Predictive Incremental Parsing
and its Evaluation

Niels BEUCK ?, Arne KOHN # and Wolfgang MENZEL ®

& Fachbereich Informatik
Universitat Hamburg
{beuck, koehn, menzel} Qinformatik.uni-hamburg.de

Abstract. For incomplete sentences, different structural descriptions with
different levels of prediction are possible. Two existing dependency
parsers have been modified to generate sequences of output hypotheses
in an incremental manner. The parsing results can be characterized with
respect to different criteria like the amount of predicted information, its
quality, monotonicity, delay, inclusiveness and connectedness. We pro-
pose an evaluation scheme able to capture these properties and apply it
to the parsers in different configurations.

Keywords. Incremental Parsing, Dependency Grammar, Evaluation,
jwedg, MaltParser

1. Introduction

Humans do not perceive sentences at once but in a word-by-word manner. There
is evidence that they have available connected syntactic interpretations as well
as predictions about the upcoming input at every point in time while reading a
sentence [1].

For several reasons, such a processing mode is also beneficial for artificial
NLP systems. It is particularly interesting in scenarios where language input
evolves over time, like in human-computer or human-robot interaction. Since the
input can be processed while it is still incomplete, production time is available
as processing time. Moreover, it also becomes possible to immediately respond
to partial input, either by providing non-verbal feedback to the speaker, taking a
turn, or starting an action while a command is still being spoken. Such a behavior
requires a system which is able to produce an analysis for partial input. These
intermediate results of an incremental processing module are provided for external
or internal use. External use includes feedback to previous processing modules
and incremental input to subsequent processing modules, including feedback to
the human interlocutor, internally they can guide the processing of the next input
increment. For an NLP system to work incrementally, all of its components have
to work incrementally. In this work we focus on dependency parsing, an important
module in many NLP systems.

A fundamental problem in incremental dependency parsing is that the output
elements of dependency parsing, the dependency edges, are each related to two

input elements, i.e. words in the sentence. Even if edges are produced as soon
as both words they connect are available, the output does not grow at the same
rate as new input becomes available but can be significantly delayed. Also, inter-
mediate dependency structures are often fragmented as words stay unconnected
until their head appears. This happens, e.g., in incomplete noun phrases, where
determiners and left adjectival attributes stay unconnected, until the head noun
appears. It is, however, not limited to phrases under construction. In German
subclauses, for example, the verb comes last and all its arguments would stay
unconnected until it finally becomes available.

In principle, intermediate dependency structures can be augmented by pre-
dicting missing parts of the sentence. This way, an incremental dependency parser
provides a connected dependency graph as output for every sentence prefix and
syntactic information arguably already present in a sentence prefix will be ex-
pressed explicitly in the intermediate parser output. The quality of such predictive
partial dependency analyses is, however, not easily evaluated against existing gold
standard annotations. Also, the dynamics of incremental output is not captured
by the established evaluation metrics for dependency parsing. We, therefore, pro-
pose a new approach to the evaluation of output of an incremental parser, i.e. the
evaluation of a sequence of partial dependency analyses.

The goal here is to provide means to compare incremental output sequences
of dependency parsers for different levels of prediction and different output dy-
namics. In Section 2 the question is discussed how partial dependency analyses
can look like and what information they should ideally contain. We investigate
two incremental dependency parsers, jwedg [2] and MaltParser [3]. An overview
over how they work and what kind of incremental output they provide is given
in Section 3. In Section 4, possible metrics and gold standards for the evaluation
of partial dependency analyses are discussed. In Section 5 the parser output is
evaluated, before conclusions are drawn in Section 7.

This contribution is an extended and modified version of a paper presented
at Depling 2011 [4].

2. Partial Dependency Analyses

A dependency analysis is a directed acyclic graph where the words correspond
to nodes and dependencies to edges. Exactly one head and one dependency type,
also called label, is assigned to every word in a sentence. The dependent is said to
be attached to the head. The head of a word could be one of the other words in
the sentence or a dedicated root node. The set of possible labels depends on the
annotation scheme. Typically, dependency graphs are required to be connected,
with only a single word attached to the root node. A partial dependency analysis
(PDA) is a dependency analysis for an incomplete sentence prefix. A (partial)
dependency analysis is called connected if there is a path of dependencies, ignoring
direction, between every two words of the sentence (prefix).

If only a prefix of a sentence is known, often no unique dependency structure
can be assigned to it. The problem here is twofold. On the one hand, the decision
about the correct assignment for a word might depend on how the sentence will

right edge of the known prefix

a)

word 1 word 2 word 3 word 4 word 5

Figure 1. The four different kinds of dependency edges in relation to the prefix boundary

continue, i.e., it is temporarily ambiguous. In such cases, we cannot determine the
correct analysis before the continuation of the sentence becomes available. Thus,
it aggravates the general problem of global ambiguity which is omnipresent even
in complete sentences.

On the other hand, the words already known are usually not sufficient to
represent a correct analysis. This becomes obvious if the structure of a complete
sentence is cut off at an arbitrary position, as seen in Figure 1. Four kinds of
dependencies can be distinguished: those with both nodes in the already known
prefix (a), those with an unknown head (b), those with an unknown dependent
(c) and those lying completely outside the prefix (d). The most problematic class
here is (b), where the dependent is part of the prefix but cannot be attached
correctly to one of the available heads as defined above, i.e. a known word from
the prefix or the root node. In the example in Figure 1, word 3 is attached to
word 4 in in the complete structure, however, that word is not available in the
prefix. There are two possibilities to deal with this problem, either by delaying the
assignment, i.e. not including the respective word into the PDA, or by predicting
hypothetical nodes for the not yet seen input and attaching the word to one of
them.

A PDA that assigns a head to every word in the prefix will be called inclusive.
An analysis that contains nodes in addition to the ones corresponding to words in
the prefix or the root node will be called predictive. For many sentence prefixes,
correct PDAs have to be predictive to be also inclusive: if the correct head is
not available in the prefix, either a placeholder for it has to be provided, e.g. by
prediction, or no head can be assigned.

