
Masterarbeit

Simulation of Storage Tiering and
Data Migration

vorgelegt von

Kira Isabel Duwe

Fakultät für Mathematik, Informatik und Naturwissenschaften
Fachbereich Informatik
Arbeitsbereich Wissenschaftliches Rechnen

Studiengang: Informatik
Matrikelnummer: 6225091

Erstgutachter: Prof. Dr. Thomas Ludwig
Zweitgutachter: Dr. Michael Kuhn

Betreuer: Dr. Michael Kuhn

Hamburg, 2017-09-18

Abstract
The ever-present gap between the growth of computational power in contrast to
the capabilities of storage and network technologies makes I/O the bottleneck
of a system. This is especially true for large-scale systems found in HPC. Over
the years a number of different storage devices emerged each providing their
own advantages and disadvantages. Fast memory elements such as RAM are
very powerful but come with high acquisition costs. With limited budgets and
the requirement for long-term storage over several decades, a different approach
is needed. This led to a hierarchical structuring of different technologies atop of
one another.
While tape systems are capable of preserving large amounts of data reliably over
30 years, they are also the most affordable choice for this purpose. They form the
bottom layer of the hierarchy, whereas high-throughput and low-latency devices
like non-volatile RAM are located at the top. As the upper layers are limited in
capacity due to their price, data migration policies are essential for managing
the file movement between the different tiers in order to maximise the system’s
performance. Since data loss and downtime are a concern, these policies have
to be evaluated in advance. Simulations of such hierarchical storage systems
provide an alternative way of analysing the effects of placement strategies.
Although there is consent that a generic simulator of diverse storage systems
able to represent complex infrastructures is indispensable, the existing proposals
lack a number of features. In this thesis, an emulator for hierarchical storage
systems has been designed and implemented supporting a wide range of existing
and future hardware as well as a flexible topology model. A second library is
conceptualised on top offering a file handling interface to the application layer
as well as a set of data migration schemes. Only minor changes are required to
run an application on the emulated storage system.
The validation shows a maximum performance of both libraries in the range
of 7 to 9 GB per second when executed in RAM. Analysing the impact of the
used block size lead to the recommendation to use at least 100 kB in order to
maximise the resulting performance.

Acknowledgements
My warmest appreciation goes

to Professor Ludwig for enabling this thesis,
to Michael Kuhn for his kind supervision, helpful advice and the proofreading,

to David and Florian W. for also writing their thesis and sharing (not only) the agony,
to Jakob for his constant but helpful teasing and his encouragement,

to my parents and brother for always supporting me.
I thank my dear little sister for visiting several times a week, for providing me with

food and hugs and for being the best sister one can wish for.
I thank Florian S. for his amazing support and imperturbable belief in me.

Contents
1. Introduction 1

1.1. Motivation . 1
1.2. State of the Art . 2
1.3. Goals . 4
1.4. Thesis Outline . 5

2. Background 7
2.1. File Systems . 7

2.1.1. Essentials . 7
2.1.2. File System Types . 8

2.2. Storage Hardware . 9
2.2.1. Memory Hierarchy . 9
2.2.2. Storage and Network Technologies 13
2.2.3. Ethernet . 21
2.2.4. InfiniBand . 21

2.3. HSM and ILM . 22
2.3.1. Information Value Evaluation Modelling 23
2.3.2. Evaluation Criteria for Data Migration Policies 25

3. Related Work 29
3.1. Simulation Tools . 29
3.2. DUX . 29
3.3. OGSSim . 30
3.4. StorageSim . 32

4. Design 35
4.1. Modelling . 35
4.2. FFS - Simulation of HSM . 37
4.3. FFS - File System Functionality 40
4.4. DML - Data Migration on HSM 41

5. FFS - Simulating HSM & FS 43
5.1. Internal Design . 43

5.1.1. Directory Tree Representation 44

iii

Contents

5.1.2. HSM Simulation . 45
5.1.3. FS-Functionality . 46
5.1.4. Data Migration Support 48

5.2. Implementation . 48
5.2.1. Component Interaction 48
5.2.2. System Handler . 50
5.2.3. Configuration Handler 53
5.2.4. Device Handler . 55
5.2.5. HSM Handler . 56
5.2.6. File Handler . 59

6. Data Migration Library 63
6.1. Overview . 63
6.2. Design . 63
6.3. Implementation . 68

7. Evaluation 77
7.1. Validation of FFS . 77
7.2. Validation of DML . 81

8. Conclusion and Future Work 85

Bibliography 89

Appendices 95

A. Measurements 96

B. Library APIs 98
B.1. FFS . 98
B.2. DML . 104

Acronyms 107

List of Figures 112

List of Listings 115

List of Tables 118

iv

1. Introduction
This chapter provides an introduction in the problems faced in today’s HPC
systems. Furthermore, an overview is given about different approaches to lessen
the negative effects. Afterwards, the requirement for an appropriate simulation
of hierarchical storage systems as well as viable data migration schemes atop is
motivated. Finally, the goals of this thesis and its structure are outlined.

1.1. Motivation
Over the last few decades, societies came to rely more than ever on technological
progress. From medical care to food production, to communication systems a
variety of fields is heavily influenced by this development. Especially, in the area
of scientific research, this does enable the possibility to solve more and more
complex problems. Often, the acquired new insights are extremely relevant to
determine how to ensure even pure survival e.g. through disaster prevention. But
also long term developments such as climate change will affect not only today’s
but also prospective generations. The according scientific application require
the computational powers of supercomputers. The increasing complexity of the
processed problems as well as the growth of computation speed due to improved
hardware leads to rapidly increasing data sizes. This imposes a serious problem
as the development of the storage and network technologies is considerably
slower. The result is an increasing gap between the performance of comput-
ing and storing devices making Input and Output (I/O) operations a bottleneck.

In Figure 1.1 the exponential growth of computational speed is depicted
in comparison to the development of storage and network capabilities. This
illustrates why it is not sufficient to approach this problem by buying enough
fast memory to lessen the gap. Even if it was not an overly expensive proposal,
the computational power improves so fast that after a short period of time the
situation will be the same as before. A more feasible solution is to combine
different storage technologies in a hierarchy and use the faster devices to serve
as caches for the lower layers. This also enables the long term storage with
tape systems on the one hand, while on the other hand providing an acceptable
performance to the application layer through the use of Non Volatile Random

1

1. Introduction

1
10

100
1,000

10,000
100,000

1,000,000
10,000,000

100,000,000

 0 5 10 15 20 25 30

Pe
rf

o
rm

a
n
ce

 im
p
ro

ve
m

e
n
t

Years

Computation
Storage capacity

Storage throughput
Network throughput

Memory throughput

Figure 1.1.: Increasing gap between computational speed, storage capacity, stor-
age and network throughput and the storage speed

Taken from [Kuh17a]

Access Memory (NVRAM) and Solid State Disks (SSDs). By layering different
storage devices, the one’s advantages can be utilised to compensate for the
disadvantages of others. The high latency of a tape drive has a reduced negative
impact when combined with a fast device.

1.2. State of the Art
The origin of the I/O performance gap has been presented in the previous section.
On the left side in figure 1.2, the situation in relation to the memory hierarchy
is illustrated. Uppermost reside the fast hardware technologies like caches and
Random Access Memory (RAM) while the parallel file systems form the bottom
layer. The performance difference in between them significantly reduces the
performance of the upper layer. On the right-hand side, the modifications are
summarised to reduce the I/O bottleneck. Several layers are added improve the
performance of the lower levels.

These changes complicate the data movement between the individual layers.
A wide variety of approaches to maximise the performance have been developed
over the last decades. In the best case, they function without introducing any
complexity to the application level.
Zhang et al. proposed a scheme including an automated lookahead mechanism
for data migration in multi-tiered storage systems containing SSD tiers [ZCD+10].
The optimal window size is adaptively determined by a greedy algorithm working
on block level I/O profiles. They use this approach to analyse the impact of the
granularity to the performance of data migration.

2

1.2. State of the Art

Figure 1.2.: An example HPC storage hierarchy to fill the I/O performance gap
between main memory and disk. Shaded in grey is the problematic
area where suitable solutions are not present.

Taken from [DBW+16]

A different suggestion is the Data Elevator presented by Dong et al. which
intercepts I/O calls and moves the data to a fast tier such as a burst buffer
providing persistent storage. The migration to the final destination is handled
asynchronously later on. Their evaluation shows that the data elevator is four
times faster than writing straight to the disk-based Parallel File System (PFS).

In recent years, simulation has become a rather important part in research
making innovation without large budgets more accessible.
The behaviour of systems not affordable can be presumed and used for evaluating
new ideas. It is ideal for experimenting with new approaches without inducing
any downtime of a real system. Especially when testing system designs and file
systems, possibly lost data is a concern. Even with recovery mechanism for an
HPC storage system, it will take too long to restore deleted data due to the
scale of the systems.
Simulation also enables the possibility to aid with the acquisition of new hardware
by examining how current applications will behave on future devices. Often, the
development periods are extended by difficulties in the manufacturing process
leaving scientists waiting. In these situations, simulating those technologies
provides the opportunity to continue research. However, as such a storage
system consists of lots of different technologies a generic simulation is not trivial.
Several approaches for a more specific scenario have been proposed which are
explained in detail in chapter 3.

3

1. Introduction

1.3. Goals
The ultimate goal of this thesis is to enable evaluation of data migration
approaches on hierarchical storage systems. In HPC the ever-present gap
between the growth of computational power in contrast to the capabilities of
storage and network, technologies result in not fully utilised super computers.
For applications to run as efficient as possible and to lessen the effects of the I/O
bottleneck system specifics have to be considered. However, the developers who
are writing those applications do not necessarily have the required knowledge.
The increased performance of Central Processing Units (CPUs) allows solving
more and more complex problems. Therefore, it becomes increasingly difficult to
have detailed insights to all parts of the application. Additionally, applications
are not only written by computer scientists who specialised in HPC programming
but also by meteorologists or physicists. To handle this problem a lot of different
software layers exist encapsulating knowledge in order to simplify the program
development.
Solving more complex problems often also involves an increased amount of
computed data. This is problematic as the systems do not dispose of the ability
to store everything on fast memory with the highest bandwidth. Due to limited
budgets, only a certain amount of fast hardware is available. To minimise
waiting times of the application where data is read or written data management
is essential. Furthermore, in climate computing, most of the results must be
stored for years often even decades to later verify the used simulation models.
The emerging requirements for acquiring such a system and efficiently managing
the data on it are diverse. Therefore, several desirable tasks can be derived.

• Creating a simulation for hierarchical storage systems capable of supporting
a wide variety of scenarios and hardware devices with a focus on the
representation of:
– not only old hardware but also current and future devices as well
– homogeneous tiers consisting of different types of hardware
– flexible interconnection for complex infrastructures
– large-scale HPC systems

• Enabling an emulation of such storage systems to run application in

• Simulating the file system functionality for persistent storage and the
possibility of data migration on top

• Designing a data migration library with:

4

1.4. Thesis Outline

– An intuitive API to the application layer to provide access to the em-
ulated system with only small adjustments to the original application

– Different data replacement schemes such as Least Recently Used
(LRU), Least Frequently Used (LFU)

– Different placement strategies between and inside tiers
– Different selection strategies to load files back into the fastest tier

when accessed
– Persistent storage on underlying file system

1.4. Thesis Outline
Chapter 1 contains the motivation of the thesis as well as an overview of storage
hierarchies and the challenges induced by them. Chapter 2 introduces the
essential knowledge of file systems and hierarchical storage systems as well as
on the used hardware. In chapter 3 existing simulators for Hierarchical Storage
Management (HSM) and data migration are discussed. The overall design for
the libraries FFS and DML is detailed in chapter 4. Internal design decisions
regarding the storage emulator and its implementation are stated in chapter
5. Chapter 6 covers the design and current state of the realisation of the data
migration library. In chapter 7 the planned measurements are explained. Finally,
in chapter 8 a summary of the thesis is presented as well as an outlook on future
work.

Summary
This chapter provided an introduction to today’s HPC systems and the I/O
bottleneck which is induced by the increasing gap between computational power
and the speed of storage devices. An overview of proposed solutions is given and
later used to derive the goals of this thesis.

5

2. Background
This chapter provides the necessary background information on file systems,
storage hardware and the structuring of latter into hierarchical storage systems.
First, the concept of a file system and the architecture of parallel distributed
file systems is given. Afterwards, detailed insights into the memory hierarchy
and its components are presented. Following, hierarchical storage management,
tiering and information lifecycle management are explained enabling the analysis
of methods to evaluate the value of a file in a specific environment.

2.1. File Systems
The analysis of storage hierarchies and data movement strategies atop requires
detailed insights into several topics. Besides an understanding of the physical
hardware also knowledge about the data management is crucial. Therefore, the
following section provides an introduction into the most important features of
file systems.

2.1.1. Essentials
A File System (FS) is responsible for organising and storing data. The majority
of file systems is integrated into operating systems and also referred to as
kernel file systems. Using the File System in Userspace (FUSE) framework
implementing a file system running in the user space is possible. However, due
to the increased number of context switches and mode transitions, a noticeable
overhead is induced [RG10, Duw14].
File systems provide an interface to the underlying storage device and link an
identifier such as the file name to the corresponding physical addresses of the
storage hardware. This allows for a far more comfortable and simplified usage
of storage devices.
In order to support a variety of file systems the Virtual File System (VFS)
was introduced which is a kernel software layer offering a uniform Application
Programming Interface (API) [BC05]. The interface semantics are defined by
the Portable Operating System Interface (POSIX) standard.

7

2. Background

Therefore, applications do not need to have any special knowledge about the
internal structure of a file system. While this enables portability between
different systems it also limits the possibilities of experimenting with new
approaches.
The two basic components for structuring the file system namespace are files
and directories which can contain files and other directories.
The essential concept of the VFS is the common file model.
One popular feature is often summarised with “everything is a file” meaning
also directories are regarded as files holding a list of files and directories. They
are accessed using their name called path in this context. Opening a file returns
a file descriptor which is a unique non-negative number to identify the opened
file and handle further I/O operations. Closing a file frees the file descriptor
making it available again.
In a file system, the stored information is divided into data and meta data,
representing the actual file content and additional information like file size and
access times.

2.1.2. File System Types
Over the years, a number of different file systems have emerged. The develop-
ment of the new storage and network technology and the rapidly growing data
sizes lead to new and more and more sophisticated and specialised approaches.
Prominent examples of file systems running on one client are ext4, B-tree file
system (Btrfs) and Zettabyte File System (ZFS). Nevertheless, managing the
exploding amount of data required for solutions which provide a significantly
higher capacity and throughput. Distributing data over several storage devices
offered the possibility to use their combined capabilities.
This resulted in the class of distributed file systems. A popular example is
Nework File System (NFS). However, the highly parallel applications and
large-scale I/O in High Performance Computing (HPC) demand for an even
extended solution. Parallel distributed file systems such as General Parallel File
System (GPFS) [SH02] and Lustre [BZ02] run on the majority of the TOP500’s
supercomputers [TOP17].

The abstract design of a parallel distributed file system is illustrated in figure
2.1. Principally, the components can be split into two groups namely clients
and servers. Clients do not possess local storage, normally [Kuh15, p.16].The
file system storage is only reachable through network communication as it is
connected to the servers. In order to perform an I/O operation, the clients need
to send requests via the network.

8

2.2. Storage Hardware

Figure 2.1.: The general system architecture of parallel distributed file systems
Taken from [Kuh15, p.16]

This is why latency and network bandwidth are critical to the performance of a
parallel distributed file system.

2.2. Storage Hardware
Over the years research in areas such as semiconductor technology lead to enor-
mous improvements especially in storage hardware. In 1956 a high-performing
system as the IBM 350 disk storage unit had a capacity in the magnitude of
several Mega Byte (1 000 000 Bytes) (MB) and a latency of 600 ms [arc]. The
sizes today’s systems reach are in the range Peta Byte (1 000 000 000 000 000
Bytes) (PB).
It exists a variety of technology with different features. Each performs well for a
certain purpose and is less suitable for another. This circumstance resulted in a
hierarchy of storage devices. Figure 2.2 illustrates the criteria which determine
the layering.
After outlining the hierarchy the following subsections exemplify the mechanics
and the salient abilities for the specific technology.

2.2.1. Memory Hierarchy
The memory hierarchy as depicted in figure 2.2 is affected by several parameters.
The acquisition costs and the throughput grow from bottom to top. Tape drives
are the most inexpensive and slow storage devices while having the largest

9

2. Background

capacity. The time for which the data is stored is by far the longest and they
also require the most space because of their physical size. Central Processing
Unit (CPU) register form the counterpart being the smallest, fastest but also
most expensive device type storing the data only for a few CPU cycles. Marked
in red are those technologies which are volatile meaning they lose their content
without power supply. Therefore, they are not sufficient for long-time storage.
Yet, due to their high-throughput, they meet the requirements to serve as
buffering storage.
By exploiting the specific features system designers aim to reduce costs through
the use of inexpensive and high capacity devices for the majority of a storage
system and to include the fast and expensive devices to increase the performance.
Unfortunately, this introduces a lot of complexity for efficiently managing data.
Approved data migration mechanisms are discussed in detail in section 2.3.

Figure 2.2.: Illustration of the memory hierarchy with volatile technologies
marked in red and the non-volatile in black

Based on [Las07]

• CPU registers are the fastest and most expensive memory. They are
directly integrated into the CPU. The resulting independence of the
accesses from bus systems enhances the speed and contributes significantly
to the performance of the CPU. Register capacities range between several
Bit to kBit.

10

2.2. Storage Hardware

• CPU caches are also organised as a hierarchy. Typically, three levels are
supported in modern CPU architectures. The related capacities are in
the order Kilo Byte (1 000 Bytes) (kB) to MB. (see also 2.2.2)

• RAM, also referred to as main memory, is considerably larger than the
level above with sizes of MB to Giga Byte (1 000 000 000 Bytes) (GB).
(see also 2.2.2)

• NVRAM is the newest development in this listing. It characterizes
a functionality similar to RAM extended to non-volatile storing. This
minimizes the gap that previously existed between the performance of
RAM and SSD which is illustrated in table A.3. (see also 2.2.2)

• Solid State Drive (SSD), despite the name, do not contain moveable
parts making them less prone to mechanical failures. They consist of flash
memory which leads to a shorter lifecycle than HDDs because of a limited
number of write operations. The provided access latency with an order of
100 µs is considerably faster compared against HDD latencies of about 10
ms (see table A.3). The prices range between (add value €/B) and (add
value), the capacities between GB to Tera Byte (1 000 000 000 000 Bytes)
(TB).

• Hard Disk Drive (HDD)s are magnetic storage devices which involve
fast rotating platters to store the information. The rotational speed and
the storage density limit the decrease of access latency to around 10 ms
with storage capacities of GB to TB

• Tape also belongs to the category of magnetic storage devices. However,
it does not use rotating platters but magnetic tape for storing the data.
As the latency penalties, induced by the internal mechanics, are rather
high it is not suitable for providing fast access. Nevertheless, the ability
to preserve data for 30 years makes a good fit for long-term data storage
as well as their capacities of several TB.

Table A.3 enables a direct performance comparison for the individual tech-
nologies. The latency of a system describes the time interval passing between
an external impulse and an internal reaction. For storage devices, this is the
time period between sending the request and the according access.

The classification of devices in a broader sense such as primary storage or
online storage is not consistent. However, there is agreement primary storage
implies direct access from the CPU [Com]. Secondary storage summarizes all
devices persistently storing data which is not directly accessible by the CPU

11

2. Background

Hierarchical level Latency Throughput
L1-Cache ≈ 1 ns ≈ (best) 1150 GB/s *
L2-Cache ≈ 5 ns ≈ (best) 500 GB/s *
L3-Cache ≈ 10 ns ≈ (best) 250 GB/s *
RAM ≈ 100 ns ≈ (best) 42 GB/s *

NVRAM ≈ 1,000 ns
NVMe ≈ 10,000 ns ≈ (best) 3 GB/s [Sam16]
SSD ≈ 100,000 ns ≈ (avg) 500 MB/s [Ada17]
HDD ≈ 10,000,000 ns ≈ (avg) 136 MB/s [Sea16]
Tape ≈ 50,000,000,000 ns ≈ (best) 300 MB/s

Table 2.1.: Latency of device hierarchy levels
Latency values taken from [Kuh17c, p.5]
*Throughput values of Intel i7-5820K 6C/12T [Ryz17]

but via additional connection technology. Finally, tertiary storage includes all
hardware used for long term storage such as tape archives.
This differentiation is not completely equal to the categories online,nearline
and offline. Presumably, primary and secondary, depending on the specific
circumstances even tertiary storage, correspond to online storage. The concept
of a nearline device has no counterpart. All tertiary storage devices not included
in online storage belong to offline storage.
The distinction between online, nearline and offline is in the provided availability
for I/O as listed below. These definitions have been taken from [Ton10]. Neither
the rotational speed nor the purpose is crucial for this classification.

• Online storage is able to perform I/O instantly. This level is formed of
DRAM, SSDs as well as HDDs that are always spinning.

