
Workflow Modeling and Execution
with Coloured Petri Nets in COSM
M. Merz, D. Moldt, K. Müller, W. Lamersdorf

University of Hamburg
Department of Computer Science

Vogt-Kölln-Str. 30 - D-22527 Hamburg, Germany

[merz|moldt|kmueller|lamersd]@informatik.uni-hamburg.de

Abstract

Modern distributed organisations use data communication increasingly fast, globally and at de-
creasing costs. Such developments facilitate flexible access to decentralized services in open
networks and also allow coordination of complex interorganizational tasks as distributed
applications.

This paper describes concepts and recent extensions to the distributed systems architecture
COSM (Common Open Service Market) which supports integrated design, implementation, and
execution of both access to arbitrary services in open networks and concurrent workflow
modeling.

Formal basis of the workflow model are Coloured Petri Nets (CPN) which provide powerful
means to specify and verify activity coordination in concurrent environments. CPN specifi-
cations, however, usually lack automated tool support for transforming them into efficiently
executable applications. COSM, on the other hand, already provides a generic platform to
manage distributed services (i.e. their properties, interfaces, etc.) in order to enable human users
to engage easily in ad-hoc sessions with arbitrary service providers in open network
environments. Extending COSM service descriptions with CPN workflow representations
integrates dynamic workflow modeling into the system supported COSM service management
platform. It could therefore help to bridge the gap between concrete system support for open
distributed applications and formal models of concurrent workflow specifications.

This paper presents both a brief review of COSM concepts and prototype implementation details
of its first CPN extensions, motivated by a workflow example from a real-world project
environment.

Keywords: Distributed Systems, Client/Server Computing, Workflow Management,
Concurrent System Specification, Coloured Petri Nets

1. Introduction

Todays global communication infrastructure allows to interconnect intercontinental
organizational networks at fairly moderate communication costs. Internet information service
infrastructures such as the World Wide Web (WWW), owe their success to both stable and
ubiquitous availability of communication end-points and trivial infrastructure communication
protocols. Such infrastructures are open not only in a technical sense - they are organizationally
open since no application- (and organization-) specific adaption is required to access arbitrary
distributed services with generic tools from anywhere in the network. On the other hand, so-
called configured distributed service applications expect typically a specific communication
behaviour from their users. Such semantic coherence is required for statefull servers as, for
example, assumed in the Remote Database Access (RDA) protocol specification. In the long run,
however, an increasingly large number of application-specific protocols can be expected which

2

all require their users to obey application-specific regulations as, e.g., operation call sequencing.
(An example for such applications was already presented in the "car-rental-service" of [1].)

Important general benefits of simple WWW-like applications are low service setup and access
costs. For such applications, human users as service clients are not required to implement or
install service specific access tools. In economic terms, such information service infrastructures
impose low transaction costs upon accessing users, and therefore reduce the overall costs of
service access - thus encouraging users to access remote service providers. For implementing
configured distributed applications with individual access protocols, however, such simple
platforms reach their limits - i.e. general set-up costs for such applications are (too) high.

1.1 Common Open Service Markets (COSM)

In this paper, the COSM (Common Open Service Market) system supports access to dynamically
emerging statefull network services with a single generic tool (the Generic Client). The result is a
reduction of access costs even for network-services with specific, application-dependent
protocols. In COSM, all interface (incl. protocol) aspects of remote services are formally
described and transferred as a 'first-class' object to the Generic Client which in turn interprets
these specifications and allows human users to interact with the remote servers conforming to
their respective service interface and behavior specifications. The interaction of an individual
Generic Client with such remote servers is modeled as a finite automaton or finite state machine
(FSM). For distributed workflow execution the specification of concurrent activities should also
be possible. In order to model concurrent workflows adequately, first a formal modeling
technique is required. In this context Petri Nets (here: Coloured Petri Nets) are used.

