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1. Introduction

Treebanks are a fundamental resource for natural language processing as they are used
for part-of-speech taggers and dependency parsers. They are also relevant in other areas
of linguistic research. Knowledge about the syntactic structure of a language is made
accessible to algorithms as empiric data. Treebanks can contain hundreds of thousands
of sentences, annotated manually in a work-intensive procedure and as such they are a
precious resource. The annotation schema of the treebank is just as important as the
data itself, as it has to be decided in advance and is then used to annotate a significant
number of sentences. It determines how syntactic structure is encoded, which relations
between words are recognized and distinguished. The set of tags and labels used in the
schema is the same as it is later in a parser or tagger trained on the treebank. The schema
can already be geared towards a certain use, or involve certain assumptions which might
change at some point in time. Because the annotation schema is applied to all sentences
in the treebank involving a lot of manual labor, making changes to the schema can be
difficult, as the changes have to be applied to all sentences in the treebank as well.

1.1. The Problem of Large-Scale Dependency Tree Conversion

Treebanks are occasionally modified to fix errors which have been made in the initial
annotation, these changes involve only single trees. Large numbers of trees only have
to be edited if the annotation schema used changes, which is the case if a schema is
modified to include a distinction that was not recognized previously, certain structures
are annotated differently or when a completely new schema should be used. While the
annotations might have been created manually initially, updating each individual tree
manually again is a disproportionate amount of work because of the sheer size of the
data to be adapted. Depending on the changes to the schema, a lot of restructuring is
repetitive and can be automated. In cases where the whole schema is changed, there is
already syntactic information in each tree, the representation of this information is just
changed, which does not require as much human intervention as a schema modification.
Automatic conversion on the other hand can be difficult if the source schema is less
detailed than the target schema, as it is the case when a schema is modified to include
a previously untreated distinction. In the case of — for example — splitting up a label,
the modification is introduced explicitly to provide information that was not available
or inferable previously, making completely automatic conversion intrinsically difficult.
But also in this case, a lot of the decisions can be automated based on context, and a
human annotator should only be faced with the difficult, ambiguous decisions, reducing
the workload as much as possible.




1. Introduction

Conversion errors can be introduced either way. Human annotators might introduce
inconsistencies, especially if the treebank is edited by multiple people, but errors made
previously would be noted in the process. Automatic conversion is more consistent but
can include systemic errors.

Because these schema conversions are applied only once, the software used for the
conversion process is often developed ad-hoc, making it less reusable for other treebanks.
Although every conversion process is distinct, the basic principles are reused. Because
the resulting treebank is more important than the conversion process itself, the software
supporting the conversion needs to be as reliable as possible; powerful, yet constrained
enough to not introduce any errors, making the process safer. It should support an
intuitive model of the conversion process and the work presented will show that large
parts of the conversion process can be dealt with without programming knowledge. This
allows for a wider range of users, including people with a background in linguistics, who
might be more suited for the conversion task because of their linguistic knowledge, but
are not able to automate the repetitive parts. The repetitive nature of the conversion
process points to the use of a rule-based system, converting patterns found in the source
treebank to corresponding patterns in the target treebank.

1.2. Example: Converting the Hamburg Dependency Treebank
to Universal Dependencies

To develop such a tool, I used the Hamburg Dependency Treebank (HDT) (Foth et al.
2014) as an example of a large treebank which should be converted, in this case to the
Universal Dependencies (UD) annotation schema (McDonald et al. 2013). The HDT is
a very large treebank with over 200k sentences and a detailed annotation schema native
to German. The UD annotation schema on the other hand seeks to be applicable to
all languages and features less labels and tags. It is a content-head schema in contrast
to the HDT schema which is function-head. This means that not only the set of tags
and labels differs, but the structure also changes, from having function words as the
heads of subtrees to making their content-bearing words the heads. Figure 1.1 shows
a sentence from the HDT annotated with both schemes, illustrating the differences in
tagset and structure. The first three words of the sentence form a prepositional phrase,
in which originally the preposition is the head and in UD, the noun is the head, having
the adjective and the preposition as dependents. Both schemes feature an ’auxiliary’
relation between the two verbs of the sentence, but the direction of the edge is inverted
in the UD tree. While at first sight a transformation based on multiple systematic local
conversions seems difficult, I will show that systematic conversion steps can be found
and formalized, based on the local subtree groups of the tree.

Taking a specific conversion task as a foundation for the development of a tool ensures
that the tool will be tailored to the task at hand and it also provides an immediate testing
situation and a basis for evaluation of the tool. However the present work focuses on the
tool and the underlying formalism instead of the conversion of the treebank, the HDT
will only be used as an example trough out the development of the tool.




1.2. Example: Converting the Hamburg Dependency Treebank to Universal Dependencies

An laufenden Kosten wlrden etwa 400 Mark pro Jahr auflaufen

oot

An laufenden Kosten wulrden etwa 400 Mark pro Jahr auflaufen

Figure 1.1.: An example sentence taken from the HDT and annotated manually with
the UD tagset. The most notable changes include the different root node
and the different structure of prepositional phrases (“An laufenden Kosten”,
“pro Jahr”).







2. Related Work

The presented work is linked to different research areas. Immediately related are the
many treebank conversion publications, published since the inception of the UD project.
Various conversion techniques have been applied, although some overlaps can be ob-
served. Existing supporting conversion software ranges from rigid rule based conversion
systems to software libraries supporting the work with dependency trees. Some overlap
can be found in other research areas concerned with transformations of tree structures
like XML data structures. In natural language processing, machine translation is also
concerned with transforming sentences and their syntactic structures; transformations
based on syntax trees have been explored too, although machine translation frequently
uses phrase structure trees instead of dependency trees which are used here.

A paper about the work presented here has been published at the Univeral Dependen-
cies Workshop at the NoDaLiDa Conference 2017 (Hennig and Kéhn 2017), from which
the Figures 3.1, 3.7 and 4.1 are taken.

2.1. Treebank Conversion so Far

Annotated corpora as a foundation for parsers have been around for a while, but the
modification of the schemes used is a more recent development. The Universal Dependen-
cies project (McDonald et al. 2013) has led to a number of treebank conversions, where
native treebanks were converted to Universal Dependencies (e.g. Danish (Johannsen,
Alonso, and Plank 2015), Norwegian (@vrelid and Hohle 2016), Swedish (Nivre 2014;
Ahrenberg 2015) and Hindi (Tandon et al. 2016)). Treebanks previously had annotation
schemes tailored specifically to the language of the treebank. UD strives to establish an
annotation schema which applies to all languages universally to facilitate multi-language
parsing and support other cross-lingual research areas such as machine translation. Most
treebanks, like the HDT, are annotated with a function-head schema, because it directly
reflects the syntactic structure of the language. Function-head means that function words
introducing phrases are used as the head of the subtree annotating the phrase. While
this approach seems sensible when looking at a single language, it translates poorly to
a cross-lingual approach. UD applies a content-head schema instead, meaning that the
content-bearing word of a subtree is used as its head, while words without important
content are attached below, with relations indicating that these words are markers or
particles. Some languages contain functions words, others work heavily based on inflec-
tions of the content word. All languages contain the content words, thus a tree using
these words as the head will be more similar to other trees in different languages.
Since this is a recent development in the research area, there has not been any research
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in the direction of efficient and safe treebank conversion. The conversion process goes
beyond the renaming of labels, as the function-head structures have to be transformed to
content-head structures, which, depending on the source annotation schema can change
the tree structure to a large extend. In the published research about treebanks that have
been converted to Universal Dependencies, different approaches can be found, as it is
expected since the underlying treebanks differ. As the software used to convert will not
be used after the conversion is finished, there is little incentive to put a lot of work into
the software, leading to many ad-hoc solutions. Some similarities can still be observed,
while details of the process often remain unpublished, as they are not central to the
result, which means that scripts are not published and the processes only outlined.

