
Hierarchical Control for Bipedal
Locomotion using Central Pattern
Generators and Neural Networks

Master’s Thesis

at Knowledge Technology, WTM
Department of Informatics

MIN-Faculty
Universität Hamburg

Sayantan Auddy

Intelligent Adaptive Systems
Student-ID number: 6640595

December 29, 2017

Reviewers: Prof. Dr. Stefan Wermter

Dr. Sven Magg

Adviser: Dr. Sven Magg

mailto:4auddy@informatik.uni-hamburg.de
mailto:wermter@informatik.uni-hamburg.de
mailto:magg@informatik.uni-hamburg.de
mailto:magg@informatik.uni-hamburg.de

Abstract

Abstract

The walking movement of humans is graceful and robust. This movement is the
result of synchronization between the neural mechanisms which generate rhythmic
motion, and the dynamics of the skeletal structure. The overall movement is op-
timized by high-level control centers. Drawing inspiration from this mechanism, a
hierarchical controller for bipedal locomotion of robots is proposed in this thesis.

Artificial central pattern generators (CPGs) mimic the behavior of the neural
mechanisms which produce rhythmic motion in animals. Many existing methods
use CPG networks for bipedal locomotion, but most of them focus solely on the
CPGs. The proposed controller augments the functionality of a CPG network by
adding a novel high-level controller on top of it. Thus, at the lower level, a CPG
network with feedback pathways controls the individual joints. The parameters
of the CPG network are optimized by a genetic algorithm. At the higher level, a
neural network modulates the output of the CPG network in order to optimize the
robot’s movements with respect to an overall objective. In this case, the objective
is to minimize the lateral deviation while walking. The neural network is trained
using reinforcement learning.

The proposed controller was successfully used to produce stable bipedal loco-
motion for the NICO robot in simulation. Results of experiments show that the
high-level controller was able to improve the performance of the low-level CPG
network. Additionally, by comparing the performance of CPG networks with and
without feedback mechanisms, the relative effectiveness of low-level feedback has
been shown. The proposed controller is not strongly coupled to a particular robot
model and is modular in design. The results obtained, by using this controller in
simulation, encourage its use on the physical robot in the future.

III

IV

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Research Objectives . 3
1.3 Organization . 4

2 Background 5
2.1 Biological Motivation . 5
2.2 Artificial Central Pattern Generators 7

2.2.1 Hopf Oscillator . 8
2.2.2 Matsuoka Oscillator . 9
2.2.3 Choice of Oscillator . 12

2.3 Genetic Algorithms . 12
2.4 Policy Gradient Reinforcement Learning 16

2.4.1 Basics of Reinforcement Learning 17
2.4.2 Policy Gradient Methods . 20
2.4.3 Deep Deterministic Policy Gradient 21

3 Related work 25
3.1 Model-based Methods . 26

3.1.1 Zero-Moment-Point based Methods 26
3.1.2 Footstep Planning . 27
3.1.3 Human Motion Capture . 28

3.2 Natural Dynamics-based Methods 29
3.2.1 Passive Dynamics . 29
3.2.2 Active Dynamics . 30

3.3 Biologically Inspired Methods . 31
3.3.1 Central Pattern Generators 32
3.3.2 Hybrid Methods . 33

3.4 Discussion . 33

4 System Architecture 35
4.1 Overview . 35
4.2 Structure of the Low-level Controller 36

4.2.1 CPG Network Configuration 37
4.2.2 Pacemaker Oscillator . 39

V

Contents

4.2.3 Feedback Pathways . 40
4.3 Structure of the High-level Controller 44

4.3.1 Control Mechanism . 44
4.3.2 High-level Neural Network Controller 46

5 Low-level Control 49
5.1 Evolution of a Basic Gait . 50

5.1.1 Setup . 50
5.1.2 Genetic Algorithm Parameters 51
5.1.3 Chromosome Structure and Parameter Bounds 51
5.1.4 Fitness Function . 55
5.1.5 Results . 56

5.2 Gait Analysis . 59
5.2.1 Evaluation Parameters and Setup 60
5.2.2 Results . 61

5.3 Discussion . 66

6 High-level Control 69
6.1 Problem Formulation . 69

6.1.1 Agent and Environment . 70
6.1.2 Design of Reward Function 71
6.1.3 High-Level Controller Training 73

6.2 Experiments . 75
6.2.1 DDPG Hyperparameters . 76
6.2.2 Setup . 76
6.2.3 Training Results . 77
6.2.4 Test Results . 80

6.3 Discussion . 84

7 Conclusion 85
7.1 Summary . 85
7.2 Contributions . 86
7.3 Future Work . 87

A Low-level Controller Results (M2) 89
A.1 Genetic Algorithm Results . 89
A.2 Gait Analysis Results . 91

Bibliography 97

VI

List of Figures

2.1 Neural components of motor systems and a half-center CPG model 6
2.2 Network of Hopf oscillators . 9
2.3 Matsuoka oscillator . 11
2.4 Flowchart of an evolutionary algorithm 13
2.5 Irregular multi-modal fitness surfaces 14
2.6 Types of crossover operations . 15
2.7 Reinforcement learning scenario . 17
2.8 Actor-critic reinforcement learning 19

3.1 Types of bipedal locomotion techniques 25
3.2 Framework for model-based methods 26
3.3 Framework for natural dynamics-based methods 29
3.4 Framework for CPG-based methods 31

4.1 System overview . 36
4.2 Central pattern generator network 37
4.3 Joints driven by oscillators . 38
4.4 Pacemaker output . 40
4.5 Angle feedback configuration . 41
4.6 Phase reset configuration . 42
4.7 Effect of phase resetting on the pacemaker’s output 43
4.8 Turning mechanism . 45
4.9 High-level neural network controller 47
4.10 Detailed system architecture . 48

5.1 Patterns for deciding the limits of parameter kf 52
5.2 Bias position . 53
5.3 Sequence of poses . 54
5.4 Open loop results . 56
5.5 Angle feedback results . 57
5.6 Phase reset results . 57
5.7 Fitness f . 62
5.8 Forward distance distancex and absolute lateral deviation devabsy . . 62
5.9 Average length of a stride . 63
5.10 Up time . 64

VII

List of Figures

5.11 Variance of torso orientation about the world x and y axes 64
5.12 Variance of torso orientation about the world z-axis 65
5.13 Snapshots of the walking motion . 65
5.14 Correlation between the gait evaluation parameters 67

6.1 Reinforcement learning setup . 70
6.2 Calculation of reward . 72
6.3 Critic neural network . 73
6.4 DDPG training process . 75
6.5 Training progress for Setup1 . 78
6.6 Training progress for Setup2 . 79
6.7 Training progress for Setup3 . 79
6.8 Training progress for Setup4 . 80
6.9 Test results for distance . 81
6.10 Test results for deviation . 82
6.11 Test results for torso orientation . 82
6.12 Path taken by the robot . 83

A.1 Open loop results (M2) . 89
A.2 Angle feedback results (M2) . 90
A.3 Phase reset results (M2) . 90
A.4 Fitness f (M2) . 92
A.5 Forward distance distancex and absolute lateral deviation devabsy (M2) 93
A.6 Average length of a stride (M2) . 93
A.7 Up time (M2) . 94
A.8 Variance of torso orientation about the world x and y axes (M2) . . 94
A.9 Variance of torso orientation about the world z-axis (M2) 94

VIII

List of Tables

4.1 Oscillators and their corresponding joints, gains and biases 38
4.2 CPG network parameters to be optimized 39
4.3 Internal parameters of the pacemaker oscillator 39
4.4 CPG network parameters to be optimized for angle feedback 42

5.1 Hyperparameters of the genetic algorithm 51
5.2 Limits of the parameters used in the chromosome 52
5.3 Best performance in the 30th generation 58
5.4 CPG network parameters found by the genetic algorithm 59
5.5 Parameters used for evaluating gaits 60
5.6 Median values of the gait evaluation parameters 61

6.1 Chromosome used to initialize the CPG network 76
6.2 Reinforcement learning setups with different hyperparameters . . . 77
6.3 Median and IQR values for the reinforcement learning setups 81

A.1 Best performance in the 30th generation on M2 90
A.2 CPG network parameters found by the genetic algorithm on M2 . . 91
A.3 Median values of the gait evaluation parameters on M2 92

IX

List of Tables

X

Chapter 1

Introduction

In recent years, rapid progress in the fields of artificial intelligence and robotics has
enabled robots to become ever more sophisticated and capable of performing a wide
variety of tasks. Today, robots can no longer be considered to be machines restricted
only to laboratory or industrial environments, but have begun to proliferate into
our homes and offices. As robots continue to grow advanced and become more
integrated into human society, they would need to operate in environments which
have been designed for humans. Hence, being able to walk is a fundamental ability
that such robots must possess.

Walking is an activity that many of us take for granted. Yet, this apparently
‘simple’ action involves many complex mechanisms which are tied together to pro-
duce our own bipedal movements. Achieving stable and robust bipedal locomotion
in robots is a very difficult task. Humanoid robots contain many joints and this mul-
tiplicity of degrees-of-freedom greatly compounds the control problem for walking.
How such joints can be effectively controlled and made to work in a synchronous
manner, is a challenging research question. Humanoid robots have come a long way
since the days of early anthropomorphic robots such as WABOT-1 [49], WABOT-2
[90] and WL-10RD [34]. Today, advanced humanoid robots such as Honda’s Asimo
[82, 27], Kawada’s HRP [45, 46, 47], IIT’s iCub [69] and Boston Dynamics’ Atlas
[18] can perform many difficult tasks such as climbing stairs or walking over uneven
terrain. However, there is still a long way to go before robots can be as robust as
animals when it comes to walking in different kinds of environments.

Some of the most popular approaches for bipedal walking are model-based tech-
niques such as Zero Moment Point (ZMP) [99, 38]. These techniques rely heavily on
accurate information about the kinematics and dynamics of the robot, and using
some criteria for stability, they compute trajectories for all the joints using inverse
kinematics. Although this leads to robust walking in controlled environments, there
are certain problems. Firstly, such methods are computationally intensive due to
the matrix inversion operations that are needed. Secondly, they rely on precise joint
control and so expensive servos are better suited. Thirdly, the natural dynamics
of the body is not utilized and often, it is overridden to maintain control over the
robot. This results in a walk, which although may be stable, is not energy efficient
or graceful and does not scale well to unpredictable conditions.

1

Chapter 1. Introduction

The problem of bipedal locomotion in a robot involves a number of sub-
problems such as movement generation and synchronization of the different joints,
adapting to environmental disturbances and achieving overall gait-related objec-
tives like maintaining balance or walking in a particular direction or with the
desired speed. Instead of trying to solve all the sub-problems together, a better
approach is to handle them separately. In the current work, the problem of bipedal
locomotion has been decomposed into two separate tasks: motion generation and
motion modulation. These tasks are solved by using a hierarchical controller com-
posed of a network of central pattern generators and a neural network.

1.1 Motivation

In many areas of artificial intelligence, mimicking biological processes has proven
to be an attractive way of solving difficult problems. There is evidence to suggest
that neural circuits called central pattern generators (CPGs) are responsible for
producing the rhythmic patterns responsible for movement in animals [89, 6, 24].
The CPGs can produce rhythmic output on their own and can be modulated by
higher brain centers to produce specific kinds of motion [84]. The control struc-
ture for bipedal locomotion, proposed in this thesis, is motivated by the neural
mechanism for walking that is found in nature.

At the lower level, a network of artificial CPGs autonomously produces rhyth-
mic patterns for controlling the individual joints. The CPG parameters are op-
timized according to specific criteria so that a stable gait is achieved. Feedback
mechanisms are utilized so that the joint movements can synchronize with the
overall motion of the robot. The CPG network is based on the work of Cristiano
et al. [11]. For the motion modulation task, a neural network acts as a high-level
controller and modulates a few parameters of the CPG network to achieve cer-
tain characteristics in the final walking motion. This approach greatly simplifies
the process of overall control since the higher control mechanism does not need to
control the joints individually.

A CPG-based method for bipedal locomotion provides some advantages over
model-based methods. CPGs are implemented using coupled differential equations
which are computationally inexpensive to solve. They exhibit stable limit cycle
properties and are quite robust to external disturbances. So, they can be imple-
mented on most kinds of robots, not only the most expensive ones with high preci-
sion motors. The biggest advantage of CPGs is that they can adapt to the natural
dynamics of the robot. Instead of suppressing the natural dynamics, they can work
in unison with it. This greatly improves the energy efficiency of the movement.

CPGs such as the Matsuoka oscillator [65, 66] and the Hopf oscillator [79] have
been around for a long time and they have been used in several studies which aim
to develop algorithms for bipedal locomotion [96, 10, 11, 12, 52, 79, 35]. Although
these approaches have achieved bipedal locomotion in different robots, they do not
deal with the question of a high-level controller which is capable of learning. When
we walk, instead of explicitly controlling every joint, we focus on higher forms of

2

1.2. Research Objectives

control such as balance, direction or speed and make the desired adjustments to
our gait. Moreover, as children grow up, they learn how to modulate their gait and
gradually get better at walking.

CPGs provide parameters through which their outputs may be modulated. This
provision is exploited by using a neural network as a mechanism of trainable high-
level control. Additionally, many of the previously mentioned studies use some form
of feedback mechanism to modulate the CPGs. However, these mechanisms are not
compared on the basis of measurable parameters. An objective analysis of different
types of feedback will shed light on their relative advantages and disadvantages.
This comparative analysis is also taken up in this thesis.

CPG based algorithms are not tightly coupled with a particular robot model
and they can be easily adapted to different robots. As such, they provide a promis-
ing way of developing walking capabilities for new robots. The Neuro-Inspired
Companion (NICO) robot [51] is a humanoid robot being developed by the Knowl-
edge Technology group at Universität Hamburg. Since the NICO does not have an
algorithm for walking yet, developing one for it is also a motivation for this the-
sis. The current work has been carried out using the NICO in the Virtual Robot
Experimentation Platform (VREP) simulator [14].

1.2 Research Objectives

The objective of this thesis is to develop a bio-inspired, hierarchical controller
for bipedal locomotion based on CPGs and neural networks, which can be used to
make the NICO robot walk in simulation and can potentially also be used on other
similar robots. The primary research question that this thesis aims to address is:

Can bipedal locomotion be achieved by using a low-level CPG-based con-
troller modulated by a high-level neural network controller, and is such
a control mechanism beneficial for walking?

An analysis of the comparative performances of different low-level feedback
mechanisms can demonstrate the effects induced by the feedback loops. This will
also help in choosing an appropriate type of feedback. In this respect, the secondary
research question that this thesis aims to answer is:

Do feedback mechanisms for CPGs improve the gait? How do different
feedback mechanisms compare against each other?

The focus of this work is on making the higher level controller capable of
learning. At the same time, the controller should not require information about
the kinematics or dynamics of the robot, and so it should be independent of specific
robot models. The overall design of the controller should be modular so that its
functionality can be extended in the future.

3

Chapter 1. Introduction

1.3 Organization

The purpose of this chapter has been to provide an overview of some of the chal-
lenges involved in bipedal locomotion and the approach followed in this thesis to
overcome them. The proposed method is inspired by biological control mechanisms
for walking. It also involves the use of Matsuoka oscillators, genetic algorithms and
policy gradient based reinforcement learning. Chapter 2 contains an overview of
these different topics and also provides references from where more detailed infor-
mation may be gathered. This is followed by chapter 3, which discusses different
relevant studies dealing with bipedal locomotion. Different methods are summa-
rized and their relative strengths and weaknesses are discussed.

The next three chapters form the core of this thesis and contain the details of the
proposed method and the experiments and analyses that were conducted. Chapter
4 explains the problem statement in detail and provides a complete overview of the
system architecture, including the configuration of the CPG network, details of the
feedback mechanisms and the internal structure of the high-level neural network
controller.

Chapter 5 deals with the problem of basic gait generation using CPGs. This is
done by optimizing the parameters of a network of Matsuoka oscillators using a
genetic algorithm. Topics discussed in this chapter include the design of the fitness
function, parameter search space bounding, hyperparameter setting and results of
the optimization experiments. Three kinds of basic gait are developed - one without
any feedback and two others using different feedback types. These gaits are then
compared to each other using some parameters which can objectively measure the
quality of the robot’s walk.

Chapter 6 deals with high-level control. Although the robot is able to walk by
using the CPG network and feedback loops, it tends to deviate from a straight
line trajectory due to systematic errors and slippage. A neural network is used as
a high-level controller in order to rectify this issue. The network is trained using
the Deep Deterministic Policy Gradient algorithm [61]. The topics discussed in
this chapter include reinforcement learning problem formulation, reward function
design, hyperparameter tuning, experimental setup, and results.

Chapter 7 contains concluding remarks. It summarizes the key results presented
in this thesis and discusses some areas of future work, such as, how the proposed
approach may be tested on a physical robot and how this hierarchical controller
may be extended for optimizing other aspects of the robot’s gait.

4

Chapter 2

Background

The method for bipedal locomotion control, proposed in this thesis, is based on
findings in neuroscience and artificial intelligence. The control architecture is in-
spired by the locomotion control mechanism in vertebrates. Some important as-
pects of these studies are discussed in this chapter, such as the organization of the
neural components for motor control in animals.

Different kinds of artificial CPG models exist in the literature for locomotion
control of robots. The general features of these models, which makes them suitable
for this task, are discussed, along with examples of different model types. The fun-
damentals and background of two of the most popular models, the Hopf oscillator
and the Matsuoka oscillator are presented. Additionally, reasons for choosing the
Matsuoka oscillator for the current work are also stated.

For optimizing the parameters of the CPGs, a genetic algorithm has been used.
This chapter includes an overview of this evolutionary optimization technique and
discusses a few of its salient characteristics.

The neural network used in this work was trained using the Deep Deterministic
Policy Gradient (DDPG) algorithm [61]. An overview of this algorithm, and of
policy gradient reinforcement learning in general, is presented in the last section.

2.1 Biological Motivation

In both higher level vertebrates as well as in some invertebrates, neural circuits
known as central pattern generators (CPGs) are responsible for producing the
rhythmic movements necessary for locomotion [31]. These CPGs can produce
rhythmic patterns of neural activity without the need of rhythmic or sensory in-
puts, and they are the basis of fundamental activities such as chewing, breathing
and locomotion. Several studies have proven the existence of CPGs in animals and
their responsibility for the movements of the animals [6, 24, 89]. Although sen-
sory feedback is not required to generate the rhythmic patterns by CPGs, it plays
an important role in modulating the rhythmic patterns and for coordinating the
movements of the body [31]. Vertebrate locomotor systems are organized such that
the CPGs produce basic rhythmic patterns, and the higher brain centers modulate

5

Chapter 2. Background

these patterns based on external sensory inputs [31]. Such an organization has im-
portant consequences, even from a robotics perspective, since it drastically reduces
the dimensionality of higher level control signals. The higher centers do not need
to specify individual muscle (or joint) activity and instead only need to modulate
the CPG activity using a small set of parameters [31].

(a) Neural components of motor systems.
Feedback information flows from the lower
centers to the higher centers. Sensory input
to CPG is only used for modulation. The
CPGs can produce rhythmic output in the
absence of sensory input as well [84].

(b) Half-center model: D denotes a driver
neuron which supplies a constant input, E
and F are the extensor and flexor motor neu-
rons. Filled circles indicate inhibitory neu-
rons, unfilled circles denote excitatory neu-
rons. Spike trains shown at the bottom [84].

Figure 2.1: Neural components of motor systems and a half-center CPG model [84].

A general framework for the nervous control of motor systems is illustrated
in figure 2.1a. The first element in this framework is the CPG, located in the
spinal cord. This is responsible for generating coordinated rhythmic outputs for
the motor neurons. The CPG, in turn, is controlled and modulated by the higher
motor centers. There also exist feedback circuits which relay information from the
muscles (proprioceptive feedback) and from the environment through other sensory
pathways. The feedback information is transmitted from lower to higher centers.
The proprioceptive feedback informs the higher center about any deviations that
exist between the commanded signal and the output [84].

The internal circuitry of the CPG generally belongs to one of three major cat-
egories: the half-center model, the closed-loop model and the pacemaker model
[84]. Only the half-center model is discussed here as it is relevant to the material
presented in this thesis. The half-center model, as shown in figure 2.1b, was first
proposed by Brown [5] to explain the alternating activation of the flexor and ex-
tensor muscles of a decerebrated cat’s limbs during walking on a treadmill. Brown
proposed that the neural networks responsible for generating rhythmic patterns
could do so ‘centrally’, without input from the sensory neurons [31]. Each pool of

6

2.2. Artificial Central Pattern Generators

motor neurons for flexor (F) or extensor (E) muscles is activated by a correspond-
ing ‘half-center of interneurons’ shown with filled circles in figure 2.1b). Another
set of neurons (D) provides a constant excitatory drive to the half-centers. Each
half-center has inhibitory connections to the other half-center, and this ensures
that when one pool is activated, the other one is deactivated. According to Brown,
as the first half-center was activated, a process of fatigue would build up in the
inhibitory connection between the half-centers which would ultimately lead to a
switching of activity between the half-centers. The process of fatigue can be mod-
eled by any process that induces self-inhibition of the active half-centers [84].

The work proposed in this thesis is motivated by Brown’s half-center neuron
model as well as by the organization of the neural control structure for locomotion
in animals. The Matsuoka oscillator is closely modeled on the half-center neuron
model with alternating centers of activity (figure 2.1b). This CPG forms the basic
building block of the proposed control mechanism. The usage of a neural network
to modulate a CPG network is directly inspired by the hierarchy shown in figure
2.1a. The design of feedback strategies is also modeled on the feedback pathways
shown here.

2.2 Artificial Central Pattern Generators

Artificial central pattern generators exist in numerous forms [4, 30, 54, 101, 63, 73,
9, 60], but almost all of them use coupled differential equations that are numerically
integrated to obtain the output signals [31]. The inherent properties of CPGs make
them a suitable candidate for the locomotion control of legged robots. First of all,
CPG based models display stable limit cycle behavior, which means that although
the generated patterns may be modified under the effect of a disturbance, as soon
as the disturbance is removed, the CPG returns to its normal behavior. Secondly,
since CPGs handle the low-level motor commands, the higher level controllers can
focus on tasks such as maintaining balance. Thirdly, CPGs can handle sensory
feedback easily, since the feedback signals can be conveniently added as coupling
terms in the differential equations of the CPGs. This also leads to the property of
entrainment, where the CPG tunes itself to the dynamics of the mechanical system
and can effectively utilize the dynamics of the robot. Due to their modular nature,
whereby each CPG can perform its computations independently, CPGs are also
suitable for use in modular robots consisting of multiple interlinked sections [31].

While developing a locomotion controller for a robot, the first and perhaps the
most important decision that needs to be made is regarding the type of CPG to use.
In [30] Ijspeert and Crespi have used a CPG model inspired by the neural circuits
controlling locomotion in a lamprey. Lewis et al. have used a spiking CPG model
for locomotion in a bipedal robot in [60]. In [63], Lu et al. used a cyclic inhibitory
CPG model for controlling the movements of a snake-like robot. However, two of
the most popular CPG models for robot locomotion are the Hopf oscillator and
the Matsuoka oscillator, and these are discussed in the following sub-sections.

7

Chapter 2. Background

2.2.1 Hopf Oscillator

The Adaptive Frequency Hopf oscillator was developed in [32] and [80]. A special
property of this kind of oscillator is that they can learn the frequency of an external
periodic signal without any kind of additional optimization process and the learned
frequency remains embedded within the oscillator even after the teaching signal
has been withdrawn. Hence the oscillator can learn and adapt to the input signal
[79]. The Hopf oscillator is defined by the following differential equations:

ẋ = γ(µ− r2)x− ωy + εF (t) (2.1a)

ẏ = γ(µ− r2)y + ωx (2.1b)

ω̇ = −εF (t)
y

r
(2.1c)

where (x, y) denotes the Cartesian coordinates in the phase plane, r =
√
x2 + y2,

µ is a parameter which controls the amplitude of the oscillations, ω is the intrinsic
frequency of the oscillator, γ controls the speed with which the oscillator returns
to its intrinsic oscillation after being perturbed, F (t) is the external periodic signal
which the oscillator must synchronize with and ε > 0 is a coupling constant [32, 80,
79]. Since the phase dynamics is of interest here, sometimes it is more convenient
to rewrite the above system of equations using polar coordinates [80]. Setting
x = r cosφ and y = r sinφ, we get:

ṙ = (µ2 − r2)r + εF cosφ (2.2a)

φ̇ = ω − ε

r
F sinφ (2.2b)

If the input signal F (t) contains multiple frequency components, the frequency
of the CPG will adapt to one of the components of this signal. However, an ap-
propriate linear combination of several of these oscillators can reproduce any kind
of periodic signal, much like a Fourier series representation, with each oscillator
adapting to one frequency component of the teaching signal [79]. Such a linear
combination of Hopf oscillators is shown in figure 2.2. In this setup, each oscillator
receives the same learning signal F (t) = Pteach(t)−

∑
i αixi, which is the difference

of the input teaching signal Pteach(t) and the signal already learned by the network∑
i αixi. Here αi denotes the amplitude that is associated with the ith oscillator.