Based on the possibility to specify, for example, 'legal' invocation sequences of remote services,
the following sections focus on the extension of COSM specification mechanisms to support a
transition from workflow modeling to an immediate execution. The specific contribution of the
COSM architecture is the ability to set up a distributed task at low configuration costs. Therefore,
even extra-organizational workgroup members can be involved at low setup effort as required by
the following example.

Beyond the problems addressed in this contribution, the COSM project focusses on further re-
search fields: Embedding trusted third party services into the infrastructure, like notary services,
which assure a secure and confidential legal contraction support for client and service
components on an electronic market [2]. Within a co-project of COSM, TRADE (TRAding and
coorDination Environment), service access is mediated by a distinct service mediation
mechanism - the trader [3]. Components of both environments will share mechanisms described
in this contribution in order to support activity coordination.

1.2 A simple workflow example

In order to clarify the application background of the following sections and to present a case
study for our approach, we refer to a realistic workflow example from an airline application
domain: an airline is obliged to create a 'Flight Report' (FR) for each flight carried out. This
document reports "unusual events" within the technical domain or among passengers. It is created
by crew members after flight and posted to a central FR-Pool. FRs are examined periodically,
evaluated by a FR manager, and assigned to one or more experts, depending on the kind of
occurrence. These experts are usually from the technical domain, the security domain, or
financial accounting staff members and may be located at remote branches or even different
companies as, e.g., a parts manufacturer. The experts involved make a statement on the subject
and post results back to the FR manager. Statements are made independently from each other,

3

thus allowing concurrency. After all statements have been delivered, the FR manager classifies
the FR and decides how to proceed. Two possibilities exist: Either the FR contains no
problematic aspects or an urgent meeting to tackle the problem is neccessary. In the first case the
FR is posted to be filed on optical media for legal reasons. In the latter the meeting is initiated
and the FR is returned to the FR manager in order to obtain additional statements.

1.3 Organization of the Paper

The following section of this paper briefly reviews concepts for distributed application execution
in COSM. Section 3 introduces Coloured Petri Nets as a modeling and simulation technique for
concurrent activity management and control. Then, section 4 outlines the integration of a
Coloured Petri Net concept and its exploitation by COSM components. Section 5 finally
describes some details of an ongoing COSM prototype implementation.

2 Application execution within COSM

A general problem of distributed application design is to find a suitable distribution level
between the top-most presentation level and a remote file access as the most bottom solution of
an application. Both extreme solutions imply high network and process load. Therefore, the
COSM approach is to shift the function split of application code between the client and server
part of a distributed application to an optimal level that reduces load, on one hand, and allows the
Generic Client component to remain service-independent, on the other. Accordingly, to interact
with a remote server, the user binds to it by receiving a COSM service representation (SR) at
run-time. A SR is both a capability to access that server and a description of the service interface
and semantics (See Figure 1).

COSM Application Support Infrastructure

Browser

COSM Server

Browser

COSMServ.

Interface
Repository

Mediation ServiceGeneric Client

SRSR
SR

FlightReport
Application
Software

SR: Service Representation

Figure 1: Service access in COSM

2.1 Access mechanisms to open services

The COSM Generic Client (GC) is a tool for human users to acquire remote server access and to
support interactions between users and servers. Communication between client and server is
based on a Dynamic Invocation Interface (DII) as defined within the CORBA (Common Object
Request Broker Architecture) specification of the Object Management Group [4]. The DII
dynamic typing mechanism immediately results from ad-hoc binding requirements at the COSM-
application level. Although late binding generally implies the possibility of a type mismatch at
run-time, communication in COSM is type-safe since RPC invocations are generated from SR
operation signature descriptions. RPC data types correspond with user interface editor types in
order to allow users to inspect and modify parameter and result values. Besides standard DII data

4

types, COSM provides special types for, e.g., service references, opaque values, and ASCII files.
By supporting service references as first-class data objects COSM servers are able to display
directories of servers via the Generic Client to the user - similar to WWW hypertext references.
Binding to a such referred server is effected directly from the user interface by selecting the
according service reference. Loosely coupled chains of servers may emerge from this principle
(Figure 1).

