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Abstract. This contribution presents the formalism of Elementary Object Systems (Eos).
Object nets are Petri nets which have Petri nets as tokens – an approach known as the
nets-within-nets paradigm.
Since object nets in general are immediately Turing complete, we introduce the restricted
class of elementary object nets which restrict the nesting of nets to the depth of two.
In this work we study the relationship of Eos to existing Petri net formalisms. It turns
out that Eos are more powerful than classical p/t nets which is demonstrated by the fact
that e.g. reachability and liveness become undecidable problems for Eos. Despite these
undecidability results other properties can be extended to Eos using a monotonicity
argument similar to that for p/t nets.
Also linear algebraic techniques, especially the theory of linear invariants and semiflows,
can be extended in an appropriate way. The invariant calculus for Eos even enjoys the
property of compositionality, i.e. invariants of the whole system can be composed of
invariants of the object nets, which reduces the computational effort.
To obtain a finer level of insight we also study several subclasses. Among these variants
the subclass of generalised state machines is worth mentioning since it combines the de-
cidability of many theoretically interesting properties with a quite rich practical modelling
expressiveness.
We also study safe Eos, a generalisation of safe p/t nets which are bounded systems with
bound b = 1. Four different variants of safeness are studied. It turns out that variants are
equivalent for p/t like Eos. While reachability and liveness remain undecidable for the
two weaker classes of safe Eos, the two most strongest variants are restrictive enough to
guarantee decidability. In fact, both problems are Pspace-complete.
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Abstract. Dieser Artikel präsentiert den Formalismus der Elementaren Objektsysteme
(Eos). Objektnetze sind Petrinetze, die wiederum Petrinetze als Marken besitzen – ein
Ansatz der auch als das Paradigma der Netze-in-Netzen bekannt ist.
Da Objektnetze im allgemeinen die Audrucksstäke von Turing-Maschinen besitzen, be-
schränken wir die Betrachtung hier auf die Klasse der elementaren Objektnetze, deren
Schachtelungstiefe auf zwei Ebenen festgelegt ist.
Wir betrachten die Beziehungen von Eos zu anderen Petrinetzformalismen. Es zeigt sich,
dass Eos ausdrucksmächtiger als die klassischen P/T-Netze sind, was sich darin äußert,
dass insbesondere das Erreichbarkeits- und das Lebendigkeitsproblem für Eos unent-
scheidbar sind. Trotz dieser Unentscheidbarkeitsresultate können andere Eigenschaften
auch für Eos als entscheidbar nachgewiesen werden, indem man die Monotonie der Schal-
tregel – wie sie bekanntermaßen für P/T-Netze gilt – auch für Eos nachweist.
Wir betrachten außerdem Techniken aus der linearen Algebra, hier insbesondere lineare
Invarianten, die sich auch für Eos geignet definieren lassen. Wir zeigen, dass der Invari-
antenkalkül der Eos kompositional ist, d.h. man kann Invarianten des Gesamtsystems
aus den Teil-Invarianten der Objektnetze erzeugen, was sinnvoll ist, um den Berech-
nungsaufwand zu reduzieren.
Um ein besseres Verständnis der Ausdrucksstärke der Objektnetze zu bekommen, be-
trachten wir auch strukturelle Teilklassen des Formalismus. Eine besonders interessante
Teilklasse ist die der generalised state machines, da eine Vielzahl von Eigenschaften für
diese Klasse entscheidbar ist und viele praktisch vorkommende Szenarien sich mit Netzen
dieser Klasse modellieren lassen.
Wir betrachten auch noch sichere Eos – eine Verallgemeinerung sicherer P/T-Netze. P/T-
Netze heißen sicher, wenn alle Plätze die Kapazitätsschranke b = 1 besitzen. Wir studieren
hier vier verschiedene Varianten der Sicherheit in Eos. Wir zeigen, dass diese Varianten für
P/T-artige Eos zueinander äquivalent sind, während sie für Eos eine Hierarchie bilden.
Während Erreichbarkeit und Lebendigkeit für die beiden schwächeren Formern der Sicher-
heit von Eos unentscheidbar bleiben, garantieren die beiden stärkeren Formen ihre Ent-
scheidbarkeit. Man kann sogar konkreter zeigen, dass die Probleme in beiden Varianten
Pspace-vollständige Probleme sind.

Schlagworte: Petrinetze, Netze-in-Netzen, Netze als Marken, Objektnetze, Sicherheit,
Erreichbarkeit, Lebendigkeit, Beschränktheit
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1 Introduction

Object Systems are Petri nets which have Petri nets as tokens – an approach
which is called the nets-within-nets paradigm, proposed by Valk [1991, 2003] for
a two levelled structure and generalised in [Köhler and Rölke, 2003, 2004, Köhler-
Bußmeier and Heitmann, 2009] for arbitrary nesting structures. The Petri nets
that are used as tokens are called net-tokens. Net-tokens are tokens with internal
structure and inner activity. This is different from place refinement, since tokens
are transported while a place refinement is static. Net-tokens are some kind of
dynamic refinement of states. The algebraic extension of objects nets – discussed in
[Köhler-Bußmeier, 2009] – even allows operations on the net-tokens, like sequential
or parallel composition. This is a concise way to express the self-modification of
net-tokens at run-time in an algebraic setting.

Fig. 1. The Bucket Chain as a Nested System

It is quite natural to use object nets to model mobility and mobile agents (cf.
Köhler et al., 2003). Each place of the system net describes a location that hosts
agents, which are net-tokens. Mobility can be modelled by moving the net-token
from one place to another. This hierarchy forms a useful abstraction of the system:
on a high level the agent system and on a lower level of the hierarchy the agent
itself.

Without the viewpoint of nets as tokens, the modeller would have to encode
the agent differently, e.g. as a data-type. This has the disadvantage, that the
inner actions cannot be modelled directly, so, they have to be lifted to the system
net, which seems quite unnatural.o By using nets-within-nets we can investigate
the concurrency of the system and the agent in one model without loosing the
abstraction needed.

Example 1. Figure 1 shows an object systems which models Carl Adam Petri’s
bucket chain scenario [Petri, 1979], where the fireman are mobile. In the bucket
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chain-example n firemen are standing in a row, each equipped with a bucket. A
well is available for the leftmost fireman and the fire is at the rightmost place.
So the leftmost fireman fills his bucket, while the rightmost extinguishes the fire.
Neighboured firemen can handover buckets, so full buckets are handed over to
right (to extinguish the fire) and empty ones to the left for refilling.1 The topology
(i.e. each fireman can only interact with his intermediate neighbour) introduces
an interesting causal dependency structure2: The effect of exchanging buckets at
a location being k steps away can be observed only when the whole system has
moved k steps ahead.

Figure 1 shows the Petri net modelling the bucket chain with n = 7 firemen.
Each fireman initially carries one empty bucket. The fireman man are mobile: They
are net-tokens that move around in the system net which models the chain itself.
The agents have different capabilities. For example the object net N7 has a bucket
with double capacity. At the well the object net N1 fires the transition fill bucket
which synchronises over the communication channel ⟨:fill⟩ with the transition fill
of the object net. Then the object net N1 moves to the position 1 firing the
transition move to the right. At the position 1 N1 synchronises with N1 firing the
transition handover which has two invocations of communication channels: The
object net N1 is synchronised over the channel ⟨:ext⟩ which changes its state to
empty bucket. Synchronously, the object net N2 is synchronised over the channel
⟨:fill⟩ which changes its state to full bucket. Thereafter the object net N1 moves
back to the well via the transition move to the left and the object net N2 moves
in the direction of the fire via the transition move to the right. Similarly for the
other positions. So, the firemen transport full buckets to the right and the fire
will be finally extinguished.

Among the wealth of research on defining mobile systems, in recent years a
variety of formalisms have been introduced or adopted to cover mobility: The
approaches can be roughly separated into process calculi and Petri net based
approaches. The π-calculus [Milner et al., 1992], the Ambient calculus [Cardelli
et al., 1999] and the Seal calculus [Vitek and Castagna, 1998] are just three of the
more popular calculi. Approaches dealing with mobility and Petri nets are ele-
mentary object net systems [Valk, 1998, 2003], mobile nets [Busi, 1999], recursive
nets [Haddad and Poitrenaud, 1999], minimal object nets [Kummer, 2000], nested
nets [Lomazova, 2000], mobile predicate/transition nets [Xu and Deng, 2000], Ref-
erence nets [Kummer, 2002], PN2 [Hiraishi, 2002], hypernets [Bednarczyk et al.,
2004], object net systems [Köhler and Rölke, 2004, 2005, Köhler-Bußmeier and
Heitmann, 2009], Mobile Systems [Lakos, 2005], AHO systems [Hoffmann et al.,
2005], mobile object nets [Köhler and Farwer, 2006], adaptive workflow nets [Lo-

1 This scenario has been introduced to study the causal dependencies of distributed cooperation. The
scenario serves a similar purpose as the well known Bankers-Problem for deadlock-prevention in
resource allocation systems (i.e. operating systems) or the Dining Philosophers for the study of
fairness in distributed systems Peterson and Silberschatz, 1985.

2 In the general research of Petri this causal dependency structure is closely related to Einstein’s
physical theory of relativity. This topic is studied in Petri’s research of general net theory.
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mazova et al., 2006], ν-Abstract Petri nets [Velardo and de Frutos-Escrig, 2008],
and Hornets [Köhler-Bußmeier, 2009].

One central aim of this contribution is to compile existing results on special as-
pects of Eos together with some unpublished properties within one self-contained
presentation. As a byproduct most proofs have been rewritten and shortened in
a way appropriate for the newer results. The paper has the following structure:
Section 2 recalls basic notations of Petri nets. Section 3 defines elementary object
systems (Eos). Section 4 provides a short overview of related nets-within-nets for-
malisms. Section 5 investigates the invariance calculus for Eos and demonstrates
its compositionality. Section 6 studies decidability problems for Eos, namely:
reachability, liveness and boundedness. Section 7 studies the same problems for
Conservative Eos which are restricted in a way that object nets are copied or
fused but never created or destroyed. It will turn out that this restriction regains
the monotonicity of the firing rule which is lost in the general case. Section 8 com-
pares Eos with a reference semantics based on p/t nets and introduces a sub class,
called Generalised State Machines, which is of practical interest, because models
of this class corresponds to scenarios related to physical entities. Section 9 studies
Eos the properties of Eos which respect certain bounds on their markings. It
turns out that not all bounds guarantee decidability of the standard problems
or finite state spaces, that are usually assumed by model-checking techniques.
In generalisation of p/t nets we consider the property of safeness for Eos, i.e. a
property which restricts the number of tokens on each place to at most one.
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2 Preliminaries

The definition of Petri nets relies on the notion of multisets. A multiset m on
the set D is a mapping m : D → N. Multisets are generalisations of sets in the
sense that every subset of D corresponds to a multiset m with m(d) ≤ 1 for all
d ∈ D. The notation is used for sets as well as for multisets. The meaning will be
apparent from its use. Multiset addition m1,m2 : D → N is defined component-
wise: (m1 +m2)(d) := m1(d) +m2(d). The empty multiset 0 is defined as 0(d) =
0 for all d ∈ D. Multiset-difference m1 − m2 is defined by (m1 − m2)(d) :=
max(m1(d)−m2(d), 0). We use common notations for the cardinality of a multiset
|m| :=

∑
d∈D m(d) and multiset ordering m1 ≤ m2, where the partial order ≤ is

defined by m1 ≤ m2 ⇐⇒ ∀d ∈ D : m1(d) ≤ m2(d). A multiset m is finite if
|m| < ∞. The set of all finite multisets over the set D is denoted MS (D). The
set MS (D) naturally forms a monoid with multiset addition + and the empty
multiset 0. Multisets can be identified with the commutative monoid structure
(MS (D),+, 0). Multisets are the free commutative monoid over D since every
multiset has the unique representation in the form m =

∑
d∈D m(d) · d, where

m(d) denotes the multiplicity of d. Multisets can be represented as a formal sum
in the form m =

∑n
i=1 xi, where xi ∈ D.

Any mapping f : D → D′ can be extended to a homomorphism f ♯ : MS (D) →
MS (D′) on multisets: f ♯ (

∑n
i=1 xi) =

∑n
i=1 f(xi). This includes the special case

f ♯(0) = 0. We simply write f to denote the mapping f ♯. The notation is in
accordance with the set-theoretic notation f(A) = {f(a) | a ∈ A}.

Definition 1. A p/t net N is a tuple N = (P, T,pre,post), such that P is a set
of places, T is a set of transitions, with P∩T = ∅, and pre,post : T → MS (P ) are
the pre- and post-condition functions. A marking of N is a multiset of places: m ∈
MS (P ). A p/t net with initial marking m is denoted N = (P, T,pre,post,m).

We use the usual notations for nets like •x for the set of predecessors and x• for
the set of successors for a node x ∈ (P ∪ T ).

A transition t ∈ T of a p/t net N is enabled in marking m iff ∀p ∈ P :
m(p) ≥ pre(t)(p) holds. The successor marking when firing t is m′(p) = m(p) −
pre(t)(p)+post(t)(p) for all p ∈ P . Using multiset notation enabling is expressed
by m ≥ pre(t) and the successor marking is m′ = m−pre(t)+post(t). We denote

the enabling of t in marking m by m
t−→
N

. Firing of t is denoted by m
t−→
N

m′. The

net N is omitted if it is clear from the context.
Firing is extended to sequences w ∈ T ∗ in the obvious way:

(i) m
ϵ−→ m;

(ii) If m
w−→ m′ and m′ t−→ m′′ hold, then we have m

wt−→ m′′.

We write m
∗−→ m′ whenever there is some w ∈ T ∗ such that m

w−→ m′ holds.
The set of reachable markings is RS (m0) : {m | ∃w ∈ T ∗ : m0

w−→ m}.
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3 Elementary Object Systems

An elementary object system (Eos) is composed of a system net, which is a p/t

net N̂ = (P̂ , T̂ ,pre,post) and a set of object nets N = {N1, . . . , Nn}, which are
p/t nets given as N = (PN , TN ,preN ,postN). In extension we assume that all
sets of nodes (places and transitions) are pairwise disjoint. Moreover we assume

N̂ ̸∈ N . We assume the existence of the object net • ∈ N which has no places
and no transitions and is used to model anonymous, so called black tokens.

The system net places are typed by the mapping d : P̂ → N with the meaning,
that the place p̂ of the system net contains net-tokens of the object net type N
if d(p̂) = N .3 No place of the system net is mapped to the system net itself since

N̂ ̸∈ N .

Nested Markings Since the tokens of an Eos are instances of object nets a marking
µ ∈ M of an Eos OS is a nested multiset.