• Nearline storage denotes those storage devices that are not immediately
available but need no external procedure to become online. This applies
for Massive Array of Idle Drives (MAID) systems which consists of an
array of HDD. The predominant part of them is not running. However,
they can be sped up on demand. The design has been developed for Write
Once, Read Occasionally (WORO) usage. Also, automated tape systems
belong to nearline storage.

• Offline storage is neither instantly available nor can it be automatically
started. Removable media like USB memory sticks or CD/DVD fall into
this category just as tape cartridges lying on a shelf.

12

2.2. Storage Hardware

2.2.2. Storage and Network Technologies

Cache

The performance of CPU and RAM differed and still differs by several orders
of magnitude. This situation worsens when the hardware at the top of the
memory hierarchy is replaced with a newer model having an even increased
speed. To support such a system modification, it is not sufficient to just enlarge
the internal cache of the CPU. Often, changes to the lower part of the system
need to be made, too [Mä94]. To keep the necessary adaptation as small as
possible an additional hierarchy was introduced which is presented at the top of
table A.3.
These cache level hierarchy aims to smooth the transition between the CPU
and the rest of the system.
Another reason for a hierarchical approach is the effort it takes to produce a
large and fast cache. It is far more affordable to have a small fast first level
cache and an additional significantly larger cache which is still more powerful
than the memory to be cached.
The management of these hardware caches and all occurring consistency prob-
lems are dealt with at the hardware level. Therefore, the software layers on
top do not need to concern themselves with several different caches. They just
interact with the cache as a whole.
In general, the following analysis does not only apply to CPU caches but also
other types such as page or network caches. The basic assumption of caches
is known as the locality principle. It argues that due to the cyclic structure of
programs and the usage of linear arrays to store related data, addresses in the
area of already used addresses are more likely to be accessed in the close future
[BC05]. Hence, a cache stores the most recently used data and code.
The cache is split into lines which can be mapped to the main memory in three
common ways. One possibility is the direct mapping where each main memory
line is always projected to the same physical address in the cache. The opposite
approach is called fully associative meaning there is no mapping at all. The
combination of both is realised in the n-way set associative cache where each
line in main memory can be stored each of n lines of cache [BC05].
Each of these options comes with their strength and weaknesses. To illustrate
them first a brief summary of the general cache functionality.
A request sent to the cache for a certain line can either be successful when the
line is already present in the cache called cache hit or it fails with a cache miss
if the line is not available. In case of a cache hit the requested data is returned.
More complicated is the handling of a cache miss. The block needs to be loaded
from a layer below. As cache sizes are limited in order to store it some existing

13

2. Background

data needs to be replaced and written back.
Depending on the current mapping there are different types of cache misses:

• Compulsory misses are not avoidable and occur when first accessing
the memory. An approach to decrease the number of compulsory misses is
the use of a prefetcher loading data which they assume to be accessed in
the near future.

• Capacity misses happen because of the limited size. The only solution
for this problem is a larger cache.

• Conflict misses take place when blocks are replaced because they are
mapped to the same cache line even if there is free space left. This is
possible when the cache is not fully associative. The limitation for a main
memory line to be stored only to a certain number of lines is not effective
as a replacement is issued even when the rest of the cache is empty. This is
the reason why the Operating System (OS) page cache is fully associative.

• Coherency misses are only present in multi-processor systems. To avoid
inconsistencies between the cache of different CPUs solutions as the write-
invalidate protocol are deployed. When the write in one cache invalidates
a block which is also loaded into a different cache, then this instance needs
to be replaced and updated as well leading to this specific type of miss.

A good replacement strategy is vital to the performance which is illustrated
in the following. The Average Memory Access Time (AMAT) is calculated as
stated in equation 2.1 [ADAD15, ch.22,p.2].

AMAT = (PHit ∗ TM) + (PMiss ∗ TD) (2.1)

TM and TD represent the costs of accessing memory respectively disk. PHit and
PMiss describe the probability of a cache hit or miss ranging between 0 to 1
with PHit + PMiss = 1. Assume TM as 5 ns and TD as 10 ms (see A.3).
The average access time is calculated for the hit rate of 90% and 99.9%.
PHit = 0.9: AMAT = (5 ns ∗ 0.9) + (10 ms ∗ 0.1) = 1, 000, 005 ns
PHit = 0.999: AMAT = (5 ns ∗ 0.999) + (10 ms ∗ 0.001) = 10, 005 ns
This example demonstrates how a few cache misses lead to a drastically increased
AMAT. Therefore, it is crucial to keep the possibility of a cache miss a low as
possible thus needing the best replacing mechanism possible.
The optimal replacement strategy was proven in 1966 by Belady [Bel66].
Actually, the solution is astonishingly simple yet not easy to implement. The
block accessed furthest in the future needs to be replaced which results in the
fewest misses overall. However, determining this block is a challenging task and

14

2.2. Storage Hardware

can only be approximated if no test run with the same parameters is performed
beforehand.
Knowledge about the theoretical optimum still offers a good reference point to
evaluate other strategies.

• Random: As the name suggests an element is picked randomly and
replaced making it easy to implement.

• First In, First Out (FIFO): With this concept, the oldest element
is replaced regardless of the access frequency or pattern. It is easy to
implement but far from an optimal approach. Actually, the situation for
FIFO and the random strategy is even worse. They suffer from what is
called Belady’s Anomaly [BNS69]. Belady et al. found that increasing
the cache size does not imply an increase in the hit rate. In fact, it can
get worse with a larger cache. The advantage of FIFO over a random
approach is implementing a counter is easier than to generate a random
number [Bel66].

• LRU: In contrast to the above, this algorithm considers the history of
accessing. The element which has not been accessed the longest is evicted.
LRU is not impacted from the anomaly because it has the stack property
[MGST70] meaning the content of a cache with size N is always included
in a cache of size N + 1. This is why enhancing the cache will raise the
hit rate. LRU has a run-time complexity of O(1) which in addition to
its behaviour makes it the algorithm most broadly used [SMM10]. Its
performance for different workloads is shown in figure 2.3

• Not Recently Used (NRU): This algorithm involves a time interval
which acts as a threshold determining whether a line was referenced lately
or not. Like LRU and LFU it is based on the locality principle resulting
in a better hit rate if the application also follows the principle which is
not always the case.

• LFU: Similar to LRU it also takes past accessing behaviour into account.
For this replacement strategy not the passed time since the last access to
a file is relevant but the total number of accesses. This is why, LFU is
superior for scenarios where the lines are solicited in round robin fashion
and do not fit in the cache at the same time. With LRU all requests
result in a miss because the lines are constantly loaded and replaced.
In comparison, LFU will end up with a quite acceptable hit rate. The
workload is pictured in Figure 2.3 termed “looping sequential”. The
best known run-time complexity was O(log n) until in 2010, Shah et al.

15

2. Background

presented an algorithm with a runtime complexity of O(1) for all operations
[SMM10]. Before, LFU was implemented using a binomial heap structure
to get the item accessed the least. The new approach is based on two
double-linked lists, one for storing the access frequency and one for all
items sharing the same access frequency. The detailed pseudo code can be
looked up in [SMM10].

Figure 2.3.: Evaluation of the replacement policies ‘random’, ‘FIFO’ and ‘LRU’
in comparison to the theoretical optimum for the following work-
loads: no-locality, 80-20 and looping sequential

Taken from [ADAD15, ch.22,p.9ff]

Figure 2.3 illustrates the performance of the random replacement algorithm,
FIFO, and LRU in contrast to the optimum for two different types of workloads.
For each run, 100 unique pages are accessed 10,000 times in total while varying
the cache size from 1 to 100. On the left, the situation for the no-locality
workload meaning random accessing is pointed out. Obviously, for this kind of
request sequence the three are equally bad compared to the optimal algorithm
because the assumptions regarding the behaviour of the application FIFO and
LRU work with do not apply. Therefore, the hit rate is directly proportional
to the growth of the cache size. This situation changes when the workload is
modified. For the second benchmark 80% of the requests access 20 % of the
pages which are referred to as "hot" pages. All policies have an increased hit
rate in comparison to the random workload. However, LRU performs better
at keeping the hot pages. As shown in the example above this performance
difference may be crucial depending on the access latency for loading missing
lines from a lower layer.
The last workload is termed "looping sequential" which describes the following
access pattern. After, 50 unique pages are accessed the same pages are referenced
in the exactly the same sequence as before. In total, 10,000 accesses are
performed as in the other setups. This is a behaviour often found in database

16

2.2. Storage Hardware

applications [ADAD15] representing the worst case for both FIFO and LRU.
Even with a cache size of 49 all requests result in a miss. Only if the cache
size is large enough to hold all accessed pages the hit rate is above zero. The
random policy is able to cope with this situation notably better because it does
not evict a file right before it will be accessed again.

RAM
RAM is the abbreviation for random access memory. Usually, this term is used
for volatile memory which allows read and write access. However, there are also
technologies providing random access that are non-volatile such as ferroelectric
RAM (FRAM), magnetic RAM (MRAM, and phase change RAM (PCRAM) or
which provide read-only memory (ROM). In the following, the more common
definition is utilised [Wik17e].
The access time of RAM does not depend on the physical data location because
it does not contain moveable components like heads. In contrast, to HDDs
or tape drives RAM is directly addressable and does not have to be accessed
sequentially or in blocks. It is organised in a matrix layout of memory cells.
Larger devices address more than one bit; the specific length depends on the
architecture. There exist a number of different technologies. One important
distinction is whether the RAM is reliant on a clock signal. Asynchronous
devices provide the data only after a certain time which depends on the used
materials. Their maximum throughput is lower than the one of a synchronous
device whose operation is controlled by a clock signal. Both of the functional
principles below can be as either synchronous or asynchronous.

• Static RAM (SRAM): This type of memory provides data remanence
while still being volatile as the data is lost when the power supply is
interrupted. In contrast to DRAM, it is more expensive but also more
powerful and therefore used in CPU caches.

• Dynamic RAM (DRAM): In comparison to SRAM it needs to be
periodically refreshed to maintain its content. As it is considerably cheaper
the main memory of a system often consists of DRAM.

NVRAM
As the name suggests NVRAM is a type of RAM which retains the stored
information without external power supply. Although flash memory is a promi-
nent member of this category it induces problems as it only provides access
to larger blocks making it insufficient for small and fast caches. Moreover, its

17

2. Background

limited number of write-cycles is a significant problem for its usage as a cache
as they involve enormous amounts of I/O operations. Other approaches either
combine volatile RAM with additional batteries or incorporate technologies like
FRAM, MRAM or PCRAM. Most of them store information similar to DRAM
by charging a small capacitor. Also, the utilisation of semiconductors such as
silicon carbide (SiC) is evaluated for realising bistable NVRAM cells. In 2015,
Intel and Micron Technology presented a new NVRAM concept referred to as 3D
XPoint. It was announced to have a smaller latency than NAND memory and a
larger number of write-cycles [Wik17a]. While NAND flash persists information
by using different electric potentials in field-effect transistors 3D XPoint is based
on the alteration of the bulk resistance enabling a higher packing density. The
memory is organised as a stackable grid structure containing the actual storage
elements at the crossing points. In April 2017 the Intel Optane SSD became
available to open market, having a latency 1000 times faster than NAND flash
with a density increased by a factor of ten compared to DRAM [Pet17]. As
illustrated in Table A.3, NVRAM fills the gap between RAM and SSDs while
providing persistence making it suitable as caches for HDDs and SSDs and for
storage of data which is frequently accessed and modified.

SSD
Like the storage devices discussed above SSDs also do not contain mechanical
parts enabling a faster and constant access to the memory than provided by
HDDs. They are either based on flash memory or DRAM or a combination
of both called NVDIMM where the data is written from DRAM to the flash
memory to persist. DRAM is far more powerful but also more expensive than
flash memory and consumes more energy. For that reason, the former type is
used in the majority of systems. SSDs do not offer byte but block granularity.
The block size is often set to the page size of 4 Kibibyte which guarantees that
only one page needs to be rewritten. SSDs can only write erase blocks because
of the used hardware mechanism. This concept results in the requirement to
read the complete block, modify it in memory, erase the old state and write it
back to the SSD which makes write operations considerably slower than read
operations. Depending on the quality of a flash cell it can only perform between
3000 and 100000 write and therefore erase operations [Wik17c]. Flash memory
stores its information on a floating gate. When erasing a cell electrons tunnel
through the oxide layer surrounding the gate which requires high voltages. This
damages the oxide layer which finally loses its insulating ability. Thereby, the
electrons drain off the gate causing information loss. However, this does not
mean the whole memory is unusable. Wear levelling mechanisms aim to elongate

18

2.2. Storage Hardware

the life span. With dynamic wear levelling, the least used free block is chosen
for an operation increasing the number of write-cycles by a factor of 25. Albeit,
the free memory is worn fast when the larger part of blocks is already filled.
An even attrition is achieved by static wear levelling which selects the block
least used. This approach necessitates a more complex controller managing
situations when the block is currently in use, moving the data to a different
block. Static wear levelling enhances the write cycle by an order of hundred
compared to no wear levelling. Furthermore, Soundararajan et al. proposed the
utilisation of HDDs a write cache to enhance the life span of SSDs [SPBW10].
Their hybrid storage device contains a log-structured HDD and migrates data
periodically. Evaluating this approach showed a doubling of the SSD lifespan
and a decline of the average I/O latency by 56%. The decreasing acquisition
and maintenance costs and increasing performance make SSDs a continuously
more prominent alternative to HDDs when considering the TCO [EDD13]. For
applications inducing a random I/O access pattern like database applications,
they are already in use

HDD
An HDD consists of one or multiple rotational platters coated with a magnetic
surface. They are bound to a spindle which is spinning at a constant rate in
case of power supply. The velocity of the spindle is measured in Rotations Per
Minute (RPM) which currently ranged between 7200 RPM and 15,000 RPM .
The disk head which reads and writes the information is connected to a disk
arm that is responsible for positioning the head at the requested location. This
induces the seek time which is spent for repositioning the head for each request.
It is an important property of an HDD especially when comparing different
storage devices as it increases the access time which is calculated as follows.

TI/O = Tseek + Trotation + Ttransfer

The average seek time is one-third of the full seek time which is based on the
seek distance [ADAD15, ch.37 p.9]. As the access time is a crucial feature to
consider when optimising the performance and utilisation of a storage system,
the average seek distance is characterised below.
It is the sum over all possible seek distances between two tracks x and y on a
platter divided by the number of different possible seeks.

All possible distances can be described as:
N∑

x=0

N∑
y=0
|x−y| =

∫ N

x=0

∫ N

y=0
|x−y|dydx

19

2. Background

=
∫ N

x=0
(
∫ x

y=0
|x− y|dy +

∫ N

y=0
|y − x|dy)dx

=
∫ N

x=0

(
(xy − 1

2y
2)
∣∣∣∣x
0

+ (1
2y

2 − xy)
∣∣∣∣N
x

)
dx

=
∫ N

x=0
(x2 −Nx+ 1

2N
2)dx = (1

3x
3 − N

2 x
2 + N2

2 x)
∣∣∣∣∣
N

0
= N3

3

This results needs to be divided by the number of different possible seeks
which is N2. This leads to an average seek distance of one-third as stated in 2.2.

Average seek distance:

N∑
x=0

N∑
y=0
|x− y|

N2 =
N3

3
N2 = 1

3
N (2.2)

Besides the performance limitations and the discussed seek times, HDDs are
still widely used for large storage systems as their price is significantly lower
than of SSDs [EDD13]. In hierarchical storage systems, HDDs typically form
a high-capacity tier below the high-velocity tier of SSDs in order to fulfil the
demands made on HPC systems [WLC+14].

Magnetic Tape
Magnetic tape is usually made of long and narrow plastic film coated with a
thin and magnetisable layer. To protect the tape from environmental influences
it is enclosed in a cartridge which is inserted into a tape drive to read and write
data. Over the last decades, several tape data layouts have been developed
such as linear, linear-serpentine and helical layouts. The linear approach is the
simplest one allowing multi-channel read and write operations [Lü16]. Mounting
tapes is mostly handled by automated tape libraries today. The tapes are
held in a shelving system also containing robots for the cartridge insertion.
Modern tape systems offer a variety of features including self-describing data
formats increasing the portability of data, data reduction and compression
mechanisms and data encryption. Tape storage systems are more resistant to
external impact than most other storage devices. As the current enclosures are
sufficiently keeping moisture out, reducing the possibility of fire is the most
important task for guaranteeing long-term storage because the tape is highly
flammable. Given a suitable precaution in case of disaster magnetic tape is
very durable offering reliable data storage for 30 years. Due to its low cost and
energy efficiency coupled with its high capacity, tape storage systems will likely
remain present for the near to mid-term future [Lü16].

20

2.2. Storage Hardware

2.2.3. Ethernet

Ethernet is a technology which specifies software protocols as well as hardware
for linked data networks and was originally intended for Local Area Networks
(LANs). It enables the transmission of data frames between devices connected to
the LAN. Since 1990 it became the most widely used LAN technology replacing
competing wired LAN standards such as Token Ring and Fiber Distributed Data
Interface (FDDI). It is generally compliant with the Institute of Electrical
and Electronics Engineers (IEEE) standard 802.3 [Wik17b]. Participants of
a LAN send messages via their shared wiring system where every network
interface has a MAC address, a globally unique key of a length of 48 bits.
Ethernet sends data via the transmission medium using baseband processing
and time-division multiplexing where the access is managed by the Carrier Sense
Multiple Access Collision Detection (CSMA/CD) algorithm. In the beginning,
the communication bus was realised by a coaxial cable and evolved over the
last decades to twisted pair and to fibre optic links. The currently specified
bandwidths are 10 MBit/s, 100 MBit/s (Fast Ethernet), 1000 MBit/s (Gigabit
Ethernet), 10, 40 and 100 Gbit/s.

2.2.4. InfiniBand

InfiniBand is a high throughput and low latency network communication stan-
dard. It does not belong to the IEEE-802.3 Ethernet standard but supports
the Ethernet data format and is connected with copper cables which are also
used for 10 Gigabit Ethernet allowing transmission distances of about 15 me-
ters [Wik17d]. To enable the transfer over longer distances fibre-optic media
converter can be used. are used as network interface controller.

In 1999, the combining of two competing designs resulted in InfiniBand and
the formation of the InfiniBand Trade Association (IBTA) including Compaq,
Dell, Hewlett-Packard, IBM, Intel, Microsoft and Sun Microsystems. These
companies joined forces in order to develop a solution to the I/O bottleneck.
InfiniBand is mostly used in HPC systems. By 2009, 181 systems of the TOP500
list employed InfiniBand while 259 were interconnected by Gigabit Ethernet
[Ste09]. The intended evolution of the link bandwidth is illustrated in Figure 2.4
where SDR is the single data rate, DDR the doubled data rate and so forth. In
Table 2.2 the actual signalling rates and the according adapter latency is shown.

21

2. Background

Figure 2.4.: InfiniBand roadmap picturing the evolution of the link bandwidth
Taken from [Mel17]

. SDR DDR QDR FDR10 FDR EDR HDR
Signaling rate (Gbit/s) 2.5 5 10 10.31 14.06 25.78 50

Speed for 4x links (Gbit/s) 8 16 32 40 54.54 25 -
Speed for 8x links (Gbit/s) 16 32 64 80 109.08 100 -
Speed for 12x links (Gbit/s) 24 48 96 120 163.64 200 -

Adapter latency (µs) 5 2.5 1.3 0.7 0.7 0.5 -
Year 2001* 2005 2007 2011 2011 2014 2017

Table 2.2.: Signalling rate of InfiniBand and the related atency of the adapter
taken from [Wik17d].

2.3. HSM and ILM
Storage tiering or tiered storage has become a catchphrase in recent years [Pet06].
Despite the frequent usage, there is some confusion regarding the meaning. Often,
the terms Information Lifecycle Management (ILM), HSM and tiering are
mixed up. Therefore, the differences are highlighted in the following. They
are illustrated based on the definitions by the Storage Networking Industry
Association Data Management Forum (SNIA-DMF) [PS04]. Throughout this
thesis, this distinction is maintained.

• Tiering or tiered storage captures the forming of a storage hierarchy
based on certain requirements such as performance, security, and costs.
Different examples concerning the hierarchy design as well as the wide list
of possible requirements were already presented in section 2.2. Placing the
data on the formed tiers follows a previously defined mechanism. There

22

2.3. HSM and ILM

are three main approaches:
– static: The application is responsible for distributing the data, as-

signing it to specific tier.
– staged: This mode is used for data archiving.
– dynamic: The data is actively moved by HSM or ILM policy.