2.2 Service Representation

At its most generic level, the SR is a container for data structures of arbitrary types at run-time.
An SR-interpreter (as a component of the Generic Client) accepts a set of components describing
the service such as:

• A specification of operation descriptions, containing operation names and parameter
descriptors. Parameter descriptors refer to data objects which contain actual values.

• A specification of the user interface to be generated for human users by the GC. It contains
specifications for dialog boxes, data editors and push buttons. Data editors manipulate data
objects.

• A specification of the service interface protocol, i.e. which operations are enabled to be
invoked at a given state. Currently, this protocol description is based on a FSM model and
comprises a set of application states and transitions between them which refer to operation
descriptions. State changes are effected by user-level events and execute, in turn, RPC
invocations.

• Informal description components,e.g., help texts to support human users.
• Cost information components that inform users on service access and operation invocation

fees.
• Any data values locally used by the GC.
Since the Generic Client software component is application-unspecific, state information like,
e.g., window positions or counter variables are captured by the service representation. Therefore
it is possible to store the SR persistently and to suspend interactions with the remote server. This
SR can be re-activated later - or from another network site - in order to resume the previous
communication state.

Two benefits arise from an SR-based approach to implement open service access: first,
representations are standardized within COSM, not interfaces. This includes a uniform, service-
independent user interface presentation and allows type-safety data entry. Second, more
application-specific functionality can be shifted to the client site. In fact, COSM servers are
reduced to plain call libraries with corresponding SRs. Compared with, e.g., X-Windows, dialog
control is shifted to the user part of a distributed application.

The Generic Client dialog management component connects presentation functions to the
application call interface. Users are allowed to invoke remote operations by pressing
corresponding buttons. In the case of state-prone services buttons are disabled if the operation is
not allowed to be invoked in the current application state.

As containers for arbitrary data types and values, SRs are extensible at run-time. This allows
specialized environments - as will be presented later in the case of workflow modeling - to
introduce dedicated component types for their own purposes. COSM applications that are not
aware of these extensions will still be allowed to interprete the subset of SR components they are
specialized on.

5

3 Workflow modeling with Coloured Petri Nets

Before introducing Coloured Petri Nets as a specification method a definition of the term
workflow is given.

In our model a workflow consists of a set of activities A, a set of roles R and a mapping
E : A→R which assigns an enabling role to each activity. Human users may act within several
roles, therefore, we define a N:M relation between users and roles. Finally, a workflow
description contains the control flow between activities. This defines a precedence relation
between adjacent activities. An activity is enabled, if all preceeding activities are carried out.
Each single activity A comprises the following components:

• An action, as the actual core activity. Actions are realized as operation invocations at remote
services in COSM.

• A precondition: If this predicate evaluates to True the activity can be carried out.
• Input data, required for the execution of actions.
• Output data is the outcome of the action.
• Postconditions are set as triggers for succeeding activities.
Activities that take place concurrently may share resources if they do not conflict. Further,
besides the control flow between single activities a workflow description implies
communications between them - the data flow. In our model, communication takes place
indirectly via operations on data structures.

3.1 Coordination modeling using Coloured Petri Nets

Petri nets [5] serve as a graphical representation for workflow models [6]. Their advantage lies in
the combination of a mathematical foundation, a comprehensive graphical representation, and the
possibility to carry out simulations and verifications. In principle, Petri net tools allow to assure
liveness and to proof deadlock absence for certain net classes. Formally, Petri nets are directed,
bipartite graphs, in the simplest case consisting of a set of places P and a set of transitions T, and
a flow relation (edges) F with F (S 5 T) ∪ (T 5 S).

