for a COSM basedon an analogytakenfrom economicscience.The following sectionfirst

describesbasic conceptsand componentsof a distributed application-orientedCOSM

infrastructureand then combinesthem into a correspondingsystemsoftware architecture.
Finally, section4 first presentssome details of a SIDL which aims to suppot service
classificationasanimportantprerequisitgfor serviceacquisitionin a COSM. It alsogivesan

overview of a respective distributed prototype system.

2. REDUCING TRANSITION COSTSIN CLIENT/SERVER RELATIONSHIPS

Given a greatmagnitudeof availableserviceswhich may enterandleavethe servicemarket
autonomouslyan infrastructureis requiredthat facilitatestransitionsbetweenclient/server-
relationshipsin an adequateway. Such transitionsoccur if, e.g., human usersprefer to

interactwith alternativeserversdueto reducedutilization costs,or if a binding to a newly

obtained service is to be established.Reconfiguring client/serverrelations may require
conceptualand implementationeffort at prohibitively high coststhat preventany change.
Further,independencérom a single (master)serviceshould be given in orderto enhance
participation autonomy of clientsandserverswhich leadsto a market-of-servicesnodel as

introducedin [WoTs90]. Therefore,before going into technicaldetails, we would like to

comparethe COSM model to an analogoushalancedmarketmodel as definedin terms of

economic science. The following thregampleshalldemonstratsomebasicconstituentof

a marketandthe circumstancesinderwhich suchanideal marketis balancedwhich means
thatall ressourcesreoptimally allocated).We thenderivefrom that modelsomeconditions
which must be satisfiedin order to realize an infrastructurefor open systemsin which

client/server relationships are optimally supported.

Accordingto economicstheory, the model of perfect competition is built on the following
assumptiongHick43]: First, on both sidesof a marketthereis an atomistic granularity of
participants (consumersas well as suppliers). Second, no personal, spatial or other
preferences exist in any consumer/supplierelationship.Third, one single marketprice for

distinct servicesis transparent to all participants,and,finally, free market access is always

providedfor all consumersaswell assuppliers.in this example the characteristicef perfect
conpetition may serveasan analogonof COSM patticipation autonomy.If we interpretthe

respectiveconditionsin an opencomputercooperationcontext,we may recognizeobstacles
to realizingsuchan'ideal' COSM for computerand softwareservices:For exampleexisting

networkservicesaswell asclientsareoftendifficult to accesvia a commoncommunication
medium.Therefore,only few servicesare offeredand- dueto high setupcostsfor service
provision- consumersarereluctantto switch betweenalternativeproviderswithin a specific

service category, even if they exist.

A second concept from economic market theory addresseshe aspectof added-value

generation:In an open service market, service suppliersmay also play the client role to

further serversactingasa link in a value-addingchain. Translatedinto an opencomputer
communicationcontext, this analogy shows that an open service environment should
specifically support easy market access of producers of '‘added-waluegrovedservicefor

the benefitof other marketparticipants,f it appeardo be profitable.In a similar way, the
effort to interactwith an alternativeservershouldalwaysbe assmall as possible.Only then
can themake-or-buy-decision to provide a service 'internally' ty obtainit from a supplierin

the marketbe freedfrom any biasagainstcooperatiofWaWe84].In existing systemssuch
biasis frequentlycausedy the prohibitively high transitioncostsin caseof purchasingrom

external sources.

In summary,all constitutionalelementghat leadto a well functioning,balancedmarketare
closely relatedto the overall goal of reducing transition costs. In an open market, such
transitions may occur frequently: Entering a market, es@transitionfor eitheraclientor a
server,changingfrom self-productionto purchasingrom an externalsupplieris a transition,
and changingthe supplieris a transitionas well. In all cases,one of the mostimportant
prerequisitefor reducedtransition costsis some form of uniform agreementon how to
cooperate.This, however, meansto agree on dedicatedinteraction standardswhich all
cooperationpartnerscan jointly and consistentlyrely upon. Accordingly, a first goal of a
COSMrealizationis to identify aspectf serviceinterfaceswhich needto be describedand
standardized. Then, a suitable interface specification techaigleedicatedsystemsoftware
haveto be designedandimplementedAll suchcomponentdogetherwill finally makeup a
common COSM cooperationinfrastructure that supports distributed service accessand
management in an open market of services.