For the published software, conversion is usually done in a single script, divided into
multiple sections. The script may rely on other tools to support the process, of which
two will be discussed in the next section, or conversion is done on a low abstraction level,
sometimes even working directly on the CoNLL files. All conversion rely on additional
human annotation afterwards to treat edge cases in the annotations. The software
can mark unusual structures, but tool support to modify the trees marked for manual
adjustments is rare or not mentioned in the publications.

2.1.1. Supporting Tools

The Finnish Turku dependency treebank was converted to UD by Pyysalo et al. (2015),
the used script involved dep2dep' a rule-based conversion tool with its own syntax.
rules are converted to prolog code and applied to the dependency trees. The rules use
constraints to match edges in the tree and convert them, it allows to match structures
of multiple edges at once, edges can be matched anywhere in the tree.

Tyers and Sheyanova (2017) convert North Sdmi to UD with a rule pipeline imple-
mented as XSLT rules. XSLT is a programming language for the transformation of
XML documents, which are also trees. XSLT is declarative and rule-based as well and
the conversion rules are formulated in XML.

Ribeyre, Seddah, and Villemonte de la Clergerie (2012) outline a two step process
where the rules to be applied are determined in the first step and are then iteratively
applied in the second with meta-rules handling conflicting rule applications.

Neither of these approaches can inherently guarantee well-formed tree output, which
is due to modifying the tree at arbitrary points, a directed approach inherently prevents
loops, which is not the case here. All three tools use matching based rule systems, like
the work presented here.

2.1.2. Universal Dependencies Internal Conversion

The Universal Dependency schema itself is also under active development and alterations
have to be applied to treebanks in many different languages, allowing for little reliance
on the words themselves in generic solutions. Solutions can include specialized software

Mttps://github. com/TurkuNLP/dep2dep
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2.2. Tree Transducers in Machine Translation

for each language, by adapting a base script to each language specifically and relying on
manual work as well. For the conversion from version 1.3 to version 2 of the schema,
multiple conversion scripts have been developed and published, also relying on the udapi
framework?. Specific changes for this version change included simple renaming of labels,
a label being split into two new labels, a complete rework of handling of ellipsis and
various modifications to the usage guidelines of certain labels.

The published scripts execute simple translations of labels and basic transformations
and mark words which require further human intervention. In the case of ambiguous
label splitting, the label to be used can be chosen interactively, but no graphical interface
supports the user in their decision.

The udapi framework supports the development of scripts working with CoNLL-U?
data, by providing building blocks to read and write data, abstracting away the files and
providing utility functionality for basic operations such as reattaching tokens elsewhere
in the tree. A pipeline structure with different building blocks is suggested for conversion
scripts, and a few blocks are already provided for common restructuring operations such
as changing the direction of a flat edge. The framework takes a pragmatic approach to
the conversion process and improves on the commonly chosen ad-hoc conversion process
by supporting common operations and providing many common utility functions. It
allows for more high-level programming than writing a whole conversion script from
scratch, but when a new building block for the pipeline is developed, programming is
still required.

The java implementation of the framework is also used in the implementation described
in Section 4. It does not include as many features as the python version described above,
it provides only basic access to data structures.

2.2. Tree Transducers in Machine Translation

Machine translation is also concerned with with the conversion of sentences. Word by
word translation does not make sense when the grammatical structure of source and
target language differs, some languages have specific grammatical cases which others
lack, other languages contain a lot of inflections. It is also possible that the order of
subject predicate and object differs in the target language. This is why translation
works on phrase structure trees, where translation can work on phrases instead of words
thus allowing to merge multiple words into one when translating the phrase or rotating
subtrees before they are converted.

Tree transducers are widespread in machine translation, Maletti (2010) gives an overview
of the different types of tree transducers which are used in machine translation as well as
their properties in regards to the task of machine translation. The present work relies on
the formalizations given in Malettis work, although a number of modifications have to
me made to accommodate for the differences between phrase structure and dependency
trees.

*https://github. com/udapi/udapi-java
3A dependency tree file format based on the CoNLL-X format
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3. Tree Transducers for Dependency Trees

The use of tree transducers in machine translation was a starting point for their use
in treebank conversion. To my knowledge, tree transducers have not been used with
dependency trees so far. The tree transducer model makes certain assumptions about
the type of tree it is applied to, which makes phrase structure trees a good fit and
dependency trees seem less suited. In a phrase structure tree, there are inner nodes
which consist only of a label. The edges are unlabeled and the words of the sentence are
the leaves of the tree. A dependency tree on the other hand does not have inner nodes,
all the nodes in the tree are words from the sentence and also have other morphological
features attached. Before required modifications will be discussed in Section 3.2, the
basic top-down tree transducer model is introduced in Section 3.1, which includes an
outline of the fundamental components entailing a transducer and the basic process of
a tree transformation.

When using the implementation of the tree transducer to convert dependency trees,
a number of features were found to be helpful to formulate powerful and concise rules.
Existing conversion procedures were also taken into account to incorporate useful fea-
tures from other approaches as well. These extensions to the mechanism and how they
affect the transformation process are discussed in Section 3.3.

3.1. Top-Down Tree Transducer Model

The top-down tree transducer model and basic notation will be introduced based on the
example conversion of the number “six hundred twenty six” to its digit representation.
A visualization of the transformation process can be observed in Figure 3.1, along with
the definitions for the components in Figure 3.2. The conversion process shows the use
of the different components throughout the conversion process. three different sets of
nodes can be seen, coloured in yellow, orange and green, as well as the set of rules R,
which is denoted at the arrows of the conversion steps and contains the transformations
rules.

Tree Components The initial tree is composed of only yellow nodes, which are nodes
from the input alphabet >. A node consists of a symbol and a rank, which is the number
of children it has. The alphabet is therefore a set of symbols and a function mapping
symbols to their ranks. In dependency trees as well as phrase structure trees, the symbols
can be unranked as well, meaning that the number of child elements is not predefined.
Without the rank only the set of symbols remains, therefore the set of symbols as well
as the alphabet is denoted by the same symbol. The input alphabet is called > and the
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q 100 100

hundred | PN N 100
PN . hundred Lo q , 10 q /\
six -ty (:>) A é}z ‘ ‘ é}g A ‘ =r 10 10

AN six -ty six -ty 06 -ty A A
twen- six N AN AN 0626

twen- six twen- six twen- six

Figure 3.1.: An example of a tree transformation of the numeric expression “six hundred
twenty six” to its digit form 626, using a top-down tree transducer. The
yellow nodes are nodes from the input alphabet, the ‘green nodes are from
the output alphabet and the @range nodes are state nodes. Example based
on Maletti (2010), the last step includes multiple transformation steps.

> = {one, two, ..., six, ...twen-, thir-, ...-ty?, ..., hundred?} (3.1)
A=10,1,2,...,6,...,10%,...,100%} (3.2)
Q=A{q,..}, I=A{dq} (3.3)
R C Q(X(X)) x A(Q(X)) (3.4)
M= (Q,%,A,I,R) (3.5)

Figure 3.2.: Formal components of the transducer used in Figure 3.1, the transducer
itself is a 5-tuple denoted by M.

output alphabet is called A, its nodes in the example are highlighted in green. Figure
3.2.3.1 and 3.2.3.2 show the formal definition of these alphabets, where the ranks are
denoted as superscript to the symbols. The set of possible trees which can be created
from the input alphabet is called T, respectively Ta in the case of the output alphabet.
The first tree in Figure 3.1 is an element of T, and the last tree, after all conversion
steps are applied, is an element from the set of output trees Th.

