
The TRADEr: Integrating Trading Into DCEK. M�uller{Jones, M. Merz, W. LamersdorfUniversity of Hamburg, Department of Computer ScienceVogt{K�olln{Str. 30, D{22527 Hamburg, Germany(kmueller,merz,lamersd)@dbis1.informatik.uni-hamburg.deAbstractClient support for locating, accessing, and using arbitrary services in open system environ-ments emerges as one of the most interesting, complex, and practically relevant tasks of realisingrealistic open distributed systems applications. In the context of Open Distributed Processing(ODP), current standardisation e�orts for a trading function play an increasingly important rolefor open system integration.In addition to ongoing ODP standardisation activities o�cial and de{facto standard systemenvironments such as, e.g., the OSF Distributed Computing Environment (DCE), support ef-�cient development and portability of distributed system applications. Therefore, time seemsnow ready to analyse and evaluate the use of such platforms also for developing e�cient imple-mentations of higher{level system support services, e.g., an ODP trading function.This paper �rst elaborates on the speci�c potential of OSF DCE for supporting implementa-tions of ODP trader functions. It then presents an architecture and reports on experiences withsuch an implementation in the context of system support for general service access, managementand coordination in open distributed environments within the TRADE project. Finally, the pa-per draws the attention to still existing limitations and de�ciencies of OSF DCE for realisingODP trader functions and proposes respective extensions to OSF DCE both at a conceptualand a concrete systems implementation level. According to such prototype implementation ex-periments, ODP trading functions can be integrated smoothly into a uniform standard systemsupport platform (like DCE) and can be implemented e�ciently by extending DCE by addi-tional trading functions which speci�cally support service management, mediation and accessfor open distributed applications.Keyword Codes: C.2.4 D.2.6 H.4.3Keywords: Distributed Systems, Programming Environments, Communications Applications1 IntroductionBased on rapid recent developments of telecommunication and networking technologies,users of distributed systems are now increasingly confronted with multitudes and vari-eties of service o�erings in an, in principle, world{wide open market of services [MML94].Faced with the complexity of such open distributed environments, one of the main tasks isto support users and application programs to locate and utilise such services in e�ectiveand e�cient manners. In this context, one of the most promising e�orts is to extendopen (operating) system platforms by uni�ed service trading or broking components as

an important structuring technique for e�cient design of open distributed systems. Ac-cordingly, the speci�cation of a trading component is currently | among other issues |subject of the Open Distributed Processing (ODP) international standardisation activitiesas the so{called ODP trading function [ISO94].Beyond ongoing standardisation e�orts for a uni�ed trader component speci�cation,it is now increasingly important to also examine possible implementations of such tradingconcepts. Common foundations for various distributed application implementations areexisting and evolving distributed systems architectures, as, e.g., proposed and developedby various vendors and consortia like OSF's DCE [Fou92], and OMG's CORBA [OMG91].In particular, the integration of a trading component into these architectures has to beevaluated. A good starting point for such an evaluation is the Distributed ComputingEnvironment (DCE) from the Open Software Foundation (OSF) [Fou92] which has gainedwide commercial acceptance and is one of the important system platforms for distributedapplication development in the future. In particular, this paper focuses on� an analysis of DCE mechanisms to support service management and service access,� the limitations of DCE for supporting service mediation,� a proposal for an architecture of the TRADEr , a DCE trading component, whichhas been developed at the University of Hamburg within the TRADE (Tradingand Coord ination Environment) project and its co{project COSM (Common OpenService M arket),� some details of a smooth integration of the TRADEr implementation into DCE,especially into existing DCE concepts for service management and access,� extensions of the service type abstraction as proposed by ODP which will also beintegrated into the TRADEr, and� current and future work within the TRADE and COSM projects to supportclient/server mediation in a distributed open systems environment.2 The ODP Trading FunctionThe main task of a trader function is the mediation and management of services in opendistributed systems. For this purpose, the trader �rst o�ers mechanisms for arrangingand categorising various service types, and then supports potential service clients withspeci�c service selection strategies. Thus, the functionality of a trader component canbe compared to, e.g., a yellow pages service which categorise service kinds and providesservice selection support based on di�erent service properties. The most important formalconcept underlying such a trading function is the notion of a service type [ISO94]. Aservice type may contain interface types which specify the operational service interfacesin terms of operation signatures as well as service property types which add additionalsemantic details to the service type description. A second important mechanism for servicestructuring in open distributed systems is based on service contexts in which service o�erscan be grouped and located (e.g. in a hierarchical organised name space).

