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Abstract
One-sided communication has been added to the MPI standard with MPI-2 in 1997
and has been greatly extended with the introduction of MPI-3 in 2012. Even though
one-sided communication offers many use cases, from which an application could benefit,
it has only sporadically been used for HPC so far. The objective of this thesis is to
examine its potential use for replacing a OpenMP section with equivalent code, which
only makes use of MPI. This is done based on an already existing application, named
PHOENIX. This application is currently developed at the observatory of Hamburg and
has been designed to be executed on HPC systems. Its purpose is, among other things, to
numerically solve the equations of 3D radiative transfer for stellar objects. For utilising
HPC hardware at its full capacity PHOENIX makes use of MPI and OpenMP. In the
course of this thesis a test application has been constructed, which mimics the OpenMP
sections and allows to benchmark diverse combinations of MPI one-sided communication
operations. The benchmarks are performed on a Intel Xeon Phi Knights Corner and on
a Intel Xeon Phi Knights Landing to estimate if a certain approach is suitable for HPC
hardware in general. In the end each approach is discussed and assessed which kind of
communication pattern might benefit most of MPI one-sided communication.





"The only good bug is a dead bug"
– Starship Troopers (1997)
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1 Introduction

1.1 Motivation
Computational science describes the use of computers to simulate circumstances, which
are otherwise too expensive or even impossible to be reproduced through experiments.
Parallel computers have become a very popular tool to perform these simulations, because
it’s more difficult and costly (or even impossible) to achieve the same computing capacity
with a single machine than with a parallel computer architecture. Several parallel
computational models exist to exploit parallel computers, they differ in using shared or
distributed memory, message passing, vector processors, threads, and so forth. Each
computational model can be implemented on any hardware, its effectiveness however
will vary as there exists for every model a most suitable hardware [GLS14].

Remote Memory Access (RMA, cf. section RDMA (p.12)) describes a programming
model, which allows to access or update memory remotely (ideally without any corre-
sponding action of the remote target). One implementation of this programming model is
MPI one-sided communication. It has been first included into the MPI standard in July,
1997. Still one-sided communication has not attracted a large community. One reason for
this situation is the fact, that using MPI one-sided communication quickly becomes very
tedious and several use cases of MPI one-sided communication can be implemented with
other techniques, which are easier to use and well-established. This is shown by [aMT06],
whose authors tried to implement algorithms, which make use of OpenMP, with MPI-2
one-sided communication instead. Even though the substitution was possible the results
did not suggest to imitate this procedure. Chapter Using MPI-3 RMA (p.60) will
discuss this procedure again, but this time MPI-3 one-sided communication is used.

If at all, MPI one-sided communication is used especially for a subdomain of a HPC-
application, since in HPC the effort could produce a valuable difference in speedup. The
Earth Simulator topped the Top500 list awhile [TOP] and, therefore, one may assume
that major effort is put in to optimise any application, which shall be executed on it
- an example for such an application is presented in [YIU+02]. Nevertheless even for
this application MPI one-sided communication has only be used for a section of the
application to manage the transfer of data.
In 2012 the MPI standard expanded the one-sided communication interface by new

operations; amongst others it is now possible to make use of shared memory. One major
intention of this thesis is to investigate the potential of the improvements of MPI-3
one-sided communication.
PHOENIX is an application to solve 3D radiative transfer and is used at the observatory

of Hamburg to compute numerically stellar atmospheres. In general it scales very well
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with additional threads; PHOENIX is an example for a HPC application and is worthwhile
to be deployed on HPC systems. So it is suitable to be used as a test environment for
changes made with MPI-3 one-sided communication. The main objective of this thesis is
to examine the improvements of MPI-3 one-sided communication and then analyse its
potential regarding one special use case: How can MPI-3 one-sided communication be
used to replace an OpenMP section with an equivalent MPI-only section on the one hand
and to evaluate the resulting performance on the other hand. The changes may then be
tested and evaluated by executing PHOENIX respectively an adapted test program on
an Intel Xeon Phi, which has been developed to support HPC. This gives an intuition if
MPI-3 one-sided communication is an eligible candidate to be used on HPC systems.
This year, Intel released the second generation of the Xeon Phi with the intention

to approach the most important issues, which Knights Corner had revealed. The new
generation of the Xeon Phi is called Knights Landing and is available as a coprocessor
and as a processor as well. Again it offers many cores together with vector processing
units to offer hight performance if an application is capable of using the Xeon Phi at
its full capacity. A Knights Corner Coprocessor as well as a Knights Landing Processor
were used for this thesis.

1.2 Structure
ChapterMPI (p.11) gives an overview about new operations, which have been introduced
into the MPI standard with MPI-2 and MPI-3. For the sake of brevity only those
operations are presented, which are an element of one-sided communication or are
necessary to substitute OpenMP. The HPC application PHOENIX is discussed in chapter
Phoenix (p.41) to get clear, what its parallelisation pattern looks like and how this
could be used to gain performance through the use of MPI one-sided communication.
Besides a common Linux-PC a Intel Xeon Phi Knights Corner coprocessor and a Intel
Xeon Phi Knights Landing processor are used to benchmark several combinations of
MPI-3 one-sided communication operations, therefore, the Xeon Phi is presented in
chapter Intel Xeon Phi (p.53). After providing these basic informations chapter
Using MPI-3 RMA (p.60) brings MPI one-sided combination, Intel Xeon Phi and
PHOENIX together to discuss several possibilities to replace OpenMP with MPI one-sided
communication. The evaluation of the suitability of these approaches is then performed
in chapter Evaluation (p.79). The last chapter Conclusion (p.92) summarises the
results of the prior chapters and displays related and future work.
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2 MPI
MPI (acronym for Message Passing Interface) is an interface designed by the MPI Forum
[MPIb], which defines the syntax and semantics of operations for message passing between
processes, which are able to communicate with each other. These operations cover point-
to-point-communication as well as collective communication, one-sided communication,
managing processes, debugging, and more. Processes, which communicate with each
other, do not need to share the same memory and may rely on local memory - any
kind of connection via a network is sufficient. Therefore it has become the preferred
standard for machines with distributed memory and in the field of high performance
computing in general [VVH+15]. To encourage usage and dissemination of MPI, the MPI
Forum laid focus on the portability and decided to include many features of existing
message passing systems. Nevertheless it is possible to build applications with just six
MPI-functions, which can already use distributed memory to full capacity: MPI_Init,
MPI_Finalize, MPI_Comm_size, MPI_Comm_rank, MPI_Send, MPI_Recv.

The MPI standard itself does not include an implementation but there are implemen-
tations for a broad variety of hardware made by companies and research communities -
see section Implementations (p.27) for a selection of established implementations.
The first version of MPI was published in May 1994 and is since then in constant

development. MPI-2.0 was released in July 1997 and MPI-3.0 in September 2012. The
current release of the MPI standard is MPI-3.1, released in June 2015. There are
already working groups assigned to topics, which might be considered for MPI-4 [MPIa].
Each version of MPI comes along with its own documentation MPI: A Message-Passing
Interface Standard, which are available at [MPIb]. For an introduction into using MPI
refer to Using MPI [GLS14] or Using Advanced MPI [GHTL14].
From now on MPI-X refers to any MPI-X.y subversion whereas MPI-X.y is used to

reference to the specific MPI-X.y version.

2.1 One-sided communication
There are two possibilities how two or more processes can communicate with each other:
Either through message passing, which requires, that every involved process in this
communication participates actively, or through direct memory access. Operations for
direct memory access had been added to MPI with the introduction of the MPI-2.0
standard, where they had been specified as one-sided communication operations. The
expression one-sided communication already implies the main feature of this approach:
one process (the so-called origin) puts or gets data directly to or from another process’
memory (the target), without the need, that the target process calls an equivalent
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operation. Origin denotes always the process, which invokes a communication call, target
is always the process, whose memory is accessed or updated. Also origin == target
is explicitly allowed by the MPI standard. Hereafter RMA communication operations,
which might change remote memory (like MPI_PUT or MPI_ACCUMULATE), will be just
called update; RMA communication operations, which only get a value from a remote
memory without any change (like MPI_GET), will be called access.

The major advantage of one-sided communication is, that the target’s memory can be
accessed and updated directly without the collaboration of the target. Using two-sided
communication, the target would need to react actively to the origin. This would be
e.g. calling MPI_Recv(...) for the corresponding MPI_Send(...). But if the
process, which is the target of MPI_Send(...), does not respond to this call, the
message propagation would never complete. Using one-sided communication the target
process is not involved in calling communication operations, therefore communication
operations are safe from deadlocks. There are still some one-sided operations, which
require cooperation of processes, but they are limited to initialisation and synchronisation
operations1.

In contrast to the fact, that today MPI is omnipresent on high performance systems,
MPI-2 one-sided communication is barely used, even though it had been published more
than a decade ago. Noteworthy applications like [YIU+02], which uses one-sided commu-
nication to transfer data for transposition, are an exception [TGR+09, 1]. This was one
reason the MPI Forum released MPI-3 with major changes to one-sided communication,
which later will be demonstrated in chapter Using MPI-3 RMA (p.60). In addition
there are many use cases where one-sided communication is not the only solution but
a well fitting one. See section Use cases (p.20) to get an impression, what one-sided
communication could be used for.

2.1.1 RDMA
Remote memory access (RMA) describes a programming model, which allows a process
to access or update another process’ memory remotely. Before RMA had been introduced
to MPI, a well-established possibility to access or update distributed memory were
two-sided MPI communication operations. MPI one-sided communication operations
allow to use the potential of RMA and to distinguish between remote and local memory.
In addition it enables that processes which share the same memory, i.e. they run on
the same node, may execute load and store operations on each other’s local memory
directly, i.e., without passing messages. RMA and MPI one-sided communication are
used synonymously in this thesis.
Sometimes RMA is noted in combination with Partitioned Global Address Space

(PGAS) languages, which also allows to access and update shared or remote memory.
PGAS creates on a machine one virtual shared memory which is accessible by every
process - sections of this memory space may also be assigned to a specific process to

1Because of the need for collaboration, deadlocks are possible to occur during window creation and
synchronisation
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reduce access time. It is not relevant, if the machine really features one large shared
memory, a PGAS language will still create the illusion of one large shared memory. Even
though MPI implementations are usually tuned for performance, there are some use
cases, which are better fulfilled by a PGAS language. This was primarily the case, when
MPI-2 was the current MPI standard. MPI-3 faced several disadvantages compared with
PGAS, however some are still remaining (for example the constraint that every process,
which wishes to access or update shared memory, must take part in the collective window
creation). Well-known PGAS languages are for example Unified Parallel C and Coarray
Fortran [BD04][Pad11].

RMA only describes a concept for shared memory, Remote Direct Memory Access
(RDMA) in contrast is a mechanism to perform RMA operations. RDMA does not rely
on a corresponding action by neither the target process nor the operating system on the
target node (respectively to the actual data transfer) and offers a high bandwidth and
low latency at once. In contrast to RMA and PGAS, which are designed for end users,
RDMA is a low-level mechanism. RMA may use RDMA to implement its functions,
which are then executed on a hardware level (if the hardware offers support for RDMA).
Most interconnection hardware allows an efficient execution of RDMA: InfiniBand, Blue
Gene and Ethernet1 are just some of them [BH14].

To give a rough impression of the efficiency of interconnection hardware, which supports
RDMA, the authors of [GBH13] built a MPI-3 implementation (FOMPI : fast one-sided
MPI) for Cray Gemini and Aries systems based on a low-level RDMA API to investigate
its potential. Using optimisations like relinquishing remote buffering for synchronisation
and mapping RMA communication operations almost unmodified on RDMA functions
result in a performance comparable to Unified Parallel C and Coarray Fortran while being
able to scale with millions of cores with good performance. An example to support this
statement is shown in figure 2.1: Especially for a small message size the authors’ MPI-3
RMA implementation outperforms common MPI implementations as well as Unified
Parallel C and Coarray Fortran regarding the latency of an internode put operation
(the authors found a similar trend for internode get operations even though it was less
apparent); the same tendency is observable while looking at the intranode latency of those
operations. Another evidence is given with figure 2.2, where irrespective of the location
of the target process (intranode or internode) the latency of FOMPI’s synchronisation
with GATS operations was smaller than those of Cray MPI.

Another paper [Bal04] compared the performance of InfiniBand and 10-Gigabit Ether-
net (at the time, when this paper has been released in 2004, both technologies offered
the same theoretical bandwidth [Mel06]) and discovered that InfiniBand outperformed
Ethernet in relation to actual bandwidth and memory requirements, because InfiniBand
is other than Ethernet (if RoCE or iWARP are not used) capable of using RDMA.
This advantage becomes observable in figure 2.3a and 2.3b, which compare the effec-
tive latency and bandwidth between Ethernet and InfiniBand; the usage of RDMA
provides InfiniBand with an advance in performance in both cases. Another advantage

1Only if RoCE (RDMA over Converged Ethernet) or iWARP (internet Wide Area RDMA Protocol)
are supported
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Figure 2.1: Latency of RMA communication operations

becomes evident in figures 2.3c and 2.3d: Communicating over Ethernet, which depends
on TCP/IP communication, comes with a massive overhead regarding memory and
CPU usage - using the RDMA interface InfiniBand may perform these operations more
resource-conservingly.

2.1.2 Memory consistency model
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Figure 2.2: Latency of GATS
synchronisation

One major difficulty of parallel applica-
tions is synchronizing communication with
messages to guarantee a well-defined out-
come, which in most cases must also be
reproducible. As soon as a process starts
to exchange messages with another process,
the order of execution is non-deterministic
as long as no synchronisation (e.g. with
MPI_BARRIER(...) or blocking com-
munication) is used. This is due to the
circumstance that a node’s timing is un-
predictable: the execution of instructions
could be delayed because of background-
processes, network load, buffering or sim-
ilar. Even if both involved processes are
executed on the same core, the actual ex-
ecution order is non-deterministic because of the scheduler, which guides the actual
execution order in a unpredictable manner.

To consider this situation a memory consistency model describes the effect of processes
or threads, which operate on the same memory. For demonstration purpose let process
A expose some of its memory through a window to allow other processes Bi to access
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Figure 2.3: Comparison between 10-Gigabit Ethernet and InfiniBand regarding
performance features

and perform changes on it. The memory model of MPI RMA, which defines the outcome
and effects of operations on A’s window, introduces the concept of public and private
memory. Both reference the same memory and are characterised as associated window
copies, which A exposed through its window:

The public copy is accessible by all processes, which took part in the collective window
creation. To get/put data from/to the public copy a Process needs to invoke RMA
operations - both A and Bi. To guarantee that changes are assigned to the private copy
and A’s memory is consistent again, RMA synchronisation needs to be used. The private
copy belongs to process A1, and is accessible by local load/store operations.
MPI defines two different memory models, they differ in the fact if the public and

private copy are distinct or not.

Separate: This model was introduced in MPI-2 first and was also the only one. In this
model the public and private copy may be distinct2. Every RMA operation is

1The private copy could for example be stored in A’s buffer for fast access
2MPI-2 does not state that the copies must be distinct
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(a) Separate memory model
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Figure 2.4: RMA memory models based on [HDT+15, 8]

executed on the public copy (regardless of whether A or Bi invoked this operation),
any other operation (e.g. local store by A or MPI_SEND(...) by Bi) is executed
on the private copy. RMA synchronisation operations synchronise the public and
private copy to restore the memory consistency. If various operations performed
changes on the public and private copy between two synchronisation calls, the con-
tent of the memory after the synchronisation is undefined1. Figure 2.4a illustrates
a window with distinct copies and operations on different copies.

Unified: MPI-3.0 introduced the unified memory model. This model assumes that the
public and private copy are identical. Changes to the public copy are eventually
propagated to the private copy and vice versa. Therefore less synchronization calls
are needed than in the separate model - they are still necessary to guarantee that
the changes are visible to get or load operations. Figure 2.4b displays the unified
memory model with identical copies.

One needs to distinguish operating on the same window from operating on the same
memory: Accessing or updating a local window, does not necessarily affect the associated
local memory immediately, whereas a load or store operation on the same local window
is executed on the associated memory instantly. The actual behaviour depends on the
used memory model, the tables 2.1a and 2.1b displays for both memory models, which
combinations of access and update operations may be executed concurrently on the same
local window.

OV: Without any constraint

BOV: Without any constraint if operations are executed on single bytes

1If MPI-3 is used - if not, these concurrent calls on the same memory would be stated by MPI-2 as
erroneous
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Load Store Get Put Acc
Load OV+NOV OV+NOV OV+NOV NOV NOV
Store OV+NOV OV+NOV NOV X X
Get OV+NOV NOV OV+NOV NOV NOV
Put NOV X NOV NOV NOV
Acc NOV X NOV NOV OV+NOV

(a) Separate memory model

Load Store Get Put Acc
Load OV+NOV OV+NOV OV+NOV NOV+BOV NOV+BOV
Store OV+NOV OV+NOV NOV NOV NOV
Get OV+NOV NOV OV+NOV NOV NOV
Put NOV+BOV NOV NOV NOV NOV
Acc NOV+BOV NOV NOV NOV OV+NOV

(b) Unified memory model

Table 2.1: RMA memory models based on based on [DBB+16]

NOV: Only if executed on non-overlapping memory

X: Not allowed

The unified model allows to combine local store and remote put operations on non-
overlapping memory and eases the restrictions on combinations of local load and remote
put operations.
To allow the usage of the unified memory model, the underlying hardware must be

able to perform the update propagation without synchronisation calls. Otherwise only
the separate model is available. From this it follows that additional effort must be made
if the application shall use the unified model and at the same time retain its portability,
so it can be executed on machines without hardware-managed coherence, too. Looking
at the MPI_WIN_MODEL attribute1 allows the user to use conditional statements for
choosing the right amount of synchronisation calls. Currently every interconnection
network, which uses RDMA, supports the unified memory model [GBH13, 2]. In case
of doubt, choosing synchronisation calls to meet requirements of the separate memory
model is always correct.

2.1.3 Shared Memory
In accordance with Flynn’s taxonomy most systems for HPC 2 fall in the category MIMD3

or are a hybrid of MIMD and SIMD4 (Most processors own a vector unit or a cluster
1Possible values: {MPI_WIN_UNIFIED,MPI_WIN_SEPARATE}
2high performance computing
3Multiple instructions, multiple data
4Single instruction, multiple data
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Figure 2.5: UMA architecture[HP06]

contains some accelerators). One important class of a MIMD system is a cluster, which is
a composition of nodes, which for their part are a composition of processors. Next, HPC
systems can be classified by how memory is organized: Is there only one central memory
or several distributed ones? Are the processors interconnected via a fast bussystem or a
rather slower network?
Small systems have one shared memory and the processes are connected through

a bus (like a ordinary desktop PC or a node in a cluster), the amount of contained
processors is not adjustable at will. Figure 2.5 shows the basic structure of such a system.
The same memory address points to the same memory location irrespective of which
processor dereferences the address, so every process in this figure has access to the same
shared memory. To access or update data in shared memory every processor simply
uses references or assignments. Depending on the basis of the used memory model (cf.
Memory consistency model (p.14)) changes via assignments become visible for every
other processor sooner or later automatically.
Shared memory cannot be used with an arbitrary number of processors because of

the increasing demand of bandwidth through the rise in intranode communication. In
order to construct big clusters the memory needs to be distributed among the processors
- a common use case is to connect nodes of such a big cluster through a interconnection
network whereupon each node has its own memory. Regarding to one node, its processors
share this memory, regarding to the whole cluster the memory is distributed. Figure 2.6
shows an example for such a cluster, instead of a single processor a node with several
processors would be a common alternative. If a process needs to access or update data,
which lays on any memory but not its own, passing messages becomes inevitable. It is
possible to simulate shared memory based on distributed memory if shared memory is
characterized as memory, which can be accessed or updated without the need that any
other process except the executing one participates. Then a process could use RMA
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Figure 2.6: Cluster architecture with distributed memory[HP06]

operations with passive synchronisation to access or update data, which is located on
another memory. But since this access style still relies on MPI operations this type of
memory usage should be called global memory [GLS14, Ch. 7].