3. COSM DESIGN

3.1. Design Principles

The architectureof the COSM systemsupportplatform as presentedelow is basedon two
simple designprinciples: First, at any level of abstractionof the overall system,a generic
client/server model is uniformligppliedto separate&ooperatingcomponentsiorizontallyinto
alwaysa 'requestingand a 'respondingentity, respectively.Secondly,a strict separations
applied between the 'application’ layehich usesa service andthe supportingservicelayer,
which providesthe correspondingervice.Figure 2 presentghis genericclient/servermodel
graphically.

In the overall designof the COSM supportsystem this modelis appliedrecursivelyat three

distinct levels (see Figure 2):

1. The operating system level may compriseexterded operatingsystemcomponentdike
specificfile systemor memorymanagemenserviceswhich canbe separatedrom an
OS (micro-) kernel as dedicated systems camepts.

2. TheCOSM support service level (support level) providesspecificmoduleslike interface
repository or security services,basedon environmentslike OSF/DCE (Distributed
Computing Environment). Further support level componentsprovide distribution
transparencyto the application level (similar to transparency mechanismsin
[ANSA91)).

3. TheCOSM application level supports deditad distributecapplicationcomponentsuch
asapplication-specifior genericclientsand dedicatedapplicationservers.Application
layer componentslsointeractwith the human user to efficiently supportthe interaction
with remote service applications.

Application Level ﬁ%
()

> User

Client

Car Rental Trading Generic
Support Level Bervice Service Client

COSM Appligltion Level

DS: Directory Service
Sec: Security Service

Rep: Repository Service [j C Rep

FS: File System
MM: Memory Management DS COSM Support Level Sec

O®mO O O (O

Level Specific Adaption Interfaces

Level Specific Adaption Component Operating $ystem Level

Level Specific Server Component

Fig. 2: Generic Client/Server Model & COSM Architecture

O

As mentionedbefore, an important design goal for the COSM architectureis to reduce
transition efforts, i.e., application programming efforts for connecting application level

componentso their supportingcommoncooperatiorservices.This leadsto a strongandwell

supported application levatodularization (additional functionality should beded on atthe
application layer) ratherthan a monolithic architecturewhere all servicesare provided
internally at the support levebdild-in approach).

3.2. Requirementsfor a Common Open Service Market

Service Interface Description

COSM participantsactin variousroles,eitherasclientsor asserversin generalapplication
components are developed independently from one another and at dfargsbf time and
spaceA client is thusunspecificto a server,so the assumptiorof conformingclient/server

interfacesasmadeimplicitly by traditionalstubgeneratorsgoesnot hold for COSM service
invocations.Instead,COSM serversare requiredto identify themselvesand haveto supply
their ownservice descriptions explicitly to the underlyingupportsystem.This allows COSM
clientsto browseandimport suchservicespecifications.This, however,meansthat COSM
client and serverapplicationsrequire interpretingstubsin orderto avoid recompilationof
stub modues whenevera new client/serverrelationshipis establishedcomparablewith the
OMG CORBA 'Dynamicinvocationinterface[OMG91]. Thetradingserviceitself actsasa
COSM applicationand, therefore,exportsits own servicedescriptiondirectly to potential
client applications.

Explicit service descriptionsare to be transferred between different application level
components.They may serve not only for marshalling purposesbut also for assuring
conformity of parametewaluesas actually transferredwith their type specificationsin the
respective service descriptions. Since human users may also be involved in service acquisition
processesnatural languageannotationsmay also be addedto the service description.In
summary,any basicService Interface Description Language (SDL) [MeLa93] for a COSM

requires at least the following three components:

« parameter type declarations for interpreting stub control and conformance assurance,

« (remote) procedure descriptions, and

« natural language annotations to support the human user at the service selection process.
Some aspects of such a service description language are presented in the following sections.

Generic Clients

Genericclientcomponentsn COSM aredefinedwithoutimmediaterelationshipto a specific
server, i.e. without knowledge about a the application functionality of a server. This
information has to be imported explicitly at binding time. If a humanuser of a client
components involved in serviceselection,binding, andinteraction,the client functionality
canbe reducedto a generic interfacecomponentwhich supportsgeneralservicedescription
browsing,acquisition,andremoteserviceinvocationtasks.ln COSM, the client components
are called generic clients and may utilize elementsof explicit servicedescriptionsalso to
generatea server-specificgraphical user interface [JCKa92, NaKa92]. Therefore,an im-
portant property of genericclientsin COSM is a well-defined relationship of linguistic
(SIDL) service descriptionelementsto correspondinguser interface managemensystem
(UIMS) componentst the client site. This allows client applicationdevelopmento benefit
automatically from SIDL service specifications, as provided by a remote Server.