The minimal extension, called minimal prediction, achieving this is to add a
single node to the set of permissible heads. The extra node does not correspond
to a known word from the prefix, it is maximally unspecified and therefore called
nonspec [5]. Its surface word form, lemma, part-of-speech and its position beyond
the fact that is to the right of the other words are unknown. Even its identity is
unspecified, i.e., it could stand for an arbitrary number of words and two words
attached to the predicted node do not necessarily share the same head in the
complete dependency analysis. Also, the new node can only serve as head, but
not as dependent of any other node.

Assigning nonspec as head is more informative compared to not including the
respective dependent at all: Firstly, a dependency label can be assigned to the
attachment and secondly, it can be taken for granted that nonspec is neither one
of the known words nor the root node. While delaying the attachment reflects
the uncertainty about the correct head, attachment to nonspec expresses the
certainty that the word will not be attached to one of the already known words. A
dependency edge attaching nonspec can be considered an underspecified version
of an edge in a later PDA where the same dependent word is attached to a newly
available word.

Although minimal prediction facilitates inclusion, it is not sufficient to guar-
antee the connectedness of a dependency structure. Since nonspec itself does not
have a head, the words assigned to nonspec are not connected to the other nodes
of the dependency graph. Such unconnected words cannot be easily related to the
rest of the prefix in a semantic interpretation, as seen in the following PDA:

n nonspec

N eSS
[

“They see a little”

Here, the information that something little is seen cannot be extracted di-
rectly from the dependency structure.

Connectedness of a PDA can be achieved by extending the set of available
nodes further by adding so called virtual nodes (VNs). They differ from nonspec
in that there can be more than one of them and that they require to be attached
to a head themselves. Dependency edges between virtual nodes are also allowed.

In addition to establishing a dependency relation, virtual nodes can also be
used to carry predictions about the words themselves, like the part-of-speech,
lemma or other lexical features. While their precedence relation, i.e. the order
among the anticipated words, could theoretically be predicted, here we focus on
the prediction of dependency structure and only assign part-of speech information
to the VINs. With this approach, called structural prediction, partial dependency
analyses can be constructed that resemble the dependency analysis of a whole
sentence. Theoretically, the PDA for a one word sentence prefix could already
contain nodes for every other word in that sentence, anticipating the complete
dependency structure. This is, of course, not a realistic output to be made by a
parser.

There are two related questions here: what can be predicted and how should
gold standard PDAs look like. The answer to the first question is the answer
to the second question, as the gold standard PDA should contain exactly that
information that could theoretically be predicted. Structure can be predicted if
its absence in a PDA would violate some linguistic constraints. This comes in two
forms: to connect new word in sentence prefix to the rest of the structure (bottom-
up prediction), as seen in Figure 2, or to fulfill obligatory valencies (top-down
prediction), as seen in Figure 3.

Connectedness can be defined in two ways, either including the sentence root
or neglecting it. In the first case, a full sentence is predicted, in the second just a

SZ; SZ;
B B

He buys a He buys a [noun]

Figure 2. An example for bottom-up prediction: The determiner cannot be attached to any word
directly, but can be included if a noun is predicted

He sees [noun] The house with [noun]

Figure 3. Examples for top-down predictions of an object and the kernel noun of a preposition

nonspec
S
B

el el

L)
The little [noun] vs The little [noun] [verb]

Figure 4. Two levels of completion: Sentence fragment versus fully connected sentence structure

(connected) fragment. This is exemplified given the sentence prefix “The little”
as seen in Figure 4. To obtain a connected dependency structure, it is sufficient
to predict a noun here. A complete sentence would also have a verb connected to
the root node. To express that a word is just the root of a fragment, not the root
of the sentence, it is attached to nonspec. Minimal and structural prediction can
be mixed this way.

3. Implementations for Predictive Incremental Parsing

In this section two approaches for incremental parsing into a sequence of partial

dependency analyses are presented: jwedg! and MaltParser?.

3.1. jwedg

jwedg is a parser that implements the Weighted Constraint Dependency Grammar
(WCDG) framework. Dependency parsing is mapped to the problem of constraint

'https://nats-www.informatik.uni-hamburg.de/view/CDG/
?http://maltparser.org

optimization [6]. A grammar consisting of defeasible constraints defines a ranking
among all possible dependency analyses where the score of a dependency analysis
is the product of the penalties of all violated constraints. Parsing in WCDG is
the process of finding the best scored analysis.

Because a complete search is not affordable since the search space is growing
exponentially with the number of input words, a repair based algorithm called
frobbing is used [2]. The original algorithm is non-incremental as it starts with an
analysis of the whole sentence and tries to improve an initial structure through a
sequence of conflict driven transformation steps. To perform incremental parsing,
this algorithm can be applied to the prefix of a sentence. The generated structure
(plus an arbitrary attachment for the new words) is then used as a starting point
for the analysis of the extended prefix [7]. This approach is non-monotonic, as the
previous PDA provides only a starting point for the next search step. The result-
ing PDA of each incremental step does not need to include all the arcs of its pre-
decessor and attachments can be changed when encountering input incompatible
with the old interpretation. Such a non-monotonic behavior is highly welcome,
since it closely resembles the reanalysis strategy observed in the human model.

The grammars for jwcdg are usually manually written, for this work we used
a broad coverage grammar for German [2]. jwedg is able to profit from informa-
tion contributed by external modules [2]. The hand written constraints are com-
plemented by ones accessing statistical information by those modules. Only the
most essential module, a part-of-speech tagger, is used here. The tagger is not
run strictly incremental but in a reanalysis mode, re-tagging every new sentence
prefix.

Nonspec

Dependency analyses in jwcdg are inclusive, every word must be attached to a
head and the system has to assign a head even in the absence of a suitable one.
Therefore, a predictive parsing approach is needed for incremental parsing. Both
minimal prediction and structural prediction as defined in Section 2 are supported
by jwecdg.

The minimal predictive mode is achieved by adding nonspec attachments
for every word as possible dependency edges to the search space. To be able to
deal with the additional nonspec node, the grammar has to be changed in two
regards. First, a constraint is added to slightly penalize nonspec attachments.
This guarantees that such an attachment is only chosen if no suitable other head is
available. A second change adds guards to the constraints to prevent non-existing
attributes of nonspec to from being accessed. These guards are specified in a
way that they replace the non-specified feature with an optimistic estimation.
For example, a query for a comma between the two ends of a dependency edge
would return t¢rue for constraints demanding a comma, while the same query
would return false in a constraint that forbids a comma (unless there is already
a comma in the known part of the prefix).