The availability of shared memory suggests to use rather threads than message passing:
Even though it is possible to use MPI to spawn processes and then access/update data on
shared memory through two-sided communication, this is normally advised against due
to its involved overhead in comparison to threads spawned by e.g. OpenMP or Pthreads.
A chance to lessen the overhead of messages is to use one-sided communication: every
variable or derived datatype which needs to be shared among processes could be made
available by creating a proper shared window with MPI_WIN_ALLOCATE_SHARED,
followed by assigning the variable’s or derived datatypes’s value. Figure 2.7 shows all
three different kinds of shared memory respectively possibilities to use it: none, if the
memory is distributed; a fraction of the whole memory, if a shared RMA window is used;
full, if threads are used or a shared RMA window is created with maximum size.
To simulate shared memory as accurately as possible (i.e. no required involvement

of other processes in access/update operations) one should use passive synchronisation.
The advantage of this approach over using threads is the expandability: if no local
store/load operations but only put/get operations are used, it does not matter if the
memory is shared or distributed, because MPI communication is not limited to intranode
communication but also capable of internode communication. However this renunciation
of local operations comes with the price of increased overhead. To improve performance
local store/load operations should be used instead of RMA operations whenever it is
possible - but then the affected data must be on the same shared memory. TrackerSim
(p.61) shows different possibilities to replace the use of threads on shared memory by
the use of processes. Substitution of OpenMP (p.77) shows an approach to alter an
application, which relies on a MPI-OpenMP-hybrid into a MPI-only programming. In
addition a suggestion for handling complex derived datatypes, which contain pointers, is
made.
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Figure 2.7: Three kinds of shared memory based on [GHTL14, 158–159]

2.1.4 Use cases
Although the distribution rate of applications, which use one-sided communication, may
suggest otherwise, there are several situations where one-sided communication should
be favoured over common two-sided communication. One great advantage of one-sided
communication is that it includes operations for using shared memory. But one-sided
communication provides advantages irrespective of shared memory, too:

• Reduced redundancy:
Running an application in parallel with n processes1 results in n copies of this
application, which are executed concurrently. The processes communicate with each
other by the use of MPI and have typically all the same variables stored in their
local memory2. Occasionally some variable copies are redundant3, by what more
memory is used as required. Even if the processes are distributed among multiple
nodes (without one large shared memory) this redundancy could be prevented, if
just one process has these variables and all the rest of the processes access them
through one-sided communication. To reduce redundancy is an important topic in
HPC, because trends were observed in recent years that both memory capacity and
network performance can not keep pace with the progress of the number of cores

1Executed with mpirun -np n ./application
2Data is replicated n times by default
3This would be the case, if the variable is the same for every process (e.g. a constant) or changes on

every process equally
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[HP06]

per node [HDB+13]. Figure 2.8 shows also the disproportion of the development of
the performance of both processors and memory. The ratio of both components is
arbitrarily set to 1 in 1980, the processor’s performance outdistances the memory’s
performance in the following years. Because of the decreasing ratio of memory to
processing power1 , adding more cores does not lead to a proportional problem
size that can be computed with this architecture. Less redundancy extenuates this
disadvantage, an example will be given later in chapter Phoenix (p.41).

• Performance:
There are two different kinds of communication between two processes regarding
their node: intranode (origin and target of an operation are on the same node)
and internode (origin and target are on different nodes, but still connected) com-
munication. Intranode communication is discussed in Shared Memory (p.17).
[GT07] investigated the potential of one-sided communication to replace point-
to-point communication and focused on the resulting performance. The authors
of this paper compared the runtimes of a benchmark, which mimics a common
halo exchange, using MPI_Isend and MPI_Irecv on the one hand and using
MPI_Win_Put and MPI_Win_Get on the other hand. They showed that this
substitution may provide an improvement regarding performance. Depending
on the test environment (hardware, buffer size, number of RMA communication
operations during one epoch) RMA one-sided communication was up to ten times
faster (even though the common two-sided communication outperformed RMA for
some test cases).

• Homogeneous program model:
Many applications use MPI basically for distributing data among nodes. Because
scientific applications often use large data structures, those applications use then

1measured in [Byte
Hz

]
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OpenMP to share those structures on the node’s shared memory and perform
calculations through OpenMP threads. This leads to a well-established two-stage
parallelisation, which does not fully utilise MPI’s potential. An alternative is to
omit using threads and to pursue the approach, which is discussed in the prior item
Reduced Redundancy. One more advantage of replacing threads with a processes-
only approach is the reduced risk of memory corruption due to program bugs: If
threads are used, they share the whole memory (even if parts of it do not need
to be shared) - therefore bugs, which corrupt memory, will affect every thread’s
memory definitely. Using MPI requires to declare shared memory explicitly and
might isolate the effects of one process’ faulty behaviour [HDB+13].

• Division of labour:
One possibility to improve performance is to reduce overhead due to essential
synchronisation or locks on critical sections. A solution might be to divide the
processes’ scope of duties so that just one process needs to access a critical section.
An example for this case is a group of processes which have alternating phases of
computation and writing results into storage (characteristic of bulk synchronous
parallel programs [GHTL14, Ch. 3]. One process could be selected for writing
the results to storage, which it gets from the other processes through one-sided
communication (using passive target communication the other processes do not
need to participate in this activity and may continue their computations). The
other processes just compute their results and store them into their local memory,
which is part of a window. Thereby there are no conflicts anymore in updating the
storage. This is just a an example of feasibility to use RMA, usually MPI-IO is
more suitable to write data concurrently to storage, because using only one process
for writing to storage easily creates a bottleneck.

• Dynamically changing data access patterns:
To implement dynamic access patterns additional effort is necessary, because the
processes must match their operation calls (both the origin and target process need
to call corresponding communication operations eventually). This additional effort
is rendered unnecessary, if one-sided communication is used and each process can
compute which data it needs to access or update - one process alone is responsible
for the message exchange then. In case that passive synchronisation is used, the
target process is not involved in synchronisation either. The only situation, where
processes must act together definitely, is during the initial window creation, which
involves a collective call.

Every use case includes the use of one-sided communication and could be implemented
solely with operations, which had been introduced with MPI-2. But as long as the one-
sided communication is limited to one node with shared memory, every use case could
be improved by using MPI-3 extensions [HDB+13] to create shared memory windows, on
which all corresponding processes can operate. This allows to use standard load and store
operations to dispose of the overhead: instead of transmitting data explicitly through
expensive messages, a process can access remote memory directly through intranode
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communication [GHTL14, Ch. 5.1.2]. In section TrackerSim (p.61) is a comparison
between put/get operations and local store/load operations, which shows this overhead.
[HDT+13, Ch. 6] gives three more popular use cases, which are more application-oriented.

2.2 Standards
This section is an overview of the changes which were introduced within MPI-2.0 and
MPI-3.0. The focus in this chapter lays on changes which have some significance for the
topic of this thesis. Refer to [MPI12] for a complete list of changes.

2.2.1 MPI-2.0
Along with corrections and extensions to MPI-1.1 new functionality was added with
MPI-2.0 such as one-sided communications and dynamic process creation.

The operations for dynamic process creation made it possible, to spawn new processes
during runtime dynamically instead of executing a program with a fixed number of
processes. One use case is the implementation of load balancing, especially if the program
is executed on a heterogeneous, distributed architecture or uncertain data volume, on
which the program performs calculations. In the first case a heterogeneous architecture
impedes load balance as it makes additional calculation necessary, which relies on the
estimated performance of each architecture component. This could differ from theory
during execution time whereas the dynamic approach could spawn new processes if some
component is not used to its full capacity. In the second case the program reacts to
a unsteady load, which could for instance result from an unknown input size in the
beginning or a change of the data volume over time (caused by a input stream for
example). If the program is executed with too few processes, the system is not fully
loaded, on the contrary too many processes result in overhead and therefore in loss of
performance. Spawning processes dynamically allows to fit the number of processes to
the current data volume.

Another use case allows the usage of processes as threads. As discussed in Design ap-
proach (p.74) additional processes replace the threads to achieve MPI-only programming
instead of a hybrid version (like a MPI-OpenMP model). If a hybrid program is executed
on a distributed architecture the load needs do be distributed via MPI communication
before threads start computation on shared memory. Before MPI-2.0 every process had
to be spawned at program execution to make a MPI-only approach by what on the one
hand too many processes had been spawned. On the other hand it induced the need to
apply changes to every existent MPI-call to distinguish processes for distribution from
processes for parallel computation (which replaced threads) - otherwise every MPI-call
would affect all processes which generally leads to unintentional behaviour. Spawning
processes dynamically allows to separate the distribution processes from the thread-like
processes: every process spawns as many processes as threads were needed after the
distribution phase. For that reason the new spawned processes, which are assigned to
a new MPI communicator, do not interfere with existent MPI-calls and only work on
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data, which has explicitly been assigned to them. Their lifetime can be limited to the
section of parallel computation easily. An example of this usage is given in chapter
Using MPI-3 RMA (p.60), where the replacement of OpenMP with processes gives
an advantage regarding the performance.

Though it is possible to execute a program with just one process, which then spawns
its siblings at runtime, it is advised to not do so, if there is no good reason for it. Due to
performance reasons one should start every process at once, if possible [MPI03, 83].
Selection of important operations for spawning processes at runtime:

MPI_COMM_SPAWN(command, ..., maxprocs, ..., comm, intercomm, ...)

Executes the application specified in command with up to maxprocs many pro-
cesses. The group of spawning processes - specified by the intracommunicator comm
- is connected with the group of spawned processes with the intercommunicator
intercomm. An intracommunicator enables communication between processes of
the same group (like MPI_COMM_WORLD), an intercommunicator on the contrary
connects two disjoint groups. The new spawned processes are united in their own
MPI_COMM_WORLD and have therefore at first no connection to any other process,
which has not been spawned by this specific operation. MPI_COMM_SPAWN must
be called collectively by every process in comm.1

Parent group

Child group

Child group
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Rank
3

Rank
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3

Rank
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Rank
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Rank
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Figure 2.9: Spawning new processes during runtime

MPI_COMM_GET_PARENT(parent)
A process which has been spawned by a parent-process, has no knowledge of its
parent2. To establish a communication with its parent, a process needs to get its
parent’s communicator parent

1If just one process shall spawn new processes, comm can be set to MPI_COMM_SELF. This commu-
nicator just contains the process itself.

2Only the parent has a connection to its children through intercomm initially
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Figure 2.10: Child communication

Figure 2.9 shows a group of processes, which have called MPI_COMM_SPAWN with
maxprocs≥ 4 two times. As mentioned, each group of child processes can only commu-
nicate with a member of its own group or with a process of the parent group. To enable
communication between spawned process groups there are two different possibilities.

1. The parent-group acts as a connector: Child-processes send messages to their
common parent-group, which redirects all messages to the corresponding child-
group (cf. figure 2.10a). In this case, the child groups have still no direct connection
to each other.

2. The child-groups communicate directly with each other without any redirection
(cf. figure 2.10b). This makes higher effort necessary, see [MPI03, 93–102] for an
in-depth explanation.

Many operations for one-sided communication request an intracommunicator as input.
Since spawning new processes returns an intercommunicator, which connects the group
of spawning processes with the group of spawned processes, these groups need to
be merged to obtain an intracommunicator, before one-sided communication can be
established between parent processes and child processes. An intercommunicator consists
always of two disjoint groups: the local and remote group. Every process’ own group
is his local group, communication between these groups can be established through
communication, which is suitable for using an intercommunicator. It depends on the
MPI standard, which communication operations fulfil this condition: MPI_SEND/MPI_-
RECV and their relatives could always use intercommunicators for example, but for
collective operations an intercommunicator was not suitable until MPI-2 [GLS14, ch.
7.3]. MPI_INTERCOMM_MERGE(intercomm, ..., newintracomm) creates a new
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intracommunicator newintracomm containing the groups, which are connected by the
intercommunicator intercomm.

A major extension to the MPI standard were operations for one-sided communication.
So far every MPI-message had been transmitted by a sending process to a receiving
process1 which necessitated each side to call the appropriate operation actively. One-
sided communication allows to ease this requirement insofar that the target process of a
communication does not need to call the corresponding operation anymore. Due to the
fact that MPI-2.0 introduced just a part of the current extent of one-sided operations
and that one-sided communication is crucial for the adaption of Phoenix (cf. section
Design approach (p.74)), this topic will be discussed in detail in section One-sided
communication (p.11).

2.2.2 MPI-3.0
Version 3.0 is an extension of MPI-2.2 and provides the MPI standard with extensions to
nonblocking collectives, neighbourhood collectives, one-sided communication and Fortran
2008 bindings amongst others. See One-sided communication (p.11) for an in-depth
explanation of presented operations and concepts regarding one-sided communication.
Even though MPI-2 was an important step for one-sided communication it contains
some flaws regarding performance and memory access patterns: strong restrictions
concerning memory access and weak synchronisation semantics make it impossible to
achieve the same performance with MPI-2 as with a PGAS language (cf. RDMA (p.12)).
Corresponding to the MPI-2 standard it is for example erroneous to have concurrent
get/put operations on the same shared memory, while this might be desirable. A trivial
example would be: every process writes its rank into the same memory to determine,
which process executed last. MPI-2 requires the use of locks, even though they are
unnecessary in this context. MPI-3 weakens this requirement and declares the result of
concurrent get/put operations as undefined but not erroneous anymore [BD04]. This is
insofar an advantage, as an erroneous result breaks the program’s execution, whereas
with an undefined result the execution continues (regarding the use case an undefined
result might be sufficient).
MPI-3.0 brings several new features and improvements to one-sided communication:

Communication: Every communication operation, which had been introduced with
MPI-2.0, was expanded by a version with a request handle - This offers the
possibility to poll the operation’s status or even wait for its completion. Every
MPI one-sided communication operation is nonblocking, so without a request
handle, synchronisation operations were the only possibility to guarantee completion
of communication operations. In addition to the request handle more atomic
operations for diverse use cases had been added.

Synchronisation: To ease the right usage of used message buffers, passive synchronisation
had been amended. This includes a new memory model, which allows to use less

1Or from/to a group of processes
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synchronisation calls and thereby improves performance.

Window: MPI-2.0 offers only one operation to create a window for remote memory
access, MPI-3.0 adds three more operations to allow a more dynamic memory
usage. To create shared memory is part of this improvement1 and an important
contribution to this thesis’ objective.

By now the current MPI standard is version 3.1 [MPI15], which mostly contains minor
changes without any impact for this topic and will therefore be omitted.

2.2.3 Implementations

MPICH MVAPICH
Open
MPI

Cray
MPI

Tianhe
MPI

Intel
MPI

IBMFBG7Q
MPI 4

IBMFPE
MPICH 6

IBM
Pla< orm

SGI
MPI

Fujitsu
MPI

MS
MPI

MPC
NEC
MPI

NBC ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ bcd ✔ ✔

Nbrhood
collecKves

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✔ ✔ ✘ ✔ ✔

RMA ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✔ ✔ ✘ Q6’4w ✔

Shared
memory

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✔ ✔ ✔ * ✔

Tools
Interface

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✔ ✔ * Qg’48 ✔

CommRcreat
group

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✔ ✔ ✘ * ✔

FfDFBindings ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✘ ✔ ✘ ✘ Q6’48 ✔

New
Datatypes

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✔ ✔ ✔ ✔ ✔

LargeFCounts ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✔ ✔ ✔ Q6’48 ✔

Matched
Probe

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✔ ✔ ✔ Q6’48 ✔

NBCFI7O ✔ Q-‘48 ✔ ✔ ✘ ✔ ✘ ✘ ✘ ✔ ✘ ✘ Qg’48 ✔

Table 2.2: Overview over common MPI implementations as of June 2016 [* Under
development, (*) Partly done] [For16]

Table 2.2 gives an overview of well-known MPI implementations and lists, which part
of MPI-3.1 lays within their scope. Although it appears that almost every important
MPI implementation has a version, which implements the MPI-3.1 interface, it should be
noted, that the existence of an implementation does not necessarily mean that it is already
optimized. For instance an implementation could mimic the effect of RMA-operations
using conventional point-to-point communication. The result of this operations would
be the same without utilizing the advantages of one-sided communication. Occasionally
the user needs to pay attention choosing the right compilation flags, otherwise the built
implementation underachieves. One example is the Intel MPI Library 5.0 Beta: Only
the multithreaded version of this library uses asynchronous message propagation, which
is required for best performance of RMA - synchronous message propagation would

1MPI-2.0 just allowed to simulate shared memory by using RMA-operations on a window. As seen
in section TrackerSim (p.61) this approach is discouraged.
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probably suffer loss in performance because of the lower portion of overlapping operations
[BSCL14].

Implementation-specific details

On some points the MPI standard does not specify clearly how a correct implementation
should handle them, which allows it to integrate different levels of optimisation gradually.

Many RMA operations have an info argument, which offers hints about their expected
usage. During runtime a MPI implementation may use this information to optimize the
operation’s execution - but it may also ignore the hint. If feasible, info arguments should
be set, it could generate some speedup. See [MPI12, Ch. 11.2] for a selection of info
arguments, info = MPI_INFO_NULL is always a valid value.
Similar to info arguments some operations take an assert argument, which allows

an implementation to optimize the execution based on given assumptions. See [MPI12,
451–452] for a selection of assert arguments, assert = 0 is always a valid value.

It is erroneous to provide a false hint or assert argument. Every implementation may
have its own asserts and hints, but using them might restrain an application’s portability.
[GT07] showed that at the time of their benchmarking many MPI implementations
(including MPICH2 1.0.5 and OpenMPI 1.2.0) ignored the majority of these arguments,
but this could have changed in the meantime.
The standard grants flexibility to the implementation regarding the completion of

RMA operations, which might result in a better performance. The standard just defines
phases between which operations must be completed, the specific moment is left to the
implementation. To keep a program portable, users should stick to this conservative view,
even though some implementations would allow to deviate. See [MPI12, Ch. 11.7.3] for
more information about one-sided communication progress.

2.3 Available operations
The following three sections give an overview about available operations for MPI one-
sided communication, which are part of the MPI-3 standard. Every section covers
a different type of one-sided operation, which are all necessary for performing one
sided communication: First off all, memory needs to be prepared for using one-sided
communication, different approaches are discussed in section Initialisation (p.29).
Section Communication (p.32) explains the actual communication operations. The
last section Synchronisation (p.34) covers possibilities for synchronising access and
update operations. While the included figures 2.11,2.14,2.15 contain every operation
that is part of the MPI standard chapter about one-sided communication, only those
are discussed, which are relevant to this thesis’ topic. Operations are connected with a
dashed line, if they are semantically related. Each operation has the prefix MPI_Win_,
which is omitted in the figures.

The type annotation of the operations, which are presented in this section, conform the
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Figure 2.11: RMA initialisation operations

Fortran1 version used with USE mpi, if not mentioned otherwise. Negligible arguments,
which are not important to understand a operation’s functionality, as well as the last
argument ierror2 are omitted. This includes arguments for determining datatypes
and displacements: To simplify matters, operations for creating windows and executing
communication on them take displacement-values as input argument. A displacement
acts as an offset and makes it possible to access elements on a window in the same way
as on an array. It is even possible to expose a derived datatype through a window and
access or update it in exactly the same way as usual - see Substitution of OpenMP
(p.77) for such an example. To keep the following description simple, the explanations
suppose only a primitive data type for memory exposition unless otherwise noted. See
[MPI12, Ch. 11] for an explanation of every operation in detail.

2.3.1 Initialisation
The major feature of one-sided communication in comparison to previous MPI concepts,
where it is essential to match every sending operation with a corresponding receiving
operation, is the ability, to allow the origin process to perform communication without the
need for a corresponding target operation. Memory, on which one-sided communication
operations are allowed, must be specified explicitly. This is done by creating a local
window, that acts as a kind of view on a process’ memory. Access or update operations
on a target’s memory without using a window are impossible. A local window defines
a contiguous section of memory with a address and size (amongst other things), which
belongs to a process and exposes memory for remote access performed by other processes
of the same group. A window object is a handle, which is returned by the operations for
creating a window. It represents the collection of every process’ local window. Obviously

1Fortran 90 or higher
2Additional argument of every MPI operation in Fortran, which corresponds to the return value of

the operation in C.
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a local window is different from a window object - nevertheless literature frequently refers
to both items simply as window, the proper meaning needs then to be taken from the
context [GLS14, Ch. 5.3].

