
Cooperation Support for an Open Service Market1

M. Merz, W. Lamersdorf

Hamburg University - Department of Computer Science - Databases and Information Systems,
Vogt-Kölln-Str. 30 - D-22527 Hamburg, [merz|lamersd]@dbis1.informatik.uni-hamburg.de

Open communications technology allows the interconnecting of great multitudes of client
applications with varieties of services in what can be considered a Common Open Service
Market (COSM). In a COSM, application development can profit from existing services used
as building blocks for the development of individual integrated applications. Decisive for the
success of this software development process is the identification and relating of conforming
cooperation partners with each other through an appropriate trading mechanism. The
additional effort for a client to utilize remote servers or to switch between different providers
of a distinct service is called transition effort. This effort should be reduced by the underlying
support system as much as possible.
This paper seeks to derive design principles for distributed application development from an
economics open market analogy. A Service Interface Description Language (SIDL) is
presented as the basis for minimizing transition costs for distributed applications. It is used
for the trading process as well as the creation of graphical local user interfaces for arbitrary
remote services at binding time. Finally, the paper outlines the current status of a distributed
prototype system which implements cooperation support for a COSM.

Keyword Codes: C.2.4, H.4, H.5.0
Keywords: Distributed Systems, Communications Applications, Information

Interfaces and Presentation, General

1. INTRODUCTION

Today's wide-spread availability and use of high-bandwidth communications technology
makes various kinds of innovative open computing environments for cost-effective distributed
application programming feasible and desirable. Open distributed computing environments
provide a basis for increased specialization of offered services. Increased specialization,
however, requires adequate communication and cooperation support in order to allow nodes
to offer their respective services uniformly to one another.
Major problems of realizing open distributed computing environments with minimal effort
for each single application component are caused by the high number and heterogeneity of
nodes which may potentially participate. Solutions for such problems require improved and
additional system components in the areas of communication and cooperation in open
distributed systems.

                                               
1 Appeared in: Proc. Int. IFIP Congress on ODP, North-Holland, 1993



Making specialized services on dedicated nodes available to utilizing applications requires
considerable effort for combining a given set of basic functions into an integrated distributed
application. In traditional environments, this integration effort is often due to a multitude of -
in most cases independently developed - software modules which have to be configured and
adapted explicitly for each actual client/server relationship. In this process, a great variety of
different interface standards has to be taken into account [ODP92a]. This leads to
considerable adaptation (or: transition) costs for each single component in such an integrated
open systems environment as depicted in Figure 1a [Herb91]. As depicted in Figure 1b, he
COSM approach tries to tie together semantics of the user interface, client and infrastructure
components based on an adequate interface description of remote services.

User UIMS

Client Application

Communication Service

Server Application
a)    

 
User COSM Infrastructure Server Application

b)

Fig. 1: Components of remote client/server interaction: a) traditional vs. b) COSM approach

The rest of the paper is organized as follows: The second section motivates system support
for a COSM based on an analogy taken from economic science. The following section first
describes basic concepts and components of a distributed application-oriented COSM
infrastructure and then combines them into a corresponding system software architecture.
Finally, section 4 first presents some details of a SIDL which aims to support service
classification as an important prerequisite for service acquisition in a COSM. It also gives an
overview of a respective distributed prototype system.

2. REDUCING TRANSITION COSTS IN CLIENT/SERVER RELATIONSHIPS

Given a great magnitude of available services which may enter and leave the service market
autonomously, an infrastructure is required that facilitates transitions between client/server-
relationships in an adequate way. Such transitions occur if, e.g., human users prefer to
interact with alternative servers due to reduced utilization costs, or if a binding to a newly
obtained service is to be established. Reconfiguring client/server relations may require
conceptual and implementation effort at prohibitively high costs that prevent any change.
Further, independence from a single (master) service should be given in order to enhance
participation autonomy of clients and servers, which leads to a market-of-services model as
introduced in [WoTs90]. Therefore, before going into technical details, we would like to
compare the COSM model to an analogous balanced market model as defined in terms of
economic science. The following three examples shall demonstrate some basic constituents of
a market and the circumstances under which such an ideal market is balanced (which means
that all ressources are optimally allocated). We then derive from that model some conditions
which must be satisfied in order to realize an infrastructure for open systems in which
client/server relationships are optimally supported.
According to economics theory, the model of perfect competition is built on the following
assumptions [Hick43]: First, on both sides of a market there is an atomistic granularity of
participants (consumers as well as suppliers). Second, no personal, spatial or other
preferences exist in any consumer/supplier relationship. Third, one single market price for



