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Abstract

As a contribution to the 2014 SPMRL shared task on parsing morphologically rich languages,
we show that it is now possible to achieve high dependency accuracy using existing parsers
without the need for intricate multi-parser schemes even if only small amounts of training data
are available. We further show that the impact of using word vectors on parsing quality heavily
depends on the amount of morphological information that is available. In addition, we discuss
the use of parser scores for selection of morphological lattice paths, showing that there is much
discriminative power in syntactic parsers for morphological disambiguation.

1 Introduction

Results from the 2013 shared task on Statistical Parsing of Morphologically Rich Languages (SPMRL)
have shown that it is now possible to obtain high dependency accuracy on a variety of morphologically
rich languages. The best results for every one of the nine languages included in the 2013 SPMRL shared
task were obtained by Björkelund et al. (2013), who designed a very effective but intricate ensemble
approach involving reranking of merged n-best lists from three parsers. We describe our contribution to the
2014 SPMRL shared task, focusing on the use of a single existing parser without extensive customization,
addressing the question of what level of accuracy can be expected from off-the-shelf software currently
available.

We also investigate the use of vector representations of words in statistical parsing of morphologically
rich languages, which constitutes a form of semi-supervised learning, since these vector representations
are derived from large unlabeled corpora. Using word vectors as features for syntactic parsing has been
challenging because most parsers only use discrete features. Vectors are often used, instead, to create
word clusters, from which features can be derived (a notable exception is Collobert and Weston (2008)).
In recent work, Lei et al. (2014) proposed the use of low-rank tensors for scoring in addition to the
scoring elements used by Martins et al. (2013). This approach allows vectors to be incorporated directly
as continuous features, and is the basis of our experiments with word vectors.

In the first half of this paper, we explore the effects of using different kinds of word vectors with a
higher-order model in the state-of-the-art dependency parser of Lei et al. (2014), comparing the results to
those obtained by the same parser without word vectors. We also investigate the possible overlap in the
information contained in morphological annotation and in word vectors by considering settings where gold
standard morphological information is available, and where no morphological information is available. In
the second half of the paper, we present a separate set of experiments using the Hebrew dataset, where we
consider the more realistic setting of automatic prediction of part-of-speech and morphological features,
and attempt to determine whether the use of scores assigned by a discriminative parser are effective for
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Basque French German Hebrew Hungarian Korean Polish Swedish Average

Turbo 71.16 81.34 75.37 75.90 81.38 64.58 64.91 69.81 73.06
Mate 74.75 81.22 88.23 87.56 68.29 79.61 88.14 80.73 81.07
RBG 88.74 92.32 92.22 88.94 88.05 87.52 92.52 85.06 89.42

Table 1: Comparison of unlabeled accuracy results obtained with TurboParser, Mate parser and RBGParser.

scoring of paths in lattices encoding morphological information. All of our experiments were conducted
on the limited labeled data track (5k), where training sets for each language consisted of 5,000 labeled
sentences.1

2 Parsing with RBGParser and the 5k datasets

In our experiments we used three off-the-shelf parsers, which we trained using the 5k data sets for
each language in the SPMRL 2014 shared task. The primary parser we used to generate our results is
RBGParser (Lei et al., 2014), which has been released recently and has been shown to have excellent
performance on the CoNLL 2006 multilingual dependency parsing task (Buchholz and Marsi, 2006). To
gauge the parsing accuracy of RBGParser when only given small amounts of training data, we compare
its results against TurboParser (Martins et al., 2013) and the Mate parser (Bohnet, 2010)2. Lei et al.
(2014) reported an increase of 0.3 percentage points against TurboParser on average on the CoNLL 2006
dataset (Buchholz and Marsi, 2006). The results for the 5k training sets are much more pronounced, as can
be seen in Table 1. The large gap in accuracy between RBGParser and both Mate parser and TurboParser
and the differences between these two parsers are especially interesting since Foth et al. (2014) evaluated
parsing accuracy as a function over the training size on the Hamburg Dependency Treebank and both
parsers performed well with a training size of only 1,000 sentences.

2.1 Word Vectors

There are several ways to create word embeddings in a high dimensional space. We consider skipgrams
and continuous bag-of-words (Mikolov et al., 2013), the two variants implemented in word2vec3, which
we used to carry out our experiments. The continuous bag-of-words model is designed to predict the
current word given its context, and the skipgram model is designed to predict each of the words in the
context given the current word.

