
Are there Universal Finite or Pushdown

Automata?

Manfred Kudlek , Patrick Totzke , Georg Zetzsche
Department Informatik, MIN-Fakultät,

Universität Hamburg, DE
email: {kudlek,3totzke,3zetzsch}@informatik.uni-hamburg.de

Abstract

We investigate the (non)-existence of universal automata for var-
ious classes of automata, as finite and pushdown automata, and in
particular the influence of the representation and encoding function.
An alternative approach, using transition systems, is presented too.

1 Introduction

It is well known that there exist universal Turing machines (UTM). Such a
UTM simulates any special Turing machine (TM)M in a certain way. There
are several ways of simulation. One is that a UTM U simulating a TM M

with input w halts if and only if M halts on input w. Another possibility
is that any computation step of M is simulated by U using some number of
steps which might be restricted by some complexity function.

Almost all UTM’s constructed so far are deterministic, simulating deter-
ministic TM’s. In [4] it has been shown that there exist UTM’s simulating
all special TM’s with complexity constraints. These complexity constraints,
for space or time, are from a subclass of all primitive recursive functions over
one variable. The UTM’s have the same complexity constraints.

In both cases, general TM’s and those with complexity constraint, the
specific TM M and its input w ∈ Σ(M)∗, where Σ(M) is the alphabet of
M , have to be encoded. Such an encoding, and also the decoding, can be
achieved by deterministic finite state transducers (DFST), which means that

1

encoding and decoding is bijective. The input for a UTM U , to simulate M
with input w, can then have the form cm(M)#ci(w) where cM , ci are the
encoding functions for M , w, respectively.

If one intends to construct universal machines for weaker automata classes
it should be kept in mind that encoding and decoding for such automata
should not exceed the power of deterministic versions of those machines.
Otherwise too much power and information could be hidden in the encoding.

In [3] it has been shown, under this condition, that there don’t exist
universal 1-way finite automata (FA), neither DFA nor NFA. The proof uses
arguments on the number of states of such automata.

So the question arises whether there exist universal PDA, and if yes if
encoding and decoding can be achieved by DFST’s, or if deterministic push-
down transducers (DPDT) are necessary.

2 Transducers

Pushdown transducers (see e.g. [1, 2]) are just the analogon to finite state
transducers, i.e. pushdown automata with output.

Formally:
A (non-deterministic) pushdown transducer (PDT) is a construct
(Q,Σi,Σo,∆, $, q0, Qf , ρ) where
ρ ⊆ Q× Σ∗

i × Σ∗

o ×∆∗ ×∆∗ ×Q

A deterministic pushdown transducer (DPDT) is the deterministic version
of PDT. That is, ρ is a function.

In the sequel a normal form of PDT will be considered, being quasi let-
tering in input and pushdown, i.e.

ρ ⊆ Q× (Σi ∪ {λ})× (Σo ∪ {λ})× (∆ ∪ {λ})× (∆ ∪ {λ})×Q.

Contrary to regular languages (REG) which are closed under finite state
transductions the context-free languages (CF) are not closed under push-
down transductions, non-deterministic as well as deterministic. Even lin-
ear context-free languages give sets outside CF if a deterministic pushdown
transduction is applied. This is shown by the following examples of DPDT’s.

Let L1 = {0n1 | n ≥ 0} and
T1 = ({q0, q1}, {0, 1}, {0, 1}, {q0}, {q1}, ρ1) with

2

ρ1 = {(q0, 0, 0, $, 0$, q0), (q0, 0, 0, 0, 00, q0), (q0, 1, λ, $, $, q2),
(q0, 1, λ, 0, 0, q1), (q1, λ, 1, 0, λ, q1), (q1, λ, λ, $, $, q2)}.

Then τ(L1) = {0n1n | n ≥ 0} 6∈ REG.

Let L2 = {0n1n0 | n > 0} and
T2 = ({q0, q1, q2, q3}, {0, 1}, {0, 1}, {q0}, {q3}, ρ2) with
ρ2 = {(q0, 0, 0, $, 0$, q0), (q0, 0, 0, 0, 00, q0), (q0, 1, 1, 0, 10, q1),

(q1, 1, 1, 1, 11, q1), (q1, 0, λ, 1, 1, q2), (q2, λ, 0, 1, λ, q2),
(q2, λ, 1, 0, λ, q2), (q2, λ, λ, $, $, q3)}.

Then τ(L2) = {0n1n0n1n | n ≥ 0} 6∈ CF.