distinct services is transparent to all participants, and, finally, free market access is always
provided for all consumers as well as suppliers. In this example, the characteristics of perfect
competition may serve as an analogon of COSM participation autonomy. If we interpret the
respective conditions in an open computer cooperation context, we may recognize obstacles
to realizing such an 'ideal' COSM for computer and software services: For example existing
network services as well as clients are often difficult to access via a common communication
medium. Therefore, only few services are offered and - due to high setup costs for service
provision - consumers are reluctant to switch between alternative providers within a specific
service category, even if they exist.
A second concept from economic market theory addresses the aspect of added-value
generation: In an open service market, service suppliers may also play the client role to
further servers acting as a link in a value-adding chain. Translated into an open computer
communication context, this analogy shows that an open service environment should
specifically support easy market access of producers of 'added-values' or improved service for
the benefit of other market participants, if it appears to be profitable. In a similar way, the
effort to interact with an alternative server should always be as small as possible. Only then
can the make-or-buy-decision to provide a service 'internally' or to obtain it from a supplier in
the market be freed from any bias against cooperation [WaWe84]. In existing systems, such
bias is frequently caused by the prohibitively high transition costs in case of purchasing from
external sources.
In summary, all constitutional elements that lead to a well functioning, balanced market are
closely related to the overall goal of reducing transition costs. In an open market, such
transitions may occur frequently: Entering a market, e.g., is a transition for either a client or a
server, changing from self-production to purchasing from an external supplier is a transition,
and changing the supplier is a transition as well. In all cases, one of the most important
prerequisite for reduced transition costs is some form of uniform agreement on how to
cooperate. This, however, means to agree on dedicated interaction standards which all
cooperation partners can jointly and consistently rely upon. Accordingly, a first goal of a
COSM realization is to identify aspects of service interfaces which need to be described and
standardized. Then, a suitable interface specification technique and dedicated system software
have to be designed and implemented. All such components together will finally make up a
common COSM cooperation infrastructure that supports distributed service access and
management in an open market of services.

3. COSM DESIGN

3.1. Design Principles
The architecture of the COSM system support platform as presented below is based on two
simple design principles: First, at any level of abstraction of the overall system, a generic
client/server model is uniformly applied to separate cooperating components horizontally into
always a 'requesting' and a 'responding' entity, respectively. Secondly, a strict separation is
applied between the 'application' layer, which uses a service, and the supporting service layer,
which provides the corresponding service. Figure 2 presents this generic client/server model
graphically.



In the overall design of the COSM support system, this model is applied recursively at three
distinct levels (see Figure 2):
1. The operating system level may comprise extended operating system components like

specific file system or memory management services, which can be separated from an
OS (micro-) kernel as dedicated systems components.

2. The COSM support service level (support level) provides specific modules like interface
repository or security services, based on environments like OSF/DCE (Distributed
Computing Environment). Further support level components provide distribution
transparency to the application level (similar to transparency mechanisms in
[ANSA91]).

3. The COSM application level supports dedicated distributed application components such
as application-specific or generic clients and dedicated application servers. Application
layer components also interact with the human user to efficiently support the interaction
with remote service applications.