To model system behaviour, places can be marked with tokens. In the simple case of
condition/event nets tokens are anonymous and each place contains at most one token. A
transition is enabled if all input places and no output places are marked with a token. To fire a
transition it is enabled, tokens are withdrawn from all input places and all output places are filled.
In the case of Coloured Petri Nets (CPN), however, tokens are typed (coloured) individuums or
data values. Places, transitions, edges etc. are typed using an according signature. Places
represent data stores which contain an arbitrary number of data values (tokens) of their respective
type. Transitions are enabled in CPNs when

1. all input places provide tokens of the type that is associated with the respective input edge and
furthermore all expressions, variables, and values evaluate conflict-free for the binding and

2. the transition predicate evaluates to "true". Complete definitions can be found in [5].

6

Server
Interface

Crewinput

Expert
assignment

Expert
accounting

Role
interface

Expert for
Personal

Expert
finance

decision for
further action

urgency
meeting

Archive

Figure 2: CPN Graph for the Flight Report Procedure

Figure 2 shows a graphical representation of a Petri net model for the workflow example
introduced above.1 The relationship between our workflow model and a corresponding CPN-
based specification is as follows: States serve as data stores between activities and transitions
map to individual activities. The precedence relation can be mapped to the flow relation and the
mapping of the other constructs are described in subsection 4.1.2. E.g., role2 identifiers are
represented by places and their marking associated with transitions by the flow relation. In
Figure 2 there is an example: transition Crewinput has a place role interface as a side
condition. This place has to be marked for the enabling of the transition. The marking is put on
the place by the GC, when the SR is received from the server. In the next section we explain the
handling of the control flow within the GC.

3.2. Control flow for Generic Clients

In this paper we concentrate on the service representation and the COSM implementation. An
overview of the environment, the SR is handled within, is presented in this subsection.

The GC organizes the treatment of the service representation in a generic way. For this an
abstraction mechanism is used which is known as Task/Flow-Systems (TFS) [7]. This technique
is based on condition/event-nets, where tokens are themselves condition/event-nets, marked, in
turn, with anonymous tokens. TFS transitions represent functional units of systems. This allows a
separation of executing units (here: GCs) and the tasks (here: SRs). In [8] it is shown in detail
how to apply this approach to COSM. [9] describes the usage of this abstraction mechanism at a
hierarchy of more than two levels. In [10] abstraction mechanisms for nets are developed for

1 In our net examples we restricted the inscriptions to the minimum. The reader has to deduce the missing ones.
2 In this model, user roles are not considered as a net extension since login procedures are a "general matter" and do not

change with workflow models

7

CIM systems, where a similar problem was faced. It is important to notice that the involved
people are not obliged to think in nets, even though this would be preferable and is intended here.

The control flow model for the GC is illustrated in Figure 3. From the AVN point of view, the
assumption of this paper is that the server sends a Service Representation in form of a net to the
Generic Client. As a functional unit, the GC adds some information which are relevant for the SR
and provided locally. The extended SR is then used for the execution. The format of the SR is
explained in subsection 4.1.2.

An example can be found in Figure 3: The incoming SR at place server interface and the
added role information from place logged in.

idle

logged in

login

Binding

logout

User
Interface

COSM-Application-
representation

Server
Interface

Application
execution

Unbinding

Server
Interface

Change of
Role

Figure 3: Contol Flow Model for Generic Clients

4. Integrating CPN representations into COSM

Principal tasks to integrate CPN modeling and the COSM infrastructure are presented in this
section. The first concerns the representation level of COSM - it determines the transformation of
CPN specification elements into SR counterparts. The second task is to enhance Generic Client
and binding mechanisms to satisfy workflow control requirements. Finally, an application-level
extension is required by introducing an additional task server: already existing reference and
binding mechanisms of COSM are exploited to coordinate activities of participating clients.

4.1. Transforming CPNs into Service Representations

For the discussion of the representational level of COSM the existing SR schema has to be
extended. On the other hand restrictions of the nets used are neccessary. After explaining the
restriction the mapping from CPN to COSM is presented.