1

Trader

ExporterImporter

2 3

4Figure 1: The ODP Trader and its UsersPossible interactions of clients and servers with a trader component in an open dis-tributed environment are shown in Figure 1.According to the ODP trader function, service provider, a service exporter , �rst reg-isters its service by supplying the service type, the current service property values, anda context in which the service shall be exported (step 1). Then a service client, the im-porter , may ask for servers o�ering a speci�c service (step 2). Such an inquiry contains| among other things | the desired service type, the desired service properties, and asearch context. Based on this information, the trader then determines appropriate serviceproviders, and selects | if necessary | the best matching service o�er. Subsequently, thenecessary binding information is returned to the client (step 3), and the client is �nallyable to execute remote operations o�ered by the service provider directly (step 4).3 DCE Service Concept and Support InfrastructureThe OSF Distributed Computing Environment (DCE) provides an integrated set of sup-port services and application programming interfaces (so{called middleware [Ber93]) forthe development of distributed applications in open heterogeneous environments. Themain goal of DCE is to provide users and applications of distributed computing environ-ments with a homogeneous view which hides much of the complexity of the underlyinghardware and system software components. Therefore, DCE provides ways to developplatform{independent distributed applications, based on de{facto standardised applica-tion programming interfaces. Basic DCE services are the Remote Procedure Call (DCERPC), the Thread Service, the Cell Directory Service (CDS), the X.500 compliant GlobalDirectory Service (GDS), the Security Service, and the Distributed Time Service (DTS).Additional services are the Distributed File Service (DFS) and the Diskless Client Sup-port . Based on standard protocol implementations, each of these services provides asingle uni�ed application programming interface (with the exception of the Cell DirectoryService which o�ers two such interfaces).

3.1 DCE Support for Service Management and AccessThe basic unit of service management and structuring in DCE is the so{called cell . Eachcell includes its own Security Service, a Cell Directory Service, and a Distributed TimeService. The Cell Directory Service plays a central role for storing all information concern-ing actual services of the DCE cell (e.g. con�guration and binding information). Accessto information of foreign cells is provided by an X.500 compliant Global Directory Servicewhich o�ers a world{wide available name space connecting several di�erent organisationdomains.DCE service structuring is conceptually based on service interfaces, i.e. sets of serviceoperations. In order to o�er a service interface in a distributed environment, a serviceprovider has to �rst describe its interface in terms of an abstract interface de�nitionlanguage (IDL). An IDL service description includes information about the o�ered oper-ation types as well as data types for parameters and results. Universal Unique Identi�ers(UUIDs) are used for unique identi�cation of interfaces and have to be included in theinterface description. They basically provide a very simple type system based on inter-face names1 as a basis for managing service providers in the DCE Cell Directory Service.In addition to the interface, a UUID version number can be used in order to describerelationships between di�erent versions of an interface (with a given UUID). In this way,support for inclusion polymorphism [CW85] can be provided, for example for expressingservice evolution (e.g. by step{wise addition of new operations to an interface). Sincethere is no central type management component included in DCE, however, the DCEapplication programmer stays solely and fully responsible for the correct de�nition anduse of such interface relationships and compatibilities.In the following, we give a concrete example of how to establish a binding betweena client and a service provider using the DCE Cell Directory Service. Figure 2 showsthe involved DCE system components and denotes the necessary execution steps for es-tablishing such a binding between a DCE client and a remote DCE server. In a DCEbased open systems implementation environment, a new service provider has to executethe following steps in order to register a new interface2:1. The �rst step is to inform the RPC runtime system about the o�ered interface typeusing an interface handle. In addition, a type UUID for local type identi�cation, anobject UUID for unique interface access, and an Entry Point Vector (EPV) whichserves as a local pointer to the server operations, have to be provided.2. Subsequently, binding vectors are generated which contain binding information (e.gsupported communication protocols and dynamic communication endpoints). Thesealong with the interface type and the object identi�cation are then registered at thelocal host's Endpoint Mapper . It manages the mappings from interface and objectidenti�ers to communication endpoints of current running service providers at thelocal host.1In contrast, ODP de�nes the notion of an interface type for this purpose.2In principle, a server can provide several interfaces at a time.