Creating a window is a collective call on an intracommunicator, however each process
may select any size for the exposed memory irrespective of what the other processes
choose. Even size == 0_MPI_ADDRESS_KIND is a valid value, which actually is a
common use case if only one process designates memory and every other process uses it
without designating memory itself. Therefore size only sets the minimum amount of
bytes, which belongs to a process own memory, the total size of the created window is
the sum of every process’ size argument at least. Except a window, that was created
with MPI_WIN_CREATE_DYNAMIC, every window is immutable.

Since a window handle cannot be exchanged via messages or similar, the only possibility
to get one is to create it with one of the following operations:

MPI_WIN_CREATE(base,size,...,comm,win)
This is the trivial way to create a window. A process, which invokes this operation,
creates a window win on size bytes of its memory with the first element at
base - this section of the process’ local memory section can from now on get
exposed. This memory is accessible by every other process in comm only through
RMA operations with the window handle win. The variable base needs to have a
static type or else be allocated before. The MPI-3 standard does not require, that
MPI_ALLOC_MEM is used for the allocation, but implementations are free to make
this a prerequisite [MPI12, Ch. 11.5.3].

MPI_WIN_ALLOCATE(size,...,comm,baseptr,win)
Different from the prior window creation, this operation does not require memory,
which had already been allocated. It allocates on each process of comm local memory
with at least size bytes instead and returns a pointer baseptr to this memory.
In case of doubt whether to choose MPI_WIN_CREATE(...) or MPI_WIN_-
ALLOCATE(...), the latter should be preferred as it offers an implementation
the possibility for optimisations [DBB+16, 5]. Again, accessing and updating the
exposed memory is possible only through RMA operations.

MPI_WIN_ALLOCATE_SHARED(size,...,comm,baseptr,win)
As before every process of comm allocates at least size bytes and returns baseptr
as a pointer to this memory. The execution of this operation requires that every
participating process shares the same local memory. If any process’ memory, which
takes part in the creation of the shared window, is distributed relating to the
other ones, the execution of this operation is not possible. To guarantee that only
processes with the same shared memory take part in the collective call, a comm
must be used, which fulfils this requirement. If every process executes MPI_COMM_-
SPLIT(comm, split_type, ..., newcomm) with its communicator comm
and split_type == MPI_COMM_TYPE_SHARED, then newcomm contains the
intersection of comm and every process, which shares the same memory with the
executing process. Provided that the appropriate communicator is chosen for comm
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Figure 2.13: Accessing window with shared memory [HDB+13, 5]

this operation provides with newcomm a communicator with the largest possible
size of shared memory regarding the location of the process, which invokes this
operation. Figure 2.12 shows an example for generating communicators on shared
memory with maximum size, while the processes are distributed over three nodes,
which do not share one major shared memory. Each process of a node may then
create collectively a shared window
Before any process may access any other process’ window, it must call MPI_WIN_-
SHARED_QUERY(win, rank, ..., baseptr) with the relevant window win
and the rank rank, which the target process occupied in newcomm. In baseptr
the proper address to the memory is set, which is exposed through win. Due to
the fact, that this function may return varying addresses for the same memory, if
executed by different processes, this addresses must not be exchanged. If a process
wishes to access another process’ shared memory, it must execute MPI_WIN_-
SHARED_QUERY(...) by itself.
These inconveniences come along with one major advantage: contrary to windows
created by any other create operations than this, a shared window’s memory can
be accessed and update with RMA operations as well as with local load/store
operations like in figure 2.13. As mentioned in Use cases (p.20) and shown in
TrackerSim (p.61) this may lead to an improved performance.

MPI_WIN_CREATE_DYNAMIC(...,comm,win)
Until now every operation to create a window required that the final memory size
and location, which shall be exposed through a window, is already known. This
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Figure 2.14: RMA communication operations

makes it impossible to change the exposed memory during runtime. To create a
window win with a dynamic amount of memory, the processes of comm need to
invoke this operation. Immediate after the window creation win has no memory
assigned. To attach allocated memory of size size to its window win, a process
needs to execute MPI_WIN_ATTACH(win, base, size) with the memory’s
address base. After the attachment the memory is accessible by every process of
comm. Attached memory sections must not overlap. To remove attached memory
from a window win a process simply calls MPI_WIN_DETACH(win, base).
This dynamic approach might be beneficial with regard to performance, if the
underlaying hardware (e.g. a RDMA network architecture) supports it, but it might
be just as well more expansive than a static approach because of the overhead,
which is induced by maintaining dynamic memory sections [HDT+13, 5].

A window object can be provided with additional information or even methods, which
are automatically executed on the window’s duplication or destruction. A possible use
case could be a method, which frees memory belonging to a window - this would prevent
memory leaks if a user only frees the window object and forgets about the associated
dynamic memory [GHTL14, 113]1.
Once a window win is not required anymore it can be freed with MPI_WIN_-

FREE(win). This is again a collective call, which needs to be executed by every
process of a group, which is associated with win.

2.3.2 Communication
Every RMA communication operation can only be executed on memory, which its
process has explicitly exposed for remote access and update, i.e. on a window. A
process can only access or update a window with local store/load operations if either
the process is the owner of this window (i.e. the window’s memory is also part of the
process’ local memory) or the window references shared memory (i.e. it had been created
through MPI_WIN_ALLOCATE_SHARED). There are only three different kinds of RMA
communication in principle: MPI_PUT, MPI_GET and MPI_ACCUMULATE. Every other
RMA communication operation, shown in figure 2.14, is just a variation of these.

1See [GHTL14, 115] for current restrictions of this feature
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MPI_PUT(origin_addr,...,target_rank,...,win)
This operation transfers data at origin_addr to the process’ local memory
with rank target_rank, which had been exposed through the window win.
The nearest equivalent point-to-point communication operation for MPI_PUT is
MPI_SEND (in combination with the required MPI_RECV).

MPI_GET(origin_addr,...,target_rank,...,win)
This one transfers data from the process’ window win with rank target_rank
to the caller’s memory at origin_addr. Compared to the prior operation the
direction of data transfer is reversed and would correspond to MPI_RECV.

MPI_ACCUMULATE(origin_addr,...,target_rank,...,op,win)
Similar to MPI_PUT this operation transfers data from origin_addr to the
target window win with rank target_rank. The difference is, that on the one
hand MPI_ACCUMULATE is executed atomically for each basic datatype and on
the other hand the target element is not only replaced by the element at origin_-
addr. Comparable to MPI_REDUCE the target element will be replaced with the
result of the operation op executed on the origin element and target element.
Because RMA operations are not limited to single element with one datatype, one
needs to be careful with executing two atomic RMA communication operations
concurrently on more than one element on overlapping memory. Without proper
synchronisation, the result is undefined.
Using op == MPI_REPLACE or op == MPI_NO_OP allows to use MPI_GET_-
ACCUMULATE as an atomic version of MPI_PUT or MPI_GET. A list with all
possible operations for op is available at [MPI12, 668].

MPI_GET_ACCUMULATE(origin_addr,...,result_addr,...,
target_rank,...,op,win)

The disadvantage of MPI_ACCUMULATE is, that the process, which invokes this
operation, does not receive the result of op. Many use cases require, that they
get and update the target value without the risk of a race condition1. In this case
MPI_GET_ACCUMULATE can be used: In addition to the behaviour of MPI_AC-
CUMULATE, this operation returns the value of target_rank to result_addr2

before op is applied to it.3

MPI_FETCH_AND_OP can be substituted for MPI_GET_ACCUMULATE if op shall
be executed on one element only. The functionality of MPI_FETCH_AND_OP is less
generic than its counterpart and makes an implementation with better performance
possible.

1See Substitution of OpenMP (p.77) for such a use case
2result_addr and origin_addr must be disjoint
3If the process requires the result of op, it needs to apply op with origin_addr on result_addr

itself on its local memory
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For every presented communication operation exists a version with the same semantic
and a request handle in addition: MPI_RPUT, MPI_RGET, MPI_RACCUMULATE and
MPI_RGET_ACCUMULATE. Those operations may only be called during passive target
communication (cf. Synchronisation (p.34)). With the request object a user may
test with MPI_TEST, if the associated operation had already completed, or wait with
MPI_WAIT for its completion. In this case the term completed only indicates local
completion, i.e. that the local buffer may be reused without any side-effect. But at this
point the update on the remote memory might still be pending. Using request handles
generates additional overhead but might at the same time improve the performance by
offering a higher ratio of overlapping functions: Instead of delaying a computation phase
until every process finished its remote operation, every process might already compute
with a buffer, whose associated operation had been tested as completed. See [MPI12,
Ch. 11.3.5] for more information and [HDT+13, Listing 1] for an example code for the
mentioned use case.

RMA can only show its strength if the MPI implementation is tuned for performance
and the underlaying hardware supports RMA (cf. RDMA (p.12)). However the
MPI standard does not impose such optimisations. A RMA implementation may
reproduce the behaviour of one-sided communication operations with hidden point-to-
point communication as well.
As already mentioned before, target == origin is valid and allows a process to

access and update its own window1.

2.3.3 Synchronisation
MPI RMA introduces the concept of the access epoch and exposure epoch to administer
the synchronisation of MPI RMA communication operations. An epoch describes the
region between two synchronisation calls on a window and is also assigned to the
process, on whose window the epoch had been created. Every communication operation,
which happens during an epoch, has not completed for sure till the epoch is closed. A

1Only relevant in combination with the separate memory model (cf. Memory consistency model
(p.14))
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communication operation may complete locally as well as remotely before, but only
closing the epoch can guarantee the communication’s completion. As mentioned there
are two different kinds of epoch: An access epoch signals, that the associated process
may access remote memory; the exposure epoch signals, that the local window of the
associated process may be accessed by another process, which had entered an access
epoch for its part. A process may be in both different epochs simultaneously and therefore
access remote memory while being a target of one-sided communication itself.

During an epoch any number of RMA operations1 may be invoked - it is recommended
to use as many RMA communication operations during an epoch as possible, to minimise
the amount of RMA synchronisation calls [MPI12, 437]. The reason for this attitude
is the fact, that RMA synchronisation operations are crucial for the final performance
[TGT05]: The more RMA communication operations are executed during one single
epoch the better RMA performs compared to message passing. An epoch is created and
closed by invoking RMA synchronisation operations. Depending on the target process’
behaviour during a RMA synchronisation call, there are two different communication
categories: active target communication and passive target communication. During
the execution of a RMA synchronisation operation the target process is either actively
participating (active target) or remains passive (passive target). The choice of category
has no effect on the RMA communication operations, it only changes the set of available
RMA synchronisation operations.

The following three sections will discuss these categories and how to use them: Sections
Active target (p.36) and Passive target (p.37) list the most important functions to
close an epoch with or without the target’s cooperation. Because there are relative
many synchronisation possibilities compared to the common two-sided communication,
section Synchronisation application (p.39) gives a review and hints in using RMA
synchronisation operations correctly.

Active target communication is similar to common message passing: The target process
must participate actively to complete a RMA communication operation although the
RMA communication operation itself is solely executed by the origin. Because of the
need for cooperation between origin and target, this scheme usually fits best to a static
communication pattern with bulk-synchronisation (cf. Division of labour in section Use
cases (p.20)). Passive target communication matches well with the concept of shared
memory: The origin accesses or updates data on a target process’ local memory, without
the necessity of a target’s reaction. Another domain, where passive target communication
is usually preferred to active target communication, is a dynamic communication pattern.
If the pattern becomes irregular or is even unpredictable, the processes would need to
agree frequently on a mutual approach relating to synchronisation calls if active target
communication was used - this would generate additional overhead, which passive target
communication can avoid. Since the active target communication is similar to message
passing and passive target communication allows one-sided synchronisation, the latter
one is most suitable for mimicking thread parallelisation with MPI RMA operations.

1An epoch has only an effect on RMA operations, every other operation - like a local or two-sided
communication operation - remains unaffected
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Figure 2.16: Collective access and exposure epoch through fence synchronisation
[HDT+15, 9]

Section TrackerSim (p.61) includes diverse examples to implement replacement.
The following synchronisation operations for both communication categories may be

used in combination in an application. However it is erroneous to lock a window, which
already actively exposed its memory (and vice versa), which is why it is recommended by
[MPI12, Ch. 11.5.3] to stick to one RMA communication category; otherwise additional
synchronisation becomes necessary to guarantee the mutual exclusion respective the
categories.

Active target

There are two different kinds of active target synchronisation operations: Fence synchro-
nisation and general active target synchronisation - the latter is sometimes referred to as
GATS. In both cases the origin as well as the target process(es) need to invoke RMA
synchronisation operations.

MPI_WIN_FENCE(..., win)
This is a collective synchronisation call (so every process, which is associated with
the window object win, needs to participate, c.f. figure 2.16) and is frequently used,
if every process alternates between a computation phase and a communication phase.
Thereby it is irrelevant, if a process was target or origin of a RMA communication
operation during this epoch - or did not participate at all. A Fence induces always
an access and exposure epoch for the affected processes. Because of its collective
approach MPI_WIN_FENCE is suitable for bulk-synchronisation or if each process
needs to communicate with many other processes.

GATS
An alternative for active target synchronisation, which is not a collective op-
eration, is a combination of four operations: MPI_WIN_START(group, ...,
win) and the corresponding MPI_WIN_COMPLETE(win) as well as MPI_WIN_-
POST(group, ..., win) and the corresponding MPI_WIN_WAIT(win). The
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Figure 2.17: Selective access and exposure epoch through active GATS synchronisation
[HDT+15, 9]

advantage of GATS over fence synchronisation is, that these operations are not
collective and therefore minimize the amount of expensive synchronisation. Instead
of entering an access and exposure epoch automatically with MPI_WIN_FENCE,
each process can choose if it wants to enter an epoch and if so, whether it is an ex-
posure or access epoch (or both). An access epoch exists between the invocation of
MPI_WIN_START and MPI_WIN_COMPLETE, an exposure epoch between MPI_-
WIN_POST and MPI_WIN_WAIT1. The argument group contains every process,
which is participated with win and shall be accessed (calling process is in access
epoch) or is allowed to access (calling process is in expose epoch)2. Remote access
by an origin process can be executed as soon as the target process has exposed its
memory - as long as it is not exposed, nothing happens. The MPI standard does not
state, that MPI_WIN_START must block until the corresponding MPI_WIN_POST
has been executed, but then the origin’s first put operation on the target’s memory
must block at the latest3.
Figure 2.17 shows an example, where a few processes access or update remote
memory with GATS.

Passive target

In passive target communication a target process does not invoke a RMA synchronisation
operation, to allow or finalise an exposure epoch. In fact the exposure epoch loses its
relevance in passive target communication, as every process is supposed to expose each

1MPI_WIN_TEST(win, flag) is a non-blocking alternative to MPI_WIN_WAIT and returns with
flag, if all remote accessed have already been completed. If not, the exposure epoch can not be
completed yet

2I.e. the target processes must acknowledge, to which processes they will actually expose their
memory

3Every MPI implementation is free to choose its own approach, as long as no remote access happens
before the target exposes its memory
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local window. Therefore the synchronisation becomes one-sided, too. One advantage is
a better performance, which can be expected because of less synchronisation. But this
comes with a disadvantage, too: two-sided synchronisation calls provides a higher level
of safety, because the target needs to allow to be accessed explicitly. Now every process
with the same window object may access or update remote memory at any time, so the
user must pay more attention to prevent erroneous behaviour.

MPI_WIN_LOCK(lock_type,rank,...,win)
A process, which invokes this operation, initiates an access epoch and prepares
the local window (which belongs to the window object win) of the process with
rank rank to be accessed or updated by it1. To specify if other processes may
access the locked window concurrently too, there are two possible assignments to
lock_type:

• MPI_LOCK_SHARED: Every process, which locked the same window with
lock_type == MPI_LOCK_SHARED, may access it concurrently. Without
further synchronisation the order of concurrent access and update operations is
undefined. Therefore this lock-type should only be used for access operations.
If a process locked the same window with lock_type == MPI_LOCK_-
EXCLUSIVE, its operations are not executed concurrently to the operations
of the processes with shared locks.

• MPI_LOCK_EXCLUSIVE: This lock guarantees, that no other process may
access or update the locked window concurrently.

If every local window, which is associated with win, shall be locked, a process may
invoke MPI_WIN_LOCK_ALL(...,win), which sets a lock with lock_type
== MPI_LOCK_SHARED on the local window of every process (including its own).
Executing operations without proper or even no locks may have an undefined
outcome. A general approach is to set a shared lock before an access operation
and an exclusive lock before update operations.

MPI_WIN_UNLOCK(rank,win)
The access epoch initiated by executing MPI_WIN_LOCK on a process’ local window
is completed by this operation. To remove the lock set by MPI_WIN_LOCK_ALL,
MPI_WIN_UNLOCK_ALL(win) needs to be invoked.

MPI_WIN_FLUSH(rank,win)
This operation completes every RMA communication operation invoked by the
calling process, which affects the local window associated with win of the process
with rank rank. This call considers the completion at the origin as well as at the
target. If a process only wants to make sure, that every of its invoked operation is
completed locally and buffers are ready to be reused2, MPI_WIN_FLUSH_LOCAL
is a valid alternative. For both operations exist versions, to affect every process

1The lock itself only affects the local window but not the associated process
2Any update operation might still be pending at the target after returning from this call
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Figure 2.18: State diagram for correct MPI RMA synchronisation

associated with win: MPI_WIN_FLUSH_ALL and MPI_WIN_FLUSH_LOCAL_-
ALL.

MPI_WIN_SYNC(win)
As already discussed in section Memory consistency model (p.14) there exist
a private and public copy of a process’ local window, which might be diverse if
the separate model is used. In this case updates on one copy are applied to the
other copy only eventually, calling this operation guarantees, that both copies are
synchronized.

2.3.4 Synchronisation application
Due to the large amount of available RMA synchronisation operations it demands
additional attention, to not only create a valid application but also an application
without breach of specification. Compiling an application, which makes use of RMA
synchronisation operations in a wrong way, might be possible but could have an undefined
outcome. It must be emphasized, that MPI_BARRIER, which is commonly used in MPI
applications only accomplished process synchronisation but not memory synchronisation
- so it is no alternative to RMA synchronisation operations.

It is indeed possible, to guarantee the correct use of RMA synchronisation operations.
Figure 2.18 is a synchronisation tracking diagram, which allows to ensure the correct
use of synchronisation calls. If it is applied to a concrete application and tracking down
the operation calls leads to a deadlock (i.e. the state “No Epoch” is unreachable from
the current state), the application is erroneous. But this should also be reported by
the compiler respectively the MPI implementation [DBB+16, Ch. 4.4]. However using
this diagram offers no statement about the quality of the application’s result. To prove
the correct use of not only RMA synchronisation operations but every occurring RMA
operation, another approach is to write down the sequence of the application’ operations
using formal semantics, which are defined in [HDT+13]. With this formal definitions of
valid actions1 and their execution the user may derive a formal specification based on

1Possible actions: memory action, synchronisation action
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the their application. Thereby it is possible to prove (assuming that the application had
been translated correctly into the semantic model) the application’s correctness and that
its result is well-defined and deterministic.
If both approaches are too complex, [GHTL14, Ch. 3.7.3] has a list of a few rules

regarding the correct use of RMA synchronisation operations. They are stricter than
necessary to keep them simple.

1. Do not overlap concurrent RMA access operations on the same local window. RMA
accumulate operations with the same MPI datatype and reduce operation are an
exception1. But concurrent accumulate operations on the same array might still
result in a combination of both calls - only the basic datatype is protected against
concurrent updates.

2. Separate RMA operations from non-RMA operations.

3. In an epoch without any store or update operations, load and access operations
may be invoked in any order without further synchronisation.

[MPI12, Ch. 11.7] offers lists of rules, too. Although these rules are more complex,
they distinguish between more possible circumstances and consider the used memory
model. Applying them might therefore result in a better performance.