FS MM

DS Sec

Car Rental

Operating System Level

 COSM Support Level

COSM Application Level

Human User Sphere

FS:     File System
MM:   Memory Management

DS:    Directory Service
Sec:   Security Service
Rep:  Repository Service

Level Specific Adaption Interfaces

Service Client
Generic

Level Specific Server Component

Level Specific Adaption Component

Rep

Trading
Service

xx

User

ClientServer

Application Level

Support Level

Fig. 2: Generic Client/Server Model & COSM Architecture

As mentioned before, an important design goal for the COSM architecture is to reduce
transition efforts, i.e., application programming efforts for connecting application level
components to their supporting common cooperation services. This leads to a strong and well
supported application level modularization (additional functionality should be added on at the
application layer) rather than a monolithic architecture where all services are provided
internally at the support level (build-in approach).

3.2. Requirements for a Common Open Service Market

Service Interface Description
COSM participants act in various roles, either as clients or as servers. In general, application
components are developed independently from one another and at different points of time and
space. A client is thus unspecific to a server, so the assumption of conforming client/server



interfaces, as made implicitly by traditional stub generators, does not hold for COSM service
invocations. Instead, COSM servers are required to identify themselves and have to supply
their own service descriptions explicitly to the underlying support system. This allows COSM
clients to browse and import such service specifications. This, however, means that COSM
client and server applications require interpreting stubs in order to avoid recompilation of
stub modules whenever a new client/server relationship is established, comparable with the
OMG CORBA 'Dynamic Invocation Interface' [OMG91]. The trading service itself acts as a
COSM application and, therefore, exports its own service description directly to potential
client applications.
Explicit service descriptions are to be transferred between different application level
components. They may serve not only for marshalling purposes but also for assuring
conformity of parameter values as actually transferred with their type specifications in the
respective service descriptions. Since human users may also be involved in service acquisition
processes, natural language annotations may also be added to the service description. In
summary, any basic Service Interface Description Language (SIDL) [MeLa93] for a COSM
requires at least the following three components:
• parameter type declarations for interpreting stub control and conformance assurance,
• (remote) procedure descriptions, and
• natural language annotations to support the human user at the service selection process.
Some aspects of such a service description language are presented in the following sections.

Generic Clients
Generic client components in COSM are defined without immediate relationship to a specific
server, i.e. without knowledge about a the application functionality of a server. This
information has to be imported explicitly at binding time. If a human user of a client
component is involved in service selection, binding, and interaction, the client functionality
can be reduced to a generic interface component which supports general service description
browsing, acquisition, and remote service invocation tasks. In COSM, the client components
are called generic clients and may utilize elements of explicit service descriptions also to
generate a server-specific graphical user interface [JCKa92, NaKa92]. Therefore, an im-
portant property of generic clients in COSM is a well-defined relationship of linguistic
(SIDL) service description elements to corresponding user interface management system
(UIMS) components at the client site. This allows client application development to benefit
automatically from SIDL service specifications, as provided by a remote server.*

Components of SIDL service descriptions like types, operations and textual annotations result
in respective UIMS components. Therefore, type-specific value forms are generated that
allow to present or edit data values. Other elements (like buttons or list items), that can be
activated by mouse events, are related to respective remote operations defined in a SIDL
service interface description. Furthermore, for each UIMS element, the user can be supported
through additional information given by respective natural language text annotations.

                                               
*  For example, users are not required to learn the different dialog control and interface styles used by various services.

Further, the semantics of user interaction with servers can remain unchanged - even if visual presentation elements of
alternate user interface systems may vary. This enables an implementation of generic clients independent of hardware
and UIMS as presented in section 4.



In result, service integration, as proposed for COSM based on uniform SIDL specifications,
substantially reduces the multitude of heterogeneous interfaces between human users and
actual applications. After integration within a COSM environment, the only remaining
interfaces to be related (bound) together are the human user interface on the one side, and the
server application programming interface, on the other (Figure 1b).
In a COSM, the notion of binding has a broader meaning than just the assignment of a name
to a remote service instance. A client/server binding may also comprise an agreement on the
"terms of trade" of the service, as specified in the explicit service description.