While this implementation of incremental dependency parsing accomplishes
minimal prediction, it does not exhaust the potential for syntactic prediction of
a given grammar. Constraints demanding the existence of certain words or their
lexical features are either prevented from accessing those features, or alternatively

their violation, e.g. in the case of an unsatisfied verb valency is simply accepted
because no less penalized alternative is available. In particular, no proof is required
that and how a predicted head itself could be integrated into the rest of the
dependency structure without violating additional constraints.

Virtual Nodes

jwedg also supports a structurally predictive parsing mode where the concept of
virtual nodes as defined in Section 2 has been implemented. Since the frobbing
search algorithm is not able to add or remove words to or from the constraint
optimization problem, a maximal set of potentially useful predictive nodes has to
be introduced prior to search.

These additional nodes might not all be needed to complete a prefix and
unused Virtual Nodes simply stay unconnected. A VN is considered unused if it
is assigned to the root node with the empty label as dependency type. In such
cases it is not considered part of the sentence and can safely be removed from
an analysis without altering its meaning. No other words may be attached to an
unused VN. This is enforced by a hard constraint in the grammar. Examples for
this are shown in Figure 5.

Virtual nodes, once added to the constraint optimization problem, techni-
cally behave like other words. Their predictive nature is not visible to the search
algorithm, as the topology of the search space remains the same. All restrictions
mentioned above are enforced via constraints in the grammar. As with nonspec,
attachments to and from virtual nodes are penalized slightly. To be able to dis-
tinguish between virtual and non-virtual nodes in a constraint, a new attribute
virtual is defined. A corresponding predicate can be invoked by a constraint defi-
nition. With this approach, prediction, i.e. the inclusion of virtual nodes into the
dependency structure, is purely constraint driven.

Two kinds of prediction, bottom-up and top-down, can be observed to occur
driven by constraint violations. In bottom-up prediction, the inclusion of a pre-
dictive node is driven by an unconnected word for which every other integration
would result in constraint violations. Top-down prediction is conflict driven in
that a specific constraint violation indicates the need for an additional dependent
of an existing word as it is the case for verb valencies. By providing the search al-
gorithm with a set of predictive nodes for potential use, predictive partial results
can be generated without further changes to the algorithm. All that is needed is
adding candidates for dependency arcs for the virtual nodes to the search space
and extend the grammar, as discussed above.

3.2. MaltParser

MaltParser [3] is a data driven dependency parser based on a shift-reduce algo-
rithm. It provides a monotonic incremental algorithm but no incremental out-
put in the sense of intermediate analyses for prefixes. We, therefore, modified the
parser in a way that allows us to extract partial dependency analyses from its
hypothesis space. For that purpose, the set of already submitted dependency arcs
is recorded immediately before the next word in the input buffer is read in a shift
action. This allows us to recover the PDAs for every increment.

PRED

@
N
% D@T
- l
This is a complete sentence [virtual]
(a) unused virtual node
]
PRED
5
L
© o¥t
S
This is an incomplete [virtual]
(b) used virtual node
w0
o
5
&L
% oET
s
This is an incomplete [virtual]

(c) a partially used virtual node, a constellation that is not
allowed by the grammar

Figure 5. Examples for virtual nodes in the output of jwcdg

The PDAs extracted this way are generally not inclusive as the production of
dependency edges is delayed until both ends are available. However, unattached
words can be interpreted as attached to nonspec if only those words that have
no regent available yet stay unattached. This is provided if using an arc-eager
algorithm and explicit root handling.

There are several algorithms available for MaltParser. The best choice de-
pends on coverage of non-projectivity, eager arc attachment and explicit root han-
dling. As the evaluation is done for German, a language with a comparably high
degree of non-projective constructions, it is mandatory to use a version which is
able to deal with non-projectivity.

In general, the shift-reduce approach used by MaltParser does not guarantee
an arc to be built as soon as both nodes are available. As the attachment reduces
the token from the stack rendering it unavailable to further attachments, depen-
dents to the right of their head cannot be attached before all their dependents
have been included into the structure. With arc-eager variants of the shift reduce

algorithm, the right-reduce action is split into a right-arc and a reduce action [8].
This modification allows an immediate attachment once both head and dependent
are available.

There are two ways to deal with root attachment, either as an explicit at-
tachment via an arc building action or by waiting until the sentence has been
completely parsed and attaching all words still left unattached to the root node.
For our purpose, we need the explicit root attachment approach to be able to
distinguish temporarily unattached words (interpreted as nonspec attachment)
from root attachments. The explicit root attachment implemented by MaltParser
turns out not to be exhaustive. Especially punctuation tokens are always left
unattached. As they should always attached to the root node, it is easy to deal
with them separately. For other words that are left unattached despite explicit
root handling, there is no way to detect whether they will stay unattached until
the end of the sentence. The impact of this problem on accuracy, however, is
minimal, as for these words a root attachment would often be incorrect as well.

Given these requirements there are three suitable algorithms: Covington [9],
Nivre with pseudo projectivity [10] and 2-Planar [11]. All of them are able to deal
with non-projective structures and provide variants for arc-eager processing and
explicit root handling. We have chosen the 2-planar algorithm, as it provides the
best performance for German and does not require post-processing to recover non-
projective links. It uses an approach with two stacks and an additional parsing
action to switch between them. Although this does not allow it to parse general
non-projective structures, all 2-planar non-projective structures can be dealt with,
which covers most non-projectivities in most natural languages, e.g., more than
98% for German [11].

8.8. Differences between jwedg and MaltParser

As should be obvious by now, MaltParser and jwcdg differ in most aspects. While
MaltParser is trained on a tree-bank, jwcdg uses a manually generated dependency
grammar.

Both parsers apply an incremental algorithm in the sense that information
from a previous analysis step are used to calculate the analysis for the extended
prefix, but apply different strategies to deal with temporary ambiguity as defined
n [12]. While jwedg applies reanalysis, resulting in timely but non-monotonic
output, MaltParser applies lookahead, resulting in monotonic but delayed out-
put. With regard to prediction, jwcdg can either produce structural or minimal
prediction while MaltParser can only do the latter.