1Though concurrent accumulate operations are executed in an arbitrary order without further RMA
synchronisation
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3 Phoenix
Because of their distance it is very difficult to examine stars. Simulations are required to
interpret data, which has been collected by the common observation methods: analysing
their spectrum or even collecting emitted particles like neutrinos with suitable satellites
or ground-based detectors. The radiation itself only allows direct sight into the stellar
atmosphere, because this is the location from where it is essentially emitted. Due to this
fact the inner region of a star cannot be probed directly. One possibility to handle this
situation is to simulate a region of the star while assuming its inner composition.
PHOENIX is under continuous development by P. Hauschildt and E. Baron and their

research groups. It is able to simulate the atmosphere and its spectrum for a wide variety
of objects, ranging from main sequence stars and giants, brown dwarfs and planets, via
novae and supernovae to accretion disks. To do so, PHOENIX is executed amongst others
with assumptions of the composition of an object, the radiation transport equation
is numerically solved and a synthetic spectrum of the object of interest is generated
subsequently. Comparing the synthetic spectrum calculated by PHOENIX with the actual
observed spectrum allows an assessment and enhancements of the parameters of the star.
Since PHOENIX offers a wide range of models and methods, which can be used, this

chapter focuses on one special case and leaves everything else out for the sake of brevity.
Therefore, the following chapters only describe one possible case and do not make a
claim to be exhaustive.

3.1 3D radiative transfer
The 3D radiative transfer describes the spatial propagation of electro-magnetic radiation
through a medium, which might absorb, scatter or emit radiation itself. To generate the
synthetic spectrum it is necessary to determine the radiation field. A full description of
the radiation field at every point in space needs the specific intensity Iλ at wavelength λ.
From Iλ the mean intensity Jλ and the radiative flux F⃗λ can then be derived.

3.1.1 Theory
The following derivations are made accordingly to [See08, 9–22], [HB06] and [Aqu], which
offer a more in-depth explanation.

A description of the radiative field requires knowledge about the changes in energy of
a wavelength interval [λ,λ + dλ] during time dt through a cross section dσ in direction
dσ⃗ into the solid angle dΩ⃗ and is given as a function of the specific intensity Iλ through:
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I(r⃗, dσ⃗, λ, t) = dE(λ)
dσ⃗dΩ⃗dtdλ

(3.1)

The static 3D radiative transfer equation may then be written as:

dσ⃗∇I(r⃗, dσ⃗, λ) = η(r⃗, λ) − ξ(r⃗, λ)I(r⃗, dσ⃗, λ) (3.2)

η(r⃗, λ) is the local emissivity and ξ(r⃗, λ) the local extinction, their fraction is defined as
the source function S.

S = η
ξ

(3.3)

The origin of the source function is the medium, through which the radiation propagates.
The medium has an inner energy and will therefore, with a distinct rate, emit radiation
itself. In the same way the medium may change the radiation, as it absorbs or scatters
it. Integrating the specific intensity over all solid angles results in the mean intensity
J(r⃗, λ) of a specific wavelength; considering the spatial direction in addition, gives the
radiative flux F⃗ (r⃗, λ):

J(r⃗, λ) = 1
4π ∮4π

I(r⃗, λ)dΩ⃗ (3.4)

F⃗ (r⃗, λ) = ∮
4π
I(r⃗, λ)dσ⃗dΩ⃗ (3.5)

The correlation between the mean intensity J and the source function S can be derived
from a formal solution of the radiative transfer equation (3.2) and is specified by the
Schwarzschild-Milne equation. The mean intensity is defined as the influence of every
specific intensity over every solid angle and is, therefore, obtained by integration. This
solution can then be substituted through the introduction of the so-called Λ operator
and is then written as:

J = Λ[S] (3.6)

As already noted before the source function describes the ratio of the medium’s
emission and extinction. Therefore it can be expressed as the sum of the scatter of
the bypassing radiation with scattering coefficient σ (not to be mistaken with the cross
section) and the emission of energy, which had been absorbed before with absorption
coefficient κ:

S = σ

κ + σ
J + κ

κ + σ
B (3.7)

= (1 − ε)J + εB (3.8)
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with the thermal coupling parameter ε = κ
κ+σ . Inserting this relation in 3.6 produces:

J = Λ[(1 − ε)J + εB] (3.9)

To solve this equation for J an iteration scheme is used, which allows to determine
the source function sufficiently well:

J(n+1) = Λ[Sn], Sn = (1 − ε)Jn + εB (3.10)

This is the so-called Λ-iteration method. One possible initial guess to start the iteration
with is J0 = B, which considers the atmosphere as a black body in first approximation
and makes the use of the Planck function imperative. The convergence rate of this
iteration scheme depends on ε, if ε becomes too small the convergence rate is unusable.
To approach this problem, the iteration scheme must be adapted to the operator splitting
method. Using the identity, Λ can be extended:

Λ = Λ∗ + (Λ −Λ∗) (3.11)

Insert this extension into equation 3.6:

J = Λ∗S + (Λ −Λ∗)S (3.12)

Let JFS = Λ[Sn] be the formal solution with the source function of the last iteration.
To fit 3.12 to the form of a common iteration scheme Mxk+1 = Nxk + b, it can then be
rewritten as suggested by [Ham87]:

Jn+1 = [1 −Λ∗(1 − ε)]−1[JFS −Λ∗(1 − ε)Jn] (3.13)

Supposing that Λ∗ is well chosen, computing the mean intensity alternately with 3.13
and 3.8 will converge much faster than with 3.10. The subsequent section gives an
example for the specific choice of Λ∗.

3.1.2 Implementation in Phoenix
The purpose of PHOENIX is to generate synthetic spectra of atmospheres. For this thesis’
topic the focus is on the 3D-mode, so the atmosphere needs to be described as a volume.
This volume is represented as a voxel grid and, disregarding possible limitations because
of numerical effects, its resolution is freely adjustable. Since it is impossible to calculate
the synthetic spectrum analytically, numerical approximations need to be made. It is
important to choose a suitable implementation for Λ∗ to perform the iteration scheme
with an optimal convergence rate. The following construction is only a summary, [HB99]
gives an in-depth explanation:
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Iki ≡ Iki−1exp(−∆τ ki−1) + αki Ŝi−1 + βki Ŝi + γki Ŝi+1 (3.14)

These values are calculated along a so-called characteristic, denoted with k, which
describes a specific spatial direction. Following these characteristics the source function
S and the optical depth τ are interpolated, the values of α, β and γ depend on the
chosen kind of interpolation.
The characteristics spread from the current voxel j in many uniformly distributed

spatial directions (specified with (θ, φ), which describes a solid angle with polar angle θ
and azimuthal angle φ), the resolution is again freely adjustable. Every voxel which is
passed as the characteristic propagates through the grid, is denoted with i. As seen in
figure 3.1 there are two different kinds of characteristics: short characteristics and long
characteristics, hereafter SC and LC. The only difference is their way of propagation:

(a) Short characteristic (b) Long characteristic

Figure 3.1: Two different kinds of characteristics

SC: The start of this kind of characteristic is always set to the centre of a voxel, runs
in the direction determined by (θ, φ) and stops at the point closest to the centre of
the neighbouring voxel.

LC: This characteristic starts at the centre of its voxel and runs without any predefined
breakpoint through neighbouring voxels.

In PHOENIX the calculations alongside a certain characteristic, defined by (θ, φ), are
carried out by a tracker, which comes with a multitude of variations. One of these
variations is the LC-tracker LC_Lstar_tracker_PBC_zmap, which applies periodic
boundary conditions: Because the grid is finite in every dimension, characteristics will
hit a boundary eventually. If a characteristic hits a boundary in x- or y-dimension,
it continues on the opposite side of the grid. To avoid, that this happens too often
before it reaches the boundary in z-dimension (at a specific amount more repetitions
do not improve the accuracy significantly anymore), a maximum amount of applying
boundary conditions is set. After the tracker has been executed for every voxel and its
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characteristics, Λ∗ is successfully calculated for every voxel and, therefore, one iteration
step can be performed. After reaching the desired convergence and stopping the iteration
scheme the mean intensity for every voxel is known and therefore the synthetic spectrum,
generated by the grid, can be derived.
At this juncture only some LC-tracker make use of OpenMP.

3.2 Program flow

Figure 3.2: Concurrent wavelength
clusters (based on [See11, 24])

Figure 3.2 displays the general workflow of
PHOENIX. The user’s input consists amongst other
parameters of the atmosphere’s luminosity, mass,
temperature, pressure and density as well as the
velocity field and present elements. Depending on
the chosen mode the fundamental variables (tem-
perature, gas pressure, population numbers) are cal-
culated for every voxel at first to fulfil constraints
set by the hydrostatic and thermodynamic equi-
librium [HB99, 3–6]. Then for every wavelength,
which shall be part of the synthetic spectrum, the
tracker calculates the mean intensity Jλ and the
corresponding Flux Fλ for every voxel of the grid.
Concluding this, the operator splitting method is
used, to calculate a better guess for the mean inten-
sity. This cycle, which is denoted as the wavelength
loop, is done repeatedly until the desired accuracy
has been reached.
In case that only the functionality of a tracker

shall be tested, PHOENIX offers the possibility to
execute only the segment, where the 3D radiative
transfer equations are solved and constructs for this
purpose a so-called toy atmosphere, which provides
every initial value with that the wavelength-loop is
executed. The toy atmosphere assumes that only

one kind of atom with two energy levels is present [See08, 19]. Figure 3.3 displays the
actual program flow of PHOENIX for this case. After basic initialisations, the model
parameter are read and the parallelisation scheme is built (cf. figure 3.4). After creating
the grid and generate fictitious input data, which would be calculated or read in by
PHOENIX otherwise, the actual tracker is executed to calculate the mean intensities.

45



Figure 3.3: Program flow of PHOENIX’s test program to check the 3DRT mode

3.3 Parallelisation pattern� �
1 phoenix:
2 nvoxel = number of voxels in total (e.g from structure)
3 proces_per_wl = DDS (choose this)
4 nwl = number of wavelength points in total
5 nwlc = n/DDS = number of wavelength clusters
6 ---------------------------------------------------------
7
8 ! Initialise MPI structure and communication. Sets e.g ⤦

Ç wl_cluster_id for each processing unit
9

10 init_mpi()
11
12 ! Split tasks: Each wavelength cluster only calculates a set of ⤦

Ç wavelength points < nwl
13 do i=0, nwl-1, nwlc :
14
15 phx_wl_cluster_tasks(wl=i+wl_cluster_id)(nvoxel)
16
17 ==>
18 ! Split tasks: Each member of the wavelength cluster ⤦

Ç calculates and holds data only for a fraction of 1/DDS of ⤦
Ç all voxels, communicating whenever necessary

19
20 do j=0, DDS-1, 1 :
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21
22 phx_wl_cluster_tasks(wl=i+wl_cluster_id)(j*DDS : (j+1)*DDS-1)
23
24 ==>
25 ! Split tasks: SMP supported routines/sections will fork ⤦

Ç and join thread-teams
26 [ ... ]

Listing 3.1: General parallelisation scheme in PHOENIX [AWH16]

The parallelisation scheme, which is currently used in Phoenix, is depicted by listing
3.1. There are several code segments, which are parallelised, but PHOENIX can basically
be divided into three different parallelisation stages using MPI or OpenMP respectively.
Figure 3.4 exhibits these crucial three parallelisation stages, which are discussed below:

MPI_COMM_WORLD

Rank
2

Rank
1

Rank
3

Rank
N-1

Rank
N-2

Rank
N

Thread 1
Thread 2
Thread 3

Thread 1
Thread 2
Thread 3

Thread 1
Thread 2
Thread 3

Thread 1
Thread 2
Thread 3

Thread 1
Thread 2
Thread 3

Thread 1
Thread 2
Thread 3

worker
processes:

tracker
threads:

wavelength
clusters: ?

Figure 3.4: Visualisation of the three parallelisation stages of PHOENIX

1. Wavelengths are distributed among groups of processes into so-called wavelength
clusters. Every cluster holds the whole data set so the maximum number of
processes per cluster is limited by the memory size.
Given a static model these wavelengths are physically uncoupled, therefore, this
provides an easy possibility for data parallelisation, which is initialised in line 13 of
listing 3.1. If a dynamic model with a global velocity field in a Lagrangian system
is used, the wavelength clusters are dependent on the result of the prior wavelength
- it depends on the velocity field which wavelength is the prior one. To execute
the calculations on each wavelength cluster still concurrently they are added to a
pipeline using a simple round robin scheduler: Wavelength cluster i of a total of n
is responsible for the wavelengths k ⋅ n + i, k ∈ N. Figure 3.5 shows a pipeline with
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three wavelength clusters, which can be executed concurrently and allow optimal
speedup. To keep it simple, a wavelength cluster can be supposed to consist of two
phases: one calculation phase Calculate λi, where the radiative transfer for the
current wavelength is computed. This phase cannot be executed concurrently to
another calculation phase of another wavelength cluster, because every calculation
phase relies on the prior wavelength value. The other phase is the overlap.
Anything that happens in this phase is independent of any other wavelength cluster
and can therefore be executed concurrently to any other phase. The bigger the
overlap portion is compared to the calculation phase, the more wavelength clusters
can be added to the pipeline without any disadvantages regarding the speed-up.
The pipeline is considered full, if adding one more wavelength cluster would result
in idling respectively in a non-optimal speedup; figure 3.6 gives an example, where
adding one more wavelength cluster impairs the speedup, because wavelength
cluster 0 must wait for the result of the prior wavelength, which is calculated by
wavelength cluster 3, by what every process becomes delayed - idling phases appear.
The exact amount of wavelength clusters, which fit into a pipeline, depends on
the underlying hardware and the ratio between the calculation and overlap phase
[HB99, 20–21].
After all the calculations have been finished, the results of every wavelength cluster
are brought together again to form the synthetic spectrum.

Calculate
λ1

overlap Calculate
λ4

overlap

Calculate
λ2

overlap Calculate
λ5

overlap

Calculate
λ3

overlap Calculate
λ6

overlap

Figure 3.5: Concurrent wavelength clusters with optimal speed-up

Calculate
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overlap X Calculate
λ5

overlap X

Calculate
λ2

overlap X Calculate
λ6

overlap X

Calculate
λ3

overlap X Calculate
λ7

overlap X

Calculate
λ4

overlap X Calculate
λ8

overlap X

Figure 3.6: Too many wavelength clusters in the pipeline induce idling

2. The voxels of the grid are divided evenly into sections in line 20 of listing 3.1, which
are then distributed among all processes of one wavelength cluster. To perform the
necessary calculations, the processes might need to communicate with each other
sometimes.

3. At the time, when this last parallelisation phase is executed, every process calculates
the mean intensity on a selection of solid angles by invoking an appropriate tracker.

48



To speed this procedure up, some LC-trackers contain OpenMP-sections, which
spawn threads to parallelise calculations alongside the long characteristics in line 25
of listing 3.1.

The actual tasks, which are assigned during each phase may differ from the prior
description, as they depend on the mode, in which PHOENIX is executed. But for every
mode the general parallelisation pattern remains the same [HB99, 17–21].
An example for a LC-tracker, which utilises the last parallelisation step, will be

presented in Design approach (p.74) and TrackerSim (p.61). In these sections the
thread parallelisation with OpenMP will be compared and finally substituted with
an MPI-3 RMA approach. This will change the hybrid character of PHOENIX into a
MPI-only parallelisation model.

3.3.1 3D radiative transfer
To test a LC-tracker it is not necessary to perform a complete run of PHOENIX; instead
it is possible to just execute a small test application, which invokes a selected tracker. As
the LC-tracker are the only modules in PHOENIX, which utilise OpenMP, it is sufficient
to make use of the 3DRT-test application. The parallelisation scheme of the 3DRT-test
deviates slightly from the parallelisation scheme of PHOENIX, and shall therefore be
explained separately. Again the user input determines how the program flow precisely
ends up, so the following enumeration is only one possible sequence and includes the
execution of LC_Lstar_tracker_PBC_zmap LC-tracker.

1. Assign every process to the same wavelength cluster

2. generate fictitious data

3. Job execution: Iterate over all solid angles
a) Invoke LC-Tracker with current solid angle

i. Iterate over every voxel to determine LC’s
ii. Iterate over all LC’s to calculate mean intensities, flux components, etc.

4. Check the correctness of the results

5. Collect the results of every process

6. Output the finished results� �
1 DO i_theta=1,ntheta
2 DO i_phi=1,nphi
3 [ ... ]
4 MPI_counter = MPI_counter+1
5 IF( mod(MPI_counter, numProcs) .ne. myRank) cycle
6 [ ... ]
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7 END DO
8 END DO

Listing 3.2: Load balancing of the solid angles executed by every process

To balance the load every process is provided with different solid angles, listing 3.2
shows the idea behind this distribution. Every process increments its MPI_counter
and only performs calculations on a solid angle, if its index is a multiple of the process’
rank - the solid angles are distributed in fixed turns. Additional parallelisation can be
performed through using threads: LC_Lstar_tracker_PBC_zmap uses OpenMP to
parallelise the loops over all voxel and LC’s.

3.4 Profiling

Figure 3.7: Vtune parallelisation visualisation

Examining 3DRT through a explorative data analysis shows, that it makes use of
parallelisation very well and reaches a good performance on HPC-systems. A reason
for this is, among other things, that the effective CPU time depends primarily on
the calculation of mean intensities and how often the Λ∗-iteration scheme needs to
be repeated to reach a specified accuracy. Aside from the latter, every item can be
parallelised very well (cf. prior section Parallelisation pattern). Figure 3.7 presents
a run with four processes and no OpenMP-threads on Linux-PC (cf. Evaluation
(p.79)). Yellow identifies waiting phases, in which MPI communication is executed
and no computations are performed, brown marks (desirable) computation. It is quite
evident, that the hardware is used with high efficiency and barely any idling occurs due
to locks or sequential executions. Only in the end some overhead is visible which might
be induced by the collection of the results. This conforms to [HB99, 18–20], where the
actual speedup of PHOENIX, which was executed with a static model of an atmosphere,
achieved about 80% of the theoretical maximum speedup.

[HBA97] examined the performance of PHOENIX regarding strong scaling (cf. Scaling
(p.83)). For that purpose a small test case was constructed with about 60 × 60 × 300
voxels and 64 × 64 spatial directions per voxel and then executed on the same hardware
with up to 2048 processes. Even though the scaling efficiency sometimes decreased to
about 80%, it performed quite well. The authors even suppose that the scaling efficiency
will be still satisfactory, if the test case is executed on up to 256000 processes and the
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underlying hardware can handle so many processes adequately. From this it follows, that
provided with a suitable problem size, PHOENIX can be deployed on nearly any HPC
system.

Beside these advantages regarding parallelisation and scaling, PHOENIX has one major
disadvantage: Many problems, which are solved with PHOENIX, are very reliant on
memory. The numerical calculation of the synthetic spectrum requires to construct Λ∗

for every voxel of the grid. Constructing one Λ∗ makes it necessary to store a so-called
Λ∗ element for itself and all adjacent voxels, a total of 27 elements. The demand for
storage by Λ∗ could be reduced to only itself plus six adjacent elements, though this
would result in a slower convergence rate. Therefore it scales like O(n3), in which n
denotes the total number of voxels [HB06, 4–5].

In the prior section Parallelisation pattern (p.46) the communication pattern was
described, which occurs in the case of a dynamic model and limits the possible amount of
wavelength clusters, that fit into the pipeline at once. This limit does not occur in 3DRT
but in PHOENIX; there it can be bypassed if more processes are spawned during the
second parallelisation phase (cf. figure 3.4), because the increased amount of processes
enlarges the content size of each wavelength cluster, which do not require the result
of the prior wavelength. But even if the underlying hardware may support additional
processes, the number of processes per node increases [HB99, 17–21]. More processes
per node lead to a worse memory

process ratio; as a consequence the problem size is even more
limited, that fits into a process’ memory [AWH16]. One relaxation of this restriction
is to lower the number of processes (which causes the problem of a full pipeline again)
or to reduce redundancy. Because one wavelength cluster may contain more than one
node, this approach would require message passing, so OpenMP cannot be used. RMA
could create a global memory instead, which involves every node of a wavelength cluster
and therefore allows to dispose of redundant data at the price of an increased amount of
communication. Section Use cases (p.20) gives an outline of reducing redundancy with
RMA.