A marking of an Eos OS is denoted µ =
∑|µ|

k=1(p̂k,Mk), where p̂k is a place in
the system net and Mk is the marking of the net-token of type d(p̂k). To emphasise

the nesting, markings are also denoted as µ =
∑|µ|

k=1 p̂k[Mk]. Tokens of the form
p̂[0] and d(p̂) = • are abbreviated as p̂[].

The set of all markings which are syntactically consistent with the typing d is
denoted M (Here d−1(N) ⊆ P̂ is the set of system net places of the type N):

M := MS
(∪

N∈N

(
d−1(N) ×MS (PN)

))
(1)

We define the partial order ⊑ on nested multisets by setting µ1 ⊑ µ2 iff
∃µ : µ2 = µ1 + µ.

Events Analogously to markings, which are nested multisets µ, the events of
an Eos are also nested. An Eos allows three different kinds of events (cf. the
following Eos).

1. System-autonomous: The system net transition t fires autonomously which
moves the net-token from p1 to p2.

2. Object-autonomous: The object net fires transition t1 moving the black token
from q1 to q2. The object net remains at its location p1.

3. Synchronisation: The system net transition t fires synchronously with t1 in the
object-net. Whenever synchronisation is demanded then autonomous actions
are forbidden.

3 In the following the terms (marked) object net and net-token are used almost interchangeable. We
use the term net-token whenever we like to emphasise the aspect that the marked object net is a
token of the system net.
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These three kinds of events can be described in a uniform way, namely as
synchronisations: t̂[ϑ], where t̂ is the transition that fires in the system net and
ϑ(N) is a multiset of its transitions (i.e. ϑ(N) ∈ MS (TN) for each object net
N ∈ N ), which have to fire synchronously with t̂.4

Obviously system-autonomous events are a special case of synchronous events,
where ϑ(N) = 0 for all object nets N . To describe object-autonomous events we

assume the set of idle transitions {id p̂ | p̂ ∈ P̂} to be included in the set of system

net transitions T̂ , where id p̂ formalises object-autonomous firing on the place p̂:

1. Each idle transitions id p̂ has p̂ as its side condition: pre(id p̂) = post(id p̂) := p̂.
2. Each idle transition id p̂ synchronises only with one transition from N = d(p̂):

∀τ̂ [ϑ] ∈ Θ : τ̂ = id p̂ =⇒ ∀N ∈ N : |ϑ(N)| ≤ 1 ∧
(ϑ(N) ̸= 0 ⇐⇒ N = d(p̂))

With these idle transitions all three kinds of events are described as a syn-
chronisation event τ̂ [ϑ], where τ̂ is either a “real” transition t̂ or id p̂ for some
p̂.

Definition 2 (EOS). An elementary object system (Eos) is a tuple OS =

(N̂ ,N , d, Θ, µ0) such that:

1. N̂ is a p/t net, called the system net.
2. N is a finite set of disjoint p/t nets, called object nets.

3. d : P̂ → N is the typing of the system net places.
4. Θ is the set of events.
5. µ0 ∈ M is the initial marking.

A typing is called conservative iff for each place in the preset of a system net
transition t̂ such that d(p̂) ̸= • there is place in the postset being of the same type:
(d(•t̂) ∪ {•}) ⊆ (d(t̂•) ∪ {•}). An Eos is conservative iff its typing d is.

An Eos is p/t-like iff it has only places for black tokens: d(P̂ ) = {•}.

We name special properties of Eos:

– An Eos is minimal iff it has exactly one “real” object net: |N \ {•}| = 1.
– An Eos is pure iff it has no places for black tokens: d−1(•) = ∅.
– An Eos is unary iff it is pure and minimal.

It is possible to define synchronisations which are never enabled. To prevent
the most obvious cases we require that each event θ = τ̂ [ϑ] has to respect the
following:

4 In the graphical representation the events are generated by transition inscriptions. For each object
net N ∈ N a system net transition t̂ is labelled with a multiset of channels l̂(t̂)(N) = ch1 + · · ·+ chn

which depicted as ⟨N :ch1, N :ch2, . . .⟩. Similarily, an object net transition t may be labelled with a
channel lN (t) = ch – depicted as ⟨:ch⟩ whenver there is such a label. We obtain an event t̂[ϑ] by setting
ϑ(N) := t1 + · · · + tn to be any transition multiset such that labels match: lN (t1) + · · · + lN (tn) =

l̂(t̂)(N).
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1. Let N (t) := d(•t̂ ∪ t̂•) denote the set of objects nets in the location of t̂.
We assume that the system net synchronises only with N if there is a place
attached to t̂ that may contain tokens of the object net type N :

N ̸∈ N (t) =⇒ ϑ(N) = 0

Without this property, the system net transition t̂ would always be disabled
since there is no chance to synchronise since there is no such object net as a
net-token.

2. Since it is not possible to synchronise with black tokens, we assume ϑ(N) = 0
for N = •.
Without this property, the event would always be disabled since N = • has
no transitions by definition.

Example 2. Figure 2 shows an Eos with the system net N̂ and the object nets
N = {N1, N2}. The system has four net-tokens: two on place p1 and one on p2
and p3 each. The net-tokens on p1 and p2 share the same net structure, but have
independent markings.

Fig. 2. An Elementary Object Net System

The system net N̂ = (P̂ , T̂ ,pre,post), where P̂ = {p1, . . . , p6} and T̂ = {t}.
The object net N1 = (P1, T1,pre1,post1) with P1 = {a1, b1} and T1 = {t1}.
The object net N2 = (P2, T2,pre2,post2) with P2 = {a2, b2, c2} and T2 = {t2}.
The typing is d(p1) = d(p2) = d(p4) = N1 and d(p3) = d(p5) = d(p6) = N2.

We have the channels ch1 and ch2. The labelling function of the system net l̂ is
defined by l̂(t)(N1) = ch1 and l̂(t)(N2) = ch2.
The labelling lN1 of the first object net is defined by setting lN1(t1) = ch1. Simi-
larly, lN2 is defined by lN2(t2) = ch2.
There is only one event: Θ = {t[N1 7→ t1, N2 7→ t2]}.
The initial marking has two net-tokens on p1, one on p2, and one on p3:

µ = p1[a1 + b1] + p1[0] + p2[a1] + p3[a2 + b2]

10



Note that for Figure 2 the structure is the same for the three net-tokens on p1
and p2 but the net-tokens’ markings are different.

Communication Channels In the following we define the transition labels in detail.
The set of all possible synchronisations is constructed via channel inscriptions.
We assume a fixed set of channels C =

∪
N∈N CN for disjoint CN . The transitions

in an Eos are labelled with synchronisation channels with the intention that a
system net’s transition synchronises with the object nets’ transitions that have
corresponding channels.

– For each transition t̂ the function l̂ assigns to each object nets N a multiset
of channels: l̂(t̂)(N) ∈ MS (CN).5 Whenever l̂(t̂)(N) = 0 for the object net N ,
then t̂ does not synchronise with N .

Since it is not possible to synchronise with black tokens, we assume l̂(t̂)(N) = 0
for N = •.

– The partial function lN assigns to some transitions t of the object net N a
channel, i.e. lN(t) ∈ CN whenever defined. If lN(t) is undefined, then t fires
without synchronisation, i.e. autonomously.

For technical simplification we turn the partial function into a total one using
the fresh “channels” ⊥N : Whenever lN(t) is undefined, we set lN(t) := ⊥N .

In the graphical representation the synchronisation labelling is expressed by
transition inscriptions in the form ⟨N1 : l̂(t̂)(N1), . . . , Nk : l̂(t̂)(Nk)⟩ for the system
net (whenever the label is not the empty multiset) and in the form ⟨: lN(t)⟩ for
the object nets for (whenever defined).

Define N (t) := d(•t̂ ∪ t̂•). We assume that the system net’s labelling l̂(t̂)(N)
does not have a channel inscription from the set C whenever there is no place
attached to t̂ which can contain tokens of the object net N :

N ̸∈ N (t) =⇒ l̂(t̂)(N) = 0 (2)

Otherwise, the system net transition t̂ would always be disabled since there is no
chance to synchronise since there is no such object net as a net-token.

The labelling introduces three kinds of events:

1. System-autonomous firing: The transition t̂ of the system net fires autonomously,
whenever l̂(t̂)(N) = 0 for all N ∈ N .

2. Synchronised firing: There is at least one object net that has to be synchro-
nised, i.e. there is a N such that |l̂(t̂)(N)| > 0.

3. Object-autonomous firing: An object net transition t fires autonomously when-
ever l(t) is undefined.

5 In previous formalisation of the synchronisation we bounded the number of channels for each object
net by one. The main motivation for the restriction was to obtain a shorter presentation. In this
presentation we dropped the restriction, since it has no influence on the results proven here.
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These three kinds of events can be reduced to the case of a synchronisation,
where a system net transition has a synchronisation partner in each object net.
This normal form is obtained by synchronsing with some idle transitions which
have no visible effect: We add the set of idle transitions {id p̂ | p̂ ∈ P̂} to the set of
system net transitions to express object-atonomous events and define pre(id p̂) =
post(id p̂) = p̂, i.e. p̂ is a side condition of id p̂.

We extend the labelling to idle transitions:

l̂(id p̂)(N) =

{
⊥N if d(p̂) = N

0 otherwise.

The meaning is that an object net d(p̂) = N that fires autonomously within the
place p̂ has the idle transition id p̂ as its partner in the system net.

The synchronisation labelling generates the set of system events Θ: An event
is a pair – denoted θ = τ̂ [ϑ] in the following, where τ̂ is either a real transition t̂ or
id p̂ for some p̂. The function ϑ maps each object net to a multiset of its transitions.
A pair τ̂ [ϑ] is an event whenever the system net transition τ̂ fires synchronously
with all the object net transitions ϑ(N), N ∈ N (t), which is the case when the

labels match, i.e. l̂(t̂)(N) = l♯N(ϑ(N)) for all N ∈ N (t). The set of all events is:

Θl :=
{
τ̂ [ϑ] | ∀N ∈ N (t) : l̂(t̂)(N) = l♯N(ϑ(N))

}
(3)

A special case for the mapping ϑ is the idle map ϑid which is defined ϑid(N) = 0
for all N ∈ N . The idle map models system-autonomous events which have the
form t̂[ϑid ].

For object-autonomous events id p̂[ϑ] the labelling guarantees ϑ(N ′) = 0 except
for the object net N = d(p̂).

3.1 Firing Rule

Let µ be a marking of an Eos. The projection Π1 on the first component abstracts
away the substructure of all net-tokens:

Π1

(∑|µ|

k=1
p̂k[Mk]

)
:=

∑|µ|

k=1
p̂k (4)

The projection Π2
N on the second component is the abstract marking of all

net-tokens of the type N ∈ N ignoring their local distribution within the system
net.

Π2
N

(∑|µ|

k=1
p̂k[Mk]

)
:=

∑|µ|

k=1
1N(p̂k) ·Mk (5)

where the indicator function 1N : P̂ → {0, 1} is 1N(p̂) = 1 iff d(p̂) = N . Note
that Π2

N(µ) results in a marking of the object net N .
A system event τ̂ [ϑ] removes net-tokens together with their individual internal

markings. Firing the event replaces a nested multiset λ ∈ M that is part of the

12



current marking µ, i.e. λ ⊑ µ, by the nested multiset ρ. Therefore the successor
marking is µ′ := (µ− λ) + ρ. The enabling condition is expressed by the enabling
predicate ϕOS (or just ϕ whenever OS is clear from the context):

ϕ(τ̂ [ϑ], λ, ρ) ⇐⇒ Π1(λ) = pre(τ̂) ∧Π1(ρ) = post(τ̂) ∧
∀N ∈ N : Π2

N(λ) ≥ preN(ϑ(N)) ∧
∀N ∈ N : Π2

N(ρ) = Π2
N(λ) − preN(ϑ(N)) + postN(ϑ(N))

(6)

With M̂ = Π1(λ) and M̂ ′ = Π1(ρ) as well as MN = Π2
N(λ) and M ′

N = Π2
N(ρ)

for all N ∈ N the predicate ϕ has the following meaning:

1. The first conjunct expresses that the system net multiset M̂ corresponds to
the pre-condition of the system net transition t̂, i.e. M̂ = pre(t̂).

2. In turn, a multiset M̂ ′ is produced, that corresponds with the post-set of t̂.
3. An object net transition τN is enabled if the combination MN of the markings

net-tokens of type N enable it, i.e. MN ≥ preN(ϑ(N)).
4. The firing of τ̂ [ϑ] must also obey the object marking distribution condition

which is essential for the formulation of linear invariants:M ′
N = MN−preN(ϑ(N))+

postN(ϑ(N)), where postN(ϑ(N)) − preN(ϑ(N)) is the effect of the object
net’s transition on the net-tokens.

Note that (1) and (2) assures that only net-tokens relevant for the firing are
included in λ and ρ. Conditions (3) and (4) allows for additional tokens in the
net-tokens.

For system-autonomous events t̂[ϑid ] the enabling predicate ϕ can be simplified
further. We have preN(idN) = postN(idN) = 0. This ensures Π2

N(λ) = Π2
N(ρ),

i.e. the sum of markings in the copies of a net-token is preserved w.r.t. each
type N . This condition ensures the existence of linear invariance properties (cf.
Theorem 3).

Analogously, for an object-autonomous event we have an idle-transition τ̂ =
id p̂ for the system net and the first and the second conjunct is: Π1(λ) = pre(t̂) =
p̂ = post(t̂) = Π1(ρ). So, there is an addend λ = p̂[M ] in µ with d(p̂) = N and
M enables tN := ϑ(N).

Definition 3 (Firing Rule). Let OS be an Eos and µ, µ′ ∈ M markings. The
event τ̂ [ϑ] is enabled in µ for the mode (λ, ρ) ∈ M2 iff λ ⊑ µ∧ϕ(τ̂ [ϑ], λ, ρ) holds.

An event τ̂ [ϑ] that is enabled in µ for the mode (λ, ρ) can fire: µ
τ̂ [ϑ](λ,ρ)−−−−−→

OS
µ′.

The resulting successor marking is defined as µ′ = µ− λ+ ρ.

We write µ
τ̂ [ϑ]−−→
OS

µ′ whenever µ
τ̂ [ϑ](λ,ρ)−−−−−→

OS
µ′ for some mode (λ, ρ).