The intermediate trees contain nodes from the set of state nodes ) as well, which are
coloured orange in the example. These trees are from the set Th(Q(7%)), which means
that the elements at the top are from Tx, at the bottom there is Ty, and in between are
the state nodes. Transformation steps are always anchored at a state node, this is why,
in Step 0 of Figure 3.1 a state node ¢ is attached at the root of the tree. The figure
shows how the transformation is started at the top and is progressing down the tree.
Throughout the transformation process, the state nodes separate the already converted
output nodes at the top from the nodes of the input alphabet at the bottom. Therefore
the set of state nodes in the tree can be referred to as a frontier, as it splits the tree in
a converted and a nonconverted part. Figure 3.2.3.3 shows the set () of all state nodes,
as well as the set I of initial state nodes, which can only be used in the first step as a

10



3.1. Top-Down Tree Transducer Model

q 100
hundred — g (¢ q 10
/N = A
1 2 X1 T2 six 0 6
(a) Transformation rule used in Fig- (b) Transformation rule used in Figure 3.1,
ure 3.1, Step 1. In text rep- Step 2. In text representation this rule
resentation the rule can be ex- can be expressed as ¢(six) — 10(0,6).

pressed as ¢(hundred(zq,z2)) —
100(gq(z1), g(22)).

Figure 3.3.: Transformation rules used in Figure 3.1. Additionally to the input, output
and state nodes, variable nodes are introduced with a blue highlighting.

root for the transformation process. Later on only a single type of state node will be
used, which means Q = I = {q}, and therefore the concept of multiple state nodes is not
elaborated further at this point. For additional information I refer to Maletti (2010).

Transformation Rules The last missing component in the 5-tuple is the ruleset R which
contains the transformation rules, the core of the transformation process.

Figure 3.1 shows rules used in step 1 and 2 of the transformation process in Figure 3.3.
A rule consists of two trees, one on the left-hand side of the arrow and one on the right-
hand side; a rule can also be expressed as a tuple: r = (Ty,,Tr). 17, represents a subtree
structure that is supposed to be matched to the tree that is currently converted. The ¢
and “hundred” node can structurally be matched to the root of the tree in the conversion
example.

Below the “hundred” node a new type of node can be found, highlighted in blue. The
nodes x1 and zo are variable nodes from the set of variables X, which can match any
type of node. x1 and s also appear in T, attached below a state node. Parts of the tree
matched to variables are not converted, they are reattached below state nodes, below the
converted parts of the tree to be matched in the next conversion step. In the example ,
the “six” node is matched to the x; variable, and is converted in the next step.

As mentioned previously the intermediate trees in the conversion process have are
structured according to Th(Q(7Tx)) and 77, is always structured with Q(3(X)) thereby
matching below the frontier denoted by the @ nodes. The right hand side is then pushing
the frontier down the tree, by converting a node. T is structured as follows: A(Q(X)).
¥ nodes are replaced with A nodes and the () nodes progress down the tree.

Figure 3.3b shows a rule without variables. It matches a state node but does not
introduce new ones, thereby removing parts of the frontier entirely; it can be seen as a
termination rule.

11



3. Tree Transducers for Dependency Trees

Rule Properties An essential factor for the use of transducers in the context of natural
language processing is the handling of the variables. If a node or the subtree below it
contains words from a sentence and it is currently being converted, those nodes should
not be duplicated or removed, otherwise the sentence would change. The variables
contain subtrees of unknown structure, and these subtrees are deleted or duplicated,
without any information about their contents, if the variable would be used more or less
than once on the right-hand side of the rule. A rule r = (Tp,Tg) is non-deleting if all
variables in V' C X in T, also appear in Tg. If each variable appears on most once in
Tgr, r is linear. Reuse of the same variable multiple times on the left-hand side is not
considered.

The rule shown in Figure 3.3a contains x1 and x2 on the left-hand side, and both
variables also appear exactly once on the right-hand side. This means that no subtree
is deleted, therefore this rule is non-deleting. Also, no variable appears twice, making
this rule linear as well.

In the following, only non-deleting, linear rules are considered and the properties will
be extended in Section 3.2.3.

3.2. Mapping the Tree Model to Dependency Trees

The first thing to look at when creating a tree transducer model for dependency trees
is again the tree structure and how it maps to the transducer model, the previously
discussed elements: input, output and state nodes. The nodes in the tree are the tokens
in the sentence, they do not consist of only a label as it was shown in the example in
Figure 3.1, they have an index, a lemma, morphological features, a dependency relation
(the label on the edge to the parent) and a Part-of-Speech tag. Section 3.2.1 will treat
these differences.

The order of the words in the sentence is defined by the indices on the tokens, the
order in which the nodes are attached below their parent does not have any effect on the
order of the nodes in the sentence, which means that the list of child nodes is actually
unordered. Also in contrast to the previously introduced model, the number of child
elements is not fixed based on the parent dependency relation or any other property
of the parent node, i.e. the nodes are unranked. This too requires adaptions to the
formalism, which will be described in Section 3.2.2.

Section 3.2.3 introduces an additional property, extending the concept of non-deleting
and linear transducers to word-preserving transducers on dependency trees.

3.2.1. Node Identity

The part that should be changed in the transofrmation process is the dependency relation
and the structure, other token properties do not change, such as the word or its position
in the sentence. To accomodate for this duality, we define that ¥ = L; x N and A =
L, xN, where L; and L, are the sets of input and output dependency labels. The second
component of the tuple is the index of the token, used to attach the unmodified properties

12



3.2. Mapping the Tree Model to Dependency Trees

Anteil an Aktien Anteil an Aktien Anteil an Aktien Anteil an Aktien

(a) The first possibility of attaching (b) The second possibility of attaching

the labels to the nodes. No re- the labels to the nodes, here the
structuring is done, only the labels edge between the nodes is inverted,
are renamed. The rule with node the previously lower node is now the
identity is q(n1:PP(n2:PN)) — head of the subtree. The rule with
nl:nmod(n2:case()). node identity is q(nl:PP(n2:PN)) —

n2:nmod(nl:case()).

Figure 3.4.: Example of transformation ambiguity without node identity in the conver-
sion rule q(PP(PN)) — nmod(case()).

to the node. When using this node definition in transformation rules, the exact index
is irrelevant, the index makes the nodes uniquely identifiable, so any unique identifier
can be used. Nodes have to be identified on the left- and right-hand side of the rule to
unambiguously attach new dependency labels to the nodes. The syntactic representation
is n1:PP, where n1 is the alpha-numeric identifier and PP is the dependency relation. ni
is an arbitrary but fixed element € N, the second part of the tuple, while PP is an element
from L;, the first part of the tuple.

In Figure 3.4 the use of the node identity is shown. The figure illustrates two different
rules, which can only be distinguished by the use of node identifiers. Either the nodes are
only renamed, as it is shown in Figure 3.4a, or the nodes are restructured as well, which
is shown in Figure 3.4b. The ambiguity is resolved by the node identity mechanism, in
this case the intended meaning of the rule includes the swapping of the nodes, swapping
the function and content word therefore moving from a function-head to a content-head
structure.

3.2.2. Unrankedness

The rank of the elements respectively nodes in 3 and A has been left undefined so far
because the dependency relations in a dependency tree do not have a rank. Each token in
the sentence can have arbitrarily many dependents, for example in Figure 1.1 two nodes
are attached with the PN relation, one does not have any child nodes, the other has an
additional ATTR dependent. Nouns can have adjectives and adjectival clause dependents,
predicates have adverbs and adverbial clauses.

Because of this, it is impossible to define a single fixed rank for each dependency
relation, which means that a rank function as it was described in Section 3.1 cannot be
defined. Formally, the alphabet is extended to include each dependency relation multiple
times with different ranks, solving the problem of the rank function. Since the input
and output alphabet do not need to be specified explicitly, extending them to contain

13



3. Tree Transducers for Dependency Trees

q ‘ n2:nmod

‘ n2:nmod nl:PP /\
nl:PP = A = nl:case q
‘ T n2:PN  ?rl A

=5 BN | 7rl 712
°r2
(a) q(@1:PP(n2:PN(O))) —
n2:nmod (nl:case()) (b) q(n1:PP(n2:PN(?r2), 7rl)) —
The rule without any variables. n2:nmod(nl:case(), q(?rl, ?r2))

The rule with catch-all variables matching
potential dependents to either n1 or n2.
The n1 node loses the dependents.