Components of SIDL serviagescriptiondike types,operationsandtextualannotationgesult
in respectiveUIMS componentsTherefore,type-specificvalue forms are generatedthat
allow to presentor edit datavalues.Otherelementglike buttonsor list items), that can be
activatedby mouseevents,are relatedto respectiveremote operationsdefinedin a SIDL
serviceinterfacedescription Furthermorefor eachUIMS elementthe usercanbe supported
through additional information given by respective natural language text annotations.

For example usersarenot requiredto learnthe different dialog control andinterfacestylesusedby variousservices.
Further,the semanticof userinteractionwith serverscanremainunchanged evenif visual presentatiorelementsof

alternate useinterfacesystemanay vary. This enablesaanimplementatiorof genericclientsindependenof hardware
and UIMS as presented in section 4.

In result,serviceintegration,as proposedor COSM basedon uniform SIDL specifications,
substantiallyreducesthe multitude of heterogeneousterfacesbetweenhumanusersand
actual applications. After integration within a COSM environment,the only remaining
interfacedo berelated(bound) togetherarethe humanuserinterfaceon the oneside,andthe
server application programming interface, on the other (Figure 1b).

In a COSM, the notion of binding hasa broademeaningthanjust the assignmenof a name
to aremoteserviceinstance A client/serverbinding may alsocomprisean agreemenbn the
"terms of trade" of the service, as specified in the explicit service description.

Service Integration

A COSM system support architectureshould facilitate the integration of serviceswith

minimal possibleeffort, thatis the realizationof an addedvalue with minimal overhead A

cooperatiorsupportinfrastructurefor suchservice integration motivatesthe developmenof

specializedmediation'services.In general,servicemediationcan be doneeitherby service
referral or by service chaining: In the first case,a mediatorfirst actsasa switch to remote
servicesand then allows usersto bind directly to theseservices.In the latter, the mediator
serviceactsitself asa client for serviceintegrationand the binding is realizedbetweenthe
mediator and correspondingly connected remote servers.

In orderto supportservicemediationby referral,a COSM requiresa namingschemawhich

uniquely identifies services world-wide. A service nameunCOSM prototypeenvironment
is currently composedof the server'snode addressand a local name. This information
remainstransparento humanusersof genericclients since servicenamesare valuesof a

specialbasetype SERVICE in the serviceinterfacedescriptionlanguageRecords setslists or

variants may contain elements of tyfERVICE. Remote operations, e.g., of the form

Service GetProxy(Service); /l reply an alternative service

accept service names as parameter and deliver results GeEypeE.

Sincea genericclient providesa conformingUIMS componentfor eachservicedescription
element,valuesof the type SERVICE also have their individual representationeither as a
buttonelementor asa list item if specifiedlike SEQUENCEOF SERVICE in the SIDL service
specification.Thus, a client/serverbinding can be invoked easily by a user-interfacesvent.
Applied to aspectsof service mediation,the COSM communicationinfrastructureshould
supporta correspondingnesting of serverbinding represetations at the (graphical) user
interface level.

Trading

Tradingis the processof matchingservicerequestswith serviceoffers basedon attributes
which characterizejuality requirement®f a client and, respectively quality assurancesf a
server[ODP92b]. A classificationof the servicedomainrequestectcan be characterizedy
specific serviceproperty lists. In the COSM environment,trading can be consideredas a
mapping from a list of required service properties and a list of supported propeaies of
servicereferencegqvaluesof type SERVICE). If this mappingis carried out by a distinct
applicationcomponentthis components calleda trader [TsSWW92]. Thetraderservicemay
be provided by a federationof serverinstancesln the contextof COSM applications,the
processof trading canbe viewedasa mediating(value-adding)serviceeither by referral or
by chaining.In the first case different tradersmay supply varying individual interfaces By

using the genericclient, a humanuseris enabledto import the servicedescriptionof each
traderat binding time andto adaptto specificinterfaces.Informally, sucha traderservice
interface could have the following structure:

Type ServiceListSequenceOf { Service};
Type SpecRecord {

Int maxResults; /I limit returned list of services
SequenceOf {
String property; /l demanded properties

} properties;
h /I import description
ServicelList ListAllServices(),
Comment "List of all services currently
registered at trader";
ServiceList SearchMatchingServices(Spec);
Service SerachBestService(Spec);

4. SIDL: A SERVICE INTERFACE DESCRIPTION LANGUAGE

In this section,we first presentan overview of the baseversion of SIDL as definedin
[MeLa93] and[Merz92]. Then,we introducesomeSIDL extensionsanda first versionof a
corresponding COSM prototype implementation.

