Large-scale Analysis of Spoken Free-verse Poetry
Baumann, Timo ; Meyer-Sickendiek, Burkhard
URN | urn:nbn:de:gbv:18-228-7-2283 |
---|---|
URL | http://edoc.sub.uni-hamburg.de/informatik/volltexte/2016/228/ |
Dokumentart: | InProceedings (Aufsatz / Paper einer Konferenz etc.) |
Institut: | Fachbereich Informatik |
Sprache: | Englisch |
Erstellungsjahr: | 2016 |
Publikationsdatum: | 04.11.2016 |
Originalveröffentlichung: | Proceedings of LT4DH-Workshop 2016 (Osaka, Japan), December (2016) |
Freie Schlagwörter (Deutsch): | freie Lyrik , post-moderne Hörgedichte , Prosodie , automatische Analyse , inkrementelles Lernen |
Freie Schlagwörter (Englisch): | free verse poetry , spoken post-modern poetry , prosody , automatic analysis , incremental learning |
DDC-Sachgruppe: | Informatik |
BK - Klassifikation: | 54.75 |
Kurzfassung auf Englisch:
Most modern and post-modern poems have developed a post-metrical idea of lyrical prosody that employs rhythmical features of everyday language and prose instead of a strict adherence to rhyme and metrical schemes. This development is subsumed under the term free verse prosody. We present our methodology for the large-scale analysis of modern and post-modern poetry in both their written form and as spoken aloud by the author. We employ language processing tools to align text and speech, to generate a null-model of how the poem would be spoken by a naı̈ve reader, and to extract contrastive prosodic features used by the poet. On these, we intend to build our model of free verse prosody, which will help to understand, differentiate and relate the different styles of free verse poetry. We plan to use our processing scheme on large amounts of data to iteratively build models of styles, to validate and guide manual style annotation, to identify further rhythmical categories, and ultimately to broaden our understanding of free verse poetry. In this paper, we report on a proof-of-concept of our methodology using smaller amounts of poems and a limited set of features. We find that our methodology helps to extract differentiating features in the authors’ speech that can be explained by philological insight. Thus, our automatic method helps to guide the literary analysis and this in turn helps to improve our computational models.
Hinweis zum Urherberrecht
Für Dokumente, die in elektronischer Form über Datenenetze angeboten werden, gilt uneingeschränkt das Urheberrechtsgesetz (UrhG). Insbesondere gilt:
Einzelne Vervielfältigungen, z.B. Kopien und Ausdrucke, dürfen nur zum privaten und sonstigen eigenen Gebrauch angefertigt werden (Paragraph 53 Urheberrecht). Die Herstellung und Verbreitung von weiteren Reproduktionen ist nur mit ausdrücklicher Genehmigung des Urhebers gestattet.
Der Benutzer ist für die Einhaltung der Rechtsvorschriften selbst verantwortlich und kann bei Mißbrauch haftbar gemacht werden.