Additionally, each oscillator is coupled with the 0th oscillator, using a coupling
term Ri, to synchronize the phase between all the oscillators. Using this general
scheme, the network of Hopf oscillators can learn arbitrary signals. Due to the
additional coupling terms, the equations 2.1-2.2 are slightly modified, the details
of which can be referred to in [79].

The setup shown in figure 2.2 can be used to control a single joint using the com-
bined learned signal Qlearned, once the Hopf oscillator network has converged. In
order to control multiple joints for locomotion, multiple such networks can be linked
up to form a larger network. The interconnections would be between the 0th oscil-
lators of the smaller networks. Apart from the coupling terms for inter-oscillator

8

2.2. Artificial Central Pattern Generators

connections, additional terms can be introduced into the differential equation 2.1 to
account for proprioceptive feedback information [79]. Similar networks of coupled
Hopf oscillators have been used for robot locomotion in [52, 20, 81, 79].

Figure 2.2: A network of Hopf oscillators [79]. Individual oscillators are denoted by the circles.

2.2.2 Matsuoka Oscillator

The Matsuoka oscillator is a mathematical model representing the general class of
neural rhythm generators known as mutual inhibition networks [66]. It consists of
a set of antagonistic neurons which inhibit each other’s activities. The structure
of this oscillator closely resembles the structure of the half-center neuron model
proposed by Brown [5] (figure 2.1b).

Being a connectionist model, the individual neurons of this artificial CPG rep-
resent neuron pools in the biological model and the activity of each neuron is a
generalization of the behavior of the respective neuron pools. A continuous-time,
continuous-variable neuron model was adopted for the Matsuoka oscillator [66].
The autonomous dynamics of the model are based on a piece-wise linear set of dif-
ferential equations, which model the discharge rates of neuron pools. The original
CPG equations proposed in [66, 67] have been generalized in [43], so that the model
is applicable to a system with multiple CPGs with arbitrary configurations. Here
the generalized Matsuoka model is discussed and from here on, this generalized
version will also be referred to as the Matsuoka model.

One of the most popular configurations of the Matsuoka oscillator, which is
also the configuration used in this work, consists of two tonically-excited neurons
- the extensor neuron responsible for movement in one direction and a flexor neu-
ron which is responsible for movement in the opposite direction. From a biological

9

Chapter 2. Background

standpoint, this is similar to the way muscles control joint movement in animals,
with antagonistic pairs of muscles controlling individual degrees-of-freedom.

The following equations define the behavior of the Matsuoka oscillator [43]:{
τ u̇1i = −u1i − w0y2i − βv1i + ue + f1i + s1i

τ ′ ˙v1i = −v1i + y1i

y1i = max(0, u1i) and i = 1, ..., num

(2.3)

{
τ u̇2i = −u2i − w0y1i − βv2i + ue + f2i + s2i

τ ′ ˙v2i = −v2i + y2i

y2i = max(0, u2i) and i = 1, ..., num

(2.4)

Here, each CPG (denoted by the subscript i) is a nonlinear oscillator having four
state variables (u1i, v1i, u2i, v2i). The subscript 1 corresponds to the extensor neuron
and the subscript 2 corresponds to the flexor neuron. u1i controls the discharge rate
and v1i controls the degree of self-inhibition of the extensor neuron. u2i controls the
discharge rate and v2i controls the degree of self-inhibition of the flexor neuron. ue is
the tonic input to both the neurons. τ is the time constant for the rate of discharge
and τ ′ is the time constant of adaptation or fatigue. These two time constants
determine the frequency of the CPG. β is the self-inhibition constant and w0 is
the constant of mutual inhibition between the flexor and extensor neurons. num
indicates the number of CPG units. The terms f1i and f2i are feedback variables
which can be used to control the amplitude or phase of the CPG. s1i and s2i
represent the interaction between different neighboring oscillators [11]:

s1i = wiju1j

s2i = wiju2j
(2.5)

where i and j denote different oscillator units and wij denotes the weight of the
connection from oscillator j (master) to oscillator i (slave). If wij is set to +1, the
oscillator i will have the same phase as oscillator j (excitatory connection), if wij
is set to −1, the oscillator i will have an anti-phase relationship with oscillator
j (inhibitory connection) [11]. In the absence of inputs s1i, s2i, f1i and f2i, the
oscillator will oscillate according to its own parameters, provided these parameters
satisfy the conditions for stable oscillations [65, 66]. When s1i, s2i, f1i and f2i are
provided, it implies that there exists a group of connected oscillators and these
will converge to a specific pattern and limit cycle determined by the oscillator
parameters and connection weights [11].

The final output of an oscillator is a scaled linear combination of the output of
the extensor and flexor neurons and can be used to control the position of a single
joint. The output oi of oscillator i is:

oi = −m1y1i +m2y2i (2.6)

10

2.2. Artificial Central Pattern Generators

where m1 and m2 are scaling constants. Further, in order to have a more fine-
grained control over the frequency of the oscillator, an additional parameter kf is
introduced [104, 11]. Thus, the two time constants are rewritten as:

τ = τ0kf

τ ′ = τ ′0kf
(2.7)

where τ0 and τ ′0 are the original time constants and τ and τ ′ are the modified
time constants after the scaling factor kf is applied [11]. A lower or higher value
of kf results in a higher frequency or lower frequency of oscillation respectively. A
diagrammatic representation of the Matsuoka oscillator is given in figure 2.3.

Figure 2.3: A Matsuoka oscillator. Symbols used from equations 2.3-2.7. Adapted from [43].

The configuration of an oscillator, with two mutually inhibiting neurons acting
together as a unit, is one out of several possible configurations. In [66], Matsuoka
has presented a number of different configurations including oscillator units com-
prising of 2, 3, 4 or 6 neurons with different types of interconnections. The features
of the various oscillator models are also discussed. The 2-neuron model has 2 neu-
rons acting in anti-phase and by subtracting the activation of one neuron from
the activation of the other, a periodic signal can be obtained. In other scenarios,
it may be desirable to have signals with intermediate phase differences and this
is possible if the other configurations are utilized. Some examples, where different
types of oscillator configurations have been used for robotics related applications,
are [35], [11], [12] and [10].

11

Chapter 2. Background

2.2.3 Choice of Oscillator

Both the Hopf oscillator and the Matsuoka oscillator provide a number of features
which makes them a suitable choice for robot locomotion tasks.

The Hopf oscillator is well defined in terms of amplitude and frequency, is easy
to control and has strong limit cycle properties [52]. Moreover, different oscillators
can be easily combined to produce complex output patterns consisting of multiple
frequency components [79]. However, one disadvantage is that the Hopf oscillator
needs an appropriate teaching signal to produce a suitable pattern. In [79], the au-
thors have used the joint angle patterns produced by the manufacturer-provided
walking algorithm as the teaching signal to train the oscillator network. The prob-
lem with this approach is that the CPG based walking algorithm will produce the
same gait as the default algorithm, and will also replicate any deficiencies of that
algorithm. Furthermore, for a new robot, a default walking algorithm may not be
available. In [52], the author has used a system of optimized sine generators as
the teaching signal for a network of Hopf oscillators. Here, extra effort is spent
in optimizing the sine equation parameters, and additionally, the teaching signals
themselves are very simple and cannot efficiently utilize the robot’s dynamics.

The Matsuoka oscillator does not require any teaching signal. Suitable values
for the parameters of the oscillator can be found by using an optimization process
where the fitness function is defined by a high-level performance criterion, such
as the speed or stability during walking [31]. Stochastic population-based evolu-
tionary algorithms such as Particle Swarm Optimization (PSO) [15, 50] or Genetic
Algorithms (GA) [28] are popular choices for finding optimal parameters for the
oscillators. In [53] and [36] PSO variants have been used for optimizing Matsuoka
oscillators. In [11] and [35], a GA was used for the same purpose. Additionally,
Matsuoka oscillators can be entrained with the natural dynamics of the robot [52].
The disadvantage of using Matsuoka oscillators is that the use of optimization
algorithms necessitates a high reliance on simulators and sometimes, finding a
near-optimal solution may take a long time [31].

Since the NICO robot does not have a walking algorithm, the question of a
ready-made teaching signal does not arise. Moreover, since a simulation model
of the NICO has already been developed, using a simulator was not a concern.
Hence, keeping in mind the relative advantages of the Matsuoka oscillator, it has
been chosen as the oscillator model for implementing the CPGs in this thesis.

2.3 Genetic Algorithms

Genetic algorithms, introduced by Holland [28], are a class of evolutionary opti-
mization techniques. The guiding principle of genetic algorithms, as in most evolu-
tionary techniques, is to find an optimal solution to a problem using the process of
natural selection. Given a set of individuals (population), environmental pressure
causes selection of fitter individuals. This causes the less fit individuals to eventu-
ally die out, resulting in an overall increase of the fitness of the population [16].

12

2.3. Genetic Algorithms

The general scheme of this process is depicted in figure 2.4.

Figure 2.4: Flowchart of an evolutionary algorithm [16]

Genetic algorithms have seen used extensively in science and engineering, mainly
because of their efficiency in handling problems that cannot be solved using regular
techniques such as gradient-descent. The solutions generated by genetic algorithms
are often unintuitive for humans, but nonetheless, highly effective. The sequence
of steps and features of a simple genetic algorithm are discussed next.

Problem Representation

The first step in a genetic algorithm is the process of representing a real-world
problem in a form that can be understood by the genetic algorithm. This involves
abstraction and simplification of the problem statement into an objective criterion
that needs to be optimized. This objective criterion is referred to as the ‘fitness
function’ [16]. The fitness function defines a surface in an n-dimensional space,
where n is the number of parameters in a potential solution. The objective of
the optimization process is to find the location of the optimum on the surface
defined by the fitness function. Fitness functions which represent uniform uni-
modal surfaces (a single optimum) can be easily optimized using gradient-descent
(-ascent) algorithms. However genetic algorithms are particularly useful when the
fitness surface is highly irregular with multiple local optima or is discontinuous. In
most cases, the shape of the fitness surface is not known at all. For a 2-dimensional
search space, a few examples of irregular multi-modal fitness surfaces are shown
in figure 2.5. These surfaces were generated using benchmark functions which are
generally used to evaluate the performance of optimization algorithms [62, 83, 77].

The next important issue is the encoding of possible solutions. In the 2D case,
for the fitness surfaces in figure 2.5, the solution is the coordinate pair (x, y).
One way of encoding the solutions is to use real valued numbers for x and y.
Another way is to use binary bit strings for the values of x and y. Based on

13

Chapter 2. Background

x

−4

−2

0

2

4 y
−4

−2
0

2
4

0
10
20
30
40
50
60
70
80

(a) Rastrigin Function [77]

x

−400
−200

0
200

400

y

−400
−200

0
200

400

200
400
600
800
1000
1200
1400
1600

(b) Schwefel Function [77]

Figure 2.5: Irregular multi-modal fitness surfaces

the problem, many other kinds of encoding schemes can also be used, such as
integer representation, permutation representation or tree representation [16]. The
observable traits of the possible solutions are called phenotypes and the encoded
forms of those solutions (such as a binary bit string representing (x, y)) are referred
to as genotypes. In the genetic algorithm parlance, individual genotypes are also
called chromosomes or individuals and the elements inside them are called genes
or alleles [16].

Population

The population consists of a set of chromosomes, and forms the unit of evolution.
All the operations of a genetic algorithm are performed at the population level.
Usually, the population contains a fixed number of individuals and this number
remains constant throughout the process of evolution. As evolution proceeds, less
fit individuals are slowly replaced by fitter individuals due to the selection pressure
created by the parent selection and survivor selection operators [16]. It is a com-
mon practice to initialize the individuals of the first population by using random
values within a predefined range. There also exist techniques where quasi-random
sequences such as Sobol sequence [88] or Van der Corput sequence [25] are used to
make the individuals of the initial population spread out uniformly and cover as
much of the search space as possible.

Parent Selection

The parent selection operator is responsible for selecting individuals from a given
population which will be used to produce new individuals for the next population.
Parent selection is a stochastic process where fitter individuals have a higher prob-
ability of being selected as parents. However, individuals with low fitness also have
a non-zero probability of being selected as parents, so as to prevent the optimiza-
tion process from becoming greedy and getting stuck at a local optimum [16]. Well
known strategies of selection include roulette-wheel selection, tournament selection
and ranking selection [23]. The basic idea behind the selection of fitter individuals

14

2.3. Genetic Algorithms

as parents is that genotypes which resulted in successful phenotypes should be
propagated to successive generations.

Recombination and Mutation

The purpose of recombination and mutation is to create new individuals from
old ones. Recombination is a binary operation where two parent chromosomes are
taken and parts of their chromosome are swapped to produce two child chromo-
somes. This process is also known as crossover and a number of different types of
crossover are possible based on the position and number of gene-sequences that are
swapped. In a one-point crossover scheme, a single position for crossover is marked
in the two parent chromosomes. In an n-point crossover scheme there are n such
positions [16]. Another type of crossover strategy is to take each gene of a child
chromosome at a time and randomly choosing which parent that particular gene
should be inherited from. This is known as uniform crossover [94]. The different
types of crossover operations are depicted in figure 2.6.

(a) 1-point crossover

(b) n-point crossover with n=2

(c) Uniform crossover

Figure 2.6: Types of crossover operations [16]

Mutation is a unary operation in which a single chromosome is taken and indi-
vidual genes are randomly altered to produce a new chromosome. The exact way
in which a gene is mutated depends on the encoding scheme used. For example,
when binary encoding is used, it is common practice to randomly flip 0s to 1s and

15

Chapter 2. Background

vice versa. When floating-point representation is used, a gene can be mutated by
adding or subtracting a floating point number (randomly drawn from some prob-
ability distribution) from the number inside the gene. Several other varieties of
mutation also exist [16]. The mutation operation is important for introducing di-
versity into a population and helps the algorithm to explore the search space more
efficiently. However, mutation also has the tendency for disrupting good chromo-
somes and so it should be used rather sparingly. Like recombination, mutation
is also a stochastic process and a small probability is used to decide whether a
particular gene should be mutated or not.

Survivor Selection

Survivor selection, like parent selection, also aims to distinguish between individu-
als based on their fitness. This is especially important for genetic algorithm variants
which produce more than 2 children by recombining 2 parents and is necessary for
maintaining a constant population size. Selection of individuals is a stochastic pro-
cess, where the probability of selection is dependent on the fitness or age of an
individual. One approach for selection, while passing from one generation to the
next, is to consider all the parent and child individuals together and then to se-
lect a constant number of individuals from this set. Another approach, known as
elitism, is to always clone a certain number of the fittest individuals into the next
generation and then perform selection to fill the remaining spots. This ensures that
high-quality individuals are never lost during the evolution process [16].

Termination

The termination criterion makes certain that the process of evolution does not
continue indefinitely. A commonly used termination criterion is to terminate the
process if there is no fitness improvement in a small fixed number of consecutive
generations. An easier alternative is to use a fixed number of generations for which
to run the algorithm [16].

A number of variants of genetic algorithms are possible due to the large number
of choices which can be made regarding the operations such as selection, mutation
and recombination. In addition, there also exist many hybrid approaches, where
the features of genetic algorithms and other kinds of evolutionary algorithms have
been combined [48, 37, 85].

2.4 Policy Gradient Reinforcement Learning

The concept of a goal-directed agent, which can learn to perform tasks by interact-
ing with the environment, is especially useful in robotics. For example, if a robot
is being trained to grasp an object, it is infeasible to provide label actions such
as target joint angles for each state that it encounters (as needed in supervised
learning). However, it is very easy to tell the robot how good it is performing by

16

2.4. Policy Gradient Reinforcement Learning

giving it a positive reward if it completes the task successfully or some negative
reward if it hits any obstacles. A special class of reinforcement learning, known as
policy gradient methods, is especially suited to robotics because these methods are
able to deal with continuous, real-valued action spaces, which is a characteristics
of physical environments. Policy gradient-based methods have been successfully
used for robotics applications in [21], [64], [17] and [57]. Examples of other appli-
cations can be found in [56]. This section aims to provide a general overview of
policy gradient methods, with a focus on the Deep Deterministic Policy Gradient
algorithm (DDPG) [61], which has been used in this work. However, before that, a
brief overview of reinforcement learning is presented, so that the terminology used
in the remainder of this section can be introduced.

2.4.1 Basics of Reinforcement Learning

Reinforcement learning is concerned with the problem of learning to control an
agent, operating within some environment, so as to maximize a long-term perfor-
mance measure [95]. The entity responsible for taking decisions and performing
actions is called the agent and the thing that it interacts with, comprising of ev-
erything outside the agent, is called the environment. The agent monitors the
current state of the environment and based on that decides to perform an action.
The environment reacts to that action and presents the agent with a reward (a
numerical performance measure) and a new environment state [92].

Figure 2.7: The reinforcement learning scenario [92]

This process is depicted in figure 2.7, where at time t the agent observes the
environment’s state St ∈ S (where S is the set of all possible states) and the
last reward Rt ∈ R and decides to perform an action At ∈ A(St) (A(St) is the
set of actions which can be performed in state St). In the next time step t + 1,
the environment reacts by transitioning to a new state St+1 and sending a new
reward Rt+1 ∈ R. The agent’s goal in the reinforcement learning scenario is to
maximize not the immediate reward that it receives, but the cumulative reward
in the long run. The cumulative reward which an agent receives is known as the
return. Specifically, return at time t is the expected cumulative reward starting
from time t+ 1 upto the terminal time step T . This is denoted in equation 2.8.

Gt = Rt+1 +Rt+2 +Rt+3 + ...+RT (2.8)

17

Chapter 2. Background

In most situations, it is useful to give more importance to immediate rewards than
rewards which the agent expects to achieve many time steps in the future. This
is taken care of by using a discounting factor. The agent tries to maximize the
expected discounted return Gt, denoted in equation 2.9, where γ is a parameter,
0 ≤ γ ≤ 1, called the discount rate [92].

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ... =
∞∑
k=0

γkRt+k+1 (2.9)

The sequence of all states, actions and rewards of an agent from time t = 0 till the
current time is known as its history, Ht, denoted by:

Ht = S0, A0, R1, ..., St−1, At−1, Rt, St, At (2.10)

One of the most important concepts in reinforcement learning is that of the
Markov property. When the agent takes an action, the environment’s response
at t+ 1 may depend on the entire history, that is, the probability of the next state
St+1 and reward Rt+1 depends on Ht. However, if the state has the Markov prop-
erty, then the next state is only dependent on the current state and action, not
the entire history. In this case the state is said to be a Markov state. Since it is
desirable for states to be a good basis for predicting what the future rewards and
future states will be, the assumption of Markov property is a fundamental theo-
retical consideration in reinforcement learning. In practical situations, where this
assumption may not hold completely, it is useful to consider a state as an approx-
imation of a Markov state, in order to get good performance from reinforcement
learning systems [92]. A reinforcement learning task that satisfies the conditions
of the Markov property is known as a Markov Decision Process (MPD).

In a reinforcement learning task, an agent needs to have a way to choose an
action out of many possible actions, when it finds itself in a particular state. It does
so by following its policy, which is defined as a mapping from states to actions.
Policies can be deterministic (where the agent takes the same action whenever it
sees the same state), or they can be stochastic (where the agent is most probable
to take a certain action in a given state, but not always). Stochastic policies are
useful since they allow the agent some room for exploration. For a state s ∈ S and
action a ∈ A(s), a deterministic or stochastic policy π is defined as [92]:

Deterministic Policy: a = π(s) (2.11a)

Stochastic Policy: π(a|s) = P[A = a | S = s] (2.11b)

A basic idea in reinforcement learning is to predict how good a certain state is,
based on the expected return of that state. The agent then tries to choose actions
which result in good states and hence better returns. The goodness of a state is
determined by using a value function. A value function can be of two types:
state-value function and action-value function. The state-value function vπ(s)

18

2.4. Policy Gradient Reinforcement Learning

of a state s, under a policy π, is defined as the expected return when starting in
state s and following policy π thereafter [92].

vπ(s) = Eπ[Gt | St = s] = Eπ

[
∞∑
k=0

γkRt+k+1

∣∣∣∣∣ St = s

]
(2.12)

The value of taking an action a in a state s and thereafter following policy π is
defined by the action-value function qπ(s, a) [92].

qπ(s, a) = Eπ[Gt | St = s, At = a] = Eπ

[
∞∑
k=0

γkRt+k+1

∣∣∣∣∣ St = s, At = a

]
(2.13)

Value functions satisfy a recursive relationship between the value of a state s and
the value of its potential successor states. This recursive relationship is defined by
the Bellman equations, which form the basis of numerous theoretical proofs in
reinforcement learning [92].

Figure 2.8: Actor-critic reinforcement learning, where the policy is learned separately and is
critiqued by the value function [92].

Based on the evaluation of values or policies, reinforcement learning meth-
ods can be categorized into different classes. Value-based methods use the value
function of state-action pairs and then use those action values directly to select
actions. They do not explicitly evaluate policies. Policy-based methods, on the
other hand, directly represent policies and use them to select actions. In a third
category, known as actor-critic methods, both value functions and policies are
used. The policy (known as the actor) is represented independently of the value
function (known as the critic). The policy is used to take actions and the value-
function is used to critique the policy being followed [92]. The general scheme of
actor-critic methods is shown in figure 2.8.

19

Chapter 2. Background

2.4.2 Policy Gradient Methods

When a reinforcement learning agent needs to decide what action to take, it has a
number of ways of making that decision. One way is to compute the action-value
function qπ(s, a) for the current state s and all possible actions which can be taken
in that state, and then use the computed value of the action-value function to form
the policy as π(s) = argmax

a∈A(s)
qπ(s, a).

Using such a greedy approach does not allow any exploration. A better ap-
proach is to form a stochastic policy by using an ε-greedy method, where the best
action is selected with a probability of (1− ε) and a random action is selected with
a probability of ε (a small probability). However, this process of generating the
policy by using the value-function has one major problem: the use of the argmax
operator is only possible if the actions a ∈ A(s) are discrete. If the action space
is continuous, to find the argmax, an optimization needs to be performed at every
step. This is clearly not feasible for an agent operating in real time [61].

The above mentioned limitation can be avoided if the action is generated di-
rectly by using the policy. In policy-based methods, the policy is parameterized
using some parameter θ. As long as the policy πθ(a|s) can be differentiated with
respect to its weights (∇θπθ(a|s) exists and is finite), any kind of parameterization
can be used. For example, a neural network, with a weight vector θ, can be used
to predict actions. In the case of continuous actions, the input to this network will
be the state and the output will be the action. For a discrete action space, the
output of the neural network can be converted into probabilities of the actions by
using the softmax function [93].

Given a policy πθ(a|s) with parameters θ, the goal of policy-based learning is
to find the best possible θ. To determine the quality of the policy πθ a policy
objective function, J(θ) is used [93].

J(θ) =

vπθ(s1) for a discrete state space∑
s

dπθ(s)vπθ(s) for a continuous state space
(2.14)

where vπθ(s) is the state-value function of state s, s1 is the initial state in the
discrete case and dπθ(s) is the probability of being in state s in the continuous
case. Policy-gradient based methods seek to find the θ that maximizes J(θ) in

equation 2.14 by using the gradient ∇θJ(θ) = [∂J(θ)
∂θ1

,, ∂J(θ)
∂θn

]T . Typically methods
such as gradient-descent are used for this. Further details and mathematical proofs
related to policy gradients can be found in [93].

20

2.4. Policy Gradient Reinforcement Learning

2.4.3 Deep Deterministic Policy Gradient

Policy gradient algorithms are widely used in reinforcement learning applications,
where the policy is directly used to select an action. In [87], Silver et al. presented
Deterministic Policy Gradient algorithms (DPG), where deterministic policies
such as a = µθ(s) are used (µθ is a function parameterized by θ, a is the action and s
is the state). In order to encourage exploration, the authors have used an off-policy
strategy, where a stochastic behavior policy is used to learn about a deterministic
target policy [87]. This means that during training, variability is introduced into
the action selection process, but once the training is over, the learned policy does
not have any stochasticity in action selection. This allows the target policy to
utilize the knowledge gained by the behavior policies. The performance benefits
of deterministic policy gradients, particularly in high-dimensional tasks, has been
cited as a reason for their preference over stochastic policy gradients [87].

One of the most famous papers in reinforcement learning is [72], in which the
Deep Q Network (DQN) was introduced by Mnih et al. DQN was able to match or
surpass human-level performance on many Atari video games using unprocessed
pixels as input. Here, a deep convolutional neural network was used to approx-
imate the optimal action-value function q∗(s, a) [72]. However, since the action-
value function is used as the basis for selecting actions, DQN, in its original form,
generally cannot be used in robotic tasks, which are most often characterized by
high-dimensional continuous action-spaces.

The Deep Deterministic Policy Gradient (DDPG) algorithm, introduced by
Lillicrap et al. [61], overcomes this limitation. DDPG is a model-free, off-policy,
actor-critic algorithm which uses deep neural networks as function approximators
for the policy and the action-value functions. DDPG is based on the DPG algorithm
[87], and also uses concepts from DQN to stabilize the learning process.