As already mentioned some LC-tracker make use of OpenMP. This leads to a hybrid-
model for better or for worse. The next section Applying MPI (p.52) describes a
general approach to remove all OpenMP sections and replace them with equivalent RMA
operations. An in-depth discussion is made in chapter Using MPI-3 RMA (p.60).
The purpose of this refactoring is, that it might improve PHOENIX in two ways:

1. Performance: The advantage of OpenMP, that it is very easy to integrate in
already existing code, comes at the price, that compared to other parallelisation
paradigms an user has only little influence on how the parallelisation is performed.
This might lead to synchronisation or locks, which are for some applications more
conservative than necessary. Using MPI-3 RMA the user needs to take care of right
synchronisation himself; while this leads to a major amount of additional work, the
user has now the possibility to omit synchronisation, which is in a concrete case not
necessary. Given a suitable application, this could result in a better performance.
Section TrackerSim (p.61) deals with the question, whether PHOENIX is such a
suitable application.
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2. Expandability: Another advantage of MPI RMA over OpenMP is, that OpenMP
is limited to shared memory; in most cases OpenMP cannot be used for internode
communication. As RMA is not dependent on shared memory, it is able to perform
both internode and intranode communication. In this regard and at this juncture
OpenMP is sufficient for PHOENIX but the introduction of RMA prepares it for
internode communication, if it is required some day.

3.5 Applying MPI
PHOENIX makes use of many derived types; one of those is a large derived type denoted as
pve_data. Among many other things it stores the Λ∗ elements for every voxel and has
therefore an eminent impact on the performance. To make use of task parallelism many
LC-tracker of PHOENIX share variables through OpenMP. For this thesis the tracker
LC_Lstar_tracker_PBC_zmap was chosen to demonstrate the potential of RMA to
substitute OpenMP. To create a MPI-only version of this tracker, every OpenMP-section
is replaced with a RMA approach - instead of tracker-threads tracker-processes are now
spawned dynamically and it would also be possible to use shared memory again. Because
memory is a valuable asset and pve_data might rely heavily on it, it must not be
stored redundantly on every process’ local memory by all means.

After sharing the pve_data variable the tracker-processes need to make use of with
their access and update operations in the next step. There are some directives (e.g.
atomic or critical) in OpenMP which announce operations on memory, which
need to be executed with particular attention. Obviously, these operations need to
be treated individually by tracker-processes. Indeed there are more operations, which
are not explicitly announced to such an extent, but still need individual treatment by
MPI RMA: OpenMP automatically takes care, that every load or store operation by
a thread on a variable, that was part of a shared-clause in an OpenMP-directive, is
executed concurrently in the right way - the user does not need to take action. This
behaviour needs to be imitated by the user explicitly, if MPI RMA is used. Therefore
every operation on a variable with RMA communication operations or local store and
load operations need to be protected by the proper invocation of RMA synchronisation
operations, if the variable is part of a shared window, i.e. the associated window has
been created with MPI_WIN_ALLOCATE_SHARED.
Section TrackerSim (p.61) analysis different RMA approaches to substitute the

OpenMP-sections and determines which approach has probably the best chance, that
PHOENIX might benefit from the substitution. After actually choosing an approach in sec-
tion Concluding discussion (p.73) the following section Substitution of OpenMP
(p.77) describes how exactly this design is implemented in PHOENIX.
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4 Intel Xeon Phi
Except for a few CPUs, which reach clock rates of 8GHz and above by overclocking
[CPU] but are not intended for an actual deployment, the maximum clock rate of a CPU
remains relatively static since the last decade, figure 4.1a visualises this development.
This might be explained by the fact, that increasing the clock rate above the current
status quo leads to especially three problems:

1. The fraction Cost
∆ clock rate increases for higher clock rates because higher clock rates

entail a disproportionately higher power consumption.

2. The higher the clock rate of a CPU is, the higher becomes the amount of heat,
which is emitted and needs an adequate handling in terms of cooling.

3. In order to increase the clock rate, among other things, the density of transistors
on the CPU’s surface needs to be enhanced. Aside from the advanced complexity
this will lead to quantum effects if the structure size goes below a specific value
(about 10nm), which requires a special treatment.

These problems do not imply that it is not possible to further increase the clock rate,
but it will not get any easier either and there are more economic possibilities to achieve
the same performance. In answer to the general stagnation of the maximum clock rates
of CPUs, the portion of core and thread parallelism has increased to compensate this
trend, see figure 4.1b. Intels enlarged its product range and released the first generation
of the Intel Xeon Phi Coprocessor in 2012, which offers massive core parallelism.

(a) ... CPU clock rate [JRS16] (b) ... core and thread parallelism [JRS16]

Figure 4.1: Development of ...
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The next section describes the functionality of the first generation of the Intel Xeon
Phi in general terms; the current generation and its improvements are then presented
in the succeeding section Knights Landing (p.54). In the end the possibility to build
a cluster out of Intel Xeon Phis is displayed in section Xeon Phi cluster (p.57) and
section Suitability for Phoenix (p.58) discusses, if it is suitable to run PHOENIX on
the Intel Xeon Phi.

4.1 Overview
The first generation of the Intel Xeon Phi, which is refered to as Knights Corner and
was available as a PCIe card, allowed to make use of up to 61 cores with four threads
and one large 512bit vector processing unit (VPU) per core. The Xeon Phi has been
designed to offer the advantages of an accelerator (like GPUs) without adopting its
disadvantages: Usually a program needs to be partly rewritten before it may be executed
on an accelerator. Only minimal or even no changes are needed to execute a program on
the Xeon Phi, which has three different operating modes:

Native: The application is executed completely on the coprocessor. Every library, that
the application makes use of, needs to be crosscompiled for the Xeon Phi and
uploaded beforehand.

Offload: The application can be extended with offload pragmas and is executed on the
host. Every code section, which is enclosed by offload pragmas, is automatically
loaded and executed on the Xeon Phi. The results are loaded back to the host, the
execution on the host halts as long as the offload section is executed.

Symmetric: The application needs to be compiled for the host as well as for the Xeon
Phi and may then be executed concurrently.

In order to max out the potential capacity of the Intel Xeon Phi an application fulfils
ideally two characteristics: On the one hand it scales with hundreds of threads and on
the other hand it benefits from a large vector unit. Each HPC application should at least
satisfy one criterion. In principle each application, which benefits from an execution
on a GPU, should also benefit from an execution on a Xeon Phi. The reason to prefer
the Xeon Phi to a GPU is that a Xeon Phi has a broader applicability: It supports
amongst others C/C++, Fortran, OpenMP and MPI as well as any library that can be
crosscompiled for the Xeon Phi.

A more elaborate description of the first generation of the Intel Xeon Phi is available
in my prior thesis [Squ14, Ch. 2 – 3] and shall, therefore, not be repeated in this chapter.

4.2 Knights Landing
The second and current generation of the Intel Xeon Phi is referred to as Knights Landing
(hereafter: KNL) and is a backwards-compatible further development of Knights Corner.
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This section is confined to the new features of KNL and is mainly based on [JRS16],
which offers additional in-depth descriptions and explanations.

Figure 4.2: Intel Xeon Phi Knights Landing [Sau16]

The main difference between Knights Corner and KNL is the fact that KNL is available
again as a PCIe card (Knights Landing coprocessor) but also as a compatible x86 chip
(Knights Landing processor). The socket version does not require a host system like the
coprocessor. Using the KNL processor offers directly following advantages:

• No application or library must be ported to be executed on the Xeon Phi.

• The PCIe connection drops out as a bottleneck

In addition KNL offers a possibly higher performance than Knights Corner. Depend-
ing on the actual model, Knights Corner offered a maximum performance of about 1
TFLOPS double precision whereas KNL is theoretically capable of providing a maximum
performance of about 3.5 TFLOPS double precision. Knights Corner needs to execute
multiple threads per core to reach its maximum capacity but Knights Landing can
because of hyper-threading already reach its maximum performance with one thread per
core.

For the benchmarks in section Evaluation (p.79) the socket version of the KNL was
used, therefore the following description focuses rather on this variant than on the PCIe
card variant.

4.2.1 Architecture
KNL introduces a new vector unit with a capacity of 512 bits, which is called Intel
AVX-512 - each core is assigned with two AVX-512 units. An application may only
utilise the KNL at full potential performance if it is able to operate the vector units of
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each core at full capacity. Two cores together with both their AVX-512 vector units and
a shared 1MB L2 cache are combined in a so-called tile, which is shown in figure 4.3.
Tiles are connected with each other through the CHA (caching/home agent), which is
also part of a a cache-coherency protocol.

Figure 4.3: Composition
of a tile [JRS16]

Up to 36 tiles1 are combined in a grid like shown in the
schematic 4.4 to build a KNL. In contrast to Knights Corner,
which uses a bidirectional 1D ring interconnect, a 2D mesh
interconnect is used for KNL to provide a higher bandwidth
and lower latency.
Knights Corner has only 8GB internal memory available

in total, which has to provide memory for both the RAM
and file system storage. This limits the possible problem
size, which can be computed on Knights Corner and makes
the offload mode preferable. The KNL processor lifts this
restriction and makes use of two different types of memory:

DDR: Common DDR memory allows to connect the KNL over six DDR4 channels with
up to 384GB.

MCDRAM: 2 16GB high-bandwidth memory, which is distributed over eight devices
around the chip, which surround in figure 4.2 visibly the chip. MCDRAM can be
used in three different setups, which can be chosen in BIOS.

Cache: MCDRAM works as L3 cache between the tiles and DDR memory.
Flat: MCDRAM expands the common DDR memory by 16GB and blends into the

DDR address space, so the MCDRAMmemory becomes visible for applications.
A KNL coprocessor can only choose this mode because as a PCIe card it has
no DDR support and therefore the MCDRAM must act as the main memory.

Hybrid: The available MCDRAM memory is split up into two sections, which are set
to cache respectively to flat mode.

In addition the three different MCDRAM modes there are in addition five cluster
modes, which control the view of tiles on any memory address of DDR or MCDRAM. It
does not restrict the accessibility of tiles to memory or its cache coherency, but influence
the address affinity of memory regarding certain tiles respectively if the access to memory
is uniform or non-uniform. Since hemisphere and SNC-2 are only variations of quadrant
and SNC-4 and subdivide the mesh into only two regions instead of four, they are
therefore not discussed separately.

• quadrant: This is the default mode and sets the memory type of DDR and
MCDRAM to UMA. Applications which only execute one process per KNL and
than make use of OpenMP threads to fully load the local cores, should use this
mode.

1The number of enabled tiles varies
2Multi-channel DRAM
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Figure 4.4: Schematic representation of the Knights Landing architecture [JRS16]

• SNC-4: The memory type is set to NUMA, the tile mesh is subdivided into four
quadrants. Tiles access memory of tiles in the same quadrant faster than if the
other tile is in another quadrant. This type is recommended to choose if four or
multiple of four many processes shall be executed on KNL.

• all-to-all: If both prior modes cannot be chosen because the memory modules
do not have an identical capacity, this mode is used. It does not set any affinity
between tiles and memory and offers, therefore, the worst performance of all modes
in general.

See [JRS16, Ch. 3 – Ch. 4] for more detailed explanations of cluster modes.

4.3 Xeon Phi cluster
Every HPC application should be able to make use of HPC architecture with massive
parallelism. So using accelerators, which offer high performance through large vector
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units and/or the possibility to execute many processing elements concurrently, is a
common strategy. Achieving the same performance without accelerators usually results
in higher costs and power consumption. Because Intel Xeon Phi offered the performance
of an accelerator without many of their disadvantages it was a self-evident choice to use
for HPC systems, but Knights Corner had some flaws, which impeded a wide distribution.
The KNL processor tackles the most important flaws and is, therefore, short-listed to be
used in HPC systems.

Using a coprocessor card requires a host system and raises automatically the question,
what task the host system should undertake during the execution of a application. It
could be used for I/O only but it could also participate in the computations, which makes
load balancing necessary to achieve optimal performance. Building a cluster out of KNL
processors means that no additional host CPUs are needed and one gets a homogeneous
system; therefore, load balancing between the Xeon Phi processor and a host processor
is rendered unnecessary.

Already 75 systems of the Top500 list1 (November 2014) list use accelerators (GPUs,
Xeon Phis, etc.) [LHL+15] and could benefit from KNL processors. For example
Stampede2 makes use of Knights Corner and it was recently announced to deploy
Stampede 2, which shall make use of Knights Landing [SV16]. Another example for a
cluster, which makes use of Knights Landing, is NERSC-83

Additional optimisation for a cluster of Xeon Phis may be achieved through the usage
of MPI RMA. With a single Xeon Phi one gets along with using threads to use it at full
capacity. But a cluster of several Xeon Phis makes internode communication necessary,
which can for example be realised with PGAS or MPI. [BL15] shows an approach to use
MPI-3 RMA on a Xeon Phi cluster, which automatically determines if the target requires
internode or intranode communication and makes then use of common two-sided MPI
communication or MPI RMA communication on shared memory. Instead of two-sided
MPI communication one could of course use one-sided MPI RMA communication, too.
With this approach they gained a speedup of up to 4.7 on one Xeon Phi node and a
speedup of up to 1.8 on two Xeon Phi nodes in comparison to an approach, which only
makes use of MPI two-sided communication. Another benchmark on a Xeon Phi cluster
by [LHL+15], which applied MPI-3 RMA to the used benchmark Graph5004, achieved
an improvement of 25% in performance.

4.4 Suitability for Phoenix
Using VTune (cf. figure 4.5) to analyse a run of PHOENIX with four processes and two
threads per process on Linux-PC shows that it is about half latency bound and only
one-fifth bandwidth bound, so PHOENIX needs very frequently to reload few data into
the cache and does not use the available memory bandwidth to its full capacity. To

1https://www.top500.org/
2https://www.top500.org/system/177931
3http://www.nersc.gov/users/computational-systems/cori/
4http://www.graph500.org/
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make use of this situation it is recommended to spawn more threads, which allows a
core to utilise the time, one thread must wait for the arrival of the requested data, for
computations with another thread. The target of spawning more threads is to pipeline
enough data requests to use the memory bandwidth at full capacity; thereby the amount
of computations per time interval and consequentially the resulting performance increases.

Figure 4.5: VTune: Memory bandwidth and latency

KNL has eight blocks of MCDRAM, which offer about four times more bandwidth
than common DDR4 memory [P.16]. The combination of a high bandwidth and the many
available cores of KNL allow to utilise that PHOENIX is primarily memory latency bound
by spawning more threads for its execution - the total performance possibly increases.

If PHOENIX is not capable to make adequately use off additional threads, the amount
of computation operations per time interval does not increase. Then the performance
does not increase neither. As discussed in section Profiling (p.50) PHOENIX scales very
good with additional processing elements if it is provided with a proper problem as input.
PHOENIX should therefore benefit if it is executed on KNL.

59



5 Using MPI-3 RMA
After discussing a general approach to make use of MPI-3 RMA in PHOENIX in the former
section Applying MPI (p.52), this chapter focuses on the practical implementation.
For the sake of brevity and to concentrate on the LC-tracker, all necessary changes
are applied to 3DRT, which mimics the behaviour of PHOENIX. Every finding allows
inferences about PHOENIX which is why PHOENIX and the 3DRT test application may
be used synonymously in this chapter.

Since MPI-3 added many new operations to the MPI RMA interface, various concepts
will be discussed and also tested in section TrackerSim (p.61). Given the large dimen-
sion of PHOENIX in general and of the LC-tracker LC_Lstar_tracker_PBC_zmap
(hereafter only denoted as the LC-tracker) in particular, the potential of each RMA
approach is tested in a much smaller test program: TrackerSim. Its purpose is to
mimic important parts of the LC-tracker, so that each RMA approach does not need to be
fully implemented in the LC-tracker. Instead of that each approach is fully implemented
in TrackerSim to estimate whether is is beneficial respectively the performance.

The LC-tracker contains three OpenMP-sections, that are reproduced in TrackerSim
too. Instead of adopting every operation, which is invoked in a OpenMP section of the
LC-tracker, a selection is made: Only those operations, which are crucial or representative
for a OpenMP section are adopted in TrackerSim. Any optimisation, which is only
available in TrackerSim but not possible in the LC-tracker, was declined. Thereby the
implementation effort is highly reduced but the benchmark results are still reasonably
conferable to the LC-tracker.
TrackerSimSMP denotes the variation of TrackerSim, which still uses OpenMP and

is basically a compacted version of the LC-tracker. Any other variation of TrackerSim
uses this variation as initial point to implement its selected RMA approach. The
correlation between the performance of TrackerSimSMP and the performance of any
other variation of TrackerSim should arise again in the comparison of the performance
of the LC-tracker with OpenMP and the LC-tracker with MPI-3 RMA.
The following section describes TrackerSim in detail and investigates the best

approach to replace OpenMP with MPI RMA in PHOENIX. Because it is not enough
to replace the OpenMP sections with MPI-3 RMA operations only, section Design
approach (p.74) gives an overview about additional adjustments that need to be
integrated into PHOENIX to realise the refactoring. The last section Substitution
of OpenMP (p.77) gives a concluding discussion about the actual implementation in
PHOENIX.
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5.1 TrackerSim
Without combining different synchronisation methods there are five reasonable pos-
sibilities to rebuild the OpenMP sections with MPI RMA (cf. Variation 1: fence-
synchronisation (p.65) for a short discussion of the skipped possibility). Since the
LC-tracker and 3DRT are quite extensive it would be very time consuming to im-
plement every possibility already in PHOENIX and benchmark every version then.

Figure 5.1: General scheme of the
execution of one step

Therefore TrackerSim was built, which mim-
ics the OpenMP sections with much less code
which allows faster implementations and bench-
marks. Based on the benchmark results the most
promising approach is then chosen to be applied to
PHOENIX. The next section Variation 0: SMP
(p.63) builds the basic framework of TrackerSim
(hereafter: TrackerSimSMP) upon which the other
variations base - those will be discussed in the sub-
sequent sections and source code of the most impor-
tant sections will be shown. Figure 5.2 displays the
general programflow of TrackerSim, each step
may be analysed independently of the other steps.
In every variation only process 0 (also denoted

as masterProc) holds memory for a window, ev-
ery other process invokes the creation operation
with size == 0. In this way the behaviour of
PHOENIX can be mimicked as close as possible
(in PHOENIX each worker process holds the mem-
ory and spawns tracker-threads, which use this
memory). As the RMA synchronisation opera-
tions do not act like normal locks but begin or end
epochs (exempt passive locks with lock_type ==
MPI_LOCK_EXCLUSIVE, which are similar to a
common lock) the RMA synchronisation operations
are placed outside of the loop (cf. section Scal-
ing (p.83) to find out, why this positioning should
not be chosen for PHOENIX). This resulted to be
a practice with best performance from benchmarks,
which compared both possible placements without
additional load: either outside the loop or next to
the RMA communication operations nested inside
the loop. The latter resulted in loss of performance
due to overhead of too many invocations.

Every variation reproduces the behaviour of OpenMP in TrackerSimSMP true to
the original with MPI RMA; therefore every optimisation was omitted, which would
only be possible in TrackerSim but not PHOENIX, because this would have interfered
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Figure 5.2: General workflow of TrackerSim irrespective of the chosen variation

with the assignability of the deductions drawn from the benchmarks of TrackerSim.
Also no assertions or hints were used in TrackerSim, which depend heavily on the
underlaying hardware and chosen MPI implementation - this simplifies the comparison
of the benchmarks but leaves room for further optimisations.

To assess the performance of every variation, they are compared with TrackerSimSMP
in the end. The following items describe the used methodology in general and are partly
displayed in figure 5.1:

• Process 0 is responsible to take the time of every step. To prevent that other
processes are already computing, a barrier is set directly before the start and the
end of taking the time.

• To firm the statistical validity of the time measurements every timing is repeated
five times. To calculate the mean and standard deviation the fastest and slowest
time measurement are neglected.

• The creation of windows is excluded from the time measurement, as it happens
only once and the focus lays on the communication operations. If the window
creation takes a significant amount of time its proportion can easily be reduced be
increasing the amount of communication.

• Since the chosen operations, which represent the content of each step, are not the
only operations in this step of the LC-tracker, they might be attached with too
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much importance. To lessen this effect each step contains a subroutine to generate
extra load (compLast) - the amount can be chosen by the user. This function
generates load while operating on local memory only and may therefore be executed
concurrently. The bigger the amount of its execution compared to the rest of the
loop is, the bigger is the overlapping portion of one iteration.