Figure 3.5.: Extending the PP-PN rule to account for additional unspecified dependents.

each node multiple times with different ranks is not a problem. Rules however need to
be specified explicitly. Since there can be any number of dependents to any node in the
tree, and the children of a node are unordered, the matching process has to be adapted
to be order independent. The rule given in Figure 3.4b is the same rule used in the
conversion of the PP-PN structure in Figure 1.1. However, currently it does not account
for additional dependents of neither the PP nor the PN node.

In Figure 3.5 the extension is shown, variable dependents are added to the rule on both
sides, thereby allowing the rule to be applied in the previously inapplicable case as well.
In contrast to the previous variable concept, the variables used for dependency trees
can match arbitrarily many nodes, including no nodes at all. These variables are called
catch-all variables and they are represented by an identifier prefixed with a question
mark. By introducing a variable below each node, any combination of additional nodes
can be matched, which allows to have a single rule for all cases.

This extension does not change the properties of the transducer, as each rule with
catch-all variables can be expanded into multiple rules with different numbers of variable
dependents.

3.2.3. Word-Preserving

Based on the node identity in rules, a new property of a rule and consequently a
ruleset and a transducer can be defined, in addition to the linearity and non-deleting
property. Not only should variables not be duplicated or removed, but words should
also be preserved. A rule similar to the one depicted in Figure 3.3b cannot be writ-
ten in the context of a dependency tree, as the number of nodes on the left- and
right-hand side of the rule is not the same. In a dependency tree, no nodes can be
created and duplication or deletion should not happen as well. A rule r = (17,7;)
is word-preserving if it meets the following conditions: First, r is linear and non-
deleting. Second, the left-hand side of r cannot contain the same node index twice:
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n # mv(,n),(-,m) € Ty (-n),(-,m) € X. Third, r neither deletes nor duplicates a
matched word. This means that for Ny, := {n € N|(-,n) € T;} each n € Nj;,, appears
exactly once in 7, (Hennig and Kohn 2017). It follows that the number of nodes remains
the same after conversion and the nodes also remain the same, but might have received
different dependency relations and might be connected in a modified structure.

3.3. Extensions for Expressiveness

The additions layed out in the previous section are necessary when working with depen-
dency trees, without these changes the formalism cannot be applied to the dependency
tree structure. In this section further modifications to the formalism are discussed. These
changes increase the expressiveness and flexibility of the rules, making them easier to
work with.

3.3.1. Node Features

In Section 3.2.1 the nodes of the tree were defined to consist of their ID as well as the
dependency label, to allow to identify nodes beyond their dependency relation. Nodes
also have other features, the most prominent one being the PoS tag. The PoS tag can
be included when formulating rules, nodes in the tree then need to have a matching PoS
tag to make the rule applicable.

The UD schema features a nummod and a amod relation. Both are represented as ATTR
in the HDT. To distinguish numeric modifiers from other modifiers the PoS tag can be
used. Numbers carry the CARD PoS tag, thus we can use these two rules to distinguish
nummod and amod:

n.CARD:ATTR() -> n:nummod();
n:ATTR() -> n:amod();

Syntactically the PoS tag is prefixed by a period. It is important to test these rules in
the correct order, the nummod rule needs to be tested first as it is more specific than the
amod rule. The order in which rules are tested will be discussed in detail in Section 4.1.

3.3.2. Extended

A common modification is switching from a ruleset C Q(X(X)) to a ruleset C Q(Tx(X)).
Instead of having single nodes below the state nodes (X), tree structures can be used
(Tx). This is an intuitive and common extensions to tree transducers, transducers with
this modification are called extended. A rule which is extended can transform a big-
ger context, which is particularly useful when transforming function-head structures to
content-head structures, as it is done in Figure 3.4b. The figure shows a rule which
converts a prepositional phrase from function-head to content-head. The HDT has the
preposition as the head of the phrase and the noun phrase is attached as a complement
to the preposition. In UD the noun phrase is the head and the preposition is attached
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1% p
‘ //\
q nl:advcl q
\
//\ = \ ‘
nl:NEB n3:0BJA q n3:0BJA
| |
n2:KONJ n2:KONJ

p(q(n1:NEB(n2:KONJ()), n3:0BJA())) — p(nl:advcl(q(n2(0))), qn30)));

Figure 3.6.: Example of look-ahead usage to identify an adverbial clause.

as case. Since the new head is below the current head, the rules need to work with a
depth of at least two levels, which is achieved by making them extended.

3.3.3. Look-Ahead

When including more context of the tree, sometimes not all of the matched nodes should
be converted at once. It is possible that some dependent should be present to recognize a
certain structure to constrain rule application to a specific context, but the conversion of
that matched dependent in turn requires a certain context, which is why it is converted
in a separate rule. Matching a node as part of the left-hand side rule context, but not
converting it on the right-hand side is called look-ahead.

Figure 3.6 exemplifies this. A NEB dependency relation can be converted to advcl,
ccomp or xcomp depending on its context and the rule shown in the Figure relies on the
presence of a neighboring object to determine that this subclause is an adverbial clause.
For the two other cases there are dedicated rules as well which are not shown here. The
object can in turn be an indirect object if a second object is present; it has its own
context dependent conversion variations, which is why it is not converted in this rule.

The KONJ dependent is also matched for context. This dependent does not have
multiple cases where it is converted differently based on its context, it is always converted
to a mark dependent. It is still converted in a separate rule, since the KONJ dependent is
referenced in multiple rules concerned with the conversion of NEB dependents. Following
the software development principle of separation of concerns, this dependent is converted
in its own rule.

Using this principle one dependency relation in the source schema converted using a
few rules, either just one if it has a direct correspondence in the target schema or multiple
rules if a distinction needs to be made. By using the look-ahead a wider context can be
used to formulate very specific rules with fine grained distinctions, and only a narrow
transformation area. This approach leads to blocks of rules each concerned with one
or two dependency relations, which can also be seen later on in the implementation
(Section 4) where rules are declared in a file and the block structure contributes to
keeping track of all conversion steps.
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3.3. Extensions for Expressiveness

3.3.4. Look-Back

The look-back follows that same principle as the look-ahead, it matches nodes to constrain
rule application to a specific context, the matched nodes are not modified. Look-back
refers to looking at nodes which are above the frontier and thus already converted.

The PP-PN rule in Figure 3.5 needs to be extended to take the PoS tag of the governing
node into account; in UD the noun phrase is attached differently depending on its regent.
The nmod label is used for noun phrase regents and for predicates the obl label is used.
Here are two PP-PN rules matching the parents PoS tag for context:

p.VVFIN(q(nl:PP(n2:PN(?r2), ?ri1)))

-> p(n2:0bl (nl:case(), q(?rl, ?7r2)));
p.-NOUN(q(n1:PP(n2:PN(?r2), ?7r1)))

-> p(n2:mmod(ni:case(), q(7rl, ?r2)));

The p node is matched above the frontier; the first rule requires the VVFIN tag on the
node, the second requires NOUN. If n2 is attached to a verb (VVFIN), the dependency
relation should be obl, otherwise it should be nmod.

Information about converted parts of the tree can alternatively be encoded in state
nodes. This requires the relevant information for one rule to be known in advance to
the a different, encoding rule. These rule interactions increase coplexity, the look-back
is a practical alternative with no changes to the formalism required, since the accessed
information could be encoded in a state node.

3.3.5. Cross-Frontier Modifications

Converting a function-head tree to a content-head tree requires an inversion of edges
whenever a function word is the head of a subtree. In the previous example of the PP-PN
respectively case-nmod structure the position of the content word in relation to the
function word was fixed, allowing to match the content-word together with the function
word whenever the latter is encountered.