Note that the firing rule has no a-priori decision how to distribute the marking
on the generated net-tokens. Therefore we need the mode (λ, ρ) to formulate the
firing of τ̂ [ϑ] in a functional way.
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Example 3. Consider the Eos of Figure 2 again. The current marking µ of the
Eos enables t[N1 7→ t1, N2 7→ t2] in the mode (λ, ρ), where

µ = p1[0] + p1[a1 + b1] + p2[a1] + p3[a2 + b2] = p1[0] + λ
λ = p1[a1 + b1] + p2[a1] + p3[a2 + b2]
ρ = p4[a1 + b1 + b1] + p5[0] + p6[c2]

Fig. 3. The EOS of Figure 2 illustrating the projections Π2
N (λ) and Π2

N (ρ)

The net-tokens’ markings are added by the projections Π2
N resulting in the

markingsΠ2
N(λ). The sub-synchronisation generateΠ2

N(ρ). (The results are shown
above and below the transition t.) After the synchronisation we obtain the suc-
cessor marking µ′ with net-tokens on p4, p5, and p6 as shown in the Figure 3:

µ′ = (µ− λ) + ρ = p1[0] + ρ
= p1[0] + p4[a1 + b1 + b1] + p5[0] + p6[c2]

3.2 Projection Equivalence

In the following we relate those nested multisets, that coincide in their projections.
The projection of a marking µ is defined as follows:

Π(µ) := (Π1(µ), (Π2
N(µ))N∈N ) (7)

Obviously, there are several markings µ with the same projection, i.e. µ is not
uniquely defined by Π(µ). The nested multisets, that coincide in their projections
give rise to the equivalence ∼= ⊆ M2, called projection equivalence defined by:

α ∼= β : ⇐⇒ Π(α) = Π(β)
⇐⇒ Π1(α) = Π1(β) ∧ ∀N ∈ N : Π2

N(α) = Π2
N(β)

(8)
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The relation α ∼= β abstracts from the location, i.e. the concrete net-token, in
which a object net’s place p is marked as long as it is present in α and β. For
example, for d(p̂) = d(p̂′) we have

p̂[p1 + p2] + p̂′[p3] ∼= p̂[p3 + p2] + p̂′[p1]

which means that ∼= allows the tokens p1 and p3 to change their locations (i.e.
between p̂ and p̂′).

Since an event collects all relevant object nets of the firing mode and combines
them to one “virtual object net” that is only present at the moment of firing, the
location of the object nets’ tokens is irrelevant and can be ignored. These virtual
object nets Π2

N(λ) are also show in the example of Figure 2. This invariance can
be expressed as follows:

Lemma 1. The enabling predicate is invariant with respect to the relation ∼=:

ϕ(τ̂ [ϑ], λ, ρ) ⇐⇒ (∀λ′, ρ′ : λ′ ∼= λ ∧ ρ′ ∼= ρ =⇒ ϕ(τ̂ [ϑ], λ′, ρ′))

Proof. From the definition of ϕ one can see that the firing mode (λ, ρ) is used only
via its projection by Π. Since λ′ ∼= λ, ρ′ ∼= ρ expresses equality modulo projection
the predicate ϕ cannot distinguish between λ′ and λ, resp. ρ′ and ρ. �

As an immediate consequence of Lemma 1 we obtain the invariance of the
firing rule with respect to projection equivalent modes.

Theorem 1. Let OS be an Eos and µ a marking. The event τ̂ [ϑ] is enabled in
the mode (λ, ρ) iff it is enabled in the mode (λ′, ρ′) such that λ′ ∼= λ ∧ ρ′ ∼= ρ.

3.3 Properties of the Firing Rule

Of course there are a lot different possible candidates for the firing rule. In fact
there infinitely many, since there is a lot of freedom how to distribute the net-
tokens’ markings when there are several outgoing arcs in the system net. Valk
[2003] discusses three basic variants, called reference semantics, value semantics,
and copy semantics. Reference semantics interprets net-tokens as pointers to ob-
ject nets. This semantics can be equally expressed as a p/t net (cf. definition 7).
Value semantics is the semantics presented in this paper. Copy semantics is a
variant of value semantics, where the net-tokens’ markings are not distributed
over the outgoing net-tokens but copied. From the modelling point of view each
of the semantics has its own pro and cons. From a more theoretical point of value
semantics is a special one since it allows to reinterpret every firing sequence also
with respect to reference semantics – as formulated in Theorem 10. One can even
show that value semantics is the only one with this property (cf. Köhler, 2004 for
details).

In the following we discuss two aspects that indicate that the firing rule has nice
properties, namely reversibility and the fact that Eos are a canonical extension
of p/t nets.
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Reversibility A basic property of Petri nets is that their firing rule is symmetric
in time, i.e. whenever all arcs are reversed then we can fire backwards: This is
expressed by the reversed net N rev = (P, T,prerev,postrev) where prerev := post
and postrev := pre which is obtained from N = (P, T,pre,post) by dualising
the effect. Symmetry in time is expressed as:

m1
t−→
N
m2 ⇐⇒ m2

t−−−→
Nrev

m1

This property holds also for Eos. Given OS = (N̂ ,N , d, l) we define the

reverse Eos as OS rev = (N̂ rev,N rev, d, l), where N rev = {N rev | N ∈ N}.

Lemma 2. Let OS be an Eos. The enabling predicate is reversible:

ϕOS (τ̂ [ϑ], λ, ρ) ⇐⇒ ϕOSrev(τ̂ [ϑ], ρ, λ)

Proof. Since (OS rev)rev = OS holds, it is sufficient to show only one implication.

Assume that ϕ(τ̂ [ϑ], λ, ρ) holds with Π(λ) = (M̂, (MN)N∈N ) and Π(ρ) =

(M̂ ′, (M ′
N)N∈N ).

We have M̂ ′ = post(τ̂) = prerev(τ̂) and M̂ = pre(τ̂) = postrev(τ̂) which
shows the first and the second conjunct of ϕ.

With MN ≥ preN(ϑ(N)) we can deduce the third conjunct of ϕOSrev :

M ′
N = MN − preN(ϑ(N)) + postN(ϑ(N))

=⇒M ′
N ≥ postN(ϑ(N)) = prerevN (ϑ(N))

The fourth conjunct holds since:

M ′
N = MN − preN(ϑ(N)) + postN(ϑ(N))

⇐⇒ MN = M ′
N − postN(ϑ(N)) + preN(ϑ(N))

⇐⇒ MN = M ′
N − prerevN (ϑ(N)) + postrevN (ϑ(N))

Therefore, ϕOSrev(τ̂ [ϑ], ρ, λ) holds. �

This implies reversibility for Eos.

Proposition 1. Let OS be an Eos. Firing is reversible:

µ
τ̂ [ϑ](λ,ρ)−−−−−→

OS
µ′ ⇐⇒ µ′ τ̂ [ϑ](ρ,λ)−−−−−→

OSrev
µ

Proof. Since the enabling predicate ϕ is reversible (Lem. 2), it remains to show
that the resulting successor marking µ′ activates the event, i.e. that ρ ⊑ µ′. But
this follows from the condition λ ⊑ µ in the firing rule which implies: µ′ =
µ− λ+ ρ ≥ ρ. �
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EOS as a Canonical Extension of P/T Nets Eos are a canonical extension
of p/t nets in two ways: The behaviour of the system net in the Eos when ignoring
the net-tokens structure cannot be distinguished from the system net as a p/t net
(Lemma 3) and each p/t-like Eos is isomorphic to the system net as a p/t net
(Lemma 4) .

Eos are a canonical extension of p/t nets, since the behaviour of an Eos when
considering only the system net’s perspective is in accordance with the behaviour
of the system net considered as a p/t net, i.e. if a transition t̂ is disabled in the
p/t net then for all ϑ the event t̂[ϑ] is disabled in the Eos.

Lemma 3. For OS = (N̂ ,N , d, Θ, µ0) define Π1(OS ) = N̂ . For each Eos OS
we have:

µ
t̂[ϑ]−−→
OS

µ′ =⇒ Π1(µ)
t̂−−−−→

Π1(OS)
Π1(µ′)

Proof. First, we have that Π1(µ) is a marking of the p/t net N̂ . Whenever µ
enables t̂[ϑ] for a mode (λ, ρ) then ϕ(t̂[ϑ], λ, ρ) holds which implies Π1(λ) = pre(t̂)
and Π1(ρ) = post(t̂) and µ′ = µ− λ+ ρ.

Since µ ≥ λ we have Π1(λ) ≥ Π1(λ) = pre(t̂), i.e. t̂ is enabled in Π1(λ).
For the system net projection follows:

Π1(µ′) = Π1(µ− λ+ ρ) = Π1(µ) −Π1(λ) +Π1(ρ) = Π1(µ) − pre(t̂) + post(t̂)

This is the successor marking when firing t̂ in Π1(µ) for the p/t net N̂ . �

For a p/t-like Eos we have no object nets: N \{•} = ∅, synchronisation given

as Θ = {t̂[∅] | t̂ ∈ T̂}, and the typing is the constant function d = • with •(p̂) = •
for all p̂ ∈ P̂ . The initial marking contains no submarking: µ0 ∈ P̂ × {0} ⊆ M.
So, p/t-like Eos have the form:

OS = (N̂ , ∅, •, {t̂[∅] | t̂ ∈ T̂}, µ0)

Lemma 4. A p/t-like Eos OS = (N̂ , ∅, •, Θl, µ0) is isomorphic to the p/t net

(N̂ ,Π1(µ0)) in the following sense:

µ
τ̂ [∅](λ,ρ)−−−−→

OS
µ′ ⇐⇒ Π1(µ)

τ̂−→̂
N
Π1(µ′)

Proof. For a p/t-like Eos the predicate ϕ(τ̂ [ϑ], λ, ρ) reduces to Π1(λ) = pre(τ̂)∧
Π1(ρ) = post(τ̂) since N \ {•} = ∅. Therefore Π2(µ) = 0 holds for all reachable
markings µ.

Since λ ⊑ µ we haveΠ1(λ) ⊑ Π1(µ), whereΠ1(µ) is the marking in the p/t net

N̂ . The successor marking when firing τ̂ [∅](λ, ρ) in OS is defined as µ′ = µ−λ+ρ.
Obviously, Π2

N(µ′) = 0 and Π1(µ′) = Π1(µ)−pre(τ̂) +post(τ̂) which equals the

successor marking when firing t̂ in N̂ . �
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4 A short Overview of related Nets-within-Nets
Formalisms

The idea to use Petri nets as tokens – also called the “nets-within-nets” approach
– can be traced back to the early nineties: Valk [1991] studies systems, where the
net-tokens model the partial order of working plans that are executed within some
external environment modelled as a Petri net again.

These nets are extended to elementary object net systems (EONS) in [Valk,
1998]. EONS are studied with respect to reference semantics, value semantics, and
copy semantics (cf. Valk, 2003 for a more recent overview). Reference semantics is
equivalent to our construction of the reference net Rn(OS ). The value semantics
of EONS defined in [Valk, 1998] is defined for the special cases of unary Eos and
the class of generalised state machines.

Farwer [1999] studies the relationship of elementary object nets and Linear
Logic.

There is also some connection to recursive Petri nets (RPN) [Haddad and
Poitrenaud, 1999], where the firing of transitions can generate sub-net activity
recursively. This nested threads of activity look somehow similar with a nesting
of markings. The most obvious difference between RPN and Eos is the fact that
the reachability problem is decidable for RPN (cf. Theorem 17 in Haddad and
Poitrenaud, 1999) but undecidable for Eos (cf. Theorem 7).

Another variant of nets-within-nets is the formalism of PN2 [Hiraishi, 2002]
which allows to have several object nets within one system net and is mainly the
same as Eos with a copy semantics.

Mobile Systems [Lakos, 2005] introduce another extension to object nets: mod-
ules that can interact via place and transition fusion. Modules describe locations
and locations may be nested. Sub modules may shift from one module to another.

There are several formalism that extend the elementary case to systems with
unbounded nesting. A first extension – called object nets – is defined in [Köhler
and Rölke, 2004]. It can be shown that for an appropriate extension of the GSM
property value and reference semantics are equivalent, too [Köhler and Rölke,
2005]. It is shown in [Köhler and Rölke, 2004] that object nets have the power to
simulate Turing machines.

A very interesting restriction comes from the area of workflow nets: Adaptive
workflow nets (AWFN) [Lomazova et al., 2006] restrict themselves to GSM and
the net-tokens to workflow nets. The formalism is extended by the possibility
to combine net-tokens at firing time with the usual workflow operations, like
sequential composition, and-forks and or-decisions. Due to its restricted structure
this formalism has some nice decidability properties.

Object nets are restricted in the sense that different levels of the system may
synchronise, but cannot exchange markings directly. In [Köhler-Bußmeier and
Heitmann, 2009] we defined the general case, i.e. object nets extended with com-
munication channels, are defined. Of course, this extension cannot extend the
expressibility any further, i.e. beyond that of Turing machines, but the expres-
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siveness remains stable even if we restrict the net-tokens to carry at most one
token on each place.

Similarly to object nets with communication channels, [Bednarczyk et al.,
2004] defines object nets that allow to exchange object nets over communication
channels, but they are restricted to the GSM case.

Reference nets [Kummer, 2002] are the generalisation of Eos for the case of
arbitrary pointer structures. The semantics is based on graph rewriting, while
Eos use term rewriting. Reference nets are supported by a very popular tool,
called Renew [Kummer et al., 2004].

Another extension considers coloured tokens: Nested nets [Lomazova and Sch-
noebelen, 2000] can be seen as the extension of object nets in the direction of
Coloured Petri Nets, i.e. we have tokens that are nets and tokens that are integers
etc. Since Nested Nets have the possibility to destroy tokens it is clear that Nested
Nets can simulate reset nets.

Another example for coloured formalisms are mobile predicate/transition nets
[Xu and Deng, 2000] which are object nets under reference semantics and predi-
cates as tokens.

AHO systems [Hoffmann et al., 2005] allow very complex data types as tokens
which can be used to encode net-tokens as data types. This encoding works nicely
for two levels but it seems that this cannot extended without further some clever,
indirect coding.

An interesting extension of objects nets – discussed in [Köhler-Bußmeier, 2009]
– allows algebraic operations on the net-tokens. This formalism therefore sub-
sumes Adaptive workflow nets [Lomazova et al., 2006] as well as object nets with
communication channels [Köhler-Bußmeier and Heitmann, 2009].

The formalism of minimal object-based nets (MOB nets) of Kummer [2000]
is related to Eos but with quite different basic assumptions: MOB nets do not
make any assumptions about the structure of the tokens; tokens just have a unique
identity which can be compared with other identities and MOB nets can generate
new tokens having fresh identifiers. It is shown in [Kummer, 2000] that these
minimal assumptions are sufficient to show that reachability is undecidable for
MOB nets – and therefore for every formalism dealing with name creation. The
formalism of ν-abstract Petri nets [Velardo and de Frutos-Escrig, 2008] is quite
similar to MOB nets. They have the same ability to create fresh names and have
therefore also an undecidable reachability problem.