4. Evaluating Incremental Parser Output

To be able to evaluate incremental parsing results, we need means to quantify and
measure the quality of PDAs. There are several difficulties in applying measures
for complete sentences to partial dependency analyses. First, there are no gold
standard annotated corpora available for sentence prefixes, only for complete
sentences. Second, the particular characteristics of incremental output like the

development over time are not captured by evaluating the accuracy of individual
PDAs.

4.1. Gold Annotations

There are two ways to obtain gold standard PDAs: either by annotating a corpus
of sentence prefixes manually or by systematically generating prefix annotations
from existing full sentence annotations. In the first approach, human annotators
are presented with a sentence prefix to annotate, without knowledge about how
the sentence continues. In the second approach, full sentence annotations are
pruned into PDAs.

Due to temporary ambiguity, the syntactic annotation compatible with the
complete sentence (obtained by pruning) might not be the most plausible one if
looking only at the prefix. Due to pruning, there could even be several different
annotations for the same prefix as two sentences might share a prefix but assign
a different syntactic structure to the words in the prefix.? The resulting corpus
would then contain two “correct” analyses for the same sequence of words. This
might seem to be a strong argument in favor of manual annotation. However, in
the absence of a disambiguating context, annotator choices can be highly influ-
enced by priming effects, resulting in low inter-annotator agreement on what the
most plausible annotation for a temporary ambiguous prefix actually is.

One could also assume that the most plausible analysis of a prefix is the one
that is most often used in a language. So, while different annotations for the same
or similar prefix might occur in a corpus, the more plausible one would still be
more common, given a large enough corpus. Therefore, evaluation against such
a corpus would still provide the highest score to the parser choosing the most
probable interpretation, even though for some prefixes that dependency structure
is deemed wrong. Generating prefixes has the advantage that a distribution of
prefix annotations is generated. This information is lost in a hand-annotated
corpus.

Another source for low inter-annotator agreement is the question how com-
plete the gold standard PDAs should be. As a last point to consider, annotating
prefixes requires a multiplied effort compared to annotating complete sentences
as there are multiple prefixes for every sentence. For these reasons, the approach
of systematic generation from existing annotations is used here.

There are different possibilities of how much prediction should be included in
gold standard annotations for sentence prefixes. In [4], two different approaches
were investigated, the minimal and the maximal approach. In both cases, the
in-prefix words and dependency edges between them (category (a) in Figure 1)
appear in the generated gold standard PDA, but the approaches differ in how
they handle cases (b)-(d).

In the minimal approach, the gold standard PDAs were generated by ignoring
all out-of-prefix words from the full sentence annotation. Attachments to out-of-
prefix words are replaced by attachments to nonspec, i.e., all category (b) edges

3 Among 15000 sentences from the Negra corpus more than 5000 share a prefix with another
one where the prefix is annotated differently. 81% of these shared prefixes are of length one,
15% of length two and only 4% longer than two.

are underspecified. Category (c) and (d) edges, i.e. those with out-of-prefix words
as dependents, are discarded. While evaluation against these minimal gold stan-
dard PDAs is quite straightforward, they are unsuited to evaluate the predictive
part of a PDA.

In the maximal approach, in contrast, the gold standard PDA simply equals
the full sentence gold annotation. All words and edges in the structure are treated
as potentially predictable. This, however, is an unrealistic goal which will most
likely result in a very low prediction recall.

More realistic gold standard PDAs with a prediction level in between the
minimal and the maximal ones can be generated based on an estimation of how
many out-of-prefix words are actually needed for the dependency structure of sen-
tence prefixes to fulfill the criteria of connectedness and valency saturation. Such
an evaluation has been carried out previously[13]. The rules used to determine
which words should be predicted can be used to generate gold standard PDAs.
Out-of-prefix words are considered necessary if they were part of a connection
path between any two in-prefix words (ignoring dependency direction). These
connection paths are unambiguous as the dependency structures are cycle free.
Also required are all words that fill obligatory valencies of their head, e.g. the
subject of a finite verb or the kernel nouns of prepositional phrase.

A word from the full sentence annotation appears in the prefix annotation, if
it is

1. an in-prefix word,
the (transitive) head of an in-prefix word
3. attached to a in-prefix word via a dependency type indicating an obligatory

dependent*

o

Furthermore, a chain of connected out-of-prefix words is folded into one node
if they are connected by chain-able dependency types like AUX (illary verbs). Such
repeated structures would not be predicted, neither by a human nor a machine
parser. An example for this is given in Figure 6.

Annotations created along these guidelines are called sentence predictive.
Corresponding to the two definitions of connectedness in Section 2, there is a
variant of rule 2. Instead of connecting transitively up to the sentence root, only
the heads up to the first common head of all in-prefix words are kept. That head
is then itself attached to nonspec in the generated gold standard PDA and the
resulting annotation is called fragment predictive.

In summary, four different gold standard PDA variants can be generated for
a prefix: minimal, maximal, sentence predictive and fragment predictive ones. An
example with all variants for a single sentence prefix is shown in Figure 7.

4.2. Quality Metrics

The quality of dependency analyses for complete sentences is usually measured
by its attachment score (AS). It is defined as the number of words in a sentence

4This is highly dependent on the annotation scheme used. According to the annotation scheme
used here [14] the following labels are considered as possibly indicating an obligatory valency:
SUBJ’, 'SUBJC’, ’PN’, ’CJ’, "OBJA’, ’OBJD’, 'OBJC’, ']PRED’,’OBJP’, "AUX’, "PART",’S’

Dass er ihn [VVPP] [VAINF] [VMFIN] =

0

o
T
A
&

Dass er ihn [VVFIN]

Figure 6. Example for folding: A PDA for the first three words of the German clause “dass er
ihn gesehen haben soll” (literally: “that he him saw has should” meaning: “that he is supposed
to have seen him”); all three verbs would be kept for connectedness, but are then folded into a
single virtual verb

that have been assigned to the same head as in a gold standard annotation of
the same sentence (unlabeled attachment score, UAS) and, optionally, with the
same label (LAS). This is not directly applicable to PDAs. Firstly, attachments
of virtual nodes cannot be trivially deemed correct or incorrect given the gold
annotation. Second, PDAs of the same sentence prefix cannot be compared by
their attachment score, if they differ in the number of attachments they contain.
Furthermore, incremental parser output consists not of a single dependency struc-
ture, but a sequence of them. This dynamic is not captured by summing up the
attachment score for all individual elements of this sequence.