Verb structures also require an inversion of edges. In a sentence there is the main verb
at the root of the tree and other verbs connected as auxiliary verbs. In the HDT schema
the conjugated verb is the root of the tree and other verbs are chained below this verb,
connected by AUX relations. If the sentence contains multiple verbs, the conjugated verb
is usually a verb to express modality or tense, while the content-bearing verb is at the
end of the AUX-chain. In UD the root of the tree is the content-bearing verb, which
means the whole chain has to be inverted. However, in contrast to the prepositional
phrase mentioned above, the depth of the chain is not known in advance and there is
more than one dependency relation used for the token above the auxiliary verb. Also the
dependency relations do not have to appear together with an auxiliary verb in contrast
to the PP relation, which requires a PN dependent. The simplest chain is a basic two verb
sentence with a root-aux structure, however verbs can also be in a subclause and there
can be more than two verbs, which means advcl-aux-aux is also a potential chain that
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Figure 3.7.: Conversion of a dependency tree from a function-head to a content-
head scheme. The AUX edges are inverted when they are converted.
The rule used in step 2 and 3 is p:$x(q(n:AUX(xsn), xsq), xsp) —
n:$x(p:aux(), q(xsn, xsq), xsp).

needs to be covered by the ruleset. Instead of writing one rule per combination of labels
that can occur, the first word in the chain is converted with a normal rule and when
an auxiliary verb is found below it, the previously already converted token is modified
again, even though it now already above the frontier.

This cross-frontier modification allows for a significantly smaller number of rules by
separating the conversion of each of the labels in the chain into different rules; there is
a rule to convert a S relation and a rule to convert an AUX relation which can be applied
multiple times for longer AUX-chains.

Figure 3.7 illustrates how a sentence that requires a head inversion over three tree
levels can be transformed with a rule that only matches one AUX relation at a time. First
the S and SUBJ relations are converted, then the AUX-rule is applied for the first time. It
matches the regent of the AUX edge into the p variable and for the dependency relation
of the p node, the rule contains the expression $x. This is a mechanism to match the
dependency relation of the node into variable which is distinct from the variables used
to match arbitrary nodes. This $x variable is reused on the right-hand side of the rule
to attach the dependency relation to a different node, while the p node receives the aux
dependency relation. After the rule is applied once the previous head is now attached
as an aux dependent while the previous AUX dependent received the dependency relation
of the head, which is already in the UD schema due to being converted already with a
different rule. The rule is then applied to the next AUX relation which is inverted as well,
and the root relation is attached to the previously last verb in the chain, which is the
content-bearing verb and now also the root of the sentence.
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3.3. Extensions for Expressiveness

This mechanism was implemented with the intention of using it for edge cases which
cannot be converted otherwise. Modifying previously converted nodes changes the con-
text for applying rules further, which means the applicability of rules can change in
unexpected ways, which is why this mechanism should be used sparingly.
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4. Implementation

The transducer implementation operating on dependency trees was developed in parallel
with the design of a ruleset for the conversion of the HDT. The implementation is written
in Java and uses the udapi framework (See also Section 2.1.2).

The components of a transducer — input and output alphabet, state nodes and con-
version rules — are specified in a file which is read by the software, the file only contains
the conversion rules. The input and output alphabets are defined implicitly through the
use of the labels in the rules; the set of state nodes is predefined, there is only a single
type of state node. By defining the rules in a single file, the actual conversion logic is
in a single place and separated from the rest of the code which is required to read in
CoNLL files, apply the rules to the dependency trees or visualize the conversion process.

This section lays out the syntax used to specify rules, including details such as infer-
ence and rule application order. PoS tag expansions as another convenience feature are
explained and lastly interactive conversion and the graphical user interface are described.

4.1. Rule Syntax

The rule syntax is largely identical to the syntax introduced in and extended throughout
Section 3. Examples are shown in Figure 4.1.

Rule (a) and (b) demonstrate the basic rule syntax. A rule consists of two trees and
an arrow in between. The trees consist of arbitrarily nested nodes, a node consists of at
least an identifier and often of a dependency relation following the identifier, separated
by a colon. In Rule (b) the catch-all variables introduced in Section 3.2.2 are shown,
they are denoted by an identifier prefixed with a question mark. Rule (c) includes a
variable $x instead of a dependency relation. The variable can match any dependency
relation on the left-hand side and allows to reattach the matched dependency relation
to a different node on the right-hand side as it was explained in Section 3.3.5.

Inference Rule (c) also includes an explicit frontier, while the previous two rules did
not. The frontier node is denoted by curly braces, it does not need an identifier since
there is only a single type of state node. If the frontier is not mentioned explicitly it is
assumed to be above the root node on the left-hand side. On the right-hand side the
frontier is also not included, here a frontier is inserted above the catch-all variables. Any
node receiving a dependency relation on the right hand side will be above the frontier
after the rule is applied.

Rule (d) is semantically identical to Rule (a) but it explicitly states all the parts which
are inferred to the rule by the engine. Besides the already mentioned frontier nodes, it
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4. Implementation

a) n:SUBJ() -> n:nsubj();

(
(b) n1:PP(n2:PN(?r2), ?r1) -> n2:nmod(nl:case(), ?rl, 7r2);

d

)
)
(c) parent:$x({n:AUX(7auxr), ?fr}, 7r) -> n:$x(parent:aux(), 7auxr, ?r, 7fr);
) p({n:SUBJ(?r), ?fr}, ?pr) -> p(n:nsubj({?r}), {?fr}, 7pr)

)

(e

p({n1:0BJAQ), n2:0BJDO}) -> p(nl:obj(), n2:iobj));
n:0BJAQ) -> n:obj();
n:0BJD() -> n:0bjQ);

(f) p.NE({n.NN:APP()}) -> p(n:appos());
p-NN({n.NN:APP()}) -> p(n:compound());

(g) pA{n:APPO}) -> p(n:compound()) :- {n.getOrd() < p.getOrd()};

Figure 4.1.: Rule (a) to (c) show rule syntax examples and (d) is a verbose version of (a).
Rule (e) and (f) show rule combinations and (g) shows the use of groovy
code to further constrain rule applicability.

can be seen that a technical root is inferred, as well as numerous catch-all variables, one
for each node, also for the frontier node. This is necessary, since there can be neighboring
nodes at every level of the tree. Sibling nodes which are already converted will be above
the frontier and are matched into the 7pr variable, sibling nodes which still need to be
converted are matched into the 7fr variable. This allows the annotator to focus on the
structures of the tree which are relevant for the conversion while ignoring irrelevant tree
context. Nodes which are not relevant for the conversion are matched into a variable
and reattached to the same nodes on the right-hand side.

Rule Application Order Three rules are shown in example (e), an elaborate rule at the
top followed by two simpler rules. The first rule matches two neighboring objects with
different grammatical cases, OBJA is the accusative case and 0BJD the dative case. The
rules are tested for applicability from top to bottom. If both objects are present, the
accusative object becomes the direct object and the dative object becomes the indirect
object. If either object appears by itself, the second respectively third rule applies and
the object becomes a direct object. All rules in the rule file are tested from top to
bottom, thus more specific rules are at the top, while generic rules that do not use tree
context are at the bottom. Each rule is tested at all frontier nodes in the tree before
the next rule is tested. If a rule is applied, the first rule is tested again. The alternative
execution order of taking a single frontier node and testing the whole ruleset only on that
node until it is converted is not used as it could result in missing out on a constellation
where a more specific rule could have been applied if another state node would have
been tested first.
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4.2. Part of Speech Tag Expansions

PoS tags Example (f) shows how a dependency relation can be converted based on
PoS tags, the PoS tag follows the node identifier separated by a period. Both rules in (f)
convert the APP relation but also match the PoS tag of the parent node. The source tag
set uses the STTS PoS tag set (Schiller et al. 1995), where NE refers to proper nouns and
NN refers to nouns in general. Following this logic, an apposition attached to a proper
noun is more likely to be a UD appos while an apposition attached to a regular noun
is more likely to be part of a compound relation. This is the same principle explained
in Section 3.3.4, where the PoS tag is used to distinguish obl and nmod dependents.
Besides the dependency relation the PoS tag is the most important feature of a token,
which is why it has explicit syntactical support.