5 The Invariance Calculus for EOS

There is a well elaborated connection of Petri nets and linear algebra (cf. Laut-
enbach, 1987, Silva et al., 1998). In the following we recall basic definitions
and properties for the case of p/t nets which we will then extend to Eos. Let
∆ : T → (P → Z) be the function defined by:

∆(t)(p) = post(t)(p) − pre(t)(p)
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∆(t) denotes the effect of firing t. (Note that ∆(t) expresses less information than
pre(t) and post(t). Only for nets without self loops both are equivalent.)

The function ∆ is linear, in the sense that the effect ∆(t1 + t2) of a transition
multiset is their cumulated effect:

∆(t1 + t2) = ∆(t1) +∆(t2)

If 0 < |P |, |T | < ∞ then ∆ can be expressed as a |P | · |T | matrix (called
incidence matrix ) defined by ∆(p, t) = post(t)(p) − pre(t)(p). Using ∆(t) the

successor marking of the firing step m
t−→ m′ in a p/t net can be calculated as:

m′ = m− pre(t) + post(t) = m +∆(t)

It is well known that all solutions i ∈ Z|P | \ {0} of the equation

∆⊤i = 0

which are called place-invariants (short: P -invariants) result into a linear equation
that holds for all reachable markings m ∈ RS (N,m0). The following captures the
essence of place-invariants.

Theorem 2 (Lautenbach). Let i ∈ Z|P | be a P -invariant of the p/t net N .
Then we have:

∀m ∈ RS (N,m0) : i ·m = i ·m0

This invariance calculus for p/t nets can be extended to Eos in a compositional
way, i.e. invariance equations can be obtained from the invariance equations of
the constituting components separately.

Theorem 3. Let OS = (N̂ ,N , d, l, µ0) be an Eos, î a P -invariant of the system

net N̂ and iN one for each object net N ∈ N . For all reachable markings µ it
holds:

î ·Π1(µ) = î ·Π1(µ0)

∀N ∈ N : iN ·Π2
N(µ) = iN ·Π2

N(µ0)

Proof. Proof by induction on the length of the firing sequence. Induction base:
For the empty sequence we have µ = µ0 and the property is obvious.

Induction step: Assume we have µ0
∗−−→

OS
µ

t̂[ϑ](λ,ρ)−−−−→
OS

µ′. Since î is an invariant of

the system net we have î · (post− pre) = 0. It follows:

î ·Π1(µ′) = î ·Π1(µ− λ+ ρ) = î · (Π1(µ) −Π1(λ) +Π1(ρ))

= î ·Π1(µ) − î · pre(t̂) + î · post(t̂) = î ·Π1(µ)

For all N ∈ N we have iN · (postN − preN) = 0. It follows:

iN ·Π2
N(ρ) = iN ·

(
Π2

N(λ) − preN(ϑ(N)) + postN(ϑ(N))
)

= iN ·Π2
N(λ)

This proves the property. �
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This compositionality property reduces the complexity to compute invariants
in a substantial way. This can be seen by considering the special case, where we
assume that the Eos is a generalised state machine. In this case one obtains all
invariants of the Eos OS by computing those of the reference net Rn(OS ) which
is a p/t net. If the size of all nets, i.e. the system net and all object nets, is less
than n, than the size of the reference net Rn(OS ) is roughly (|N | + 1) · n. If
the number of nets |N | and their sizes n are of comparable order this means a
quadratic increase in computational resources.

This extension of linear invariants to Eos shows that safety properties of object
nets – when considered as p/t nets – are conservatively embedded. Of course, this
embedding does not extend to liveness properties, since e.g. a deadlock-free p/t
net may block when used as a system net of an Eos, simply because it may be
synchronised with a deadlocked object net.

Example 4. As mentioned in the introduction structural analysis is useful for the
system’s as well as for the mobile agent’s side. The mobility infrastructure given
in Fig. 4 consists of the three localities pool, public, and private. The net itself is a
variant of the reader/writer problem. The parameter n ∈ N denotes the capacity
of the public location.

In the first step only the agent system (i.e. the system net N̂) is shown, since
an agent (i.e. the object net N) cannot be restricted by a platform in advance.
The synchronisation relation is also omitted for the same reason.

We show how invariants of the system net extend towards properties of the
whole Eos. The following analysis holds for arbitrarily structured agents.

There are three locations: pool, public, and private. The pool location is the
initialisation area; the public area is open for any agent, while the private area has
restricted access: It is allowed that many agents are simultaneously in the public
location, but there can be at most one agent in the private location. This prevents
agents from being spied out. The transitions between the locations model move-
ment, which are either objective or consensual (depending on the synchronisation
relation).

In the following the system net N̂ is analysed using invariants. We obtain
î = (0, 1, 1, n)′ as a solution of the equation î ·∆ = 0. Using Theorem 3 we have

î ·Π1(µ) = î ·Π1(µ0) for all reachable markings µ:

î1·Π1(µ) = Π1(µ)(public)+Π1(µ)(semaphor)+n·Π1(µ)(private) = î1·Π1(µ0) = n

Therefore Π1(µ)(private) > 0 implies Π1(µ)(private) = 1 and Π1(µ)(public) = 0.

In the following we analyse the agent net N̂ given in Fig. 5. The two places
flag1 and flag2 are used to toggle the agent’s choice between the public and the
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∆ =

t1 t2 t3 t4

pool −1 1 −1 1

public 1 −1

semaphor −1 1 −n n

private 1 −1

Fig. 4. The Multi-Agent System Net N̂

public prvivate

move
pool -> public

flag 1

flag 2

move
pool -> private

move
public -> pool

move 
private -> pool

[]

[] []

ready for
public

ready for
private

Fig. 5. The Agent
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private place. The incidence matrix is given as (with slight abbreviations):

∆ =

pool → pub pub → pool pool → prv prv → pool
ready public −1 1
public 1 −1
ready private −1 1
private 1 −1
flag1 −1 1
flag2 1 −1

Solving the equation i ·∆ = 0 we obtain i = (0, 1, 0, 1, 1, 1)′ as an invariant of
the agent-net. Using Theorem 3 we have i · Π2(µ) = i · Π2(µ0) for all reachable
markings µ:

i ·Π2(µ) = Π2(µ)(public) +Π2(µ)(private) +Π2(µ)(flag1) +Π2(µ)(flag2)
= i ·Π2(µ0) = 1

This implies:
Π2(µ)(public) +Π2(µ)(private) ≤ 1

So, we have proven that the agent does not attempt to enter the private and the
public place at the same time.

6 Decidability Problems for EOS

The interesting part in the firing rule of Eos is the fact that moving an object
net-token in the system net has the power to modify the state of an unbounded
number of tokens, i.e. all the tokens of the object net-tokens (including the case
of zero tokens). It is therefore a natural question whether this increases the ex-
pressiveness of Eos compared to p/t nets. Here we consider the most well known
decidability problems for Petri nets: The reachability, the liveness and the bound-
edness problem.

For the reachability problem one has to decide whether m1
∗−→ m2 for a given

p/t net N and two markings m1 and m2. Reachability has been studied for p/t
nets and for variants of object nets: The reachability problem for p/t nets is
studied in [Araki and Kasami, 1977].

For the liveness problem one has to decide whether all transitions of a given p/t
net N and its initial marking m0 are live. A transition t is live if for all markings
m reachable from m0 there exists one marking m′ reachable from m that enables
t:

∀m ∈ RS (m0) : ∃m′ ∈ RS (m) : m′ t−→

Since it is known for a long time that reachability and liveness are equivalent
problems (cf. Theorem 1.6 and 1.9 in Jantzen and Valk, 1980 or Theorem 5.5 and
5.6 in Peterson, 1981) the question whether both are decidable or not was open
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for several years. Decidability of reachability for p/t nets is shown in [Mayr, 1984],
a different proof is given in [Lambert, 1992].

Boundedness is the problem to decide whether there are only finitely many
reachable markings. The boundedness problem is decidable for p/t nets [Karp
and Miller, 1969] which is due to the fact that p/t nets enjoy monotonicity : If
transition t is enabled in marking m1 then it is also enabled for each greater
marking m2. Formally:

∀m1,m
′
1,m2 : (m1

t−→ m′
1 ∧m1 < m2) =⇒ (∃m′

2 : m2
t−→ m′

2 ∧m′
1 < m′

2)

Here < denotes the strict order on multisets. This fact leads to the construct
of a coverability graph which is always finite and which is expressive enough to
identify the unbounded places. Then boundedness is decidable for some extensions
of Petri nets – like Post-SM Nets and Transfer Nets – and undecidable for Reset
Nets, Inhibitor Nets, and Self-Modifying Nets (cf. Dufourd et al., 1998 for details).

6.1 Simulation of Counter Programs

It is well-known that it is undecidable whether a counter program with at least
two counters will terminate. In the following we show how to simulate counter
programs by Eos.

Definition 4. A counter program CP using m counters c1, . . . , cm is a finite
sequence of commands ending with the halt statement:

CP = cmd1; . . . ; cmdn−1; halt

There are three types of commands (1 ≤ j ≤ m and 1 ≤ k1, k2 ≤ n):

cj := cj + 1, cj := cj − 1, or ifzero cj jump k1 else k2

A configuration C = (k, n1, . . . , nm) denotes the values nj of the counters
cj and the current position k in the program. The initial configuration is C0 =
(1, 0, . . . , 0).

The successor configuration C ′ = (k′, n′
1, . . . , n

′
m) of C = (k, n1, . . . , nm) de-

pends on the current command cmdk:

– cj := cj + 1. Then k′ = k + 1, n′
j = nj + 1 and n′

i = ni for all i ̸= j.
– cj := cj − 1. Whenever nj > 0 holds, then k′ = k + 1, n′

j = nj − 1 and n′
i = ni

for all i ̸= j. For nj = 0 an error occurred and the program blocks.
– ifzero cj jump k1 else k2. Then n′

i = ni for all i and k′ = k1 if nj = 0 and
k′ = k2 otherwise.

– halt terminates the execution successfully.

The successor configuration C ′ of C (whenever defined) is uniquely determined.
The change on configuration is denoted C −−→

CP
C ′.
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For Eos with unrestricted typing d it is possible to give a bisimulation of coun-
terprograms. Figure 6 shows the direct translation of a counter program statement
cmdk into a net fragment N̂(cmdk). The fragments share the common counter
places cnt j for all j ∈ {1, . . . ,m} and the state places qk for all k ∈ {1, . . . , n}.

The fragments are part of a system net which has net-tokens of the object net
type Nc (also shown in Figure 6). This object net has only one place counter and
three transitions which are used for incrementation, decrementation, and the test
for non-emptiness.

Fig. 6. The Eos-translation of counter commands

Definition 5. Let CP = cmd1; . . . ; cmdn−1; halt be a m-counter program. The
simulating Eos is defined as

OS strong(CP) = (N̂ ,N , d, l, µ0) with N = {•, Nc}

– The system net N̂ is defined as the net-union of all net fragments N̂(cmdk)
for k ∈ {1, . . . , n}. as given in Figure 6.

– The object net Nc is given as in Figure 6.
– The synchronisation l is given by the labels inc, dec and is-pos.
– The type d(p) of the system net places is d(cnt j) = Nc for j ∈ {1, . . . ,m} and

• otherwise.
– The initial marking is µ0 = q1[] +

∑m
j=1 cnt j[0].

The marking µ of the Eos OS strong(CP) encodes the configuration C =
(k, n1, . . . , nm), denoted µ = µ(C), if the place qk is marked with a black to-
ken and for each counter cj the counter place cnt j is marked with one net-token
that has nj tokens on the place counter . Formally:

µ((k, n1, . . . , nm)) := qk[] +
m∑
j=1

cnt j[nj · counter ]
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We now show how one step of the counter automaton and the test for zero
is simulated by the Eos OS strong(CP). For each cmdk there is a firing sequence
σ(cmdk) in OS strong(CP). Additionally, we have that for each initial marking the
Eos OS strong(CP) has exactly one maximal firing sequence (which can either be
finite or infinite), i.e. there is no concurrency and no non-deterministic conflict
present.

Lemma 5. Each computation of CP is bisimulated by a firing sequence of OS strong(CP).
Each command cmd is simulated by a sequence σ(cmd) in the following sense:

C
cmd−−→
CP

C ′ ⇐⇒ µ(C)
σ(cmd)−−−−−−−→

OS strong (CP)
µ(C ′)

Additionally, whenever configuration C executes cmd as its next command, then
µ(C) has σ(cmd) as the only (maximal) enabled firing sequence.

Proof. The basic idea is to model the counter cj by an object net on the place
cnt j (cf. Figure 6) and its value by nj tokens on the place counter . Incrementation
and decrementation are directly simulated via one synchronised event. The test
whether the counter is greater than zero is realised by a synchronisation of the
system net transition >0 with the object net transition is-pos. In these cases the
firing sequence σ(cmd) has length one.

But also the test for cj = 0 is simulated directly: The transition =0 is enabled
if and only if the counter place cnt j is marked with a net-token with an empty
marking (i.e. the encoding of cj = 0), since the transition =0 has the object net
Nc in the preset but not in the postset (i.e. the typing is not conservative). As we
have seen above the firing rule enforces all net-tokens of type Nc to be unmarked.
The transition recreate generates a new object net with an empty marking (as
required) on the place cnt j. Here σ(cmd) has length two.

Thus, the system net transition >0 is enabled if and only if the counter is
positive and the system net transition =0 is enabled if and only if the counter is
zero. �

Due to this strong simulation we obtain the following undecidabilty results.

Theorem 4. Reachability, boundedness, and coverability are undecidable for Eos.

Proof. These problems are undecidable for inhibitor nets (cf. Dufourd et al., 1998)
and each inhibitor net is bisimulated by a counterprogram which is bisimulated
by the (non-conservative) Eos OS strong(CP). �

6.2 Simulation of Inhibitor Nets

The proof of Theorem 4 relies on a reduction of counterprograms to Eos. The
same result can be obtained by giving a direct simulation of inhibitor nets. It is
well-known that the reachability problem is undecidable for inhibitor nets. In the
following we show how to simulate inhibitor nets by Eos.
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Lemma 6. For each inhibitor net N∗ there is an Eos OS strong(N
∗) that simulate

N∗.

Proof. We show that each inhibitor net can be simulated by the EosOS strong(N
∗).