RPC Runtime

Interface

DCE Server

Object

RPC Functions

Endpoint Mapper

Cell Directory Service

DCE Client

1

Type

23

Entry Point Vector

- Interface
- Object
- Entry Name

A

C

B B

Protocols

Figure 2: CDS Based Binding3. In the last step, the same information (except for the dynamic communication end-points) are registered in the DCE Cell Directory Service under a distinct entryname.In order to obtain the necessary binding information for a server o�ering a desired inter-face, a client has to execute the following steps:A. First, the DCE Cell Directory Service must be called in order to obtain serverbinding handles of a distinct server instance. For this service instance, the distinctserver entry name, the desired interface identi�er, and the object identi�cation haveto be supplied.B. Using these binding handles, the client can then bind to the server and start toexecute its remote procedure call. Since the DCE Cell Directory Service managesonly incomplete bindings without dynamic communication endpoints, the �rst callis directed (by the RPC runtime system) to the Endpoint Mapper located at theserver's host. There, the dynamic communication endpoints are added to the bind-ing handle, and the call is forwarded to the actual service provider.C. Subsequent remote procedure calls can then be transferred directly to the corre-sponding service provider.3.2 DCE Support for Service MediationAlthough DCE | as brie
y reviewed above | provides several useful prerequisites forvendor{independent implementations of distributed open system applications, it still lackssome important features, especially in order to support a trading function as, e.g. speci�edby ODP. Currently, there is no support for service mediation in DCE, i.e. the clients (resp.application programmers) are entirely responsible for the selection of appropriate serviceo�erings.

3.2.1 DCE Cell Directory ServiceA simple basis for such support can, as described above, be realised by the DCE CellDirectory Service. The corresponding NSI application programming interface, speci�callydesigned for registration of RPC interfaces with the Cell Directory Service, provides simpleaccess and management functions for storing service o�ers in a hierarchical organisedname space. Since there is no direct support for search functionalities the usage of theNSI interface is mainly restricted to simple name{based lookup operations3.3.2.2 DCE Global Directory ServiceIn addition to the Cell Directory Service, the programmer could also use the more powerfulfunctions of the X.500 compliant DCE Global Directory Service. In contrast to the CellDirectory Service, however, there is no direct support for RPC interface registration.Therefore, application programmers have to write their own registration functions. Oneof the main advantages of the DCE Global Directory Service is the ability for attribute{based searching in the name space. It also provides a world{wide accessible name spacewhich facilitates interworking capabilities, e.g. within trader federations. Section 4.2explains the use of the DCE Global Directory Service for implementing the TRADEr'sservice o�er management capabilities.4 The TRADEr: Service Mediation on Top of DCEThis section describes a prototype implementation of a trading component based on DCE,called the TRADEr (i. e. TRADE trader), developed recently in the TRADE project atthe University of Hamburg, Germany. In the TRADE project, prototype trader functionsare implemented and step{wise extended as part of a general system support environmentfor service access, management and coordination in open distributed systems [MJM94,MJML95]. The corresponding COSM/TRADE prototype system is currently realised ona heterogeneous cluster of interconnected Sun SPARC and IBM RS/6000 workstations;the TRADEr implementation has been developed on IBM RS/6000 workstations withAIX and DCE.Figure 3 gives an architectural overview of the main TRADEr components. As shown,the TRADEr is structured into several sub{modules which | in turn | realise the mainsub{tasks of a composite trading function. According to the trader's role in service man-agement, selection, and access in open distributed systems, the TRADEr's core compo-nents are the service o�er manager , the service selection manager , the trader interworkingmanager , and the type manager . Additionally, access control management is provided asan extended option. As an orthogonal extension of OSF DCE functions, the TRADEr isbasically realised as a DCE RPC server using authenticated Remote Procedure Calls asinterface both for service exporters and importers as well as trading administrators. Inaddition, the TRADEr prototype implementation uses DCE Threads for e�cient execu-tion of the di�erent TRADEr functions. DCE Cell Directory Service and Global Directory3CDS groups and pro�les provide simple additional name space organisation, they can be used foruser{provided search routines (see section 4.2).