• The measured time interval may be extended by increasing the amount of loops to
lessen random effects, which might distort the time measurement.

• Any TrackerSim variation is executed with as many processes as threads are
used in TrackerSimSMP.

• To make sure, that the computations are correct, the results are automatically
verified after each iteration: Process 0, which has the whole memory of each shared
window, recomputes the results of every without MPI RMA; afterwards it verifies
that the newly computed check values conform with the results, which have been
calculated with MPI RMA.

There is an alternative to this trial and error approach which relies on a more theoretical
construct, that calculates which RMA approach should be fastest. It will be outlined in
section Related work (p.93).

5.1.1 Variation 0: SMP
Like the LC-tracker TrackerSimSMP contains three OpenMP sections, which parallelise
(nested) loops and allow access and update operations on shared variables. Every section
does not necessarily match perfectly its counterpart in PHOENIX but examines a special
functionality of OpenMP. The operands of the update operations have been simplified,
too: either the value “1” or an value is used, which allows to test easily if it is correct
(e.g. every array entry could be set to its absolute position).

Step 1: Contains a reduction clause with the +-operator and a critical section from which
the result of the prior update operation shall be fetched and stored in idx.� �

1 !$omp parallel do default(none) collapse(3) &
2 !$omp shared(nx,ny,nz,n_chars) &
3 !$omp [...]
4 !$omp reduction(+:reduction)
5 DO iz=-nz,nz
6 DO iy=-ny,ny
7 DO ix=-nx,nx
8 CALL compLast(lasteinstellung(1))
9 !$omp critical

10 n_chars = n_chars + 1
11 idx = n_chars
12 !$omp end critical
13 reduction = reduction + 1
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14 END DO
15 END DO
16 END DO

Listing 5.1: Abstraction of Phoenix’ access pattern with OpenMP (Step 1)

Step 2: Contains the common use case of an atomic counter increment without the need
to fetch immediately the result.� �

1 !$omp parallel do default(none) &
2 !$omp [...] &
3 !$omp shared(zaehler)
4 DO i=1,n_chars
5 CALL compLast(lasteinstellung(2))
6 !$omp atomic
7 zaehler = zaehler + 1
8 END DO

Listing 5.2: Abstraction of Phoenix’ access pattern with OpenMP (Step 2)

Step 3: Similar to the prior step a variable shall be updated atomically; this time a function
and the variable’s original value are used. Furthermore a one-dimensional and a
three-dimensional array are accessed� �

1 !$omp parallel do default(none) collapse(3) &
2 !$omp shared(nx,ny,nz,pve_grid,stelle_max) &
3 !$omp [...]
4 DO iz=-nz,nz
5 DO iy=-ny,ny
6 DO ix=-nx,nx
7 stelle = 1+(iz+nz)*(2*nz+1)**2+(iy+ny)*(2*ny+1)+(ix+nx)
8 CALL compLast(lasteinstellung(3))
9 !$omp atomic

10 pve_grid%speicher3D(ix,iy,iz) = ⤦
Ç pve_grid%speicher3D(ix,iy,iz)+dble(stelle)

11 !$omp atomic
12 pve_grid%speicher1D(stelle) = ⤦

Ç pve_grid%speicher1D(stelle) + dble(stelle)
13 !$omp atomic
14 stelle_max = max(pve_grid%speicher1D(stelle), stelle_max)
15 END DO
16 END DO
17 END DO

Listing 5.3: Abstraction of Phoenix’ access pattern with OpenMP (Step 3)
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5.1.2 Variation 1: fence-synchronisation
The first variation is using “common” windows (i.e. created by invoking MPI_WIN_-
CREATE) and active, collective fence synchronisation. The variables, which had been
accessed and updated directly in TrackerSimSMP are now covered behind a window
handle. This is why RMA communication operations need to be used now.

Step 1: Since the result of the increment operation shall be fetched from only a single
datatype, MPI_FETCH_AND_OP may be used. But because a value is returned to
idx, which was current before ONE had been added, this operation on idx needs
to be repeated afterwards. During the ongoing loop every process updates the
reduction variable (here: schritt1Array(2)) locally1 and is then accumulated,
after the loop has finished� �

1 CALL MPI_WIN_FENCE(0, s1Win, ierror)
2 DO iz=startIndex,endIndex
3 DO iy=-ny,ny
4 DO ix=-nx,nx
5 CALL compLast(lasteinstellung(1))
6 CALL MPI_FETCH_AND_OP(ONE, idx, MPI_INTEGER, ⤦

Ç masterProc, 0_MPI_ADDRESS_KIND, MPI_SUM, s1Win, ⤦
Ç ierror)

7 idx = idx + ONE
8 schritt1Array(2) = schritt1Array(2) + ONE
9 END DO

10 END DO
11 END DO
12 IF(myRank .NE. masterProc) CALL ⤦

Ç MPI_ACCUMULATE(schritt1Array(2), 1, MPI_INTEGER, ⤦
Ç masterProc, 1_MPI_ADDRESS_KIND, 1, MPI_INTEGER, ⤦
Ç MPI_SUM, s1Win, ierror)

13 CALL MPI_WIN_FENCE(0, s1Win, ierror)

Listing 5.4: TrackerSim with active, collective synchronisation (Step 1)

Step 2: Similar to step 1 a variable’s value shall be increased. But since in this case the
immediate result is not of interest MPI_ACCUMULATE is sufficient.� �

1 CALL MPI_WIN_FENCE(0,s2Win,ierror)
2 DO i=startIndex,endIndex
3 CALL compLast(lasteinstellung(2))
4 CALL MPI_ACCUMULATE(ONE, 1, MPI_INTEGER, masterProc, ⤦

Ç 0_MPI_ADDRESS_KIND, 1, MPI_INTEGER, ⤦
Ç MPI_SUM,s2Win, ierror)

1Even though schritt1Array is associated with a window it may be used like a local variable, as
long as no shared window or RMA communication operation is used. Every local store operation only
affects the local memory
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5 END DO
6 CALL MPI_WIN_FENCE(0,s2Win,ierror)

Listing 5.5: TrackerSim with active, collective synchronisation (Step 2)

Step 3: In addition to the outer fences every RMA communication operation must be
accompanied by a fence inside the loop, too. This is probably inevitable due to
the INTEGER variable stelle: The window handles represent memory, which
expects to take variables of type DOUBLE. Therefore every usage of stelle is
preceded by a typecast. The typecast buffer needs presumably to be freed before
the next typecast may be performed. This is due to the fact, that even though
RMA communication operations write changes to the public window copy, which
is synchronised with the private window copy eventually automatically, but all
processes, which share the same memory share the same typecast buffer, too -
without further RMA synchronisation calls the update operations on the window
are still safe but data races happen on the typecast buffer in the background. To
ensure, that this buffer is free to be reused, additional fences must be set. Without
these fences some values of stelle could be omitted. Additional invocations of
fences in the end arise from the fact, that fences must be executed collectively: Due
to a primitive load balancing the last process needs to resume the last iterations,
which could not be distributed evenly. To match the last surplus fences, every
other process needs to invoke additional fences in the end (cf. lines 23 – 30)� �

1 CALL MPI_WIN_FENCE(0,s3Win1D, ierror)
2 CALL MPI_WIN_FENCE(0,s3Win3D, ierror)
3 CALL MPI_WIN_FENCE(0,s3WinMax,ierror)
4 DO iz=startIndex, endIndex
5 DO iy=-ny,ny
6 DO ix=-nx,nx
7 stelle = 1 + (iz+nz)*(2*nz+1)**2 + (iy+ny)*(2*ny+1) + ⤦

Ç (ix+nx)
8 CALL compLast(lasteinstellung(3))
9 s3targetDisp = stelle-1

10 !1D
11 CALL MPI_ACCUMULATE(REAL(stelle,kind(prec)), 1, ⤦

Ç prec_mpi, masterProc, s3targetDisp,1, prec_mpi, ⤦
Ç MPI_SUM, s3Win1D, ierror)

12 CALL MPI_WIN_FENCE(0,s3Win1D, ierror)
13 !3D
14 CALL MPI_ACCUMULATE(REAL(stelle,kind(prec)), 1, ⤦

Ç prec_mpi, masterProc, s3targetDisp,1, prec_mpi, ⤦
Ç MPI_SUM, s3Win3D, ierror)

15 CALL MPI_WIN_FENCE(0,s3Win3D, ierror)
16 !Maximum
17 CALL MPI_ACCUMULATE(REAL(stelle,kind(prec)), 1, ⤦
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Ç prec_mpi, masterProc,0_MPI_ADDRESS_KIND,1, ⤦
Ç prec_mpi, MPI_MAX,s3WinMax, ierror)

18 CALL MPI_WIN_FENCE(0,s3WinMax, ierror)
19 END DO
20 END DO
21 END DO !omp
22 !Last proc uses more Fences, so everyone else needs to match ⤦

Ç them
23 IF(myRank .LT. numProcs-1) THEN
24 fenceIndex=MODULO((nz*2+1),numProcs)*(2*ny+1)*(2*nx+1)
25 DO i = 1,fenceIndex
26 CALL MPI_WIN_FENCE(0,s3Win1D, ierror)
27 CALL MPI_WIN_FENCE(0,s3Win3D, ierror)
28 CALL MPI_WIN_FENCE(0,s3WinMax, ierror)
29 END DO
30 END IF
31 CALL MPI_WIN_FENCE(0,s3Win1D, ierror)
32 CALL MPI_WIN_FENCE(0,s3Win3D, ierror)
33 CALL MPI_WIN_FENCE(0,s3WinMax,ierror)

Listing 5.6: TrackerSim with active, collective synchronisation (Step 3)

Another approach using active target communication is GATS (cf. section Active
target (p.36)). These RMA synchronisation operations were skipped due to the fact,
that their only advantage over fences is that they do not need to be called collectively.
As it became apparent during testing that passive target communication offered a higher
performance than active target communication, GATS had been omitted.

5.1.3 Variation 2: passive synchronisation
Passive synchronisation with RMA locks allow to realise real one-sided communication
(besides the collective window creation). Since every RMA communication operation in
every step of TrackerSim is an atomic operation, which makes concurrent executions
safe, it is sufficient to use lock_type = MPI_LOCK_SHARED. To emphasise that
RMA locks may not be mistaken for normal locks, figure 5.3 shows an execution of
TrackerSim with passive synchronisation with shared locks. See figure 6.8b for an
example of passive synchronisation with an exclusive lock.

Figure 5.3: Passive target communication with shared locks visualised with Vampir

67



It is clearly visible that although a “lock” is set in front and after the loops, no
process is blocked from accessing or updating the window. However the figure shows one
disadvantage, too: Despite using lock_type = MPI_LOCK_SHARED the invocation
of a RMA synchronisation lock by a process functions always as a “real” lock, if the
target is the process itself (here: masterproc == 0). That is to say that in this case,
every time when process 0 (which holds the memory for every window) invokes MPI_-
WIN_LOCK(MPI_LOCK_SHARED, masterproc,...) no other process may access
or update these windows. This problem is superfluous regarding PHOENIX because
the worker process, which spawns the tracker-processes and holds the memory for each
window, does not compute concurrently to its child processes on these windows (cf.
section Design approach (p.74) and listing 5.15).

Step 1: Besides the change to passive target communication the actual RMA communication
operations stay the same and are therefore omitted in this listing.� �

1 CALL MPI_WIN_LOCK(MPI_LOCK_SHARED, masterProc, 0, s1Win, ⤦
Ç ierror)

2 DO iz=startIndex,endIndex
3 DO iy=-ny,ny
4 DO ix=-nx,nx
5 [ ...increment and fetch counter... ]
6 END DO
7 END DO
8 END DO
9 [ ... reduction ... ]

10 CALL MPI_WIN_UNLOCK(masterProc, s1Win, ierror)

Listing 5.7: TrackerSim with passive synchronisation (Step 1)

Step 2: Same case like in step 1.� �
1 CALL MPI_WIN_LOCK(MPI_LOCK_SHARED, masterProc,0, s2Win, ierror)
2 DO i=startIndex,endIndex
3 [ ... increment counter ... ]
4 END DO
5 CALL MPI_WIN_UNLOCK(masterProc, s2Win, ierror)

Listing 5.8: TrackerSim with passive synchronisation (Step 2)

Step 3: Similar to step 3 of section Variation 1: fence-synchronisation (p.65) it must
be guaranteed that the typecast buffer may be used again. For this case RMA
offers special operations for passive target communication to ensure reusability of
used buffers: MPI_WIN_FLUSH.... As in this case every RMA communication
operation only targets one specific process (process 0) and it must only be guar-
anteed, that the operation is concluded locally, MPI_WIN_FLUSH_LOCAL is an
adequate choice.
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� �
1 CALL MPI_WIN_LOCK(MPI_LOCK_SHARED,masterProc,0,s3Win1D, ⤦

Ç ierror)
2 CALL MPI_WIN_LOCK(MPI_LOCK_SHARED,masterProc,0,s3Win3D, ⤦

Ç ierror)
3 CALL MPI_WIN_LOCK(MPI_LOCK_SHARED,masterProc,0,s3WinMax, ⤦

Ç ierror)
4 DO iz=startIndex, endIndex
5 DO iy=-ny,ny
6 DO ix=-nx,nx
7 stelle = 1 + (iz+nz)*(2*nz+1)**2 + (iy+ny)*(2*ny+1) + ⤦

Ç (ix+nx)
8 CALL compLast(lasteinstellung(3))
9 s3targetDisp = stelle-1

10 !1D
11 CALL MPI_ACCUMULATE(REAL(stelle,kind(prec)), 1, ⤦

Ç prec_mpi, masterProc, s3targetDisp,1, prec_mpi, ⤦
Ç MPI_SUM, s3Win1D, ierror)

12 !3D
13 CALL MPI_ACCUMULATE(REAL(stelle,kind(prec)), 1, ⤦

Ç prec_mpi, masterProc, s3targetDisp,1, prec_mpi, ⤦
Ç MPI_SUM, s3Win3D, ierror)

14 !Maximum
15 CALL MPI_ACCUMULATE(REAL(stelle,kind(prec)), 1, ⤦

Ç prec_mpi, masterProc,0_MPI_ADDRESS_KIND,1, ⤦
Ç prec_mpi, MPI_MAX,s3WinMax, ierror)

16 !Free local buffer
17 CALL MPI_WIN_FLUSH_LOCAL(masterProc, s3Win1D, ierror)
18 CALL MPI_WIN_FLUSH_LOCAL(masterProc, s3Win3D, ierror)
19 CALL MPI_WIN_FLUSH_LOCAL(masterProc, s3WinMax,ierror)
20 END DO
21 END DO
22 END DO
23 CALL MPI_WIN_UNLOCK(masterProc, s3Win1D, ierror)
24 CALL MPI_WIN_UNLOCK(masterProc, s3Win3D, ierror)
25 CALL MPI_WIN_UNLOCK(masterProc, s3WinMax, ierror)

Listing 5.9: TrackerSim with passive synchronisation (Step 3)

5.1.4 Variation 3: shared memory with RMA communication
Other than both previous variations this variation does not use “normal” but shared
windows. Since TrackerSim is executed on only one node one may assume the existence
of shared memory. Listing 5.10 displays the most important sections to create shared
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memory1. Only the main process creates shared memory, that will be accessed and
updated by every other process, which is why every other process needs to invoke
MPI_WIN_SHARED_QUERY to fetch the right memory address (see the description of
MPI_WIN_ALLOCATE_SHARED in section Initialisation (p.29)). In the last line every
process needs to assign the received C-pointer to a Fortran-pointer.� �

1 USE, INTRINSIC :: ISO_C_BINDING, ONLY : C_PTR, C_F_POINTER
2 INTEGER :: prec_mpi
3 INTEGER :: sizeOfprec_mpi
4 INTEGER :: s3Win3D
5 INTEGER(KIND=MPI_ADDRESS_KIND) :: sizeOfSchritt3D3
6 TYPE(C_PTR) :: s3D3Ptr
7 REAL(kind(prec)), DIMENSION(:,:,:), POINTER :: speicher3DPtr
8
9 [ ... MPI-initialisation ... ]

10
11 !create new type and get size
12 CALL MPI_TYPE_CREATE_F90_REAL(KIND(prec), MPI_UNDEFINED, ⤦

Ç prec_mpi,ierror)
13 CALL MPI_TYPE_SIZE(prec_mpi, sizeOfprec_mpi,ierror)
14
15 IF(myRank .EQ. masterProc) THEN
16 sizeOfSchritt3D3 = sizeOfprec_mpi*(container%nxyz*2+1)**3
17 ELSE
18 sizeOfSchritt3D3 = 0_MPI_ADDRESS_KIND
19 END IF
20
21 !create shared RMA window
22 CALL MPI_WIN_ALLOCATE_SHARED(sizeOfSchritt3D3,sizeOfprec_mpi, ⤦

Ç MPI_INFO_NULL, MPI_COM_WORLD, s3D3Ptr,s3Win3D, ierror)
23 IF(myRank .NE. masterProc) CALL MPI_WIN_SHARED_QUERY(s3Win3D, ⤦

Ç masterProc, sizeOfSchritt3D3, sizeOfprec_mpi, ⤦
Ç s3D3Ptr, ierror)

24 CALL C_F_POINTER(s3D3Ptr, speicher3DPtr, (/2*nx+1,2*ny+1,2*nz+1/))

Listing 5.10: Example of the creation of a shared window in TrackerSim

In this variation RMA communication operations are still used, even though they are
not necessary anymore. Nevertheless they still are atomic operations, so lock_type =
MPI_LOCK_SHARED is sufficient again.

Step 1/2: Because only the underlaying window type has changed but RMA communications
operations are still used in combination with a RMA passive lock, step 1 and step
2 look exactly like step 1 and step 2 in the prior section Variation 2: passive
synchronisation (p.67).

1It is not necessary to create a new datatype; this was only done to conform with the definition of
prec in PHOENIX
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Step 3: Like in both previous steps this step uses the same RMA communication operations
like step 3 in the prior section Variation 2: passive synchronisation (p.67).
The only difference between both variations is that because of using a shared
memory the flush-operations may be omitted.

5.1.5 Variation 4: shared memory with local communication
Again a shared window is used but this time instead of RMA communication operations
local load and store operations are utilised. To make local operations safe, which are
executed concurrently to a store operations, lock_type = MPI_LOCK_EXCLUSIVE
must be used this time. In this case it should be advantageous to pull the locks inside
the loops. Even though this entails additional overhead because the locks are more
frequently invoked, otherwise no concurrent execution of the step would be possible -
the loops are executed sequentially. Since the inner loop offers only little opportunity for
concurrent executions (too many atomic or critical sections) anyway, this variation
of TrackerSim still performed better than TrackerSimSMP without any additional
load and outer locks(cf. section Concluding discussion (p.73)).