Without loss of generality we consider inhibitor nets without arc weights and we
assume that for each transition we have that whenever a place p is connected via
a inhibitor arc then this place is not connected with t via a normal arc. Let us
consider a inhibitor net given as N∗ = (P ∗, T ∗, F ∗, F ∗

r ,m0), where F ∗
r ⊆ P ∗ × T ∗

describes the inhibitor arcs. A transition t is enabled in m iff there is at least one
token on each input place and all inhibitor place carry the empty marking, i.e.
m(p) ≥ F (p, t) for all p and m(p) = 0 for all p such that (p, t) ∈ F ∗

inh .

Fig. 7. The Eos-translation of inhibitor nets

Each marking m of the inhibitor net is encoded as the marking µ(m) of the
Eos. We say that a nested marking µ encodes a marking m of N∗ whenever µ
contains exactly one net-token on each place p ∈ P ∗ (and none on the other
places) and the net-token on p has exactly m(p) tokens on its place cnt:

µ(m) := run[] +
∑
p∈P ∗

p[m(p) · cntd(p)]

Each firing m
t−→ m′ is simulated deterministically by the firing µ(m)

t1t2−−→ µ(m′).

The simulating Eos OS strong(N
∗) = (N̂ ,N , d, Θ, µ0) is constructed in the

following way:

– For each place p ∈ P ∗ in the inhibitor net the simulating Eos has one object-
net N(p). Each object-net N(p) has exactly one place cntN(p) and the two
transitions iN(p) and dN(p), where iN(p) is labelled with channel incN(p) and
dN(p) is labelled with channel decN(p). In particular all the object nets N(p)
have the same net structure. Additionally we have the object-net •:

N = {•} ∪ {N(p) | p ∈ P ∗}
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– The system net N̂ is obtained from the inhibitor N∗ via a substitution for each
transition which is illustrated in Figure 7:
Each transition t ∈ T ∗ is replaced by two transitions t1 and t2.

T̂ := {t1, t2 | t ∈ T ∗}

For each input arc (p, t) ∈ F ∗ ∩ (P ∗ × T ∗) we add the place (p, t); for each
output arc (t, p′) ∈ F ∗ ∩ (T ∗ × P ∗) we add the place (t, p′); for each inhibitor
arc (pi, t) ∈ F ∗

r we add the place (pi, t). Additionally, we have one global run
place which guarantees that firing of t1 must be followed by t2 before any other
transition can fire.

P̂ := P ∗ ∪ F ∗ ∪ F ∗
r ∪ {run}

For each input arc (p, t) the transition t1 is labelled with decN(p):

l̂(t1)(N(p)) =

{
decN(p), if (p, t) ∈ F ∗ ∩ (P ∗ × T ∗)

0, otherwise

For each output arc (t, p) the transition t2 is labelled with incN(p′):

l̂(t2)(N(p′)) =

{
incN(p′), if (t, p′) ∈ F ∗ ∩ (T ∗ × P ∗)

0, otherwise

– The typing d is defined as:

d(p) = N(p) d(p, t) = N(p) d(t, p′) = N(p′) d(pi, t) = d(run) = •

– The initial marking is defined as the encoding of m, i.e. µ0 := µ(m0).

Whenever a place pi is connected via a inhibitor arc with t then t1 has exactly
one place of type N(pi) in its preset but none in the postset. Therefore t1 can
only fire if the marking of the net-token is the empty multiset. Whenever t2 fires
it generates one net-token on pi again which must be empty since there is no place
of type N(pi) in the preset of t2. It is straightforward to see that we have:

m
t−→ m′ ⇐⇒ µ(m)

t1t2−−→ µ(m′)

This proves that the Eos OS strong(N
∗) simulates the inhibitor net N∗. �

We define the liveness problem for Eos analogously to that of p/t nets: For
the liveness problem one has to decide whether all events θ ∈ Θ of a given Eos
OS are live. An event θ is live if for all markings µ reachable from µ0 there exists
a marking µ′ reachable from µ that enables θ.

Lemma 7. The reachability problem is reducible to the liveness problem for Eos.
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Proof. The proof follows the idea given in [Peterson, 1981] that shows the equiv-
alence of reachability and liveness for p/t nets.

It is sufficient to consider the problem whether the empty marking is reachable
since for each inhibitor net N1 and each marking m we can construct another
inhibitor net N2 with the property: The marking m is reachable in N1 iff 0 is
reachable in N2. The net N2 is obtained from N1 by adding one place run and one
transition t (cf. Fig. 8). The additional run-place is attached as a side condition
to each transition of N1. Initially the place run is marked with one token. The
additional transition t removes exactly m(p) tokens from each p (where m is the
given marking tested for reachability) and one token from run. The postset of t is
empty. It is obvious that N2 has the desired property.

Fig. 8. Reduction from Reachability to Reachability of the Empty Marking

Fig. 9. Reduction from the 0-Reachability to Liveness of t0

We will construct an Eos OS (N∗) from a given p/t net N∗ such that the
empty marking is reachable in N∗ iff the event t0[ϑ] is not live in OS (N∗).

Assume the inhibitor net is given as N∗ = (P ∗, T ∗, F ∗, F ∗
inh ,m0). We define

OS (N∗) almost the same as in Lemma 6. We add transition t0 and the place run2
and for each p ∈ P ∗ the place p′ and the transitions t(p) and t′(p) (cf. Fig. 9). We
set d(run2) := • and d(p′) := d(p) = N(p). Remark: Since t0 has only places of
the black token type in the pre- and postset (i.e. N (t0) = {•}) we obtain that if
the event t0[ϑ] is activated then ϑ is uniquely determined as ϑ(N) = 0 holds for
all N ∈ N (t0).
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As before, we define µ(m) as:

µ(m) := run[] +
∑
p∈P ∗

p[m(p) · cntd(p)]

A marking that is reachable in N∗ is so in OS (N∗):

m1
w−→ m2 =⇒ µ(m1)

w−→ µ(m2)

Assume that 0 is reachable in N∗. In µ(0) we have µ(0)
t0[ϑ]−−→ µ := run2[] +∑

p∈P ∗ p[0] and in µ no event is activated anymore. So, if 0 is reachable in N∗

then clearly t0[ϑ] is not live.
Assume that 0 is not reachable in N∗. Then t0[ϑ] is live: For each marking

m∗ ̸= 0 we have m∗(p0) > 0 for some p0 and therefore we have µ(m∗)
t0[ϑ]−−→

µ′ t(p0)[ϑ′]t′(p0)[ϑ′′]−−−−−−−−−−→ µ(m∗). Note that t(p0)[ϑ
′]t′(p0)[ϑ

′′] does not alter the marking
of the net-token on p. �

We can also study the variant of group liveness, where we try to activate t[ϑ]
not for a fixed, but only for some ϑ: A transition t is group-live if for all markings
µ reachable from µ0 there exists a marking µ′ reachable from µ that enables t[ϑ]
for some ϑ. From the proof we can see that also group-liveness is undecidable
since the empty marking is reachable in N∗ iff t0 is group-live in OS (N∗).

Theorem 5. Reachability, liveness, boundedness, and coverability are undecid-
able for Eos.

7 Decidability Results for Conservative EOS

The expressiveness of Eos as formulated in Theorem 4 was due to a non-conservative
typing. Recall, that a typing d is called conservative if for all t we have that each
place p̂ in its preset there is a place p̂′ in its postset typed with the same net,
i.e. d(p̂) = d(p̂′).

If this condition is violated, i.e. we have a system net transition t̂ such that
N ∈ d(•t̂) and N ̸∈ d(t̂•) for some object net N , then firing of this transition
enforces net-tokens of type N to be unmarked (emptiness constraint): The event
τ̂ [ϑ] is enabled in mode (λ, ρ) only if all object nets in λ of this type N carry the
empty marking: Π2

N(λ) = 0 (cf. the definition of the enabling predicate ϕ in (6)).
In other words: The system net cannot destroy the tokens within a net-token.6

It is exactly this blocking behaviour that we used in the proof of Theorem 4 to
simulate counter programs. Note that blocking destroys the monotonicity of the
firing rule.

6 There are variants of the formalism that allow the destruction of the net-token’s tokens (i.e. the copy
semantics discussed in Valk, 2003). But then it is quite obvious that one can simulate at least reset
nets i.e. Petri nets with reset arcs. It is known that reachability and boundedness is undecidable for
reset nets while e.g. coverability remains decidable (cf. Dufourd et al., 1998).
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The symmetric case of typing is unproblematic: A transition t̂ ∈ T̂ with an
object net N that is present in the postset, but not in the preset, i.e. N ̸∈ d(•t̂)
and N ∈ d(t̂•) generates net-tokens of type N . The firing rule ensures that these
net-tokens carry the empty marking since in this case τ̂ [ϑ] is enabled in mode
(λ, ρ) only if all object nets in ρ of this type N carry the empty marking.

7.1 Monotonicity of the Firing Rule for Conservative EOS

One can argue that the blocking is an definitorial artefact. Therefore we study Eos
without blocking situations, i.e. conservative Eos. It will turn out that the block-
ing behaviour is somehow the only source of the equivalence of Eos to counter
programs: If we consider Eos without this blocking behaviour, i.e. conservative
Eos, we will regain the monotonicity property of the firing rule.

We define the order ≼ on nested markings by:

α ≼ β ⇐⇒ α =
∑m

i=1 âi[Ai] ∧ β =
∑n

i=1 b̂i[Bi] ∧
∀1 ≤ i ≤ m : âi = b̂i ∧ Ai ≤ Bi

(9)

Note that α ⊑ β is a special case of α ≼ β, where Ai ≤ Bi is restricted to
Ai = Bi.

It is clear that for a transition t̂ such that N ∈ d(•t̂) and N ̸∈ d(t̂•) for
some object net N , the enabling of τ̂ [ϑ] in the mode (λ, ρ) does not imply the
enabling of τ̂ [ϑ] in all (λ′, ρ′) with λ ≼ λ′, i.e. the firing rule for general Eos is
not monotonous.

Therefore we have to forbid typings, where N ∈ d(•t̂) and N ̸∈ d(t̂•) for some
transition t̂, i.e. we restrict Eos to conservative ones.

Given the representation above for α ≼ β, then
∑m

i=1 âi[Bi] is called a α-
restriction of β. In general there are many restrictions since the sum representation
of α as

∑m
i=1 âi, [Ai] and β as

∑n
i=1 b̂i[Bi] are not unique. Let (β ↓ α) denote the

set of all α-restrictions of β. Let α and β be arbitrary nested multisets with α ≼ β.
Then we have:

∀α, β ∈ M : α ≼ β =⇒ ∀γ ∈ (β ↓ α) : α ≼ γ ≼ β ∧Π1(α) = Π1(γ) ≤ Π1(β)
(10)

Lemma 8. For Eos with conservative typing d the firing rule is monotonous
w.r.t. the order ≼, i.e. if the event τ̂ [ϑ] is enabled then it is enabled for each
greater marking:

(∀µ1, µ
′
1, µ2 : µ1

τ̂ [ϑ]−−→
OS

µ′
1 ∧ µ1 ≺ µ2) =⇒ (∃µ′

2 : µ2
τ̂ [ϑ]−−→
OS

µ′
2 ∧ µ′

1 ≺ µ′
2)

Proof. Let (λ1, ρ1) be the mode of µ1
τ̂ [ϑ]−−→
OS

µ′
1 and let µ1 ≺ µ2. We construct a

mode (λ2, ρ2) for µ2. We choose a λ1-restriction of µ2 for λ2, i.e. λ2 ∈ (µ2 ↓ λ1).
By (10) this implies Π1(λ1) = pre(τ̂) = Π1(λ2) and λ1 ≼ λ2 and we know that
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λ2 involves the same number of net-tokens for each place in the system net and
all the net-tokens have a greater marking each, cf. (9).

Therefore the object nets’ tokens Π2
N(λ2) −Π2

N(λ1) ≥ 0 are irrelevant for ϕ.
They can be added arbitrarily to the net-tokens in ρ1 to construct ρ2. All these
choices are equivalent w.r.t. the projection equivalence ∼=. For each possible ρ2
the mode (λ2, ρ2) enables τ̂ [ϑ] in µ2.

The successor marking µ′
2 is greater than µ′

1: We have µ1 ≥ λ1 by Def. 3 and
by this µ1 = µ0,1 +λ1. The successor is µ′

1 = µ0,1 + ρ1. Analogously µ2 = µ0,2 +λ2
and µ′

2 = µ0,2 + ρ2. The nested multisets µ0,i, i = 1, 2 contain all the net-tokens
which are untouched. Since µ1 ≺ µ2 we know that one of the inclusion must be
strict: µ0,1 ≺ µ0,2 or λ1 ≺ λ2. Since ρ1 ≼ ρ2 holds in the first case and ρ1 ≺ ρ2 in
the second one we obtain µ′

1 ≺ µ′
2. �

In the following we show that the reachability graph of a conservative Eos is a
well structured transitions system [Abdulla et al., 1996, Finkel and Schnoebelen,
2001].

A quasi order is a reflexive and transitive binary relation. A partial order is a
antisymmetric quasi order. For a given partial order ≤ on the set A the upward
closure of a subset B is ↑ B := {x ∈ A | ∃b ∈ B : b ≤ x}. For a given partial order
≤ on the set A the set of minimal elements for B ⊆ A is a set min(B) ⊆ B of

A quasi order is a reflexive and transitive binary relation. A partial order is a
antisymmetric quasi order. For a given partial order ≤ on the set A the upward
closure of a subset B is ↑ B := {x ∈ A | ∃b ∈ B : b ≤ x}. For a given partial
order ≤ on the set A the set of minimal elements for B ⊆ A is a set min(B) ⊆ B
of incomparable elements such that for all b ∈ B there is an element a ∈ min(B)
with a ≤ b.

A quasi order ≤ over the set X is called well quasi order (wqo) whenever each
sequence x0x1x2 . . . contains two comparable elements, i.e. there are elements xi
and xj with i < j such that xi ≤ xj. Therefore, any wqo prohibits sequences with
infinite incomparable elements. In a wqo the set min(B) is always finite.

A transition system (S,→, S0) consists of a set of states S, initial states S0 ⊆ S
and a transition relation → ⊆ S×S. For S ′ ⊆ S we denote the set of predecessors
by Pred(S ′) := {s ∈ S | s → s′ ∈ S ′} and successors by Succ(S ′) := {s ∈ S |
s′ → s, s′ ∈ S ′}. A transition system is finitely branching if Succ(s) is finite for
all states s.