• HSM: The rising of different storage technology offering a wide variety
of features led to the memory hierarchy explained in section 2.2. The
higher levels act as caches for the lower ones improving the access times
for frequently accessed data which is kept at the faster layers. The
data movement is scheduled by algorithms between high-performing and
expensive devices on the one end and inexpensive, slow devices with
a large capacity on the other end of the hierarchy. Those scheduling
algorithms are often time-dependent and are thereby capable of handling
time-dependent information well. A vast amount of data, however, may be
time-independent and is not dealt with in sensible way when only focusing
on access frequency [JXW08]. Jin et al. present a model to determine the
information value. This is discussed in detail in 2.3.1

• ILM is not one dedicated service but the combination of tiered storage
hardware, storage software, possibly middleware and services working on
top. It is an expression risen from the marketing of the storage industry.
It summarises the strategies and applications trying to achieve an optimal
way of efficiently storing, providing and archiving information based on
their value and usage.
In their roadmap, Storage Networking Industry Association (SNIA) out-
lines a path how to establish a broader ILM-based practice by introducing
more elaborate tiering strategies. In figure 2.5 their proposal for a general
approach is shown. They describe identifying the value and classification
of information as a fundamental first step.

There also exist quite a number of terms such as data migration policy, data
movement strategy, ILM policy all describing an at least partially automated
process of moving data between different storage tiers.
For this thesis, no further distinction is made using them equally.

2.3.1. Information Value Evaluation Modelling
If not noted otherwise, this section is based on the work of Jin et al. [JXW08]
As shown in figure 2.5, the essential step to enable valuable data migration

23

2. Background

Figure 2.5.: Roadmap by SNIA towards an ILM implementation
Taken from [Pet06]

policies is to determine the value of information. There has been quite some
effort in trying to come up with an appropriate evaluation model.
To illustrate the difficulty of accurately capturing the value of information in
correspondence to the surrounding system an approach towards a formal is
given. This is used as a model basis in the design of the DM library. Jin et
al. presented an information value evaluation model resting on a variety of
parameters.
Including concepts from economic theory such as use-value as well as the supply
and demand relationship, they derive the following definition of information
value. A piece of information means a file.
Hence, information demand denotes the usage which can be deduced from
the access pattern. Accordingly, information supply refers to the provision of
information or the quality of information service. The information use-value
is indicated by its ability to satisfy the user’s needs which then leads to the
information value.
The information use-value determines the result of the evaluation model named
Output of Information Value Evaluation (OIVE).
If the demand exceeds the supply OIVE increases reaching its upper bound
when a file cannot be accessed at all for a certain period. The other way round
OIVE decreases when a storage device is not accessed and the storage space
and bandwidth is wasted.

24

2.3. HSM and ILM

The OIVE is calculated by the equation 2.3 for file d over a period of time t.

OIV Et(d) = f(t) ∗N2 ∗ (1 +M cos θ) ∗ size(d)
B

(2.3)

Equation 2.3 consists of the information supply and demand, the degree of
sharing and the information association of a file.
N2 is the degree of sharing which identifies the number of users accessing this
file.
Two files are considered associated if they are often accessed after one another.
This circumstance is noted as (1 +M cos θ).
To every file belongs an access vector Ai = (ai1, ai2, ..., ain), i = 1, 2, ..., l, with
aij being the number of accesses on jth day for the information sequence i and
l the number of files in the system.
The degree of association for two files is stated in equation 2.4.

cos θij = Ai • Aj

|Ai||Aj|
, (i 6= j), Ai • Aj =

∑
k

aikajk, |Ai| =
√∑

k

a2
ik (2.4)

cos θ =

∑
i

cos θij

l
, (i 6= j) (2.5)

The association of a file to every other file over all possible information sequences
is calculated as equation 2.5.
M in equation 2.3 counts those values of cos θij exceeding a threshold th.
size(d)

B describes the supply as the ratio of file size to the systems’ bandwidth B.
If there is more than one instance of a file B is the sum of bandwidth of all
related storage devices.
The information demand is defined as f(t) = 1

(∆t)2 , with ∆t the passed time
between t and the time of the next access. The probability distribution of access
time intervals is presumed to behave as a Poisson Process.
In order to calculate f(t) the arrival rate λ is essential which is assumed to be
the average arrival interval.

2.3.2. Evaluation Criteria for Data Migration Policies
The distribution of data across a storage system can be oriented towards different
goals. In some contexts reducing the energy consumption is more important
than further increasing performance. However, most of the time the aim is
to decrease the access time and thereby enhance the reached throughput. In

25

2. Background

order to evaluate the applicability of file placement strategies, Wijnhoven et
al. brought together several policy criteria they found in their literature review
[WA10]. They have been originally published Chen et al. as well as Turczyk et
al. [Che05, THBS06].

• The data movement needs to function with sparse to no human interven-
tion.

• The time-dependent value of a file is an essential parameter for the policy.

• The evaluation process is not based on solely one file attribute.

Different approaches have been taken over the years, e.g. Poore et al. [Poo00]
advanced from a security risk management perspective. Their model analyses
how information utilisation is linked to transactions and thereby revenue. Al-
though it is principally suitable for determining the information value its usage
is too time-consuming and not adaptable to changes [JXW08].
In Table 2.3 four file retention policy determination methods meeting the re-
quirements above are specified. Chen et al. introduce an approach determining
the file value throughout its entire lifecycle by relying on the frequency and the
recency of its use [Che05]. While they consider the changes over time neither the
domain knowledge of administrators or users is included. In addition, the file
value is not inevitably captured by its access frequency. Contracts, for example,
have a high value despite their less frequent usage.
By taking the passed time since the last access, the file age, the number of
accesses and the file type into account Turczyk et al. aim to derive the probabil-
ity for future use [TFLS08]. The disadvantage of their method is that despite
considering various file characteristics the actual content and context of a file
do not contribute to the result [WA10].
Zadok et al. target the decrease of used storage by determining policies to enable
the usage of free disk space to other users [ZOS+04]. By highly depending on
the experience of data administrators as well as users subjective allocations are
a common result [WA10].
Shah et al. developed the ACE framework for creating file retention policies
[SVSA06]. It has been designed with the following objectives. First, it incorpo-
rates business valuation of the data based on their metadata. Second, it allows
identifying the separate tiers of available storage quality. Third, providing data
migration schemes to assure informed utilisation of the resources. As stated in
Table 2.3 it fulfils all the criteria. It does, however, involve some problems such
as the policy specification by data users, not administrators. The users do not
have a sufficient overview of the system and the key metadata attributes. Also,
the development of the policy is far too time-consuming when trying to realise a

26

2.3. HSM and ILM

complete set of policies including all files. Wijnhoven et al. evaluate the relation
between file attributes and the use value of files as the ACE framework does not
recommend specific guidelines how a policy can be developed depending on the
users’ evaluation of files [WA10]. The concluding results are oriented towards
business applications making the recommendations not completely applicable
to HPC systems. While discarding the file type as an indicator they suggest to
integrate the position of a user which is mostly the same for HPC users.

Criterion Chen Turczyk Zadok Shah
Little human intervention x x x x
Frequency of use x x x
Measurable metrics x x x x
Classification of data x x x x
Knowledge of data users x x
Cost reductions x x x x
System performance x
Business value of data x

Table 2.3.: Assessment of the methods proposed by Chen et al., Turczyk et al.,
Zadok et al. and Shah et al. [Che05, TFLS08, ZOS+04, SVSA06]

Taken from [WA10, p.4]

Summary
This chapter presented the essential knowledge to understand the following
analysis of hierarchical storage systems and the current solutions to lessen the
performance penalties induced by the I/O performance gap.

27

3. Related Work
This chapter provides an overview over related works which are discussed in detail.
After the current situation is outlined several simulation tools are presented
including their strength and weaknesses.

3.1. Simulation Tools
The evaluation of theoretical models has always been an essential point in
scientific research regardless of the specific domain. With the rapid technological
evolution, computer simulation became a vital step in the validation of theories.
This is especially true for areas which involve the analysis of very small or very
large systems, e.g. particle physics. HPC by providing the appropriate resources
has developed into an individual field of interest. The difficulties faced like the
growing gap between the computational power and the speed of storage devices
lead to a variety of simulations in order to optimise the system’s performance.
The discussed diversity of storage systems results in a big number of possible
approaches focussing on certain aspects. In the following, three simulations for
storage hierarchies are presented which have been published in the last year as
well an approach how to simulate future hardware.

3.2. DUX
Krish et al. proposed DUX, which is short for an “application-attuned dynamic
storage management system for big data processing frameworks”[KWI+16].
They analyse the behaviour exhibited applications running on SSDs and HDDs
which alone is not a new idea as the trade-offs have been evaluated before, e.g.
by Narayanan et al. [NTD+09]. However, the overall aim is to identify to which
degree certain workloads profit of the SSDs features and which applications
might as well run on HDDs. Most data migration strategies used in tiered
storage system include a number of values in order to determine the data to be
moved.
Albeit, these approaches do not consider which applications actually benefit
the most by running on an SSD tier. So, instead of increasing the percentage

29

3. Related Work

of faster hardware in the system they try to use the system more efficiently.
Therefore, DUX provides the possibility to profile applications and the related
I/O and to make decisions at run time based on the available hardware. Three
optimisations are pointed out. First, the data placement is based on the I/O
pattern. Second, the intermediate data I/O between the individual chunk
replicas in the HDFS (Hadoop File System) is moved according to application
characteristics. The third proposal affects the prefetching of the data from the
tier below. The information value of a file is initialised with an average value.
After a specific time interval has passed the files are rerated and the value
for the next interval is predicted. This advice is then evaluated on synthetic
Facebook workloads generated by MapReduce cluster traces. The main result
is the finding that, when 5.5 times less SDDs are incorporated in comparison to
a solution including only SSDs, DUX introduces only 5% overhead.

While these are promising conclusions the simulation lacks certain features.
On the one hand, it enables only heterogeneous systems meaning an SSD tier
and an HDD tier, not a mixed tier consisting of both. On the other hand,
the integrated devices comprise neither faster candidates as NVMe nor long
term storage devices as tape systems. Also, the simulation does not offer a
possibility to evaluate an application by providing an emulation of the whole
storage system.

3.3. OGSSim
Gougeaud et al. came up with an approach called OGSSim an abbreviation for
Open and Generic Storage systems Simulation Tool meeting some of the above
requirements. They find that none of the existing simulators and their extensions
satisfies them. Several approaches have been made like DiskSim by Ganger
et al.[BSSG08], emulating systems like OpenSSD or a combination thereof like
VSSIM by Yoo et al [YWH+13]. DiskSim, for example, endorses a highly
detailed model including disks, controllers, buses, device drivers, schedulers,
caches. VSSIM simulates SSDs by merging a trace based simulator with an
emulator using a virtual machine as a basis and running additional software
atop allowing for a multitude of fine-grained design options. All these tools
provide sophisticated simulations but only for one specific type of hardware.
However, neither of them is suitable to simulate the diversity and scale of an
HPC system.
OGSSim is designed to offer support for heterogeneous, very large systems
including a variety of different configurations. The largest drawback is that
despite the announcement to publish the code it is nowhere to be found. This

30

3.3. OGSSim

circumstance caused San-Lucas et al. to implement a similar tool which is
discussed subsequently. The internal design of OGSSim consists of several
components each of which is executed by a thread and communicating with
the other modules via message transmission using the Zero Message Queue
(ZeroMQ) API.

• Workload: This module builds the internal request array a given an
input trace file. OGSSim offers different request formats. The basic format
includes a timestamp, the type of operation, the address and the size. It
can be enhanced by host and process identifiers.

• Hardware Configuration: Taking an XML file as an input this module
establishes the hardware structure in shared memory. Structuring elements
are tier, volumes and devices, where a volume is a number of devices with
a Redundant Array of Independent Disks (RAID) or Just a Bunch Of
Disks (JBOD) organisation.

• Simulation Configuration: Another XML files specifies the configu-
ration parameters for the simulation. For example, it is customisable
whether the logging should include warnings or only errors and whether
certain events such as device failure can happen.

• Pre-processing: The pre-processing component is responsible for the
instantiation of the volume driver module as well as for launching the
simulation process.

• Volume Driver: This module is engaged in the layout creation for the
volume type and the subsequent instantiation of the device driver.

• Device Driver: Specific sub modules corresponding to maintenance
tasks are forming the device driver. They generate requests for the
execution module regarding e.g. garbage collection, wear levelling or
defragmentation.

• Execution: The function of the execution module is to calculate several
metrics necessary to evaluate the performance of a system. These are the
request response time, the service time, the transfer time, and the waiting
times for the components of the storage system. All of them are written
to the output file together with additional information like the request
index or the device.

• Performance: After the simulation finished the performance module
allows a variety of different visualisations, e.g. graphs or histograms, for
the results.

31

3. Related Work

The validation of the proposed simulation tool took place by comparing the
simulation results for a read resp. write request stream to the performance
of actual hardware devices. At the time of the publication, Gougeaud et al.
only tested the behaviour for SSDs. They regard the maximum difference of 15
% as significantly accurate. While they aimed for a universal simulation tool,
OGSSim consists of only two types of devices, namely SSDs and HDDs. The
latter are not even validated for this publication. Nevertheless, they present a
promising simulator with highly customisable hierarchies and different execution
scenarios as the normal and the degraded mode which contains the simulation
of hardware failures.

3.4. StorageSim

As previously mentioned, the implementation of Gougeaud is not accessible which
is why San-Lucas et al. proposed their own realisation named StorageSim. Their
main focus lies on providing a fast simulation that is capable of handling big data
workloads which they locate at around 8000 operations per second. StorageSim
offers adaptable tiers and different hardware device types to customise the
storage systems and enables evaluating several layouts. It includes three simple
data migration policies. The first is a random placement based on a hash
function. The second strategy is SSD caching where all files are placed in the
HDD tier in the beginning and copied to the SSD when accessed, whereas the
third policy classifies the files based on their age and places the older ones at
a tier with lower throughput. LRU is used as a replacement strategy. The
evaluation of StorageSim is performed with two different experiments. In the
first setup, the effects of varying the size of the fast tier are analysed, whereas
the second studies the impacts of an added caching layer. San-Lucas et al. state
their simulation is able to reproduce the insight that a caching layer decreases
the load to the underlying storage system.
While this work sounds promising at first, the presented tool lacks a number
of important capabilities. First, StorageSim only supports read and write
access. Creating and deleting files is not possible. Furthermore, there is no
distinction between the behaviour of a read or a write call which seems at least
doubtful. Also, while abstracting from a complex system is not only viable but
necessary, evaluating data migration policies without considering the costs of
data movement between tiers might not be reasonable.

32

3.4. StorageSim

Summary
In this chapter related works have been discussed. While they each have their
strength they also have their weaknesses or shortcomings.
Desirable features include the simulation not only old hardware but current and
future hardware as well. Also the possibility to analyse different hardware types
and heterogeneous tiers is required to maximise the achieved performance of
systems. Furthermore, models of data migration policies incorporating the cost
of data movement as well as the support for complex hierarchies is wished for.
Finally, the solutions should be sufficient to simulate HPC systems.

33

4. Design
This chapters details the requirements for a generic simulation tool.
First, it recalls the thesis goals and presents a basic approach consisting of
several subtasks. Afterwards, the model objectives are specified. A special focus
lies on outlining the key components of the two libraries and their purpose.

4.1. Modelling
The development of capable algorithms to determine the file movement in any
system consisting of more than one type of storage hardware is a challenging
task. A lot of separate circumstances influence the performance of an application
on certain hardware. All those factors have to be considered and incorporated
into the migration policies in order to maximise the improvements. As the
according systems, which are to be enhanced, are usually operating on their
original purpose, e.g. climate simulation, they are not available for thorough
experimenting on their internal structuring. For that reason, the number of
tools simulating these large-scale systems has significantly increased. Most of
them are devised for a rather specific scenario. This leads to the consumption
of a considerable amount of resources especially researchers. They are involved
in creating their own fitting instruments, instead of using them for evaluation.
Therefore, a more general simulator could establish a basis which can be adapted
to individual requirements. The FFS library is designed to serve this purpose
in the long run. Certainly, the implementation of a tool providing all necessary
capabilities would have gone beyond the scope of this thesis. It is only a first
step towards a generic and highly configurable emulation and simulation systems
with the means to support HPC environments.

Recapitulating the thesis goals, discussed more in-depth in section 1.3, the
main focus lies on creating the possibility to evaluate hierarchical storage systems
as well as data migration policies to run on top.
Ideally, the results allow for more educated decisions regarding the acquisition
of hardware for future systems as well as suitable tiering and data management
strategies. Not only hardware devices have to be considered but all those

35

4. Design

components adding additional limitations like transfer rates and access times.
Furthermore, the functionality of a surrounding file system is essential to allow
for an even slightly realistic tiering environment.
As discussed in chapter 3.1, there exist simulations taking traces of a discrete
event simulator as an input and calculating the resulting outcome of certain
operations on a specified system. However, this kind of simulation does no
provide the possibility to just run the real applications on the system. This
issue is being addressed with the approach presented in the following.
The broad assignment arising from the requirements can be split into smaller
individual parts.

• Creating models for a variety of hardware devices for storing and transfer-
ring data

• Developing a flexible model for structuring the devices to simulate hierar-
chical storage systems

• Conceiving a simulation of file handling related system calls

• Outlining a simulation of a distributed file system running on the simulated
system to provide a transparent view for user

• Designing an interface for different data migration approaches and eviction
strategies

• Establishing an interface for file handling operations highly resembling the
system call interface to enable simple adaptation of existing benchmarks
and user applications to be executed on the simulated system

• Providing a strategy for permanent storage of not only the HSM system
but also the file system content so it can be used again after the application
finished which instantiated the system.

This list of diverse subtasks led to a layered design approach.
The bottom is formed by the underlying file system such as tmpfs, ext4 or ZFS.
To avoid the unnecessary complexity of recreating already present functionality
the actual data handling is accomplished by this file system.
The remaining functions are divided into two large layers. The first layer is
covering the representation and simulation of the hierarchical storage system
and necessary file system operations. The second consists of the realisation
of the distributed file system and the data migration policies. This layering
enables a modular library structure which can be more easily adapted.
The policy implementing is now independent of possible changes to the storage

36

4.2. FFS - Simulation of HSM

model. Also, by separating the storage system simulation from the tiering part
it can be reused more flexible for different projects. Those two layers find the
corresponding implementation in two stacked libraries.

• Fake File System Library (FFSL) simulates the hierarchical storage
structure and the file system atop. The application calls to this library
are actually performed on the simulated system mimicking the behaviour
of a real storage system. Hence, the FFS system is highly dependant on
the speed of the underlying file system. Therefore, it is advised to mount
it in a tmpfs to enable fast devices and connections.

• Data Migration Library(DML) is responsible for taking the application
calls and translate them into the internal call equivalents and to manage
the file distribution over the simulated HSM by using data migration
policies.

An overview over the different library levels and their interaction is given
in figure 4.1. A client application uses the API of the Data Migration Li-
brary(DML). The DML itself utilises the API of the File System Simulation
Library (FFSL).
Finally, the FFSL makes use of the API of the underlying file system provided
by the operating system.

To present the general execution order, an application is assumed which used
the default file handling system calls such as open, read, close.
Originally, the file specified by “path/to/file1.txt” was opened using either
open(path, flags) or open(path, flags, mode) depending on whether file
creation was wanted or not. This call is now replaced with the according function
of the DM library dm_open_file(path, flags, mode).
Inside the DM layer the internal path for the external path “path/to/file1.txt”
is looked up, if the creation flag is not set. Otherwise, the internal path is
built as is explained in detail in chapter 6. The resulting path “system/ssd_-
type/ssd1/file1.txt” indicates where the file is stored inside the simulated system.
It consists of the mount point of the simulated system “system”, the device type
“ssd_type” and device name “ssd1”, followed by the file name “file1.txt”.

4.2. FFS - Simulation of HSM
In chapter 2 a detailed overview of storage devices is given. To simulate not
only single device instances but a large number organised in a hierarchical
manner is difficult. One of the most challenging tasks is to determine which

37

4. Design

Figure 4.1.: Overview how the different libraries are layered on top of an under-
lying file system. The path an opening call of a user application
takes throughout the layers is indicated by the arrows.

information are vital for a basic model. In the following, the presumed data
path is explained, highlighting all relevant components on the way. The overall
system architecture is that of a distributed file system as presented in figure
2.1. An application is running on a client, also referred to as compute node,
which has no local storage. Therefore, it needs to access the storage via a shared
network. The storage device is an instance of a device type and belongs to one
tier. The FFSL functionality in its current state is listed below.

System Configuration
The main concern when designing the system for simulating HSM was to keep
the interface as simple and small as possible while allowing a wide variation of

38

4.2. FFS - Simulation of HSM

internal structuring.
At the same, adjustments to the individual usage scenario must be possible.
Therefore, fine customisation of system specifications as well as the description of
the actual storage system can be made in a configuration file. This enables neat
initialisation and finalisation from a user’s perspective. The only mandatory
parameter is the location where to mount the simulated system. And while the
characteristics and the system definition can be summarised in the configuration
file, it is also possible to create the system step by step using the HSM and
device handling APIs. The system set up can be exported to a new configuration
file anytime.