4.2.1. Correctness of Individual Attachments

To evaluate the quality of a PDA, the correctness of individual attachments has to
be determined. Edges between words in the prefix (category (a) edges in Figure 1)
can be directly compared against the gold annotation for the complete sentence.
In minimally predictive PDAs, words can also be attached to nonspec, forming a
category (b) edge. These edges can be compared against the attachment of the
same dependent word in the gold annotation from the minimal approach. The
attachment of word w to nonspec is correct iff the head of w in the gold standard
PDA is also nonspec (which is the case if its head in the full sentence annotation
is outside of the current prefix).

Structurally predictive PDAs can be evaluated against minimal gold standard
PDAs by treating attachments to virtual nodes as attachments to nonspec and
ignoring all (c¢) and (d) edges. This allows for a direct comparison between PDAs
of different prediction levels but ignores the additional information provided by
structural prediction. That part can be captured in the evaluation by using struc-
turally predictive gold standard PDAs. When both the tested PDA and the gold
standard PDA contain nodes not grounded in the know words, it is, however, not
necessarily clear which elements correspond to each other and a mapping between

Original full sentence gold standard annotation

Writing good parsers is hard

Minimal Maximal

c
nonspec sUBS .
suBIC %
Ny ©
S
v
Writing good Writing good [virt] [virt] [virt]
fragment predictive sentence predictive
n
nonspec

Writing good [virt] Writing good [virt] [virt]

Figure 7. Different levels of gold annotation for the prefix “Writing good” of the sentence “Writ-
ing good parsers is hard”

virtual nodes is needed. As several mappings might be possible, the attachment
score of a PDA is defined as the maximum over all mappings. This optimum
might depend on whether accuracy is measured labeled or unlabeled. Given that
a virtual node can partake in more than one dependency edge, i.e. it has one head
and an arbitrary number of dependents, a virtual node can possibly be mapped
even if some of these attachments are incorrect. Mappings that share no edge with
the gold standard annotation are not considered. Therefore, some virtual nodes
might remain unmapped. Since the optimal mapping might change as the prefix
of a sentence grows, the same virtual node can be mapped to different words for
consecutive PDAs. By definition, all predictions still left in the final result are
incorrect.

The different prediction levels are not directly comparable as they differ not
only in the number of words and attachments per PDA, but also in the level of
information carried by an attachment to a predicted head. Two words attached
to nonspec might be correct, the same two words attached to the same VN would
be incorrect if they are attached to different words in the full sentence annota-
tion. Another differentiation of prediction level is whether a dependency label is
assigned to a nonspec attachment. Counting no assigned label as being correct
but requiring an assigned label to match the one in the gold annotation is not
an adequate evaluation. Output differing in this regard can therefore either only
be evaluated unlabeled, or the label has to be ignored selectively for nonspec
attachments.

4.2.2. Capturing the Dynamics of Quality

While the quality of individual PDAs has been discussed in the previous section,
incremental parsing does not produce a single prefix analysis but sequences of
them. Simply accumulating the accuracies for all the words in all prefixes would
introduce a strong bias in favor of the earlier tokens: a word appearing early in
a sentence would be counted more often and, therefore, would have a greater
influence on the overall score than words appearing later in the sentence. Also,
most of these occurrences would be long after the word first appeared so that
an initial wrong attachment repaired later on would be concealed by the many
later occurrences. If one, in contrast, considers only the attachment of a word for
the prefix it first appears in, phenomena like prediction, delayed attachment or
non-monotonicity are neglected. All these appear in later prefix versions or, in
the case of prediction, even in earlier ones.

We apply a sliding window to the sequences of PDAs to provide all words
with the same degree of importance on the evaluation results while investigating
the temporal evolution their attachments. For every word the attachment status
is determined not only for the prefix it first appears in (and the final result), but
also for a fixed number of prefixes in the vicinity of the first appearance. Instead
of one accuracy score, a window has n slots holding an accuracy score. For every
prefix the attachment of the last word in the prefix contributes to slot #0, the
second to last word to slot #1 etc. For n significantly smaller than the average
length of sentences, approximately the same weight is given to all words. Words
at the end of a sentence still have a slightly smaller weight.

Other measures besides accuracy can be determined for a slot, namely how
many words are attached to a predicted head, how many to an in-prefix one
and how many have no head assigned at all. Delayed output due to lookahead
results in unattached words. This reflects in the window in that for the first m
time-points after a word appears in the prefix, it is simply not included in the
analysis, where m is the fixed lookahead size. Note, however, that with lookahead
there is not a simple one-to-one mapping between PDAs and input increments:
As the lookahead window (not to be confused with the sliding window discussed
here) must first be filled before any output can be generated, no explicit output
will be produced for the first m input increments. Similarly, as the final input
increment fills the lookahead window of the last m + 1 words, there are actually
m + 1 output increments for it. This can be compensated by adding m empty

output increments at the beginning and by keeping only the final analysis for the
last input increment.

Stability

To be able capture the non-monotonicity of a reanalyzing parser like jwcdg, a
stability value is determined. The stability score for a given slot is calculated just
like the accuracy but the PDA is compared to the final annotation found by the
parser instead of the gold standard annotation. So, instead of the percentage of
words attached to the correct head, stability gives the percentage of attachments
not changed in the final output. For example, a stability of 0.7 for slot #1 means
that in 70% of the prefixes the second most recent word was attached to the same
head as in the final analysis for the complete sentence. Note that changes in a
later PDA are not reflected here, as long as they are changed back in the final
dependency analysis.

4.3. Connectedness

Predictive incremental parsing aims at fully connected PDAs where each new
word is integrated into the already existing structure. We quantify the degree of
disconnectedness of a PDA by means of its average fragmentation, defined as the
average number of tree fragments in addition to the first one. This is an indication
of how many attachments have to be changed at least to produce a connected
tree. As minimal predictive attachments do not predict whether they attach to
the same word, each such attachment has to be counted as a potential root of an
additional tree fragment. In the annotation scheme used for our evaluation [14],
punctuation marks are never attached to another word and are, therefore, not
considered here. Note that even in the gold standard there are some fragmented
annotations.