A partial order ≤ on the set of states S of a transition system (S,→, S0) has
the property of strict compatibility with respect to ≤ (sometimes called mono-
tonicity), if the following holds: Whenever s1 → s′1 and s1 < s2, then there exists a
s′2 such that s2 −→ s′2 with s′1 < s′2. Similarly, a transition system has the property
of compatibility if the above holds for ≤ instead of <, i.e. for the non-strict case.
In general, strict compatibility implies compatibility.

A well structured transition system (wsts) (S,→, S0,≤) is a finitely branching
transitions system (S,→, S0) with a strict compatible order ≤ such that ≤ is a
decidable wqo and min(Pred(↑ s)) is computable for all s ∈ S.
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Theorem 6. Boundedness and Coverability are decidable for conservative Eos.

Proof. Generalising the result of [Karp and Miller, 1969] it is shown in [Finkel
and Schnoebelen, 2001] that the boundedness and the coverability problem are
decidable for well structured transitions system. The reachability graph of a con-
servative Eos is a well structured transitions system: By Lemma 8 the transition
system is strictly compatible with the partial order ≼, the partial order ≼ is a
decidable wqo, and the set of minimal predecessors is computable. Hence, decid-
ability follows. �

The markings of an Eos have a bounded nesting depth. For general object
nets there is no bound for the nesting depth and we know that the argument as
given in Theorem 6 cannot be applied since we know that even simple object nets
with unbounded nesting depth are able to simulate counter programs [Köhler-
Bußmeier and Heitmann, 2009]. The reasons for this lies in the fact that a partial
order, defined analogously as ≼, fails to be a wqo for unbounded nesting since
we may have infinitely many incomparable markings. Consider e.g. the following
sequence:

µ1 = 2p1[]

µ2 = p1[2p2[]]

µ3 = p1[p2[2p3[]]]
...

7.2 Reachability for Conservative EOS

In the following we show that reachability remains undecidable even if we restrict
Eos to conservative typings. We can reuse the translation of a counter program
statement cmdk into a net fragment N̂(cmdk) from above (with slight modifica-
tions). The Figure 10 shows the direct translation of a counter program statement

cmdk into a net fragment N̂(cmdk). The fragments share the common counter
places cnt j for all j ∈ {1, . . . ,m} and the state places qk for all k ∈ {1, . . . , n}.
The major extension compared to Figure 6 is the global place control , which is a
side condition to the test transition =0, and the transition reduce.

Definition 6. Let CP = cmd1; . . . ; cmdn−1; halt be a m-counter program. The
simulating Eos is defined as

OS (CP) = (N̂ ,N , d, l, µ0) with N = {•, Nc}

– The system net N̂ is defined as the union of all net fragments N̂(cmdk) for
k ∈ {1, . . . , n} as in Figure 10.

– The object net Nc is given as in Figure 10.
– The synchronisation l is given by the labels inc, dec and is-pos.
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Fig. 10. The Eos-translation of counter commands

– The type d(p) of the system net places is d(cnt j) = d(control) = Nc for j ∈
{1, . . . ,m} and • otherwise.

– The initial marking is µ0 = q1[] + control [0] +
∑m

j=1 cnt j[0].

The marking µ of the EosOS (CP) encodes the configuration C = (k, n1, . . . , nm),
denoted µ = µ(C), if the following holds:

1. The place qk is marked with a black token.
2. For each counter cj the counter place cnt j is marked with one net-token that

has nj tokens on the place counter .
3. The place control is marked with one empty net-token.

Formally: µ((k, n1, . . . , nm)) := qk[] + control [0] +
m∑
j=1

cnt j[nj · counter ]

We now show how one step of the counter automaton and the test for zero can
be simulated by the Eos OS (CP). The simulation provided here is a very weak
one, in the sense that the simulation might make wrong guesses about the test on
zero, but all misguesses are “remembered” in the marking. Nevertheless for each
computation C0

∗−−→
CP

C there is one corresponding firing sequence µ(C0)
∗−−−−→

OS(CP)

µ(C). Additionally we have the property that for each firing µ(C0)
∗−−−−→

OS(CP)
µ such

that µ does not correspond to any configuration then no marking reachable from
µ ever will do so due to the logging on the place control .

Lemma 9. Each computation of CP is simulated weakly by a firing sequence of
OS (CP) in the following sense:

C
∗−−→

CP
C ′ ⇐⇒ µ(C)

∗−−−−→
OS(CP)

µ(C ′)

Proof. The basic idea is to model the counter cj by an object net on the place cnt j
(cf. Figure 10) and its value by nj tokens on the place counter . Incrementation
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and decrementation are directly simulated via one synchronised event. The test
whether the counter is greater than zero is realised by a synchronisation of the
system net transition >0 with the object net transition is-pos.

For the test on zero we have to guess. First note, that different from Lemma 5
transition =0 can fire even if the object net on cnt j is not empty. The key issue is
the marking of the control places. It records the misguesses and this information is
never lost. Transition =0 only guesses that the counter is equal zero and this guess
might be wrong. But this guess is logged on the place control which is initially
marked by an unmarked object net. The whole object net is transferred from cnt j
to control since place pk has a different type. Transition reduce combines the old
and the new net-token on control into one. Transition recreate generates a new
object net with an empty marking (as required) on place cnt j.

We have the property that in every reachable marking all the net-tokens on
place control have the empty marking if and only if all guesses have been right
during the simulation: The Eos starts with the marking µ0 = µ(C0). When all
guesses have been right during the simulation then the resulting marking perfectly
reflects the configuration C. But after the first wrong guess we never reach a
marking µ such that it is a configuration marking µ(C) for some C since we can
never get rid of the tokens in the net-token on the place control . �

The simulation is called weak since in general due to non-deterministic choices
for each µ(C) we have several firing sequences, i.e. the set

RS
(
OS (CP), µ(C0)

)
= {µ | µ(C0)

∗−−−−→
OS(CP)

µ}

contains also markings that are generated by incorrect simulations. But if consider
the intersection of this set with the set of all configurations, i.e. the set

RS
(
OS (CP), µ(C0)

)
∩ {µ(C) | C is a configuration of CP},

then we obtain exactly those reachable marking that corresponds to correct sim-
ulations of the counter program.

Therefore this weak simulation suffices to establish the undecidability of the
reachability problem.

Theorem 7. Reachability is undecidable for conservative Eos. It is even unde-
cidable for pure Eos with conservative typing and undecidable for minimal Eos
with conservative typing.

Proof. It is well-known that it is undecidable for a counter program CP whether
the halting configuration with empty counters, i.e. (n, 0, ..., 0) is reachable. If

reachability is decidable for Eos, then deciding whether µ(1, 0, . . . , 0)
∗−−−−→

OS(CP)

µ(n, 0, . . . , 0) holds for OS (CP) decides whether (1, 0, . . . , 0)
∗−→
A

(n, 0, . . . , 0) ter-

minates successfully for CP – clearly a contradiction to the undecidability of
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the halting problem, so reachability is undecidable for Eos. Since OS (CP) is a
minimal Eos reachability cannot be decidable for this class. The same argument
applies if we exchange the object net • with another object net N∅ without places
or transitions. Then the simulating Eos is pure. �

It is an open question whether the reachability problem is decidable for con-
servative, minimal and pure (i.e. unary) Eos. The interesting case for reachability
of unary Eos considers unbounded object nets, since reachability is decidable for
semi-bounded Eos (see Thm. 14).

Due to the weak form of simulation not everything becomes undecidable for
Eos with conservative typing. In fact, as shown in Theorem 6 boundedness is
decidable for conservative Eos.

7.3 The Liveness Problem for EOS

We define the liveness problem for Eos analogously to that of p/t nets: For the
liveness problem one has to decide whether all events θ ∈ Θ of a given Eos OS
are live. An event θ is live if for all markings µ reachable from µ0 there exists a
marking µ′ reachable from µ that enables θ.

Theorem 8. Liveness is undecidable for Eos. More precisely, liveness is unde-
cidable even for pure Eos as well as for minimal Eos (even with the restriction
to conservative typing).

Proof. We extend the construction of Theorem 7. We will show that if we can
decide liveness for a given event τ̂ [ϑ], then we can decide reachability of the
configuration C = (n, 0, . . . , 0) (i.e. proper termination with empty counters)
which is an undecidable problem.

Fig. 11. Eos-fragment for Theorem 8

We use the translation of a counter program given in Figure 10 and add the
fragment shown in Figure 11 consisting of the place p and the transitions t0, t1,
and t2. The resulting Eos is called OS live(CP).

We show that the configuration (n, 0, . . . , 0) is reachable in the counter pro-
gram iff t1[∅] is live in OS live(CP) and t2[Nc 7→ tpos ] is not.
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(⇒) Assume that (n, 0, . . . , 0) is a reachable configuration. Then we know that
in OS (CP) we reach the configuration:

µ((n, 0, . . . , 0)) = qn[] +
m∑
j=1

cnt j[0]

In the marking µ((n, 0, . . . , 0)) the transition t0 is enabled and after firing t0 the
place p is marked with a token. Note that after firing of t0 no other transition
than t1, t2, and reduce is enabled any more.

Whenever p is marked transition t1 is constantly enabled and therefore live.
Whenever the simulation was perfect until now the global place control contains
only net-tokens with empty marking. Firing of t0 adds another net-token with
empty marking to this place. Since transition t2 synchronises via is-pos it is not
enabled, i.e. it is dead.

Whenever at least one simulation guess was wrong then the global place control
contains at least one net-token with a non-empty marking and transition t2 is
constantly enabled and therefore live.

(⇐) Assume that t1[∅] is live and t2[Nc 7→ tpos ] is not. Since t1[∅] is live we
know that p is marked and therefore transition t0 must have fired. This means that
the simulation has reached the final statement since t0 fires only if qn is marked.

Since t2[Nc 7→ tpos ] is not live, we know that the simulation must have correct
and that t0 has fired in a configuration marking, where all counters were zero.

Thus any algorithm for the Eos-liveness problem decides the halting problem
for counter programs. �

7.4 Weak Simulation of Inhibitor Nets by Conservative EOS

In the following we show that reachability remains undecidable even if we restrict
Eos to conservative typings. We can reuse the translation of a inhibitor net in
Lemma 6. The simulation provided for conservative Eos is a very weak one, in
the sense that the simulation might make wrong guesses about the test on zero,
but all misguesses are stored in the marking till the end. Nevertheless for each
firing sequence m

∗−→ m′ in the inhibitor net there is one corresponding sequence
µ̃(m)

∗−→ µ̃(m′) in the simulating Eos. Additionally we have the property that

for each firing µ̃(m)
∗−→ µ such that µ does not correspond to any marking in the

inhibitor net then no marking reachable from µ ever will do so.

Lemma 10. For each inhibitor net N∗ there is a conservative Eos OS (N∗) that
has the following property:

m
∗−→
N∗

m′ ⇐⇒ µ̃(m)
∗−−−−→

OS (N∗)
µ̃(m′)

Proof. Let us consider a inhibitor net given as N∗ = (P ∗, T ∗, F ∗, F ∗
r ,m0), where

F ∗
r ⊆ P ∗ × T ∗ describes the inhibitor arcs.
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Fig. 12. The conservative Eos-translation of inhibitor nets

The simulating Eos OS (N∗) (cf. Figure 12) is obtained by minor modifications
from the Eos OS strong(N

∗) from Lemma 6 (cf. Figure 7): In addition to the
places in OS strong(N

∗) we add the system net places control(p) and empty(p) with
d(control(p)) = d(empty(p)) = N(p) for each place p ∈ P ∗. For each inhibitor
place pi we add control(pi) as a side condition to t1 and empty(pi) to t2. All the
places (pi, t) are removed.

P̂ := P ∗ ∪ F ∗ ∪ {run} ∪ {control(p), empty(p) | p ∈ P ∗}

The definition of µ̃(m) has to be adjusted, too: We say that a nested marking µ
encodes a marking m of N∗ whenever µ contains exactly one net-token on each
place p ∈ P ∗ (and the net-token on p has exactly m(p) tokens on its place cnt)
and one empty net-token on each control place and each empty place:

µ̃(m) := µ(m) + control(p)[0] + empty(p)[0]
= run[] +

∑
p∈P ∗ p[m(p) · cntd(p)] + control(p)[0] + empty(p)[0]

As before, the initial marking is defined as the encoding of m, i.e. µ0 := µ̃(m0).
By construction, the simulating Eos OS (N∗) is conservative.

Assume that we have corresponding marking µ̃(m) and m enables t in the
inhibitor net. As before t1[ϑ1] can fire if there enough tokens in the preset. Since,
the run-place is emptied the simulation of other transitions is disabled then. As
before t2[ϑ2] generates the correct successor marking. For each inhibitor place pi

the event t1[ϑ1] combines the net-token on pi with that from control(pi). Since
t is activated in N∗ the place pi must be empty and therefore the net-token on
pi in the Eos is empty, too. After firing t1[ϑ1] we have an empty net-token on
each control(pi) again. After that, t2[ϑ2] regenerates an empty net-token on each
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pi with the help of the empty net-token empty(pi): For each pi two net-tokens are
generated – one on pi and one on empty(pi) – and the firing rule ensures that both
are empty again. Additionally, t2[ϑ2] puts a token back on the run-place and the
simulation can continue.

However, it is not guaranteed that the inhibitor places are empty whenever
t1[ϑ1] is enabled, i.e. for the test on zero we have to guess. What happens if some
inhibitor place pi is not empty when t1[ϑ1] fires? Note that t2[ϑ2] is still enabled
but the event will produce a marking µ1 which has a non-empty net-token on
control(pi). After that, t2[ϑ2] produces an empty net-token puts a on the inhibitor
place pi and puts a token back on run-place.

The important aspect is, that the resulting marking µ does not correspond to
a marking of N∗ since the is no m such that µ = µ̃(m) holds since at least one
control-place is marked with a non-empty token. And even more important, we
can never get rid of these tokens again, since the tokens in the net-token on a
control-place are never removed.

So, we have that all the net-tokens on control-places have the empty marking
if and only if all guesses on the emptiness of inhibitor places have been right
during the simulation: When all guesses have been right during the simulation
then the resulting marking perfectly reflects the marking m. But after the first
wrong guess we never reach a marking µ such that it is a configuration marking
µ̃(m) for some m since we can never get rid of the tokens in the net-token on the
places control(p). �

The reduction from the reachability problem to the liveness problem is also
possible for conservative Eos.

Lemma 11. The reachability problem is reducible to the liveness problem for con-
servative Eos.

Proof. Figure 13 shows the conservative Eos OS (N∗) with the property that
if one can decide liveness for OS (N∗) then one can decide reachability of the
empty marking in the inhibitor net N∗. The construction is quite similar to the
one in Lemma 7: To each control place control(p) we add the transitions t1 and
t2. Whenever t1[ϑ1] is enabled then the net-token is not empty. Note, that the
sequence t1[ϑ1]t2[ϑ2] does not change the marking.