In our experiments, we examined the performance of three different types of vectors for each language
(each with a window size of five words):

• Skipgram with five negative examples (200 dimensions, negative sampling);

• Continuous bag-of-words (200 dimensions, hierarchical softmax);

• A concatenation of the two above (400 dimensions).

All word vectors were trained on the unlabeled data for each language provided for the shared task.
RBGParser was trained on the 5k gold training set for each language4 with each set of word vectors, as
well as without word vectors.

The improvements observed due to word vectors (Table 2) are generally similar to those reported by
Lei et al. (2014). However, for some languages, the types of word vectors we used did not impact the
accuracy achieved, and results were no better than those obtained without word vectors.

1The software and settings for our experiments are available on http://nats-www.informatik.uni-hamburg.
de/User/ArneKoehn/spmrl14

2The results reported here are based on the development sets of the respective languages, unless otherwise noted.
3https://code.google.com/p/word2vec/
4We excluded Arabic because the memory requirements for training the RBGParser with the 5k training set, over 40Gb,

exceeded the resources available to us at the time of the experiments.

http://nats-www.informatik.uni-hamburg.de/User/ArneKoehn/spmrl14
http://nats-www.informatik.uni-hamburg.de/User/ArneKoehn/spmrl14
https://code.google.com/p/word2vec/


Word Vector Basque French German Hebrew Hungarian Korean Polish Swedish

None 88.74 92.32 92.22 88.94 88.05 87.52 92.52 85.06
CBOW 89.05 92.33 92.30 89.40 88.43 87.51 92.60 85.29

Skipgram 89.15 92.43 92.22 90.57 88.38 87.73 92.26 85.11
Combined 89.00 92.23 92.29 89.13 88.39 86.87 92.48 85.08

Table 2: Unlabeled parsing accuracy obtained with different word vector representations.

Word Vector Basque French German Hebrew Hungarian Korean Polish Swedish

IMS-SZEGED 90.18 90.63 89.70 88.95 90.68 84.78 93.11 89.11
RBGParser 89.48 90.45 89.34 88.09 89.33 85.99 89.83 88.90

difference -0.70 -0.18 -0.36 -0.86 -1.35 +1.21 -3.28 -0.21

Table 3: Unlabeled parsing accuracy comparison of RBGParser with skipgram word vectors versus the
best performing system of SPMRL 2013 (IMS-SZEGED), evaluated on the test sets.

Table 3 shows the official results on the test sets compared to the best performing parser of last year,
Björkelund et al. (2013). As can be seen, using a single parser instead of a parser ensemble only incurs
slight degradation in parsing performance.

2.2 Parsing without Morphological Annotation

A possible explanation for the lack of larger accuracy improvements when using word vectors is that the
information they encode is also present in the morphological information provided while training and
parsing. To test this hypothesis, we stripped all morphologic information (i.e. the morphological features
and the part-of-speech column) from both the training and test sets. The results obtained when parsing
without morphological information show that indeed the word vectors make a difference of five to seven
percentage points in this scenario, showing that word vectors do contribute substantially in the absence
of part-of-speech and morphological information (see Table 4). They cannot, however, offset the loss
incurred by not having gold standard morphological annotation.

2.3 Relabeling

RBGParser, as well as TurboParser, decides on the label of each possible edge before actually parsing.
This way the parsing problem is less complex because considering all possible labels for each edge while
parsing would multiply the number of possible parses for a sentence by ln−1, where l is the number of
labels in the dependency scheme and n is the number of words in the input. However, the labeling may
benefit from structural features beyond the identity of the head and dependent of an edge. Therefore, we
implemented a simple labeler which relabels a dependency tree using the features listed in Table 5. The
labeler employs a multiclass averaged perceptron and consistently outperforms the labeling accuracy of
RBGParser (Table 6).

Basque French German Hebrew Hungarian Swedish

With vectors 83.68 82.75 84.61 82.37 80.73 76.81
Without vectors 78.88 79.60 79.53 77.61 73.62 69.95

Table 4: Unlabeled accuracy results obtained when parsing without any morphological annotation, with
and without word vectors.



Words used Features

(dependent, head) direction, morph
dependent word, pos, cpos, morph, morph splitted, morph×(pos cpos)

head word, pos, cpos, morph, morph×(pos cpos)
dep[-1] word, pos
dep[-2] word, pos
dep[1] word, pos
dep[2] word, pos

Table 5: Features used by the labeler, words and features in brackets are combined, dep[x] is the xth word
right of the dependent.