Modelling Existing and Future Hardware
The goal was to enable a generic and flexible model of hardware devices. In
order to supply insights regarding the acquisition of new systems the model
needs to describe future hardware as well. Since it is not clear what exact
capabilities prospective devices will have an abstract representation is required
to also capture coming device behaviour. The information regarding a storage
device can be split into two parts. On the one hand, there are features equal to
all device of a certain technology like the latency or the capacity. On the other
hand, the possibility of identifying an individual device and its statal details as
the used capacity is important for a sensible model.
The first type of information is gathered in what is referred to as a device type
whereas the latter is termed device instance (see also 5.1.2).
A device type is characterised by data regarding the mechanics which will be
present in future versions. For example, an HDD(2.2.2) will always include a
rotational disk and therefore have a noticeable access latency.
However, the scale of those information may decrease. Hence, the internal
representation must be able to capture considerably smaller values. To fulfill
this requirement the selected data types are suitable for a range between several
hours even days and nano seconds.

Hierarchy Modelling and Tiering
In section 2.3 the emergence of HSM systems and their purpose have been
defined. To simulate them including the concept of tiering is vital. As discussed
in chapter 3 the current simulation tools are often not capable of supporting
different devices types and none implements the possibility for tiers consisting
of more than one device type.
In order to enable evaluation of the effect of mixed tiers the FFSL comprises
not only homogeneous but also heterogeneous tiers. It also offers a generic

39

4. Design

connection type to represent a variety of linking technologies like Infiniband or
Ethernet.
The incoming connection and one or more device types form a tier. Thereby,
complex hierarchies can be built by attaching the connection of a tier to the
tier level above while also providing an approach to implement simple systems
where every tier is directly linked to the client via a network.

4.3. FFS - File System Functionality

Apart from the storage structuring aspect the FFS library also includes the
capabilities to simulate the file system’s behaviour. The configuration defined
by the HSM handler determines the procedures on top.
The file handler of the FFS is responsible for mapping the incoming calls to the
corresponding system calls provided by the underlying file system.
It specifies an internal path format to manage the simulation of the accessing
and manipulation operations as open, close, read and write.
An individual path format for the FFSL is crucial to keep the amount of knowl-
edge about the system’s implementation as small as possible. The calls provided
by the API need to resemble the standard system calls to the greatest extent.
Thereby, the changes which need to be made to the applications are reduced.
The parameters for the said functions are the same as for a system call.
Albeit, additional information about the device characteristics are important in
order to simulate a sensible behaviour. However, the FFSL does already know
about the device and device type features which can be added to the API indi-
rectly. By changing the accepted path format from some/path/to/a/filename.txt
to mountpoint_of_simulated_system/device_type/device_instance/filename.txt
the FFS library can now extract all necessary information because of the speci-
fied device type and device instance. As shown in figure 4.1, the conversion from
external to internal path is performed within the data migration library. The
combination of those two library layers offers the most comfortable usage. All
calls to the DML take exactly the same parameter as the system call equivalent.
The details are encapsulated in those two layers and discussed extensively in the
following chapters. Another feature is to keep the built storage system as well
as the contained files even after the application is finished. Everything necessary
to resume running the system is summarised in the system’s configuration file,
data base file of the DM library and the directory structure holding the actual
files. In order to match the performance of fast devices, the simulation is run in
a tmpfs. If persistent storage is required the according structure is moved to a
different mountpoint also specified in the configuration file.

40

4.4. DML - Data Migration on HSM

Essentials for Distributed FS in DML

So far the FFSL only provides the support for operations of a local file system.
To enable data migration on the hierarchical storage system a few additional
functions are required. As highlighted in chapter 2.3 data migration policies
manage the data distribution over storage tiers. For the necessary file movement,
additional information must be specified when calling FFSL such as connection
type. Either the file is relocated inside the same tier which is a probable scenario
when supporting heterogeneous tiers or to a different tier. To keep the system
model inside the FFSL as clear as possible the intra tier connections are handled
only within the DML.
Besides, moving files also import and export functionality is granted which does
not include any kind of reading or writing simulation and therefore is a much
faster way to open and save files inside as well as outside the system.

4.4. DML - Data Migration on HSM

Like the FFS library the DM library also contains a wide functionality which can
be divided into different aspects. By this separation the specific tasks become
more obvious simplifying the understanding resulting in a clearer implementation.
In the following, the key areas of responsibility are stated.

Distributed File System

The DM library is designed to work on top of the FFS layer which provides the
simulated storage tiers on the on hand and the file system operations on the
other hand. Atop this foundation the DML builds a file system distributing
files over the system according to a specified policy in order to increase the
reachable performance of the whole system. It mediates between the application
expecting a system call interface and the storage simulation of storage and file
system of the underlying FFS.
Therefore, it stores the external paths received from the application and trans-
lates them into internal paths as defined by the path format mentioned earlier in
section 4.3. It also offers the possibility to store additional information regarding
a certain file enabling more sophisticated migration strategies.
The DML relieves the user from getting into details with the internal represen-
tation of the storage system and allows to simply change the function names of
the call while keeping the parameter just as they would be for a system call.

41

4. Design

Policy Handling and Replacement Strategies
The data migration is managed by the policy handler. It supplies several
algorithms how to distribute the data across the system. Hence, it decides
the target of a movement execution. In contrast, the replacement strategy
determines the source coming into play when a certain condition is met, e.g.
when a device reaches its capacity limit. This is when the file to be written
replaces an already stored file to a different device or tier depending on the
migration policy.
Possible algorithms have been discussed in detail in chapter 2.2.2. At the
moment, random and LRU are the implemented replacement strategies.
For a start, randomly choosing a device is used as a migration policy as well as
moving the data to be replaced at the tier below. In a heterogeneous tier, the
data is moved from faster devices to the slower ones.

System Configuration
Similar to the configuration file for the FFS library there also is a file specifying
system characteristics. The replacement strategy and the migration policy are
determined. Also, information such as the file to store the data base containing
the mapping of external to internal paths are set.
Apart from that, the possibility is offered to state whether the system holding
the actual physical files should be stored for longer than the run of the simula-
tion. This enables either its reusing or cleaning of the surrounding system if it
is supposed to be deleted when finalising the simulation.

Summary
In this chapter the essential decisions regarding the design of the two libraries
have been presented and justified. The seperate components and their desired
functionality has been discussed.

42

5. FFS - Simulating HSM & FS
In this chapter the internal design of the FFS library is presented. Furthermore,
the requirements for simulating tiering and the requirements for the necessary
HSM model are discussed. The key components and their interaction as well as
their functionality is explained. Finally, a detailed insight into the implementa-
tion is given.

5.1. Internal Design
The FFS library, as pictured in figure 5.1, is located on top of a file system.
It realises a flexible storage system model. From tape systems to SSDs all
device types can be represented. The capabilities to simulate faster devices
depends on the used file system below. Ideally, a RAM-FS such as tmpfs is used.
Additionally, FFS provides file handling functionality as a basis for further data
migration.

Figure 5.1.: The FFS library and its position in the library stack are highlighted
in red.

43

5. FFS - Simulating HSM & FS

5.1.1. Directory Tree Representation
FFS is developed as a behaviour simulation, an emulation. As mentioned before,
this means it is able to actually provide the functionality to run the applications
on it and to store the related files. The data can even be kept when the cor-
responding system simulation finished. This is possible by using the following
concept.
The hierarchical storage system, explained in section 4.2, is realised by a di-
rectory hierarchy held by the underlying operating system’s file system at the
mount point declared in the configuration file. Every FFS system has a unique
mount point which represents the root node of the directory tree as illustrated
in figure 5.2. This directory structuring determines the internal path format
which allows encapsulating information that is required inside the library but of
no interest to an external user. By layering the device type as well as the device
instance and including them in the path the simulation is able to perform the
calculations defining the behaviour. The internal path format is specified as
follows:
"mountpoint_of_system/device_type/device_instance/the_actual_file.txt"
Thereby, the library can look up the characteristics of the passed device type
and the device instance without adding an extra parameter to its I/O interface.
The translation of external file paths into internal paths is done by the DML.
Hence, the application layer is not assumed to have sufficient knowledge of the
internals to create a feasible path. It is able to call the DM with exactly the
same parameters which are passed to the related system call.

In figure 5.2 the possibility is depicted how to use the internal path for iden-
tifying files inside the system but at the same the limitations of this approach.
The resulting internal path is only a sensible identifier when files are not moved
from one device to another respectively from one directory to another. The
external path "/path/to/f1.txt" can be mapped to "mountpoint/Seagate_SS-
D/SSD1/f1.txt" but also to "mountpoint/WD_HDD/HDD3/f1.txt" which results
in a conflict if the latter is moved to the SSD. Even "path/to/a/different/f1.txt"
may be assigned to "mountpoint/Seagate_SSD/SSD1/f1.txt" as the proceeding
directories in the external path are not considered for building the internal path.
Simply adding the external directory structure to the internal path as in "mount-
point/WD_HDD/HDD3/path/to/different/f1.txt" makes the situation more
complex and also reduces the reachable simulation performance as a potential
deeply nested directory hierarchy needs to be created and moved around by
the data migration policy. This problem can be solved by adding a unique
identifier such as an increasing integer to the file name or omitting the file
name completely and just work with the identifier. However, this requires

44

5.1. Internal Design

Figure 5.2.: Directory structure in the underlying file system realising the actual
storing of the simulated system

storing the assignment of the identifier to the external path which increases
the used memory especially for said nested files. As a starting point for a first
implementation and in the explanations of the following sections, file names are
the only way to address a file. Even so the representation of the external file
system’s structure does not contribute crucial functionality to evaluate tiering
approaches or migration policies.

5.1.2. HSM Simulation
Below the decisions regarding the HSM design are presented.
An essential item is the representation of the different storage technologies.
Summarised under the term device type are all those features applying to every
device instance. Also, future hardware development needs to be captured in order
to improve applications to perform well on prospective systems. Considered
characteristics comprise the access latency, the read and write throughput and
the capacity. Hardware failure and therefore fault tolerance are not part of the
current design.

A device is an instance of a device type gathering information only applicable
at a specific time because they are alterable. This includes the used capacity and
identifier of the tier it belongs to. For a detailed model of storage hardware like
HDDs or tape drives also the position of the last access is relevant to determine
the behaviour when being accessed again. The moveable parts like the header
and their positioning drastically affect the latency. So in consideration of

45

5. FFS - Simulating HSM & FS

providing the possibility to distinguish contiguous from non-contiguous I/O
operations the last access is important. However, to actually simulate non-
contiguous accesses an additional model is required describing the way files
are held internally by the device. At a representation level this fine-grained
also optimisations such as hardware caches, burst buffers or the read ahead
mechanism come into play. Such advisements alone would go beyond the scope
of this thesis. Thus, there is no distinction whether an access is random or
sequential.
The connection type is a further component for building a hierarchical storage
structure. In contrast to the device types, there are no instances of a connection
type. Individual links are not differentiated. They are characterised by a
latency and their bandwidth. Neither network protocols nor network buffering
is included in the model yet since they also impose a significant increase in
complexity.

The last element for building an HSM system is the tier. Unlike the previous
components, there is no concept of a type. Only tier instances are conceptualised
consisting of a connection type representing the link coming in from the compute
node. Tiers can either be homogeneous when composed of only one device type
or heterogeneous if several device types are included. They have a list of all
devices belonging to them.

The general design decisions are summarised. Every storage device is part of
exactly one tier. Every tier has one type of incoming connection leading from
compute node to the tier. Each tier can be composed of either one or more
different device types.

5.1.3. FS-Functionality
In the following, the considerations are noted for building a file system simula-
tion. FFS includes two different aspects of functionality. On the one hand, the
imitation of the storage devices’ behaviour and on the other hand the execution
of the actual file related I/O calls. The supported functions are essential opera-
tions such as open/close, read/write and create/delete. Listing 5.1 states
a general approach how to realise them. Acquiring a time stamp is requested
at the beginning of each operation. Afterwards, the necessary validation of
the input path is performed to fit the internal system design. This path in
combination with the system’s mountpoint is then used to construct the path
for the underlying file system which is passed to the I/O system call. Thereby,
the file system functionality is guaranteed. In order to mimic the hardware
effects the time is computed it would take a specific device to accomplish the
task. With the use of a second time stamp, the passed time is determined

46

5.1. Internal Design

as well as the remaining simulation time which the function still has to oper-
ate. At last the result from the system call is returned, e.g. a file handler or
the number of written bytes. This procedure applies to all the supported file
handling calls. The call in line 4 is therefore replaced with the relating sys-
tem call. The calculations of the individual simulation times are presented below.

1 get timestamp t1;
2 check path format;
3 translate internal path to path for underlying fs;
4 I/O system call to this fs;
5 compute simulation_time ;
6 get timestamp t2;
7 calculate delta_t = t2 -t1;
8 calculate remaining_sim_time = sim_time - delta_t ;
9 wait for remaining time;
10 return result from system call;

Listing 5.1: Basic procedure for the simulation of an I/O operation

The assumption made in the following formulas is that sending the issuing
request to the storage hardware via the network does not have a notable size.
Therefore, only the latency and the seek time of the device are relevant for
computing the time it takes to open a file in this system (equation 5.1). The
read simulation time is noted in equation 5.2. In contrast to opening a file,
reading or writing a file does involve also the network bandwidth not only its
latency. The sequence of the addends displays the data flow through the system
which always includes the network latency as the first part. In order to support
fast and possibly even more powerful hardware the time is measured in nano
seconds.

Ttransfer = blksize * count
bandwidth

; Tread/write = blksize * count
throughputread/write

Topensimulation = Tlatencxnetwork
+ Tseek (5.1)

Treadsimulation = Tlatencynetwork
+ Tseek +max(Tread, Ttransfer) (5.2)

Twritesimulation = Tlatencynetwork
+ Tseek +max(Ttransfer, Twrite) (5.3)

The model above is very simple and does not consider more fine-grained
details of the individual device types. Therefore, an I/O operation to a tape

47

5. FFS - Simulating HSM & FS

does not yet include the time it takes to mount or unmount a tape nor the
time spent waiting for the robot to receive a tape. Also, neither the parallel
access enabled by providing several robots nor the occurring time penalty when
trying to access a tape cartridge already mounted in a different tape drive are
incorporated. A first improvement is to extend the model to comprise at least
the mounting process which is shown in equation 5.4.

Treadsimulation = Tmount + Tseek + Tread + Tlatencynetwork
+ Ttransfer (5.4)

5.1.4. Data Migration Support
Besides the pure file handling functionality support for data migration and the
concomitant distribution of files has to be provided by the FFS library. The
most important feature is to enable movements of files from device to another.
Otherwise the layer above needs to open the file, read it into a buffer, create a
file on the target device and write the buffer into the new file. Compared to
a simple movement operation this induces unnecessary overhead which would
distort any evaluation of migration policies. In order to simplify the system
initialisation and finalisation, import and export functions are supplied. With
their use, external files can be copied into the simulated system or can be stored
outside the system.

5.2. Implementation
In the following, the approaches to realise the discussed design are elucidated.
Detailed insights to the implementation are given as well as arguments justifying
the choices. The library is implemented in C using the Glib library to provide
additional data structures. As most of the applications that may be run on
the simulated system are written in C it was an obvious choice to offer an
interface which highly resembles the standard system call API. This way the
necessary modification to the application are as small as possible. In addition,
the underlying file systems are also implemented in C since it allows explicit
memory management, induces only a small overhead, and therefore facilitates
efficient code.

5.2.1. Component Interaction
In figure 5.3 the overall structure of the FFS implementation is depicted. The
diagram is similar to a UML class diagram highlighting the interrelation between

48

5.2. Implementation

Figure 5.3.: Diagram showing the interaction between the different components
of the FFS library

the individual components of the library. Modularity is achieved by separating
the functionality in subparts. The final design present in the diagram is the
result of several steps of redesigning and extending the former model. In the
beginning, only the system handler as well as the I/O operations were present.
Their simulation lead to a lot of code duplication containing the information
about the device characteristics. These parts were gathered and formed the
device handler. As a result, the file handling had to be remodelled as well and
the management of internal file descriptors became necessary. At this point the
functionality was split in the storage emulation and the file system aspect. The

49

5. FFS - Simulating HSM & FS

former was then extended to include the hierarchical structuring of devices into
separate tiers. The latter was enhanced to support data migration mechanisms
atop the FFS library. The configuration handler was introduced to provide a
comfortable solution to build and save system architectures.

In the following, the interaction between the different components is outlined.
First, there is the system handler realising the initialisation and finalisation of
the surrounding system. Then, based on a configuration file the configuration
handler issues the creation of the particular device type as well as the related
device instances. Additionally, the hierarchical layout is built by gathering these
devices into tiers interconnected via connection types using the HSM handler.
The file handling component comes into play when an application, usually the
DM library, invokes an I/O operation. In the next sections, only a part of the
functions is discussed in detail, e.g. the creation is explained while the related
deletion is not shown. The whole FFS API is available in the appendix B.1.

5.2.2. System Handler
As mentioned above, the system handler is responsible for creating the basic
system, e.g. allocating the necessary memory. The interface to the system
handler consists of the following two operations. The initialisation only requires
the path to the directory the simulated system be mounted. Since the simu-
lation is highly dependant on the performance of the file system below it is
recommended to run it in RAM which is pointed out by naming the parameter
"mntpnt_tmpfs". The returned pointer to the system struct is used to identify
the system throughout the simulation.

• system_struct* ffs_initialize_system(const char *mntpnt_tmpfs)

• void ffs_finalize_system(system_struct *system)

In listing 5.2 the system struct is presented. The most crucial information is
the mountpoint of the system as all calls to the file system below require the
relating external path format which is build based on the specified mountpoint
(see 5.2.4). devs holds all device instances which are described by the dev_-
struct explained in section 5.2.4. The creation of a device takes time because
it is necessary to iterate over the whole array of devices and check if either the
according device type is unknown or if a device of this type and name is already
existing. As it is not possible to create two directories having the same path
this case is permitted. The overhead for creating a device is acceptable since
it is done only once while accessing a device is the far more relevant scenario
which is fast as the array index functions as the unique device ID. The same

50

5.2. Implementation

applies to the list of tiers tiers. In order to enable the deletion and re-usage of
array entries, the highest ID is saved in max_dev_id. When an entry is deleted
an empty space emerges and because the number of used devices dev_cnt is
reduced the highest ID may not equal the device count. So, the purpose of
max_dev_id is to minimize the number of elements any iterating operation
needs to access while still considering all assigned IDs. Otherwise, the whole
array, which can easily contain several thousand of entries when simulating an
HPC system, has to be looked at.
Apart from that, the system struct does not only keep the overall capacity but
also the currently used capacity to simplify the writing simulation. Thereby,
verifying if the remaining capacity is sufficient to write a file to any device
does not involve accessing every single device struct or even worse moving all
files from one device to another infinitely. By including both capacities in the
tier_struct, defined in Listing 5.9, also the validation for writing to a specific
tier is more efficient. The dev_struct specifies the characteristics of a device
that do not change over time, e.g. the capacity. These structs are managed
by a hash-table identifying the entries by their name. Hash-tables are a data
structure suitable when dealing with a lot of elements. They provide efficient
and fast access especially when their maximum size is known. dev_types is
accessed using the device name as the key while the device structs are the stored
values. The connection types are organised in the same way.
Though the goal is to ultimately enable the simulation of large HPC systems
adaptations can be made to allow the execution on consumer hardware. These
options are stored in the system_defines struct. An excerpt of the settings is
listed in 5.3. As the file system below realises the storing its limitations must be
considered. The maximum name and path length are often crucial. Additionally,
the memory requirements of the simulation are reducible by decreasing the max-
imum numbers of possible storage components, e.g. devices or device types. In
order to avoid reallocation and therefore non-contiguous memory, the allocation
is done in the initialisation process. So, to keep the memory consumption as low
as possible the system specifications are customizable depending on the use case.
Furthermore, the ordering of the elements in all the structs is an attempt to
reduce the size of the used memory while increasing the cache locality [Ray17].
This is considered because of the high number of possible dev_struct instances.
However, the implementation is a trade off between optimisation and readability
which is increased by grouping related members.
The fd_dev_mapper structure is necessary for supporting the file system func-
tionality of both the FFS and the DM library. How the file descriptors assigned
by the operating systems’ FS are mapped to internal file descriptors is explained
more detailed in section 6.3.

51

5. FFS - Simulating HSM & FS

1 typedef struct {
2 system_defines * sys_defines ; /* system specifics */
3 dev_struct *devs; /* list of all device instances */
4 tier_struct *tiers; /* list of all tier instances */
5
6 GHashTable * dev_types ; /* Hashtable of device types*/
7 GHashTable * con_types ; /* -"- of connection types*/
8
9 char *mntpnt; /* mount point of the tmpfs*/

10 fd_dev_mapper *map; /* map kernel fds to dev ids */
11
12 uint64_t used_capacity ; /* used capacity in B */
13 uint64_t sum_capacity ; /* overall capacity in B*/
14
15 int tier_cnt ; /* number of used tiers*/
16 int dev_cnt ; /* number of used devices */
17 int fd_cnt; /* number of used fds*/
18 int max_tier_id ; /* highest tier id used */
19 int max_dev_id ; /* highest device id used */
20 } system_struct ;

Listing 5.2: Struct for the system handler representing the general structure of
the system

In Listing 5.3 a few of the possible specifications are shown. The default
values represent the middle ground between small private storage setups and
the HPC systems. The managing of these setting options is performed by the
configuration handler described in the following section.