Mathematical Preliminaries

The DDPG algorithm deals with an agent interacting with an environment E in
discrete time steps t1, t2, ...tT . At each time step t the agent receives an observation
st, takes an action at ∈ RN and receives a scalar reward rt. A policy π defines the
agent’s behavior. The state, which may be stochastic, is modeled as a Markov
Decision Process with a state space S, action space A ∈ RN and reward function

r(st, at). A discounted return Rt =
T∑
i=t

γi−tr(si, ai) is used for judging the quality of

a state (γ ∈ [0, 1] is the discounting factor). The goal is to learn a policy which will
maximize J = Eri,si∼E,ai∼π[R1], the expected return from the starting state. The
probability distribution which defines the way in which states are visited, using
policy π, is denoted as ρπ [61].

The Bellman equation for action-value functions for a policy π, relates the
action-value of one state-action pair to the next [61, 92]:

qπ(st, at) = Ert,st+1∼E
[
r(st, at) + γEat+1∼π[qπ(st+1, at+1)]

]
(2.15)

21

Chapter 2. Background

As the target policy is deterministic, a function µ : S ← A is used to describe the
policy. Due to this, the inner expectation in equation 2.15 can be avoided and it
can be rewritten as [61]:

qµ(st, at) = Ert,st+1∼E
[
r(st, at) + γqµ(st+1, µ(st+1))

]
(2.16)

The only stochasticity which remains is due to the environment E. Hence, it is
possible to learn qµ off-policy, by using a separate stochastic behavior policy β
to learn the deterministic target policy µ. The DDPG algorithm uses function
approximators parameterized by θq and these are optimized by using the following
loss function in equation 2.17. Here although the target yt is also dependent on the
parameter vector θq, this is ignored [61].

L(θq) = Est∼ρβ ,at∼β,rt∼E
[(
q(st, at | θq)− yt

)2]
(2.17)

where yt = r(st, at) + γq(st+1, µ(st+1) | θq)

Similar to the DPG algorithm of Silver et al. [87], the DDPG algorithm also
uses a parameterized actor function µ(s|θµ) for deterministically mapping states
to specific actions. The actor is updated by using the policy gradient denoted in
equation 2.18. The proof for this can be found in [87].

∇θµJ ≈ Est∼ρβ
[
∇aq(s, a|θq)|s=st,a=µ(st)∇θµµ(s|θµ)|s=st

]
(2.18)

Highlights of DDPG

The DDPG algorithm uses concepts from DPG, as well as DQN. The chief features
of DDPG, necessary for understanding this algorithm, are:

Replay buffer Optimization algorithms for neural networks assume the data
samples to be independently and identically distributed (i.i.d). In a reinforcement
learning scenario, the data samples are generated due to the agent’s sequential
actions, and so the samples are highly correlated. A replay buffer, introduced in
[72], is also used by the DDPG algorithm to address this issue. A replay buffer is a
fixed-size, first-in-first-out (FIFO) memory cache where transitions sampled from
the environment are stored. At each time step the tuple (st, at, rt, st+1) is saved.
The actor and critic networks are updated by uniformly sampling a minibatch from
this replay buffer. This helps to obtain more i.i.d-like data samples for training [61].

Use of target networks Directly using equation 2.16 for updating the critic
network most often leads to divergence of the network parameters. To solve this
issue, copies are created of the actor and critic network and the copies (target
networks) are used during the updates. The weights of a target network, θ′ are
updated by letting them slowly track the learned network weights θ using the rela-
tion θ′ ← τθ + (1− τ)θ′ where τ � 1. This constrains the target values to change
slowly and improves the stability of the learning process [61].

22

2.4. Policy Gradient Reinforcement Learning

Batch Normalization Different elements of the observation may have different
units and ranges which makes the learning process difficult. Batch normalization
[33] is used to normalize each dimension across the samples in a minibatch to have
unit mean and variance [61].

Exploration Being an off-policy algorithm, DDPG uses a stochastic behavior
policy which is separate from the learned target policy. An exploratory policy µ′

was created from a deterministic policy µ by adding noise sampled from a noise
process N to the actor policy. This was done using µ′(st) = µ(st|θµt) +N , where
θµt is the parameter vector of the actor network at time t . The noise process used
here was the Ornstein-Uhlenbeck process [97] [61].

DDPG Algorithm

The DDPG algorithm is able to handle high-dimensional continuous action spaces,
is computationally fast, and is relatively easy to train and implement. For these
reasons, it was chosen as the learning algorithm for training the high-level controller
in this thesis. The complete DDPG algorithm is listed below:

Algorithm 1 DDPG algorithm [61]

Randomly initialize critic network q(s, a|θq) and actor µ(s|θµ) with weights θq

and θµ.
Initialize target networks q′ and µ′ with weights θq

′ ← θq, θµ
′ ← θµ

Initialize replay buffer R
for episode = 1, M do

Initialize a random process N for action exploration
Receive initial observation state s1
for t = 1, T do

Select action at = µ(st|θµ) +Nt according to the current policy and explo-
ration noise
Execute action at, observe reward rt and new state st+1

Store transition (st, at, rt, st+1) in R
Sample a random minibatch of N transitions (si, ai, ri, si+1) from R
Set yi = ri + γq′(si+1, µ

′(si+1|θµ
′
)|θq′)

Update critic by minimizing the loss: L = 1
N

∑
i(yi − q(si, ai|θq))2

Update the actor policy using the sampled policy gradient:
∇θµJ ≈ 1

N

∑
i

∇aq(s, a|θq)|s=si,a=µ(si)∇θµµ(s|θµ)|si
Update the target networks:

θq
′ ← τθq + (1− τ)θq

′

θµ
′ ← τθµ + (1− τ)θµ

′

end for
end for

23

Chapter 2. Background

24

Chapter 3

Related work

Many kinds of techniques have been used by researchers for developing algorithms
for bipedal locomotion. Although it is difficult to strictly classify these techniques
into groups, an approximate classification helps to organize the discussion and to
understand the salient features of the different techniques. A modified form of the
classification scheme presented by Al-Shuka et al. [1], is used in this chapter to
discuss the different kinds of methods for bipedal locomotion as a whole. This is
not an exhaustive classification and other ways of grouping methods may exist,
but the presented break-up covers some of the important contributions in robotic
bipedal locomotion. After a brief discussion of each class of methods, relevant
studies of that class are discussed. Finally, in the last section, the relative merits
and demerits of each type of approach are analyzed.

Bipedal locomotion techniques can be broadly classified into model-based, nat-
ural dynamics-based and biologically-inspired methods. Each of these categories
can be further broken up into different subcategories, as shown in figure 3.1.

Figure 3.1: Types of bipedal locomotion techniques. Modified from [1].

25

Chapter 3. Related work

3.1 Model-based Methods

Model-based techniques use analytical models in order to generate reference tra-
jectories for the robot to follow [1]. Typically, trajectories are generated in 3-
dimensional space, to be followed by some reference point on the robot’s body
(such as the center of mass or the center of the foot). Using inverse kinematics,
joint angle trajectories are generated from the reference trajectory. A common fea-
ture of this kind of approach is the stabilizer, which makes adjustments in order
to make sure that the reference trajectory is being followed as closely as feasible.
The basic framework, shown in figure 3.2, consists of three main components. The
pattern generator generates the reference trajectories by using the model’s behav-
ior. The robot tries to follow the trajectories, and the stabilizer closes the feedback
loop by making necessary adjustments to the target trajectory [39].

Figure 3.2: Basic control framework for model-based methods. Adapted from [39].

3.1.1 Zero-Moment-Point based Methods

The idea of zero-moment-point (ZMP) was introduced by Vukobratović and Stepa-
nenko in 1972 [100]. The first practical application of this concept in a biped robot
was made by Kato et al. on the robot WL-10RD in 1985 [34]. Since then, ZMP
has been one of the most popular methods employed for bipedal locomotion [86].

One of the critical tasks for a biped robot is to maintain balance or stability.
ZMP specifies the criteria for maintaining dynamic stability while walking. It is
defined as the point on the ground at which the net moment of the inertial forces
and gravity forces has no component along the horizontal axes. In order to be
dynamically stable, the ZMP must lie within the convex hull of the polygon created
by the ground contact points of the robot (support polygon) [98]. Mathematical
details of the ZMP criteria for stability can be found in [98, 86, 39].

In the original paper for ZMP [100], the idea proposed was to move the robot’s
joints according to some predetermined angle trajectories and then to control the

26

3.1. Model-based Methods

position of the ZMP by using a compensating mass. The basic modern approach
first defines a foot trajectory on the ground and then determines the positions of
the support polygon for the duration of the walk. Then a ZMP trajectory (shown
as the reference trajectory in figure 3.2) is defined such that the ZMP lies within
the support polygon at all times. Finally, inverse kinematics is used to calculate
the joint angles which are necessary to make the body follow the prescribed ZMP
motion [86]. The stabilizer continuously monitors the position of the actual ZMP
and if it deviates from the reference ZMP position, the joint angle trajectories are
appropriately modified to minimize the deviation.

Thus, if the function ZMP is defined as (px, py)
T = ZMP (q, q̇, q̈) (where q, q̇, q̈

are vectors of the joint positions, velocities and accelerations respectively, and
(px, py) defines the x and y coordinates of the ZMP), the ZMP pattern generation
problem is to find a feasible q(t) that will satisfy the desired foot step trajectory
pdx(t), p

d
y(t) (where (pdx, p

d
y) are the desired coordinates of the ZMP) [86].

To solve this problem, Sugihara et al. [91] have utilized the inverted pendulum
model. They developed a motion generation method for controlling the trajectory
of the center of gravity (COG) of the robot by indirectly controlling the ZMP in
real time. By abstracting the robot model by an inverted pendulum, whose point
of location is given approximately by the ZMP, the authors were able to utilize
the dynamics equations of the pendulum to determine the trajectory of the COG.
Joint angles were computed using inverse kinematics.

An important idea related to ZMP is that of preview control, proposed by
Kajita et al. In [40], the authors have used a cart-table model to abstract the
model of a biped robot. They used the equations of the cart-table model and
a feedback controller for tracking the desired ZMP trajectory. A special feature
of this technique is that future information about the ZMP location is used to
move the center of mass even before the ZMP has changed position. The authors
compare this process of using ‘future information’ (known as preview control) as
driving a car on a curved road and adjusting for the turn in the road even before
the car has reached it [39]. In other work, Kajita et al. have developed a method
for posture and force control of a biped robot by using a linear inverted pendulum
model (LIPM) and ZMP [42]. This method was used for stabilizing the walk of a
42 degree-of-freedom (DOF) robot called HRP-4C. In [41], Kajita et al. have used
a 3-dimensional LIPM model for generating the motion pattern of a 12 DOF robot.

In more recent work, Yu et al. [103] have developed a controller for rejecting
external disturbances in real-time by using ZMP regulation and preview control.
They used a modified version of the LIPM, known as the flywheel inverted pen-
dulum, for simplifying the dynamics of the humanoid robot. In a related work,
Kamogawa et al. have developed a stability controller for a biped humanoid robot
by using ZMP control and the LIPM model [44].

3.1.2 Footstep Planning

Footstep planning methods focus on finding a trajectory or path (for the robot’s
feet) to the goal location. Although methods such as ZMP-based control take

27

Chapter 3. Related work

care of stability related aspects of walking, they do not explicitly deal with the
problems of obstacles or uneven terrain. This is taken care of by methods for
footstep planning. Often, however, footstep planners also utilize the ZMP criterion
for trajectory generation and control.

In [58], Kuffner et al. have presented an algorithm for planning footsteps by
using a forward dynamics approach. Starting from a set of possible foot locations,
the algorithm computes the sequence of steps to a specified goal. Heuristic-based
cost functions are used to search for optimal foot placements. A stereo vision system
is utilized for obstacle detection. In [76], Perrin et al. developed a bounding box
based method for footstep planning. Their method can be used with rigid body
motion planners and takes advantage of the stepping-over capabilities of the robot.

In [59], footstep planning was used by the Atlas robot to walk over non-flat
terrain. To plan a sequence of safe footsteps, first a ‘light detection and ranging’
(LIDAR) scan was used to identify obstacles. Then the feasible locations of the
next footsteps were computed. In the end, a center of pressure (COP) trajectory
was created by using the footstep locations, and this trajectory was passed as input
to the controller responsible for following it.

Bipedal robots need to reject disturbances while maintaining the desired gait.
To achieve this, Missura and Behnke proposed a method which uses a combination
of footstep planning and ZMP strategies [70]. The tasks of balance control and
motion generation are separated to form a hierarchical framework. The balance
controller, which receives a reference trajectory as input, computes the timing and
position of the next footstep along with the desired ZMP location. These are fed as
input into the motion generation layer which is responsible for producing the actual
joint motions. The balance controller is able to deal with strong disturbances and
modifies the footstep and ZMP target locations accordingly. This work was based
on the LIPM model. In [71], the same authors have presented a similar approach
for online learning of foot placement for a biped robot.

3.1.3 Human Motion Capture

Another approach for model-based bipedal locomotion is to record human motion-
capture data and use it to generate target trajectories for the robot. For recording
human data, special markers may be attached to the limbs and joints of human
subjects, whose gait is recorded as they walk on treadmills. Recent motion capture
setups can even work without markers. The video recordings are then processed
to extract the coordinates of the markers and from this, the velocity, acceleration
and other information about the movement of the different joints can be obtained.
This information is then converted into target trajectories which a robot can follow
(either joint trajectories or reference point trajectories such as the hip movement)
[1]. As in other model-based approaches, this method also involves the generation
of reference trajectories and the use of controllers to minimize the errors between
the actual and reference trajectories.

This approach was used by Hemami and Farnsworth [26] to analyze the gait
stability of a 5-link planar biped. In [13], Danilov et al. have used a Kinect-based

28

3.2. Natural Dynamics-based Methods

motion capture setup to record biomechanical human gait data. From this, the
ZMP and COM trajectories were computed, with the objective of using these as
reference trajectories for the locomotion of a biped robot. In [2], Ames has used
human motion data to create a low-dimensional representation of human walking.
This was used for locomotion of two kinds of robots - an underactuated planar
biped and a fully actuated 3-dimensional robot.

3.2 Natural Dynamics-based Methods

Unlike model-based methods, dynamics-based methods do not require predefined
reference trajectories which the robot must follow [1]. Instead, they try to utilize
the natural dynamics of the robot for achieving an energy efficient gait. Here the
focus is more on the mechanical design of the robot and how this design can
be exploited to the fullest possible extent. A general framework of this kind of
methods is shown in figure 3.3. Here, a high-level controller monitors overall gait-
related objectives, whereas, things such as low-level feedback control are taken
care of by specialized mechanical structures. For purely passive dynamics-based
machines, naturally, there is no controller and no active actuation of the joints.

Figure 3.3: Basic control framework for natural dynamics-based methods, inferred from the
survey of related literature, such as [7, 68, 8].

3.2.1 Passive Dynamics

Mainstream control paradigms, such as model and ZMP-based methods, rely to a
great extent on precise joint control, requiring actuators with higher precision and
frequency response than what human muscles can provide. These methods also seek
to actively control every joint at all times. This is also unlike human locomotion.
The energy consumption of robots using traditional control mechanisms is also
much greater than that of human walking [7].

29

Chapter 3. Related work

An interesting alternative approach to building walking machines was proposed
by McGeer [68]. He discussed the existence of walking machines which only rely on
natural dynamics, without any active control mechanism or energy input. McGeer’s
passive walkers could exhibit a stable walking cycle while walking down an incline
under the effect of gravity. Most importantly, the gaits of these machines were very
similar to the way humans walk. Although a passive walking machine resembles
a toy more than it does a robot, the study of such machines is important. These
machines have shown that when natural dynamics is utilized effectively, fast, agile
and human-like motion is possible in robots, without having to rely on precise,
active control. Once a suitable mechanism for walking has been developed, adding
some form of actuation to it requires only minor modifications [68].

To show that passive dynamic walkers can be converted to actuated models
and made to walk on level ground, Collins et al. developed three robots simi-
lar to McGeer’s passive walkers, but with a simple form of actuation [7]. In or-
der to measure the efficiency of these simple robots, the authors used a dimen-
sionless parameter known as the specific cost of transport, given by the relation
ct = (energy used)÷ (robot weight× distance travelled). The efficiency of all the
three robots was found to be in the same range as of humans. The efficiency of
the Asimo robot, using the same measurement parameter, was ten times less [7].
Another important outcome of this study was related to the complexity of control
algorithms. The authors showed that complex algorithms, requiring a substan-
tial amount of real-time computing may not be an absolute necessity for realizing
bipedal locomotion. The robots used in this study were designed to mimic the
structure and dynamics of human legs. This shows that mechanical design and
control algorithm techniques are equally important when it comes to developing a
bipedal robot with gait characteristics similar to humans.

3.2.2 Active Dynamics

Humanoid bipedal robots, walking around with relatively slow, careful steps are
not the only kind of bipedal robots that exist today. The focus on natural dynamics
and the symbiotic relationship between the mechanical and control systems have
yielded robots which are capable of exhibiting dynamic, agile and energy-efficient
bipedal locomotion.

The Fastrunner, a robot inspired by the ostrich, was developed by Cotton et
al. [8]. The authors reported a highly efficient running gait in simulation (the
simulated robot could reach a stable running speed of 35.4 kph [8]). The robot
relies on a specially designed leg architecture, where each leg carries only one
actuator instead of one actuator per degree-of-freedom. This greatly reduces the
energy consumption of the robot. The mechanical design also contributes to the
self-stabilizing capabilities of the robot. As a result, the software controller does
not need to deal with low-level feedback mechanisms and is left free to deal with
high-level maneuvers such as recovering from large disturbances or stepping into a
special location if needed. In the simulation study, a simple sinusoidal pattern for
each leg was enough to obtain a stable and fast run [8].

30

3.3. Biologically Inspired Methods

Another bipedal robot which utilizes its natural dynamics is ATRIAS (Assume
The Robot Is A Sphere), developed by Hubicki et al. [29]. ATRIAS is a bipedal
robot of human scale and uses the spring-mass model for dynamic walking and
running. The spring-mass approach has helped in increasing the efficiency and
agility of the robot [29].

While it is not the objective of this chapter to dwell on the aspects of mechanical
design, it can certainly be pointed out that intelligent control algorithms go hand
in hand with smart mechanical design towards the development of efficient bipedal
robots.

3.3 Biologically Inspired Methods

Biologically inspired methods of bipedal locomotion control seek to emulate the
neural locomotion control mechanisms found in vertebrates. Neural circuits, known
as central pattern generators (CPG), are capable of producing coordinated patterns
of rhythmic signals without the need of rhythmic inputs and can be modulated
using low-dimensional control signals [31]. Artificial CPGs, discussed in section
2.2, emulate the basic behavior of natural CPGs. There exist neurobiology-inspired
methods for locomotion, where recurrent or feed-forward neural networks are solely
used for pattern generation (such as [78, 75]). However, in this section, the discus-
sion will focus on only CPG-based methods and hybrid methods where concepts
from model-based methods are used together with CPGs.

A basic framework for CPG-based methods can be described using figure 3.4.
Here, the CPG network, using its internal parameters, generates angle trajectories
for the individual robot joints. Some form of sensor feedback may be used for
modulating the output of the CPGs. Typically, the CPG parameters are optimized
for attaining some kind of gait-related objective such as a fast walk.

Figure 3.4: Basic control framework for CPG-based methods, inferred from the survey of
related literature, such as [35, 11, 79].

31

Chapter 3. Related work

3.3.1 Central Pattern Generators

The use of central pattern generators for bipedal locomotion is becoming increas-
ingly popular [31]. The Matsuoka oscillator, which is based on Brown’s half-center
neuron model, has been used in many papers. The seminal work for bipedal loco-
motion using CPGs was done by Taga et al. [96]. They used a network of coupled
Matsuoka oscillators to control the walk of a 5-link planar biped in simulation.
Taga et al. showed that stable and flexible locomotion can be generated by an en-
trainment between the rhythmic activities of the coupled CPGs and the rhythmic
movements of the mechanical structure. Sensory feedback was used for CPG mod-
ulation. The concept of entrainment, whereby the oscillations of the neural circuit
and the mechanical structure reinforce each other, is the central idea presented in
this study. This was responsible for the emergence of desirable gait properties such
as rejection of external disturbance or adaptation to different kinds of terrain.

Aoi and Tsuchiya [3] used a simple planar biped to analyze the dynamic proper-
ties of legged locomotion using an oscillator. Feedback signals were obtained when
the legs made contact with the ground and this was used to reset the oscillator
phase. The authors also investigated the stability of the motion using a Poincaré
map, a tool used for the stability analysis of a dynamic system.

In [35], Ishiguro et al. used a network of Matsuoka oscillators to control the
movements of a 3-dimensional, 7 degrees-of-freedom biped in simulation. First,
a basic CPG circuit was created by optimizing the parameters using a genetic
algorithm. The authors used an artificial neuromodulation mechanism for changing
the CPG parameters so that the robot can adapt to disturbances. A second stage
of optimization was used to find the parameters used in the neuromodulation
mechanism. For achieving entrainment, sensory feedback was introduced into the
CPG network in the form of current angles of the hip joints. Using this approach
the biped was able to walk on flat ground, as well as, on complex surfaces consisting
of different kinds of slopes.

In [17], Endo et al. used a CPG-based controller to achieve bipedal locomotion
in a physical humanoid robot. The walking motion was broken up into a stepping-
in-place motion and a propulsive motion. The feedback pathways for propulsive
motion were learned using a policy-gradient based method. The developed feedback
controller showed stable walking behavior in a physical environment.

Cristiano et al. [11] implemented a CPG network for controlling the Nao robot’s
walking behavior in simulation as well as in the real world. Their CPG network was
composed of Matsuoka oscillators. One of these oscillators, known as the pacemaker
oscillator, was responsible for the overall behavior of the network since all other
oscillators derived their output based on the pacemaker’s output. A phase resetting
feedback mechanism was used to reset the pacemaker when a certain condition,
related to foot-ground contact, was met. The trunk angle of the robot was also
used to modify a CPG parameter responsible for how much the robot leans in
the sagittal plane, in order to enable walking on sloped surfaces. CPG parameters
were optimized using a genetic algorithm. In [12] and [10], the same authors have
investigated other kinds of CPG configurations.

32

3.4. Discussion

Another type of artificial CPG, the Hopf oscillator, has also been used for
achieving bipedal locomotion. In [79], Righetti and Ijspeert have used a network
of coupled Hopf oscillators for the locomotion of the HOAP-2 humanoid robot
in simulation. Since Hopf oscillators require a teaching signal, which they learn
to replicate, the authors have used the joint angle trajectories generated by the
default walking algorithm (provided by the robot manufacturer) as the teaching
signal. Feedback pathways have been used for increasing the lateral and sagittal
stability while walking. For entraining the oscillators with the body dynamics, the
oscillators’ phase was reset whenever the right leg touched the ground.

In [52], Kieboom has also used Hopf oscillators and the HOAP-2 robot, but here
simple sine wave patterns were used as the teaching signals for the oscillators. The
parameters of the sine wave generators were optimized separately using particle
swarm optimization (PSO) [15]. In [31], Ijspeert has provided a comprehensive
review of the use of CPGs for locomotion control.

3.3.2 Hybrid Methods

In addition to methods based purely on central pattern generators, there are also
instances when CPG-based approaches have been combined with model-based ap-
proaches such as ZMP. In [74], Or has proposed a hybrid CPG-ZMP control system
for bipedal locomotion of a flexible-spine humanoid robot in simulation. Here, first,
a ZMP-based technique was used to generate the walking gait of the robot. The
CPGs were used to generate rhythmic motion in the spine. The actual ZMP loca-
tion was tracked while walking, and using the movement of the spine as a compen-
satory mechanism, the ZMP was kept within an acceptable area. The spinal-CPGs
were controlled using a global signal.

In [102], Yang et al. have also used a combination of CPGs and ZMP to control
the movements of a seven link robot in simulation. Each CPG was used to control
an individual joint and the ZMP information was used as feedback for modulating
the amplitude, frequency and phase of the CPGs, in order to maintain stability.

3.4 Discussion

A significant amount of work has been done by using model-based methods such as
ZMP. A ZMP-based approach provides guarantees about the dynamic stability of
a bipedal robot while walking - a fact that has contributed to the popularity of this
method. However, a few aspects of the scope and applicability of ZMP and model-
based methods in general should be put forward to understand the limitations of
this approach. Model-based methods require either full knowledge of the robot’s
dynamics or a simplified model which can abstract the actual dynamics. Obtaining
and using full-body dynamics is a complicated process. Usage of simplified dynamic
models, such as LIPM, overcomes the complexity but may lead to inaccuracies in
the assumed behavior of the robot. Online walking algorithms using ZMP need to
perform a significant amount of computation because inverse kinematics is required

33

Chapter 3. Related work

to find the joint angle trajectories from the COM or ZMP trajectory [1]. The ZMP
method is applicable only for fully-actuated position controlled robots, and so
torque controlled robots are not suitable for this method [86]. A big limitation of
this approach is that ZMP computations do not consider the natural dynamics
of the robot and so are not able to take advantage of it. This leads to excessive
energy consumption for maintaining balance and may result in an unnatural gait.
State-of-the-art humanoids such as ASIMO have been found to use 20 times the
energy used by a typical human for walking [7] (after performing necessary scaling
operations due to the difference in size and weight). Pre-computation of COM or
ZMP trajectories also relies on knowledge about the terrain, which may not be
always available or accurate in a real-world situation [1].