Basque French German Hebrew Hungarian Korean Polish Swedish

original 80.98 90.93 93.11 86.60 83.71 94.61 89.44 82.56
relabel 88.27 94.74 94.53 87.43 90.62 96.95 92.04 83.10

Table 6: Labeling performance of our simple labeler versus the original RBGParser labeling.

3 Parsing with Lattices

The experiments and results presented so far, including those where part-of-speech and morphological
features were explicitly removed from the input, assumed fixed tokenization (gold standard word seg-
mentation, specifically) and no ambiguity in the part-of-speech and morphology analyses for the input
sentences. In more realistic scenarios, however, better results from a full parsing pipeline may be obtained
when ambiguity is considered, and different lexical analyses may result in different word segmentation
options of the input. Ambiguities in word segmentation, morphology and part-of-speech can be encoded
efficiently in a lattice, which is a directed acyclic graph with a source node that serves as a starting
point, from which paths through the lattice correspond to individual readings or analyses for the entire
input sentence. Given the potentially large ambiguity represented in the lattice, selecting a correct path
(analysis) through lattices is often essential for an accurate parsing result.

Of the nine datasets provided, only the Hebrew dataset includes lattices encoding ambiguities in
tokenization, part-of-speech and morphology, so our experiments are focused on this one dataset. An
automatically disambiguated path is provided, in addition to a gold standard analysis.

3.1 Preliminary Evaluation of Lattice Quality

Because, as explained in Seddah et al. (2013), the Hebrew lattices may not contain the gold standard
paths, we first examined the upper-bound for our experiments based on these lattices. To measure this
upper-bound, we use the gold standard analyses to create an oracle to select the best possible path for
each sentence (the “oracle best” path).

The metric used in the evaluation on all lattice path sets is the F-score of tagged tokens, which requires
segmentation, the part-of-speech tag, and all morphological features to match a gold standard token for
the predicted token to be considered correct. The F-score for the oracle best path is 0.60, which is below
the F-score of the disambiguated path provided with the dataset, 0.62. This means that even with a perfect
disambiguation model, paths extracted from the lattices provided would be of lower quality than the
disambiguated paths provided, which were extracted from a different, larger lattice. As a result, there is
little hope that parsing results obtained with the provided lattices would be better than results obtained
with the provided disambiguated paths. However, due to time constraints, we did not examine parsing
accuracy resulting from the use of lattices, and instead investigated only the token F-scores of extracted
paths, with the reasonable assumption that higher token F-scores correspond to higher parsing accuracy.
Validation of this assumption is left as future work.



3.2 A Simple Path Selection Approach

As a simple way of selecting a path through the lattice, we trained a logistic regression model on the set of
edges extracted from both the lattices and the gold standard analyses using simple features that include
word forms, part-of-speech tags, and morphological features for two adjacent tokens. The model was
trained locally by simply taking gold standard edges as positive examples and other edges as negative
examples, and only edges that have at least one of its ends as part of the gold standard path are included
in training. We used the resulting edge scoring model to select a path automatically, and to select k
unique paths for each sentence using beam search. In our experiments we extracted 100 paths for each
sentence from the dev set. The F-score of the highest scoring path is 0.46, well below the oracle best
path’s F-score of 0.60. While it is possible that a better model would achieve a higher F-score, simply
maximizing F-score was not the main goal of our experiments, since the upper-bound is still lower than the
disambiguation provided in the dataset. Instead, we use this model to generate multiple candidate paths,
and attempt to determine whether a parser model can be used to determine the quality of the candidate
paths.

3.3 Path Selection with TurboParser

Syntactic parsing can be (and often is) formulated as finding the best scoring parse p for a given sentence
s and a scoring function f :

p = argmax
p′∈P

f(p′, s)

However, sometimes the segmentation of a sentence into words is not unique and the correct segmentation
and morphologic annotation needs to be found. Given the fact that some segmentations and annotations
will violate syntactic constraints, we can try to find the best segmentation by choosing the one that has the
highest scoring parse:

s = argmax
s′∈S

(max
p∈P

f(p, s′))

TurboParser (Martins et al., 2013) translates the parsing problem into an integer linear program and
solves it using a LP relaxation. The optimal parse then ideally is the highest scoring admissible solution
for the ILP. A parse will have a bad score (i.e. a high log potential) if it is not a good fit for the sentences.
We hypothesize that this also works the other way round: if the sentence is ungrammatical, we can hope
that there is no fitting parse with low log-potential. Therefore, the best parse of an ungrammatical sentence
should have a worse score than the best parse of a grammatical one.