For thedescriptionof COSM serviceapplicationsa minimal descriptionlanguages required
to supplya formal descriptionof parametetypesandprocedurest the serverinterface.Any

further formal specificationaspectis consideredan extensionto thesebaseelements.In

particular, service descriptions can be extended to

« support dinite automaton description to model the service behaviour.

« involve additional primitives, e.g., to supporta transaction-basedexecutionof remote
procedures,

« embedurther formal description techniques.

As far asinformal descriptionsare concernednatual languageannotationgo the syntactical
elements of thénterfacedescriptionsareallowed. This leadsto differentgranularitylevelsof
text annotationsspanningfrom a descriptionof the overall servicefunctionality to single
parameter value annotations.

4.1. Basic Elementsof SIDL

This sectionfocuseson a baseversionof SIDL that containsservicedescriptionaspectsas
motivated above. A car rental serviceis usedas an applicationexamplefor humanuser
activities. Severalguestiongnay arisein suchanapplicationscenariofor example:How are
data entry formgeneratec&ndpresentedby aremotegenericclient? Which functionality can
be specifiedformally and what further informationis to be given to the userby meansof
textual annotations™How can transferreddatavaluesbe type-checkedagainsttheir service
description and be validated?

Figure 3 showsthe main aspectsto be describedat the serverinterface: RPC procedures
which representransitionsbetweenserverstateqInit and Selected) aswell asparameteand

result types. Accordingly, the SIDL code derived from this specification containstype,
procedure, and statkescriptionsectionsFurthermorethe EXPORT sectioncontainsa list of
service properties, used by the trader for service selection tasks.

TYPE SelectCarlRECORD({...}; /I see below
TYPE SCResultT ...; // Booking confirmation
TYPE BookCarT ...;

éERVICE SelectCar REQUEST SelectCarTRESULT SCReturnT };
SERVICE BookCar {REQUEST BookCarT;RESULT ResultT };
SERVICE Abort { REQUEST BookCarT;RESULT ResultT };

STATES{
INIT: SelectCar-> S2; //Acar
! SelCarT SCResultT
has to be selected at least once, then the selection SelectCar

S2: SelectCar -> S2; /I can be

confirmed or cancelled. p
S2:. BookCar-> INIT; Cinig D & selected)

S2: Abort -> INIT;
}; BookCar, Abort

EXPORT
Category: "CarRental";
ChargeM ethod: "Perinvocation";
ChargeAmount: "5";

ChargeCurrency: "USD";

ok

Fig. 3: SDL service description and the corresponding service model

4.1.1. SIDL Data Type Definitions

Any remote procedurecall may require structured parameteror return values to be
transmittedbetweenclients and servers.Accordingly, the SIDL type systemprovidesthe
following types:

Basic types: INTEGER, FLOAT, CHAR, STRING, TEXT
Structured types: RECORDY{...}, CHOICE{...}, ARRAY {...}, SEQUENCE [OF}{...}
Dynamic type: ANY

The TEXT type refersto a text file on the local workstationwhich canbe embeddedasan
RPC parameterCHOICE specifiesthe variant part of a RECORDdiscriminatedby a type
tag.A SEQUENCEOF type denotesa repetitionof identicalelementtypes.The specialtype
ANY describesdynamic types, i.e. values of type ANY are transmitteddynamically at
runtime but not checkedfor conformancesince their actualtype cannotbe anticipatedat
binding establishmentAccording to the SIDL syntaxdefinition, a type declarationcan be
extended optionallpy a list of attribute/valuegpairs. Thesemay concernsubrangeestrictions
of a type or hints for the user interface representalibafollowing parametetype definesa
record type that contains nested basic and structured types:

TYPE SelectCarlRECORD {

—>

INTEGER, LABEL "Mileage", STRING, LABEL "Customer Name";

RANGE TINY 50 5000; STRING, LABEL "First Name";
STRING, LABEL "Booking Date"; STRING, LABEL "Street",
INTEGER, LABEL "# Days", STRING, LABEL "City";

RANGE TINY 1 50;

INTEGER, LABEL "Model",

COMM "For a broader rangt
of models consult our
service at main branch",
RANGE CHOICE 3

"BMW 323" "VW Golf"

CHOICE {
INTEGER LABEL "Visa #";
INTEGER LABEL
"MasterCard #";
INTEGER LABEL "Amex";
InvoiceT LABEL "Invoice";
} LABEL "Payment";

"Fiat UNO"; } Label "Select Car Form";

-
Someintegersare constrainedypesrestrictedto a subrangeThus, rangeconstraintscan be
considered by a generic user interface in order to reject inplatavaluesthatdo not satisfy
the type constraints. For the automatic generation of user interfaces, however, text
annotationslike LABEL and cowv are treated as hints since they may not necessarilybe
consideredy the genericclient. An examplefor a type-specificvalue editor, createdby the
generic client UIMS is shown in Figure 4.

4.1.2. User Interface Description

The userinterfacespecificationof a remoteservicein opensystemgrovidessomeadditional
hints for a genericclient for automatic(graphicalor window) presentatiorof the typeddata
values.Suchhints haveto be specifiedabstractlyin orderto enablea wide rangeof window
managerdo supporta genericuserinterfaceimplementation.Type-specificeditorsof such
interfacesmay vary in their visual appearanceg.g. the type TI NY integer' may be
represented graphically as a slider or as an entry field.

The Generic Gui Editor ‘l
CWTitE TDO) CDismiss) (Comment)

1000 50 e f————— 5000
04.Jan 1993

1 —————— 50

[BMw 525 [vw Golf | Fiat Uno |

: r@ Text Editor V3 - svsdescr.txt, dir; /users/dbis1/merz/dipl/src
A (File v} ((Wiew v} (Edit 7)) (m)

o Service Description File for CarRental service

[

LSS i 18] s, 12

Eooking Date

| TYPE SelCarT RECORD §
H INTECER, LABEL "Mileage", RANGE TINY 50 5000;
STRINGC, LABEL "Booking Date";

INTECER, LABEL "# Days",

: }, LABEL "Select Car Forn";

| TYPE SRespT STRING, LABEL "Server Response”;

)| TYPE BookT INTEGER, LABEL "Confirm booking", RANGE RADIO 2 "¥es" "No";

|| TYPE AbortT INTEGER, LABEL "Confirm to abort", RANGE RADIO 2 "Yes" "No";

Days 10

RANGE TINY 1 50;

Merz

Michael A SERWICE selcar 1

{

REQUEST SelcarT;
RESPONSE SRespT;
ERROR TEST:

Vogt—Koelln=5tr. 30

2000 L
SERVICE Confirm 2

City Hamburg 54,

INIT: Selcar
STATE2: Selcar
STATEZ2: Confirm
R ?TATEZ: Abort

-» STATE2;
-» STATEZ2;
-» INIT;
-» INIT;

| Wisa # I MasterCard # | Arnex # ‘ Invoice |

H The Generic Gui Editor

{write TOO) (Dismiss) (Cemment)
MasterCard # 120199942212, (a]+)

Figure 4: Service description and a generic client user interface

Figure 4 gives an exampleon how the user interface specificationcould be utilized for
automaticallygeneratinga query form from the SIDL service interface description. For
example theright window of Figure4 showsa servicedescriptionfile wherethe previously

introducedtype Sel Car T is definedandusedasa parametetype for the Sel Car service
procedureOn the left side, the genericclient applicationis shownafter binding to the car
rental servicewhich suppliesthis procedure The form windowsin the left part of Figure4
representhe parametewvaluefor the procedureinvocation. The actualparametetransferis
initiated by pressingthe "Write TDO" button: A TaggedData Object (TDO) is generated
from the current data value and sent to the server.