5. Evaluation

After two incremental parsers have been described in Section 3 and a way to
generate gold standard PDAs from whole sentence annotations has been intro-
duced in Section 4, in this Section the output of the parsers on concrete input is
evaluated.

5.1. Setup and Data

Evaluation has been carried out on 500 German sentences from a version of Ne-
gra corpus [15] converted to dependency structures [16]. Three different gold an-
notation were generated for every prefix of each of these sentences. The three
different levels of gold annotations are minimally predictive, structurally predic-
tive connecting to the sentence root and structurally predictive as a fragment, as
described in Section 4.1.

MaltParser was trained on 15000 different sentences from the same corpus.
All configurations employ the 2-planar algorithm, the feature set is the one for

German used by Rodriguez[11]. The original feature set uses a lookahead size of
three, i.e., features of the next three words in the input buffer are used. Variants
for different lookahead sizes down to no lookahead were generated by deleting the
respective features.

Both parsers were paired with incremental part of speech taggers as using
gold tags or non-incrementally tagged input data would not be true to the use-
case of incremental processing. Some strategy to deal with temporary ambiguity is
needed to provide good accuracy in incremental PoS-tagging [12]. Unfortunately,
the parsers, differ in how they integrate part of speech taggers and are not com-
patible with the same strategy for incremental PoS tagging. While MaltParser
is restricted to monotonic tagger output and can only utilize one tag per word,
leaving only lookahead as a strategy, jwedg is able to integrate multi-tagging and
non-monotonic tagger output.

According to a previous evaluation of incremental PoS taggers [12], TnT [17]
and SVMTool [18] are suitable candidates. TnT, however, does not provide a
lookahead strategy, making it a poor match for MaltParser, while SVMTool does
not produce confidence scores that are useful for jwcdg. Therefore, we have chosen
TnT with multi-tagging and re-tagging of each prefix for jwedg, while MaltParser
is combined with SVMTool using a lookahead of one or zero, depending on the
evaluation run.

Combining MaltParser with a tagger, the total lookahead of such a pipeline
amounts to the sum of the individual lookahead for both components. We have
investigated configurations with a total lookahead between zero and four. For In-
cremental jwedg, three different configurations were used, differing in which extra
nodes are available, and changes to the constraints that define how they may be
integrated. The first configuration (jwcdg-NS) utilizes nonspec for minimal pre-
diction. The second one (jwedg-VN) employs virtual nodes for sentence predic-
tion. The third one (jwedg-VN-NS) uses both types of nodes for fragment predic-
tion. The latter two configurations use a set of one virtual verb and two virtual
nouns. This has been shown to be enough to yield a high theoretical coverage for
parsing German with structural prediction[13].

All configurations are evaluated against the minimal gold standard. In ad-
dition, jwcdg-VN and jwcdg-VN-NS are evaluated against the respective struc-
turally predictive gold standard.

5.2. Discussion

The results in Table 1 show that all three jwedg configurations result in a similar
final accuracy of 87%/85% (U)AS which is around 2% higher than the best Malt-
Parser configuration (la2+1). This gap might be reduced by more training data
and an optimized feature set, but optimizing MaltParser is not the main focus
here.

Since MaltParser is not able to produce labels for attachments to nonspec, all
such attachments are incorrect in the labeled evaluations. Therefore, we introduce
a third variant (semi-labeled) which is the same as labeled but disregards the
labels of edges to nonspec. This variant allows for a labeled evaluation where the
minimal predictive attachments are maximally unspecified.

Table 1. Evaluation of MaltParser and jwcdg with different configurations regarding prediction
and lookahead; Lookahead numbers are given as “parser LA + tagger LA”; Initial AS: The
attachment score for the first attachment decision a parser makes for a word (note that this
decision is delayed by lookahead); Fragm.: The average fragmentation of the resulting PDAs.

initial AS final AS

Parser Conf. unlabeled labeled semi-labeled unlabeled labeled Fragm.

Minimal Prediction:

jwedg NS 72.44% 58.31% 71.04% 87.19% 84.75% 1.058
VNs 78.93% 73.38% 77.40% 87.18% 84.91% 0.055
VN-NS 77.21% 65.89% 75.64% 87.45% 85.21% 0.048

Malt LA 0+0 85.83% 46.57% 84.15% 83.06% 79.18% 1.453
LA 140 88.11% 48.21% 86.49% 85.57% 81.79% 1.392
LA 240 88.27% 48.33% 86.57% 85.55% 81.48% 1.401
LA 2+1 89.21% 49.58% 86.48% 86.51% 82.91% 1.274
LA 3+1 88.83% 49.43% 87.27% 86.03% 82.57% 1.279

Structural Prediction:

jwedg VNs 76.43% 71.18% 74.90% 87.18% 84.91% 0.055
VN-NS 75.65% 65.01% 67.28% 87.45% 85.21% 0.048

Table 2. Precision and Recall of the Virtual Nodes in structurally predictive PDAs. Note that
two different variants of the gold annotations were used

unlabeled labeled
Parser configuration gold standard used precision recall precision recall
jwedg VNs sentence prediction 45.21% 49.18% 36.18% 39.19%
jwedg VN-NS fragment prediction 40.66% 44.04% 30.47% 33.00%

Figures 8 to 12 show the temporal evolution of accuracy and stability within
the evaluation window for different parser configurations. In these plots, the dif-
ferences in the behavior of MaltParser and jwcdg become apparent. Due to the
monotonic nature of MaltParser, the only possible change in subsequent output
increments is the replacement of minimally predictive attachments by fully spec-
ified ones, possibly changing a correct prediction into a wrong attachment. Thus,
the average accuracy of attachment decreases after the initial appearance of a
word. In contrast to this, the accuracy can even rise over time if reanalysis is
allowed as is the case in jwcdg. Here, the labeled stability of initial attachments
is only 75%, i.e., 25% of the attachments had to be changed later on. °

The delayed output of the configurations with lookahead leads to a smaller
number of slots in the evaluation window having received any attachments. The
few assignments in slots 0-3 in Figure 12 are due to an end-of-sentence effect
where the lookahead window is filled preliminarily.