Step 1: Every variable, that is associated with a window (here: schritt1Array) may
be accessed and updated with local load and store operations. Other than the
local operations in step 1 of Variation 1: fence-synchronisation (p.65) this
time these operations affect the window and are therefore visible for every process,
which has this window object. It is not necessary to use a temporary variable
reductionTmp to perform the reduction locally at first, because the exclusive
locks are outside. By the time the locks are put inside the nested loops using a
local variable before the actual “reduction” in line 12 would make a difference
again.� �

1 CALL MPI_WIN_LOCK(MPI_LOCK_EXCLUSIVE, masterProc, 0, s1Win, ⤦
Ç ierror)

2 DO iz=startIndex,endIndex
3 DO iy=-ny,ny
4 DO ix=-nx,nx
5 CALL compLast(lasteinstellung(1))
6 schritt1Array(1) = schritt1Array(1) + 1
7 idx = schritt1Array(1)
8 reductionTmp = reductionTmp + 1
9 END DO

10 END DO
11 END DO
12 schritt1Array(2) = schritt1Array(2) + reductionTmp
13 CALL MPI_WIN_UNLOCK(masterProc, s1Win, ierror)

Listing 5.11: TrackerSim with passive synchronisation on shared Memory with
local load/store (Step 1)
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Step 2: Like mentioned before the window’s memory (zaehlerPtr) may now be updated
with a local assignment.� �

1 CALL MPI_WIN_LOCK(MPI_LOCK_EXCLUSIVE, masterProc,0, s2Win, ⤦
Ç ierror)

2 DO i=startIndex,endIndex
3 CALL compLast(lasteinstellung(2))
4 zaehlerPtr = zaehlerPtr + 1
5 END DO
6 CALL MPI_WIN_UNLOCK(masterProc, s2Win, ierror)

Listing 5.12: TrackerSim with passive synchronisation on shared Memory with
local load/store (Step 2)

Step 3: The window arrays may accessed and updated locally, too. The fact that the array
indices of speicher3DPtr look somehow strange in this listing is based on the
fact that the corresponding array in PHOENIX is allocated with a partial negative
range, which could not be reproduced truly to original with MPI RMA otherwise.� �

1 CALL MPI_WIN_LOCK(MPI_LOCK_EXCLUSIVE,masterProc,0, s3Win1D, ⤦
Ç ierror)

2 CALL MPI_WIN_LOCK(MPI_LOCK_EXCLUSIVE,masterProc,0, s3Win3D, ⤦
Ç ierror)

3 CALL MPI_WIN_LOCK(MPI_LOCK_EXCLUSIVE,masterProc,0, s3WinMax, ⤦
Ç ierror)

4 DO iz=startIndex, endIndex
5 DO iy=-ny,ny
6 DO ix=-nx,nx
7 stelle = 1 + (iz+nz)*(2*nz+1)**2 + (iy+ny)*(2*ny+1) + ⤦

Ç (ix+nx)
8 CALL compLast(lasteinstellung(3))
9 s3targetDisp = stelle-1

10 !1D
11 speicher1DPtr(stelle) = speicher1DPtr(stelle) + ⤦

Ç REAL(stelle,kind(prec))
12 !3D
13 speicher3DPtr(ix+nx+1,iy+ny+1,iz+nz+1) = ⤦

Ç speicher3DPtr(ix+nx+1,iy+ny+1,iz+nz+1) + ⤦
Ç REAL(stelle,kind(prec))

14 !Maximum
15 stelle_maxPtr = max(stelle_maxPtr, ⤦

Ç REAL(stelle,kind(prec)))
16 END DO
17 END DO
18 END DO !omp
19 CALL MPI_WIN_UNLOCK(masterProc, s3Win1D, ierror)
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20 CALL MPI_WIN_UNLOCK(masterProc, s3Win3D, ierror)
21 CALL MPI_WIN_UNLOCK(masterProc, s3WinMax, ierror)

Listing 5.13: TrackerSim with passive synchronisation on shared Memory with
local load/store (Step 3)

5.1.6 Concluding discussion
A detailed analysis of every variation of TrackerSim is made in section TrackerSim
(p.80). It is necessary to anticipate this section in its results since the following sections
Design approach (p.74) and Substitution of OpenMP (p.77) already discuss a
concrete approach to apply MPI RMA to PHOENIX.
The results hypothesise that an approach with passive target communication might

provide good performance. Another aspect which encourages passive target communica-
tion is the fact that TrackerSim displayed the single steps in a worst case scenario:
Not every operation which is protected through a special OpenMP directive is invoked in
every iteration of the LC-tracker. The decision, if it is invoked, is made during runtime
which is why fence synchronisation affects performance adversely as it requires

a) making additional arrangements between parent and child processes to avoid
unnecessary collective RMA synchronisation or

b) follow a worst case pattern and perform the collective RMA synchronisation
(needlessly) during every iteration

if the invocation pattern is irregular. The same applies to GATS synchronisation, because
these operations require concerted actions, too. Passive target communication allows to
react reasonably to the actual need during runtime.

Since MPI RMA shall be used to replace OpenMP it is certain that shared memory for
shared windows is available, too. Section TrackerSim (p.80) exposed the advantage of a
shared window over a normal window, therefore a combination of passive synchronisation
and shared windows will be applied to PHOENIX.

In a final step one must decide between using RMA communication or local operations.
The analysis of TrackerSim hypothesises that a combination of a shared memory
with outer passive locks and lock_type == MPI_LOCK_SHARED and atomic RMA
communication operations could provide the best performance for PHOENIX. Nevertheless
local operations were used for PHOENIX instead of RMA communication operations.
On the one hand in each loop iteration of TrackerSim very few operations are

executed which generates much overhead and less overlapping sections. PHOENIX in
return has a much bigger amount of additional operations that are not part of critical or
atomic sections and may be therefore executed concurrently - local operations encased
by passive locks inside the loops profit by this.
On the other hand using RMA communication operations results in additional work

to substitute every operation in a step, that accesses shared variables. Using local
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operations instead of RMA communication operations allows to reuse more existing code,
if the affected variables are substituted by RMA memory beforehand.

If the locks should be placed inside or outside the loops depends on the fact if update
operations are used, which must be protected with an exclusive lock. If no exclusive lock
is necessary the performance should benefit from locks, which are placed around the loop
and have lock_type == MPI_LOCK_SHARED: the access epoch is initialised but the
loop content may still be executed concurrently. The passive locks should be placed inside
the loop as soon as the outer lock must use lock_type == MPI_LOCK_EXCLUSIVE,
otherwise no parallelism is available. Depending on the actual code some of the inner
locks might still be executed with lock_type == MPI_LOCK_SHARED.

5.2 Design approach
Since the substitution of the OpenMP section entails more additional work than apparent
at first sight, this section describes necessary adaptions which do not deal with OpenMP
for the most part. Still these adaptions are essential if RMA shall replace OpenMP in
an optimal way - neglecting them would impair the performance most likely.

mpirun -np N ./main

. . . . . . . .Process 1 Process N

Thread 1 ... Thread M Thread 1 ... Thread M

. . . . . . . .

Figure 5.4: Current load distribution in PHOENIX with OpenMP

As seen in figure 3.4 PHOENIX subdivides the solid angles and assigns each part to
the processes of a wavelength cluster. Each process then spawns up to M threads, which
use one part of the grid respectively of the characteristics for their calculations. Figure
5.4 illustrates this situation in general. One problem, which arises from this situation, is
that TrackerSim is executed with N processes concurrently through invoking mpirun
-np N. But this procedure cannot be performed for PHOENIX, as it spawns already N
processes for the wavelength clusters - every worker process must then be provided with
M new tracker-processes (cf. Applying MPI (p.52)). This situation is displayed in
figure 5.5.

A total of (N ⋅M)+N processes are needed for executing PHOENIX with MPI-3 RMA
operations. There are two different possible solutions for this problem:

• The additional processes could be spawned by invoking PHOENIX with mpirun
-np N + (N ⋅M) ./main, but then adjustments must be performed on many
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mpirun -np N SHAREDPROCS=M ./main
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Figure 5.5: Adapted load distribution in PHOENIX without OpenMP

code sections which might spread all over PHOENIX. This is due to the fact,
that without adjustments the additional processes would also be distributed to
wavelength clusters, by what they would not be available as tracker-processes
anymore. To solve this problem one could change the distribution section to
exclude N ⋅M processes. But because this is not the only situation where the
processes are used explicitly in PHOENIX, so this approach entails a huge amount
of necessary work, which has little to do with the real task.

• As showcased in MPI-2.0 (p.23) processes can be spawned dynamically during
runtime. Because these dynamically spawned processes can not be deployed in the
application directly, everything, that shall be calculated with the new processes,
needs to be outsourced into a new application, i.e. the new application mimics with
MPI-3 RMA operations the OpenMP sections. Every primary process (hereafter:
parent process) spawns new processes (hereafter: child processes) on its own by using
MPI_COMM_SELF as communicator. Otherwise the new spawned child processes
could interact with other parent processes. As the OpenMP threads are assigned
to one specific process, this behaviour should imitated by the child processes, too.

Because the first solution makes major adjustments of PHOENIX code necessary1, the
second approach was chosen for implementation. The following steps show the sequence
of actions in general, that are necessary to use RMA processes instead of OpenMP
threads. The parent process undertakes the task of administrating the child processes,
it does not participate in calculations, which were part of any of the three OpenMP
sections (hereafter: Step 1, step 2 and step 3).

1. Spawn child processes:
Each worker process spawns as many child processes for itself, as it would have
made use of OpenMP threads. The child processes execute an application, which

1Actually necessary adaptions in the 3DRT test application could be kept within a limit. Since
replacing OpenMP with RMA in an already existing (and possibly extensive) application could be a
common use case, the second approach was still chosen.
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contains everything that is needed to mimic every step with MPI-3 RMA. After
spawning the child processes they form a group of their own without their parent
process, the parent is connected with the child group through an intercommunicator
only (cf. figure 2.9). To enable RMA usage between the parent and child processes
they must build a mutual intracommunicator first (cf. MPI-2.0 (p.23)). To avoid
unnecessary overhead spawning and initialisation must not be done during the
execution of the tracker, because the tracker is executed for all solid angles on every
wavelength. Instead of that, the child-processes should be spawned before the first
execution of the LC-tracker and killed after the last execution of the LC-tracker.

2. Window creation:
After being spawned the child processes need at first to determine their parent
process via MPI_COMM_GET_PARENT. The child processes share the same memory
with their parent process, therefore they can create windows with shared memory.
Like before this should be performed before the first invocation of the LC-tracker.

3. Data transfer:
The extent of this step depends on the chosen window-strategy (cf. Substitution
of OpenMP (p.77)). Generally speaking the parent process provides data through
the window, which the child processes require for their calculations in step 1, 2 or
3 and collect the data from the window again, after the child processes finished the
calculations for one specific spatial direction.

4. Control the child processes’ progress:
The child processes mainly shall perform, when the OpenMP sections in the LC-
tracker would have been executed. To prevent that the child processes already
compute the next step before the parent process finished its post-processing, the
single steps on each solid angle need to be synchronised. To guarantee a correct
sequence of interactions between the parent process and its child processes, MPI
barriers are used at crucial checkpoints: Listing 5.14 displays the changes that are
necessary in general for the 3DRT main file. The actual required synchronisation
pattern is shown in listing 5.15 for the execution of the LC-tracker by the parent
and in listing 5.16 for execution of every tracker step by the child processes.
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�
1 Parent - main
2
3 Spawn processes
4 Create RMA windows
5 Reset pve_grid pointer
6 [ ... ]
7 Loop over solid angles
8 [ ... ]
9 Invoke LC-tracker

10 [ ... ]
11
12
13
14
15
16
17
18
19
20
21
22
23
24 [ ... ]

Listing 5.14: main

Parent - LC-tracker
[ ... ]
MPI_BARRIER

MPI_BARRIER
Use step 1 results
MPI_BARRIER

MPI_BARRIER
Use step 2 results
MPI_BARRIER

MPI_BARRIER
Use step 3 results
[ ... ]

Listing 5.15: LC-tracker

�
1
2
3Child
4Create RMA windows
5While(not condition)
6
7
8
9
10
11MPI_BARRIER
12Compute step 1
13MPI_BARRIER
14
15MPI_BARRIER
16Compute step 2
17MPI_BARRIER
18
19MPI_BARRIER
20Compute step 3
21MPI_BARRIER
22update condition
23
24

Listing 5.16: Child

5.3 Substitution of OpenMP
Section Initialisation (p.29) presented four different possibilities to create a window
so that every process could fetch required data from a central memory location. As
discussed in section Concluding discussion (p.73) passive target communication shall
be used in combination with shared RMA windows.
Because the necessary code adjustments are numerous it is refrained from printing

the new code in this section. Generally speaking the adjustments in TrackerSim
were applied to the LC-tracker and other involved program files of PHOENIX: After
every worker process has spawned its child respectively tracker processes the overall
communication pattern is built through MPI_BARRIERs. The major task is to create
every shared window that is needed to replace memory, which is used in a shared manner
during an OpenMP section. PHOENIX uses amongst others one large derived datatype
pve_data to gather every variable, which is somehow associated with the LC-tracker.
Most entries of a variable of type pve_data (hereafter: pve_grid) are pointers. This
makes it impossible to create a single shared window, which represents pve_grid,
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because this would require one contiguous memory stack. Through the use of pointers,
the memory, which belongs to pve_grid, is distributed over the local memory. Creating
a shared window for pve_grid only makes the pointer addresses available to every
associated process - since the memory, to which the pointers refer to, is not part of a
shared memory it is not accessible via RMA.

To solve this problem, every variable’s content, which is on the one hand part of pve_-
grid or is referred to by a pointer of pve_grid and on the other hand is necessary
for the LC-tracker, needs to be copied to a shared window. After every tracker process
fetched a pointer to these windows through MPI_WIN_SHARED_QUERY these variable
may then be accessed and updated through RMA. If every child process creates a pve_-
grid for its own (additional memory requirements are insignificant, because pve_data
mainly consists of pointers) and redirects the pointers of their pve_grid to the newly
fetched pointers (referring to the RMA windows), no further adjustments to the original
code of every step are necessary.
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Figure 5.6: Example for a very low error
deviation

To guarantee the correct functionality
of the LC-tracker, 3DRT compares the re-
sults for one specific voxel and its 26 neigh-
bouring voxels with the correct result. As
long as the absolute error deviation under-
matches the critical value of 1 ⋅ 10−10 the
calculations are considered correct. Figure
5.6 shows an example of the execution of
3DRT with LC_Lstar_tracker_PBC_-
zmap on Linux-PC with four processes and
four threads each on a (32 × 32 × 128) grid
with (16 × 16) solid angles. Because the
error deviation is this case is very small it
is barely visible in the figure.
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6 Evaluation
This sections provides benchmarks for TrackerSim and PHOENIX. Based on the results
of benchmarking TrackerSim the most promising approach was chosen to implement
the necessary adjustments in PHOENIX to substitute OpenMP for MPI RMA. The
following hardware systems were used to perform these benchmarks and are accordingly
marked in the plots’ description. The cross compiling for Knights Corner is performed
on Linux-PC.
Linux-PC :

• Intel Xeon CPU E5-1620 v2 @ 3.70GHz (4 cores, hyperthreading)
• 64 GB RAM
• SUSE Linux Enterprise Server 11.2
• Intel® Parallel Studio XE 2017

Knights Corner :
• Intel Xeon Phi Coprocessor 3120A @ 1.1GHz (57 cores)
• 6GB RAM
• MPSS 3.4.2

Knights Landing :
• Intel Xeon Phi Processor 7210 @ 1.3GHz (64 cores)
• 80GB RAM + 16GB MCDRAM (cache+quadrant)
• CentOS Linux release 7.2.1511
• Intel® Parallel Studio XE 2017

6.1 Tools
During the development and benchmarking of TrackerSim and PHOENIX some tools
were used to support the whole process and are therefore introduced briefly:

• GNU gprof1:
This tool can be used to create call graphs and was mainly used in the beginning
to receive a first impression of the workflow of PHOENIX.

• Intel VTune Amplifier2:
1https://sourceware.org/binutils/docs/gprof/
2https://software.intel.com/en-us/intel-vtune-amplifier-xe
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A tool for application performance analysis, which offers a large variety of features
(e.g. hotspot detection, concurrency analysis, memory access, etc.). A GUI for a
visualisation of the results is available, too.

• Vampir1:
Tool to visualise collected applications’ traces. Because VampirTrace does ap-
parently not support MPI-3 operations, the traces were created with SCORE-P2

instead.

• micsmc: A simple tool, which allows an overview of the capacity utilisation of the
Intel Xeon Phi, figure 6.1 shows an example.

Figure 6.1: Average core utilisation displayed by micsmc, process initialisation through
TrackerSim becomes apparent

6.2 TrackerSim
In the prior chapter Using MPI-3 RMA (p.60) four different variations for Track-
erSim have been presented. To choose an approach, which shall be used to replace
PHOENIX’s OpenMP with MPI RMA, each variation has been benchmarked. The results
are discussed in the following sections. Step 1 contains three nested loops, which are
collapsed in case of OpenMP; in case of MPI RMA the range of indices of the outermost
loop are distributed evenly amongst the available processes. If the range of indices can
not be distributed evenly, the process with highest rank takes them over. No additional
actions for load distribution were taken.
The content of each (nested) loop is executed 32 ⋅ 32 ⋅ 32 = 32768 times, which meets

a typical grid size of PHOENIX. Up to six different versions of TrackerSim are used
for the following benchmarks (see section TrackerSim (p.61) for a describtion of each
version in detail):

SMP: Variation 0, which makes use of OpenMP, the processing elements (PE) for this
version are therefore threads. For every other version a processing element describes
a MPI process.

Fence: TrackerSim-variation 1, hereafter called TrackerSim-Fence
1https://www.vampir.eu/
2http://www.vi-hps.org/projects/score-p/
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Lock: TrackerSim-variation 2, hereafter called TrackerSim-Lock

Shared: TrackerSim-variation 3, hereafter called TrackerSim-Shared

SharedNoRMA-A: This version accords to the variation 4, which has been presented in
Variation 4: shared memory with local communication (p.71); the locks are
placed outside the loops, hereafter called TrackerSim-SharedNoRMAOuterLocks.

SharedNoRMA-B: To examine the effect of passive locks, which are executed more
frequently, they were placed inside the nested loops - hereafter called TrackerSim-
SharedNoRMAInnerLocks.

6.2.1 Comparison of OpenMP and MPI-3 RMA
For the first benchmark the parallelisation of loops with OpenMP was compared to the
parallelisation with MPI-3 RMA. To reduce side effects this comparison is executed with
no additional load. The results on the Linux-PC are displayed in figure 6.2. Attention
should be paid, that the visualisation of step 3 uses a logarithmic scale because the
difference between OpenMP and MPI RMA is very extensive.
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Figure 6.2: Benchmarks of every variation of TrackerSim with no load and four
processing elements on Linux-PC

In every step the version with active target communication is outperformed by OpenMP:
Every process needs to participate in performing fence synchronisation (active, collective
operation) which induces too much overhead. The same goes for the variation with
shared memory and inner passive locks (TrackerSim-SharedNoRMAInnerLocks): The
locks are set and withdrawn in every loop iteration, the amount of lock management
dominates.
Step 1 and step 2 reveal a similar picture: MPI RMA with a normal window

(TrackerSim-Fence and TrackerSim-Lock) are not able to compete against OpenMP.
The direct comparison between TrackerSim-Lock and TrackerSim-Shared, which
only differ regarding the RMA window type, shows a supposable reason: the benefit of
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using shared memory. TrackerSim-Shared performs in step 1 even better than Track-
erSimSMP. Using a shared memory to replace OpenMP in PHOENIX has therefore a lot
to commend it.

Figure 6.3 and figure 6.4 show the results of the same run on both generations of Intel
Xeon Phi. As expected the runtime on the Knights Landing is faster than on Knights
Corner, most variations gain a speedup of about factor 3, which correlates with about the
proportion of the FLOPS values of KNC and KNL. However some single measurements
deviate slightly from this value, it is for example very noticeable that TrackerSim-Lock
sticks out from TrackerSim-Fence in step 1 on KNL. Because only four processing
units were used on the Xeon Phis they could not deliver their maximum performance
and the Linux-PC, which has the highest clock rate per core, outperforms them.
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Figure 6.3: Benchmarks of every variation of TrackerSim with no load and four
processing elements on Knights Corner
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Figure 6.4: Benchmarks of every variation of TrackerSim with no load and four
processing elements on Knights Landing

The question remains if a substitution of OpenMP should still make use of RMA
communication operations even though using a shared memory allows local load and store
operations. Comparing TrackerSim-SharedNoRMAOuterLocks with TrackerSim-
Shared, which uses RMA communication operations, shows clearly in every step, that local
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operations on a shared memory are executed much faster than the RMA communication
operations. If it is in addition necessary to guarantee the reusability of a buffer, which is
not part of a window, the negative impact of RMA communication on the performance
emerges from step 3: Every RMA operation, which is executed in step 1 to 3 is atomic
and therefore safe regarding concurrently updates and accesses, but every variation
with RMA communication operations needs to call additional RMA synchronisation
operations because of a used buffer, before the next iteration can be performed (cf. an
example with explanation in section Variation 1: fence-synchronisation (p.65)). If
only local operations on a shared memory are used (like in TrackerSim-SharedNoRMA)
this additional synchronisation calls are unnecessary. Of course this advantage is of
no relevance if the locks are placed inside the nested loops: the performance results of
TrackerSim-SharedNoRMAInnerLocks show, that in this case local operations lose
their advantage over RMA communication operations
These findings lead to the decision that, as long as no internode communication

is needed, which would render RMA communication operations essential, the most
promising approach to substitute OpenMP is a combination of shared windows with
local operations.