4.2. Checking Type Confor mity

Following the overviewof the baseversionof SIDL, someexamplesof dynamic extensions
shallbe given. In orderto realizedynamicextensibility, servicedescriptionscanthemselves
be considered as datalueswhich aretransferabldetweemetworknodesHowever,if such
service descriptionsare defined by meansof monomorphicprogramminglanguagedike

Pascabr C, all participatingapplicationshaveto interchangevaluesof exactly the same data
type amongeachother.If the structureof sucha servicedescriptionvalueis to be extended
by additional descriptional elements, either additional service descriptionshave to be

explicitly definedor an extendedversionhasto be 'standardizedamongall applications.In

summary,in monomorphictype systemst is not possibleto acceptdatavaluesof different

types, evenif they belongto a commonsupertype. Polymorphicprogramminglanguages,
however, supportexactly this aspect.Therefore,the extensibility requirementfor service
descriptionseadsto a considerationof languagesxtensiondike, e.g., Laura [Tolk92] or

polymorphic programmingenvironmentslike Quest [Card89] or Tycoon [ScMa92] which

implicitly supportimplicit subtypingrules.Therefore SIDL elementswhich arerequiredfor

type conformity checking,could be transformednto Tycoon Language (TL) codein orderto

enable a dedicated trader componentto carry out the conformity checking process
automatically.

4.3. Prototype Implementation Overview

Finally, we present an overview of a first prototype implementatiaCOSM infrastructure
which supportsSIDL service descriptionsand automatic user interface generation.The

systemmodelfor our COSMimplementatiorprototypeinvolvesfour kinds of componentsa

genericclient, aclient agent(CAG), a serveragent(SAG), anda server.The purposeof

both kinds of agents is to protebeir applicationsagainstpotentialtype mismatchedbetween
actual parameters transferred and the data type specified in the service description.

The procesf client/server-binding implies the selectionof a serveraswell asthe import of

the server's service description. Before binding, the service descigsimmedat the server's
site after being convertedfrom an external representationAt binding time, the service
descriptionis transferredto both agentswhereit is storedaslong as client and serverare
bound. At the actualservice invocation, RPC parametersre transferredvia both agentsin

orderto performthe necessargonformancechecksIf thereis a mismatchbetweenspecified
typesandthe parametetypestransferredthis is detectedvy the local agentof eachsite and
an error code is returned.

Instead of involving a specificient application,parameteraluesaremappeddirectly onthe
userinterfacelevel. Therefore the genericuserinterfacesupportsuserfunctionsto selectan
appropriateserver,to examinethe serviceprocedureoffered by this server,and, finally, to

invoke selectedprocedures.Thus, the processof binding betweenclient and server is

reflectedat the userlevel by this serviceselectionprocess.The actual service invocation

requiresthe userto supply the RPC with parametervalues. Therefore,the generic user
interface generates a typed form parameteentry (Figure4). Therequiredtype description
is retrieved from the local CAG. Return values are presented in the same way.

The prototype was developedon a heterogeneousvorkstation cluster, consistingof Sun

SPARCstationsaswell asIBM RS/6000AIX workstations.Currently, a standardizedRPC

interfaceservesas a commoncommunicationbasis.Following the model describedabove,
the prototype supportsthe integration of user interface and service description aspects.
Developinga new serverapplicationjust requiresto code serviceproceduresasedon the

servercommunicatiorinterfaceandto describeheseproceduredy meansof a SIDL service
description:the formal partsastype, procedure stateand exportdescriptionand, optionally,

the informal part of the user interface description as natural language annotations.

5. CONCLUDING REMARKS

This papersaimsat improvedsystemsupportfor flexible client/serverintegrationin modern
distributed and heterogeneouspensystemsSpecifically,it addresseproblemsof matching
distributedapplicdion programclient requests with genericremoteserver interface functions
asprovidedat dedicatedservernodesanywherein an opennetwork environment.The goal
hereis not just to supporta specific client/servercooperatiorbut ratherto designa generic
architecturefor flexible servicemanagemenin opensystemsThis architectureshouldhelp
reducetransition costsand facilitate decisionsas to whetherto 'make'or to 'buy’ different
application components.

According to software abstraction principles, the COSM architecture separatesstrictly
between application componerts the onesideandsupportingserviceswhich arehiddento
the application,on the other. Below this borderline,the COSM cooperationsupportsystem
infrastructureis implemented At the applicationlevel, servicedescriptionsare to be used
easilyin orderto utilize genericcomponentf the platform for specificapplicationsneeds.
As shownin Figure 1, the COSM infrastructurehelpsconsiderablyto reducethe numberof
different and separated interfaces between the human user and the server.