As before liveness of t0[ϑ0] indicates reachability of the empty marking 0 in
the inhibitor net N∗ under the the assumption that all guesses habe been made
correct. So, we have to express the condition that all guesses about imhibitor test
have been right during the weak simulation in terms of liveness: If all guesses
about imhibitor tests on place p have been right during the weak simulation, then
t1[ϑ1] is dead for all ϑ1. Conversely, if one guess has been wrong, then t1[ϑ1] is live
for some ϑ1. Therefore, the simulation is correct iff t1(p)[ϑ1] is dead for all p ∈ P ∗.

Therefore, the empty marking 0 is reachable in the inhibitor net N∗ iff for all
p ∈ P ∗ we have that t1[ϑ1] is not live for all ϑ1 and t0[ϑ0] is live for some ϑ0. �

Therefore, liveness is undecidable even for conservative Eos.
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Fig. 13. Conservative Eos-Reduction from the 0-Reachability to Liveness of t0

Theorem 9. Reachability and liveness are undecidable for conservative Eos.

8 Decidability Results for Generalised State Machines

For each Eos there is an obvious construction of a p/t net, called the reference
net, which is constructed by taking as the set of places the disjoint union of all
places and as the set of transitions the synchronisations. Since the places of all
nets in N are disjoint by definition, the projections (Π1(µ), (Π2

N(µ))N∈N ) can be
identified with the multiset:

Rn(µ) := Π1(µ) +
∑
N∈N

Π2
N(µ)

Note that Rn(µ) is another representant of the equivalence class [µ]∼=.

Definition 7. Let OS = (N̂ ,N , d, l, µ0) be an Eos. The reference net Rn(OS )
is defined as the p/t net:

Rn(OS ) =
((
P̂ ∪

∪
N∈N

PN

)
, Θ,preRn,postRn,Rn(µ0)

)
where preRn (and analogously: postRn) is defined by:

preRn(τ̂ [ϑ]) = pre(τ̂) +
∑

N∈N
preN(ϑ(N))

The net is called reference net because it behaves as if each object net would
have been accessed via pointers and not like a value: A black token on a system
net place p̂ is interpreted as a pointer to the object N̂ = d(p̂) where each object
net has exactly one instance but several pointers referring to it.

Theorem 10. Let OS be an Eos. Every event τ̂ [ϑ] that is activated in OS for
(λ, ρ) is so in Rn(OS ):

µ
τ̂ [ϑ](λ,ρ)−−−−−→

OS
µ′ =⇒ Rn(µ)

τ̂ [ϑ]−−−−→
Rn(OS)

Rn(µ′)
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Proof. Whenever τ̂ [ϑ] is activated in µ the enabling condition ϕ holds. This implies
thatΠ1(µ) enables τ̂ andΠ2

N(µ) enables ϑ(N) for eachN ∈ N . Since all the places
are disjoint Rn(µ) is isomorphic to the projections Π(µ) and this implies that the
multiset sum τ̂ +

∑
N∈N ϑ(N) is enabled which is equivalent to the enabling in

Rn(OS ). Analogously one can observe that the effect on Π1(µ) an on the Π2
N(µ)

is the same which implies that the successor marking in Rn(OS ) is Rn(µ′). �

s11

t1

t2

t11 t12
s12 s13

:ch2():ch1()

on:ch1()s1

t3
on:ch2()

s6
t4

s5

s4s2

s3

net token

system net

Fig. 14. The α-centauri Eos

The converse is not true in general, which can be demonstrated using the Eos
in Fig. 14 known as the α-centauri example, cf. [Valk, 1998]. Initially we have
µ0 = ŝ1[s11]. In the reference net we have the initial marking Rn(µ0) = ŝ1 + s11
which activates the firing sequence:

(ŝ1 + s11)
t̂1[ϑid ]−−−→ (ŝ2 + ŝ3 + s11)

t̂2[t11]−−−→ (ŝ4 + ŝ3 + s12)
t̂3[t12]−−−→ (ŝ4 + ŝ5 + s13)

It is easy to see that in the Eos we can fire only a prefix, depending on the choice
of the modes. The first mode assigns the token on s11 to the net-token on ŝ3:

ŝ1[s11]
t̂1[ϑid ]−−−→ ŝ2[0] + ŝ3[s11]

The second mode assigns the token on s11 to the net-token on ŝ2:

ŝ1[s11]
t̂1[ϑid ]−−−→ ŝ2[s11] + ŝ3[0]

t̂2[t11]−−−→ ŝ4[s12] + ŝ3[0]

Since the effect in the object net is only local, t̂3[t12] is not activated. So w =
t̂1[ϑid ] · t̂2[t11] · t̂3[t12] is a possible firing sequence for the reference net, but not for
the object net system.

From Theorem 10 and the above the following property follows.

Corollary 1. Let OS be an Eos. If µ is reachable from µ0, then Rn(µ) is reach-
able from Rn(µ0). The reverse does not hold in general.

So, we obtain only a sufficient condition for non-reachability: The marking µ
is not reachable from µ0 whenever Rn(µ) is not reachable from Rn(µ0).
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Fortunately, many practical models are Generalised State Machines and this
sufficient condition can be strengthened to a necessary one for these.7 An Eos
OS is a generalised state machine (GSM) iff for all t̂ there is either exactly one
place in the preset and one in the postset typed with the object net N or there
are no such places:

∀N ∈ N : ∀t̂ ∈ T̂ :
∣∣{p̂ ∈ •t̂ | d(p̂) = N}

∣∣ =
∣∣{p̂ ∈ t̂• | d(p̂) = N}

∣∣ ≤ 1 (11)

and the initial marking µ0 has at most one net-token of each type, denoted as
ψgsm(µ0), where:

ψgsm(µ) := ∀N ∈ N :
∑

p̂∈P̂ ,d(p̂)=N

Π1(µ)(p̂) ≤ 1 (12)

Obviously every p/t-like Eos is a generalised state machine since d(p̂) = • for
all p̂. In addition, generalised state machines are conservative Eos.

For generalised state machines we can strengthen Theorem 10.

Theorem 11. Let OS be an Eos with the generalised state machine property.
A transition τ̂ [ϑ] is activated in OS for (λ, ρ) iff it is in Rn(OS ):

µ
τ̂ [ϑ](λ,ρ)−−−−−→

OS
µ′ ⇐⇒ Rn(µ)

τ̂ [ϑ]−−−−→
Rn(OS)

Rn(µ′)

Proof. By (12) the property holds initially, i.e. ψgsm(µ0) is true. It is easy to
observe that that the property ψgsm(µ) remains true in all reachable markings,
since whenever there is at most one net-token for each object net in marking µ,
then (11) implies that there are equally many net-tokens in the successor marking
µ′.

Therefore in each reachable marking µ we have for each object net N that
is present in the initial marking exactly one marked system net place p̂N which
contains the net-token of type N .

In this case all tokens in the projection Π2
N(µ) belong to the marking of the

net-token on p̂N . The net-token can be reconstructed as p̂N [Π2
N(µ)].

Therefore, we can uniquely reconstruct µ from Rn(µ) and reachability in the
net Rn(OS ) is a necessary and sufficient condition for reachability. �

A generalised state machine OS is therefore isomorphic with its reference net
Rn(OS ).

Theorem 12. The reachability problem is decidable for p/t-like Eos and for gen-
eralised state machines.

7 This class was introduced in [Köhler and Rölke, 2005] to study the relationship between different
variants of nets-within-nets semantics. Here we study it of Eos in the context of decidability ques-
tions.
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Proof. In Theorem 11 it is shown that if the system net is a generalised state ma-
chine then reachability in the net Rn(OS ) is a necessary and sufficient condition
for reachability. Since reachability is decidable for p/t nets, it is so for generalised
state machines.

Decidability for p/t-like Eos holds since each p/t-like Eos is a generalised
state machine. �

Theorem 13. The liveness problem is decidable for p/t-like Eos and for gener-
alised state machines.

Proof. For p/t nets it is well known that liveness is reducible to reachability
(cf. Peterson, 1981, chapter 5). Applying Theorem 11 the same reduction from
liveness to reachability can be done for Rn(OS ) to decide liveness of a given event
τ̂ [ϑ]. The result follows since reachability is decidable for p/t nets. �

From a modelling point of view these results are interesting since in many
scenarios net-tokens model physical entities which are neither cloned, combined,
created nor destroyed. These models therefore have the generalised state ma-
chine property. From a more theoretical point of view the correspondence of each
generalised state machine OS with its reference net Rn(OS ) allows to simplify
notations considerably – at the price of limiting the expressiveness. For these rea-
sons some formalism, like e.g. [Valk, 1998], [Bednarczyk et al., 2004], or [Lomazova
et al., 2006], are initially restricted to generalised state machines. For our analysis
we have chosen to study the general case to obtain more insights in the models
properties and their expressiveness.

9 Boundedness and Safe EOS

In the following we study how boundedness restrictions on either the system net
or the object nets influence decidability results. We show that reachability is
decidable whenever the object nets are bounded.

9.1 Semi-Bounded EOS

For p/t nets it is well known there are only finitely many reachable markings iff
the net is n-safe for some n ∈ N. A p/t net is called n-safe with n ∈ N if in every
reachable marking there at most n tokens on each place: ∀m ∈ RS (m0) : ∀p ∈ P :
m(p) ≤ n. A net that is n-safe for some n is also called bounded. The following
property is well-known for p/t nets.

Lemma 12. The set of reachable markings of a p/t net N is finite iff N is n-safe
for some n.

Proof. If the set of reachable markings is finite thenN is n-safe for n := max{m(p) |
p ∈ P,m ∈ RS (m0)}. If N is n-safe then |RS (m0)| ≤ (n+ 1)|P |. �
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An Eos is N-bounded if Π2
N(µ) is bounded in each reachable marking µ. An

Eos is semi-bounded if it is bounded for all object nets N ∈ N .

Note that it is possible that an Eos is N -bounded but N (considered as a p/t
net in isolation) is not bounded for the initial marking Π2

N(µ0). Any unbounded
object net, where each transition is synchronised with a dead system net transition
is an example.

Theorem 14. The reachability problem is decidable for a semi-bounded Eos.

Proof. The set of Π2
N(µ) for all reachable markings µ is bounded by definition.

Let BN be its least upper bound. Note that since the object nets are bounded, so
are the firing modes λ and ρ. Define the (finite) set of places Pos = {(p̂,M) | p̂ ∈
P̂ ∧M ≤ Bd(p̂)} and the (finite) set of transitions

Tos = {(θ, λ, ρ) | ϕ(θ, λ, ρ) ∧ ∀N ∈ N : Π2
N(λ) ≤ BN ∧Π2

N(ρ) ≤ BN}.

Define pre((θ, λ, ρ))((p̂,M)) = λ(p̂,M) and post((θ, λ, ρ))((p̂,M)) = ρ(p̂,M).
The initial marking is M0((p̂,M)) = µ0(p̂,M). It is easy to observe that the p/t
net (Pos, Tos,pre,post,M0) simulates the semi-bounded Eos. �

Note that the symmetric boundedness condition, i.e. a bounded system net,
does not lead to any real restriction since the Eos OS strong(CP), which simulates
counter programs, has a bounded system net.

9.2 Boundedness for Safe EOS

In the following we study Eos, where the system net and all the object nets
are bounded. Then we know from Thm. 14 that reachability is decidable. So we
interested in the complexity of the decision procedure.

A p/t net is called safe if it is 1-safe. Therefore, each reachable marking of a
safe net is a set and we have |RS (m0)| ≤ 2|P |, i.e. the number of subsets of P .

We extend the definition of 1-safe nets from p/t nets to Eos. We can identify
at least the following variants for the definition of safeness:

Definition 8 (Safe EOS). Let OS be an Eos.

– OS is safe(1) iff all reachable markings are sets.

∀µ ∈ RS (OS ) : ∀p̂[M ] : µ(p̂[M ]) ≤ 1

– OS is safe(2) iff for all reachable markings there is most one token on each
system net place:

∀µ ∈ RS (OS ) : ∀p̂ ∈ P̂ : Π1(µ)(p̂) ≤ 1
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– OS is safe(3) iff for all reachable markings there is most one token on each
system net place and each net-token is safe:

∀µ ∈ RS (OS ) : ∀p̂ ∈ P̂ : Π1(µ)(p̂) ≤ 1 ∧
∀N ∈ N : ∀p ∈ PN : ∀p̂[M ] ⊑ µ : M(p) ≤ 1

– OS is safe(4) iff for all reachable markings there is most one token on each
place (w.r.t. projections):

∀µ ∈ RS (OS ) : ∀p̂ ∈ P̂ : Π1(µ)(p̂) ≤ 1 ∧
∀N ∈ N : ∀p ∈ PN : Π2

N(µ)(p) ≤ 1

An OS is called system-safe if it is safe(2), it is called safe if it is safe(3), and
it is called strongly safe if it is safe(4). The reason for this will be justified by the
following discussion.

Lemma 13. If an Eos is safe(4) then it is safe(3).
If an Eos is safe(3) then it is safe(2). If an Eos is safe(2) then it is safe(1).

Proof. If an Eos is safe(4) then we have to show that Π2
N(µ)(p) ≤ 1 implies

∀p̂[M ] ⊑ µ : M(p) ≤ 1. This follows from the fact that Π2
N(µ) ≤ M holds for all

p̂[M ] ⊑ µ. Therefore OS is safe(3).
If an Eos is safe(3) then it is safe(2) since the first definition directly implies

the latter.
If an Eos is safe(2) then we know from Π1(µ)(p̂) ≤ 1 that whenever there is

an addend p̂[M ] in µ then there is at most one, i.e. ∀p̂[M ] : µ(p[M ]) ≤ 1 and OS
is safe(1). �

The converse implications of Lemma 13 are not true. Examples are given in
Figure 15, 16 and 17.

t
p1 p2

b1

t1

t1
a1

a1

b1

a1
t1

b1

Fig. 15. Eos which is safe(1), but not safe(2)

The motivation for the variant safe(1) is clear: For a safe p/t net all reachable
markings are sets and by definition all reachable markings of a safe(1) Eos are
sets, too. Using Lemma 3 this holds for safe(2), safe(3), and safe(4).