A noteworthy observation is that jwcdg produces significantly more erroneous
initial attachments than MaltParser. Also the proportion between the attach-

5In fact there is also a kind of non-monotonicity in MaltParser, if we interpret the unattached
words as “to be attached to a not yet available word”. These are reinterpreted as being attached
to root in the final result, leading to a stability reduction of 5%

labeled unlabeled

100 100
L] 7
80 |- 2 80 17
& 3 & & 7
g 60 |- 1 £ 60 A
= 007 = 7
8 07 g 7
540 17 g W A7
o 007) 77
20 - - 20 A
007 77
0 027 0 77
final final
slot number slot number
correct wrong []
correct minimal prediction stability

wrong minimal prediction 277

Figure 8. Scores of jwcdg with virtual nodes for a sliding window with 6 slots; slot 0 refers to
the most recent word in the input, slot 1 to the second most recent and so on.

labeled unlabeled
100 100
80 L= - 30 1
_ , ly 77 ’7
o === | 25 B o 7
o0 2 I N 2 027 Y0} 77
T 60 A ik & 60 221
g AL 0o g %
[} 771 N2 7 [&] 77
g 401 WA i g8 W h
A A A = 7
L CoA A o2 21
20 Nz I 07 20 77
A 0 %
0 < 0
2 3 4 5 final final
slot number slot number
correct wrong []
correct minimal prediction stability

wrong minimal prediction 277

Figure 9. Scores of jwcdg with nonspec for a sliding window with 6 slots; slot 0 refers to the
most recent word in the input, slot 1 to the second most recent and so on.

ments to in-prefix words and predictive attachments is different, indicating that
many of the wrong attachments to in-prefix words should have been directed
out of the prefix. Obviously, jwcdg is too eager to attach words to already avail-
able heads but by means of reanalysis it is able to recover in many cases. This
difference of better initial attachment in MaltParser and the better final accu-
racy and reanalysis capability of jwcdg suggests that a combination of the two

labeled unlabeled

100 100
L LT —i el =1
80 {7 k= 02— 80 221
o CAE AL, 07) 7
8 60 [T I A %0 60 2 |
] CovA A o = 7
g 777 77 777 77 \y 77 g 77
3 oA 0 15) 7
£ 40 | VAN AT 5 40 A7
a 1A b 07 & 7
20 FANAAAA] 20 a
01 2 3 45 final final
slot number slot number
correct wrong []
correct minimal prediction stability

wrong minimal prediction 277

Figure 10. Scores jwcdg using both VNs and nonspec for a sliding window with 6 slots; slot 0
refers to the most recent word in the input, slot 1 to the second most recent and so on.

labeled unlabeled
100 100
80 - 2 — 80 771
o e 0 o 7
o0 e 12240 222 1 221 1 222 07 a0 77
< 60 [s A VAV s s . < 60 74
8 AV b £ 7
<] I A <] 2
3 A C %
[} I 2 N2 7 [&] 77
© 40 A 7. © 40 Z
o) A o 7
~ ACAACAA a 7
20 EAEA A A T 20 221
0 < 0
01 2 3 4 5 final final
slot number slot number
correct wrong []
correct minimal prediction stability

wrong minimal prediction 277

Figure 11. Scores of MaltParser with no lookahead for a sliding window with 6 slots; slot 0 refers
to the most recent word in the input, slot 1 to the second most recent and so on.

parsers would be beneficial to increase PDA quality. Recent results support this
supposition [19].

When compared against the minimal gold standard, the jwcdg configurations
using virtual nodes fare better than the one using only nonspec, even though
the additional information they provide is not honored by that evaluation: The
assignment of labels for predictive attachments is improved as is the quality of

labeled unlabeled

100 — T 100
L] —
80 - 771 80 221
o 7 o Z
<o) 7 an 75
apm 771
£ 00 7 g 6 zz
3 ' g 7
= 40 AR b 40 7214
[} 77 [} 77
2 7 a 7
20 e 20 1
000 77
0 7 027 0 77
01 2 3 4 5 final final
slot number slot number
correct wrong []
correct minimal prediction stability ———

wrong minimal prediction 277

Figure 12. Scores of MaltParser with lookahead 3 for a sliding window with 6 slots; slot 0 refers
to the most recent word in the input, slot 1 to the second most recent and so on.

attachments between words in the prefix. This indicates that virtual nodes help
jwedg to find better structures overall.

As expected, the initial attachment is slightly lower when comparing against
one of the predictive gold standards because the definition of a correct attachment
is more harsh: an attachment to a VN is only correct if it is mapped to the correct
VN in the gold standard. The final accuracy is the same, as there are no predictive
attachments in final PDAs.

As seen in Table 2, nearly half of the virtual nodes in the gold standard
were correctly predicted by jwcdg. The precision is also around 45%, indicating
that jwedg does not predict too few VNS but around half of the attachments are
incorrect. This is not surprising, since there might be more than one plausible
prediction for a sentence prefix, but only one of them is deemed correct by the gold
standard. An interesting finding here is that jwedg-VN performs better (against
the sentence predictive gold standard) than jwedg-VN-NS (against the fragment
predictive gold standard) by around 5% for both precision and recall. A possible
explanation for this is that the additional VNs in the sentence predictive gold
standard, i.e. mostly the finite verb connected to the sentence root, are easier to
predict than other VNs.

An important benefit of structural prediction, though, is the significantly
reduced amount of fragmentation, as indeed the PDAs generated by jwcdg VNs
are connected to a similar degree as the gold standard annotations: jwedg’s output
has an average fragmentation of 0.055, while the sentence prediction gold standard
has an average fragmentation of 0.072.

n

o2
° nonspec
DET
ﬁ
John buys a red [noun] John buys a red

Figure 13. A connected (a) and an unconnected (b) PDA
6. Related Work

To our knowledge, partial dependency analyses have not been investigated previ-
ously in detail. Work on incremental dependency parsing like [20] was focused on
the incrementality of the algorithm, not on providing an incremental interface.
Therefore, the output of intermediate results was not a primary goal. In other
cases, like [7], the evolution of partial analyses has been studied, but no broad
scale evaluation has been carried out.