Dynamics-based methods are specially designed to exploit the natural dynamics
of the robot. This approach relies on specially designed physical mechanisms and
has led to the development of very agile and energy efficient bipedal robots [8, 29].
However, there is no unified general strategy for achieving the desired results [1].
Active dynamics-based approaches are also more suitable for fast moving robots
and cannot be generalized for use on any kind of bipedal robot.

CPG-based methods offer a nice balance between model-based and dynamics-
based methods. They can be quite easily used in most bipedal robots because they
provide the option of controlling different joints separately. CPG-based methods
can also take advantage of the natural body dynamics by utilizing the property
of entrainment. They display stable limit-cycle behavior (where a CPG changes
its oscillation pattern when disturbed but returns to the original pattern after the
disturbance is removed) and can efficiently take care of unexpected disturbances
which occur during walking [31]. The computational requirements of CPGs are also
not significant, which makes them suitable for online and real-time applications.
Additionally, there is no dependence on any kind of full-body or simplified model
[1]. CPGs also provide the option of modulating their output using only a few
parameters [31], and this can be utilized for realizing higher forms of control built
on top of the CPG network.

However, CPG-based methods have some limitations as well. A solid theoretical
foundation relating to the stability and behavior of complete CPG-based robotic
systems is missing [31], although theoretical work about the behavior of individual
CPGs exists [80, 66, 65, 67]. Some CPGs, such as the Matsuoka oscillators, rely
on optimization algorithms for finding good parameter values and this results in a
high dependence on simulation experiments.

Most of the studies dealing with CPGs use some form of feedback control
[35, 11], but it is done in a static manner. For example, a particular CPG parameter
is varied linearly with some feedback value (such as body incline). Introducing a
trainable high-level controller, which can use feedback information to modulate
CPGs, will lead to greater generalization abilities and a more effective form of
control. Hence, in this thesis, instead of statically depending on feedback values,
a neural network is trained, using reinforcement learning, to modulate the CPG
parameters.

34

Chapter 4

System Architecture

Central pattern generators provide an elegant way of solving the problem of bipedal
locomotion. In chapter 3, a number of studies were discussed, in which CPGs
have been used to make robots walk. The common approach in most of these
studies is to use a network of coupled CPGs to control the joints for walking. The
CPG network is generally augmented by feedback pathways to allow entrainment
between the CPG dynamics and the body dynamics of the robot. The output
of the CPG network, and therefore the movement of the individual joints, can
be controlled by modulating only a few CPG parameters. This is also similar to
the control mechanism found in animals (figure 2.1a). This kind of a setup opens
up the possibility of introducing a trainable high-level controller, which can learn
how to modulate the CPG network to achieve some global objective. By utilizing
existing knowledge about CPGs and recent advances in reinforcement learning, a
hierarchical walking controller for bipedal walking is proposed in this thesis.

In this chapter, the architectural details of the proposed system are discussed.
Starting with an overview of the system, each component is described, including
the structure of the low-level CPG controller, the feedback pathways, and the
high-level neural network controller. Details of parameter optimization, training
and experiments are presented later, in chapters 5 and 6.

4.1 Overview

Using the vertebrate locomotor system discussed in section 2.1 as an inspiration,
the task of controlling joint motions for walking has been broken up into two parts.
At the bottom of this hierarchy lies the CPG network which forms the low-level
controller. It is responsible for sending target angles to the robot’s joints. The high-
level controller is made up of a feed-forward neural network, and is used to help
the robot maintain a straight walking trajectory. The controller monitors the state
of the robot’s torso and modulates a couple of parameters in the CPG network,
which in turn, effects the CPG network’s output pattern. It is important to note
that the high-level controller does not need to control the robot’s joints directly.
As a result, the dimension of the high-level control signal is much lower than the

35

Chapter 4. System Architecture

dimension of the low-level control signal (which consists of the target joint angles)
which the CPG network sends to the robot. The robot accepts the target angles
and attempts to reach the angles it has been given. A simplified overview of the
system architecture is shown in figure 4.1.

A simulated Neuro-Inspired COmpanion (NICO) robot has been used in this
work. The NICO robot is 101cm tall, weighs 7kg and has 30 DoF (degrees-of-
freedom) in total. Each leg has 3 DoF in the hip, 1 DoF in the knee and 2 DoF
in the ankle [51]. Force sensors were added to the feet of the simulated robot for
detecting foot-ground contact. The controller proposed in this work controls 10
out of the 12 joints in the two legs and 2 joints in the shoulders (since arm swing
increases stability while walking). Only joints moving in the sagittal1 or frontal2

planes are used. Although the NICO has been used in this work, any position-
controlled bipedal robot with a similar morphology can be used in its stead.

Figure 4.1: Overview of the system, showing the layout of the different components.

4.2 Structure of the Low-level Controller

The low-level controller is made up of a network of coupled Matsuoka oscillators
(discussed in section 2.2). The Matsuoka oscillators autonomously produce rhyth-
mic signals which are directly used to drive the individual joints responsible for
walking. The CPG network is modulated by using low-level feedback loops which
help to entrain the CPG network’s output with the natural dynamics of the robot.
The CPG network configuration, that is used in this work, was proposed by Cris-
tiano et al. [11], who used it for controlling the Nao robot. Since the NICO robot
has a similar structure, the network could easily be used for it. However, changes
have been made to the way feedback is handled. Additional parameters have been
introduced to accommodate the novel high-level control mechanism.

1The sagittal or median plane divides the body into left and right.
2The frontal or coronal plane divides the body into front and back.

36

4.2. Structure of the Low-level Controller

4.2.1 CPG Network Configuration

The CPG network is created by interconnecting 13 Matsuoka oscillators, as shown
in figure 4.2. Each oscillator behaves according to equations 2.3-2.7. The arrows
between oscillators denote coupling connections. The direction of an arrow is from
oscillator j (master) to oscillator i (slave). Dashed arrows represent inhibitory con-
nections (weight wij = −1). Solid arrows represent excitatory connections (weight
wij = +1). For inhibitory connections, the slave oscillates in opposite phase to the
master and for excitatory connections, both the master and slave oscillate in phase
with each other. The central oscillator in this configuration only has outgoing con-
nections and hence, is known as the pacemaker oscillator. In the absence of any
feedback connections into the pacemaker, it oscillates according to its internal pa-
rameters [11]. The pacemaker is responsible for generating the master signal that
is propagated across the network.

Figure 4.2: CPG Network [11]. Names of joints are indicated near the symbols for joints.

The topology of the connections in the CPG network is designed to approxi-
mately reproduce the relative phase differences between different joints in humans
during walking. In humans, the left and right hips move in anti-phase in the sagit-
tal plane. Similarly, the right and left shoulders also move in anti-phase in the
sagittal plane. The arms and legs on the opposite (contralateral) side move in-
phase. This relationship is enforced through the connections of the pacemaker to
the hip and shoulder oscillators for the sagittal joints (oscillator numbers 2, 3, 12
and 13) [11]. The frontal hip joints should move in-phase and so both the corre-
sponding oscillators have excitatory connections with the pacemaker. Ipsilateral

37

Chapter 4. System Architecture

frontal joints should move in opposite phase so that the foot stays parallel to the
ground. This is enforced by having inhibitory connections between the ipsilateral
frontal oscillators, that is, between oscillators 8 and 9, and between oscillators 10
and 11. Connections between the oscillators for the knee and ankle joints in the
sagittal plane follow a similar logic.

Apart from the pacemaker, all other oscillators are used to generate target
angles for the robot’s joints. There are 12 such oscillators corresponding to 12
joints. The output oi of oscillator i is converted into the target angle θi for the ith

joint using equation 4.1.
θi = oi × gaini + biasi (4.1)

Here gaini is a factor which is used to alter the amplitude of the oscillator’s out-
put and biasi is an additive term that shifts the mean position of oscillation. Using
these two factors for each oscillator, target angles of arbitrary nature can be pro-
duced. However, the frequency of all the oscillators will be the same as that of
the pacemaker. This frequency depends on the pacemaker time constants τ and
τ ′, and the constant kf (equation 2.7). Thus if the pacemaker’s parameters can be
chosen so that the conditions for stable oscillation are satisfied [66], then it is pos-
sible to generate target joint angle trajectories of arbitrary frequency, amplitude,
and mean-position by varying the values of kf and the different gains and biases
within some range. The different trajectories will have a phase difference of either
0 or π radians with the output of the pacemaker oscillator. The low-level control
signal emitted by the CPG network (as shown in figure 4.1) at each time step is
the vector [θ2, θ3, θ4, ..., θ13] consisting of the target joint angles.

Osc. i Joint (θi) gaini biasi

1 - - -

2 l hip y (θ2) GAIN1 BIAS1

3 r hip y (θ3) GAIN1 BIAS1

4 l knee y (θ4) GAIN3 BIAS2

5 r knee y (θ5) GAIN3 BIAS2

6 l ankle y (θ6) GAIN2 BIAS3

7 r ankle y (θ7) GAIN2 BIAS3

8 l hip x (θ8) GAIN4 0

9 l ankle x (θ9) GAIN5 0

10 r hip x (θ10) GAIN4 0

11 r ankle x (θ11) GAIN5 0

12 l shoulder y (θ12) GAIN6 BIAS4

13 r shoulder y (θ13) GAIN6 BIAS4

Table 4.1: Oscillators and their joints, gains and bi-
ases. Values of gains and biases are symmetrical
across the left and right sides of the robot. Frontal
joint names end in x, sagittal joint names end in y.

Figure 4.3: Joints driven by oscillators
(shown in color). Sagittal joints’ axes
are shown in red, frontal joints’ axes
are shown in blue.

38

4.2. Structure of the Low-level Controller

For the joints in the sagittal plane, both gains and biases are used to allow for
arbitrary angle trajectories. However, for the frontal joints, only gains are used.
Biases are omitted in this case because the frontal joints must oscillate about the
zero position. Since they control the left-to-right swaying motion, any other mean
position will cause the robot to sway more in one direction. In order to maintain
symmetry between the movement of the left and right joints, the gains and biases
on one side are equal to the gains and biases of the corresponding oscillator on
the other side of the body. This results in four different bias parameters and six
different gain parameters. The oscillators and their respective joints, gains, and
biases are listed in table 4.1. The location of the different joints controlled by the
CPG network, and their respective axes of rotation are shown in figure 4.3.

The pacemaker’s internal parameters (table 4.3) are determined empirically so
that stable oscillations can be produced. Then these internal parameter values are
replicated in the other oscillators. This avoids the need of determining the values
of the large number of internal oscillator parameters through optimization. Thus,
for the entire CPG network, the parameters which must be optimized are: kf for
controlling the frequency, and the four biases and six gains for controlling the mean
positions and amplitudes of the produced signals. These are shown in table 4.2.

Table 4.2: CPG network parameters to be optimized.

kf GAIN1 GAIN2 GAIN3 GAIN4 GAIN5 GAIN6 BIAS1 BIAS2 BIAS3 BIAS4

4.2.2 Pacemaker Oscillator

The design of the CPG network in figure 4.2 is such that once suitable internal pa-
rameters for the pacemaker oscillator are found, rhythmically varying target joint
angle trajectories can be generated by the network autonomously. Determining
suitable parameters by hand requires some experimentation but it greatly reduces
the search space of the optimization algorithm, which can instead search for proper
values for kf and the gains and biases that are used in the CPG network. Table
4.3 lists the constant parameters for the pacemaker which have been used by Cris-
tiano et al. in [11]. The same values have been used for this work because they

Table 4.3: Internal parameters of the pacemaker oscillator [11].

Parameter Description Value

τ0 Time constant for rate of discharge 0.2800

τ ′0 Time constant for adaptation 0.4977

β Self-inhibition constant 2.5000

w0 Constant of mutual inhibition 2.2829

ue Tonic input 0.4111

m1,m2 Output scaling constants 1.0

39

Chapter 4. System Architecture

result in stable oscillations and support a large range of the variable parameter kf .
Using these values, the outputs of the pacemaker oscillator for three values of the
frequency controlling parameter, kf , are shown in figure 4.4. The oscillation fre-
quency decreases as kf is increased from 0.2 to 0.3 and then to 0.4. Oscillations are
still produced when kf ≈ 0.01 (very high frequency) and also when kf ≈ 3.0 (very
low frequency). But values of kf outside the range [0.2, 1.0] produce frequencies
which are not usable on a walking robot. It is to be noted that in the present sce-
nario, the output signal of the oscillator is taken to be a joint angle trajectory. The
original definition of the Matsuoka oscillator defines the output as a torque and
this interpretation has been used in studies like [96]. However, since there are no
constraints regarding this, the rhythmic output of the oscillator can be interpreted
as the scenario demands.

Figure 4.4: Pacemaker output for three different values of kf .

4.2.3 Feedback Pathways

In the absence of feedback pathways, the CPG network behaves like an isolated
system whose oscillations are only dependent on the internal parameters of the
CPGs. In such an open loop configuration, there is no way for the CPG network
to alter its behavior in order to adapt to situations the robot may be facing. The
introduction of feedback changes this, by allowing the CPG network to change
its output based on proprioceptive information provided by the robot. Feedback
pathways provide a way for the CPG network to entrain itself with the body
dynamics of the robot and hence, is of utmost importance.

Whenever CPGs are used for joint control, some form of feedback is employed.
However, an investigation into the manner in which this feedback improves the
robot’s gait is lacking in the current literature. A comparison between an open
loop CPG network and networks with two different kinds of low-level feedback is

40

4.2. Structure of the Low-level Controller

taken up in this thesis. This will help to identify the relative merits and demerits
of the feedback types. The two kinds of feedback investigated here are called angle
feedback and phase reset.

Angle Feedback

The output of a CPG is used to drive a joint, but this angle cannot be reached
instantaneously. Every joint will have some lag between the target and the actual
angle. This provides a way of introducing feedback into the CPG network. Dif-
ferential equations 2.3 and 2.4 of the extensor and flexor neurons of a Matsuoka
oscillator contain the feedback variables f1i (extensor) and f2i (flexor). The actual
angle values, after multiplying with a constant, can be fed into these variables.
The feedback being provided to the flexor is the negative of the feedback being fed
into the extensor as the two neurons are antagonistic.

f1i = k × θactuali (extensor)

f2i = −k × θactuali (flexor)
(4.2)

Here k is the weight of the feedback and θactuali is the current angle of the ith joint.

Figure 4.5: Angle feedback configuration. The grey box shows a portion of the CPG network
containing oscillators 2 and 3. E and F denote the extensor and flexor neurons respectively.

In the simplest case, only one set of joints is used for providing feedback.
Oscillators 2 and 3 act as masters to the other oscillators controlling sagittal joints,
in their respective legs. Since forward motion is caused by the movement in the
sagittal plane only, the role of oscillators 2 and 3 is the most important. Hence,
feedback was only introduced into these two oscillators.

41

Chapter 4. System Architecture

The feedback connections are depicted in figure 4.5. This feedback mechanism
is inspired by the one used by Ishiguro et al. [35]. However, in this thesis, a different
CPG network configuration is used to control a full humanoid robot in simulation,
whereas Ishiguro et al. used a simplified 3D model. Additionally, here the feedback
weight parameter k is optimized along with the frequency parameter kf , and the
gains and biases of the CPG network, as shown in table 4.4.

Table 4.4: CPG network parameters to be optimized for angle feedback.

kf GAIN1 GAIN2 GAIN3 GAIN4 GAIN5 GAIN6 BIAS1 BIAS2 BIAS3 BIAS4 k

Phase Reset

When the CPG network is used to make the robot walk, there are two kinds of
dynamics at play - the output of the CPG network and the movement of the
robot’s legs. Due to a delay in reaching target angles, the rhythms of the legs and
the CPG network may not be synchronized. Phase resetting is a way to achieve
this synchronization. The idea is to keep track of the time instants when the feet
strike the ground and to reset the phase of the pacemaker (and through it, the
other oscillators) when needed so that the CPG cycle is coordinated with the leg
movements.

(a) Force sensors

Pacemaker

oscillator

(b) Connection for phase reset

Figure 4.6: (a) Force sensors at the heel are used to detect ground contact. (b) The grey
box shows a portion of the CPG network with the pacemaker. The feedback signal from the
right leg resets the pacemaker’s state variables to 0.

For implementing phase resetting, Cristiano et al. [11] kept track of the time
intervals between successive ground contacts by the feet and when this time interval

42

4.2. Structure of the Low-level Controller

was outside a permissible range, the pacemaker was reset. However, determining
what the permissible range should be, is not a straightforward task. It requires
careful tracking of the time differences between successive peaks in the pacemaker’s
output signal and comparing this to the time differences between successive foot-
ground contacts. Then a tolerance range needs to be set and when the difference
between the two time intervals goes beyond this range, the phase reset mechanism
needs to be triggered. A simpler way, used by Righetti et al. [79], is to start the
walking cycle with the left leg and to reset the pacemaker whenever the right foot
hits the ground. As this method does not introduce any additional parameters, it
has been used in this work. Thus, the parameter set of the original CPG network,
shown in table 4.2, remains unchanged.

For detecting foot-ground contact, force sensors were added to the four corners
of each foot of the simulated robot (figure 4.6a). When the average force of the
two sensors in the right leg’s heel went above a threshold, the pacemaker oscillator
was reset by setting its state variables (u11, v11, u21, v21) to 0. The threshold for
detecting ground contact was set to 10N based on experimental observations. The
walking cycle begins with the left foot moving forward (the joint l hip y rotates
in the negative direction) and the right foot hitting the ground indicates that the
left foot should start moving forward again. Phase resetting is especially useful in
scenarios where the foot strikes the ground unexpectedly in the middle of a cycle.
At that moment the other foot immediately starts moving forward again, similar
to the way humans recover after a sudden trip while walking.

The effect of resetting the pacemaker oscillator is shown in figure 4.7. The
pacemaker oscillator’s parameters were set according to table 4.3 and kf = 0.2 was
used. The phase of the oscillator was reset at 1.5, 2.5 and 3.7 seconds. As shown
in the plot, at the end, the signal with phase resetting (solid line) can vary a lot
from the one without any phase resetting (dashed line).

Figure 4.7: Effect of phase resetting on the pacemaker’s output. kf = 0.2 was used to
generate the output. Vertical lines indicate the time instants when phase reset was triggered.

43

Chapter 4. System Architecture

4.3 Structure of the High-level Controller

A robot, controlled by a CPG network alone, may be capable of robust bipedal
locomotion, but even with feedback mechanisms, there is a limit up to which such a
low-level controller can react to environmental changes. A feedback-enabled CPG
network only uses proprioceptive information such as foot-ground contact or ac-
tual joint angles. If additional sensory information can be utilized, the controller
may become even more robust and adaptable. For example, information from the
camera can be used to determine how to change direction, or information from the
inertial sensors can be used to maintain balance on a sloped surface. A modular,
high-level controller can accept such sensory information and then make appropri-
ate changes in the CPG network parameters to achieve the desired behavior.

A high-level controller also provides a way of dealing with structural errors in
the model and with environmental disturbances. Due to possible minor inconsis-
tencies in the simulation model, and slippage between the feet and the ground,
the NICO tends to deviate from a straight line trajectory when it walks for an ex-
tended duration of time. Building a perfect model would eliminate the deviation in
simulation, but in the real world, the robot would still be subject to errors. Thus,
it is crucial for the controller to function even in the presence of systematic and
non-systematic errors. Hence, to show the usefulness of a high-level controller, a
neural network is used in this thesis to make the robot walk in a straight line. For
this, the neural network monitors the state of the robot’s torso and then modulates
some parameters in the CPG network so that any lateral deviation is minimized.

4.3.1 Control Mechanism

One way to control deviation is to interrupt the robot’s walk, take corrective steps
by turning in a particular direction to minimize the deviation, and then to resume
walking again. This strategy unnecessarily breaks up the gait into alternate phases
of walking and turning, and is not the ideal way to attain the desired objective. A
better strategy is to make continuous small adjustments while the forward walk is
in progress. This has two advantages: the walk is uninterrupted and smooth, and
drastic corrections do not have to be made. Moreover, deviation control can be
achieved by using the same joints that are used for the forward walk.

The joints l hip y and r hip y control the hip joints responsible for leg move-
ments in the sagittal plane, which cause the forward motion of the robot. These
joints are driven by oscillators 2 and 3 respectively. The walking motion starts
when the robot lifts the left leg and moves it forward. To be able to lift the left leg,
the robot must transfer its weight onto the right leg. This is done by swaying the
hips to the right concurrently with the forward motion of the left leg. Similarly,
when the right leg moves forward, the weight is transferred onto the left leg by
swaying towards the left. The swaying motion of the hips is controlled by the joints
l hip x, r hip x, l ankle x and r ankle x which are driven by oscillators 8, 10, 9
and 11 respectively (see table 4.1 for a mapping between oscillators and joints, and
figure 4.3 for the location of the different joints in the robot).

44

4.3. Structure of the High-level Controller

The oscillator output oi is related to the target joint angle θi according to
equation 4.1. Thus the target angle for l hip y is obtained by multiplying the
output of oscillator 2 with the gain applied to this oscillator and then adding a
bias to the result (θ2 = l hip y = o2 × gain2 + bias2). Similarly the target angle
for r hip y is obtained by using the equation θ3 = r hip y = o3 × gain3 + bias3.
To maintain symmetry between the movements of the left and right joints, the
same gain and bias values are applied to oscillators 2 and 3 (gain2 = gain3 and
bias2 = bias3). Under ideal conditions, this should have been sufficient for walking
in a straight line, but since this is not the case, a deviation can occur.

To counter the deviation, gaini in equation 4.1 is multiplied by a factor Ψ.
This is done only for oscillators 2 and 3, which drive the forward motion. By
applying different values of Ψ to the oscillators 2 and 3, the target angles and
hence the forward motion for the two legs can be made different. The value of
gaini is not changed directly, since its value is obtained by optimizing the CPG
network parameters, and once found, it should be frozen. The factors Ψl and Ψr,
for oscillators 2 and 3, are derived directly from the outputs of the high-level neural
network controller. Thus, the equations for the target angles for forward motion
are modified as:

θ2 = l hip y = (o2 ×Ψl × gain2) + bias2

θ3 = r hip y = (o3 ×Ψr × gain3) + bias3
(4.3)

The forward stride of each leg is a combination of two movements. For the
left leg, the left sagittal hip joint causes the forward motion. During this forward
motion, the left frontal hip joint causes a sideways motion to the right. The same
logic is applicable for the right leg as well, where the sagittal joint causes the
forward motion and the frontal joint causes a simultaneous movement to the left.
As a result, each individual step follows a curved trajectory, as shown in figure 4.8.

Figure 4.8: Turning mechanism. The curves show the trajectory of the individual steps.
Center: the forward and sideways motion of both legs are unchanged and the robot walks
straight. Left: the forward motion of the right foot is suppressed, but the sideways motion
remains the same. So, the robot turns to the left. Right: The forward motion of the left
leg is suppressed, but the sideways motion remains the same. Hence, the robot turns to the
right. Reason for the turn is explained in the text.

45

Chapter 4. System Architecture

To understand how Ψl and Ψr cause the robot to turn while walking, consider
the following scenario. Suppose the robot has deviated to the left of its path and
needs to turn right to compensate for the deviation. In this situation, if Ψl is
assigned a lower value than Ψr, then the amplitude of motion of the sagittal left
hip joint (target angle θ2) will be less than the amplitude of motion of the sagittal
right hip joint (target angle θ3). The movements of both the frontal hip joints
remain unchanged.

When the forward movement is reduced and the sideways movement is kept
the same, the left leg ends up in a position which is slightly to the right of the
position it would reach if the forward motion was not suppressed (see figure 4.8
(right)). This results in the robot taking a small step sideways to the right. When
the left leg is planted in the new position and the right leg moves forward, the
next position of planting the right foot also moves slightly to the right. Over a few
successive steps, this causes the robot to make a counter-deviation to the right.
Once the robot regains the correct trajectory and heading direction, the values of
Ψl and Ψr are again made equal. The decision of when and how much to change
the values of Ψl and Ψr are taken by the high-level neural network controller, based
on the state of the robot’s torso.

However, there is no labeled dataset containing the correct outputs for every
possible observation of the torso’s state, which can be used to train the neural
network. Hence, the network is trained using reinforcement learning, which relies
on a trial-and-error approach involving repeated interactions with the environment.