Service Type Description,
Service Offer Identification,
Interface Reference,
"PrintService",
"Print",
costPerPage = 0.4, printerType =Dot,..

Service Offer Management

/.:
Inf

DBIS
Rent

Car• DBISPrintService:

Trader

- Data Types
- Interface Types
- Service Types
- Aliases

Administrator

Insertion, Deletion of

Type Repository

Interface

- Service Types
- Interface Types
- Operation Types
- Subtype Relations

Interface Type Graph Service Type Graph

Print

•

ChartPrintPsPrint

PrintService

•

High Speed
PrintService

PsPrint
Service

Type Management

T
r
a
d
e
r

Administration Browsing

Data Types Aliases
Letter Druckdienst -> PrintService

Importer

Interface Reference <---
import (User Identification,

random_choice,
Service Type Description,
"/.:/Inf/DBIS",
"costPerPage < 0.5",
"minimize(queueLength)")

TRADEr

Exporter

Service Offer Identification <--
export (User Identification,
 Interface Reference,

Service Type Description,
"/.:/Inf/DBIS/DBISPrintService",
"costPerPage = 0.4, ...")

Service Type Description:

service : PrintService
 attribute costPerPage : Real;
 attribute printerType : (Laser , Dot-Matrix, Ink);
 attribute paperQuality : Integer;
 dynamic attribute queueLength : Integer;
 Interface : Print {
 operation print ([in] Letter, [out] Integer);
 operation removeJob ([in] Integer);
 } }

Interface

- Authentication
- User Management
- ...

Security Service

Service
Selection

Management

Trader

Access
Control

Management

T
r
a
d
e
r

Interface

- Service Entries
- Directories
- ...

Name Service

Selection Strategy: random_choice
Service Type: PrintService
Name Context: /.:/Inf/DBIS
Attribute Requirements: (costPerPage < 0.5)
Optimising Criteria:

minimize(queueLength)

Service Type: PrintService
Name Context: /.:/Inf/DBIS/DBISPrintService
Service Attributes: costPerPage = 0.4,

 printerType =Dot,
 paperQuality =20

Importer Exporter

Trader
Interworking
Management

Trader Interface

- Service Offers
- Type System
- ...

Other Trader

Service Demand: Service Offer:

Figure 3: TRADEr Components and Implementation ArchitectureService together provide the basis for realising the service o�er management as one of themain functional units of the TRADEr. Figure 3 also gives some implementation detailsof, e.g., the TRADEr's export and import functions used by service o�ering and access-ing nodes respectively. (The example speci�cations given as part of the exporting andimporting functions in Figure 3 refer to a basic Printing Service).The following subsection concentrates speci�cally on the trading functions of type andservice o�er management in order to explain some details of design and implementationdecisions of the current TRADEr's prototype implementation as realised on top of OSFDCE.4.1 Extending Type Management within the TRADErOne of the most important components of a composite trader function is the type man-ager . It provides the basis for a common understanding and for comparison of servicestypes as a main structuring technique for service requests and o�erings in open distributedenvironments. As shown above, di�erent notions of service types serve in this context asformal abstractions of service characteristics, i. e. common properties of classes of ser-vice instances of a distinct service type. Because of the signi�cance of the service typeconcept, standard typing mechanisms, as known from modern programming languages,