6.2.2 Scaling
After the direct comparison of every variation without additional load, another interesting
point is, how well which variation scales with an increase in the number of processing
elements and loop size. For weak scaling the initial load is set to 50 on the Linux-PC and
to 100 on a Xeon Phi for each step, which increases the total runtime of step 1 by about
two up to eight times - the actual factor depends on the chosen variation and arguments.
Without the initial load nearly no parallelism would be available which would not mimic
PHOENIX in a realistic way. The number of processing elements and the (outer) loop
size is then increased proportionally to examine the weak scaling. In the best case the
runtime remains constant.

For an improved differentiation a logarithmic scale is used in figure 6.5, which illustrates
various aspects:

1. The Linux-PC has four cores with hyper-threading enabled. As soon as the amount
of threads rises above the amount of physical cores, the standard deviation of
TrackerSimSMP increases significantly1 and makes it very difficult to make a
binding statement. At least for a thread count lower or equal four it still has a
good and stable performance.

2. TrackerSim-Fence and TrackerSim-Lock scale very similar. TrackerSim-
Lock cannot benefit from its passive locking against the collective, active fence
synchronisation, because TrackerSim does not provide an opportunity and
invokes both synchronisation operations exactly once per iteration.

1Because of the logarithmic scale one could by mistake underrate the error deviation

83



1 2 3 4 5 6 7 8
101

102

103

104

105

106

Number of processing elements

R
u
n
ti
m
e
[m

s]

Weak scaling (TrackerSim step 1, Linux-PC)

SMP
Fence
Lock
Shared

SharedNoRMA-A
SharedNoRMA-B

Figure 6.5: Weak scaling of TrackerSim on Linux-PC

3. TrackerSim-Shared uses the same RMA communication operations like TrackerSim-
Lock but still shows a significant better scaling. It is definitely worth it to use shared
memory if it is available. Both variations have an extraordinarily increased runtime
during the transition of one process to two processes because like mentioned in
Variation 2: passive synchronisation (p.67) and shown in figure 5.3 a shared
lock executed by a process on its own local window becomes an exclusive lock.
Therefore the process with rank 0 cannot be executed concurrently to the other
processes.

4. TrackerSim-SharedNoRMA with outer locks has the best scaling behaviour
and is only for eight processes marginally outperformed by TrackerSim-Shared.
Since MPI communication should entail more overhead than local operations this
indicates that the used MPI implementation Intel MPI uses optimisations in the
background if RMA operations are used for intranode communication.

5. Even though the additional load should privilege TrackerSim-SharedNoRMA
with inner locks against the variation with outer locks quite the contrary happens.
The outer locks with lock_type == MPI_LOCK_EXCLUSIVE allow only a se-
quential execution of the processes whereas the variation with inner locks affords
an opportunity to execute the processes concurrently. Apparently the overhead of
the many called inner locks makes it impossible to use this advantage.

For comparison figure 6.6 shows the results of the same run executed on each Xeon
Phi. In contrast to the benchmark on the Linuc-PC the run of TrackerSimSMP is
more stable and keeps as far as 4 threads the optimal performance. The reason for this
might be that the threads are distributed on the same tile: Each core can in a best-case
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Figure 6.6: Weak sclaing of TrackerSim on Intel Xeon Phi

scenario execute up to four threads without loss in performance but only four vector
processing units are available. More threads are then distributed among more tiles to
guarantee that each process has access to its own VPU. But again the trend of each
variation’s performance is quite similar to the run on the Linux-PC.

In figure 6.6b the time for TrackerSim-Lock, TrackerSim-Shared and TrackerSim-
SharedNoRMA is only measured for executions up to 14 processes. Any execution of
these variations with more than 15 processes freezes, therefore no runtime values are
available. Since TrackerSim-Fence is unimpaired by this phenomenon its origin is not
MPI-3 RMA in general. In fact only variations are affected, which make use of passive
target communication. One possible explanation for this problem might be, that the
KNL is used in quadrant mode, which logically divides the cores into quarters. Invoking
passive locks on a process, which is not executed on a tile in the same quarter, seems to
cause this problem. Further investigations would be required to determine the definite
cause and a possible solution.
After having a look on weak scaling the performance of each variation is displayed

in figure 6.7 with regard to strong scaling: The load is set to 50 for the execution on
Linux-PC and to 100 on Intel Xeon Phi, the outer loop is on both platforms set to 801

while the amount of executing units is increasing. In the best case the runtime decreases
proportional with the increase of processing elements. For a more clear elaboration of
the differences again a logarithmic scale is used.

Again TrackerSimSMP has a high standard deviation for a thread count above four
and scales pretty bad. The combination of hyperthreading and thread organisation
seems to have a fatal effect on the runtime. TrackerSim-Fence, TrackerSim-Lock
and TrackerSim-SharedNoRMA with inner locks scale like before: The amount of
overlapping computation phases is not big enough to compensate the sequentially executed
code sections, the runtime increases proportionally to the number of processing elements.
TrackerSim-Shared performs better than the other variations again: the actual

runtime gains a speedup of about 1,5. Still this is far below the possible maximum

1For comparison: The number of iterations of both inner loops are set to 32
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Figure 6.7: Strong scaling of TrackerSim on Linux-PC

speedup of 8. Obviously the MPI implementation can optimise the synchronisation of
atomic RMA communication operations by what TrackerSim-Shared outperforms the
variations with local operations and explicit synchronisation.

(a) VTune: outer locks, five iterations

(b) Vampir: outer locks, one iteration

Figure 6.8: TrackerSim-SharedNoRMA (Step 1) with additional load

The runtime of TrackerSim-SharedNoRMA with outer locks remains relative stable
even though the processes can execute the loops only sequentially, which is evident in the
output of VTune1 in figure 6.8a: the yellow sections, which stand for MPI communication,
predominate brown computation phases, which do not appear concurrently. This is the
reason that the overall CPU time consists mainly of MPI communication. An analysis
with Vampir2 of one iteration (cf. figure 6.8b) reveals that the MPI communication

1Result of mpirun -np 4 mainSharedNoRMAInnerLocks -s1 -l1 1000 with five itera-
tions

2Result of mpirun -np 4 mainSharedNoRMAInnerLocks -s1 -l1 1000 with one iteration
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consists mainly of the exclusive outer locks, which prevent a concurrent execution of the
loop, and barriers to guarantee that the processes finish simultaneously and the time
measurement is performed right.

(a) VTune: inner locks, five iterations

(b) Vampir: inner locks, one iteration

Figure 6.9: TrackerSim-SharedNoRMA (Step 1) with additional load

Setting the exclusive locks inside the loop enables a concurrent execution again, figure
6.9 shows the the same run like before but now with inner locks. To perform better than
the variation with outer locks the additional overhead needs to be compensated; therefore
the application must offer overlapping computation sections during one iteration, which
are big enough to make this variation cost-efficient.

Despite this disadvantage the variation TrackerSim-SharedNoRMA with outer locks
only has very few additional overhead in comparison to the other variations, because
it uses a shared memory, places the locks outside of the loops and makes use of local
operations. Therefore the runtime of each process regarding the loops is reduced to the
same degree as more processes are used. The processes are indeed executed sequentially
but need less time to execute their portion of the loop in return, so the bottom line is
that the total runtime of step 1 is roughly constant. With this approach no application
can benefit of additional processes and is therefore no wise alternative to TrackerSim-
Shared, even though the runtime looks promising.

Again for comparison figure 6.10 shows the results of the strong scaling benchmark
executed on both Xeon Phis. To compensate the fact, that the execution on the Xeon
Phi is run with more processing elements in total but the same outer loop size, the
amount of additional load was increased to 100. Figure 6.10b displays only results up to
14 processing elements for the same reason like before: executions with passive target
communication did not finish with more than 15 processes.

Since OpenMP is not impaired through hyper-threading anymore it outperforms most
of the time every MPI-3 RMA alternative. Every alternative begins to lose performance
beginning with a number of processing elements between 14 and 28, there might be a
sweet spot where the workload per process becomes too little and by what the overhead
becomes too important. Apart from that every variation performs in the same way on
the Xeon Phi like on the Linux-PC.
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Figure 6.10: Strong scaling of TrackerSim on Intel Xeon Phi

6.3 Phoenix
Following the results from the prior section a combination of a shared window with local
operations and passive locks is used to replace OpenMP in PHOENIX. As discussed in
section Substitution of OpenMP (p.77) PHOENIX has one major derived datatype,
which holds many pointers. For each pointer a new window must be created so that the
data can be accessed and updated remotely. Therefore, only step 1 of the LC-tracker
has been converted into a MPI-only version.

6.3.1 Comparison of OpenMP and MPI-3 RMA
The converted version of the LC-tracker, where the first OpenMP section has been
replaced with MPI-3 RMA operations, still has at this particular time some bugs.
Depending on the number of worker processes, tracker processes and grid size the
application halts with a segmentation fault. A comparison between the results of both
versions of step 1 (MPI-3 RMA and OpenMP) shows that the RMA version does not
compute correct results, so additional work is needed to rectify the RMA version. But
for the most part every operation is already used, which is theoretically needed to replace
the OpenMP section. In case that the error does not have a major effect on the runtime
(if for example only a pointer is wrongly used instead of a missing lock), this allows a
wary estimation of the suitability of MPI-3 RMA for the LC-tracker.

The benchmark has only be performed for the first solid angle because the erroneous
RMA version creates some zero results, from which the subsequent steps would use the
reciprocal values. Since it was difficult to determine an executable combination of worker
and tracker processes and grid size, the benchmark begins already with four tracker
processes. Figure 6.11 displays the results for the runtime of both LC-tracker versions1.
Because of present errors the expressiveness of this benchmark must be handled with
care. Both versions seem to have a problem with six processing elements, which can

1This time without calculating the mean value and standard deviation, since this benchmark only
provides a first impression.
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Figure 6.11: Benchmark of PHOENIX on Linux-PC: small grid (8 × 8 × 8) and few solid
angles (2 × 2)

probably traced back to how the process affinity distributes the processing elements
among the four cores. Apart from that one may suppose that MPI-3 RMA outperforms
OpenMP in step 1.
One possible reason might be the fact, that after the critical OpenMP section (cf.

listing 5.1) an array is written at position idx. Since idx is increased every time
the critical section is executed, each processing element has a unique value for idx.
Therefore every array element is written by at most one processing element. Possibly
this is knowledge, which only the user but not OpenMP can make use of. Because no
element of the array needs to be protected against concurrent accesses, a shared lock,
which does not prevent concurrent accesses on the same window, is sufficient.

6.4 Evaluation
TrackerSim is a very artificial application, which gives a first impression about how
well various combinations of RMA initialisation, communication and synchronisation
operations perform. Which combination should be implemented for a concrete application
depends mainly on the application itself, section Concluding discussion (p.73) gives
an example of such a consideration.
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6.4.1 Runtime
In direct comparison OpenMP seemed to perform much better than most of the other
MPI RMA variations, which have been presented in this thesis. But as soon as the
comparison is repeated in a more realistic environment with additional load, which
enlarges the amount of possibly overlapping computations, this impression changes and
in many cases now MPI-3 RMA performed much better than its OpenMP counterpart
even though there is still additional potential for optimisations: A MPI implementation
might speed RMA even more up if hint or assert is used for RMA window creation
or RMA synchronisation operations. [GT07] showed the possible impact of the assert-
parameter on different architectures: In some cases no difference was measurable but in
other cases it was noticeable.
In case of too much overhead OpenMP seems to perform better than MPI RMA, if

OpenMP is not impaired by the hardware through hyper-threading or the like. This
became apparent through the scaling benchmarks on the Xeon Phis, however this situation
should anyway be prevented at all necessary cost because in this case the problem size is
not suitable for the amount of cores.

[BSCL14] examined the effect of the message size on the performance of MPI-3 RMA
and found out that MPI RMA performs better with a bigger message size. Since
variable message sizes are not implemented in TrackerSim, which only accesses and
updates single data with only a few operations per iteration, the potential of MPI-3
RMA regarding a real application is underestimated by trend in this chapter. Probably
TrackerSim-Shared performed fairly well because every RMA communication operation
was invoked during the same epoch and decreased therefore the percentage of RMA
synchronisation.
Even though shared memory with local operations showed a great performance this

result should be handled with care as placing exclusive locks too generously results in
an impaired parallelism. However as soon as shared memory is available one should
definitely make use of it. Which type of communication and synchronisation is then used,
depends on the application: Using atomic RMA communication operations results in less
explicit synchronisation calls by the user, using more explicit synchronisation then again
allows to omit unnecessary synchronisation, which would be automatically invoked by
the system in case of doubt - to guarantee correctness an MPI implementation as well as
OpenMP need to lock conservatively even though the actual use case might allow to omit
it. The prior section Comparison of OpenMP and MPI-3 RMA (p.88) probably
(if the better performance is not due to the error) gives an example that using explicit
locks might be advantageous: Perhaps OpenMP does not recognize that every thread
only accesses unique elements and locks therefore the whole array against concurrent
access operations; in contrast using MPI-3 RMA allows to use a shared lock explicitly.

6.4.2 Memory usage
During the replacement of the OpenMP section through MPI RMA operations the
focus did not lie on saving memory. Therefore there might be still potential to optimise
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PHOENIX in this respect.
It is not possible to assign already allocated memory to a newly created shared window,

therefore the only possibility to save memory is to replace every allocation operations
through window creation operations. Otherwise one has to copy all data from allocated
memory to the windows’ memory and deallocate redundant memory afterwards. In the
worst case the memory demand increases by the size of the replaced variables between
the window creation and the memory deallocation. Even though this is is only a peak,
the capacity needs to be available. The same goes for static variables, which shall be
shared through a shared window.
As discussed in section Substitution of OpenMP (p.77) derived datatypes with

pointers makes additional effort necessary as for every memory, which is referenced by
a pointer, a new window must be created. In return it is easier to distribute memory
segments among nodes. Without RMA each node would create a single segment as a new
independent variable, which are only implicitly connected with each other, and requires
that every node handles the logical connection itself. Using MPI RMA allows to create
one single window object to which each process contributes its memory through its local
window. This results in one single window object which covers each memory segment
explicitly. To access another segment a process only requires the rank of the segment’s
owner.
However the user needs to take care to avoid redundancy because spawning a new

process implies duplicating every variable, too, if its existence is not associated to a
specific rank.
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7 Conclusion

7.1 Discussion
In comparison with OpenMP it is more extensive to write equivalent code with MPI
RMA, because OpenMP undertakes many tasks of administering necessary steps for using
shared variables, which an user of MPI RMA must perform himself. This disadvantage
is at the same time the greatest advantage of MPI RMA: the user is for example able
to determine whether and how synchronisation is performed. This might increase the
performance if the user can utilise optimisations like leaving unnecessary synchronisations
out or collecting multiple operations in one synchronisation epoch, which are available
for the actual application and are therefore not performed by OpenMP’s conservative
practice.
The benchmarks showed that in certain circumstances MPI RMA can outperform

OpenMP but it is important to chose the right approach. Which kind of window creation
and RMA communication should be used can quite easy be determined by looking at the
code and choosing an RMA approach which mimics it: If a variable shall be shared one
uses a shared window; if memory needs to be allocated dynamically one uses a dynamic
window; if an operation should be protected against data races one uses atomic RMA
communication operations and so on.
Which RMA synchronisation operations should be used is not as easy to determine

and makes more in-depth knowledge about the application necessary. Besides trial and
error the following procedure has proven itself:

• Active target synchronisation fits best for applications which have bulk computation
and synchronisation stages and static communication patterns. GATS synchronisa-
tion has possibly less overhead than collective fence synchronisation and should
therefore be preferred, if not every process needs to participate in synchronisation
[HDT+13, 8].

• Passive target synchronisation should generally perform better than active target
synchronisation because the target is not actively involved in the synchronisation;
therefore it is most suitable for irregular communication patterns. Additional
attention must be paid to ensure that the outcome is correct.

• To minimize the amount of RMA synchronisation operations one should perform as
many RMA communication operations during the same epoch as possible without
impairing the concurrent execution [MPI12, 437].
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If possible an application should be written with MPI RMA in mind or already using
it instead of inserting it subsequently. Section Design approach (p.74) and section
Substitution of OpenMP (p.77) showed a selection of drawbacks which could have
been avoided if PHOENIX would have been built with MPI RMA in mind. One major
disadvantage of the LC-tracker of PHOENIX is the fact, that most updates on shared
variables inside the OpenMP sections are only executed on single data; [BSCL14] showed
that MPI RMA performs better with bigger message sizes.

Even though using MPI RMA entails additional effort a suitable application definitely
will benefit from it. The results from benchmarking step 1 of PHOENIX with OpenMP
respectively MPI-3 RMA operations might be erroneous but still look very promising.

7.2 Related work
[aMT06] examined the potential use of MPI-2 RMA to replace OpenMP in a simple
algorithm. The MPI-2 RMA replacement performed really bad in comparison to OpenMP
and was tedious to implement. This showed that it is possible to replace OpenMP with
MPI RMA in general but additional effort is necessary to lessen the overhead as low as
possible. However the expansion of MPI RMA with the third MPI standard provides the
user with additional approaches to fulfil the objective, which is why this thesis makes
use of MPI-3 RMA.
To determine which approach regarding the RMA synchronisation operations might

perform best, TrackerSim was built to mimic an application, where OpenMP should be
replaced with MPI-3 RMA. This explorative approach makes additional effort necessary
to build TrackerSim, which is especially adapted to PHOENIX; its results cannot just
like that be applied to any other application - a large reconstruction must be done first
to adapt TrackerSim to the new application. Another possibility is to measure the
performance of each MPI RMA operation first and then calculate which combination
of MPI RMA operations would take how much time to perform. [GBH13] developed
an abstract cost function for each MPI RMA operation, which can be determined for a
specific combination of hardware, process number, data size and number of communication
targets by simple performance tests. This allows an early estimation which approach is
most suitable for a specific situation (e.g. an concrete OpenMP section).

7.3 Future work
Obviously a possible future work is to correct the MPI-3 RMA approach for step 1 of
PHOENIX and then implement the remaining two steps also with MPI-3 RMA. But since
replacing OpenMP with MPI-3 RMA is a wide topic, there are some open issues in
addition whose considerations might lead to an improvement of performance.
In case of PHOENIX MPI-3 RMA has only been used to improve the performance

but there are more use cases, from which PHOENIX might benefit. [HB99, Ch. 3.1]
states that PHOENIX would benefit from a dynamic load balance, which distributes
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wavelength points to wavelength clusters dynamically. To avoid deadlocks additional
communication and synchronisation would be necessary, therefore it was refrained from
implementing this approach. Using MPI-3 RMA would in contrast to common two-sided
communication be able to lessen the overhead of communication and synchronisation if
passive target communication is applied. Currently a simple round robin method is used
for a static distribution which is quite adequate for a homogeneous cluster. A dynamic
method would allow to execute PHOENIX satisfactorily on a heterogeneous cluster, too.
In addition using MPI-3 RMA instead of OpenMP could enable a new approach to

distribute the memory, which belongs to a task of a worker process, among several nodes:
On the one hand this allows to decrease redundancy and increase the possible problem
size as a result; on the other hand this would make it possible to work on the task of a
worker process with not only a single process but with several processes with distributed
memory. [BL15] gives an example to enable a smooth transition of the communication
between two processes, which share the same memory or lie on different nodes.
Even though section Concluding discussion (p.73) discussed which combination

of MPI-3 RMA operations might deliver the best performance for PHOENIX, some
theoretical considerations were part of this discussion. Therefore it would not be
digressive to try out other possible combinations. Section TrackerSim (p.80) showed
that a shared window in combination with atomic MPI-3 RMA communication operations
performed several times very well, too. Since some atomic MPI-3 RMA communication
operations are optimised to be applied to a single datum, which is a common use case
in PHOENIX (e.g. counter variables), they could compete with the actual approach of
using local operations with exclusive locks.
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