4.1.1. Adjusting the current SR schema

The current COSM design supports the specification of an interaction protocol for single user
sessions: in such case there are no means required to specify concurrency. The current Generic

8

Client design is thus based on a FSM model. To capture concurrent activities in the workflow
model, additional components have to be added to the SR and the SR interpreter has to be
enhanced accordingly. "Traditional" automaton-based GCs are still capable to interprete the
automaton-based protocol specification whilst only GCs specialized as workflow participants are
aware of CPN-extended SRs. SRs can thus be considered as data object with a polymorphic type
system where a given SR containing automaton and CPN definitions is a subtype of each of the
requested types "automaton-based SR" and "CPN-based SR".

4.1.2. Net restrictions for COSM

In this paper there are also some restrictions for the Petri net based approach. The concept of
concurrency is restricted to fit into the easily transformable model of FSMs. This is neccessary to
realize an approach which allows a smooth transition from specification to implementation. The
basic idea is as follows: Modelers build a sequential FSM model, transform this into a net, check
it semantically for possible concurrency, and modify the net accordingly.3

General net restrictions are: The place capacity within the SR is one token. This token can still be
a complex data structure. The structure of the SR net is mainly following the FSM. Concurrency
is introduced by splitting specific conflict places according to the involved independent
transition. As an example see the output places of transition expert assignment in Figure 2.

To transform CPN representations of design tools into SRs the following mappings are required:

CPN representation component SR component
1) CPN token types for places SR type components
2) Presence of tokens at places Enabling flag of type Boolean which indicates the

presence of a token in the place
3) CPN token values within places Usual SR data objects
4) CPN transitions SR transition components containing: Lists of

enabling flags for input and output transitions, a
predicate component, a role reference, and a
reference to the corresponding operation
description component

5) CPN transition names SR operation names
6) CPN names of input and output edgesSR parameter and result names for each operation
7) Referenced input and output states for

each transition
References to SR data components containing
parameter and result values

8) CPN initial marking SR initial setting of enabling flags and data value
initialization

Table 1: Transformation of CPN representation into SR

After transforming a CPN representation into SR components further information has to be
appended. First, enabling roles are assigned to each transformation. A dedicated role editor is
used for this step. Accordingly, additional description components will be inserted into the SR
which refer to previously defined components, e.g., the GUI interface description, which
specifies direct manipulation of SR data values and GUI elements to invoke remote server
operations. Figure 4 shows the mapping of model-level entities to SR components, represented in
a textual CORBA-IDL-like notation for reasons of comprehensiveness:

3The net model could of course be build directly with the same restrictions.

9

DecideAction

FR-Rec_t

FR-Rec_t

FR-Rec

FR-Rec

“Stmt of all required
experts made?”

FR-Rec_t

FR-RecFR-Exp2

FR-Exp1 Meeting
Pool

CPN Editor

SR Components

Role Editor

Assign(DecideAction, FR-Manager);

Operation DecideAction(in: FR-Exp1 : FR-Rec_t,
 in: FR-Exp2 : FR-Rec_t,
 out:MeetingPool:FR-Rec_t)

precondition(“Stmt of all...?“)
role(FR_Manager);

GUI Editor

DialogBox(name: “Flight Report”; ...);

Figure 4: Deriving service interface specification from the CPN net representation

4.2. Service infrastructure extensions for COSM workflow support

Additionally, the capability of users to execute invocations is further restricted by role
annotations in the COSM workflow extension. To obey this information, Generic Clients have to
be extended to provide a user authentication procedure. Only if role requirements are satisfied,
transitions can be fired. After an activity has been carried out the user may - if possible - switch
the role or deliver the SR back to the server.

To identify the current user a role identifier has to be appended to the COSM binding protocol
data unit. Otherwise servers are not able to send role-specific task lists back to the Generic
Client.

Since several tasks may be carried out by different users at the same time they are assigned with
a unique task identifier which is represented as an additional SR component.