and further extensions to such service type concepts have to be evaluated for the trader'stype manager component. Therefore, we brie
y mention in the following some alternativeforms of well understood type mechanisms which are capable to ful�ll the requirementsfor service typing and trading in general, and address extensions to such basic type man-agement techniques. Such type extensions are main candidates for being integrated intoan extended type manager component of a trader and, accordingly, into future releases ofthe TRADEr prototype implementation.In general, several levels of type management can be distinguished within a trader'stype manager (based on very simple up to very rich and complex service type descrip-tions). Some possible steps in such a continuum from simple name{based service (type)descriptions up to (ideal) full formal semantic speci�cations of a service type are listedbelow. They are used as a basis for step{wise extension of type description and man-agemenent functions as already available in, e.g., DCE, up to what is really needed for afuture trader's type manager components.1. In its simplest form, classi�cation ("typing") of services is based on type names.Limited type
exibility can be achieved using subtype polymorphism as one kind oftype polymorphism as, e.g., explained in [CW85]. Subtype polymorphism meansthat a type A which is a subtype of type B can also be used in a type safe waywhen B is required. For example, a service S o�ering one additional operation at itsinterface as compared to a service K can then also be used by a client instead of K.Since this kind of subtyping is based on names only, subtype relationships have tobe de�ned explicitly, i.e. whenever new interface types are inserted, their respectivesub- and supertypes must be listed explicitly by, e.g., the trader administrator.As explained in the previous section, DCE provides only very little support forsubtype polymorphism (based on interface type name, and version numbers forinterfaces) but no support for checking the de�ned relationship between interfacesautomatically.2. Adding explicit attributes to the interface type is one way to enrich service de-criptions which are to be matched in an open distributed trading environment.Service attributes play an important role to extend the speci�cation of semanticsof a given type by including some selected, prede�ned properties into service (type)decriptions. This allows further discrimination between service types o�ering sim-ilar operations. Subtype polymorphism for attributes can then be extended usingsemantic substitutability as explained in, e.g., [IBR93]. Currently, however, there isno support for service attributes in existing releases of OSF DCE. Service attributescan only to be simulated using explicit "get" and "set" operations, similar to theoperations de�ned in the CORBA standard [OMG91] for attribute access.3. As a subsequent step in generalising and enriching service type descriptions, sim-ple name based subtyping mechanism can be replaced by a structural subtypingmechanism. Here, decisions of type relationships can be made automatically by thesystem based on a structural analysis of the corresponding service type descriptions.This concept is known as type conformance [BHJ+87] and enforces an implicit (or

automatic) style of subtype checking which frees the application programmer fromthis failure prone standard programming tasks.4. Experiences with the development of system support for open distributed appli-cations at our group have shown that additional service description techniques arerequired in order to express semantical aspects of services which go beyond standard(i.e. programming language) type concepts. As one such extension, for example,�nite state machines, have been introduced into COSM service (type) description asa �rst step into protocol speci�cations and are used to support users of a so{calledGeneric Client in accessing "unclassi�ed" services which are not known in advance[ML93, MML94]. They provide a way to formally express how to use a service, e .g.which sequence of operations may be executed by a remote user, e. g. via a GenericClient component, as part of its service description.5. A �nal extension to service (type) descriptions considered in the TRADE and COSMprojects so far is concerned with coordination of complex distributed services whichare comprised of a set of more basic ones. It uses Coloured Petri Nets as a for-mal description technique of such coordination problems and is currently evaluatedfor supporting work
ow modeling and execution within complex open distributedclient/server environments [MMML94, MJML95]. Here, Coloured Petri Nets areused for describing service coordination in order to support the execution of work-
ows in open service environments in an adequate manner.4.1.1 A Name Based Type Manager with Explicit SubtypingThe current TRADEr prototype provides dynamic type management based on explicitsubtyping as mentioned in items 1 and 2 above. Internally, all type information is managedwithin the type manager component as two directed acyclic type graphs which representthe type relationships between interface and service types. At the current prototype statethe administrator still has to explicitly list all supertypes when inserting new interface andservice types. Simple type checking is supported by an internal interface comparing servicetype descriptions as o�ered by exporters with existing previously de�ned service types.The trader's external administration interface and browsing interface provide functionsfor insertion, deletion and browsing of service and interface types at runtime.Currently the TRADEr's type manager is extended to support implicit type check-ing as mentioned in item 3 above as well. In this context, the CORBA type model(respectively the CORBA IDL) is evaluated for its capability to describe services moreadequately. Further extensions (see item 5) shall be integrated in the future, if possible.Future versions of the TRADEr prototype implementation will also comprise an in-terface repository which is developed currently. It will be used to store all kinds of servicetype descriptions. In the mean time, the TRADEr prototype still stores type managementinformation as local data in volatile memory.