Lemma 14. If an Eos is safe(2), safe(3), or safe(4) then its first projection to
the system net level Π1(OS ) is a safe p/t net.
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t
p1 p2

b1a1
t1

Fig. 16. Eos which is safe(2), but not safe(3)

t2t1
a1

b1

p3 p4

t1t1
a1

b1

p1 p2

Fig. 17. Eos which is safe(3), but not safe(4)

Proof. By Lemma 3 we have:

µ
t̂[ϑ]−−→
OS

µ′ =⇒ Π1(µ)
t̂−−−−→

Π1(OS)
Π1(µ′)

If an Eos is safe(2) then we have Π1(µ)(p) ≤ 1 for all reachable µ. Thus the
system net Π1(OS ) is safe.

If an Eos is safe(4) then it is safe(3) by Lemma 13 and thus its first projection
is a safe p/t net. Analogously, if an Eos is safe(3) then it is safe(2). �

Note that Lemma 14 does not hold for safeness(1) as can be seen by the example
in Figure 15.

In contrast to p/t nets not all notions of safeness are equivalent to finiteness
of the state space.

Theorem 15. If an Eos is safe(3) or safe(4) then its set of reachable markings
is finite.

Proof. We known already by Lemma 13 that if an Eos is safe(4) then it is safe(3).

Assume that an given Eos is safe(3). Define k := |P̂ | and l as the maximum of
|PN | for all N ∈ N . Then by definition of safe(3) we have at most 2l different net-
tokens for each object net. Additionally – by definition of safe(3) – each system
net place is either unmarked or marked with one of these net-tokens, i.e. we have
(1 + 2l)k ∈ O(2kl) different markings. �

The property of Theorem 15 does no longer hold for safe(1) and safe(2) Eos:
The following Eos is safe(2) – and therefore also safe(1) – and has the following
set of reachable markings which is infinite:
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r
tq

p

RS (OS ) = {p̂[q + k · r] | k ∈ N}
If we like to preserve as many aspects of safeness the negative results con-

cerning Lemma 14 and Thm. 15 argue in favour of the two variants safe(3) and
safe(4).

For generalised state machines we can strengthen Lemma 13:

Theorem 16. A generalised state machine is safe(3) iff it is safe(4).

Proof. We known already by Lemma 13 that if an Eos is safe(4) then it is safe(3).
Assume that the Eos is safe(3). Then we have M(p) ≤ 1 for all p̂[M ] ⊑ µ.

But since OS is a GSM we know that for each N ∈ N there is at most one place p̂
with type d(p̂) = N marked with a net-token – this property holds for the initial
marking and is preserved by each firing transition of a GSM.

Therefore we have Π2
N(µ) = M which implies that M(p) = Π2

N(µ)(p) ≤ 1, i.e.
the Eos is safe(4). �

For p/t nets the different notions of safeness coincide.

Theorem 17. For p/t-like Eos safeness(1), safeness(2), safeness(3), and safe-
ness(4) are equivalent.

Proof. Since p/t-like Eos are GSM we know by Thm. 16 that safeness(3) is equiv-
alent to safeness(4) for p/t-like Eos.

We known already by Lemma 13 that if an Eos is safe(3) then it is safe(2).
Assume that the Eos is safe(2). Then we have to show that M(p) ≤ 1 holds for
all p̂[M ] ⊑ µ: Since OS is p/t-like it has only places for black tokens. Therefore,
µ(p̂[M ]) = 1 implies M = 0 which implies M(p) = 0 ≤ 1, i.e.the Eos is safe(3).
Thus safeness(2) is equivalent to safeness(3) for p/t-like Eos.

We known already by Lemma 13 that if an Eos is safe(2) then it is safe(1).
Assume that the Eos is safe(1). Then we have µ(p̂[M ]) ≤ 1 for all p̂[M ]. But
since OS is p/t-like it is also a GSM and we know that for each N ∈ N there is
at most one place p̂ with type d(p̂) = N marked with a net-token. Thus we have

∀p̂ ∈ P̂ : Π1(µ)(p̂) ≤ 1, i.e. the Eos is safe(3). Thus safeness(2) is equivalent to
safeness(1) for p/t-like Eos. �

Note that Theorem 17 is in fact the justification for the need of different
notions for safeness given in Definition 8.

To summarise, we have introduced the different variants of safeness to apply
model checking techniques. By Theorem 15 we know that in general only safe(3)
and safe(4) Eos have finite of state spaces, i.e. the safe and strongly safe Eos. In
fact Theorem 15 justifies our terminology.

9.3 Decidability and Complexity Issues for Safe EOS

We have seen that in general safe(1) and safe(2) Eos have infinite state spaces,
since the net-tokens’ markings are unbounded. Therefore it is a natural question
whether boundedness is decidable for these classes.
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Inhibitor Net Simulation We have seen that in general safe(1) and safe(2)
Eos have infinite state spaces, since the net-tokens’ markings are unbounded.
Therefore it is a natural question whether boundedness is decidable for these
classes. If we look at the construction in Lemma 7 and in Lemma 10 we can
observe that the constructed Eos are already safe(2).

Corollary 2. Reachability, liveness, boundedness, and coverability are undecid-
able for safe(1) or safe(2) Eos.

Reachability and liveness, are undecidable for safe(1) or safe(2) conservative
Eos.

Counter Program Simulation Since net-tokens are unbounded for safe(1) or
safe(2) Eos one may conject that is might be possible to simulate counters.

Theorem 18. Reachability and boundedness are undecidable for safe(1) or safe(2)
Eos.

Proof. We have shown in Lemma 5 that for each counter program CP there
is the Eos OS strong(CP) that simulates CP . If we look at the construction of
OS strong(CP) we observe that it is a safe(2) Eos. Since reachability is undecid-
able for counter programs it is for safe(2) Eos and thus also for safe(1) Eos.
Analogously for boundedness. �

In accordance to this, observe that the simulation construction for inhibitor
nets given in Lemma 6 is also a safe(2) Eos.

q_k1recreate

cnt_j

cnt_j

q_k

q_k+1<dec>

k: c_j = c_j - 1

q_k

<is-pos>

<dec><inc>

<is-pos>

counter
x

cnt_j

q_n

k: c_j = c_j + 1

p_k

N_c

<inc>

n: halt

q_k

>0
q_k2

q_k+1
t_pos

=0

reduce

k: ifzero c_j then k1 else k2

control

control’ control’’

Fig. 18. The conservative Eos-translation of counter commands

We can even extend the result to the conservative case.

Theorem 19. Reachability is undecidable for safe(1) or safe(2) conservative Eos.
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Proof. We can modify the Eos-translation of counter programs given in Figure 10
such that the Eos is safe(2). This Eos is given in Figure 18. The only non-
safe place in Figure 10 is the place control . In the modified version there is an
additional place control ′ for the net-token generated by the zero test. Initially the
place control ′′ is marked with one black token. The marking µ(C) encodes the
configuration C = (k, n1, . . . , nm):

µ((k, n1, . . . , nm)) := qk[] + control [0] +
m∑
j=1

cnt j[nj · counter ] + control ′′[0]

The place control ′′ enforces that a reduction occurs before the next test. So, there
is always exactly one net-token on control and at most one on control ′. It is easy
to see that this modified version provides the same weak simulation of counter
programs as the Eos OS (CP) of Lemma 9. �

We have seen that liveness is undecidable for general Eos. The problem re-
mains undecidable even for safe(1) or safe(2) Eos.

Theorem 20. Liveness is undecidable for safe(1) or safe(2) Eos, even for con-
servative typing.

Proof. We can re-use the construction used in Theorem 8. We start with the
translation of counter commands into a safe(2) Eos given in Figure 18 and extend
the fragment of Figure 11. Again we have, that if we can decide liveness for a given
event τ̂ [ϑ], then we can decide reachability. �

Complexity of Safe EOS By Theorem 15 we know that safe Eos have finite
state spaces, but compared to the state spaces of p/t nets they may become quite
large: For p/t nets it is known that whenever there are n places, then the number
of reachable states is bound by O(2n). In the proof of Thm. 15 we have seen that
whenever the number of places in the system net and in all object nets is bound
by n, then the number of reachable states is in O(2n2

) – a quite drastic increase: If
the system net and the object nets are quite small, say with at most n = 10 places,
each of them has a state spaces of size 210, so we can consider them small enough
to directly represented and analysed. However, their composition within the Eos
generates a state space of size O(2100). This combinatorial explosion makes it in
general very hard to represent the state space explicitly.

We know that problems for safe(3) or safe(4) Eos are at least complex as
the corresponding problem for p/t nets. It is a known fact that most interesting
questions about the behaviour of classical 1-safe p/t nets like liveness, deadlock-
freedom, and reachability are Pspace-hard (see Esparza, 1998). This follows from
the fact, first observed in [Jones et al., 1977], that a 1-safe p/t net of size O(n2)
can simulate a linear bounded automaton starting on an empty tape of size n.
Since the net can furthermore be constructed in polynomial time, hardness results
concerning linear bounded automata carry over to 1-safe p/t nets. From there they
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directly carry over to safe Eos, since 1-safe p/t nets can be seen as a special kind
of safe(4) Eos. Thus it is Pspace-hard to decide reachability and liveness for safe
Eos.

Theorem 21. For safe(3) and safe(4) Eos the reachability and the liveness prob-
lem are Pspace-hard.

The more interesting question is therefore, if polynomial space suffices. The
second part of this survey is going to characterise this kind of blow-up in com-
plexity theoretical terms. It turns out that polynomial space is also sufficient to
decide reachability and liveness (cf. Köhler-Bußmeier and Heitmann, 2010b,a for
details), so both are PSpace-complete problems.

10 Conclusion

This paper studies the Petri net formalism of elementary object net systems
(Eos). Object nets are Petri nets which have Petri nets as tokens. Eos are called
elementary since the nesting is restricted to two levels only. The general formalism
of objects nets allows arbitrarily nested nets. The algebraic extension of objects
nets, called Hornets, even allows operations on the net-tokens, like sequential
or parallel composition.

Interestingly enough, even for the restricted class of elementary object nets
reachability, liveness, and boundedness are undecidable problems. (Table 1 sum-
marises the most relevant decidability results of this paper. Here u denotes unde-
cidability and d decidability of the problem.) Even for the class of conservative
Eos – where boundedness remains decidable – the reachability and the liveness
problem remain undecidable.

Table 1. Overview of Decidability Results

Eos conservative safe(1/2) and semi-bounded safe(3/4)
Eos GSM conservative Eos Eos Eos

reachability u u d u d PSpace-complete

liveness u u d u d PSpace-complete

boundedness u d d d d always bounded

Additionally, we studied Eos that are in some sense safe systems. The dis-
cussion of safeness shows that for Eos we have at least four different variants of
safeness which all coincide for p/t-like Eos. Only the class of safe(3) or safe(4) Eos
have finite state spaces. The class of of safe(1) or safe(2) Eos is not really simpler
as the general case as reachability and the liveness are still undecidable for them.
On the other hand the LTL/CTL model checking problem for safe(3) or safe(4)
Eos is as complex as the corresponding problem for p/t nets which implies that
reachability and liveness are PSpace-hard problems. (In fact they are PSpace-
complete problems as shown in Köhler-Bußmeier and Heitmann, 2010b,a.)
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Michael Köhler and Berndt Farwer. Modelling global and local name spaces for
mobile agents using object nets. Fundamenta Informaticae, 72(1-3):109–122,
2006.
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simulation engine for Petri nets: Renew. In J. Cortadella and W. Reisig, editors,
International Conference on Application and Theory of Petri Nets 2004, volume
3099 of Lecture Notes in Computer Science, pages 484 – 493. Springer-Verlag,
2004.

Olaf Kummer, Roxana Dietze, and Manfred Kudlek. Decidability problems of a
basic class of object nets. Fundamenta Informaticae, 79(3-4):295–302, 2008.

Charles Lakos. A Petri net view of mobility. In Formal Techniques for Net-
worked and Distributed Systems (FORTE 2005), volume 3731 of Lecture Notes
in Computer Science, pages 174–188. Springer-Verlag, 2005.

Jena-Luc Lambert. A structure to decide the reachability in Petri nets. Theoretical
Computer Science, 99:79–104, 1992.

Kurt Lautenbach. Linear algebraic techniques for place/transition nets. In
W. Brauer, W. Reisig, and G Rozenberg, editors, Petri Nets: Central Mod-
els and their Properties. Advances in Petri Nets 1986, volume 254 of Lecture
Notes in Computer Science, pages 142–167. Springer-Verlag, 1987.

Irina A. Lomazova. Nested Petri nets – a formalism for specification of multi-agent
distributed systems. Fundamenta Informaticae, 43(1-4):195–214, 2000.

Irina A. Lomazova and Philippe Schnoebelen. Some decidability results for nested
Petri nets. In International Conference on Perspectives of System Informatics
(PSI’99), volume 1755 of Lecture Notes in Computer Science, pages 208–220.
Springer-Verlag, 2000.

Irina A. Lomazova, Kees M. van Hee, Olivia Oanea, Alexander Serebrenik, Natalia
Sidorova, and Marc Voorhoeve. Nested nets for adaptive systems. In Application
and Theory of Petri Nets and Other Models of Concurrency, Lecture Notes in
Computer Science, pages 241–260. Springer-Verlag, 2006.

Ernst W. Mayr. An algorithm for the general Petri net reachability problem.
SIAM Journal Computation, 13(3):441–460, August 1984.

Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes,
parts 1-2. Information and computation, 100(1):1–77, 1992.

James L. Peterson and Abraham Silberschatz. Operating System Concepts.
Addison-Wesley Publishing Company, Reading, Massachusetts, 1985. Second
edition.

J.L. Peterson. Petri Net Theory and the Modeling of Systems. Prentice Hall Inc.,
Englewood Cliffs NJ, 1981.

53



Carl Adam Petri. Introduction to general net theory. In W. Brauer, editor,
Net Theory and its applications. Proceedings of the Advanced course on general
net theory of processes and systems, volume 84 of Lecture Notes in Computer
Science. Springer-Verlag, 1979.

Manuel Silva, Enrique Teruel, and José Manuel Colom. Linear algebraic and
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Rüdiger Valk. Object Petri nets: Using the nets-within-nets paradigm. In Jörg
Desel, Wolfgang Reisig, and Grzegorz Rozenberg, editors, Advanced Course on
Petri Nets 2003, volume 3098 of Lecture Notes in Computer Science, pages
819–848. Springer-Verlag, 2003.

Fernando Rosa Velardo and David de Frutos-Escrig. Name creation vs. replication
in petri net systems. Fundam. Inform., 88(3):329–356, 2008.

Jan Vitek and Giuseppe Castagna. Seal: A framework for secure mobile compu-
tations. In ICCL Workshop: Internet Programming Languages, pages 47–77,
1998.

Dianxiang Xu and Yi Deng. Modeling mobile agent systems with high level
Petri nets. In IEEE International Conference on Systems, Man, and Cybernet-
ics’2000, 2000.

54