1 typedef struct{
2 int MAX_NR_DEVS_PER_TIER ; //1000
3 int MAX_NR_TIERS ; //50
4 int MAX_NR_DEV_TYPES ; //50
5 int MAX_NR_DEVS ; //5000
6 int MAX_NAME_LENGTH ; //256
7 ...
8 } system_defines ;

Listing 5.3: Structure for the detailed system definitions with the default values
annotated

52

5.2. Implementation

5.2.3. Configuration Handler
The storage system to be simulated can either be created by an application
using the operations provided by the HSM and device handler (see 5.2.4) or by
importing a prepared setup from a configuration file. In Listing 5.4 the creation
of a system is demonstrated without using an existing configuration file.
Knowledge of any path format is not required when utilising the individual
operations. The necessary path transformations are encapsulated in the FFS
library. Therefore, users only need to supply names. As the operations partly
depend on already present structures the following orders needs to be maintained.
In the beginning, the system structure is initialised at the passed mountpoint.
Afterwards, the device type “DT1” and the connection type “CT1” are added to
the hashtables dev_types and con_types respectively. Only then, it is possible
to create a tier. Finally, the device is created based on the passed data type
and tier ID. At this point, the directory “/home/user/example/” contains a
directory named “DT1” which in turn includes the subdirectory for the device
“DV1”.

1 int t_id ,dev_id;
2 system_struct *sys;
3
4 sys = ffs_initialize_system (``/ home/user/ example /'');
5
6 ffs_add_device_type (sys ,``DT1 '' ,3 ,5,8 ,13 ,21);
7 ffs_add_conncection_type (sys ,``CT1 '' ,42 ,101);
8
9 t_id = ffs_create_tier (sys , ``TR1 '', ``DT1 '',

↪→ ``CT1 '');
10 dev_id = ffs_create_device (sys , ``DV1 '', ``DT1 '',

↪→ t_id);

Listing 5.4: Creating a system without the configuration handler illustrating
the order they need to be executed in.

To avoid creating the system manually the configuration handling component
of the FFS library offers two functions;first the possibility to save an existing
system *system to a file specified by the passed path and second a way of
building a saved system from a configuration file.

• int ffs_save_system_to_config_file(system_struct *system,
const char *path_for_new_file)

• int ffs_build_system_from_config_file(system_struct *system,
const char *path_to_config_file)

53

5. FFS - Simulating HSM & FS

To implement the configuration files the key files of the Glib is used. Such a
key file contains key value pairs which can be organised in groups. In Listing 5.5
the shortened first part of an example configuration file is presented.

1 # === SYSTEM SPECIFICATIONS ===
2
3 [system]
4 Current local time and date=Mon Jul 17 15:57:21 2017
5 # --- System defines ---
6 MAX_NR_DEV_TYPES =1000 // int
7 ...
8 # --- System characteristics ---
9 mntpnt =/ home/user/ testsystem / // string

10 dev_type_cnt =7 // int
11 sum_capacity =2000000000000 // uint64 [B]
12 # list of device ids
13 dev_ids =0;1;2;3;...;999 // int;int;int
14 ...
15 # --- Following section lists all device types ---
16 [dt_i]
17 dt_name = SSD_BARRACUDA // string
18 r_ltncy =8500000 // uint64 [nsec]
19 r_thrghpt =156000000 // uint64 [B/s]
20 capacity =2000000000 // uint64 [B]
21 ...

Listing 5.5: This listing shows an extract of a configuration file where ‘//’ mark
annotations that are not present in an actual configuration file.

Comments inside the key file are denoted as a hash and ignored by the parser.
Square brackets indicate a group which can contain one or more key-value pairs.
Additional remarks specify the type of the value to facilitate the usage. This is
also the reason for storing the creation time and date making the association
between the configuration file and a certain simulation run easier.
While it is unlikely to exceed the integer value range with counting the number
of devices both the device type and system capacity require a larger data
type. As the latency of newer technologies such as NVRAM and NVMe now
ranges between 1 to 10 microsecond the representation for device latencies has a
nanosecond resolution. At the beginning of the key file, the system specifications
are managed including a list of all assigned device IDs. Afterwards, the device
and connection types are itemised followed by tier definitions along with all

54

5.2. Implementation

device instances. Thereby, the entire system architecture can be rebuild. In the
appendix B.1 an example of a complete configuration file is given.

5.2.4. Device Handler
The management of all the information required by the file handler to simu-
late the I/O operations is performed by the device handling component. One
important concern was to keep the amount of data stored in a device as small
as possible as the long-term goal is to enable a simulation of HPC systems
which often contain thousands of devices. Therefore, the information associated
with a certain device is classified as either time dependent or non-dependent.
The time independent device features like the capacity or the writing through-
put are collected in the dev_type structure illustrated in listing 5.6. Those
characteristics apply to all instances of a certain storage device for example an
SSD such as the Barracuda by Seagate. Consequently, it is sufficient to store
them once and make them accessible throughout the library. For this reason
the system_struct includes a hashtable to provide access via the name of the
device type. A new type can be added to the system by using the function
ffs_add_device_type.

1 typedef struct{
2 char * dt_name ; /* name of device type */
3 uint64_t r_ltncy ; /* read latency in nano seconds */
4 uint64_t w_ltncy ; /* write latency in nano seconds */
5 uint64_t r_thrghpt ; /* read throughput in B/s*/
6 uint64_t w_thrghpt ; /* write throughput in B/s*/
7 uint64_t capacity ; /* storage capacity */
8 } dev_type ;

Listing 5.6: Device Type structure containing the device information which does
not change over time

The individual values are passed as a parameter. They are either read from
the specified configuration file or provided by the application above. In order
to represent the wide variety of device types from tape drives to NVRAM that
are possibly present in an HPC system with one generic structure the data
types had to be chosen carefully. The largest value an unsigned integer 64 bytes
long can store is 18,446,744,073,709,551,615 or approximately 18 x 1018. This
is sufficient to describe capacities from one byte to 18 Exabyte or latencies
and time intervals from one nanosecond to roughly 213 days. Thereby, current
system and at least near future systems can be properly modelled. An approach

55

5. FFS - Simulating HSM & FS

how the enormous RAM requirements of such a simulation can be reduced is
discussed in chapter 8.
However, there are several assumptions in this model that prevent a fine-grained
simulation. As an example, when simulating tape systems the effects need to
be considered that arise by mounting and unmounting drives via a robot as
well as those which originate in the behaviour of the related tape library. A
first improvement could be made by either appending additional features to the
structure such as an average mounting time or by extending the calculation to
incorporate the simulation model discussed in chapter 2.2.2.

• int ffs_add_device_type(system_struct *system,
const char *new_type, uint64_t r_ltncy, uint64_t w_ltncy,
uint64_t r_thrghpt, uint64_t w_thrghpt, uint64_t capacity)

• dev_id ffs_create_device(system_struct *system,
const char *name, char *type, tier_id t_id)

The parameter list of ffs_create_device indicates an essential premise.
Every device requires a type and is integrated in exactly one tier. It is not
possible to create independent devices as FFS is designed to represent tiered
storage hierarchies.

In the dev_struct, detailed in Listing 5.7,the information is held regarding
the present state of a device. The current implementation only includes the used
capacity and the ID of the tier. As previously mentioned, the differentiation
between contiguous and non-contiguous accesses does not only increase the
accuracy of the simulation but also the complexity of the model.

1 typedef struct {
2 char *d_name; /* device name */
3 char *d_type; /* device type*/
4
5 uint64_t used_capacity ; /* used capacity in B*/
6 int tier_id ; /* device part of this tier */
7 } dev_struct ;

Listing 5.7: Device Struct representing the time-dependant state of a device

5.2.5. HSM Handler
Modelling storage hierarchies does not only involve device but also their inter-
connection. In contrast to the previous component there is no distincion between

56

5.2. Implementation

individual links. Connections exist only as a type as the current model does
not include any information differing for specific link. The con_type consists of
the name to identify the type, the latency and the bandwidth.

• int ffs_add_connection_type(system_struct *system,
const char *new_type, uint64_t latency, uint64_t bandwidth)

1 /* struct representing connection types*/
2 typedef struct {
3 char * ct_name ; /* name of connection type */
4
5 uint64_t ltncy; /* latency in nano seconds */
6 uint64_t bw; /* bandwidth in Bit/s */
7 } con_type ;

Listing 5.8: Connection Type Struct

The hierarchy of the storage devices is realised by grouping devices into
tiers. As discussed in chapter 3, the existing simulation tools do not support
heterogeneous tiers. However, using different device types inside one tier and
linking them with a faster and therefore more expensive connection is a scenario
which will become more prominent. The reason lies in the evolution of RAM
based technologies like NVRAM. Although, this non-volatile memory fills the
gap between the permanent storage of SSDs and the high throughput and low
latency of RAM its price makes it not yet deployable for large scale tiers.
Therefore, the concept of heterogeneous tiers is suggested for example by the
DAOS developers of Intel (see also 7.2). The idea is to gain the advantages of the
reduced latency while providing larger capacity utilising a cheaper technology.
This combination is backed by capable connections to enable fast data migration
between the devices in one tier.
In FFS, tiers are implemented by the structure presented in Listing 5.9 consisting
of a connection type and the device types of included devices. A flag indicates
whether more than one device type is present or not. In case of a homogeneous
grouping, a tier is created by passing the related system pointer, the name, the
device type and the connection type of the incoming link. The according struct
is added to the global tier list of the system handler. In order to establish a
heterogeneous arrangement, NULL is passed as a device type to ffs_create_-
tier. Hence, later on there is neither a limitation concerning the supported
types nor the number of different types. The necessary information to simulate
a device access is supplied indirectly through the list of contained device IDs
which are uniquely assigned throughout the system.

57

5. FFS - Simulating HSM & FS

• tier_id ffs_create_tier(system_struct *system,
const char *name, char *dev_type, char *con_type)

• int ffs_assign_dev_to_new_tier(system_struct *system,
tier_id old_t_id, tier_id new_t_id, dev_id d_id)

1 typedef struct{
2 char *t_name; /* name of specific tier*/
3
4 dev_type d_type; /* device type of the tier */
5 con_type c_type; /* connection leading to tier */
6 dev_id dev_ids [XY]; /* list of dev ids*/
7
8 uint64_t t_used_capacity ; /* used capacity in B*/
9 uint64_t t_sum_capacity ; /* sum capacity in B*/

10
11 int dev_in_tier_cnt ; /* number of devs in tier */
12 int is_homogenous ; /* only one device type? */
13 } tier_struct ;

Listing 5.9: Tier Struct

The summarised capacity of all the contained devices simplifies the verification
of whether further data can be stored. Despite the diverse possibilities to adapt
a tier, a few requirements need to be fulfilled. A tier may consist of any number
of devices, limited only by the maximum set in the configuration file, and may
include an arbitrary number of device types but there has to be exactly one
type of connection coming in from the compute node. However, this does not
impair the design too much as there is no reason to group elements into a tier if
they do not share even one feature.
As the connection type imposes the most significant restrictions regarding the
access possibilities it is more reasonable to organise devices with different linking
into separate tiers. Nevertheless, the intra-tier interconnection is completely
adaptable by specifying the link as a parameter of the ffs_move_file operation
of the file handler which is elucidated in section 6.3. Furthermore, ffs_assign_-
dev_to_new_tier offers a way for reorganising the system structure of already
existing elements without losing the contained files. Also, deleting a connection
type is only permitted if it is not part of any tier. The removal of a tier, however,
results in the deletion of all devices belonging to it. The according functions
are listed in the complete FFS API in the appendix B.1.

58

5.2. Implementation

5.2.6. File Handler
Implementing the file system functionality imposed several challenges. The most
important decision was how to intercept the I/O calls and write the files to the
simulated system. Instead of trying to actually interrupt system calls a simpler
approach is to define a new API highly resembling the system call interface.
This way the usage for application developers is easier and more intuitive than
a complete redesign.

• int ffs_open_file(system_struct *system,
const char *path, int flags,mode_t mode)

• int ffs_close_file(system_struct *system, int fd)

• size_t ffs_read_file(system_struct *system, int fd, void *buf,
size_t cnt, off_t offset)

• size_t ffs_write_file(system_struct *system, int fd, void *buf,
size_t cnt, off_t offset)

However, this introduces the requirement to assign internal file descriptors
otherwise all operations based on the passed fd can not be simulated.

As stated in Listing 5.2, the system handler holds an array of fd_dev_mapper
structures. The array index represents the internal file descriptor while the
array elements contain the file descriptor assigned by the underlying file system
as well as the device ID on which the file is stored.

1 typedef struct {
2 int system_fd ; /* kernel file descriptor */
3 dev_id d_id; /* index of global device list*/
4 }

Listing 5.10: Mapping structure

In Listing 5.11 the implementation of the open and the write call is presented
as an example to illustrate the internal organisation of the file handler. When
opening a file the path is the most important parameter. The file handling
component of FFS retrieves the device ID related to the device specified inside
the path. The individual path elements are the recombined with the mountpoint
information to build the internal path which is passed to the open system call.
The returned file descriptor is store into the mapper along with the device
ID. The array index is then used as the internal file descriptor and returned
to the application. The following I/O operations, e.g. write, take it as a
parameter which is then replaced by the system fd for the according system

59

5. FFS - Simulating HSM & FS

calls. Afterwards, the simulation is performed based on the device ID contained
in the mapper. Finally, the return value of the system call is forwarded to the
layer above.

1 open(path ,...)
2 {
3 get_device_name_from_path (path);
4 dev_id = get_id_for_dev_name ;
5
6 build external path;
7
8 sys_fd = open(ext_path ,...); // system call
9

10 mapper[int_fd]. system_fd = sys_fd;
11 mapper[int_fd]. d_id = dev_id;
12 return int_fd;
13 }
14
15 write(int_fd ,...){
16 sys_fd = mapper[int_fd]. system_fd ;
17 dev_id = mapper[int_fd]. d_id;
18
19 cnt = write(sys_fd ,...); // system call
20
21 get characteristics of devs[d_id]. d_type;
22 simulate_writing (write_latency , write_throughput);
23 return cnt;
24 }

Listing 5.11: Implementation of file descriptor management and I/O operations

Apart from the usual I/O operations FFS also offers additional functionality
to simplify data migration in the library atop. By importing and exporting
files with ffs_import_file and ffs_export_file the transition between the
surrounding file system and the simulation has become easier as no read or
write simulation is performed. Calling ffs_move_file allows to move the file
between different devices and tiers while the underlying file system moves the
file as well. It is not copied which reduces the storage requirements and the
overhead. Specifying a connection type enables to represent interconnections in
the storage system besides the incoming link included in the tier_struct.

60

5.2. Implementation

• int ffs_import_file(system_struct *system,
const char *external_path, const char *internal_path)

• int ffs_export_file(system_struct *system,
const char *internal_path, const char *external_path)

• int ffs_move_file(system_struct *system, const char *src_path,
const char *dest_path, int src_dev_id,
int dest_dev_id, const char *con_type)

Default Types
To simplify basic testing and benchmarking of the storage simulation several
default types are included in a config file.

• NVRAM: Optane - Intel 3D X Point

• SSD: Nytro - Seagate

• HDD: Barracuda - Seagate

• Tape: LTO - capacity assumed 6 TB with throughput of 300 MB/s [Lü16]

• Ethernet 10 GBit

• Infiniband - EDR

Summary
This chapter gave detailed insights into the internal design of the FFS. The
separate components and their responsibilities have been presented. Finally, the
implementation and the occurred problems have been discussed.

61

6. Data Migration Library
This chapter focuses on the internal design of the DM library and its interaction
with the application on the one hand and the FFS library on the other hand.
The requirements to support data migration between different and inside one
HSM tiers are discussed as well as the basic requirements to enable a variety of
metrics. The decisions related to the aim to provide a user-friendly interface
and a sufficient performance are outlined.

6.1. Overview
The file movement in complex typically layered storage systems is determined
by data migration policies. They incorporate detailed information of the storage
hierarchy in order to improve the utilisation. As the development of the storage
technologies continually introduced new capabilities, it became increasingly
difficult to identify key elements affecting the overall performance. Simulations
aim to support the search for suitable solutions. The FFS library provides the
possibility to emulate the behaviour of hierarchical storage systems. Atop of it,
the DM library offers additional file system functionality to enable a variety of
data migration strategies.

Just as the layer below, DML is designed to establish a generic foundation
to be adaptable to individual requirements. In addition, the interface to the
application layer above is oriented on an intuitive and simple usage. In figure 6.1
an implementation employing the opening call of the DML and its way through
the libraries is illustrated. The partitioning of the functionality into separate
layers simplifies the adjustments in one library by avoiding a complete redesign
for minor changes.

6.2. Design
The internal structuring of the DML tries to suffice the design goal of a flexible
and modularised library. However, as this is a challenging task a number of
iterations of redesigning were necessary as was the case with the FFS library.
This resulted in an extensive layout whose implementation is not yet fully

63

6. Data Migration Library

Figure 6.1.: Location of the Data Migration Library inside the Library Stack

realised. Nevertheless, its composition should support several different policy
approaches. The DML consists of the following components.

• System handler: In order to keep the adaptation to the application
as small as possible, the system initialisation is mainly handled in the
DML itself. A configuration file is used to manage the customisation to
specific requirements. Such an instance may be the request for persistent
and recoverable storage of the whole system which is accomplished by
combining the information of the FFS configuration file and the related
physical directory structure. Thereby, the storage hierarchy, its simulated
behaviour and the stored files are reusable. By integrating the mapping
between the external file system structure and its internal equivalent the
data migration and file system functionality can be restored as well.

• DB Handler: A key feature of the DM library is the management of
the data distribution across the simulated devices. So as to achieve a
consistent state, the file movement needs to be logged. This requires
not only a highly reliable infrastructure but also the means to support
large-scale HPC applications which access thousands of files possibly in a
parallel manner. Although a parallel implementation is not viable within
the limits of this thesis, the general layout needs to incorporate those

64

6.2. Design

aspects to avoid completely redesigning the library several times. The
concept of key-value stores seemed most suitable to meet these needs. This
choice is discussed in section 6.2.

• Replacement Handler: When enough storage space of the favoured
device type is available data migration is not necessary. This changes
when the selected device to save a certain file has reached its capacity
limits. While writing a file, its priority is usually higher than those of
files which have not been accessed. However, determining which is the
least valuable file in a device or a tier is intricate. Depending on the use
case different factors are to be considered. Often, the file least recently
or frequently used is evicted. Though this is a common scenario, there
might be contexts in which a rarely used file is vital for an exceptional
application behaviour and a fast access has to be guaranteed. This is a
demand the library can neither derive from the access patterns nor from
creation or modification times. So, in order to support this type of request
the replacement strategy needs to offer more than just a heuristic based on
past I/O profiles. Besides displacing files from a device, the replacement
handler also manages the reloading of files. For example, when opening a
file on a slow device the arising question is whether to move this file to a
faster device again and if so in which situation.

• Policy Handler: As a policy is a general expression that sometimes in-
cludes the definition of one of more replacement strategies, in the following
subclasses are described. In contrast to an eviction scheme, they do not
determine the subject of the movement but the target location. Depending
on the storage structure and its usage there may be several decisions to
make. For a first approach, the placement of files across the complete
system and the distribution inside one tier are considered. Should a file be
located on the fastest tier in terms of device and network latency or on a
device with a high throughput? Is an answer applicable to all kinds of files
or it is more sensible to distinguish between data and metadata? Though
these issues can be addressed by an analysing tool, it is still necessary to
enable specifications by the user. At the same time, the complexity of
the interface should not increase to a level where it takes more time to
understand the internal design than to implement one’s own solution.

• File Handler: Apart from the management of data movement, the DM
has to supply an interface for I/O operations. Therein the mediation
between the application and the FFS library is performed. The API is
orientated on the system call interface and provides similar functionality
such as open,read and write. They use not only the same parameters but

65

6. Data Migration Library

realise also the expected behaviour and return values, e.g. when opening
a file the internal file descriptor is handed back.

In Figure 6.2 the concept for the internal structure of the DML is depictetd.
Besides individual components also their dependencies are illustrated. The
bold arrows highlight the interface to the application above. Only the system
handler responsible for the initialisation and the file handler interact directly
with the layer atop. The remaining elements are used for internal structuring
and modularisation.

Figure 6.2.: Diagram illustrating the internal design of the DML. Printed in
bold are the components directly providing an interface to the
application.