Let L3 = {wcwRc | w ∈ {0, 1}+} and
T3 = ({q0, q1, q2, q3}, {0, 1}, {0, 1}, {q0}, {q3}, ρ3) with
ρ3 = {(q0, 0, 0, $, 0$, q0), (q0, 1, 1, $, 1$, q0), (q0, 0, 0, 0, 00, q0),

(q0, 0, 0, 1, 01, q0), (q0, 1, 1, 0, 10, q0), (q0, 1, 1, 1, 11, q0),
(q0, c, c, 0, 0, q1), (q0, c, c, 1, 1, q1), (q1, 0, 0, $, 0$, q1),
(q1, 1, 1, $, 1$, q1), (q1, 0, 0, 0, 00, q1), (q1, 0, 0, 1, 01, q1),
(q1, 1, 1, 0, 10, q1), (q1, 1, 1, 1, 11, q1), (q1, c, c, 0, 0, q2),
(q1, c, c, 1, 1, q2), (q2, λ, λ, 0, 0, q2), (q2, λ, λ, 1, 1, q2),
(q2, λ, λ, c, c, q2), (q2, λ, λ, $, $, q3)}.

Then τ(L3) = {wcwRcwcwRc | w ∈ {0, 1}+} 6∈ CF.

One also might consider 2-way FST (2FST). However, REG is not closed
under 2-way finite state transductions, as can be seen from the following
example of a 2DFST.
Let L4 = {awb | w ∈ {0, 1}∗} and

T4 = ({q0, q1, q2, q3}, {0, 1, a, b}, {0, 1, a}, {q0}, {q4}, ρ2) with
ρ4 = {(q0, a, a, R, q0), (q0, 0, 0, R, q0), (q0, 1, 1, R, q0), (q0, b, λ, L, q1),

(q1, 0, λ, L, q1), (q1, 1, λ, L, q1), (q1, a, a, R, q2),
(q2, 0, 0, R, q2), (q2, 1, 1, R, q2), (q2, b, λ,M, q3).

Then τ(L4) = {awaw | w ∈ {0, 1}∗} 6∈ CF.

3 Representations

A representation of FA, PDA, TM’s etc. has to contain information on the
set of states, initial and final states, alphabets, and the set of transitions:

(Q,Σ,∆, Q0, Qf , R) with e.g. R ⊆ Q× Σ∗ ×∆∗ ×∆∗ ×Q for a PDA.

3

Usually R is represented by an ordered list of elements from R, together with
a lists for Q0 and Qf . For non-deterministic machines one might also allow
repetitions of list elements. This can give a regular set of representations if
Q, Σ, and ∆ are fixed.

FA and PDA usually are represented by the list R of their transitions,
putting together the tuples (q, x, q′) or (q, x, y, y′, q′) for FA or PDA respec-
tively, where x ∈ (Σi ∪ {λ}), and y, y′ ∈ (∆ ∪ {λ}).

For FA one has a representation R ∈ (Q · (Σi ∪ {∗}) ·Q)+, and for PDA
R ∈ (Q · (Σi∪{∗}) · (∆∪{∗}) · (∆∪{∗}) ·Q)+ where ∗ stands for λ. Together
with the input w this gives a representation R(M)#w. But one might think
also of a representation w#R(M) or even R(M) # w where is the shuffle
operation.

If the first version of representation is encoded by a DFST T the result is a
word τ(R(M))τ(#)τ(w) where τ is the function associated to T . This follows
from the fact that T is working 1-way. The same conditions hold for the
‘inverse’, namely for a DPDT T ′ with associated function τ ′. Furthermore,

τ ′(τ(R(M))τ(#)τ(w)) = R(M)#w.

Considering representations of FA with arbitrary sets of states Q and
arbitrary alphabets Σ, states qk can be by represented qak (0 < k) and
symbols xm by xam (0 < m) over the finite alphabet {q, x, a}. Then the set
of all representations of finite automata is given by

F = ({q} · {a}+ · ({x} · {a}+ ∪ {∗}) · {q} · {a}+)+.
Clearly, F ∈ REG. But note that this holds only for the non-deterministic

FA. In the case of DFA there is the condition that a state qk, represented by
qak, can appear only once as first component in the list of transitions.

An analogous property also holds for PDA.

Since REG and CF are closed under FST mappings, encoding (and
decoding) will not lead out from these classes. However, the examples above
show that this does not hold for PDT mappings. Therefore, not to gain too
much power it might be reasonable to have the condition that those PDT
mappings used for encoding and decoding are not leading out from the class
CF.