To verify this hypothesis, we performed several experiments on the beam search selected 100 best paths
from the Hebrew lattice. Using the score generated by TurboParser on each path, we can rerank these
paths and choose one best path for each sentence. These best paths acceding to TurboParser scores have
F-score of 0.48, which is slightly higher than the F-score obtained with our simple path selection model.

Since the F-score obtained from paths selected by TurboParser is limited by the logistic regression
model that generates the 100-best list from which TurboParser selects its highest scoring path, we ran
an additional experiment where the oracle best path is added to the list of 100-best paths, if it is not
already included. This experiment is intended to provide some indication of whether TurboParser might
perform better in path selection given longer n-best lists. Of course, the use of arbitrarily long n-best
lists is impractical, since each path in the n-best list is parsed individually, meaning that a 1000-best list
would make parsing 1000 times slower. With the 100-best paths selected by our simple selection model
plus the oracle best path, the paths selected by TurboParser have an F-score of 0.57, which is close to the
upper-bound established by the oracle best path, 0.60. This serves as indication that TurboParser may in
fact be effective in selecting lattice paths.

Finally, we ran another experiment where instead of adding the oracle best path to the list of 100-best
paths, we add the gold standard analysis to the list of 100-best paths. This no longer approximates
any realistic path selection problem, since the gold standard path is often not in the lattices used in the
experiment. However, with this experiment we explore whether TurboParser can distinguish an analysis
of substantially higher quality from those contained in the lattice. When given lists containing 100-best



Path selection scheme F-score

disambiguated path provided with dataset 0.6204
oracle best path 0.6045
predicted path 0.4645
TurboParser selection from top 100 scoring paths 0.4769
TurboParser selection from top 100 scoring paths + oracle path 0.5679
TurboParser selection from top 100 scoring paths + gold standard path 0.9070

Table 7: Comparison of various lattice path selection schemes.

paths extracted from the lattice plus the gold standard analysis, TurboParser selections result in an F-score
of 0.91, confirming that TurboParser can effectively select the higher quality analysis. A summary of our
results on lattice path selection is shown in Table 7.

This preliminary investigation of whether a parsing model is effective in selecting paths through lattices
that encode ambiguities in word segmentation, part-of-speech and morphology leaves out two important
questions: how well this type of selection would perform with higher quality lattices (and higher quality
n-best lists), and how well the token F-scores used in our experiments correlate with parsing accuracy.
Addressing both of these questions is left as future work.

4 Conclusions

We demonstrated that a single off-the-shelf parser can be trained with no other customization to produce
high accuracy dependency parsing results. RBGParser, which has been released recently, performed
very well across eight of the nine languages in the SPMRL 2014 shared task (we were unable to train a
model for Arabic), with high unlabeled accuracy. The addition of a simple labeler produces high labeled
dependency scores. RBGParser outperforms both TurboParser and the Mate parser when trained on the
5k training sets, and can produce good results even when no morphological analysis is available. In that
case the parser greatly benefits from the use of distributed vector representations of words derived from
unlabeled data.

In our experiments, we compared only the two extreme cases where no morphological information is
available and where gold standard morphological information is available, leaving out the more practical
scenario where automatic morphological analysis produces reasonable results. Investigation of the use of
word vectors under that condition is left as future work.

Finally, we presented preliminary results that suggest that TurboParser is capable of selecting high
quality morphological analyses, but we have not quantified the effect of this type of selection on parse
accuracy. In future work, it would be interesting to examine whether RBGParser’s superior accuracy can
be combined with a parser-based path selection scheme without the need for parsing sentences multiple
times.

Acknowledgments

We express our gratitude to the treebank providers for each language: Arabic (Maamouri et al., 2004;
Habash and Roth, 2009; Habash et al., 2009), Basque (Aduriz et al., 2003; Aldezabal et al., 2008), French
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parse trees for Polish. In Proceedings of Text, Speech and Dialogue, pages 197–204, Brno, Czech Republic.

[Tsarfaty2010] Reut Tsarfaty. 2010. Relational-realizational syntax: An architecture for specifying and statistically
learning morphosyntactic descriptions. In Proceedings of the LFG10 Conference. CSLI Publications.

[Tsarfaty2013] Reut Tsarfaty. 2013. A unified morpho-syntactic scheme of stanford dependencies. In Proceedings
of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages
578–584, Sofia, Bulgaria, August. Association for Computational Linguistics.

[Vincze et al.2010] Veronika Vincze, Dóra Szauter, Attila Almási, György Móra, Zoltán Alexin, and János Csirik.
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