4.3.2 High-level Neural Network Controller

The neural network, shown in figure 4.9, forms the high-level controller and is
trained using the Deep Deterministic Policy Gradient algorithm (DDPG), which
was discussed earlier in section 2.4.3. DDPG treats the neural network as a func-
tion approximator for the policy function. After successful training, this network
may be directly queried using the state of the robot’s torso to find out what the
appropriate action should be. DDPG, being an actor-critic algorithm, uses another
neural network (critic) to critique the actions determined by the policy network
(actor) during training. Details of the critic network, training process and other
aspects related to reinforcement learning are discussed later in chapter 6. In this
section, the focus is on the structure of the policy network and how this high-level
neural network controller fits into the overall system.

The high-level controller is a fully-connected, feed-forward neural network con-
sisting of 2 hidden layers containing 400 and 300 units respectively. Units of all
the hidden layers use the rectified non-linearity activation function (ReLu). The
output layer consists of two neurons with sigmoid activations to bound the output
in the range [0.0, 1.0]. The outputs of the network are labeled Φl and Φr and they
are used to derive the parameters Ψl and Ψr respectively, discussed in equation
4.3. The input to the network is a 12-element vector [α, β, γ, α̇, β̇, γ̇, x, y, z, ẋ, ẏ, ż],
consisting of the angular position (α, β, γ) and velocity (α̇, β̇, γ̇), and the cartesian
position (x, y, z) and velocity (ẋ, ẏ, ż) of the robot’s torso in the three dimensions.

46

4.3. Structure of the High-level Controller

Figure 4.9: High-level neural network controller.

The outputs Φl and Φr make up the high-level control signal that is sent to the
CPG network to modulate its output. However, these values are not used directly
as factors for the gains in equation 4.3. The initialization of the final layer weights
and biases, by the DDPG algorithm, is such that the policy outputs are near zero
in the initial stages of training. In such a scenario, if Φl and Φr (both having near-
zero values) are used as gain factors, the angles l hip y and r hip y, computed
using the relation (oscillator output× gain factor× gain) + bias, would not show
any oscillatory behavior about the bias position (equation 4.3). Hence the robot
would not be exhibiting any forward motion at all. To avoid this problem, Φl and
Φr are instead, interpreted as gain suppression factors, which determine how much
the value of a gain is to be reduced. Since the values of Φl and Φr are restricted
to be within [0.0,1.0], a value of 0.0 will denote no reduction in the gain and 1.0
will indicate that the gain is to be maximally reduced. The reciprocal relationship
between the gain factor Ψ and the gain suppression factor Φ is represented in
equation 4.4.

Ψl = 1.0− (1.0− ξ)× Φl

Ψr = 1.0− (1.0− ξ)× Φr

(4.4)

The parameter ξ, called the lowest gain factor, is the lowest value which may be
assigned to the gain factors Ψl and Ψr. For instance, when the gain suppression
factor Φl has a value of 1.0, it implies maximal suppression of the gain. The gain
factor Ψl, in this case, is assigned the value ξ. When Φl has a value of 0.0, it means
that the gain should not be changed and hence the corresponding gain factor, Ψl,
should have a value of 1.0. The same logic is applicable for Φr and Ψr as well. The
value for ξ is also bound to be in the range [0.0,1.0].

Another interpretation of ξ is that it controls how much influence the high-level
controller can exert over the low-level controller. When the value of ξ is close to
1.0, Ψl and Ψr evaluate to approximately 1.0, irrespective of the neural network’s
output (Φl and Φr). In this case, the high-level controller has minimal influence
over the robot’s behavior. When the value of ξ is near 0.0, Ψl and Ψr will be
heavily dependent on Φl and Φr respectively, and hence, the high-level controller
can influence the CPG network to a great extent.

47

Chapter 4. System Architecture

Figure 4.10 depicts a detailed view of the system architecture. The different
levels of the hierarchical controller are shown, along with their interconnections and
internal components. The low-level controller, modulated by the low-level feedback,
drives 12 joints for walking. While the robot walks, the state of its torso is fed into
the high-level controller, which modulates the CPG network’s output by modifying
the gains of the sagittal hip joints and thereby helps the robot to walk straight.

Figure 4.10: A detailed view of the system. Symbols are explained in the text.

48

Chapter 5

Low-level Control

Once the structure of the low-level CPG network has been decided, the next step is
to find suitable values of the variable parameters that are used in the network. This
leads to the emergence of a basic gait. When no feedback mechanisms are used,
the basic gait is the result of the CPG network producing oscillations according to
its internal parameters. To convert the CPG network from an open loop system to
a reactive system, capable of adapting its behavior to the environment, low-level
feedback mechanisms need to be added. The two kinds of feedback that are used
here are called angle feedback and phase reset (these have been discussed in chapter
4). At this point, the system is still without any form of high-level control but is
capable of exhibiting a stable walk.

This chapter deals with the optimization process that is used to find the values
of the parameters used in the low-level controller. A genetic algorithm is employed
for this task, using which, the parameters of three kinds of setups are evolved - a
CPG network with no feedback (open loop), with angle feedback and with phase
reset mechanisms. The results of the evolution process are discussed. The three
types of gait that are obtained using these setups are then analyzed and compared
to show the effects of introducing feedback into an open-loop configuration. The
comparison is made on the basis of measurable quantities. This comparison also
helps in choosing the feedback mechanism which performs the best. The optimized
CPG network, with the chosen feedback mechanism, acts as the base on which the
high-level control structure is added (discussed in chapter 6).

Although the configuration of the low-level CPG network used in this work
is the same as the CPG structure proposed by Cristiano et al. [11], there are a
few differences. Apart from minor changes in the implementation of the genetic
algorithm, the fitness function used here is new. The fitness function used in [11]
was based on the velocity and deviation of the walk, whereas, here it is based on
the period of time the robot is upright and the forward distance covered during the
walk. Cristiano et al. used only one kind of feedback - phase resetting. A simpler
form of this feedback, based on [79], is used here. Additionally, angle feedback, which
is based on [35], is also used. The objective comparison of the gaits, obtained by
using the system in open loop, and with the two kinds of feedback, is a novel
contribution.

49

Chapter 5. Low-level Control

5.1 Evolution of a Basic Gait

Evolutionary optimization techniques, such as genetic algorithms, are a popular
choice for high-dimensional optimization problems where the fitness surface is un-
known, irregular or not continuous. A genetic algorithm does not need any explicit
knowledge about the problem being solved. Instead, it relies on a representation of
possible solutions in the form of chromosomes, and on the fitness function, which
is a way of evaluating the ‘goodness’ of a chromosome. General concepts related
to genetic algorithms have been discussed in chapter 2. In this work, a genetic
algorithm is used for optimizing the CPG network, which controls the robot in a
simulated environment. Before going into the details of the optimization process,
a description of the setup and simulation environment is presented.

5.1.1 Setup

The behavior of the robot in simulation depends to a certain extent on the frame
rate of the simulator, which in turn, is dependent on the rendering capability of
the computer. The behavior of the simulated robot on a faster machine, with a
better frame-rate, is expected to be closer to what can be expected in the real
world. The genetic algorithm and the gait analysis experiments were carried out
on two machines: a faster machine (M1), having an Intel Core i5-6500 processor
(3.20GHz×4) with 16GB RAM, and a machine with a lower configuration (M2),
having an Intel Core i3-4005U processor (1.70GHz×4) with 8GB RAM. On both
machines, the genetic algorithm was able to find good solutions. The robot was able
to display a stable walk in the majority of cases. However, the solutions and the
evolved gaits were different on the two machines due to the different configurations.

One way to ensure that the same solutions are produced across different ma-
chines would be to make the control loop of the CPG controller synchronous with
that of the simulator. For every iteration of the CPG control loop, a signal can
be sent to the simulator control loop to advance the simulation by one step. This
would make sure that the timing of the simulator is exactly the same as that of the
CPG controller, and thus the final behavior of the robot will be the same across
different machine configurations.

However, doing this presents a big problem when the CPG controller is to
be transferred to the real robot. In the real robot, there is no way of controlling
the physical environment by sending synchronizing signals. Hence, this approach
is avoided and an asynchronous mode of control is adopted. Although this leads
to different solutions on different machines, the setup needs minimal modification
before it can be transferred to the real robot. Although the solutions on M1 and
M2 are quantitatively different, they share some common trends. Since M1 has a
better configuration, the behavior of the simulated robot running on it is expected
to be more realistic. Hence only the results from M1 are discussed in this chapter.
Complete results of the genetic algorithm related experiments, which were per-
formed on M2, are included in appendix A.

50

5.1. Evolution of a Basic Gait

The Virtual Robot Experimentation Platform (V-REP) simulator [14] from
Coppelia Robotics was used in this work. The Bullet 2.78 physics engine was used
for the simulation dynamics. Apart from the simulation frame rate (determined by
the machine configuration), all other aspects of the setup were identical for all the
experiments on M1 and M2.

5.1.2 Genetic Algorithm Parameters

A modified form of the simple genetic algorithm (SGA) described in [22] has been
used in this work. Instead of a binary chromosome, a real-valued chromosome is
used, where the genes contain real numbers representing the values of the CPG
network parameters. A two-point crossover mechanism is used for recombination.
The points of crossing over are chosen randomly. The probability that crossover
occurs is 0.8. For parent and survivor selection, a tournament selection strategy
is employed, with a tournament size of 3. Chromosomes are mutated by adding
a small real number (may also be a negative number) to the value of each gene.
The probability that a chromosome will be chosen for mutation is 0.1. Once a
chromosome is chosen, each gene in it has a probability of 0.05 of being mutated.
The small real number for mutating a gene is randomly chosen from a Gaussian
distribution with mean µ = 0.0 and standard deviation σ = 0.01. A fixed popu-
lation size of 200 was used and the genetic algorithm was run for 30 generations.
The values of the different hyperparameters of the genetic algorithm, summarized
in table 5.1, were chosen based on the observations from preliminary trials and on
the values used in [11]. Since these values resulted in a stable walk in most cases,
they were not tuned or modified any further.

Table 5.1: Hyperparameters of the genetic algorithm.

Population size 200

Max. generations 30

Chromosome-type Real-valued

Selection Tournament selection with tournament size 3.

Crossover 2-point crossover with random crossover points. Probability of
crossover=0.8.

Mutation Addition of a number drawn from a Gaussian distribution (µ =
0.0, σ = 0.01). Chromosome mutation probability=0.1. Gene
mutation probability=0.05.

5.1.3 Chromosome Structure and Parameter Bounds

The parameters, which are optimized by the genetic algorithm, include the fre-
quency controlling parameter kf , the angle feedback weight k, and the biases and
gains used in the CPG network. The internal parameters of the Matsuoka oscil-
lators, used in the low-level CPG network, are empirically determined (table 4.3)

51

Chapter 5. Low-level Control

and so they are not a part of the parameter search. Refer to section 4.2 for more
information about the different parameters which are used in the CPG network.

Table 5.2: Limits of the parameters used in the chromosome

Setup Variable Description Lower bound Upper bound

open loop

angle feedback

phase reset

kf CPG frequency controller 0.2 1.0

GAIN1 Sagittal hip gains

0.01 1.0

GAIN2 Sagittal ankle gains

GAIN3 Sagittal knee gains

GAIN4 Frontal hip gains

GAIN5 Frontal ankle gains

GAIN6 Sagittal shoulder gains

BIAS1 Sagittal hip biases -0.6 0.0

BIAS2 Sagittal knee biases 0.0 0.5

BIAS3 Sagittal ankle biases -0.5 0.0

BIAS4 Sagittal shoulder biases 0.0 1.0

angle feedback k Weight of angle feedback -2.5 2.5

The chromosome structure used by the genetic algorithm consists of the CPG
network parameters mentioned above. While the open loop and phase reset se-
tups use the chromosome [kf , GAIN1, ..., GAIN6, BIAS1, ..., BIAS4] (table 4.2),
the angle feedback setup uses an additional parameter k and so its chromosome
structure is [kf , GAIN1, ..., GAIN6, BIAS1, ..., BIAS4, k] (table 4.4). The upper
and lower limits of these parameters are listed in table 5.2.

Figure 5.1: Patterns for deciding the limits of parameter kf .

For setting the limits of kf , the frequencies of the patterns generated by the
pacemaker oscillator for different values of kf were investigated. The upper plot in

52

5.1. Evolution of a Basic Gait

figure 5.1 shows the output of a Matsuoka oscillator when kf = 0.2 (internal pa-
rameters were set according to table 4.3). The frequency of the pattern is more than
2Hz (2 complete cycles per second). Frequencies higher than this are practically
not attainable with the motors that are used on the robot. The lower plot shows
the pattern generated when kf = 1.0. Here, the frequency is approximately 0.4Hz.
If kf is made higher, the frequency will reduce further and the very low speed of
joint motion will not be suitable for walking. Values of kf within the range [0.2,
1.0] produce patterns whose frequencies are suitable for use on a walking robot (an
example pattern is shown in the middle plot).

The parameters for gain in the chromosome determine the amplitude of the
target angles that are sent to the joints. As can be seen from figure 5.1, the range
(difference of highest and lowest value) of the output signal is approximately 0.4
radians (23◦). This range is sufficient for a walking motion. Since, here, the oscilla-
tor’s amplitude was not modified, the gain can be considered to be 1.0. The lower
limit of the gain (0.01) results in a very low range of angles (≈ 0 radians). Lower
values of gain do not result in any joint motion at all. Hence the limit for the gain
parameters was set at [0.01, 1.0].

Figure 5.2: Bias Position

The biases, which are used in the CPG network, set the mean position of oscil-
lation of the sagittal joints (whose rotation axes are shown with red arrows in figure
5.2). Biases are not set for the frontal joints, as discussed in section 4.2.1. When all
the sagittal joints are set to their respective bias angles, the robot assumes a start-
ing pose similar to that shown in figure 5.2. Only after reaching this start pose, the
joints start oscillating according to the output of the corresponding oscillator, and
the robot starts to walk. The initial pose of the robot is very important for a stable
walk, since, if this pose is unstable, even the best CPG parameters will not be able
to prevent a fall as soon as the robot starts. In order to ascertain a stable starting

53

Chapter 5. Low-level Control

position, the arms are moved back, the hip bent forward and the knees and ankles
bent slightly to move the center of gravity of the robot a little forward and lower.
To assume this pose, the mean position of the shoulder and knee joints should be
positive (anti-clockwise rotation), and that of the hip and ankle joints should be
negative (clockwise rotation), as shown in the right-hand side of figure 5.2. The
ranges for the biases in table 5.2 were set to follow this convention. This approach
for setting the gains and biases is based on [11]. However, the exact ranges are
different as they have been tuned to suit the NICO robot. 5.2.

Figure 5.3: Sequence of poses before walking starts. Top: side-on view, bottom: frontal view.

The bias values in the chromosome determine the mean position of all the
controlled joints and the oscillations occur about these positions. Since the robot
starts from the zero pose (all angles=0 rad.), it first has to reach the start pose
(angles=bias values) before it can start walking. The zero and start poses are
shown in figure 5.3. Changing angles too fast, in order to assume the start pose,
can result in unwanted instability that adversely affects the gait. To prevent this,
all the sagittal angles were linearly interpolated from their zero-positions to their
bias-positions over a period of 5 seconds. Then, a further 2 seconds were spent
to allow any oscillatory movement of the body to subside. After this, the CPG
network was turned on, and the individual oscillators were allowed to drive the
robot’s joints.

54

5.1. Evolution of a Basic Gait

The range of the feedback parameter k was set in an empirical fashion. The
only guiding principle here was that k should be able to assume both positive
and negative values, so that the effects of introducing both positive and negative
feedback into the extensor and flexor neurons alternatively (figure 4.5), may be
evaluated by the genetic algorithm.

5.1.4 Fitness Function

The fitness function is perhaps the most crucial element of a genetic algorithm.
It defines the fitness surface of the problem which the genetic algorithm is trying
to solve, and forms the link between the genotype (coded representation of the
chromosome) and the phenotype (physical expression in the form of features, pro-
duced by the code in the chromosome). In the context of the current problem, the
genotype is represented by the configurable parameters of the low-level network.
The phenotype is the observable characteristics of the bipedal locomotion that is
produced when a particular set of values is assigned to those parameters. It is
the fitness function which judges the characteristics of the gait and produces a
numerical measure of the quality of the produced motion.

In [11], the fitness of a chromosome was calculated as f = α(vel) − γ(dev),
where vel is the velocity of the robot in the forward direction, dev is the lateral
deviation, and α and γ are weighting coefficients. Although this fitness function
would rate highly the chromosomes that result in a fast, straight walk, it ignores
the stability of the walk. In the initial generations, there may be chromosomes
which result in a very balanced walk but are unable to result in a fast motion that
covers much distance. It is important not to reject these chromosomes, but to give
them the chance of improving themselves with respect to the distance that can be
covered. To do this, the following fitness function has been used in this thesis:

f = distancex + (λ× tup) (5.1)

The robot starts at the location (0,0) of the world coordinate frame, facing in the
direction given by the x-axis. In equation 5.1, distancex is the distance (in meters)
walked by the robot in the x direction, tup is the time (in seconds) till which it
does not fall and λ is a weighting factor (set to 0.5). Since each chromosome is
tested for 20 seconds (at the most), the distance term implicitly encourages higher
velocities. The term for time contributes to a high fitness score if the robot stays
upright for a long time. The robot is considered to be upright as long as the center
of its torso is at or above 0.3m from the ground. In the standing position (zero pose
in figure 5.3) the center of the torso is approximately 0.66m above the ground.

Since the distance is in meters and the time is in seconds, in the initial gen-
erations, the fitness score is dominated by chromosomes which result in higher
stability, even if the distance is not significant. As the generations progress and
the average fitness of the population increases, most of the chromosomes result
in stable gaits. At this point, chromosomes which can also display a longer walk
start coming into prominence. Towards the end, the best chromosomes are able to
exhibit a stable walk covering a good distance (as shown in the next section).

55

Chapter 5. Low-level Control

Given the configuration of the CPG network, which is designed to always pro-
duce symmetrical oscillations across the left and right side joints, it is not useful
to include a penalty for the lateral deviation in the fitness function. Minimization
of lateral deviation is taken care of by the high-level controller.

5.1.5 Results

A basic gait for 3 types of setup (open loop, angle feedback and phase reset) was
evolved. For each type, the genetic algorithm was executed 3 times each on 2
computers (M1 and M2), resulting in a total of (3 setups×3 runs×2 machines) 18
runs. Only the results from M1 are discussed here (results from M2 can be found
in appendix A).

For each run, the genetic algorithm was allowed to execute for 30 generations.
The population of the first generation was initialized randomly, according to the
limits described in table 5.2. For evaluating the fitness of a chromosome, first, a
CPG network was constructed by setting its parameters according to the genes
of the chromosome. The robot was positioned at position (x = 0, y = 0) of the
world frame, with the robot’s x-axis having the same direction as the x-axis of the
world frame. After allowing the robot to reach its start pose (figure 5.3), the CPG
network was allowed to drive the individual joints, which resulted in a walking
motion. The robot was allowed to walk for a maximum time limit of 20 seconds
or till it fell down. The fitness of the chromosome was then calculated by using
equation 5.1. For each generation, the fitness score of the best chromosome, the
distance walked by the robot with that chromosome’s values and the average fitness
of the generation were tracked. The results of the genetic algorithm for open loop,
angle feedback and phase reset are shown in figures 5.4, 5.5 and 5.6 respectively.

0

4

8

12

R
u
n
 1

 F
it
n
e
ss

0

4

8

12

R
u
n
 2

 F
it
n
e
ss

5 10 15 20 25 30
Generation

0

4

8

12

R
u
n
 3

 F
it
n
e
ss

Max. Fitness Avg. Fitness

0

1

2

3

4

D
is
ta
n
ce

 (
m
)

0

1

2

3

4

D
is
ta
n
ce

 (
m
)

5 10 15 20 25 30
Generation

0

1

2

3

4

D
is
ta
n
ce

 (
m
)

Distance

Figure 5.4: Open loop results. Left column: Fitness vs. generation, right column: distance
vs. generation. Top to bottom: Three separate runs of the genetic algorithm.

56

5.1. Evolution of a Basic Gait

0

4

8

12

R
u
n
 1

 F
it
n
e
ss

0

4

8

12

R
u
n
 2

 F
it
n
e
ss

5 10 15 20 25 30
Generation

0

4

8

12

R
u
n
 3

 F
it
n
e
ss

Max. Fitness Avg. Fitness

0

1

2

3

4

D
is
ta
n
ce

 (
m
)

0

1

2

3

4

D
is
ta
n
ce

 (
m
)

5 10 15 20 25 30
Generation

0

1

2

3

4

D
is
ta
n
ce

 (
m
)

Distance

Figure 5.5: Angle feedback results. Left column: Fitness vs. generation, right column: dis-
tance vs. generation. Top to bottom: Three separate runs of the genetic algorithm.

It can be seen from the plots that the maximum fitness (blue line) of the initial
and final generations differs by a small amount in most cases. This is because the
fitness score f is dominated by tup (f = distancex + 0.5 × tup), which attains its
best possible value of 20s very early on in the evolution process. The maximum
possible contribution of tup to f is 0.5 × 20 = 10. Any fitness score above 10 is
surely due to distancex. Since, in 20s the robot walks around 4m at the most, the
increase in fitness is small.

0

4

8

12

R
u
n
 1

 F
it
n
e
ss

0

4

8

12

R
u
n
 2

 F
it
n
e
ss

5 10 15 20 25 30
Generation

0

4

8

12

R
u
n
 3

 F
it
n
e
ss

Max. Fitness Avg. Fitness

0

1

2

3

4

D
is
ta
n
ce

 (
m
)

0

1

2

3

4

D
is
ta
n
ce

 (
m
)

5 10 15 20 25 30
Generation

0

1

2

3

4

D
is
ta
n
ce

 (
m
)

Distance

Figure 5.6: Phase reset results. Left column: Fitness vs. generation, right column: distance
vs. generation. Top to bottom: Three separate runs of the genetic algorithm.

57

Chapter 5. Low-level Control

However, the fact that the genetic algorithm is able to gradually improve the
fitness of the population, is proven by the sharp increase in the average fitness
of the population (red line) over the generations. In the initial generations, the
average fitness is near 0, but towards the end, it is very close to the best fitness, as
indicated by the proximity of the red and blue lines. The plots for distance (green
line) also show that the best chromosomes of the latter generations achieve a much
better forward distance (distancex) than the initial generations. The chromosomes
in the initial generations have a high fitness score but achieve very low distances
whereas, in the later generations the fitness scores increase slightly but there is a
sharp increase in the forward distance. This shows that ultimately, it is the distance
that differentiates the best chromosomes from the good ones.

While running the genetic algorithms, an interesting observation was made
about the effect of the different genes. The first action of the robot is to reach the
start pose (figure 5.3) and this is determined by the bias values in the chromosome.
In the initial generations, the biases of most chromosomes could not result in a
stable start pose and the robot fell even before it started its walking movement. As
the generations progressed, chromosomes with better values of bias were evolved
and the start pose of the robot was stable for many chromosomes. In the final
generations, almost every chromosome resulted in a stable start pose due to good
bias values. Thus, before good values for bias were found, the other genes of the
chromosome did not even come into play. Only after stable biases were found, did
the evolution of the other genes in the chromosome start. As a result, in the initial
generations, most often the robot could neither stand nor walk, in the middle
generations it could stand but not walk and in the final generations, it could stand
as well as walk.

Table 5.3: Best performance in the 30th generation.

Open loop Angle feedback Phase reset

run 1 run 2 run 3 run 1 run 2 run 3 run 1 run 2 run 3

Best distance (m) 2.92 1.33 2.31 3.95 1.40 3.96 2.93 3.18 3.68

Best time (s) 20 20 20 20 20 20 20 20 20

Best fitness 12.92 11.33 12.31 13.95 11.40 13.96 12.93 13.18 13.68

For the three different setups, the performance of the genetic algorithm in the
last generation is listed in table 5.3. From the information in this table and the
plots of the fitness and distance, an important difference in the performance of the
setups can be observed. For open loop (figure 5.4) and phase reset (figure 5.6), the
best fitness score of the very first generation is around 10 for all the three runs.
This indicates that the best chromosome in the first generation kept the robot
upright for nearly the whole of 20s (since fitness = distancex + 0.5 × tup, and
distancex is nearly 0 for the first generation, which implies tup ≈ 20s). For angle
feedback (figure 5.5), the first generation’s best fitness score is significantly lower
than 10 in all the three runs. This suggests that until suitable values were found
for the feedback weights, the feedback mechanism made the system less stable.

58

5.2. Gait Analysis

However, once suitable values were found, the same feedback mechanism enabled
the robot to cover much higher distances. In the final generation of 2 out of 3 runs,
angle feedback achieved a best distance of 3.95 and 3.96 meters, whereas the best
distances in the final generations of the other setups were much lower (table 5.3).

The performance of angle feedback in run 2 was much worse than its other
two runs. The best distance was only 1.40m (figure 5.5). Here, it seems that the
optimization process was stuck at a local optimum. A look at the solutions found
by the genetic algorithm (table 5.4), reveals that for run 2, the value of the feedback
weight is negative (-0.6130), while for the other two runs it is positive (0.7654 and
1.5364). This suggests that a large negative feedback weight is not beneficial. The
value of kf for run 2 was also much higher, resulting in a lower frequency and
lesser distance covered. Similarly, for run 2 of open loop, where the performance
was comparatively very poor, kf has a higher value.