Service Integration
A COSM system support architecture should facilitate the integration of services with
minimal possible effort, that is the realization of an added value with minimal overhead. A
cooperation support infrastructure for such service integration motivates the development of
specialized 'mediation' services. In general, service mediation can be done either by service
referral or by service chaining: In the first case, a mediator first acts as a switch to remote
services and then allows users to bind directly to these services. In the latter, the mediator
service acts itself as a client for service integration and the binding is realized between the
mediator and correspondingly connected remote servers.
In order to support service mediation by referral, a COSM requires a naming schema which
uniquely identifies services world-wide. A service name in our COSM prototype environment
is currently composed of the server's node address and a local name. This information
remains transparent to human users of generic clients since service names are values of a
special base type SERVICE in the service interface description language. Records, sets, lists or
variants may contain elements of type SERVICE. Remote operations, e.g., of the form

Service GetProxy( Service ); // reply an alternative service

accept service names as parameter and deliver results of type SERVICE.
Since a generic client provides a conforming UIMS component for each service description
element, values of the type SERVICE also have their individual representation: either as a
button element or as a list item if specified like SEQUENCEOF SERVICE in the SIDL service
specification. Thus, a client/server binding can be invoked easily by a user-interface event.
Applied to aspects of service mediation, the COSM communication infrastructure should
support a corresponding nesting of server binding representations at the (graphical) user
interface level.

Trading
Trading is the process of matching service requests with service offers based on attributes
which characterize quality requirements of a client and, respectively, quality assurances of a
server [ODP92b]. A classification of the service domain requested can be characterized by
specific service property lists. In the COSM environment, trading can be considered as a
mapping from a list of required service properties and a list of supported properties to a list of
service references (values of type SERVICE). If this mapping is carried out by a distinct
application component, this component is called a trader [TsWW92]. The trader service may
be provided by a federation of server instances. In the context of COSM applications, the
process of trading can be viewed as a mediating (value-adding) service either by referral or
by chaining. In the first case, different traders may supply varying individual interfaces. By



using the generic client, a human user is enabled to import the service description of each
trader at binding time and to adapt to specific interfaces. Informally, such a trader service
interface could have the following structure:

Type ServiceList SequenceOf {  Service };
Type Spec Record {

Int maxResults; // limit returned list of services
SequenceOf {

 String property; // demanded properties
...

} properties;  
}; // import description

ServiceList ListAllServices( ),
     Comment "List of all services currently

            registered at trader";
ServiceList SearchMatchingServices( Spec );
Service SerachBestService( Spec );

4. SIDL: A SERVICE INTERFACE DESCRIPTION LANGUAGE

In this section, we first present an overview of the base version of SIDL as defined in
[MeLa93] and [Merz92]. Then, we introduce some SIDL extensions and a first version of a
corresponding COSM prototype implementation.
For the description of COSM service applications, a minimal description language is required
to supply a formal description of parameter types and procedures at the server interface. Any
further formal specification aspect is considered an extension to these base elements. In
particular, service descriptions can be extended to
• support a finite automaton description to model the service behaviour.
• involve additional primitives, e.g., to support a transaction-based execution of remote

procedures,
• embed further formal description techniques.
As far as informal descriptions are concerned, natural language annotations to the syntactical
elements of the interface descriptions are allowed. This leads to different granularity levels of
text annotations, spanning from a description of the overall service functionality to single
parameter value annotations.

4.1. Basic Elements of SIDL
This section focuses on a base version of SIDL that contains service description aspects as
motivated above. A car rental service is used as an application example for human user
activities. Several questions may arise in such an application scenario, for example: How are
data entry forms generated and presented by a remote generic client? Which functionality can
be specified formally and what further information is to be given to the user by means of
textual annotations? How can transferred data values be type-checked against their service
description and be validated?
Figure 3 shows the main aspects to be described at the server interface: RPC procedures
which represent transitions between server states (Init and Selected) as well as parameter and



result types. Accordingly, the SIDL code derived from this specification contains type,
procedure, and state description sections. Furthermore, the EXPORT section contains a list of
service properties, used by the trader for service selection tasks.

TYPE SelectCarT RECORD{...}; // see below
TYPE SCResultT ...; // Booking confirmation
TYPE BookCarT ...;
...