An alternative grammar formalism able to produce connected partial analy-
ses is PLTAG [21], a variant of the Tree Adjoining Grammar (TAG) formalism. In
this approach, prediction plays a strong role, too. Top-down prediction is facili-
tated through substitution nodes in lexical entries, e.g. verb valencies. Bottom-up
prediction is achieved by means of connection paths, i.e. the need for additional
nodes to connect a subtree to the rest of the structure. A comparison with our
results by applying the proposed metrics on derivation trees of TAG is beyond
the scope of this work but a promising topic for further research.

The metrics presented here only capture syntactic similarity, but not the util-
ity of an analysis for an application task. Eventually, a more semantically ori-
ented measure would be desirable, which is able to reflect the amount of semantic
information conveyed by a structure. The sentence prefix “John buys a red”, for
example, contains the information buys(John, X) and color(X,red). Since such
an information can be more easily extracted from a predictive dependency ana-
lysis like the one in Figure 13 a) compared to the not connected analysis (13
b)), it would be desirable to assign a higher recall value to a). An application
oriented measure for prefix analyses is defined by [22] where several variants for
incremental reference resolution are discussed. They are, however, only applicable
for utterances with a single reference.

7. Conclusions

We presented a definition of partial dependency analyses that allows us to derive
fully connected structures for sentence prefixes by introducing predicted nodes
into the dependency graph. PDAs provide the possibility to encode prediction in
different amounts and granularities. The customary attachment score metric alone
is not sufficient to capture the dynamics of incremental parser output. Therefore,
an extended evaluation scheme has been introduced that describes the evolution
of accuracy measures over a window of a fixed number of recent words. For this

scheme, several methods to automatically create incrementalized gold standards
have been proposed, which are tailored towards specific evaluation settings.

Using these measures, two existing dependency parsers have been compared,
jwedg and MaltParser. While MaltParser is capable of producing better initial at-
tachments (when ignoring labels), jwcdg can produce structural prediction, yields
a higher final accuracy and does not need lookahead. Also, jwcdg utilizes reanal-
ysis can therefore revise its output if new information is available, resembling
human parsing strategies. Using virtual nodes instead of nonspec when parsing
with jwedg does not only result in richer prediction but also helps jwedg finding
better attachments in the prefixes.

References

[1] Patrick Sturt and Vincent Lombardo. Processing coordinated structures: Incrementality
and connectedness. Cognitive Science, 29:291-305, 2005.

[2] Kilian A. Foth. Hybrid Methods of Natural Language Analysis. PhD thesis, Uni Hamburg,
2006.

[3] J. Nivre, J. Hall, J. Nilsson, A. Chanev, G. Eryigit, S. Kiibler, S. Marinov, and E. Marsi.
MaltParser: A language-independent system for data-driven dependency parsing. Natural
Language Engineering, 13:95-135, 2007.

[4] Niels Beuck, Arne Kohn, and Wolfgang Menzel. Incremental Parsing and the Evaluation
of Partial Dependency Analyses. In DepLing 2011, Proceedings of the 1st International
Conference on Dependency Linguistics, 2011.

[5] Michael Daum. Dynamic Dependency Parsing. In In Proceedings of the ACL 2004 Work-
shop on Incremental Parsing, 2004.

[6] Ingo Schroder. Natural Language Parsing with Graded Constraints. PhD thesis, Uni
Hamburg, 2002.

[7] Wolfgang Menzel. Towards radically incremental parsing of natural language. In Recent
Advances in Natural Language Processing V, 2009.

[8] Joakim Nivre. An Efficient Algorithm for Projective Dependency Parsing. In Proceedings
of IWPT 03, 2003.

[9] Michael A. Covington. A fundamental algorithm for dependency parsing. In In Proceedings
of the 89th Annual ACM Southeast Conference, pages 95-102, 2001.

[10] Joakim Nivre. Dependency Grammar and Dependency Parsing. Technical report, Vaxjo
University: School of Mathematics and Systems Engineering, 2005.

[11] Carlos Gémez-Rodriguez and Joakim Nivre. A transition-based parser for 2-planar de-
pendency structures. In Proceedings of ACL 2010, 2010.

[12] Niels Beuck, Arne Kohn, and Wolfgang Menzel. Decision Strategies in Incremental PoS
Tagging. In Proceedings of NODALIDA 2011, 2011.

[13] Niels Beuck and Wolfgang Menzel. Structural Prediction in Incremental Dependency
Parsing. In Alexander Gelbukh, editor, Computational Linguistics and Intelligent Text
Processing, volume 7816 of Lecture Notes in Computer Science, pages 245-257. Springer
Berlin Heidelberg, 2013.

[14] Kilian Foth. Eine umfassende Constraint-Dependenz-Grammatik des Deutschen. Techni-
cal report, Universitat Hamburg, 2006.

[15] Thorsten Brants, Roland Hendriks, Sabine Kramp, Brigitte Krenn, Cordula Preis, Woj-
ciech Skut, and Hans Uszkoreit. Das NEGRA-Annotationsschema. Negra project report,
Universitat des Saarlandes, Computerlinguistik, Saarbriicken, Germany, 1997.

[16] Michael Daum, Kilian Foth, and Wolfgang Menzel. Automatic transformation of phrase
treebanks to dependency trees. In 4th Int. Conf. on Language Resources and Evaluation,
LREC-2004, 2004.

[17] Thorsten Brants. TnT - A Statistical Part-of-Speech Tagger. In ANLC 00 Proceedings of
the sizth conference on Applied natural language processing, 2000.

Jests Giménez and Lluis Marquez. SVMtool: A general POS tagger generator based on
Support Vector Machines. In Proceedings of the 4th LREC, 2004.

Arne Kohn and Wolfgang Menzel. Incremental and Predictive Dependency Parsing under
Real-Time Conditions. In Proceedings of RANLP 20183, 2013. to appear.

Joakim Nivre. Incrementality in Deterministic Dependency Parsing. In Incremental Pars-
ing: Bringing Engineering and Cognition Together, Workshop at ACL 2004, 2004.

Vera Demberg and Frank Keller. A psycholinguistically motivated version of TAG. In
Proceedings of the ninth international workshop on tree adjoining grammars and related
formalisms, 2008.

David Schlangen, Timo Baumann, and Michaela Atterer. Incremental reference resolu-
tion: the task, metrics for evaluation, and a Bayesian filtering model that is sensitive to
disfluencies. In Proceedings of SIGDIAL 2009, 2009.