66

6.2. Design

DB Handler - Key Value Stores

The most important features to guarantee in a file system are the consistency and
the availability of the stored files. In order to simulate data migration strategies
the DM library needs to keep track of the movements. More specifically it has
to save which external path belongs to which file inside the simulated system.
A file system, especially in an HPC environment, is exposed to hundreds of
thousands individual files. This induces special requirements for the resilience
of the used data base. First, the number of records which are held at the same
time needs to be extraordinary large. Additionally, as performance is crucial
for HPC systems, the overhead of the data base should be as small as possible.
Furthermore, the support of parallel access also important. Without the later
the DM will only be able to simulate sequential I/O and while data migration
strategies might be useful for such a system the core task is to represent parallel
distributed systems. The amount of included elements and the demand for
persistent storage rule out RAM based approaches. One of the most popular
data base concept is the relational model of data. It includes a set of tables
consisting of columns and rows. A row is identifiable via a unique key and also
referred to as a record. While the relational model is suitable for a lot of use
cases it is not sufficient as a foundation for a distributed file system. Its fixed
data base scheme does not allow to include additional information just for a
specific record. It requires a complete redesign.
A different way to store information is using an associative array which is an
array type allowing non-numerical values as its unique keys. The database
concept on top is called key-value store. It provides the possibility to store
records of different structures. Thereby, flexible adaptations are enabled and
the use of wildcards for missing values is avoided. Key-value stores also support
large datasets and highly parallel access. A prominent example is Google’s
LevelDB. However, as examined by Pillai et al. it exposes several vulnerabilities
on today’s file systems such as ext4 and btrfs. It is prone to silent errors,
data loss and failed reads and writes [PCA+14]. It is also stated that the
implementation exhibiting the least weak spots and the best crash recovery is
Lightning Memory-mapped Database (LMDB). For this reason it was chosen
as a basis for the DML. The LMDB is based on a binary tree and maps the
entire database into the memory. Therefore, memory allocation is not required
when fetching data and also no additional page caching is necessary. This allows
for high performance and memory efficiency. The LMDB uses a transactional
scheme and guarantees the ACID properties while supporting concurrent access.
By relying on the copy-on-write mechanism data pages can not be overwritten
while they are still in use.

67

6. Data Migration Library

6.3. Implementation

In Figure 6.3 the interplay of the two libraries and their relation to the application
is highlighted. The user initialises the DML system handler which issues
the following initialisations. First, the configuration handler sets the policies
according to the passed file. Afterwards, the database handler issues the LMDB
instantiation. At last, the DML system handler initialises the FFS instance
providing the storage system emulation. The internal call structure of the
FFS is described in subsection 5.2.1. Inside the application the standard I/O
operations have been exchanged with the operations of the DML file handler
which is responsible for the data movement between the separate tiers conforming
to the selected migration policy and replacement strategy. In section 6.3 the
opening of a file is explained in detail. Additionally, the procedure for writing
a file is outlined. The replacement handler chooses the file which needs to
be moved and passes this information to the data migration handler of the
FFS library realising the actual movement operation. In case the file resides
already on the right device the DM file handler directly calls the FFS file handler
handing over the standard system call parameters.

Figure 6.3.: Diagram of the interaction between the components of the DM
library and the FFS library

68

6.3. Implementation

System handler
The system handler manages the setup of the environment required for the
data migration and also issues the initialisation of the FFS instances below.
Besides the mountpoint specifying where the directory tree of the FFS is
located, the path to the configuration file as well as an existing directory for
the database are passed as parameters to dm_initialize_system. In contrast
to ffs_initialize_system, it returns only an integer indicating whether the
initialisation has been successful. The system structure presented in Listing 6.1
is exclusively used inside the DM library in order to minimise the interaction
between the application and the library internals.

• int dm_initialize_system(const char *mntpnt_tmpfs,
const char *config_file, const char *db_dir

The DM system is represented by the following structure. It contains the
necessary information for the interaction with the LMDB as well as the FFS
library. The FFS system structure, providing access to the emulated storage
system, is explained in Listing 5.2. All interaction with the LMDB is performed
with the use of the db_struct which is presented later on. The directory
holding the database file and the related locking file is specified by a its path.
Furthermore, the DM stores which policies are set for data migration between
different tiers as well as inside a tier and which eviction and selections schemes
are chosen.

1 typedef struct{
2 system_struct * ffs_system ;
3
4 db_struct *db;
5 const char *db_dir;
6
7 int inter_tier_policy ;
8 int intra_tier_policy ;
9 int replacement_strategy ;
10 int selection_strategy ;
11 int distribution_strategy ;
12 } dm_system ;

Listing 6.1: DM system structure where the prefix MDB indicates the
membership to the LMDB.

69

6. Data Migration Library

Database Handler
The database handler manages the interaction with the LMDB instance. The
required pointers are gathered in the db_struct as shown in Listing 6.2. In order
to use the database an MDB_env environment has to be created. When opening
the environment the directory to save the database file and the according locking
file has to be specified. As the LMDB is transactional the next step is to begin
a transaction. Within the transaction a database instance MDB_dbi is created
which is used for all following accesses. While this setup is sufficient to perform
the adding, retrieving and deleting of a key-value pair more complex operations
necessitate the concept of a cursor.

1 typedef struct{
2 MDB_dbi *dbi;
3 MDB_env *env;
4 MDB_cursor *cursor;
5 } db_struct ;

Listing 6.2: DM system structure where the prefix MDB indicates the
membership to the LMDB.

At the moment, the database holds only strings as keys and values namely the
external path and the internal path for a file. However, the usage of a key-value
store enables flexible adaptations to the data entries. So additional information,
e.g. the access frequency, which are vital for complex replacement strategies
can be appended without changing anything else besides a specific entry.

Replacement Handler
The replacement handler comes into play when an I/O operation, e.g. a write
call, cannot be executed because the target device has reached its maximum
capacity. It is responsible for determining which file should be moved to provide
free space to write the current file. As discussed in section 2.2.2, there are
several strategies how to find the appropriate file to move which have a severe
impact on the system’s performance. Choosing the best replacing mechanism
for a specific environment is a challenging task because it requires providing a
suitable evaluation scheme for the value of a file. The optimal one evicts the
file which will be accessed furthest in the future. This information, however,
can only be acquired by performing test runs of a specific application on a
given storage system which is not viable for most HPC applications. Therefore,
the common approach is to use past access patterns as an indicator of future
behaviour. Using the file age or the file size are rarely sensible features to

70

6.3. Implementation

predict prospective I/O as evaluated by Arpaci-Dusseau [ADAD15]. The DML
implementation currently contains the following strategies; selecting a random
file and picking the file which is least recently used given the directory path of
a certain device simulated by the FFS.

• char *get_random_file(char *device_path)

• char *get_LRU_file(char *device_path)

For realising get_random_file the number of files on the passed device is
counted. Afterwards, rand is used to generate a random number which is
then mapped to a value in the range between 1 and the current file count by
applying the modulo operator. The implementation of get_LRU_file relies
on the features of the underlying file system. The least recently used file is
determined based on the time of the last access(atime) contained in the structure
of stat system call. Whether the access time is updated regularly, depends on
the actual file system making the current implementation of the DML prone to
erroneous behaviour. This situation is highlighted in the documentation and
will be changed in future versions. However, keeping track of every file access
reimplements a lot of existing file system functionality and has therefore been
omitted for now. Replacing the least frequently used (LFU) file results in a
better performance, given it is realised efficiently, but imposes some additional
tasks and hence is scheduled for near future. LFU requires the implementation
of an access counter for every file. These counters are then managed in a heap
structure to keep the overhead for searching and accessing a file as low as
possible.

Policy Handler
While the replacement handler determines the object to move, the policy handler
is among others responsible for defining the target a movement operation.
Depending on the specified policy this can either be an adjacent device of the
same type or a device residing inside a different tier. In case of heterogeneous
tiers, it is also possible to move a file inside a tier from one device type to the
other. Therefore, inter-tier and intra-tier movement is distinguished.

• int get_target_tier(int policy)

• int get_device_in_tier(int tier_id, int policy)

The distribution policy decides the which device of a tier is selected. At
the moment, only a random distribution is supported, providing a simple

71

6. Data Migration Library

solution aiming for an even distribution but a round-robin scheme is envisaged
as well. Besides managing the distribution inside a tier, the policy handler
also administers the overall behaviour. An intuitive approach is to direct the
I/O operations towards the fastest tier and migrate the evicted files to slower
tiers. However, it may also be reasonable to separate metadata from data,
storing the former on the tier with the lowest latency as metadata is usually
small but accessed frequently. The data is then kept at the high-throughput
devices. Another task of the policy handler is to handle accesses to files which
are currently not at the fastest tier. It has to answer questions such as the
following. Should a file be moved to a faster tier when it is accessed? If so,
should this happen the first time it is accessed or only after a certain number of
accesses in a specific time interval? To which tier should this data be moved?
One can easily come up with a lot of different aspects to consider, further
increasing the complexity of the movement strategies like pre-fetching schemes.
Currently, the migration is based on the assumption that the faster tier is the
favoured target but the possibility to prioritise different tiers for different data is
in the works. The developer and the user of an application have more knowledge
of a specific application and its behaviour than a simple design like the DML’s
one can incorporate at the beginning. Therefore, providing the possibility to
allow adaptations to the policies is aimed for.

File Handler
Besides the system handler the file handler is the only component of the DM
library directly providing an interface to the application layer. It offers an API
for I/O operations which highly resemble the corresponding system call taking
exactly the same parameters as input values while returning the expected values.
These input parameters are then accordingly adapted to meet the requirements
of the FFS library.

• int dm_open_file(const char *path, int flags, mode_t mode)

• size_t dm_read_file(int fd, void *buf, size_t cnt, off_t offset)

• size_t dm_write_file(int fd, void *buf, size_t cnt, off_t offset)

In Listing 6.3 the internal procedure of the dm_open_file function is detailed.
The most essential distinction is whether the file does already exist in the FFS
system or not. In case of the latter, the file creation is straightforward and
can be simply executed on the appropriate device which is determined by the
discussed policies. The assumption in the code listing is to use any device inside
the fastest tier. After receiving the target device id the internal path is build

72

6.3. Implementation

which is then passed to ffs_open_file.
If the file is present in the FFS system two scenarios are possible; either the file
is already located on the appropriate device or it is stored elsewhere. The former
is the easy case. When the file exists on a different device which is not part
of the favoured tier or type, or in case of heterogeneous tiers both, a suitable
target device needs to be selected to which the file is moved and opened on.

1 open(path ,...){
2 if(path not in DB){
3 /* file is opened on fastest tier */
4 t_id = get_fastest_tier ();
5 new_d_id = get_device_in_tier (t_id ,RANDOM);
6
7 /* build internal path */
8 build_i_path (ext_path , new_dev_id);
9 }else{
10 old_d_id = get_dev_id_from_path (ext_path);
11 t_id = get_fastest_tier ();
12
13 /* check if file is stored inside fastest tier */
14 if(devs[old_d_id]. t_id != t_id) {
15
16 /* move file to fastest tier*/
17 old_i_path = db.value;
18
19 new_d_id = get_random_device_in_tier (t_id);
20 new_i_path = basename (mntpnt_tmp) + d_type
21 + d_name + filename ;
22 db.value = new_i_path ;
23
24 con_type = get_fastest_connection_type ();
25
26 ffs_move_file (sys , old_i_path , new_i_path ,
27 old_d_id , new_d_id , con_type);
28 }
29 }
30 fd = ffs_open_file (sys , new_i_path , flags , mode);
31 return fd;
32 }

Listing 6.3: Opening a file with a policy favouring the fastest tier

73

6. Data Migration Library

An important check, however, is not part of the listing as it leads to a signifi-
cant increase in complexity; the situation where all devices fitting the policy
criteria are filled with files that are currently opened.
One possibility is to move already opened files to a different tier. This approach
raises several issues. When an opened file is moved, the mapping in the FFS
library needs to be updated, to contain the new device id. The internal file de-
scriptor is the index of a certain mapper element providing the access. However,
the movement operation works on basis of the file path which does not supply
any information about the corresponding file descriptor because this relation is
managed by the kernel file system. Therefore, an additional structure handling
the translation of internal path to the file descriptor is necessary to update the
device id in the FFS map. Since a file can be opened several times leading to a
number of different kernel file descriptors the structure needs to hold a list of all
corresponding file descriptors. Besides the additional management requirements
moving an opened file leads to a different behaviour for the following I/O oper-
ations than expected because they are performed on a device having different
performance characteristics.
As the sudden change for sequent calls is not desirable the DML implementation
does not move opened files. So, the opening procedure for the above scenario,
where the favoured device type is not available, is performed on a different
device type. In order to check, whether all files on the favoured are already
opened the managing structure for internal paths and the corresponding file
descriptors is required, nonetheless. When enough files on the target tier are
closed they are moved to a slower tier so sufficient space is available to store
the file which was to open. Currently, the mapping between internal paths
and file descriptors does not work as it is supposed to, limiting the evaluation
possibilities. Also the automatic migration is not yet fully realised.

After discussing the possibilities where to open a file the next question is
when to open it there. At the moment, the DML does no support sophisticated
selection schemes. When a file is accessed, it is moved to the fastest tier if
possible. Even though just one single read operation might take place, this
approach is easier to implement than to track the previous application I/O
pattern and derive assumptions regarding the future accesses.

In Figure 6.4 the procedure of a write call is depicted highlighting the main
decisions. The simplest situation is writing to a file descriptor corresponding to
a file on a device with sufficient free space. If that is not the case a check is
performed whether there is sufficient space left in the storage system to avoid
endless attempts to migrate data between devices or tiers. When no free space

74

6.3. Implementation

is left available in the system an error is returned to the application indicating
the failing of the write operation. As files are currently stored contiguously on
one device without supporting the distribution of files across several devices
there might be fragmentation reducing the actually available capacity. If the
tier is not full the target device is determined based on the distribution policy
and the file is written to it. The complexity increases when the tier does not
have enough space left free. Then one or more files must be selected which
are moved to a different device either in the same or a different tier depending
on whether the tier is heterogeneous or not. Finally, the file is written to the
favoured device type inside the favoured tier.

Figure 6.4.: Flowchart for a write call to the DM library

75

6. Data Migration Library

Summary
In this chapter the functionality working atop the FFS library has been pre-
sented. The requirements for a usable interface to the application are discussed.
Also a reasonable preprocessing of the passed input values which are then for-
warded the underlying simulation is shown. Furthermore, the problems occurring
when building a model and finally an implementation for a complex system are
exemplified.

76

7. Evaluation
This chapter covers the validation and the evaluation of the FFS and the DM
library. First, the maximum performance is determined. Afterwards, a detailed
analysis on the impact of the block size is presented as well as recommendations.
Finally, the possibility to assess storage configurations is discussed.

7.1. Validation of FFS
To verify whether the libraries are sufficient for a real workload an existing I/O
benchmark and a scientific application have been modified. In Listing 7.1 the
changes made to the benchmark developed by Kuhn are shown [Kuh17b]. The
sequence of I/O operations is simple; opening a file, writing to it and closing it.
Afterwards, the file is opened again, read and finally closed. The block size as
well as the number of blocks can be passed as a parameter. The code listing
portrays how small the changes are from system calls to the usage of DML
functions.

1 fd = open(path , O_RDWR | O_CREAT , 0600);
2 fd = dm_open_file (path , O_RDWR | O_CREAT , 0600);
3
4 bytes = pwrite(fd , buf , opt_block_size ,

↪→ get_offset (thread_data , iteration + i));
5 bytes = dm_write_file (fd , buf , opt_block_size ,

↪→ get_offset (thread_data , iteration + i));
6
7 close(fd);
8 dm_close_file (fd);
9
10 bytes = dm_read_file (fd , buf , opt_block_size ,

↪→ get_offset (thread_data , iteration + i));
11 bytes = pread(fd , buf , opt_block_size ,

↪→ get_offset (thread_data , iteration + i));

Listing 7.1: I/O benchmark with adaptions to call the DML

77

7. Evaluation

In order to evaluate the FFS library the following benchmarks have been
performed. As a first step the maximum performance generally possible was
determined. This allows for a more educated decision which kind of further
analysis is appropriate. When the performance is significantly lower than it
should be the next step is to learn what causes this behaviour rather than
evaluating several topology configurations. For measuring the maximum per-
formance the device characteristics are set to a currently unreachable level so
they do not interfere with the evaluation. The device and network latencies
are defined as 1 nanosecond and the throughputs and bandwidth to 1 TB/s.
Ideally, the resulting performance would reassembles the one of the hardware
the benchmark and the simulation are running on. In the following, the test
system is presented.

• Intel Core i5-4460 CPU @ 3.20GHz

• 16 GB DIMM DDR3 Synchronous 2133 MHz

• Samsung SSD 840: 250 GB with an average reading throughput of 530
MB/s, average writing throughput of 390 MB/s

• HDD WD 10EZRX-00D: 1 TB with an average reading/writing throughput
of 150 MB/s

Figure 7.1 illustrates the performance capabilities of the used RAM evaluated
with the unmodified benchmark and of the FFS simulation which was analysed
using the adapted benchmark shown in Listing 7.1. The block size was varied
from 2048 byte to 8.4 MB. The performance was evaluated for 14 separate block
sizes for 1000 blocks. Per run 10 iterations were performed while 3 runs were
measured per block size.

The results for the benchmark running in the RAM ranged from 3.6 to 7.7
GB/s for read and from 2 GB/s to 6.2 GB/s for write operations. The simulation
starts with a significantly lower performance of 36 MB/s as the calculating
overhead makes up a larger percentage of the execution time for small block
sizes in contrast to the execution time of operations processing larger block
sizes. The maximum throughput for read operations is 6.9 GB/s and 9.2 GB/s
for write operations. While the RAM has a higher reading performance the
simulation performs better at writing data reaching the RAM performance
for a block size of 1 MB. For block sizes surpassing 1 MB the simulation of
write operations is actually faster than the RAM and about 2 GB/s faster than
the read simulation. This is an unexpected result as their implementation is
basically the same despite the I/O system call.

78

7.1. Validation of FFS

0

2,000

4,000

6,000

8,000

10,000

12,000

10,000 100,000 1,000,000

T
h
ro

u
g
h
p
u
t

in
 M

B
/s

Blocksize in Byte

write throughput
read throughput

write throughput RAM
read throughput RAM

Figure 7.1.: Maximum performance of the FFS library compared to the perfor-
mance of the unmodified benchmark running in the RAM

The performance for smaller block sizes is highlighted in Figure 7.2. Though
the performance for a few kilobyte is low it reaches a useful range to simulate
system for a block size of 100 kB and more. This is a viable result as file systems
such as Lustre use a default stripe size of 1 MB.
After establishing the validity of the internal model in FFS further analysis is
required to determine the resulting performance given a specific value in the
configuration file.
Therefore, four different read and write throughput values have been set and
evaluated with regard to several block sizes. The results are shown in Table 7.1.
As also seen in Figure 7.1 and Figure 7.2, the size of data written contiguously
to the simulated system is significantly impacting the reachable performance.

79

7. Evaluation

10

100

1,000

10,000

100,000

10,000 100,000 1,000,000

T
h
ro

u
g
h
p
u
t

in
 M

B
/s

Blocksize in Byte

write throughput
read throughput

write throughput RAM
read throughput RAM

Figure 7.2.: Maximum performance of the FFS library compared to the perfor-
mance of the unmodified benchmark running in the RAM with a
focus on the results for smaller block sizes

In order to actually achieve a throughput as specified in the configuration file
the block size has to be chosen according to the targeted value range. Reading
and writing several MB per second is possible even for block sizes of 4096 byte.
When the defined value is increased to 50 to 100 MB per second the block size
needs to be set to several thousand byte. However, the resulting performance for
higher throughput value is inside a ten percent deviation interval constituting a
viable output for block sizes between 100 and 500 kB. This block size range is
therefore recommended to gain the required performance.
The outliers notably surpassing the set value were not anticipated. A possible
explanation might be increased caching performance when the block size is
aligned to internals such as page size, cache lines or buffer sizes.

80

7.2. Validation of DML

Blocksize Write Mean Read Mean Defined value
4096 10.319 9.356 10
8192 11.411 10.171
16384 9.600 9.598
32768 9.846 9.847
65536 9.999 10.001
131072 10.068 10.067
524288 10.122 10.123
4096 32.657 29.225 50
8192 44.696 41.301
16384 50.030 45.439
32768 54.982 49.322
65536 47.215 47.064
131072 48.839 48.900
524288 47.231 47.236
4096 44.005 41.929 100
8192 65.253 58.533
16384 85.948 79.445
32768 97.196 88.251
65536 108.923 97.478
131072 94.481 93.966
524288 99.171 99.123
4096 66.610 66.094 500
8192 120.153 118.717
16384 202.728 196.133
32768 306.566 291.653
65536 412.889 383.533
131072 471.613 430.269
524288 543.122 509.507

Table 7.1.: Comparison of results of the I/O benchmark for the FFS simulation
(left) with the throughput specified in the configuration file(right)
Write and read mean values in MB/s, 10 Iterations, 1000 blocks

7.2. Validation of DML
The definition for the overhead of the DML atop the FFS is performed by
taking the first configuration setup of the FFS validation process. This way the
results can be compared to one another which enables the determination of the

81

7. Evaluation

additional overhead introduced by the DML. In Figure 7.3 and in Figure 7.4 it
is demonstrated that the performance penalty induced by the additional layer is
negligible as the achieved performance is sufficient to simulate most of today’s
hardware appropriately. As for the FFS, the DML also performs significantly
better with a block size above 100 MB which is again the recommended input
range.