SERVICE SelectCar { REQUEST  SelectCarT; RESULT SCReturnT };
SERVICE BookCar { REQUEST BookCarT; RESULT ResultT };
SERVICE Abort { REQUEST BookCarT; RESULT ResultT };

STATES {
INIT: SelectCar -> S2; // A car

has to be selected at least once, then the selection
S2: SelectCar -> S2; // can be

confirmed or cancelled.
S2: BookCar -> INIT;
S2: Abort -> INIT;
};

EXPORT {
Category: "CarRental";
ChargeMethod: "PerInvocation";
ChargeAmount: "5";
ChargeCurrency: "USD";
... };

Fig. 3: SIDL service description and the corresponding service model

4.1.1. SIDL Data Type Definitions
Any remote procedure call may require structured parameter or return values to be
transmitted between clients and servers. Accordingly, the SIDL type system provides the
following types:

Basic types: INTEGER, FLOAT, CHAR, STRING, TEXT

Structured types: RECORD{...}, CHOICE{...}, ARRAY {...}, SEQUENCE [OF]{...}

Dynamic type: ANY

The TEXT type refers to a text file on the local workstation which can be embedded as an
RPC parameter. CHOICE specifies the variant part of a RECORD discriminated by a type
tag. A SEQUENCE OF type denotes a repetition of identical element types. The special type
ANY describes dynamic types, i.e. values of type ANY are transmitted dynamically at
runtime but not checked for conformance since their actual type cannot be anticipated at
binding establishment. According to the SIDL syntax definition, a type declaration can be
extended optionally by a list of attribute/value pairs. These may concern subrange restrictions
of a type or hints for the user interface representation. The following parameter type defines a
record type that contains nested basic and structured types:

Init Selected

SelectCar

BookCar, Abort

SelectCar

SelCarT SCResultT



TYPE SelectCarT RECORD {
INTEGER, LABEL "Mileage",

     RANGE TINY 50 5000;
STRING, LABEL "Booking Date";
INTEGER, LABEL "# Days",

RANGE TINY 1 50;
INTEGER, LABEL "Model",

COMM "For a broader range
of models consult our
service at main branch",
RANGE CHOICE 3
"BMW 323" "VW Golf"
"Fiat UNO";

--->

 --->
STRING,  LABEL "Customer Name";
STRING, LABEL "First Name";
STRING, LABEL "Street";
STRING, LABEL "City";
CHOICE {

INTEGER  LABEL "Visa #";
 INTEGER  LABEL

"MasterCard #";
INTEGER  LABEL "Amex";
InvoiceT   LABEL "Invoice";

} LABEL "Payment";
} Label "Select Car Form";

Some integers are constrained types restricted to a subrange. Thus, range constraints can be
considered by a generic user interface in order to reject input of data values that do not satisfy
the type constraints. For the automatic generation of user interfaces, however, text
annotations like LABEL and COMM are treated as hints since they may not necessarily be
considered by the generic client. An example for a type-specific value editor, created by the
generic client UIMS is shown in Figure 4.

4.1.2. User Interface Description
The user interface specification of a remote service in open systems provides some additional
hints for a generic client for automatic (graphical or window) presentation of the typed data
values. Such hints have to be specified abstractly in order to enable a wide range of window
managers to support a generic user interface implementation. Type-specific editors of such
interfaces may vary in their visual appearance, e.g. the type 'TINY integer' may be
represented graphically as a slider or as an entry field.

Figure 4: Service description and a generic client user interface

Figure 4 gives an example on how the user interface specification could be utilized for
automatically generating a query form from the SIDL service interface description. For
example, the right window of Figure 4 shows a service description file where the previously



introduced type SelCarT is defined and used as a parameter type for the SelCar service
procedure. On the left side, the generic client application is shown after binding to the car
rental service which supplies this procedure. The form windows in the left part of Figure 4
represent the parameter value for the procedure invocation. The actual parameter transfer is
initiated by pressing the "Write TDO" button: A Tagged Data Object (TDO) is generated
from the current data value and sent to the server.