Groovy The previous examples have shown how the local tree context can be accessed
and the dependency relation and PoS tag of a token can be incorporated into rules. The
CoNLL format specifies additional features for each node, such as its 1D, the so called
“feats”, the lemma and miscellaneous features. These were not found to be as important
respectively not suited for direct matching. However, node order or other features of
the node might still contain relevant information for some edges cases. These features
cannot be accessed with specific rule syntax, but the rules can contain a body, which is
shown in example (g). This rule body can contain groovy code, groovy is a java based
scripting language!. In this groovy code, the whole data structure can be accessed. The
matched nodes are available as objects under the same identifier as used in the rest of the
rule. The software uses the udapi framework internally, so the nodes are objects from
this framework. These objects allow to access all token features read from the CoNLL
file. Also the parent, sibling and child nodes of a token can be accessed, allowing to
inspect the whole tree. The last expression in the rule body should return a boolean, if
it returns true, the rule is applied, if it returns false the rule is not applied. Example (g)
shows how the direction of an edge is taken into account for rule applicability, i.e. the
n dependent should be to the right of its p regent. The groovy code can also access the
new tree. The variables containing the nodes from the new tree, i.e. after conversion,
are prefixed with an underscore. This makes it possible to set additional features after
conversion or set a flag in the miscellaneous section of a node, marking it for further
manual inspection later on.

4.2. Part of Speech Tag Expansions

Many decisions based on PoS tags work based on word classes, such as all nouns or all
predicates. To allow for matching of different PoS tags all from the same class, it is
possible to define lists of PoS tags like this:

expansion predicatePos =
[VVFIN, VVPP, VVINF, VVIZU, ADJD, ADJAJ;

"http://groovy-lang.org/
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The identifier predicatePos can then be used instead of a PoS tag, allowing to formulate
a single rule instead of one rule for each PoS tag. The PoS tag used in the dependency
tree needs to be contained in the list to make the tree match the rule. Formally, rules
containing these expansions are prototypes for a number of rules, one rule per PoS tag
in the list.

4.3. User Interaction and Interface

It is also possible to trigger user interaction in the rule by calling specific methods in
the groovy code in the rule body. The software includes a user interface, which allows to
inspect a conversion process of a tree, which can be used to analyse the process or debug
a ruleset. Interactive conversion can be used in ambiguous cases, where the context is
not sufficient to distinguish between two or more cases. An example use case is the
distinction between nmod and obl usage in latest version of Universal Dependencies.
The nmod relation should be used for dependents below nominals while the obl relation
should be used for dependents below predicates. For the remaining cases a catch-all rule
can be introduced which triggers interaction with a human annotator to decide the case;
the rule might look like this:

nl1:PP(n2:PN(?r2), ?r1) -> n2:xxx(nl:case(), ?rl1, ?r2) :-
{interactive.decidelLabel (_n2, "nmod", "obl")};

This method call would trigger a pop-up in the graphical user interface giving the user
a choice between the nmod and obl label for the node n2, while highlighting the affected
edge in the tree in the interface.
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5. Applying the Concept to the Hamburg
Dependency Treebank

To align the implementation of the transducer closely to the needs of treebank conversion,
the design of the transducer was intertwined with the conversion of the HDT. To get
familiar with the requirements for a treebank conversion tool, 45 sentences were chosen
from the HDT in such a way that each label from the schema was present at least three
times. The trees were then converted manually while notes were maintained about which
source structures match to which target structures. After all the trees were converted,
a conversion ruleset was extracted from the notes. At this point, the software was not
fully implemented, and was updated according to the new found requirements which
came up when the rules were created.

5.1. The Sample Rule Set

The resulting ruleset consists of 58 rules, although none of the rules use the groovy
code feature, all of them are based solely on the transducer mechanism. The expansion
feature (Section 4.2) was used to define a list of PoS tags found on predicates and a list
of PoS tags indicating a sibling adverbial clause.

The file is structured in multiple blocks to make it easier to keep track of the file
contents. Each block is concerned with the conversion of a single dependency relation
or a small number of related dependency relations. The high-level relations concerning
the root of the tree, predicates and subclauses are at the top of the file, these rules are
also the most complex ones. Rules are similar to Example (c) from Figure 4.1. Then
optional dependents are treated, like obliques (obl) and nominal modifiers (nmods),
also adverbials (ADV), adjectives (ATTR) and appositions (APP). From the same figure
Example (b) and (f) are from this part of the ruleset. Lastly the HDT labels having
a direct correspondence in UD are converted, the rules look like Example (a) from the
figure.

Inside a block which usually consists of one to four rules, the rules are ordered from
most specific to most generic, which means that special cases are treated first and in
the end a general fall-back rule is triggered if nothing before matched the tree. This is
exemplified in (e).

Some aspects of the rule set are discussed in detail below, to the various use cases that
were covered with the different techniques.
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No Transformation, No Target Differentiation The easiest conversions do not involve
any restructuring of the tree, and also do not require to distinguish between multiple
target labels. Labels that can be converted this way are VOK — vocative, PART — mark,
GMOD — nmod, DET — det, EXPL — expl, AVZ — mark, SUBJ — nsubj, NP2 — nsubj.
Slightly more complex is the conversion of ATTR, in UD this label becomes either amod
or nummod. The nummod cases can be identified by the CARD PoS tag, which makes for a
clear-cut distinction as well.

Multiple Target Labels The APP label is difficult to convert. The HDT uses the APP
label for any consecutive words in a noun phrase which are not determiner or attributes.
In most cases these are actual appositions and should be converted to the appos label
in UD. Other uses include connecting names and titles, suffixes like version numbers or
other composite expressions like product and organization names. These are covered by
the flat and compound relation in UD, which means that the APP label is split into three
different labels in the target schema. From the experiences in the rule writing process,
it can be said that distinguishing two different target cases is fairly easy, while three or
more target labels becomes difficult. In this case, a distinction was made based on the
PoS tags of the tokens. Names are connected with flat and carry the NE PoS tag, in
contrast to other nouns (NN), which makes a distinction easy. Differentiating between
appositions and compound expressions is more difficult, the evaluation later on showed
that the simple heuristics used here were not sufficient to get a good precision score, but
still did not cover all occurrences of appositions which lead to a poor coverage score as
well.

Objects There are seven labels for marking objects in the HDT schema, distinguishing
different cases and other phenomena. Most of these are mapped to obj and iobj. If
an object appears by itself, it becomes obj. If the sentence features a ditransitive verb
with two objects, one needs to become the direct object (obj) and the other becomes the
indirect object (iobj). This distinction can be made by matching two objects at once.
For other labels such as the object clause (0BJC) or the prepositional object (0BJP), non-
object relations are used in the UD. The object clause is attached as a clausal complement
(ccomp) and the prepositional object becomes an oblique or nominal modifier, because
of the syntactic structure consisting of a noun and a case marker. Here the use of UD
label subtypes should be considered, as the prepositional object is different from other
oblique nominals. In contrast to the prepositional phrase dependents which are also
attached as obliques and nominal modifiers, the prepositional object is a core dependent
even though the syntactic structure suggests otherwise. The UD schema does not specify
how to handle these cases, however the use of a obl:arg label might be useful to mark
core oblique dependents.