Concurrency is allowed at the model level if more than one transition is enabled and they do not
conflict with one another, e.g., in the case of experts that make statements independently. To
reduce complexity arising from such cases, one SR is associated with only one single thread of
activity. Concurrency remains allowed to occur between several Generic Clients. However, this
requires extensions of the server implementation at the application level. If a CPN transition
inserts tokens into more than one output place, potential for concurrency is given. Now enabled
transitions may fire concurrently at the model level. After the user has send back the SR to the
server, the SR is replicated according to the number of enabled transitions so that further
invocations based on these SRs may take place concurrently. When concurrent activities have to
be synchronized the interpreter assures correct behaviour by firing transitions.

4.3. Application-level extensions: The Task Server

Several experts make their statement in parallel - each within an individual session at the Generic
Client and therefore based on an individual SR. In order to support this concurrency and to
coordinate server access, a COSM-server has to trace the workflow state to deliver SRs to the
respective clients. To keep server implementation as simple as they are in the base COSM
system, this coordination task should be delegated to a dedicated task server which is itself an
additional COSM server that administrates SRs for a set of other application-specific servers.

10

SRs are inserted into role-specific task lists at the task server. By binding to this server a user
gains access to specific tasks which are displayed via the GC. By selecting a task (resp. an SR)
the user aquires the right to execute the operation which is enabled at the SRs current state. After
carrying out activities, SRs are sent back to the task server. See Figure 5.

In the case of concurrent activities, for example after the transition ExpertAssignment in
Figure 2, task servers have to split an SR into several copies and to insert these into the according
task lists. Correspondingly, these copies have to be merged after all concurrent activities have
been carried out. To prevent any integrity conflicts, concurrent activities must have been
specified conflict-free at the model level.

FR

Generic Client COSM-Server

Bind

Unbind

Role

Crew:

SR

Bind

Unbind

FR-Manager:

Task-Server

SR

SR

SR

SR

SR

SR

 CrewEntry

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA ExpAssign

FR-Management

 ExpAssign
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

 CrewEntry

FR-Management

Call(FR-Entry)

Call(FR-Classifiy)

.

.

.

Figure 5: Control and Data flow at the application execution

After logging in at the Generic Client, the user first binds to the task server. The user
authentication is transferred to the task server to control the access to a role-specific task list. As
in the case of the base COSM system (Section 2.2), the user is guided through the task server's
operation invocations by the GC user interface. If a new workflow instance is to be obtained, an
initialized SR with a unique task identifier is generated by the task server for the client. In the
flight report example this takes place when the Crew is going to fill out an initialized flight
report. In opposition to the base COSM architecture, the actual operation invocation is not
carried out at the task server itself, but at the flight report server, which is identified within the
SR. After having set up a new flight report, the task server passes control to the FR-manager
after receiving the SR. As the next activity, the FR-manager examines the own task list, loads the
SRs and carries out the ExpertAssignment operation.

The benefit of the direct transformation from workflow models to COSM service representations
is to design the application specific workflow model, to prove features like liveness, deadlock
absence, mutual exclusion in cases of conflicting transitions, and, as the last step, to
automatically set-up control and data flow based on the workflow model.

5. Current prototype implementation

The current COSM prototype has been developed on a cluster of RS/6000 AIX workstations
from IBM. It mainly consists of four component types:

11

• The Dynamic Invocation Interface was built upon the Sun RPC and XDR interface. It allows
to allocate lists of structured parameter objects and to reconstruct them at the receivers site
after transmission.

• The Service Representation Manager controls access to the binary SR data structure. The SR
is organized as a contiguous memory allocation unit with local memory management.

• Generic Clients are built upon the previous components. They consist of a presentation layer,
a dialog control unit and the invocation manager. In this order, a GC displays GUI
information, handles user input events and invokes remote procedure calls based on
information extracted by the service representation manager (See Figure 6).