It can also be seen from table 5.3, that when some form of low-level feedback
was used (angle feedback or phase reset), the best distance in most cases was higher
than when no feedback was used (open loop). This fact points toward the beneficial
effects of using a low-level feedback loop.

Table 5.4: CPG network parameters found by the genetic algorithm (genotype of the chro-
mosomes); BIASi is in radians; kf , GAINi and k do not have any units.

Open loop Angle feedback Phase reset

run 1 run 2 run 3 run 1 run 2 run 3 run 1 run 2 run 3

kf 0.4488 0.8144 0.4470 0.2258 0.7594 0.3178 0.3158 0.2840 0.2496

GAIN1 0.4167 0.7825 0.6213 0.5178 0.7708 0.3777 0.6792 0.4846 0.5626

GAIN2 0.1692 0.3372 0.0866 0.0101 0.0813 0.0234 0.0134 0.0469 0.0174

GAIN3 0.1861 0.0489 0.2071 0.0245 0.1381 0.0132 0.1478 0.0236 0.0140

GAIN4 0.6941 0.6607 0.7099 0.4555 0.8223 0.4567 0.4343 0.3094 0.3939

GAIN5 0.1372 0.0636 0.0818 0.2146 0.0223 0.2019 0.2060 0.2936 0.1845

GAIN6 0.5818 0.7723 0.4866 0.8918 0.2309 0.3309 0.3598 0.0883 0.9518

BIAS1 -0.1634 -0.0666 -0.1714 -0.1538 -0.0046 -0.0519 -0.1332 -0.2375 -0.3392

BIAS2 0.0356 0.3010 0.4983 0.1841 0.0895 0.0963 0.4287 0.2509 0.2576

BIAS3 -0.0147 -0.1895 -0.2999 -0.0973 -0.1217 -0.1156 -0.2780 -0.1445 -0.1045

BIAS4 0.0175 0.1774 0.0575 0.0107 0.5806 0.4814 0.5847 0.2630 0.0775

k NA NA NA 0.7654 -0.6130 1.5364 NA NA NA

5.2 Gait Analysis

Although the results obtained from the evolution process indicate that feedback
is beneficial and that angle feedback performs better than the other setups, they
do not provide conclusive evidence to support this suggestion. In order to have
more evidence of the comparative benefits of the different setups, each solution
found by the genetic algorithm was analyzed by putting it through an extensive

59

Chapter 5. Low-level Control

performance test. The solutions of the genetic algorithm consist of 9 different
chromosomes, shown in the columns of table 5.4 (one chromosome for each of the
three runs of open loop, angle feedback and phase reset). These chromosomes, which
evolved after 30 generations, result in gaits with different characteristics. Some of
these gaits exhibit the ability to cover a long forward distance, while others exhibit
greater stability during walking. In order to run a performance test of the evolved
chromosomes, first, a set of characteristics needs to be chosen which can be used
to objectively differentiate the different setups which the gaits are associated with.

5.2.1 Evaluation Parameters and Setup

The fitness score, f (obtained by equation 5.1), is an obvious indicator of the
merit of a chromosome since it was used to choose fitter chromosomes during
the evolution process. The fitness score is calculated by using the values of the
forward distance (distancex) and the time the robot was upright (tup). Hence, these
two parameters are also evaluated independently in order to judge a chromosome.
Although the low-level control mechanism does not control the lateral deviation
of the robot, the absolute value of the lateral deviation (devabsy) is chosen as a
parameter to determine if the different setups result in the same kind of deviation
or not. The length of the stride is another important characteristic feature that can
be used to compare gaits. Here, the length of a stride is calculated as the difference
between the successive locations of the left foot and the right foot as the robot
walks. For the whole duration of the walk, the length of each stride is calculated,
and then the average stride length strideavg is calculated by dividing the sum of
the stride lengths by the number of steps taken. Apart from this, the stability of
the robot’s torso during the walk can be used to differentiate gaits. Stable gaits
will show comparatively small variance in the angular position of the torso. Hence
the variances in the average torso orientations, with respect to the world frame,
are also used in this analysis. The three orientation parameters which are used are:
torsovarα , torsovarβ and torsovarγ - the variance in the torso’s orientation about the
world’s x, y and z-axis respectively. These evaluation parameters are summarized
in table 5.5.

Table 5.5: Parameters used for evaluating gaits.

Parameter Description

f Fitness score calculated according to equation 5.1

distancex Distance covered by the robot along the world frame’s x-axis

devabsy Absolute value of the lateral deviation along the world frame’s y-direction

strideavg Average length of a stride during the walk

tup Time for which the robot did not fall during the walk

torsovarα Variance of the torso’s orientation about the world’s x-axis during the walk

torsovarβ Variance of the torso’s orientation about the world’s y-axis during the walk

torsovarγ Variance of the torso’s orientation about the world’s z-axis during the walk

60

5.2. Gait Analysis

At the end of 30 generations, 9 chromosomes are obtained from the 3 runs of
the 3 setups. These are named OL1, OL2 and OL3 (for runs 1, 2 and 3 of open
loop), AF1, AF2 and AF3 (for runs 1, 2 and 3 of angle feedback), and PR1, PR2 and
PR3 (for runs 1, 2 and 3 of phase reset). For each chromosome, the CPG network
was constructed by using the values in the chromosome’s genes, and the robot was
allowed to walk for a maximum time of 20s unless it lost balance and fell before that
time. During the walk, the different parameters discussed above were computed.
This process was repeated 100 times for each chromosome. Similar to the genetic
algorithm runs, the robot started at the (0,0) position of the world frame, with
it’s x-axis in the direction of the world frame’s x-axis. Starting from the zero pose,
the sagittal joints were then linearly interpolated over 5s to assume the start pose
(figure 5.3). After waiting another 2s for stabilizing, the robot started walking.

5.2.2 Results

Median values of the gait evaluation parameters, obtained after evaluating the 9
chromosomes 100 times each, are summarized in table 5.6. Since means are strongly
affected by outliers in the data, in this analysis, medians have been used instead.
The scores of the different parameters are plotted using boxplots in figures 5.7-5.12,
where results of open loop, angle feedback and phase reset are denoted with red,
blue and green boxes respectively. Medians are indicated by vertical black lines
within the boxes. The left and right edges of the boxes denote the lower (Q1) and
upper quartiles (Q3) of the data. The whiskers of the boxplots show the data range
given by [(Q1 − 1.5 × IQR), (Q3 + 1.5 × IQR)] where IQR is the inter-quartile
range. Outliers are shown with grey circles.

Table 5.6: Median values of the gait evaluation parameters over 100 trials.

Parameter
Open loop Angle feedback Phase reset

OL1 OL2 OL3 AF1 AF2 AF3 PR1 PR2 PR3

f 11.984 11.174 11.852 13.390 11.288 13.519 11.979 11.478 13.049

tup (s) 19.105 20.000 19.570 20.000 20.000 20.000 20.000 17.990 20.000

distancex (m) 2.345 1.178 2.038 3.394 1.293 3.544 2.009 2.091 3.066

devabsy (m) 0.209 0.391 0.524 1.164 0.107 0.889 0.961 0.312 0.451

strideavg (m) 0.060 0.054 0.121 0.059 0.080 0.100 0.057 0.110 0.096

torsovarα (rad2) 0.021 0.008 0.011 0.004 0.011 0.007 0.003 0.013 0.005

torsovarβ (rad2) 0.012 0.003 0.006 0.002 0.002 0.001 0.002 0.008 0.001

torsovarγ (rad2) 0.025 0.084 0.059 0.084 0.013 0.051 0.222 0.063 0.055

The fitness score f over 100 trials of the 9 chromosomes are summarized in
figure 5.7. The median scores of the 3 angle feedback chromosomes (AF1, AF2 and
AF3) are 13.39, 11.288 and 13.519 respectively. Apart from the second chromosome,
where the optimization was stuck at a local maximum, these scores are higher than
the median scores of the other setups. The only one which comes close is the third
chromosome (PR3) of phase reset with a median score of 13.049. The fitnesses for

61

Chapter 5. Low-level Control

phase reset are marginally better than those of open loop. Also, over a 100 trials,
angle feedback shows the least amount of variability in the fitness, as shown by the
length of the blue boxes (the inter-quartile range) in figure 5.7.

0 2 4 6 8 10 12 14

Fitness score

OL1

OL2

OL3

AF1

AF2

AF3

PR1

PR2

PR3

C
h
ro
m
o
so
m
e
s
o
f
se
tu
p
s

Figure 5.7: Fitness f for 100 trials.

When the forward distance (distancex) was measured for the 3 setups, here also,
2 of the 3 angle feedback chromosomes (AF1 and AF3) show a better performance
than the chromosomes of the other setups (left-side plot in figure 5.8). The median
distance achieved by AF1 and AF3 was 3.394m and 3.544m respectively, whereas
the next best median distance was only 3.066m, achieved by PR3 (table 5.6). The
median distances of AF1 and AF3 are also close to the distances (3.95m and 3.96m
respectively) these chromosomes achieved in the 30th generation of the evolution
process (table 5.3). The stochastic nature of the environment results in variability
of the distance covered when the same chromosome is used multiple times. However,
as can be seen in the left plot in figure 5.8, the variability in forward distance for
angle feedback is not very large.

−1 0 1 2 3 4

Forward distance (m)

OL1

OL2

OL3

AF1

AF2

AF3

PR1

PR2

PR3

C
h
ro
m
o
so
m
e
s
o
f
se
tu
p
s

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Absolute Y-deviation (m)

OL1

OL2

OL3

AF1

AF2

AF3

PR1

PR2

PR3

Figure 5.8: (left) The forward distance distancex and (right) the absolute lateral deviation
devabsy for 100 trials.

62

5.2. Gait Analysis

Since the low-level CPG-based controller does not explicitly control the robot’s
deviation, it is expected that if the robot walks further, its deviation will also be
greater. In the right-side plot in figure 5.8, it can be seen that the median values of
devabsy for AF1 and AF3 are relatively high. However, there does not appear to be
a direct relationship between distance and deviation for all the cases. PR1, which
has a comparatively low median distance, has a high median value for deviation.

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Average stride length (m)

OL1

OL2

OL3

AF1

AF2

AF3

PR1

PR2

PR3

C
h
ro
m
o
so

m
e
s
o
f
se

tu
p
s

Figure 5.9: Average length of stride strideavg for 100 trials.

The average length of a stride (strideavg) is a good descriptor of a gait. A long
stride can result in a longer distance, but it can also make the robot less stable. A
shorter stride can result in more stability but less forward distance. As shown in
figure 5.9, all the chromosomes result in relatively short strides (given the NICO
is 101cm tall). The variability in stride length for angle feedback is lower than for
phase reset. The open loop chromosome OL3 and the phase reset chromosome PR2

show a high variability in stride length. The open loop chromosome OL2 has a
low median score for average stride length, which is perhaps a reason why this
chromosome has a very low median score for the forward distance as well (left-
side plot of figure 5.8). PR2, which has one of the largest median stride lengths,
achieved the lowest median time of 17.99s for staying upright (figure 5.10).

The stability of the robot is an important criterion for bipedal locomotion. If
the low-level controller, which does not control stability explicitly, can result in a
stable walk, then any high-level balance controller will have a much easier job. A
direct indicator of the gait stability of the different chromosomes is the time (tup)
for which the robot stayed upright during the walk. It can be seen in figure 5.10,
that for all the 3 angle feedback chromosomes, the median score for tup is 20.0s.
Since the maximum time allowed for walking was 20s, this means that the robot
fell down very few times in the all the trials for AF1, AF2 and AF3. The phase
reset setup is the second-best performer, where PR1 and PR3 have a median score
of 20s. However, PR2’s median tup is only 17.99s and its variability is also quite
high. The setup without any feedback (open loop) has a median score of 20s for
only one of its three chromosomes.

63

Chapter 5. Low-level Control

0 5 10 15 20

Up time (s)

OL1

OL2

OL3

AF1

AF2

AF3

PR1

PR2

PR3

C
h
ro
m
o
so
m
e
s
o
f
se
tu
p
s

Figure 5.10: Up time tup for 100 trials. When Q1=Q3=median, the boxes have zero width.

In addition to tup, the change in orientation of the robot’s torso is also a good
indicator of the stability of motion. When the torso orientation does not change
much, it is expected that the robot’s motion will be smoother. Maintaining balance
would also be easier in such a case. The variances in the torso orientations (torsovarα ,
torsovarβ and torsovarγ), about the three coordinate axes of the world frame, are
plotted in figures 5.11 and 5.12. The first noticeable thing in these plots is the
difference in the x-axis scales between the figures. The angles torsoα and torsoβ
are the orientations of the robot’s torso about the world x and y axes respectively.
Thus, torsoα is related to the left-to-right swaying motion in the frontal plane and
torsoβ is related to the forward and backward swaying motion in the sagittal plane.
These two types of motion are rather restricted for all the three setups. However, as
the robot shows quite a bit of lateral deviation, it’s heading direction also changes
significantly. This change is captured by torsoγ, which denotes the orientation of
the torso about the world z-axis. Hence torsoγ assumes much greater values than
torsoα and torsoβ in all the cases, and so its variance torsovarγ has a bigger range.

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Variance of torsoα (rad2)

OL1

OL2

OL3

AF1

AF2

AF3

PR1

PR2

PR3

C
h
ro
m
o
so

m
e
s
o
f
se

tu
p
s

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Variance of torsoβ (rad2)

OL1

OL2

OL3

AF1

AF2

AF3

PR1

PR2

PR3

Figure 5.11: (left) torsovarα - variance in the torso’s orientation about the world x-axis, (right)
torsovarβ - variance in the torso’s orientation about the world y-axis, for 100 trials.

64

5.2. Gait Analysis

From the left and right plots in figure 5.11, it can be seen that the angle feedback
chromosomes, in general, have the lowest median scores for the variance in torso
orientation. The variability in the scores for angle feedback is also significantly
lower than the other two setups (judged by the distance between the whiskers of
the boxplots). The angle torsoγ is related to the deviation of the robot, which
in turn, is related to the distance walked by it. Hence it would be expected that
the chromosomes AF3 and AF1, which achieved the best distances would have the
highest scores for torsoγ as well. However, as can be seen in figure 5.12, these two
chromosomes do not result in the worst variance in orientation about the z-axis.
Overall, phase reset ’s median scores are the worst in this respect. The variability
in the variance over 100 trials is also quite high for phase reset.

0.0 0.1 0.2 0.3 0.4 0.5

Variance of torsoγ (rad2)

OL1

OL2

OL3

AF1

AF2

AF3

PR1

PR2

PR3

C
h
ro
m
o
so
m
e
s
o
f
se
tu
p
s

Figure 5.12: torsovarγ - variance in the torso’s z-axis orientation for 100 trials.

Figure 5.13: Snapshots of the walking motion from one of the gait evaluation trials using
angle feedback. The purple lines on the support foot (the foot which is on the ground)
indicate the vertical ground reaction forces acting on the pressure sensors on the foot.

65

Chapter 5. Low-level Control

5.3 Discussion

The gait evaluation parameters were chosen so that they would numerically rep-
resent some characteristics of the gait. Thus, for a good chromosome, the metrics
related to desirable characteristics such as stability should have a high value, and
those for undesirable characteristics such as lateral deviation should have a low
value. However, in order to show that these evaluation metrics are actually use-
ful in judging a gait, the relationship of these parameters with the fitness score
parameter needs to be analyzed. When the scores for the different metrics are com-
pared with the fitness score and with each other, by using Pearson’s correlation
coefficient r [19] (equation 5.2), some relationships can be seen.

r =
n(
∑
xy)− (

∑
x)(
∑
y)√

[n
∑
x2 − (

∑
x)2][n

∑
y2 − (

∑
y)2]

(5.2)

Here, n = 100 is the number of data points, and x and y are the values of the
two parameters being compared. Correlation matrices were created for each chro-
mosome by using the values of the respective evaluation parameters (table 5.5).
Although the correlation coefficient does not indicate causality, it does provide in-
sights into how different parameters are related. Figure 5.14 shows the correlation
matrices for the 9 chromosomes used during the gait evaluation process.

In the figure, shades of blue indicate positive correlation and shades of red
indicate negative correlation. Darker shades and lighter shades indicate high and
low correlation respectively. In most of the correlation matrices, the fitness score f
has a high positive correlation with the forward distance distancex and the up-time
tup. This is expected, since distancex and tup are used to calculate f . However, it
is interesting to see the relationship of the other parameters with f . For example,
the parameters for variance in torso orientation, torsovarα and torsovarβ , show a high
negative correlation with f , distancex and tup for almost all the chromosomes.
This means that whenever torsovarα and torsovarβ have low values, distancex and
tup have high values (and vice-versa). This supports the idea that low variance in
orientation is good for the gait. The correlation of torsovarγ with f , distancex and
tup also shows a similar, but less strong, correlation.

The correlation of the average stride length strideavg with f , distancex and tup
shows different trends for the different setups. For open loop (plots in the first row
of figure 5.14), strideavg has a weak positive correlation with f , distancex and tup.
This suggests that, when no feedback is used, the robot takes long steps whenever
it is able to walk for a long distance (or vice-versa). However, for angle feedback and
phase reset (plots in the second and third rows of figure 5.14), the relationship of
strideavg with f , distancex and tup is less clear because both positive and negative
correlations occur. The parameter for lateral deviation, devabsy , shows a moderate
amount of negative correlation with f , distancex and tup for angle feedback (plots
in the second row of figure 5.14). However, for the two other setups, there is no
definite pattern. For AF2 (middle plot in the second row of figure 5.14), few strong
correlations exist. This chromosome did not exhibit the high performance of the
other angle feedback chromosomes.

66

5.3. Discussion

f di
st
an
ce

x

de
v
ab
s

y

st
ri
de
av
g

t up to
rs
o
va
r

α

to
rs
o
va
r

β

to
rs
o
va
r

γ

f

distancex

devabs
y

strideavg

tup

torsovar
α

torsovar
β

torsovar
γ

f di
st
an
ce

x

de
v
ab
s

y

st
ri
de
av
g

t up to
rs
o
va
r

α

to
rs
o
va
r

β

to
rs
o
va
r

γ

f di
st
an
ce

x

de
v
ab
s

y

st
ri
de
av
g

t up to
rs
o
va
r

α

to
rs
o
va
r

β

to
rs
o
va
r

γ

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Correlation matrices for open loop chromosomes. (left) OL1, (middle) OL2, (right) OL3.

f di
st
an
ce

x

de
v
ab
s

y

st
ri
de
av
g

t up to
rs
o
va
r

α

to
rs
o
va
r

β

to
rs
o
va
r

γ

f

distancex

devabs
y

strideavg

tup

torsovar
α

torsovar
β

torsovar
γ

f di
st
an
ce

x

de
v
ab
s

y

st
ri
de
av
g

t up to
rs
o
va
r

α

to
rs
o
va
r

β

to
rs
o
va
r

γ

f di
st
an
ce

x

de
v
ab
s

y

st
ri
de
av
g

t up to
rs
o
va
r

α

to
rs
o
va
r

β

to
rs
o
va
r

γ

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Correlation matrices for angle feedback chromosomes. (left) AF1, (middle) AF2, (right) AF3.

f di
st
an
ce

x

de
v
ab
s

y

st
ri
de
av
g

t up to
rs
o
va
r

α

to
rs
o
va
r

β

to
rs
o
va
r

γ

f

distancex

devabs
y

strideavg

tup

torsovar
α

torsovar
β

torsovar
γ

f di
st
an
ce

x

de
v
ab
s

y

st
ri
de
av
g

t up to
rs
o
va
r

α

to
rs
o
va
r

β

to
rs
o
va
r

γ

f di
st
an
ce

x

de
v
ab
s

y

st
ri
de
av
g

t up to
rs
o
va
r

α

to
rs
o
va
r

β

to
rs
o
va
r

γ

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Correlation matrices for phase reset chromosomes. (left) PR1, (middle) PR2, (right) PR3.

Figure 5.14: Correlation between the gait evaluation parameters.

67

Chapter 5. Low-level Control

The results presented in section 5.1.5 demonstrate the feasibility of the low-
level, CPG-based controller for walking. All the 9 chromosomes which were evolved,
could make the robot walk. However, as can be seen from the forward distance
achieved in the 30th generation (table 5.3), angle feedback performed the best,
followed by phase reset and open loop. When the chromosomes of the different
setups were put through a performance test, the same general trends in the results
were repeated. Since during this test, each chromosome was tested 100 times, the
results in section 5.2.2 provide more evidence about the superiority of the angle
feedback setup. The chromosomes for angle feedback resulted in gaits in which
the robot covered more forward distance and stayed upright for a longer time,
compared to the other setups. The performance of the phase reset chromosomes
was worse than angle feedback but marginally better than open loop, in terms of
forward distance and up time. They also showed a lot of variability in the results
(represented by the spread of the data in the plots in section 5.2.2).

Thus, from the results presented in this chapter, it may be concluded that the
angle feedback mechanism does improve the overall quality of the gait produced by
the CPG network. Hence it was chosen as the feedback mechanism of the low-level
controller, on top of which the high-level controller was built.

68

Chapter 6

High-level Control

In the hierarchical bipedal controller developed in this thesis, the low-level con-
troller’s role is to produce oscillatory motion in the robot’s joints, while also adapt-
ing these oscillations to the way the robot interacts with the environment. The
high-level controller, on the other hand, is concerned with meeting a higher overall
objective, which in this case, is to minimize the lateral deviation while walking. A
high-level controller gives the robot the ability to modify its movements by using
only a few parameters which ultimately influences the overall behavior of the low-
level CPG controller. The use of a few control parameters simplifies the training
process of the high-level controller, while also maintaining a close similarity to the
locomotion control mechanism found in animals.

The structure of the high-level neural network controller and the way it achieves
deviation control by modifying CPG network parameters were discussed in detail
in chapter 4. This chapter covers the details of how the high-level controller was
created and trained using reinforcement learning. This chapter also discusses how
hyperparameters were set and how the reward function, that is used in the rein-
forcement learning setup, was designed. Also included, are the results of experi-
ments which demonstrate the effectiveness of this controller.

6.1 Problem Formulation

Recall from section 2.4.1, that the reinforcement learning problem is concerned
with learning the correct behavior of an agent interacting with an environment
so that a long-term numerical reward can be maximized. At each step, the agent
takes an action, and as a result of that action, it gets in return an observation of
the current state and a reward from the environment. In an episodic reinforcement
learning setup, the agent’s overall experience is broken up into a series of episodes.
Each episode begins with the environment and the agent in an initial state and
continues until some termination criterion is met. After an episode is terminated,
the environment and agent are reinitialized and the next episode begins. The goal,
in the episodic setup, is to maximize the expected total reward per episode and
also to be able to achieve a high level of performance in as few episodes as possible.

69

Chapter 6. High-level Control

6.1.1 Agent and Environment

Since the high-level controller is trained using an episodic reinforcement learning
setup, the first step is to formulate the problem of deviation control as a reinforce-
ment learning problem. To do so, exact definitions need to be provided for what
constitutes an agent, environment, action, reward and state.

Since the basic task here is concerned with learning the correct behavior of a
robot functioning in an environment, it is tempting to consider the robot to be
the agent in the reinforcement learning setup. However, the boundary of separation
between the agent and the environment need not be based on the boundary between
the robot and its physical surrounding. During the training process, the setup for
the training algorithm, including the high-level controller, acts as the agent since
it receives the state of the environment and performs actions which lead to a new
state and a new reward. Once the training is complete, reward signals are no longer
needed, but the high-level controller continues to act as the agent by observing the
states and generating actions accordingly. The training process of the high-level
controller does not modify the structure of the low-level CPG network in any way.
Hence, everything outside the purview of the high-level controller is considered
to be the environment. This includes the low-level controller, the robot and its
three-dimensional surrounding.

Figure 6.1: Reinforcement learning setup.

Once the agent and environment are defined, it is easy to visualize what con-
stitutes the action and the state. The action is the output of the high-level neural
network, consisting of the gain suppression factors Φl and Φr (when the value of
Φl or Φr is close to 1.0, the forward motion of the corresponding leg is maximally
suppressed). These are converted into the gain factors Ψl and Ψr using equation
4.4 (section 4.3.2 contains detailed explanation of these factors and the conversion).
The gain factors are then used to modulate the CPG network’s output. The state
is the 12-element vector consisting of the angular position (α, β, γ) and velocity
(α̇, β̇, γ̇), and the cartesian position (x, y, z) and velocity (ẋ, ẏ, ż) of the robot’s

70

6.1. Problem Formulation

torso in the three dimensions. During training, the reward is a numerical measure
which tells the agent how good its performance is. Figure 6.1 depicts the differ-
ent components of the reinforcement learning setup, as applicable to the current
context.