Nominal Modifiers A widespread dependent subtree in the german language is the
combination of a preposition and an additional nominal dependent as a modifier to
a predicate or other nominal. In the sentence “Das Buch liegt auf dem Tisch” (The

26



5.2. Evaluation & Analysis

book lies on the table) the underlined phrase is such a nominal modifier, it modifiers the
predicate “liegt”. In the HDT these are annotated as PP-PN, where PP is the preposition
(“auf”), a function word attached directly to the predicate, and the PN is the noun
below it (“Tisch”). The determiner (“dem”) and potential modifiers to the noun are all
attached below the noun.

In this structure the function-head and content-head difference becomes apparent.
The rules concerned with the transformation of these structures invert the function-head
structure to a content-head structure and therefore requires multiple multiple nodes at
different depths in the tree to match, specifically the function word and the noun below
it. In UD the preposition is attached below the nominal, with the case relation and the
noun is attached either as an oblique (obl) if the regent is a predicate — as it is the case
in the previous example — or as a a nominal modifier (nmod) if the regent is a noun. This
distinction is easy to make based on the PoS tag of the regent in most cases, exceptional
cases where the regent is neither a predicate nor a nominal require the decision of human
annotator.

Tree Context The NEB dependency relation is used to attach subclauses in the HDT.
In UD subclauses are divided into core and non-core clausal dependents, which are
either clausal complements (ccomp) or adverbial clauses (advcl). The ruleset makes
This distinction by matching adjacent nodes in the tree and heuristically deciding if the
clause is a core part of the sentence based on the presence of other core dependents at
the same level as the subclause. If there are objects at the same level, the subclause is
assumed to be a non-core dependent, which works in a lot of cases.

Cross-Frontier Modifications The AUX and PRED relations are converted with the cross
frontier modification mechanism outlined in Section 3.3.5. Due to not knowing about
the presence of an aux dependent while the regent is still converted, the rules concerned
with the conversion of aux dependents need to restructure the the previously converted
regent again, which requires a dedicated mechanism. This mechanism allows for a smaller
number of rules. It also separates the conversion of the aux relation from the conversion
of any possible parent relation, following the software principle of separation of concerns.

5.2. Evaluation & Analysis

The relevant metrics for the evaluation of such a ruleset are the coverage and the pre-
cision. How much of the tokens in the treebank is covered by the rules in the ruleset
and are the converted nodes converted correctly? The coverage can be evaluated fairly
easily by applying the ruleset to the whole treebank and counting the nodes which were
not converted. The precision is more difficult to evaluate, since it requires gold standard
annotations to compare to. Each evaluation metric and its experimental setup will be
discussed separately. For coverage as well as precision the software includes a command
that computes relevant statistics about the generated trees in comparison to the original
data respectively the manually annotated trees.
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5.2.1. Coverage

To test the coverage the ruleset was applied to part B! of the treebank, which consists of
100k sentences and had not been used in the rule creation process. 91.5% of the tokens
were converted successfully and out of the remaining 8.5%, 1.7% could not be converted
because no matching rule was found, and four times as many (6.8%) were below another
nonconvertible node. Because of the top down conversion, any node below a node that
cannot be converted, cannot be converted as well, which means a few nonconvertible
structures can block large subtrees from being converted. To increase coverage, the
relevant dependency relations are only the ones causing the blocks in the process. For
these dependency relations all rules in the ruleset require too much context which means
rarer edge cases with uncovered context cannot be converted. While every dependency
relation was found in the nonconverted subtrees, only 6 relations were responsible for
the blocks.

Out of the 28.5k tokens which were responsible for stopping the conversion process,
59% were attached with an APP relation that was not converted. The APP label was
converted in 51% of the cases, 21% were not converted because no applicable rule was
found and the remaining 28% were in subtrees which were not converted. This can
be explained by long apposition chains, of which the first element cannot be converted
which leaves the remaining labels nonconverted as well. The rules concerned with APP
conversion all include PoS tag constrains on the token and sometimes PoS tag constrains
for the parent node as well; a generic fallback rule would drastically increase coverage.
Also a rule covering the PoS tag for foreign words should be introduced, all the product
and organization names with English names where the tokens are connected via APP
relations are not converted, because the PoS tag does not match the other rules.

The second biggest blocker relation is the KON relation for conjunctions, with 18%
followed by CJ, conjunct, with 9%. The ruleset only includes a rule for converting these
two together, if they appear separately a conversion is not possible. PN was responsible
for another 9% of conversion stops, and here the same problem is the cause, PN is only
converted with a PP parent. The same holds true for KOM and OBJC, these two labels are
responsible for the remaining 4% of blocks.

The table containing the previously mentioned numbers can be found in Appendix A.1.

5.2.2. Precision

To test the precision of the ruleset, a gold standard comparison was needed. 50 sentences
were selected randomly from the treebank — excluding the trees which were used to
create the ruleset — and annotated manually. The sample included a variety of sentences
ranging from short sentence fragments with only three tokens to sentences with more
than 20 tokens. While the trees were converted manually, annotation errors in the source
trees were fixed as to not have source annotation errors influence the precision measure
of the transducer. Fixing annotation errors is a different task than transforming the
annotations. The transducer only transforms existing patterns into new patterns and

IPart A contains the sentences used to create the ruleset
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is not responsible for deciding on the quality of the source annotation, the annotation
errors would occur again in the target treebank, in transformed structures.

The manually created test set was then compared to the trees generated by the trans-
ducer to measure the correctness of the transducer. In this process some obvious errors
in the manually annotated UD trees were found, such as confusing nmod and obl. Again,
as the trees should function as a gold standard and not distort the actual performance
measure of the transducer, these errors were fixed before the precision metrics were
calculated.

It should be noted that for some phenomena the UD annotation guidelines are not
clear. There are no guidelines for German in particular, which means it is not always
obvious which annotation is the correct one. Particularly the guidelines regarding ap-
positions are not as elaborate as they should be. The HDT uses the APP label to cover
appositions as well as connecting names of persons and organizations. These structures
are covered by appos, flat and compound in UD, but it is not always definite which
label should be used. Many of the incorrect conversions were not completely wrong but
both versions, the generated and the manually annotated one seemed plausible.

The 50 sentences forming the test set had a total token count of 782, which includes
84 punctuation nodes, which were not included in the transformation process. Out of
the remaining 698, 662 were converted and 610 were converted correctly. This yields a
coverage of 89% for this smaller test set as well as a precision of 92%, 23 sentences were
entirely correct. Looking at individual dependency relations, all the very frequent ones
have high precision scores, the relations having between 92% and 98% precision make up
78% of all converted tokens. DET and PP are always converted to the correct target label,
but they are attached wrongly in rare instances. While DET is always converted to det,
PP is converted to either case or advmod in some instances. They have a correctness of
96.4% and 97.5% respectively, together they make up over 30% of all tokens converted
tokens in the test set. There are seven other labels in the same range, all of which
common as well, such as S, the root of the tree, SUBJ, 0BJA and AUX, essential parts of
a sentence and ATTR, GMOD and PN, common modifiers to other tokens. The errors found
here are the most difficult ones, as the structures which are not converted correctly are
unusual exceptions to the rules.

The rarer labels are found at both ends of the precision spectrum, they are either
converted entirely correctly or a few errors affect the metric heavily. Nine Labels were
converted correctly in 100% of the cases, together they make up 14% of the converted
tokens. Some of the labels are EXPL, 0BJC, OBJD and AVZ. Based on the occurrences
which were in the test data, the rules for these labels look sufficient.

The eight remaining labels have less than 90% precision and the labels occur less
frequently as well. More examples have to be taken into account to find conversion
patterns for these labels, which include PART, NEB, SUBJC. The KONJ relation appeared
only eight times, it is always mapped to mark but was attached wrongly in one instance,
yielding a correctness of 87.5%. Two more frequent labels which still end up with a bad
precision score are APP and PRED. The APP label was already discussed above in relation
with the coverage; the rules for that label have to be completely reworked. For this there
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needs to be a clear definition of when to use which target label. In the gold standard
annotations, the APP and PRED relations were mapped to four different target labels each.
For this many distinctions, more rules are needed.