• Several server applications for testing purposes. Several demo servers have been developed,
for example an SR repository that allows servers to register their SR on the one hand, and
Generic Client to access the repository database, on the other. Registered SRs are interpreted
by the repository and stored among others in the database. Generic Client users, who are
bound to the repository server may run queries against the database to obtain structured
information on the SRs registered. (See Figure 6)

Figure 6: Sample Generic Client user interface

6 Conclusion and outlook

The COSM project aims at improved system support for flexible client/server integration in
distributed and heterogeneous open systems. An important goal is to support not only specific,
predefined client/server cooperations but rather to design a generic architecture for flexible
service management, access and coordination in open systems. Especially, use of the CPN
specifications for workflow modeling and a seamless transformation of CPN models into the
COSM architecture and software infrastructure helps to address and solve different design and
implementation problems in their respective distinct environments: at the infrastructure level,
COSM addresses a flexible access and management of arbitrary remote services in general. CPN

12

specification tools, on the other hand, are first used to model workflow control formally and then
derive implementation support based on such specifications. Accordingly, this paper focusses on
the integration of existing techniques from both areas in a common framework.

Current practical work is maily concerned with a continued prototype implementation of this
integration in order to extend COSM to also support coordination of concurrent and distributed
workflow patterns. Based on the workflow representation as described in section 4.1, the
following additional COSM system components are developed currently:

• a net interpreter which allows to animate the service net representations.
• a representation converter which operates on programming interfaces of tools and transfers

information about the defined net structure and marking into service representations.
• Tools like a role and GUI editor are planned to facilitate interactive generation of service

representations.
In order to extend the available formal techniques, current work in this area concentrates on
abstraction mechanisms like net-hierarchies and Task/Flow-Systems. The purpose here is to
model encapsulated systems at an infinte level of layering. First approaches for such abstraction
mechanisms for CIM systems are discussed in [10]. In addition, results from system theory and
net theory have to be combined. An integrated formal mechanism could then be used for
applications with a complex structure as, e.g., distributed systems, workflow support, CIM,
systems analysis and concurrent system specification, which can be adequately described with
high level Petri nets.

7. References

[1] M. Merz, K. Müller, W. Lamersdorf: "Service Trading and Mediation in Distributed Computing Systems",
Proc. IEEE International Conference on Distributed Computing Systems, Los Alamitos 1994, pp. 450-457

[2] M. Merz, K. Müller, W. Lamersdorf: "Trusted Third Party Services in COSM", in "EM - Electronic Markets",
No. 12, September '94, Volume 4, pp. 7-8

[3] M. Merz, W. Lamersdorf: "Cooperation Support for an Open Service Market", IFIP / GI 'International Confe-
rence on Open Distributed Processing' (ICODP'93), Berlin, August 1993, pp 329-340

[4] The Common Object Request Broker: Architecture and Specification, OMG Document No. 91.12.1, 1991

[5] Jensen, K.: "Coloured Petri Nets", Volume 1, Springer Verlag, Berlin Heidelberg New York, 1992

[6] Gruhn, V.: "FunSoft Netze", in: Scheschonk, G. and Reisig, W. (Ed.): "Petri-Netze im Einsatz für Entwurf
und Entwicklung von Informationssystemen", Informatik Aktuell, Springer Verlag, Berlin Heidelberg
New York, 1993, pp. 31-45

[7] Valk, R.: "Task-Flow Systems", Technical Report # 124, University of Hamburg, Computer Science, 1987

[8] Merz, M. and Moldt, D.: "Nebenläufige Modellierung von COSM mit Hilfe von Petrinetzen", in German,
Technical Communication, University of Hamburg, Computer Science, to appear in March 1995

[9] Heinemeier, A. and Moldt, D.: "Nets in Nets - An abstraction mechanism for Petri nets", Technical
Communication, University of Hamburg, Computer Science, planned for May 1995

[10] Borusan, A. and Moldt, D.: "Method for modelling CIM-Systems with Coloured Petri Nets", in: Cotsafis, M.
and Vernadat, F., Ed., Advances in Factories of the Future, CIM and Robotics, pp. 91-100. Elsevier,
Amsterdam London New York, 1993