4.2. Checking Type Conformity
Following the overview of the base version of SIDL, some examples of dynamic extensions
shall be given. In order to realize dynamic extensibility, service descriptions can themselves
be considered as data values which are transferable between network nodes. However, if such
service descriptions are defined by means of monomorphic programming languages like
Pascal or C, all participating applications have to interchange values of exactly the same data
type among each other. If the structure of such a service description value is to be extended
by additional descriptional elements, either additional service descriptions have to be
explicitly defined or an extended version has to be 'standardized' among all applications. In
summary, in monomorphic type systems it is not possible to accept data values of different
types, even if they belong to a common supertype. Polymorphic programming languages,
however, support exactly this aspect. Therefore, the extensibility requirement for service
descriptions leads to a consideration of languages extensions like, e.g., Laura [Tolk92] or
polymorphic programming environments like Quest [Card89] or Tycoon [ScMa92] which
implicitly support implicit subtyping rules. Therefore, SIDL elements, which are required for
type conformity checking, could be transformed into Tycoon Language (TL) code in order to
enable a dedicated trader component to carry out the conformity checking process
automatically.

4.3. Prototype Implementation Overview
Finally, we present an overview of a first prototype implementation of a COSM infrastructure
which supports SIDL service descriptions and automatic user interface generation. The
system model for our COSM implementation prototype involves four kinds of components: a
generic client,  a client agent (CAG),  a server agent (SAG), and a server. The purpose of
both kinds of agents is to protect their applications against potential type mismatches between
actual parameters transferred and the data type specified in the service description.
The process of client/server-binding implies the selection of a server as well as the import of
the server's service description. Before binding, the service description is stored at the server's
site after being converted from an external representation. At binding time, the service
description is transferred to both agents where it is stored as long as client and server are
bound. At the actual service invocation, RPC parameters are transferred via both agents in
order to perform the necessary conformance checks. If there is a mismatch between specified
types and the parameter types transferred, this is detected by the local agent of each site and
an error code is returned.
Instead of involving a specific client application, parameter values are mapped directly on the
user interface level. Therefore, the generic user interface supports user functions to select an
appropriate server, to examine the service procedures offered by this server, and, finally, to
invoke selected procedures. Thus, the process of binding between client and server is
reflected at the user level by this service selection process. The actual service invocation



requires the user to supply the RPC with parameter values. Therefore, the generic user
interface generates a typed form for parameter entry (Figure 4). The required type description
is retrieved from the local CAG. Return values are presented in the same way.
The prototype was developed on a heterogeneous workstation cluster, consisting of Sun
SPARC stations as well as IBM RS/6000 AIX workstations. Currently, a standardized RPC
interface serves as a common communication basis. Following the model described above,
the prototype supports the integration of user interface and service description aspects.
Developing a new server application just requires to code service procedures based on the
server communication interface and to describe these procedures by means of a SIDL service
description: the formal parts as type, procedure, state and export description and, optionally,
the informal part of the user interface description as natural language annotations.

5. CONCLUDING REMARKS

This papers aims at improved system support for flexible client/server integration in modern
distributed and heterogeneous open systems. Specifically, it addresses problems of matching
distributed application program client requests with generic remote server interface functions
as provided at dedicated server nodes anywhere in an open network environment. The goal
here is not just to support a specific client/server cooperation but rather to design a generic
architecture for flexible service management in open systems. This architecture should help
reduce transition costs and facilitate decisions as to whether to 'make' or to 'buy' different
application components.
According to software abstraction principles, the COSM architecture separates strictly
between application components on the one side and supporting services, which are hidden to
the application, on the other. Below this borderline, the COSM cooperation support system
infrastructure is implemented. At the application level, service descriptions are to be used
easily in order to utilize generic components of the platform for specific applications needs.
As shown in Figure 1, the COSM infrastructure helps considerably to reduce the number of
different and separated interfaces between the human user and the server.
Currently, work on  the COSM prototype implementation concentrates on using and
extending standardized X.500 Directory Services [ISO88] into a globally accessible open
repository service for storing, managing, and making available COSM service descriptions
which have been specified with SIDL. In addition to managing such static service
descriptions, later versions of the prototype may take into account additional information on
component services (e.g., dynamic status information) available for client use. This can be
based on standardized open 'Systems Management' [ISO90] and function, in the way as
proposed in [PoTT91]. Here, various problems of managing both static and dynamic systems
management information in high quantities, at different location, and with high efficiency
requirements as necessary in large scale open systems are still unresolved.