0

2,000

4,000

6,000

8,000

10,000

12,000

10,000 100,000 1,000,000

T
h
ro

u
g
h
p
u
t

in
 M

B
/s

Blocksize in Byte

DML write throughput
DML read throughput

FFS write throughput
FFS read throughput

Figure 7.3.: Maximum performance of DML compared to FFS

System Configurations
Besides the I/O benchmark also the numerical application partdiff solving
partial differential equations was modified to use the FFS library and a second
version working on the DM library. This was done to evaluate the behaviour

82

7.2. Validation of DML

10

100

1,000

10,000

100,000

10,000 100,000 1,000,000

T
h
ro

u
g
h
p
u
t

in
 M

B
/s

Blocksize in Byte

DML write throughput
DML read throughput

FFS write throughput
FFS read throughput

Figure 7.4.: Maximum performance of the DML compared to FFS with a focus
on the results for smaller block sizes

not only for synthetic benchmarks which do not necessarily resemble real world
usage. partdiff has been enhanced to write checkpoints after a certain number
of iterations. When the application is terminated, e.g. due to a time limit on a
cluster, it can be restarted reading the written checkpoint as an input file and
resume calculation. The system configurations to be evaluated were configured
according to the DKRZ systems as well as the proposal by the DAOS team.
Depending on the used hardware the actual values were to be scaled down while
keeping the ratio between the sizes of the hot and the warm storage tiers.

• DKRZ System:
– RAM: 266 TB
– HDD - Lustre: 54 PB

83

7. Evaluation

– Infiniband FDR

• DAOS System:
– RAM: 266 TB
– Hot : 3 x RAM
– Warm: 20 x RAM
– Cold: 54 PB

These configuration have not been evaluated due to the problems in the DML
implementation which were discussed in section 6.3. Also the behaviour of the
random and the LRU replacement policies are not analysed for this reason. This
remains an open task to complete in the future.

Figure 7.5.: Data migration between different heterogeneous tiers in DAOS
Taken from [Dil17]

Summary
This chapter provides the validation of the FFS and the DM library and their
sufficient performance as well as further analysis on the impact of the used block
size. The benchmark and its adaptations to support the libraries are discussed
as well.

84

8. Conclusion and Future Work

This chapter recalls the initial situation and the requirements derived after re-
viewing state of the art solutions. After presenting the individual achievements,
topics to analyse further are proposed.

With the ever-increasing gap between computational power and the speed of
network and storage devices, solutions are required to lessen the I/O bottleneck
as otherwise the system’s performance is significantly reduced. Over the years a
wide range of different storage technologies has been developed, each possessing
its own set of advantages and disadvantages. In order to get the maximum
performance for a limited budget, a complex storage hierarchy is a viable
approach. This, however, leads to an increased complexity regarding the data
management. In order to maximise the system’s performance, the devices have
to be used efficiently. Therefore, sensible data migration policies are vital.
Since the appropriate systems usually execute the applications related to their
intended purpose, e.g. climate simulations, they are not available for thorough
testing and evaluation of data migrations schemes. Also, they are not accessible
to a lot of researchers leaving them without an opportunity to work on this
domain. In chapter 3 several existing proposals have been presented. While
they expose interesting and promising functionality they also lack a number
of important functions. Therefore, this thesis focussed on providing a new
approach including the missing behaviour specifications. The design of an
adequate model and the faced challenges have been shown in chapter 4. An
idea which turned out to be quite helpful was the partition of tasks into two
separate libraries. This way modifications to one of them were possible without
the need to redesign the other as well. As the design and implementation went
through various iterations this would have resulted in even more work. The
FFS library at its current state is able to emulate arbitrary device types and
devices regardless of whether they actually exist. As long as their properties
are specified within the discussed value ranging up to a scale of 1, 8x1019 they
can be represented. Also a flexible concept of interconnection is presented to
build complex hierarchies. The lacking feature of heterogeneous tiers has been
realised as well.
The design of the data migration library displayed even more challenges. As

85

8. Conclusion and Future Work

the system they are executed on can vary noticeable, finding a general model
to incorporate diverse use cases is even more demanding than designing the
FFS library. This is because the generic requirements of the DML have to be
realised on a already complex model for the emulation of storage hierarchies.
To the time of this writing, the DML supports the several replacement and
distribution concepts. They are backed by the highly capable LMDB key-value
store to manage the path mediation. Also, the interface is very user-friendly as
it does not involve the change of any of the parameters for an I/O operation.
The maximum performance of both the FFS and DML lies between 7 to 9 GB/s,
making them a viable solution to simulate hierarchical storage systems and data
migration schemes atop.

Future Work
Despite the widespread functionality of the libraries there are a lot of properties
which would drastically extend their capabilities.

• Optimizing the memory usage increases the maximum size of the emulated
system.

• Supporting large files which are distributed across several devices enhanced
the applicability for HPC systems. Adding an efficient page cache lookup
using a radix tree would also increase the overall performance

• Adapting the FFS model to a be more realistic by:
– Modelling fault tolerance respectively failing of components
– Emulating a detailed network including a model for the behaviour of

network protocols
– Enhancing the model to contain a representation for I/O nodes and

burst buffers
– Emulating delays imposed by the software stack

• Supporting parallel access makes the evaluation far more helpful to advise
the management in HPC systems as a sequential model does not contain
the most difficult decisions regarding the migration policies.

• Integrating a statistical approach and combining its behaviour with the
emulator in order to support the emulation of large-scale HPC systems on
ordinary hardware.

86

• Extend the namespace by considering arbitrary paths inside a simulated
device not only the filename

• Implementing more complex data migration policies such as pre-fetching
and automated migration to lower tiers after a certain time window passed.
Additionally, the usage of different policies for data and meta data would
allow to store the former on devices with high throughput while the latter
is held at devices with low latency.

Besides extending the libraries another interesting point would be, to compare
the performance of the FFS and DML against other implementations. Therefore,
traces could be generated from the benchmark and the numerical application
discussed in chapter 7. These can then be forwarded as input files to OGSSim or
StorageSim. Furthermore, including the FFS and DML into the implementation
of self describing data formats, e.g. HDF5, offers a valuable field of future
analysis. As a file of such a format is basically an independent file system
additional possibilities to evaluate a more fine-grained data migration schemes
would be feasible.

Summary
This chapter provides the recap of the requirements of this thesis and the separate
achievements which have been made. Additionally, several proposals for future
work are presented.

87

Bibliography
[Ada17] Adam Armstrong. Intel 545s SSD review. http://www.

storagereview.com/intel_545s_ssd_review, June 2017. last ac-
cessed: 17.09.2017.

[ADAD15] Remzi H Arpaci-Dusseau and Andrea C Arpaci-Dusseau. Operating
systems: Three easy pieces. Arpaci-Dusseau Books, 2015.

[arc] IBM Archives - IBM 350 disk storage unit. http://www-03.ibm.com/
ibm/history/exhibits/storage/storage_350.html. last accessed:
15.08.2017.

[BC05] Daniel P Bovet and Marco Cesati. Understanding the Linux Kernel:
from I/O ports to process management. " O’Reilly Media, Inc.", 2005.

[Bel66] Laszlo A. Belady. A study of replacement algorithms for a virtual-
storage computer. IBM Systems journal, 5(2):78–101, 1966.

[BNS69] Laszlo A Belady, Robert A Nelson, and Gerald S Shedler. An anomaly
in space-time characteristics of certain programs running in a paging
machine. Communications of the ACM, 12(6):349–353, 1969.

[BSSG08] John S Bucy, Jiri Schindler, Steven W Schlosser, and Gregory R
Ganger. The disksim simulation environment version 4.0 reference
manual (cmu-pdl-08-101). Parallel Data Laboratory, page 26, 2008.

[BZ02] Peter J Braam and Rumi Zahir. Lustre: A scalable, high performance
file system. Cluster File Systems, Inc, 2002.

[Che05] Ying Chen. Information valuation for information lifecycle man-
agement. In Autonomic Computing, 2005. ICAC 2005. Proceedings.
Second International Conference on, pages 135–146. IEEE, 2005.

[Com] Computer History Museum. Memory & Storage: Different
Tasks, Different Technologies. http://www.computerhistory.org/
revolution/memory-storage/8/249. last accessed: 16.08.2017.

89

http://www.storagereview.com/intel_545s_ssd_review
http://www.storagereview.com/intel_545s_ssd_review
http://www-03.ibm.com/ibm/history/exhibits/storage/storage_350.html
http://www-03.ibm.com/ibm/history/exhibits/storage/storage_350.html
http://www.computerhistory.org/revolution/memory-storage/8/249
http://www.computerhistory.org/revolution/memory-storage/8/249

Bibliography

[DBW+16] B. Dong, S. Byna, K. Wu, Prabhat, H. Johansen, J. N. Johnson, and
N. Keen. Data Elevator: Low-Contention Data Movement in Hierar-
chical Storage System. In 2016 IEEE 23rd International Conference
on High Performance Computing (HiPC), pages 152–161, December
2016.

[Dil17] Dilger, Andreas. DAOS: Scale-out Object Storage for NVRAM.
http://materials.dagstuhl.de/files/17/17202/17202.
AndreasDilger.Slides.pdf, May 2017. last accessed: 26.08.2017.

[Duw14] Kira Isabel Duwe. Comparison of kernel and user space file systems.
Universität Hamburg, 2014. Published: Online http://edoc.sub.uni-
hamburg.de/informatik/volltexte/2015/210/pdf/bac_duwe.pdf.

[EDD13] Esther Spanjer, Dan Lee, and David Hiatt. SNIA - Total Cost of
Solid State Storage Ownership, October 2013.

[JXW08] Hai Jin, Muzhou Xiong, and Song Wu. Information value evaluation
model for ILM. In Software Engineering, Artificial Intelligence, Net-
working, and Parallel/Distributed Computing, 2008. SNPD’08. Ninth
ACIS International Conference on, pages 543–548. IEEE, 2008.

[Kuh15] Michael Kuhn. Dynamically Adaptable I/O Semantics for
High Performance Computing. PhD Thesis, Universität
Hamburg, 2015. Published: Online http://ediss.sub.uni-
hamburg.de/volltexte/2015/7302/pdf/Dissertation.pdf.

[Kuh17a] Michael Kuhn. High performance i/o. https://wr.
informatik.uni-hamburg.de/_media/research/talks/2017/
2017-06-08-high_performance_i_o.pdf, June 2017. last accessed:
01.09.2017.

[Kuh17b] Michael Kuhn. Hochleistungs-ein-/ausgabe - i/o bench-
mark. https://wr.informatik.uni-hamburg.de/teaching/
sommersemester_2017/hochleistungs-ein_ausgabe, June 2017.
last accessed: 02.08.2017.

[Kuh17c] Michael Kuhn. Zukünftige Entwicklungen - Hochleistungs-
Ein-/Ausgabe. https://wr.informatik.uni-hamburg.de/
_media/teaching/sommersemester_2017/hea-17-zukuenftige_
entwicklungen.pdf, June 2017. last accessed: 15.08.2017.

[KWI+16] K. R. Krish, B. Wadhwa, M. S. Iqbal, M. M. Rafique, and A. R.
Butt. On Efficient Hierarchical Storage for Big Data Processing. In

90

http://materials.dagstuhl.de/files/17/17202/17202.AndreasDilger.Slides.pdf
http://materials.dagstuhl.de/files/17/17202/17202.AndreasDilger.Slides.pdf
https://wr.informatik.uni-hamburg.de/_media/research/talks/2017/2017-06-08-high_performance_i_o.pdf
https://wr.informatik.uni-hamburg.de/_media/research/talks/2017/2017-06-08-high_performance_i_o.pdf
https://wr.informatik.uni-hamburg.de/_media/research/talks/2017/2017-06-08-high_performance_i_o.pdf
https://wr.informatik.uni-hamburg.de/teaching/sommersemester_2017/hochleistungs-ein_ausgabe
https://wr.informatik.uni-hamburg.de/teaching/sommersemester_2017/hochleistungs-ein_ausgabe
https://wr.informatik.uni-hamburg.de/_media/teaching/sommersemester_2017/hea-17-zukuenftige_entwicklungen.pdf
https://wr.informatik.uni-hamburg.de/_media/teaching/sommersemester_2017/hea-17-zukuenftige_entwicklungen.pdf
https://wr.informatik.uni-hamburg.de/_media/teaching/sommersemester_2017/hea-17-zukuenftige_entwicklungen.pdf

Bibliography

2016 16th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing (CCGrid), pages 403–408, May 2016.

[Las07] Lash, Dan. Computer Memory Hierarchy. https://commons.
wikimedia.org/wiki/File:ComputerMemoryHierarchy.png,
September 2007. last accessed: 11.06.2017.

[Lü16] Jakob Lüttgau. Modeling and Simulation of Tape Libraries for Hier-
archical Storage Management Systems. Master’s Thesis, Universität
Hamburg, 2016. Published: Online https://wr.informatik.uni-
hamburg.de/_media/research:theses:jakob_l__ttgau_modeling_-
and_simulation_of_tape_libraries_for_hierarchical_storage_man-
agement_systems.pdf.

[Mel17] Mellanox. LinkX™ InfiniBand Active Optical Cables
. http://www.mellanox.com/products/interconnect/
infiniband-active-optical-cables.php, 2017. last accessed:
16.09.2017.

[MGST70] Richard L. Mattson, Jan Gecsei, Donald R. Slutz, and Irving L.
Traiger. Evaluation techniques for storage hierarchies. IBM Systems
journal, 9(2):78–117, 1970.

[Mä94] Christian Märtin. Rechnerarchitektur: Struktur, Organisation, Imple-
mentierungstechnik. Hanser, 1994.

[NTD+09] Dushyanth Narayanan, Eno Thereska, Austin Donnelly, Sameh El-
nikety, and Antony Rowstron. Migrating server storage to SSDs:
analysis of tradeoffs. In Proceedings of the 4th ACM European confer-
ence on Computer systems, pages 145–158. ACM, 2009.

[PCA+14] Thanumalayan Sankaranarayana Pillai, Vijay Chidambaram, Ram-
natthan Alagappan, Samer Al-Kiswany, Andrea C Arpaci-Dusseau,
and Remzi H Arpaci-Dusseau. All File Systems Are Not Created
Equal: On the Complexity of Crafting Crash-Consistent Applications.
In OSDI, pages 433–448, 2014.

[Pet06] Michael Peterson. Ilm and tiered storage. Storage Networking Industry
Association, 2006.

[Pet17] Peter Bright. Intel’s first Optane SSD: 375GB
that you can also use as RAM. https://
arstechnica.com/information-technology/2017/03/

91

https://commons.wikimedia.org/wiki/File:ComputerMemoryHierarchy.png
https://commons.wikimedia.org/wiki/File:ComputerMemoryHierarchy.png
http://www.mellanox.com/products/interconnect/infiniband-active-optical-cables.php
http://www.mellanox.com/products/interconnect/infiniband-active-optical-cables.php
https://arstechnica.com/information-technology/2017/03/intels-first-optane-ssd-375gb-that-you-can-also-use-as-ram
https://arstechnica.com/information-technology/2017/03/intels-first-optane-ssd-375gb-that-you-can-also-use-as-ram
https://arstechnica.com/information-technology/2017/03/intels-first-optane-ssd-375gb-that-you-can-also-use-as-ram

Bibliography

intels-first-optane-ssd-375gb-that-you-can-also-use-as-ram,
Mar 2017. last accessed: 17.09.2017.

[Poo00] Ralph Spencer Poore. Valuing information assets for security risk
management. Information Systems Security, Auerbach Publications,
9(4), 2000.

[PS04] Peterson, Michael and St. Pierre, Edgar. Information Lifecycle Man-
agement Roadmap, October 2004.

[Ray17] Raymond, Eric S. The Lost Art of C Structure Packing. http://
www.catb.org/esr/structure-packing/, June 2017. last accessed:
25.08.2017.

[RG10] Aditya Rajgarhia and Ashish Gehani. Performance and extension of
user space file systems. In Proceedings of the 2010 ACM Symposium
on Applied Computing, pages 206–213. ACM, 2010.

[Ryz17] Ryzen Review. AMD Ryzen Review and Bench-
marks – 2-channel DDR4 Cache and Memory Per-
formance. http://www.sisoftware.eu/2017/04/05/
amd-ryzen-review-and-benchmarks-cache-and-memory/, April
2017. last accessed: 17.09.2017.

[Sam16] Samsung. Samsung 960 Pro M2 NVMe SSD Review. http://www.
storagereview.com/samsung_960_pro_m2_nvme_ssd_review/, Oc-
tober 2016. last accessed: 17.09.2017.

[Sea16] Seagate. Enterprise Capacity 2.5 HDD - Datenblatt.
http://www.seagate.com/www-content/product-content/
enterprise-hdd-fam/enterprise-capacity-2-5-hdd/en-us/
docs/ent-capacity-2-5-hdd-ds1719-8-1602de.pdf, 2016. last
accessed: 15.08.2017.

[SH02] Frank B Schmuck and Roger L Haskin. GPFS: A Shared-Disk File
System for Large Computing Clusters. In FAST, volume 2, 2002.

[SMM10] Ketan Shah, Anirban Mitra, and Dhruv Matani. An O (1) algorithm
for implementing the LFU cache eviction scheme. dhruvbird. com/lfu.
pdf, pages 1–8, 2010.

[SPBW10] Gokul Soundararajan, Vijayan Prabhakaran, Mahesh Balakrishnan,
and Ted Wobber. Extending SSD Lifetimes with Disk-Based Write
Caches. In FAST, volume 10, pages 101–114, 2010.

92

https://arstechnica.com/information-technology/2017/03/intels-first-optane-ssd-375gb-that-you-can-also-use-as-ram
https://arstechnica.com/information-technology/2017/03/intels-first-optane-ssd-375gb-that-you-can-also-use-as-ram
http://www.catb.org/esr/structure-packing/
http://www.catb.org/esr/structure-packing/
http://www.sisoftware.eu/2017/04/05/amd-ryzen-review-and-benchmarks-cache-and-memory/
http://www.sisoftware.eu/2017/04/05/amd-ryzen-review-and-benchmarks-cache-and-memory/
http://www.storagereview.com/samsung_960_pro_m2_nvme_ssd_review/
http://www.storagereview.com/samsung_960_pro_m2_nvme_ssd_review/
http://www.seagate.com/www-content/product-content/enterprise-hdd-fam/enterprise-capacity-2-5-hdd/en-us/docs/ent-capacity-2-5-hdd-ds1719-8-1602de.pdf
http://www.seagate.com/www-content/product-content/enterprise-hdd-fam/enterprise-capacity-2-5-hdd/en-us/docs/ent-capacity-2-5-hdd-ds1719-8-1602de.pdf
http://www.seagate.com/www-content/product-content/enterprise-hdd-fam/enterprise-capacity-2-5-hdd/en-us/docs/ent-capacity-2-5-hdd-ds1719-8-1602de.pdf

Bibliography

[Ste09] Stephen Lawson. Two rival supercomputers duke it
out for top spot. http://news.idg.no/cw/art.cfm?id=
FB70C2C5-1A64-6A71-CEEA6C17D51B1E3C, Nov 2009. last ac-
cessed:.

[SVSA06] Gauri Shah, Kaladhar Voruganti, Piyush Shivam, and Maria Alvarez.
Ace: Classification for information lifecycle management. NASA Mass
Storage Systems and Technologies, 2006.

[TFLS08] Lars Arne Turczyk, Christian Frei, Nicolas Liebau, and Ralf Stein-
metz. Eine Methode zur Wertzuweisung von Dateien in ILM. In
Multikonferenz Wirtschaftsinformatik, 2008.

[THBS06] Lars Arne Turczyk, Oliver Heckmann, Rainer Berbner, and Ralf
Steinmetz. A formal approach to Information Lifecycle Manage-
ment. In Proceedings of 17th Annual IRMA International Conference,
Washington DC, 2006.

[Ton10] Tony Pearson. The Correct Use of the term Nearline.
https://www.ibm.com/developerworks/community/blogs/
InsideSystemStorage/entry/the_correct_use_of_the_term_
nearline2?lang=en, October 2010. last accessed: 16.08.2017.

[TOP17] TOP500. TOP500 List. https://www.top500.org/statistics/
list/, July 2017. last accessed: 15.08.2017.

[WA10] Fons Wijnhoven and Chintan Amrit. Evaluating the Applicability of
a Use Value-Based File Retention Method. In Proceedings of SIGSVC
Workshop, pages 10–118, 2010.

[Wik17a] Wikipedia. 3D XPoint. https://de.wikipedia.org/wiki/3D_
XPoint, 2017. last accessed: 17.09.2017.

[Wik17b] Wikipedia. Ethernet. https://de.wikipedia.org/wiki/Ethernet,
Aug 2017. last accessed: 15.09.2017.