4

4 Universality?

In the sequel we shall consider PDA M accepting languages L(M) ⊆ {0, 1}∗.
Assume that there exists a universal PDA U simulating all specific PDA M

over {0, 1}. Denote this class by CF2. Let ΣU the alphabet of U . Then,
with the first version of representation,

L(U) = {τ(R(M))τ(#)τ(w) | L(M) ∈ CF2, w ∈ L(M)} ∈ CF.
Consider now special regular (context-free) languages {w} ⊂ {0, 1}∗. A

representation of a DFAM , being also a PDA and 2DFST, accepting exactly
the language {w}, e.g. looks like R(M) = q0wq1 = ϕ(w). Together with an
input v ∈ {0, 1}∗ the representation has the form R(M)#v = q0wq1#v. A
DFST maps this into τ(ϕ(w))τ(#)τ(v). Clearly,

S = {τ(ϕ(w))τ(#)τ(v) | v, w ∈ {0, 1}∗}
= {τ(ϕ(w)) | w ∈ {0, 1}∗} · {τ(#)} · τ({0, 1}∗) ∈ REG.

Now
L(U) ∩ S = {τ(ϕ(w))τ#τ(v) | w, v ∈ {0, 1}∗, v = w}

= {τ(ϕ(w))τ(#)τ(w) | w ∈ {0, 1}∗} ∈ CF
since CF is closed under intersection with regular sets.
Applying the ‘inverse’ DFST mapping τ ′ yields
τ ′(L(U) ∩ S) = {ϕ(w)#w | w ∈ {0, 1}∗} ∈ CF.
Another DFST mapping ψ with ψ(q0) = ψ(q1) = λ, ψ(0) = 0, ψ(1) = 1

gives
ψ(τ ′(L(U) ∩ S)) = {w#w | w ∈ {0, 1}∗} ∈ CF,
a contradiction.

These considerations can be summarized as

Theorem 1: If encoding and decoding of specific finite or pushdown au-
tomata have to be achieved by DFST then there doesn’t exist a universal
finite automaton, or 2-way finite automaton or pushdown automaton, simu-
lating all specific finite automata. �

It should be remarked, however, that the proof of this theorem cannot
be used to show that the statement also holds for all quasi lettering finite
automata. The reason is that the DFST for encoding has to know the length
of w for the representation q0x1q1 · · ·xkqk where xi ∈ {0, 1} and all qi are
different.

Therefore we give another proof that this theorem also holds for quasi-
lettering automata. For non-deterministic (quasi-lettering) FA it can be as-

5

sumed that there is exactly one initial and exactly one final state, and that
the first element in the list has the form (q1, x, q) where q1 is the initial state
and x ∈ Σ, and that the last element has the form (q2, λ, q2) where q2 is the
final state.

Let Mµ = (Q, {0, 1}, q1, {q2}, Rµ) a FA where
µ = (i, i′, i′′, j, j′, j′′, k, k′, k′′, ℓ, ℓ′, ℓ′′) and
2 < i, i′, i′′, j, j′, j′′, k, k′, k′′, ℓ, ℓ′, ℓ′′ ≤ |Q| are fixed and

R(Mµ) = {(q1, 0, qi), (q1, 1, qk), (qi′, 0, qj′), (qi′′ , 1, qℓ′′),
(qk′′, 0, qj′′), (qk′, 1, qℓ′), (qj , 0, q2), (qℓ, 1, q2), (q2, λ, q2)}.

'&%$!"#i /.-,()*+i′ 0 //76540123j′ /.-,()*+j
0

##G
GG

GG
GG

GG
GG

GG

76540123i′′ 1

OO
OO

OO
OO

''OO
OO

OO
OO

?>=<89:;j′′

?>=<89:;1

0

;;wwwwwwwwwwwww

1

$$I
II

II
II

II
II

I
?>=<89:;2

?>=<89:;k′′
0

77ooooooooooooooooo 76540123l′′
/.-,()*+k 76540123k′ 1 ///.-,()*+l′ /.-,()*+l

1

::uuuuuuuuuuuu

Figure 1: FA

L(Mµ) = {000, 011, 100, 111} implies i = i′ = i′′, j = j′ = j′′, k = k′ = k′′,
ℓ = ℓ′ = ℓ′′. Note that Mµ is also a PDA.

An encoding of R(Mµ) is given e.g. by
τ(R(Mµ)) = qaxbqai · qaxcqak · qai

′

xbqaj
′

· qai
′′

xcqaℓ
′′

·
qak

′′

xbqaj
′′

· qak
′

xcqaℓ
′

· qajxbqa2 · qaℓxcqa2 · qa2 ∗ qa2

τ is a DFST mapping. Note that τ actually depends on Q.