/.:/printer

/.:/printer_if_0

/.:/printer_svc_[UUID]

/.:/printer_if_1

•••

•••NSI binding
in format ion

NSI binding
in format ion

Service Type
Informat ion

NSI

CDS

NSI Group Entry

NSI RPC Entry

TRADEr

DCE Client DCE Server

/.:/service_offers

XDS/XOM

GDSFigure 4: Use of DCE CDS and GDS for Service O�er Management4.2 Service O�er ManagementAnother important core component of the TRADEr is the service o�er management . Inthe current TRADEr prototype, service o�er management is entirely based on the DCECell Directory and Global Directory services. The respective interface contains operationsfor a variety of service o�er management functions, e.g. inserting, deleting, reading, andmodifying of service o�ers. Also attribute{based search operations are provided whichfacilitates the implementation of the TRADEr's service selection strategies. For a serviceprovider to advertise a service o�er in the TRADEr, it is possible either to use CDSentry names, such as /.:/services/Laserprinter 1, or to use X.500 entry names, such as/.../C=DE/O=Hamburg University/OU=services/CN=Laserprinter 1. Service o�ers arestored in a special format representing the o�ered service type and the correspondinginterface types, the current values of the static service attributes, the interface referencefor server binding, and, optionally, a service type description. This service type descriptioncan be used by programmers to develop corresponding DCE client applications and togenerate the RPC stubs necessary for communicating with the DCE server.The current TRADEr prototype implementation of the service o�er management oper-ations is based on the two DCE name service application programming interfaces, namelythe Name Service Interface (NSI) and the X/Open Directory Service and X/Open OSI{Abstract{Data Manipulation (XDS/XOM) interface. Using both of these programminginterfaces allows a smooth integration of the TRADEr's trading functions into the exist-ing DCE RPC/CDS interface registration concept. Figure 4 shows the usage of the twoprogramming interfaces in some more detail.In order to enable former Cell Directory Service based clients to access servers ad-vertising their service o�ers in the TRADEr, service o�ers exported into the CDS name

space are at �rst generated using the NSI interface. This is necessary because the NSIinterface expects a special internal format for name service entries. Subsequently, theservice attributes used by the TRADEr are added to the CDS entry via the XDS/XOMinterface. Therefore, former CDS based servers are able to use the capabilities of the morepowerful TRADEr functions without a�ecting existing distributed applications.In addition to standard name service operations, the XDS/XOM interface providespowerful functions for searching the X.500 name space. The corresponding search opera-tion, namely the ds search function, is extensively used for the realisation of the serviceselection strategies o�ered by the TRADEr. In the current DCE release, however, theds search function is restricted to the X.500 name space and can not be used for searchingthe CDS name space as well. Because of this limitation, the TRADEr simulates searchingthe CDS name space by using the CDS group concept by collecting all service o�ers in awell{known group entry for each CDS directory.5 Conclusions and OutlookWork reported in this article is based on the importance of early evaluations of prototypeimplementations of trading concepts in the context of existing distributed systems plat-forms as, for example, the OSF Distributed Computing Environment (DCE). A concreteimplementation goal is an orthogonal and smooth integration of basic trader functionsinto, in particular, already available service registration and management mechanisms.Related experiences from the TRADEr prototype implementation as available so farare twofold: On the one hand, DCE already provides powerful functions for distributedapplication programming, many of which could also be used bene�cially for the TRADEr'strading function implementations. On the other hand, however, DCE concepts alreadyavailable for service (type) description are still unsatisfactory and corresponding DCEfunctions still lack important (especially: type management) mechanisms which are neces-sary for service management and mediation in open distributed environments. Therefore,extended type management functions have to be developed separately, based on modernprogramming language (polymorphic type) concepts and on speci�c service descriptionextensions (as, e. g., for protocol and work
ow management speci�cations) as needed inopen distributed environments. In summary, experiences with the TRADEr prototypeimplementation have shown that trading can be smoothly integrated into DCE, but DCEfunctions have to be extended substantially in order to support and use, in particular,realistic service descriptions based on modern type management functions.In the TRADEr prototype implementation, such extensions currently concentrate onmore elaborate type management functions (as described above), support for distributedtrader interworking, and support for inclusion of dynamic (i. e. time varying) attributesinto extended service descriptions. In particular, techniques to extend service descriptionswith additional semantic information are still evaluated and will be integrated step{wiseinto the COSM/TRADE prototype implementation. In this context, early experienceswith service type extensions like �nite state machine description of service protocols[ML93] have motivated recent work on using of more powerful description methods alsofor coordinating composite services (aspects of work
ow management) based on Petri nets