6.1.2 Design of Reward Function

In a reinforcement learning setup, there are no ‘labeled’ correct actions for ev-
ery observation, as in supervised learning. Instead, for every action taken by the
agent, it receives a numerical reward signal telling it whether the action taken was
beneficial to the overall objective or not. Over the course of time, the agent tries
to maximize the accumulated reward and thereby learns the behavior that it was
being trained to exhibit. Given the crucial role of the reward signal, the logic for
calculating it must be designed to accurately quantify the agent’s performance.

Rewards can be calculated in a number of different ways. In goal-directed tasks,
such as solving a maze or playing a game against an opponent, the common ap-
proach is to provide a large positive reward when the goal is reached or the game
is won. If not, then at every timestep, the agent receives either a zero reward or
a small negative reward. Negative rewards are particularly helpful in training the
agent to achieve the desired behavior in the shortest possible timeframe because if
the agent can achieve its goal in a short time, the sum of negative rewards is less
and the overall sum of rewards is maximized.

In situations where the agent has to deal with continuous environments, such as
in robotics, the reward at each timestep is usually chosen to be a real number. This
number can be a combination of positive values representing desirable characteris-
tics resulting from the agent’s actions, and negative values representing undesirable
characteristics. Since the purpose of the high-level controller is to minimize the lat-
eral deviation of the robot, the obvious negative characteristic that can be included
in the reward at each timestep is the amount of lateral deviation devy. As lateral
deviation is undesirable in either direction, the negative of the absolute lateral de-
viation (in meters) was included in the reward (reward = −devabsy = −abs(devy)).
In addition to this, it is also imperative that the agent learns that a fall during
the walk must be avoided. Hence a large negative reward of -100 was included in
the reward if the robot fell down. However, when this reward signal was used for
training, the trained agent prevented any kind of forward movement by keeping
the gain suppression factors Φl and Φr close to 1.0 irrespective of the environ-
ment’s state. Since the forward movement was minimal, the lateral deviation was
also minimal and the robot did not fall. As a result, the accumulated reward was
maximized, but the correct behavior did not emerge.

In addition to penalizing the agent for lateral deviation and instability (when
the robot falls), it is equally important to reward it for the forward distance cov-
ered by the robot. This was done by modifying the reward function to reward =
−devabsy + distancex. However, in doing so, another kind of undesirable behavior
was exhibited by the trained agent. In this case, the agent kept its output (Φl

and Φr) close to 0.0 all the time, thereby almost nullifying the effect of the high-

71

Chapter 6. High-level Control

level controller. As a result, the robot’s walk was similar to the case when only
the low-level controller was used, resulting in quite a large lateral deviation along
with moderate forward distance. This happened because, compared to the lateral
deviation, the forward distance was much larger. At every timestep, the difference
of the forward distance and lateral deviation always resulted in a positive reward,
and so the agent completely ignored the lateral deviation.

To rectify this issue, the forward distance and lateral deviation were multiplied
by weights to control their contributions to the reward value. When the reward
was calculated as reward = ζdev(−devabsy) + ζdist(distancex), with ζdev = 1.0 and
ζdist = 0.5, the agent was able to change Φl and Φr according to the state and
minimize the deviation. However, yet another kind of unwanted behavior emerged.
In the initial seconds of its gait, the robot walked more or less straight. After a few
seconds, when it started to deviate, the high-level neural network (agent) would
immediately suppress the forward movement completely by setting Φl and Φr to
1.0. This resulted in the robot facing in a wrong direction and taking only sideways
steps after advancing a little distance in the forward direction.

Figure 6.2: Components used for calculating the reward at any particular timestep. The robot
is initially positioned at the origin of the world frame, facing in the direction of the x-axis. In
the image, the robot has deviated to the left. Symbols are explained in the text.

Finally, to make sure that the robot also faces the correct direction, while at the
same time covering the maximum possible forward distance and minimizing the
lateral deviation, a negative term was included in the reward for the orientation
of the robot’s torso (torsoγ). Thus, the reward at each timestep was calculated as

reward =

{
−100 if the robot falls

ζdev(−devabsy) + ζdist(distancex) + ζγ(−torsoabsγ) otherwise

(6.1)
Here, torsoabsγ = abs(torsoγ) and ζdev, ζdist and ζγ are weights of the respective
terms. The terms for distance and deviation are in meters and the torso angle is in
radians. Since distancex would have the highest contribution, ζdev and ζγ were set
to 1.0 and different values for ζdist were tried out during the training experiments.
Figure 6.2 shows the different components used in the reward calculation.

72

6.1. Problem Formulation

6.1.3 High-Level Controller Training

At each timestep t, the high-level neural network controller needs to produce an
action at ∈ R2, consisting of the gain suppression factors Φl and Φr. As explained in
section 4.3.2, both Φl and Φr are constrained to be in the range [0.0, 1.0]. The state
st ∈ R12, at each timestep, is the 12-element vector [α, β, γ, α̇, β̇, γ̇, x, y, z, ẋ, ẏ, ż], as
discussed in section 6.1.1. Thus, both the state and action spaces for this problem
are continuous and multi-dimensional. The Deep Deterministic Policy Gradient
(DDPG) algorithm, discussed in section 2.4.3, was specially designed to handle
continuous, multi-dimensional state and action spaces, and hence it was chosen for
training the high-level controller.

Critic Network

As DDPG is an actor-critic algorithm, it uses a critic function as an estimator of
the action-value function. The q-values produced by the critic are used to derive
the policy gradient for updating the actor network’s parameters. The mathematical
equations related to the calculation of the policy gradient can be found in section
2.4.3. In the context of the current problem, the actor is the high-level neural
network whose structure has been described in section 4.3.2. Similarly, the critic
function is also implemented as a neural network, as shown in figure 6.3.

Figure 6.3: Critic neural network. Grey circles represent neurons with non-linear activations.
White circles represent the summed output from 2 neurons. Solid arrows represent full con-
nections between adjacent layers. Dashed arrows represent connections with weight=1.

The input to the critic network consists of the state and action retrieved from
the replay buffer (see section 2.4.3). The state vector forms the input to the upper
part of the network, consisting of two consecutive hidden layers of 400 and 300
units respectively (hidden1 and hidden21). The action vector forms the input to
a separate hidden layer hidden22, made up of 300 units. The outputs of hidden21

73

Chapter 6. High-level Control

and hidden22 are merged by summing in a pairwise manner and the result is fed
into another hidden layer hidden3, consisting of 300 units. The final output layer
consists of 2 neurons which produce the q-values. The structures of both the actor
(high-level controller) and the critic networks were based on the network structures
used by Lillicrap et al. [61] for evaluating the DDPG algorithm. As the evaluation
in [61] was carried out on a large number of tasks, including classic reinforcement
learning problems and continuous control problems, the network structures were
considered to be generic enough for the deviation control task in this thesis as well.

Training Process

The DDPG algorithm is listed in section 2.4.3, along with details of the special
features of the algorithm. A simplified pictorial representation of the steps (1©- 7©)
that occur in each iteration, during the training process, is shown in figure 6.4.

In step 1©, the actor network receives the current state st of the robot’s torso
and produces an action at, consisting of [Φl,Φr] (gain suppression factors), that is
to be used to modulate the CPG network. For introducing an exploratory effect
during training, the action at is modified by adding noise terms generated by an
Ornstein-Uhlenbeck process [97]. In this process, a noise term N for an input Φ is
calculated as N = θ(µ− Φ) + σ × r where θ, µ and σ are parameters of the noise
process and r is a random number. The term Φ is then modified as Φ = Φ +N .

In step 2©, the action at (with noise) is performed, by converting Φl and Φl

into the gain factors Ψl and Ψr (using equation 4.4), and then using these values
to modulate the CPG network’s output. As a result, a new state st+1 and a reward
rt are produced. The scalar reward is calculated according to equation 6.1.

The state transition, represented by the tuple (st, at, rt, st+1), is stored in the
replay buffer in step 3©. The replay buffer is a first-in-first-out (FIFO) cache which
is used to break the correlation between data points in a minibatch while updating
the critic network (more details can be found in section 2.4.3).

Next, in step 4©, a random minibatch of N transitions is fetched from the replay
buffer. Since the selection of transitions present in the minibatch is randomly made,
they are not correlated.

The DDPG algorithm makes use of target actor and critic networks for improv-
ing the stability of the training process. The target actor and critic networks are
created by copying the actor and critic networks respectively. Their outputs are
used for producing the target values, which together with the data in the mini-
batch, is used to calculate the loss value. The parameters of the critic network are
then updated by minimizing this loss. These steps are carried out in step 5©.

In step 6©, the actor network is updated, by using the sampled policy gradient
calculated based on the parameters of the critic and actor networks (equation 2.18).

Although the target networks initially have the same weights as the actor and
critic networks, their weights are updated in step 7©, by having them slowly track
the weights of their parent networks using the equation θ′ ← τθ + (1− τ)θ′ where
τ � 1. Here, θ and θ′ represent the parameters of the parent and target networks
respectively (e.g, the actor network is the parent of the target actor network).

74

6.2. Experiments

Figure 6.4: Pictorial description of the DDPG training process in the current context. The
individual steps are explained in the text. The critic network does not receive the current
state and action, but is updated by using the minibatch and the target networks.

6.2 Experiments

For developing the high-level controller, first, the low-level CPG network was con-
structed by using the angle feedback mechanism, because the performance of this
feedback was the best (as discussed in chapter 5). The parameters of the CPG net-
work were initialized from the chromosome obtained in run 3 (AF3) of the angle
feedback optimization process. The values of the different parameters, that were
used to initialize the CPG network, are shown in table 6.1 (reproduced from table
5.4). The internal parameters of all the CPGs were set according to table 4.3. The

75

Chapter 6. High-level Control

initialization of connections between the oscillators was done in the same way as
described in chapter 5 (refer to figure 4.2). The reinforcement learning experiments
were conducted on machine M1 (refer to section 5.1.1 for descriptions of machines).

Table 6.1: Chromosome AF3, which is used for initializing the CPG network.

kf GAIN1 GAIN2 GAIN3 GAIN4 GAIN5 GAIN6 BIAS1 BIAS2 BIAS3 BIAS4 k

0.3178 0.3777 0.0234 0.0132 0.4567 0.2019 0.3309 -0.0519 0.0963 -0.1156 0.4814 1.5364

6.2.1 DDPG Hyperparameters

The hyperparameters of the DDPG setup, used for training the high-level con-
troller, were almost identical to those used in [61]. An Adam optimizer [55] was
used for learning the parameters of both the actor and critic networks. The learning
rates were 10−4 and 10−3 for the actor and critic respectively. For the critic net-
work, L2 regularization was used with a weight decay of 10−2. The ReLu activation
function was used in all the hidden layer neurons. The neurons in the final output
layer of the actor network had sigmoid activations to bound the output between
0.0 and 1.0. The neurons in the final layer of the critic had linear activations. The
final layer weights and biases of the actor and critic networks were initialized from
a uniform distribution [−3 × 10−3, 3 × 10−3], so that the initial outputs of both
the networks would be close to zero. The weights and biases of all the other layers
were initialized from the uniform distribution [− 1√

f
, 1√

f
], where f was the fan-in

of the layer. A minibatch size of 64 was used for the training.
For calculating the loss, which was used for updating the parameters of the

critic network, the expected long-term reward needed to be calculated (equation
2.17). In this calculation, a discount factor of γ = 0.99 was used. The size of
the replay buffer was set to a maximum of 105 entries. For updating the target
networks, a rate of τ = 10−3 was used. The parameters of the Ornstein-Uhlenbeck
process [97] were set as µ = 0.0, θ = 0.15 and σ = 0.2.

6.2.2 Setup

Apart from the hyperparameters which are specific to the DDPG algorithm, a
few extra hyperparameters have been used in the setup described in figure 6.4.
The first three hyperparameters, ζdev, ζdist and ζγ, are used in the calculation of
the reward signal (equation 6.1). The fourth hyperparameter is the lowest gain
factor ξ, which controls the amount of influence the high-level controller has on
the low-level controller. As discussed in section 4.3.2, when ξ ≈ 1.0, the high-
level controller has minimal influence and when ξ ≈ 0.0, the high-level controller
has maximal influence on the low-level controller. To train the high-level neural
network, different sets of values of these hyperparameters were tried out. This
resulted in four different trained models from four different setups, Setup1−Setup4.
The values of the hyperparameters for the different setups are shown in table 6.2.

76

6.2. Experiments

The values of these hyperparameters were decided empirically. The performance of
the different trained models was then objectively compared in a separate testing
phase. In addition to this, a control setup, Setupcontrol, consisting of only the low-
level CPG network without any high-level controller, was also tested to see the
difference that the high-level controller makes to the robot’s performance.

Table 6.2: Reinforcement learning setups with different hyperparameters.

Setup ζdev ζdist ζγ ξ

Setup1 1.0 0.5 1.0 0.1

Setup2 1.0 0.5 1.0 0.4

Setup3 1.0 0.3 1.0 0.1

Setup4 1.0 0.3 1.0 0.4

Setupcontrol No high-level control

6.2.3 Training Results

For each of the setups with high-level control (Setup1−Setup4), the high-level neu-
ral network was trained for 1000 episodes using the DDPG algorithm, as described
in figure 6.4. At the start of each episode, the robot was placed at the origin of the
world frame, facing the direction of the world’s x-axis. The start of the walk was
done in the same way as in the experiments in chapter 5. Each episode lasted for 40
seconds. If the robot fell down before this time limit, the episode was terminated.
Reward calculation and weight updates were done once every second to allow the
actor’s output to take effect. In these training experiments, a higher time limit
of 40s was used (compared to 20s in chapter 5), to allow the high-level controller
enough time to change the walking direction.

During the training process, the progress of each trained model was evaluated
periodically. This was done by using the high-level neural network (actor) to con-
trol the deviation for one episode after every 10th training episode. During this
test episode, the exploratory noise was switched off and parameter updates were
not made. At the end of the episode, the reward was calculated, along with the
individual components which were used to calculate the reward (forward distance,
lateral deviation and torso-γ angle).

Figure 6.5 shows the training progress for Setup1. The reward plot shows a large
number of troughs (large negative values) in the initial episodes. Since a reward of
-100 was given when the robot fell down, the reward plot indicates that initially, the
system was quite unstable. However, in later episodes, it can be seen that the high-
level controller learned to be more stable, since large negative rewards do not occur
in the later episodes. The plot for distance and deviation shows that in the initial
episodes (till about episode 450), there was a lot of variability, but most of the time
the robot could reach a distance of around 4m. However, from episode 450 to 750
(approximately), both the distance and deviation graphs show very less variability.

77

Chapter 6. High-level Control

The distance during these episodes is quite low (below 2m) and so the deviation is
also low. After around the 750th episode, the model’s behavior changed again, and
the robot’s forward motion was less constrained. The distance improved while the
deviation stayed around the 1m mark. The plot for torso orientation shows more
or less stable behavior from around episode 500 onwards.

−100

−50

0

50

R
e
w
a
rd

−6
−4
−2
0
2
4
6

D
e
v
ia
ti
o
n
/

D
is
ta
n
ce
 (
m
)

0 200 400 600 800 1000
Episode

−2

−1

0

1

2

T
o
rs
o
 o
ri
e
n
ta
ti
o
n

(r
a
d
ia
n
s)

Reward Deviation Distance Torso orientation

Figure 6.5: Training progress for Setup1 in 1000 episodes. (Top) Reward, (middle) distance
and deviation, (bottom) torso orientation angle about the world z-axis.

The training progress of the high-level controller for Setup2 is shown in figure
6.6. The plot for reward shows that the model for Setup2 was more stable than
the model for Setup1 since rewards lesser or equal to -100 occur less frequently.
Unlike the previous setup, there is no long period where the distance covered shows
extremely low values. In all the three plots (reward, distance-deviation, and torso
orientation), the performance shows variability. However, compared to the distance
and deviation achieved by the trained model in the initial episodes, in the final
few episodes, the performance is better, because the distance stays between the 4m
and 6m mark and the deviation stays between 2m and -2m. The deviation, relative
to the forward distance, is still quite significant, even near the 1000th episode.

The training progress of the model using Setup3 is demonstrated in figure
6.7. This model shows much more promising results with respect to all the four
parameters that were measured during training (reward, distance, deviation and
torso orientation). The plot for reward shows a stable behavior from episode 600
onwards. Every time the trained model was tested after episode 600, the distance
achieved was around 6m while the deviation stayed close to 0. The torso orientation
also remained near the ideal position of 0 radians, from episode 600 till the end.

78

6.2. Experiments

−100

−50

0

50

R
e
w
a
rd

−6
−4
−2
0
2
4
6

D
e
v
ia
ti
o
n
/

D
is
ta
n
ce
 (
m
)

0 200 400 600 800 1000
Episode

−2

−1

0

1

2

T
o
rs
o
 o
ri
e
n
ta
ti
o
n

(r
a
d
ia
n
s)

Reward Deviation Distance Torso orientation

Figure 6.6: Training progress for Setup2 in 1000 episodes. (Top) Reward, (middle) distance
and deviation, (bottom) torso orientation angle about the world z-axis.

−100

−50

0

50

R
e
w
a
rd

−6
−4
−2
0
2
4
6

D
e
v
ia
ti
o
n
/

D
is
ta
n
ce
 (
m
)

0 200 400 600 800 1000
Episode

−2

−1

0

1

2

T
o
rs
o
 o
ri
e
n
ta
ti
o
n

(r
a
d
ia
n
s)

Reward Deviation Distance Torso orientation

Figure 6.7: Training progress for Setup3 in 1000 episodes. (Top) Reward, (middle) distance
and deviation, (bottom) torso orientation angle about the world z-axis.

79

Chapter 6. High-level Control

Figure 6.8 shows the performance of the model using Setup4 during training.
Towards the 1000th episode, this model was also able to achieve forward distances
of around 6m. However, there was a lot of variability in the model’s performance,
as can be seen from the plots. Even in the final 200 episodes, the robot fell down
twice, as can be inferred from the large negative rewards. The models of none of the
previous setups show this kind of instability towards the end of the training. The
plot for deviation varies around 0 but does not settle down. The torso orientation
also shows significant variations, though it does reach near 0 in quite a few episodes.

−100

−50

0

50

R
e
w
a
rd

−6
−4
−2
0
2
4
6

D
e
v
ia
ti
o
n
/

D
is
ta
n
ce
 (
m
)

0 200 400 600 800 1000
Episode

−2

−1

0

1

2

T
o
rs
o
 o
ri
e
n
ta
ti
o
n

(r
a
d
ia
n
s)

Reward Deviation Distance Torso orientation

Figure 6.8: Training progress for Setup4 in 1000 episodes. (Top) Reward, (middle) distance
and deviation, (bottom) torso orientation angle about the world z-axis.

6.2.4 Test Results

Once the training was complete for the four setups, the trained high-level neural
network for each setup was tested for 100 episodes, each of 40s duration. The dis-
tance, deviation and torso-γ orientation were measured at the end of each episode.
The control setup was also put through the same test. During the test phase, the
high-level network’s behavior was completely deterministic, since the exploratory
noise was only used during the training phase.

The performance of the four trained models and the control setup are shown
using boxplots in figures 6.9-6.11. The trained models are depicted with blue boxes
and the control setup is shown in red. The other symbols in the plots have the
same meanings as the boxplots used in section 5.2.2. The median values and inter-
quartile range (IQR) for each measurement of each setup are shown in table 6.3.

80

6.2. Experiments

Instead of the mean and standard deviation, the median and IQR were used to
analyze the performance of the models because these measures are resistant to
outliers.

Table 6.3: Median and inter-quartile Range (IQR) values for distance (m), deviation (m) and
torso orientation (rad) for the four trained models and the control setup in 100 test episodes.

Median IQR

Setup Distance Deviation Torso orientation Distance Deviation Torso orientation

Setupcontrol 4.313 3.560 1.605 1.117 0.694 0.318

Setup1 4.689 1.022 0.934 1.354 0.438 0.148

Setup2 4.252 1.878 1.326 0.717 0.258 0.180

Setup3 6.044 -0.774 0.011 0.331 0.586 0.183

Setup4 6.071 -0.045 0.225 0.614 1.484 0.607

It can be seen from figure 6.9, that the distance walked by the robot, when
the trained models for Setup3 and Setup4 were used, is much higher than all the
other setups. For both these setups, the median distance covered in 40s for 100 test
episodes is above 6m. Although the median distance for Setup4 (6.071m) is slightly
higher than the distance for Setup3 (6.044m), Setup4 shows more variability in the
results, as can be judged from its IQR value. This variability in Setup4’s perfor-
mance was also visible during the training process (figure 6.8). The performance
of the trained models of the other setups is slightly better than the control setup.
For Setup1, the median distance is higher than Setupcontrol, but the variability of
the results is higher. The median distance for Setup2 is slightly less than that for
Setupcontrol, but the IQR is lower.

−1 0 1 2 3 4 5 6 7
Distance after 40s (m)

Setup4

Setup3

Setup2

Setup1

Setupcontrol

D
if
fe
re
n
t
se
tu
p
s

Figure 6.9: Results for distance in 100 test episodes for each setup.

Figure 6.10 shows the results for deviation. Since the primary task of the high-
level controller is to minimize the deviation of the robot, the effect of the high-level
controller can be judged from this figure. The deviation for the trained models of
all the setups is significantly lower than the deviation for Setupcontrol. Without any
form of high-level control, the robot tends to turn strongly towards its left. This
can be seen from the median deviation of 3.56m for Setupcontrol (table 6.3). Thus,

81

Chapter 6. High-level Control

at the end of 40s, the robot walking without high-level control deviates almost as
much as it walks forward. When high-level control is used, this deviation is sig-
nificantly lowered and consequently, the forward distance also improves. The best
performance is achieved by Setup3 and Setup4, for which the median deviations are
-0.774m and -0.045m respectively. The negative median deviations indicate that
for these two setups, the high-level controller tries to compensate for the tendency
of the robot to turn left, by pushing it towards the right. The median deviation
for Setup4 is very close to 0, but as with the distance, the variability in deviation
is also high, with an IQR of 1.484m. Setup1 and Setup2’s performance is much
better than Setupcontrol but the deviation control is not as strong as for Setup3
and Setup4.

−3 −2 −1 0 1 2 3 4 5
Deviation after 40s (m)

Setup4

Setup3

Setup2

Setup1

Setupcontrol

D
if
fe
re
n
t
se
tu
p
s

Figure 6.10: Results for deviation in 100 test episodes for each setup.

The orientation of the robot’s torso at the end of the walk (about the world
z-axis) indicates how much the robot has turned. The robot starts its walk in an
orientation where its x-axis coincides with the x-axis of the world frame, and hence
the orientation is 0 radians. For a perfectly straight walk, the robot should still be
facing in exactly the same direction at each step. Hence, in the ideal case, the final
orientation should also be 0 radians.

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
Torso Orientation after 40s (radians)

Setup4

Setup3

Setup2

Setup1

Setupcontrol

D
if
fe
re
n
t
se

tu
p
s

Figure 6.11: Results for torso orientation in 100 test episodes for each setup.

82

6.2. Experiments

Figure 6.11 shows the torso orientations achieved by the different setups. Here
too, the effect of high-level control is evident. The median orientations for the
trained models of all the setups are better than that for Setupcontrol. Among the
different setups, Setup3’s median orientation is nearly 0 (0.011 radians) while the
variability is also not very high (IQR=0.183 radians). The next best performance
is by Setup4 with a median orientation of 0.225 radians. However, the IQR is
very high (0.607 radians). Similar to the previous results, for torso orientation, the
performance of Setup1 and Setup2 is also inferior to that of Setup3 and Setup4.

Figure 6.12 shows the robot’s path after 40s, for the different setups (3 examples
for each setup). The best deviation control is achieved by Setup3 and Setup4.

Figure 6.12: Top-down view of the robot’s path. Each column contains images of three
examples for a particular setup.

83

Chapter 6. High-level Control

6.3 Discussion

The results presented in section 6.2.4 show that the models for Setup3 and Setup4
performed the best in the evaluation tests. These models consistently achieved
the best scores for all the parameters which were measured (distance, deviation
and torso orientation). The difference with the results of the other setups is also
visible in the boxplots. From figure 6.12, it can be seen that the paths taken by the
robot for Setup3 and Setup4 (images in the two right-most columns) were much
straighter than the other setups. When the median values of the parameters are
considered, the performances of Setup3 and Setup4 are quite close. However, in all
the tests, Setup4 showed much greater variability in the results. This variability
was also present during the training process, as shown in figure 6.8. Hence, overall
the best high-level control was achieved by the model for Setup3.

Among the different setups, there is a clear distinction between the performance
of (Setup1, Setup2) and (Setup3, Setup4). For all the parameters, the results for
Setup1 and Setup2 are inferior to that of Setup3 and Setup4. The main difference
between these sets of setups is the value of the hyperparameter ζdist (weight of the
distance term in the reward calculation in equation 6.1). For Setup1 and Setup2
ζdist was set to 0.5, while for Setup3 and Setup4, ζdist was set to 0.3. The values of
ζdev and ζγ were set to 1.0 for all the setups. A higher value of ζdist=0.5 in the reward
calculation during training gave more importance to the distance term. Thus, to
a certain extent, the negative contributions of the deviation and orientation terms
were overridden by the distance term. When a lower value of ζdist=0.3 was used
for Setup3 and Setup4, the negative effects of deviation and orientation were more
prominent in the reward calculation and the high-level controller learned to give
more importance to these terms while deciding its actions.