Now assume that
U = {τ(R(M))τ(#) | M ∈ QLFA, {000, 011, 100, 111} ⊆ L(M)}

·τ({000, 011, 100, 111})
is context-free, where QLFA denotes the class of quasi-lettering FA with

set of states Q, initial state q1, final state q2, and alphabet {0, 1}.
Define S = {τ(R(Mµ))τ(#) | 2 < i, i′, i′′, j, j′, j′′, k, k′, k′′, ℓ, ℓ′, ℓ′′ ≤ |Q|}

·τ({000, 011, 100, 111}.
Obviously, S is regular, implying that U ∩ S is context-free. But
U ∩S = {qaxbqai · qaxcqk · qaixbaℓ · qixcqaℓ · qakxbqaj · qakxcqaℓ · qajxbqa2

·qaℓxcqa2 · qa2 ∗ qa2 | 2 < i, j, k, ℓ ≤ |Q|}
is not context-free, a contradiction.

6

If 2-way pushdown transducers are allowed however, and the encoding is
not required to have the form τ(R(M)τ(#)τ(w) it is possible to construct a
universal PDA, following an idea by Gh. Păun et. al.. To be more precise,
there exists a quasi-lettering universal PDA simulating all lettering PDA.

Let M = (Q,Σ,∆, δ, q0, {qf}) with Σ = {0, 1} be a lettering PDA, and
R(M) ⊆ {Q × Σ × ∆ × ∆ × Q}∗ be its representation. Suppose we allow
τ(R(A)#w) to be transduced by a 2-way PDT (2PDT). Then one can choose
the coding τ(R(M)#x1x2 . . . xn) = x1σ(R(M))x2σ(R(M)) . . . xn%σ(R(M))
where xi ∈ Σ, and σ(R(M)) is a coding of R(M) in a fixed alphabet. Note
that σ depends on Q. For simplicities sake let σ = id at first. Then τ can be
calculated by a 2PDT that works as follows:

1. First go right until the place after # and print the first symbol of w.

2. Go left and push a ∈ ∆ to the stack until reading #.

3. Go left to the beginning of the input.

4. Print R(M) until reading the #.

5. Go further right and simultaniously pop a ∈ ∆ from the stack. On
empty stack check if the end of the input has been reached.

(a) If so, print ‘%’, go to the beginning of the input and copy R(M)
one last time and halt.

(b) Otherwise print the current input symbol and repead from step 2.

Consider the following PDA U with ΣU = {0, 1} ∪ (Q×Σ×∆×∆×Σ)
and ∆U = {a} ∪ Q for all possible Q,Σ,∆. The ΣU ,∆U are not finite, but
when chosen an appropiate encoding σ for the representation of simulated au-
tomata, the following idea for an UPDA works with finite alphabets ΣU ,∆U .
For now, assume any transition (q, x, a, b, q′) in the simulated automaton to
be an atomic symbol of our UPDA.

At any time U ’s stack consists of a word qδmδm−1 . . . δ0 where q is the
current state of M and δ = δm . . . δ0 is the stack content of M during a sim-
ulation. In state R, U first reads a symbol xi from the input (word w) and
afterwards checks whether the simulated PDA could have read xi by travel-
ling through the input R(M) and looking for a transition (q, xi, δr, δw, q

′) with

7

GFED@ABC1R

k,λ,λ

(q,1,δr ,δw,q′),qδr ,q′δw

��
//GFED@ABCS

λ,λ,q0 //GFED@ABCR

k,λ,λ

II

1,λ,λ

DD

0,λ,λ

��

%,λ,λ //GFED@ABCA

(q,a,b,c,q′),q′′,q′′

 (q,a,b,c,q′),q′,q′

,,GFED@ABC?>=<89:;E

(q,a,b,c,q′),q′,q′

(q,a,b,c,q′),q′′,q′′

ll

GFED@ABC0R

k,λ,λ

TT

(q,0,δr ,δw,q′),qδr ,q′δw

ZZ

Figure 2: Universal PDA

q being the state M is currently in, and storing the new state and changed
stack content of M in its own stack.

In the construction we have used (q, x, a, b, q′) etc. as one symbol, but it
works also if an encoding σ over a finite alphabet ΣU is used. Such an encod-
ing for example is given by σ((qi, x, δj , δk, qℓ)) = DSAixPBjPBkSAℓ with
x ∈ Σ = {0, 1}. Then, point 4 in the transduction τ would contain additional
steps to encode a transition. E.g. to read symbol qi ∈ Q and print Sai and
so on. Also, the UPDA U must have additional components for decoding in
all states that have outgoing transitions reading a tuple (q, x, a, b, q′) from
the input.