[MMML94, MJML95] as mentioned in section 4.1 of this paper.References[Ber93] P. A. Bernstein. Middleware { an architecture for distributed system services.Technical Report CRL 93/6, Digital Equipment Corporation, Cambridge ResearchLab, March 1993.[BHJ+87] A. Black, N. Hutchinson, E. Jul, H. Levy, and L. Carter. Distribution and abstracttypes in Emerald. IEEE Transactions on Software Engineering, 13(1):65{76, 1987.[CW85] L. Cardelli and P. Wegner. On understanding types, data abstraction, and poly-morphism. ACM Computing Surveys, 17(4):471{522, December 1985.[Fou92] Open Software Foundation. Introduction to OSF DCE. Prentice{Hall, EnglewoodCli�s, New Jersey, 1992.[IBR93] J. Indulska, M. Bearman, and K. Raymond. A type management system for anODP Trader. In Proceedings of the IFIP TC6/WG6.1 International Conferenceon Open Distributed Processing. North{Holland, Elsevier Science Publishers B.V.,September 1993.[ISO94] ISO/IEC JTC 1/SC 21. Recommendation X.9tr/Draft ODP Trading FunctionISO/IEC 13235: 1994/Draft ODP Trading Function, July 1994. ISO/IEC JTC1/SC 21 N9122.[MJM94] K. M�uller, K. Jones, and M. Merz. Service mediation and management in open dis-tributed systems. In B. Wol�nger, editor, Innovationen bei Rechen{ und Kommu-nikationssystemen | Eine Herausforderung f�ur die Informatik, Informatik Aktuell,pages 219{226. Springer{Verlag, Berlin,Heidelberg, August 1994. in German.[MJML95] K. M�uller-Jones, M. Merz, and W. Lamersdorf. Cooperative applications: Inte-grated application process control and service mediation in open distributed sys-tems. University of Hamburg, Germany, submitted for publication, in German,1995.[ML93] M. Merz and W. Lamersdorf. Cooperation support for an open service market. InProceedings of the IFIP TC6/WG6.1 International Conference on Open DistributedProcessing, pages 329{340. North{Holland, Elsevier Science Publishers B.V., 1993.[MML94] M. Merz, K. M�uller, and W. Lamersdorf. Service trading and mediation in dis-tributed computing environments. In Proceedings of the 14th International Confer-ence on Distributed Computing Systems (ICDCS '94), pages 450{457. IEEE Com-puter Society Press, 1994.[MMML94] M. Merz, D. Moldt, K. M�uller, and W. Lamersdorf. Work
ow modeling and execu-tion with coloured petri nets in COSM. University of Hamburg, Germany, submittedfor publication, 1994.[OMG91] The Common Object Request Broker: Architecture and Speci�cation. Digi-tal Equipment Corporation, Hewlett{Packard Company, HyperDesk Corporation,NCR Corporation, Object Design Incorporated, SunSoft Incorporated, 1991.