The KOM relation for comparisons is never converted correctly. In the ruleset it is
treated similar to the KON relation, which is for conjuncts, which only makes sense for
phrases like “genauso hoch wie lang” (As high as long). In sentences like “[...] sollte
benutzt werden wie ein Telefon” (/...] should be used like a telephone.) it should be
treated similarly to prepositional phrases in that it should be converted to nmod and obl
structures, with the “wie” being attached as a case. Here it would make sense to use
subclasses to the nmod and obl label to mark the comparison, such as nmod: comp and
obl:comp respectively. The test data contains multiple instances of “mehr als” (more
than), where the KOM relation was not converted because it does not appear together
with a CJ dependent.

The word “wie” which is usually attached as KOM also points to multiword expressions
(MWESs), which are not covered at all in the ruleset. In the manually annotated data,
“dariiber hinaus” and “mehr als” were annotated as MWEs by using the fixed label to
connect the tokens. In the HDT the “als” of “mehr als” is connected as a KOM because it
is a comparative expression. The HDT does not have a notion of MWEs, which makes it
difficult to extract them from the source annotations. Introducing special treatment for
MWE:s in the ruleset would cover this issue, a possible solution would be lexicalization
of rules by using groovy code.

Another construct which cannot be detected from context but could be covered with
lexicalization is the inherently reflexive pronoun. The test set contains a single case of
this, “sich beeilen” (hurry up). The guidelines state that here the expl label should
be used to attach the pronoun to the predicate. In not inherently reflexive cases, the
pronoun is attached as an object, but distinguishing inherently reflexive cases from not
inherently reflexive cases based on tree context is not possible. Besides lexicalization
relying on manual decisions would also be plausible, as the number of reflexive pronouns
might be fairly low. This also prompts to further developments in the manual conversion
process, to allow for fast and clear decisions.

Other issues include the use of the S relation inside the tree instead of just at the top,
which can be detected and the ccomp label can be used instead of the root label. This
is usually the case for direct speech, where the uttered phrase is a complete sentence in
itself, but is also an argument to the predicate above it. This means it is unclear if it
should be attached as nsubj or as expl.

The swapping, especially cross frontier modifications, makes it difficult to analyse the
structures statistically. Some of the errors in other labels than the APP label are actually
from one rule related to APP conversion which also does cross frontier modification.
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This work presented a framework for treebank annotation schema conversion consisting
of a tree transducer implementation, a syntax for formulating rules as well as a number
of extensions to the transducer formalism. The tree transducer is complimented by a
graphical user interface for human annotation, facilitating a semi automatic conversion
process which combines the strengths of automatic conversion with the human decision
process in edge cases.

The experiments demonstrate that a relatively small ruleset can already achieve valu-
able results, analysis of the first conversion results shows that room for improvement
exists and points to specific issues which can be tackled by means of the framework.
Specifically, the coverage experiment shows that only a small number of dependency re-
lations block the conversion process and only one fifth of the nonconverted nodes could
not be converted because of missing rules. The coverage can therefore be increased with
little effort, and the precision experiments also pointed to specific issues which can be
solved with additional rules. The rules did not use the groovy code feature or interactive
conversion, which should be used to tackle edge cases and exceptions.

The manual conversion of trees to create and test the ruleset surfaced the need for dis-
tinct German annotation guidelines for Universal Dependencies where German language
constructs are covered specifically. The experiments also showed that manual conversion
is error prone and automatic conversion should be used as much as possible. Annotation
errors in the source treebank were found, as well as errors in the manually annotations
were made which were discovered later on but show the fragility of the process. This
tool will make it easier for people without programming knowledge to convert a treebank
automatically.

This work was also intended to evaluate whether tree conversion based on local context
only is viable, and the results show that it is. The locality of word groups in a sentence
can easily be captured in a rule based system, making the transducer mechanism a
good fit for this task. The top-down nature of the formalism helps thinking about the
transformation process, in contrast to systems which match structures at arbitrary points
in the tree.

Future work should focus on the conversion of a complete treebank to evaluate the
effectiveness of the tool on an actual large-scale level. The ruleset used as a basis for the
experiments can be extended and used to convert the HDT entirely. The rules should
transfer as much information from the HDT schema as possible, the use of relation
subtypes should be considered, for example an obl:arg label for prepositional objects
(OBJP). In this regard, the tool needs to be extended to support subtyping of dependency
relations, the subtypes are marked by colons which clashes with the current rule syntax.
The use of more morphological features should be explored, in particular for distinguish-
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ing between compound and appos. For the rule bodies using groovy code, it should be
possible to define common variables which can be used across all rule bodies, as to allow
to define lists which can be reused in multiple rules or similar convenience definitions.
A complete conversion of the HDT would also include the splitting of words into syn-
tactic words, for example splitting “zum” into “zu” und “dem”. Also the PoS tags still
need to be converted, both of these tasks need to be treated with additional tools. The
tool could be embedded into a block in the udapi framework, easing its integration into
existing conversion pipelines and giving it more exposure in the community.

After more extensive use of the tool, an iterative rule writing workflow should emerge
which should then be supported by additional software developments, manual edits to
the converted trees should be kept intact while still allowing to apply the transducer
again after the ruleset was updated. The basic building blocks of the user interface and
the existing statistical evaluation tools provide a basis to continue the development of
the ruleset from its current state.

Introducing machine learning techniques into the conversion process is another poten-
tial area of future research the rules could be learned from a basis of manually converted
trees, or rules could be learned from decisions made by a human annotator interactively.

Code and data is available under:
http://nats.gitlab.io/truducer
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A. Appendix

A.1. Coverage Table

Dependency Relation total cut converted blocking remaining

APP 4.78% 51.42%  20.52% 28.06%
OBJC 0.26% 85.44%  10.42% 4.15%
KON 3.28% 79.44% 9.25% 11.31%
KOM 0.69% 86.42% 6.89% 6.70%
CJ 3.23% 85.79% 4.72% 9.49%
PN 12.13% 93.07% 1.23% 5.70%
GRAD 0.05% 90.51% 0.00% 9.49%
NP2 0.02% 91.90% 0.00% 8.10%
REL 0.97% 91.96% 0.00% 8.04%
ADV 8.10% 92.44% 0.00% 7.56%
VOK 0.00% 92.65% 0.00% 7.35%
PAR 0.04% 93.05% 0.00% 6.95%
GMOD 2.50% 93.34% 0.00% 6.66%
ETH 0.09% 93.35% 0.00% 6.65%
PRED 1.17% 93.53% 0.00% 6.47%
ATTR 8.13% 93.66% 0.00% 6.34%
DET 13.94% 93.90% 0.00% 6.10%
AUX 3.74% 94.23% 0.00% 5.77%
EXPL 0.10% 94.29% 0.00% 5.71%
OBJG 0.02% 94.36% 0.00% 5.64%
PP 12.03% 94.45% 0.00% 5.55%
ZEIT 0.37% 94.52% 0.00% 5.48%
OBJD 0.46% 94.86% 0.00% 5.14%
KONJ 0.98% 94.97% 0.00% 5.03%
PART 0.60% 95.00% 0.00% 5.00%
SUBJ 8.29% 95.14% 0.00% 4.86%
OBJA 4.55% 95.22% 0.00% 4.78%
OBJA2 0.05% 95.28% 0.00% 4.72%
NEB 0.77% 95.33% 0.00% 4.67%
OBJP 0.46% 95.33% 0.00% 4.67%
OBJI 0.42% 95.44% 0.00% 4.56%
SUBJC 0.21% 95.82% 0.00% 4.18%
AVZ 0.68% 96.94% 0.00% 3.06%

S 6.88% 99.91% 0.00% 0.09%
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