This can be achieved as follows. Let ΣU = {A,B,D, P, S, T, 0, 1} where
D,P, S, T are markers. D is the deliminator of DSAiyPBjPBkSAℓ encoding
(qi, y, δj, δk, qℓ), and T the deliminator of a block σ(R(M)).

In a step U , after reading x ∈ {0, 1}, goes into different states according to
x. The stack of U contains SAmPBnPBr · · ·$ where $ is the bottom symbol.
U non-determistically goes to some DSAiyPBjPBkSAℓ within σ(R(M)). If
i = m, x = y, and j = n then SAmPBn · · · $ in the stack is replaced by
SAℓPBk · · ·$. Otherwise, U goes into a sink. Note that U is a quasi-lettering
PDA.

With a slight modification in the encoding it can be shown that the result
also holds for PDA M not being lettering for the pushdown alphabet.

8

5 Transition Systems

In this section we present an alternative approach to investigate universal
automata.

In order to specify what we mean by ‘universal PDA’ or ‘universal gram-
mar’, we introduce the notion of Transition Systems, a generalisation of finite
automata that models any kind of computational device having an internal
state that can be altered by the occurrence of an action during the course of
a computation.

Definition 1: (Transition System)
A Transition System is a quintuple (S,Σ, δ, S0, SF) with
S a set of states,
Σ an alphabet of transitions
δ ⊆ S × (Σ ∪ {λ})×Q a transition relation
S0 ⊆ S a set of initial states
SF ⊆ S a set of final states

We write s
t

−→ s′ for (s, t, s′) ∈ δ. A transition system is called finite if
S ∪ T is. The transition relation in a transition system can be extended to
finite sequences of transitions:

• s
λ

−→ s for all states s and the empty sequence λ.

• s
wt
−→ s′ iff a state s′′ exists, such that s

w
−→ s′′ ∧ s′′

t
−→ s′

Let
∗

−→ denote the transitive and reflexive closure of −→.
The language of the transition system A is

L(A) = {w ∈ Σ∗|s0
w

−→ sf , s0 ∈ S0, sf ∈ SF}.

Any finite automaton A = (Q,Σ, δ, q0, QF) is also a transition system by
definition. However, in a transition system Q and QF are generally not finite.
Any PDA A = (Q,Σ,∆, δ, q0, QF) defines a transition system whose states
are all possible configurations c ∈ Q × ∆∗ of the PDA, and transitions are
defined by (q, wx)

a
−→ (q′, wy) ⇐⇒ (q, a, x, y, q′) ∈ δ.

Definition 2: (Universal Transition System)
Let X ⊆ RE be a language class below RE. The TS A = (S,Σ, δ, S0, SF)

is called X-universal iff for any language L ∈ Σ∗ in X there is a state sL ∈ S

such that L((S,Σ, δ, sL, SF)) = L.

9

Any computing device that unambiguously defines a transition system
will be considered X-universal if its transition system is.

Obviously there is a REG-universal system, namely the disjoint union of
all the possible NFA. The interesting question is however, whether or not such
a REG-universal system can be defined by an NFA. The following lemma
recovers a theorem from [3] from a new perspective.

Lemma 1: There is no REG-universal NFA.
Proof : For arbitrary n ∈ N, a ∈ Σ Ln = {an} ∈ REG. Any REG-universal
system U must have a state sLn

from that on exactly n steps can be made.
If the set of states in U was finite, this state could not exist for n > |S|, so U
must have an infinite set of states. Since any NFA defines a finite transition
system, no REG-universal system can be defined by an NFA, and therefore
no REG-universal NFA exists. �

References

[1] Ginsburg, S.: The Mathematical Theory of Context-free Languages.
McGraw-Hill, 1966.

[2] Gurari, E. M.: An Introduction to the Theory of Computation. Com-
puter Science Press, Rockville, 1989.

[3] Kudlek, M.: On Universal Finite Automata and a-Transducers. (In:
Grammars and Automata for String Processing: from Mathematics and
Computer Science to Biology and back. Eds. C. Mart́ın Vide, V. Mitrana.
Topics in Computer Mathematics, pp. 163-170, Taylor and Francis, Lon-
don, 2003.)

[4] Kudlek M., Margenstern, M.: Universal Turing Machines with Complex-
ity Constraints. Proc. Intern. Conf. Automata and Formal Languages
VIII, Publ. Math. Debrecen 53, pp. 895-904, 1999.

10