Currently, work on the COSM prototype implemernation concentrateson using and

extendingstandardizedX.500 Directory Services[ISO88] into a globally accessibleopen
repository servicefor storing, managing,and making available COSM servicedescriptions
which have beenspecified with SIDL. In addition to managing such static service
descriptions]ater versionsof the prototypemay takeinto accountadditionalinformationon

componentservices(e.g., dynamic statusinformation) availablefor client use. This can be

basedon standardizedbpen 'SystemsManagement[ISO90] and function, in the way as
proposedn [PoTT91].Here,variousproblemsof managingooth staticanddynamicsystems
managemeninformation in high quantities,at different location, and with high efficiency
requirements as necessary in large scale open systems are still unresolved.

Acknowledgement
The authorsthank Florian Matthesfor valuableremarkson a former versionof this paper.

References

[ANSA91]
[Card89]
[Herb91]

[Hick43]

[1S088]
[1SO90]

[JCKa92]
[Merz92]

[MeLa93]

[NaKa92]

[ODP92a]

[ODP92b]
[OMG91]

[POTTO1]

[ScMa93]

[Tolk92]

[TSWW92]

[WaWwe84]

[WoTs90]

ANSA: A System Designer’s Introduction to the Architecture, APM Ltd, 1991
L. Cardelli: Typeful Programming, DEC SRC Research Report #45, Palpl&I89

A. Herbert: The ANSA Project and Standards, in: S. Mullender (Editor): Distributed
Systems, ACM Press, New York, 1991, pp.391-399

J.R. Hicks: Value and Capital, an Inquiry into some Fundamental Principles of Economic
Theorie, 2nd Ed., Oxford, 1943

ISO/IEC JTC 1 SC 21, International Standard IS 9594: "The Directory", 1988

ISO/ IEC JTC 1 SC 21, International Standard IS 10040: "OSI - Systems Management
Ovewniew", 1991

Jagannathan, J. Cleetus, R. Kannarplisption Message Interface, in: IEEE Phoenix
Corference on Computer and Communications, 1992, pp. 493-500

M. Merz: Generic Support for Distributed Client/Server-Cooperation in Open Systems
(in German), Masters Thesis, Dept. of Cotepiscience, Hamburg University, 1992

M. Merz, W. Lamersdorf: Generic Interfaces to Remote Applications in Open Systems,
in: Proc. Intern. IFIP Workshop on Interfaces in Industrial Production and Engineering
Sydgems, North-Holland, 1993, pp 267-281

R. V. Narender, R. Kannan: Dynamic RPC for Extensibility, in: IEEE Phoenix
Conference on Computer and Communications, |IEEE Ctanf@oc. Press, 1992,
pp. 93100

ISO/IEC JTC1 SC21 WG7: Basic Reference Model of Open Distributed Processing,
Working Document N7053, 1992

ISO/IEC JTC1 SC21 WGT7: Trader, Working Document N7047, 1992

The Common Object Request Broker: Architecture and Specification, OMG Document
No. 91.12.1, 1991

R. Popescu-Zeletin, V. Tschammer, M. TsichholzD¥tributed Application Platform,
IEEE Computer Communication, vol. 14, no. 6, 1991366-374

J.W: Schmidt, F. Matthes: Lean Languages and Models: Towards an Interoperable
Kernel for Persistent Object Systems, Procs. Int. IEEE/RIDE Workshop on
Interoperability, IEEE Computer Soc. Press, Los Atamil993

R. Tolksdorf: Laura: A Coordination Language for Open Distributed Systems, Report
1992/35, TU Berlin, 1992

V. Tschammer, A. Wolisz, M. Walch: The Performance of Multiple Tra@perating in
the Same Domain, in: IEEE Workshop ortére Trends of Distributed Computing
Systems, IEEE Computer Soc. Press, Los Alasnl992, pp. 122-128

G. Walker, D. Weber: A Transaction Cost Approach to Make-or-Buy Decision,
Administrative Science Quarterly, 29, 1984,3%891

A. Wolisz, V. Tschammer: Service Provider Selection in an Open Services Environment,
in: 2nd IEEE Workshop on Future Trends of Distributed Computing Systems, Los
Alamitos, IEEE Computer Soc. Press, Losltos 1990, pp. 229-235