[Wik17c] Wikipedia. Flash Speicher. https://de.wikipedia.org/wiki/
Flash-Speicher#Anzahl_der_L.C3.B6schzyklen, September 2017.
last accessed: 17.09.2017.

[Wik17d] Wikipedia. InfiniBand. https://de.wikipedia.org/wiki/
InfiniBand, Jul 2017. last accessed: 17.09.2017.

[Wik17e] Wikipedia. Random Access Memory. https://de.wikipedia.org/
wiki/Random-Access_Memory, 2017. last accessed: 16.09.2017.

93

http://news.idg.no/cw/art.cfm?id=FB70C2C5-1A64-6A71-CEEA6C17D51B1E3C
http://news.idg.no/cw/art.cfm?id=FB70C2C5-1A64-6A71-CEEA6C17D51B1E3C
https://www.ibm.com/developerworks/community/blogs/InsideSystemStorage/entry/the_correct_use_of_the_term_nearline2?lang=en
https://www.ibm.com/developerworks/community/blogs/InsideSystemStorage/entry/the_correct_use_of_the_term_nearline2?lang=en
https://www.ibm.com/developerworks/community/blogs/InsideSystemStorage/entry/the_correct_use_of_the_term_nearline2?lang=en
https://www.top500.org/statistics/list/
https://www.top500.org/statistics/list/
https://de.wikipedia.org/wiki/3D_XPoint
https://de.wikipedia.org/wiki/3D_XPoint
https://de.wikipedia.org/wiki/Ethernet
https://de.wikipedia.org/wiki/Flash-Speicher#Anzahl_der_L.C3.B6schzyklen
https://de.wikipedia.org/wiki/Flash-Speicher#Anzahl_der_L.C3.B6schzyklen
https://de.wikipedia.org/wiki/InfiniBand
https://de.wikipedia.org/wiki/InfiniBand
https://de.wikipedia.org/wiki/Random-Access_Memory
https://de.wikipedia.org/wiki/Random-Access_Memory

Bibliography

[WLC+14] Lipeng Wan, Zheng Lu, Qing Cao, Feiyi Wang, Sarp Oral, and
Bradley Settlemyer. SSD-optimized workload placement with adaptive
learning and classification in HPC environments. In Mass Storage
Systems and Technologies (MSST), 2014 30th Symposium on, pages
1–6. IEEE, 2014.

[YWH+13] Jinsoo Yoo, Youjip Won, Joongwoo Hwang, Sooyong Kang, Jongmoo
Choil, Sungroh Yoon, and Jaehyuk Cha. Vssim: Virtual machine
based ssd simulator. In Mass Storage Systems and Technologies
(MSST), 2013 IEEE 29th Symposium on, pages 1–14. IEEE, 2013.

[ZCD+10] Gong Zhang, Lawrence Chiu, Clem Dickey, Ling Liu, Paul Muench,
and Sangeetha Seshadri. Automated lookahead data migration in
SSD-enabled multi-tiered storage systems. In Mass Storage Systems
and Technologies (MSST), 2010 IEEE 26th Symposium on, pages 1–6.
IEEE, 2010.

[ZOS+04] Erez Zadok, Jeffrey Osborn, Ariye Shater, Charles P Wright, Kiran-
Kumar Muniswamy-Reddy, and Jason Nieh. Reducing Storage Man-
agement Costs via Informed User-Based Policies. In MSST, pages
193–197, 2004.

94

Appendices

95

A. Measurements

Maximum Performance FFS

Blocksize Write Mean Write Stddev Read Mean Read Stddev
2048 36.088 1.123 36.270 0.965
4096 72.073 2.260 73.390 1.132
8192 144.324 2.812 145.967 2.393
16384 282.813 9.828 282.115 9.970
32768 553.883 21.726 556.562 4.455
65536 1042.738 44.765 1034.728 8.665
131072 1879.144 137.301 1804.310 43.362
262144 3187.942 370.653 2964.240 99.895
524288 5139.507 466.636 4438.622 89.431
1048576 6686.209 890.588 5819.562 173.233
2097152 7926.003 1013.281 6913.679 210.910
4194304 7977.956 972.291 6815.998 259.577
8380000 9212.609 1189.637 6508.697 208.138

Table A.1.: Maximum Performance of FFS system : write and read mean values
and standard deviation in MB/s. 10 Iterations per run, 3 runs per
blocksize, 1000 blocks

96

Blocksize Write Mean Write Stddev Read Mean Read Stddev
2048 1996.075 671.981 3631.743 1122.115
4096 3623.084 947.534 5444.835 1157.366
8192 3019.589 828.520 4223.573 916.543
16384 4426.516 800.021 5365.683 913.904
32768 4820.951 1065.860 6093.620 900.049
65536 5303.987 974.462 6821.442 675.665
131072 5877.755 593.770 7272.236 295.132
262144 6166.008 272.414 7388.007 43.758
524288 6115.949 480.432 7582.957 120.955
1048576 6257.520 246.122 7711.123 22.404
2097152 6219.798 245.156 7678.670 32.786
4194304 6107.757 186.597 6797.876 26.529
8380000 6202.635 71.733 6501.863 23.740

Table A.2.: Maximum Performance of RAM with unmodified benchmark
Write and read mean values and standard deviation in MB/s.

10 Iterations, 1000 blocks

Maximum Performance DML

Blocksize Write Mean Write Stddev Read Mean Read Stddev
2048 34.521 0.905 34.947 0.450
4096 68.690 1.381 69.120 1.551
8192 134.621 5.024 136.548 4.309
16384 269.369 7.270 269.341 8.399
32768 519.283 21.030 523.509 11.636
65536 1000.626 34.701 982.928 17.063
131072 1788.819 143.949 1745.243 57.625
262144 3107.953 229.253 2887.924 57.095
524288 4599.878 520.169 4282.770 110.901
1048576 6356.614 579.948 5714.211 160.864
2097152 7364.123 874.712 6717.032 218.934
4194304 7952.183 953.073 6802.950 285.738
8380000 9237.149 1201.675 6491.406 210.363

Table A.3.: Maximum Performance of DML with static device without network
overhead

Write and read mean values and standard deviation in MB/s.
10 Iterations per run, 3 runs, 1000 blocks

97

B. Library APIs

B.1. FFS
API

SYSTEM HANDLER:

• system_struct* ffs_initialise_system(const char *mntpnt_tmpfs)

• void ffs_finalise_system(system_struct *system)

CONFIG HANDLER:

• int ffs_save_system_to_config_file(system_struct *system,
const char *path_for_new_file)

• int ffs_build_system_from_config_file(system_struct *system,
const char *path_to_config_file)

HSM HANDLER:

• tier_id ffs_create_tier(system_struct *system,
const char *name, char *dev_type, char *con_type)

• int ffs_delete_tier(system_struct *system, tier_id t_id)

• int ffs_assign_dev_to_new_tier(system_struct *system,
tier_id old_t_id, tier_id new_t_id, dev_id d_id)

• int ffs_delete_dev_from_tier(system_struct *system,
tier_id t_id, dev_id d_id)

• int ffs_add_connection_type(system_struct *system,
const char *new_type, uint64_t latency, uint64_t bandwidth)

• int ffs_delete_connection_type(system_struct *system,
const char *type)

DEVICE HANDLER:

98

B.1. FFS

• int ffs_add_device_type(system_struct *system,
const char *new_type, uint64_t r_ltncy, uint64_t w_ltncy,
uint64_t r_thrghpt, uint64_t w_thrghpt, uint64_t capacity)

• int ffs_delete_device_type(system_struct *system,
const char *type)

• dev_id ffs_create_device(system_struct *system,
const char *name, char *type, tier_id t_id)

• int ffs_delete_device(system_struct *system, dev_id d_id)

FILE HANDLER:

• int ffs_open_file(system_struct *system, const char *path,
int flags,mode_t mode)

• int ffs_close_file(system_struct *system, int fd)

• int ffs_create_file(system_struct *system, const char *path,
mode_t mode)

• int ffs_copy_file(system_struct *system, const char *path,
const char *path_for_copy)

• int ffs_delete_file(system_struct *system, const char *path)

• size_t ffs_read_file(system_struct *system, int fd, void *buf,
size_t cnt, off_t offset)

• size_t ffs_write_file(system_struct *system, int fd, void *buf,
size_t cnt, off_t offset)

• int ffs_import_file(system_struct *system,
const char *external_path, const char *internal_path)

• int ffs_export_file(system_struct *system,
const char *internal_path, const char *external_path)

• int ffs_move_file(system_struct *system, const char *src_path,
const char *dest_path, int src_dev_id,
int dest_dev_id, const char *con_type)

99

B. Library APIs

Configuration File

1 # === SYSTEM SPECIFICATIONS ===
2
3 [system]
4 Current local time and date=
5 # --- System defines ---
6 MAX_NR_DEV_TYPES = // int
7 MAX_NR_CON_TYPES = // int
8 MAX_NR_TIERS = // int
9 MAX_NR_DEVS = // int

10 MAX_NR_FD = // int
11 MAX_PATH_LENGTH = // int
12 MAX_NAME_LENGTH = // int
13 MAX_NR_DEVS_PER_TIER = // int
14 #
15 # --- System characteristics ---
16 mntpnt= // string
17 persistent = // int
18 savepnt = // string
19 dev_type_cnt = // int
20 con_type_cnt = // int
21 tier_cnt = // int
22 dev_cnt = // int
23 max_tier_id = // int
24 max_dev_id = // int
25 sum_capacity = // uint64 [B]
26 # list of device ids
27 dev_ids = // int;int;int
28 # list of tier ids
29 tier_ids = // int;int;int
30
31 # --- Following section lists all existing device

↪→ types ---
32 [dt_i]
33 dt_name = // string
34 r_ltncy = // uint64 [nsec]
35 w_ltncy = // uint64 [nsec]
36 r_thrghpt = // uint64 [B/s]
37 w_thrghpt = // uint64 [B/s]

100

B.1. FFS

38 capacity = // uint64 [B]
39
40 # --- Following section lists all existing devices ---
41 [d_id_j]
42 d_name= // string
43 dev_type = // string
44 tier_id = // int
45
46 # --- Following section lists all existing tiers ---
47 [t_id_k]
48 t_name= // string
49 # list of device ids belonging to this tier
50 dev_ids = // int;int;int
51 dev_in_tier_cnt = // int
52 is_homogenous = // int [0/1]
53 d_type= // string
54 c_type= // string
55
56 # --- Following section lists all existing connection

↪→ types ---
57 [ct_l]
58 ct_name = // string
59 ltncy= // uint64 [nsec]
60 bandwidth = // uint64 [Bit/s]

Listing B.1: Config file structure

The following is a short example file with actual values.
1 # === SYSTEM SPECIFICATIONS ===
2
3 [system]
4 Current local time and date=Mon Jul 17 15:57:21 2017\n
5 # --- System defines ---
6 MAX_NR_DEV_TYPES =50
7 MAX_NR_CON_TYPES =50
8 MAX_NR_TIERS =20
9 MAX_NR_DEVS =40
10 MAX_NR_FD =200
11 MAX_PATH_LENGTH =256
12 MAX_NAME_LENGTH =256
13 MAX_NR_DEVS_PER_TIER =256

101

B. Library APIs

14 # --- System characteristics ---
15 mountpoint =/ home/ testmountpoint
16 dev_type_cnt =2
17 con_type_cnt =1
18 tier_cnt =2
19 dev_cnt =2
20 max_tier_id =1
21 max_dev_id =2
22 sum_capacity =5920000000000
23 # list of device ids
24 dev_ids =0;1;
25 # list of tier ids
26 tier_ids =0;1;
27
28 # --- Following section lists all existing device

↪→ types ---
29 [dt_0]
30 dt_name = Seagate_SSD
31 r_ltncy =135000
32 w_ltncy =59000
33 r_thrghpt =560000000
34 w_thrghpt =430000000
35 capacity =1920000000000
36
37 [dt_1]
38 dt_name = Barracuda
39 r_ltncy =8500000
40 w_ltncy =9500000
41 r_thrghpt =156000000
42 w_thrghpt =156000000
43 capacity =4000000000000
44
45 # --- Following section lists all existing devices ---
46 [d_id_0]
47 d_name= device1
48 d_type= Seagate_SSD
49 tier_id =0
50
51 [d_id_1]
52 d_name= device2

102

B.1. FFS

53 d_type= Barracuda
54 tier_id =0
55
56 # --- Following section lists all existing tiers ---
57 [t_id_0]
58 t_name= test_tier
59 # list of device ids belonging to this tier
60 dev_ids =0;
61 dev_in_tier_cnt =1
62 is_homogenous =1
63 d_type= Seagate_SSD
64 c_type= Infiniband_EDR
65
66 [t_id_1]
67 t_name= test_tier2
68 # list of device ids belonging to this tier
69 dev_ids =1
70 dev_in_tier_cnt =1
71 is_homogenous =1
72 d_type= Barracuda
73 c_type= Infininband_EDR
74
75 # --- Following section lists all existing connection

↪→ types ---
76 [ct_0]
77 ct_name = Infiniband_EDR
78 ltncy =500
79 bandwidth =300000000000

Listing B.2: Config file structure

103

B. Library APIs

B.2. DML
API

SYSTEM HANDLER:

• int dm_initialize_system(const char *mntpnt_tmpfs,
const char *config_file, const char *db_dir

• void dm_finalize_system(const char *mntpnt_tmpfs)

DB HANDLER:

• int initialize_db(dm_system *system, const char *db_directory)

• int finalize_db(dm_system *system)

• char * get_internal_path_from_db(const char *extern_path, const
char *intern_path)

• char * put_external_path_to_db(const char *extern_path, const
char *intern_path)

FILE HANDLER:

• int dm_open_file(const char *path, int flags, mode_t mode)

• int dm_close_file(int fd);

• int dm_create_file(const char *path, mode_t mode)

• int dm_copy_file(const char *path,const char *path_for_copy)

• int dm_delete_file(const char *path)

• size_t dm_read_file(int fd, void *buf, size_t cnt, off_t off-
set)

• size_t dm_write_file(int fd, void *buf, size_t cnt, off_t off-
set)

REPLACEMENT HANDLER:

• char *get_random_file(char *device_path)

• char *get_LRU_file(char *device_path)

POLICY HANDLER:

104

B.2. DML

• int get_device_in_tier(int tier_id, int policy)

• int get_target_tier(int policy)

105

B. Library APIs

106

Acronyms
AMAT Average Memory Access Time. 13

API Application Programming Interface. 7, 36, 46

Btrfs B-tree file system. 8

CPU Central Processing Unit. 9, 10

CSMA/CD Carrier Sense Multiple Access Collision Detection. 20

DRAM Dynamic RAM. 17

FDDI Fiber Distributed Data Interface. 20

FIFO First In, First Out. 14–16

FS File System. 7

FUSE File System in Userspace. 7

GB Giga Byte (1 000 000 000 Bytes). 10

GPFS General Parallel File System. 8

HDD Hard Disk Drive. 10, 12, 18, 37, 43

HPC High Performance Computing. 8

HSM Hierarchical Storage Management. 5, 22, 36, 37, 43, 44

I/O Input and Output. 1, 8, 11

IEEE Institute of Electrical and Electronics Engineers. 20

ILM Information Lifecycle Management. 22

JBOD Just a Bunch Of Disks. 29

107

Acronyms

kB Kilo Byte (1 000 Bytes). 10

LFU Least Frequently Used. 4, 14, 15

LMDB Lightning Memory-mapped Database. 64

LRU Least Recently Used. 4, 14–16, 30

MAID Massive Array of Idle Drives. 12

MB Mega Byte (1 000 000 Bytes). 9, 10

NFS Nework File System. 8

NRU Not Recently Used. 14

NVRAM Non Volatile Random Access Memory. 1, 10

OIVE Output of Information Value Evaluation. 23, 24

OS Operating System. 13

PB Peta Byte (1 000 000 000 000 000 Bytes). 9

PFS disk-based Parallel File System. 3

POSIX Portable Operating System Interface. 7

RAID Redundant Array of Independent Disks. 29

RAM Random Access Memory. 2, 10, 16

RPM Rotations Per Minute. 18

SNIA Storage Networking Industry Association. 23

SNIA-DMF Storage Networking Industry Association Data Management Fo-
rum. 22

SRAM Static RAM. 16

SSD Solid State Drive. 10

TB Tera Byte (1 000 000 000 000 Bytes). 10, 11

108

Acronyms

VFS Virtual File System. 7, 8

WORO Write Once, Read Occasionally. 12

ZeroMQ Zero Message Queue. 29

ZFS Zettabyte File System. 8

109

List of Figures
1.1. I/O Performance Gap . 2
1.2. HPC Storage Hierarchy . 3

2.1. Parallel Distributed File System Architecture 9
2.2. Memory Hierarchy . 10
2.3. Evaluation of Replacement Strategies 16
2.4. InfiniBand Roadmap . 22
2.5. ILM Roadmap . 24

4.1. Library Layering of FFS and DML 38

5.1. FFS Library . 43
5.2. Directory Tree of the FFS . 45
5.3. Component Interaction in the FFS Library 49

6.1. Location of the DML . 64
6.2. Component Interaction in the DML 66
6.3. Interaction between FFS and DML 68
6.4. Flowchart for the DML write operation 75

7.1. Overview Maximum Performance FFS vs RAM 79
7.2. Maximum Performance of FFS vs RAM Focus on small Block Sizes 80
7.3. Maximum performance of DML compared to FFS 82
7.4. Maximum Performance of DML vs FFS with Focus on small

Block Sizes . 83
7.5. Data migration between different heterogeneous tiers in DAOS . 84

112

List of Listings

5.1. Basic procedure for the simulation of an I/O operation 47
5.2. Struct for the system handler representing the general structure

of the system . 52
5.3. Structure for the detailed system definitions with the default

values annotated . 52
5.4. Creating a system without the configuration handler illustrating

the order they need to be executed in. 53
5.5. This listing shows an extract of a configuration file where ‘//’

mark annotations that are not present in an actual configuration
file. 54

5.6. Device Type structure containing the device information which
does not change over time . 55

5.7. Device Struct representing the time-dependant state of a device 56
5.8. Connection Type Struct . 57
5.9. Tier Struct . 58
5.10. Mapping structure . 59
5.11. Implementation of file descriptor management and I/O operations 60

6.1. DM system structure where the prefix MDB indicates the mem-
bership to the LMDB. 69

6.2. DM system structure where the prefix MDB indicates the mem-
bership to the LMDB. 70

6.3. Opening a file with a policy favouring the fastest tier 73

7.1. I/O benchmark with adaptions to call the DML 77

B.1. Config file structure . 100
B.2. Config file structure . 101

115

List of Tables
2.1. Device Latencies . 12
2.2. Signalling Rate of InfiniBand 22
2.3. Assessment of Migration Policies 27

7.1. Results for specific Configuration Values 81

A.1. Maximum Performance of FFS system : write and read mean
values and standard deviation in MB/s. 10 Iterations per run, 3
runs per blocksize, 1000 blocks 96

A.2. Maximum Performance of RAM with unmodified benchmark . . 97
A.3. Maximum Performance of DML with static device without net-

work overhead . 97

118

Eidesstattliche Versicherung
Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit im Stu-
diengang Master Informatik selbstständig verfasst und keine anderen als die
angegebenen Hilfsmittel – insbesondere keine im Quellenverzeichnis nicht benann-
ten Internet-Quellen – benutzt habe. Alle Stellen, die wörtlich oder sinngemäß
aus Veröffentlichungen entnommen wurden, sind als solche kenntlich gemacht.
Ich versichere weiterhin, dass ich die Arbeit vorher nicht in einem anderen
Prüfungsverfahren eingereicht habe und die eingereichte schriftliche Fassung der
auf dem elektronischen Speichermedium entspricht.

Ort, Datum Unterschrift

Veröffentlichung
Ich bin damit einverstanden, dass meine Arbeit in den Bestand der Bibliothek
des Fachbereichs Informatik eingestellt wird.

Ort, Datum Unterschrift

	Introduction
	Motivation
	State of the Art
	Goals
	Thesis Outline

	Background
	File Systems
	Essentials
	File System Types

	Storage Hardware
	Memory Hierarchy
	Storage and Network Technologies
	Ethernet
	InfiniBand

	HSM and ILM
	Information Value Evaluation Modelling
	Evaluation Criteria for Data Migration Policies

	Related Work
	Simulation Tools
	DUX
	OGSSim
	StorageSim

	Design
	Modelling
	FFS - Simulation of HSM
	FFS - File System Functionality
	DML - Data Migration on HSM

	FFS - Simulating HSM & FS
	Internal Design
	Directory Tree Representation
	HSM Simulation
	FS-Functionality
	Data Migration Support

	Implementation
	Component Interaction
	System Handler
	Configuration Handler
	Device Handler
	HSM Handler
	File Handler

	Data Migration Library
	Overview
	Design
	Implementation

	Evaluation
	Validation of FFS
	Validation of DML

	Conclusion and Future Work
	Bibliography
	Appendices
	Measurements
	Library APIs
	FFS
	DML

	Acronyms
	List of Figures
	List of Listings
	List of Tables