Acknowledgement
The authors thank Florian Matthes for valuable remarks on a former version of this paper.



References

[ANSA91] ANSA: A System Designer´s Introduction to the Architecture, APM Ltd, 1991

[Card89] L. Cardelli: Typeful Programming, DEC SRC Research Report #45, Palo Alto, 1989

[Herb91] A. Herbert: The ANSA Project and Standards, in: S. Mullender (Editor): Distributed
Systems, ACM Press, New York, 1991, pp.391-399

[Hick43] J.R. Hicks: Value and Capital, an Inquiry into some Fundamental Principles of Economic
Theorie, 2nd Ed., Oxford, 1943

[ISO88] ISO/ IEC JTC 1 SC 21, International Standard IS 9594: "The Directory", 1988

[ISO90] ISO/ IEC JTC 1 SC 21, International Standard IS 10040: "OSI - Systems Management
Overview", 1991

[JCKa92] Jagannathan, J. Cleetus, R. Kannan: Application Message Interface, in: IEEE Phoenix
Conference on Computer and Communications, 1992, pp. 493-500

[Merz92] M. Merz: Generic Support for Distributed Client/Server-Cooperation in Open Systems
(in German), Masters Thesis, Dept. of Computer Science, Hamburg University, 1992

[MeLa93] M. Merz, W. Lamersdorf: Generic Interfaces to Remote Applications in Open Systems,
in: Proc. Intern. IFIP Workshop on Interfaces in Industrial Production and Engineering
Systems, North-Holland, 1993, pp 267-281

[NaKa92] R. V. Narender, R. Kannan: Dynamic RPC for Extensibility, in: IEEE Phoenix
Conference on Computer and Communications, IEEE Computer Soc. Press, 1992,
pp. 93-100

[ODP92a] ISO/IEC JTC1 SC21 WG7: Basic Reference Model of Open Distributed Processing,
Working Document N7053, 1992

[ODP92b] ISO/IEC JTC1 SC21 WG7: Trader, Working Document N7047, 1992

[OMG91] The Common Object Request Broker: Architecture and Specification, OMG Document
No. 91.12.1, 1991

[PoTT91] R. Popescu-Zeletin, V. Tschammer, M. Tsichholz: 'Y' Distributed Application Platform,
IEEE Computer Communication, vol. 14, no. 6, 1991, pp 366-374

[ScMa93] J.W: Schmidt, F. Matthes: Lean Languages and Models: Towards an Interoperable
Kernel for Persistent Object Systems, Procs. Int. IEEE/RIDE Workshop on
Interoperability, IEEE Computer Soc. Press, Los Alamitos 1993

[Tolk92] R. Tolksdorf: Laura: A Coordination Language for Open Distributed Systems, Report
1992/35, TU Berlin, 1992

[TsWW92] V. Tschammer, A. Wolisz, M. Walch: The Performance of Multiple Traders Operating in
the Same Domain, in: IEEE Workshop on Future Trends of Distributed Computing
Systems, IEEE Computer Soc. Press, Los Alamitos 1992, pp. 122-128

[WaWe84] G. Walker, D. Weber: A Transaction Cost Approach to Make-or-Buy Decision,
Administrative Science Quarterly, 29, 1984, pp 373-91

[WoTs90] A. Wolisz, V. Tschammer: Service Provider Selection in an Open Services Environment,
in: 2nd IEEE Workshop on Future Trends of Distributed Computing Systems, Los
Alamitos, IEEE Computer Soc. Press, Los Alamitos 1990, pp. 229-235