The difference between the two best setups was the value of the lowest gain fac-
tor ξ. For Setup3, ξ was set to 0.1 and for Setup4, it was set to 0.4. Thus for Setup3,
the high-level controller could exert more influence in selectively suppressing the
forward motion of a leg. This factor, combined with a nice balance between the
different terms in the reward calculation, possibly led to the high-level controller
for Setup3 producing good results with less variability.

However, even for Setup3, the high-level controller could not produce com-
pletely straight paths. The mechanism for controlling the deviation by selectively
suppressing the forward motion of a leg is possibly not adequate for achieving per-
fect control. This mechanism may be improved by letting the high-level controller
also affect additional joints such as those responsible for the sideways swaying mo-
tion of the robot. The promising aspect of the results presented in this chapter
is that, even with a limited form of high-level control, the neural network could
be trained to perform fairly well at minimizing the lateral deviation. Most impor-
tantly, these results indicate that it is possible to achieve stable bipedal locomotion
by using a high-level neural network controller to improve the performance of a
low-level CPG network. Using the same approach, more complex forms of high-level
control, such as maintaining balance, can also be attempted in the future.

84

Chapter 7

Conclusion

This thesis presented a biologically-inspired, hierarchical controller for bipedal lo-
comotion. Using this controller, stable bipedal locomotion was achieved for the
NICO robot in a simulated environment. This concluding chapter begins with a
brief summary of the individual steps that were taken to develop the walking con-
troller. An overview, of the results that were obtained, is presented in the context
of the research questions proposed in the beginning of the thesis. The contribu-
tions of this work are also discussed. Finally, some suggestions are presented for
improving the proposed controller and for implementing it on a physical robot.

7.1 Summary

The proposed bipedal locomotion controller consists of two parts arranged in a hi-
erarchy. At the lower level, a network of central pattern generators (CPGs) creates
the rhythmic patterns that are required to control the individual joints for walk-
ing. This CPG network was originally proposed by Cristiano et al. [11]. Different
feedback mechanisms for modulating the output of the CPG network have been
tested and the resulting robot gaits have been analyzed. In addition to the phase
reset feedback mechanism proposed in [11], another kind of feedback called angle
feedback was also tested. The parameters of the CPG network were optimized using
a genetic algorithm.

After testing the CPG network with different feedback mechanisms, the feed-
back type, with the best relative performance, was chosen and a high-level neural
network controller was added on top of it. The neural network’s role was to monitor
the position and orientation of the robot’s torso and to adjust certain parameters
in the CPG network so that the robot walks in a straight line. The high-level
controller was trained using reinforcement learning. Different sets of values for its
hyperparameters were tested to find the best combination.

The primary research question (section 1.2) that this thesis aimed to answer
was whether stable bipedal locomotion could be achieved by using a hierarchy of
controllers, where a CPG network would directly control the robot’s joints and a
neural network would modulate the CPG network’s output. The results presented

85

Chapter 7. Conclusion

in this thesis show that this is possible. In chapter 6 it was shown that the high-
level controller was able to modulate the CPG network’s output, and was able to
minimize the lateral deviation during walking. The robot was also able to walk a
longer distance. To achieve the desired objective, the design of the reward function
in the reinforcement learning setup was crucial, as it provided the means of ob-
jectively judging the robot’s walk. With a properly designed reward function and
carefully selected hyperparameters, it was possible to train the neural network to
achieve its stated objective of minimizing the lateral deviation. However, for the
high-level controller to function properly, the role of the CPG network, augmented
by a proper feedback mechanism, was also equally important.

The secondary research question (section 1.2), investigated in this thesis, was
related to the effectiveness of the low-level CPG feedback mechanisms. The analysis
of different feedback mechanisms in chapter 5 revealed that the angle feedback
mechanism definitely enabled the CPG network to improve the robot’s gait. On
machine M1, the performance of the phase reset mechanism was marginally better
than the open loop configuration (with no feedback pathways) and the performance
of the angle feedback mechanism was found to be the best.

7.2 Contributions

The concept of using central pattern generators to achieve bipedal locomotion in
robots is not new. In the past, many studies [11, 12, 79] have used CPGs, such as
the Matsuoka oscillator or the Hopf oscillator, to generate the rhythmic patterns
for walking. However, most of the existing approaches for CPG-based bipedal lo-
comotion concentrate on the mechanism and behavior of the CPGs only. The main
contribution of this thesis is the development of a controller for bipedal locomotion
by combining existing knowledge about CPGs with a novel high-level mechanism
for further improving the robot’s gait. A recent advancement in reinforcement
learning - the Deep Deterministic Policy Gradient (DDPG) algorithm - has been
used to train the high-level neural network controller.

The usage of a neural network as a high-level controller makes it relatively easy
to extend the functionality of the controller to achieve other objectives. This can
be done by modifying the design of the neural network in order to use different
inputs and outputs and then training it by using a reward function designed to suit
the new objective. The hierarchical, modular structure of the walking controller
also makes it possible to try out other types, or configurations of CPGs.

Although the NICO robot has been used in this thesis, the developed con-
troller is independent of any particular robot model, since it does not rely on
information about the kinematics or dynamics of a particular robot. Hence, con-
ceptually, the same controller can be trained to control and optimize the gait of
other position-controlled humanoid robots with a similar morphological structure.
However, for both the optimization of the low-level CPG network and the training
of the high-level neural network controller, a large number of walking trials need
to be performed. This is only possible if a simulated model of the robot is available.

86

7.3. Future Work

Another contribution of this thesis is the analysis of the effects of different
low-level feedback mechanisms that are used with the CPG network. Feedback
mechanisms enable the CPGs to adapt their rhythmic patterns to the natural
dynamics of the robot. However, in the literature, most CPG-based methods use
only a single type of feedback. In this thesis, the same CPG network has been
tested with two kinds of feedback and without any feedback, and the resulting
gaits have been compared based on measurable parameters.

7.3 Future Work

The proposed hierarchical controller has been able to produce a stable gait in
simulation and has also been able to control the lateral deviation in spite of the
presence of systematic errors and slippage which make the robot turn. However,
the effectiveness of this controller can be further improved.

Currently, the mechanism for making the robot change its direction relies on
selectively suppressing the forward motion of the legs, by altering the gains of
the sagittal hip joints. While this strategy does result in the robot turning in
the desired direction, the effect is not instantaneous. A few seconds are needed
for the turning to occur. This mechanism may be improved by also utilizing the
joints which produce movement in the frontal or transverse1 planes. However, this
would increase the complexity of the learning process and may lead to lowering the
robot’s stability in the initial phase of training. Hence, a lot more episodes may be
necessary for teaching the high-level controller to behave in the desired manner.

The set of gains and biases, that constitute the parameters of the low-level
CPG network, have been determined through an optimization process. Similarly,
the weights associated with the angle feedback pathways have also been determined
through optimization. Instead of using fixed values of these feedback weights, it
would be interesting to employ a neural network to alter these weights based on
sensory information. The phase reset mechanism is also static in the sense that the
phase of the pacemaker oscillator is reset whenever the robot’s right foot strikes the
ground. Here too, there is a scope of using a trainable neural network which would
determine whether resetting the phase is necessary based on how synchronized
the robot’s movements are with the rhythms of the CPG network. The feedback
mechanisms’ purpose is to adapt the CPG network’s oscillatory output to the
dynamics of the robot. In situations where the robot walks on undulating surfaces
or transitions from a flat surface to a sloping one, a trainable element within the
CPG feedback mechanism would encourage better adaptation. Instead of using
angle feedback and phase reset separately, the two feedback mechanisms may also
be combined together in the same CPG network to test whether multiple types of
feedback working together provide any additional benefits.

In this thesis, the high-level controller has only been used for controlling the
lateral deviation of the robot. However, using the same general framework, more

1The transverse or axial plane divides the body into the head and tail portions.

87

Chapter 7. Conclusion

diverse forms of high-level control can be achieved. The scope of this work was
limited to walking on flat surfaces and so balance control was not handled explicitly.
If the controller is to be trained to control walking on sloped surfaces, then it needs
to be given a way of altering the tilt of the robot’s body to adjust to a slope. At
present, the neural network’s outputs are used to modify the gains of the sagittal
hip joints. Additional outputs from the same neural network can be used to change
the bias positions of the hip joints. This would enable the robot to tilt its body
forward or backward and thereby adjust its posture to prevent a fall. Of course, the
training scenario would also need to be modified. The training experiments would
need to be conducted on different kinds of sloped surfaces. For deciding how much
and in which direction to tilt the body, information from the foot sensors can be
used to track the position of the ZMP. This approach has been suggested in [74],
where the balancing of a robot with a flexible vertebral column was controlled in
a standing position.

The next logical step, after the simulation experiments which have been car-
ried out in this thesis, would be to implement the hierarchical walking controller
on the physical NICO robot. Although the general control framework can be trans-
ferred as-is to the real robot, some modifications related to the acquiring of sensory
information will be necessary. The phase reset feedback mechanism, used in the
low-level CPG, uses the force sensors for detecting ground contact. Once the phys-
ical NICO is equipped with force sensors, this information will be readily available.
The current joint angles, needed by the angle feedback mechanism, can be obtained
from the encoders available in the robot’s joints. The high-level controller needs
information about the state of the robot’s torso. This can be obtained by utilizing
sensors such as the IMU (Inertial Measurement Unit) or the robot’s camera. For
handling noise inherent in sensory readings in a physical environment, filtering
mechanisms such as the particle filter can be used. In addition to these modifica-
tions, a more accurate simulation model is also desirable, since this will help to
make the CPG network parameters, optimized in simulation, more suitable for the
physical robot as well. The same approach can also be tested on other humanoid
robots.

Considering the complex interplay between the robot’s own movements and its
interaction with the environment, achieving stable and robust bipedal locomotion
is a difficult task. Given the limitations in robotic hardware and our incomplete
understanding of the exact mechanisms that enable us to walk with so much ef-
ficiency, perfectly emulating the mechanism in animals and humans is difficult.
However, even with the limited resources at our disposal, drawing cues from na-
ture can help us to design artificially intelligent systems that can inherit some of
the desirable characteristics of their biological counterparts. Biologically-inspired
techniques, such as the one proposed in this thesis, can be improved upon by uti-
lizing the latest developments in the field of artificial intelligence. It can be hoped,
that in the days to come, such techniques will enable humanoid robots to walk with
the same graceful agility that is a characteristic of our own walking movements.

88

Appendix A

Low-level Controller Results (M2)

The genetic algorithm and gait evaluation results from machine M2 are presented
here. As explained in chapter 5, these results are given less emphasis due to the
lower configuration of M2. For all the experiments, apart from the difference of
the configurations of M1 and M2, all other aspects of the setup were the same.
The axis ranges in all the plots have been kept similar to the plots in chapter 5.

A.1 Genetic Algorithm Results

The results of the genetic algorithm experiments are presented in figures A.1-A.3.
Compared to the results from M1 (figures 5.4-5.6), all the evolved chromosomes
in M2 show a lower fitness and a much lower distance. However, similar to the
results on M1, angle feedback achieved the highest forward distance on M2 also.

0

4

8

12

R
u
n
 1

 F
it
n
e
ss

0

4

8

12

R
u
n
 2

 F
it
n
e
ss

5 10 15 20 25 30
Generation

0

4

8

12

R
u
n
 3

 F
it
n
e
ss

Max. Fitness Avg. Fitness

0

1

2

3

4

D
is
ta
n
ce

 (
m
)

0

1

2

3

4

D
is
ta
n
ce

 (
m
)

5 10 15 20 25 30
Generation

0

1

2

3

4

D
is
ta
n
ce

 (
m
)

Distance

Figure A.1: Open loop results (M2). Left column: Fitness vs. generation, right column:
distance vs. generation. Top to bottom: Three separate runs of the genetic algorithm.

89

Appendix A. Low-level Controller Results (M2)

0

4

8

12

R
u
n
 1

 F
it
n
e
ss

0

4

8

12

R
u
n
 2

 F
it
n
e
ss

5 10 15 20 25 30
Generation

0

4

8

12

R
u
n
 3

 F
it
n
e
ss

Max. Fitness Avg. Fitness

0

1

2

3

4

D
is
ta
n
ce

 (
m
)

0

1

2

3

4

D
is
ta
n
ce

 (
m
)

5 10 15 20 25 30
Generation

0

1

2

3

4

D
is
ta
n
ce

 (
m
)

Distance

Figure A.2: Angle feedback results (M2). Left column: Fitness vs. generation, right column:
distance vs. generation. Top to bottom: Three separate runs of the genetic algorithm.

0

4

8

12

R
u
n
 1

 F
it
n
e
ss

0

4

8

12

R
u
n
 2

 F
it
n
e
ss

5 10 15 20 25 30
Generation

0

4

8

12

R
u
n
 3

 F
it
n
e
ss

Max. Fitness Avg. Fitness

0

1

2

3

4

D
is
ta
n
ce

 (
m
)

0

1

2

3

4

D
is
ta
n
ce

 (
m
)

5 10 15 20 25 30
Generation

0

1

2

3

4

D
is
ta
n
ce

 (
m
)

Distance

Figure A.3: Phase reset results (M2). Left column: Fitness vs. generation, right column:
distance vs. generation. Top to bottom: Three separate runs of the genetic algorithm.

Table A.1: Best performance in the 30th generation on M2.

Open loop Angle feedback Phase reset

run 1 run 2 run 3 run 1 run 2 run 3 run 1 run 2 run 3

Best distance (m) 1.57 1.67 0.97 1.93 2.06 1.69 1.2 0.75 0.81

Best time (s) 20 20 20 20 20 20 20 20 20

Best fitness 11.57 11.67 10.97 11.93 12.06 11.69 11.2 10.75 10.81

90

Appendix A. Low-level Controller Results (M2)

The best results achieved in the last generation for the different setups on
machine M2 are listed in table A.1. The distances achieved, when angle feedback
was used, was higher than that for all the other setups. However, the overall per-
formance of phase reset was worse than for open loop. The chromosomes which
evolved on machine M2 (for all the setups) resulted in gaits which were slower
(lower frequency of leg movements) than the corresponding gaits which evolved on
machine M1. Hence the distance walked by the robot was also much lower. The
lower configuration and simulation frame rate of machine M2 seemed to favor the
evolution of slower gaits. The 9 chromosomes (for runs 1, 2 and 3 for the 3 setups)
found by the genetic algorithm on M2 are shown in table A.2.

Table A.2: CPG network parameters found by the genetic algorithm (genotype of the chro-
mosomes) on M2; BIASi is in radians; kf , GAINi and k do not have any units.

Open loop Angle feedback Phase reset

run 1 run 2 run 3 run 1 run 2 run 3 run 1 run 2 run 3

kf 0.5884 0.5486 0.5429 0.7462 0.6450 0.6642 0.5146 0.3780 0.4563

GAIN1 0.5370 0.7970 0.9371 0.8423 0.7693 0.5257 0.7455 0.8206 0.8787

GAIN2 0.0913 0.0389 0.0442 0.0481 0.0193 0.0831 0.0257 0.1437 0.0195

GAIN3 0.0253 0.0588 0.3404 0.1321 0.0941 0.0112 0.1112 0.0840 0.2469

GAIN4 0.3494 0.4611 0.3787 0.6911 0.4993 0.5196 0.4533 0.3680 0.3530

GAIN5 0.1500 0.3213 0.2000 0.5980 0.3632 0.7228 0.3676 0.7905 0.6167

GAIN6 0.9377 0.3781 0.2638 0.2017 0.4918 0.8231 0.2105 0.4384 0.5989

BIAS1 -0.3100 -0.3094 -0.5352 -0.1162 -0.3334 -0.0575 -0.3906 -0.3562 -0.1184

BIAS2 0.2827 0.2508 0.4412 0.4894 0.4633 0.2024 0.4887 0.3578 0.4879

BIAS3 -0.0826 -0.0788 -0.0820 -0.3117 -0.2125 -0.1452 -0.2133 -0.1089 -0.2604

BIAS4 0.2218 0.2368 0.3757 0.5584 0.0182 0.3216 0.1151 0.2433 0.0676

k NA NA NA -0.3420 -0.1783 -0.7916 NA NA NA

A.2 Gait Analysis Results

The 9 chromosomes which were found by the genetic algorithm were named OL1,
OL2 and OL3 (for runs 1, 2 and 3 of open loop), AF1, AF2 and AF3 (for runs
1, 2 and 3 of angle feedback), and PR1, PR2 and PR3 (for runs 1, 2 and 3 of
phase reset). Each of these chromosomes was tested 100 times by constructing the
CPG network using the values in the chromosomes and letting the robot walk for
20s each time. During the robot’s walk, certain parameters were measured. The
setup and procedure of evaluating the different gaits were the same as on machine
M1. A detailed description of the experimental setup and the parameters used for
evaluation can be found in section 5.2.1. The eight different evaluation parameters
are described in table 5.5. Median values of the gait evaluation parameters on
machine M2 are listed in table A.3. The values of the different parameters are
plotted using boxplots in figures A.4-A.9. The symbols in the plots have the same
meanings as described in section 5.2.2.

91

Appendix A. Low-level Controller Results (M2)

Table A.3: Median values of the gait evaluation parameters for 100 trials on M2.

Parameter
Open loop Angle feedback Phase reset

OL1 OL2 OL3 AF1 AF2 AF3 PR1 PR2 PR3

f 11.363 11.401 5.894 11.56 11.287 11.386 11.288 5.971 10.929

tup (s) 20.00 20.00 11.845 20.00 20.00 20.00 20.00 12.275 20.00

distancex (m) 1.368 1.405 -0.029 1.636 1.372 1.391 1.294 -0.164 0.934

devabsy (m) 0.128 0.148 0.179 0.223 0.276 0.175 0.229 0.183 0.152

strideavg (m) 0.051 0.053 0.031 0.09 0.083 0.071 0.053 0.02 0.034

torsovarα (rad2) 0.003 0.003 0.005 0.008 0.005 0.005 0.003 0.005 0.003

torsovarβ (rad2) 0.001 0.002 0.034 0.003 0.005 0.001 0.001 0.033 0.002

torsovarγ (rad2) 0.062 0.033 0.017 0.051 0.018 0.033 0.009 0.025 0.044

The fitnesses scores (f) achieved by the angle feedback chromosomes are similar.
Chromosome AF1 achieved the highest median fitness of 11.56. For both open
loop and phase reset, there was one chromosome which did not result in a stable
walk. This can be seen in the low fitness score achieved by the chromosomes OL3

(median f = 5.894) and PR2 (median f = 5.971). The fitness scores of the different
chromosomes are plotted in figure A.4.

0 2 4 6 8 10 12 14

Fitness score

OL1

OL2

OL3

AF1

AF2

AF3

PR1

PR2

PR3

C
h
ro
m
o
so
m
e
s
o
f
se
tu
p
s

Figure A.4: Fitness f for 100 trials on M2.

The forward distances (distancex) and absolute lateral deviations (devabsy) of
the robot during the gait evaluation tests are plotted in figure A.5. The highest
median distance of 1.636m was achieved by AF1. The performance of the other
angle feedback chromosomes was also similar. For the chromosome OL3 of open loop
and chromosome PR2 of phase reset, the median distance is negative. This shows
that for these chromosomes, in most cases, the robot was unstable and fell down
quite early. During a trial, if the forward distance was not much, and the robot
fell down backward, its final distance was negative. Overall, the median distance
scores of phase reset are worse than those of open loop, as shown in table A.3. From
these results, it appears that the phase reset mechanism was not effective in the
low-frequency gaits that evolved on machine M2. The absolute deviation (figure

92

Appendix A. Low-level Controller Results (M2)

A.5-right) shows similar values for all the chromosomes. Since the robot could not
walk a long distance, the lateral deviation was also not very significant. Compared
to the results obtained on machine M1 (figure 5.8), the distances on M2 are much
lower.

−1 0 1 2 3 4

Forward distance (m)

OL1

OL2

OL3

AF1

AF2

AF3

PR1

PR2

PR3

C
h
ro
m
o
so
m
e
s
o
f
se
tu
p
s

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Absolute Y-deviation (m)

OL1

OL2

OL3

AF1

AF2

AF3

PR1

PR2

PR3

Figure A.5: (left) The forward distance distancex and (right) the absolute lateral deviation
devabsy for 100 trials on M2.

The average stride lengths of the robot for the different chromosomes are shown
in figure A.6. There is a clear distinction between the average stride lengths of the
angle feedback chromosomes and the stride lengths of the other chromosomes. The
angle feedback chromosomes achieved longer stride lengths. The values for angle
feedback on machine M2 are also somewhat similar to the values on machine M1
(figure 5.9).

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Average stride length (m)

OL1

OL2

OL3

AF1

AF2

AF3

PR1

PR2

PR3

C
h
ro
m
o
so

m
e
s
o
f
se

tu
p
s

Figure A.6: Average length of stride strideavg for 100 trials on M2.

The time for which the robot was upright, during the evaluation of the different
chromosomes, is shown in figure A.7. Apart from OL3 and PR2, all the other
chromosomes were able to produce stable gaits, where the median value of tup was
equal to 20s (the maximum value possible).

93

Appendix A. Low-level Controller Results (M2)

0 5 10 15 20

Up time (s)

OL1

OL2

OL3

AF1

AF2

AF3

PR1

PR2

PR3

C
h
ro
m
o
so
m
e
s
o
f
se
tu
p
s

Figure A.7: Up time tup for 100 trials on M2. When Q1=Q3=median, the boxes have zero
width.

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Variance of torsoα (rad2)

OL1

OL2

OL3

AF1

AF2

AF3

PR1

PR2

PR3

C
h
ro
m
o
so

m
e
s
o
f
se

tu
p
s

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Variance of torsoβ (rad2)

OL1

OL2

OL3

AF1

AF2

AF3

PR1

PR2

PR3

Figure A.8: (left) torsovarα - variance in the torso’s orientation about the world x-axis, (right)
torsovarβ - variance in the torso’s orientation about the world y-axis, for 100 trials on M2.

0.0 0.1 0.2 0.3 0.4 0.5

Variance of torsoγ (rad2)

OL1

OL2

OL3

AF1

AF2

AF3

PR1

PR2

PR3

C
h
ro
m
o
so
m
e
s
o
f
se
tu
p
s

Figure A.9: torsovarγ - variance in the torso’s z-axis orientation for 100 trials on M2.

94

Appendix A. Low-level Controller Results (M2)

The variance in the orientation of the robot’s torso during the evaluation of
gaits is shown in figures A.8 and A.9. For torsovarα , the median scores of all the
chromosomes are similar. For torsovarβ , the chromosomes which could not achieve
a stable gait (OL3 and PR2) have a high median score. The values obtained for
torsovarγ are quantitatively similar for the different chromosomes.

Overall, on machine M2, the performance of phase reset was inferior to that of
open loop. However, similar to machine M1, the performance of the angle feedback
chromosomes was the best.

95

Appendix A. Low-level Controller Results (M2)

96

Bibliography

[1] Hayder FN Al-Shuka, F Allmendinger, Burkhard Corves, and Wen-Hong
Zhu. Modeling, stability and walking pattern generators of biped robots: a
review. Robotica, 32(6):907–934, 2014.

[2] A. D. Ames. Human-inspired control of bipedal walking robots. IEEE Trans-
actions on Automatic Control, 59(5):1115–1130, May 2014.

[3] Shinya Aoi and Kazuo Tsuchiya. Stability analysis of a simple walking model
driven by an oscillator with a phase reset using sensory feedback. 2006.

[4] P. Arena. The central pattern generator: a paradigm for artificial locomotion.
Soft Computing, 4(4):251–266, Dec 2000.

[5] T Graham Brown. On the nature of the fundamental activity of the nervous
centres; together with an analysis of the conditioning of rhythmic activity in
progression, and a theory of the evolution of function in the nervous system.
The Journal of Physiology, 48(1):18–46, 1914.

[6] Avis H Cohen and P Wallén. The neuronal correlate of locomotion in fish.
Experimental brain research, 41(1):11–18, 1980.

[7] Steve Collins, Andy Ruina, Russ Tedrake, and Martijn Wisse. Efficient
bipedal robots based on passive-dynamic walkers. Science, 307(5712):1082–
1085, 2005.

[8] Sebastien Cotton, Ionut Mihai Constantin Olaru, Matthew Bellman, Tim
van der Ven, Johnny Godowski, and Jerry Pratt. Fastrunner: A fast, efficient
and robust bipedal robot. concept and planar simulation. In Robotics and
automation (ICRA), 2012 IEEE international conference on, pages 2358–
2364. IEEE, 2012.

[9] A Crespi and A.J. Ijspeert. Amphibot ii: An amphibious snake robot that
crawls and swims using a central pattern generator. 01 2006.

[10] Julian Cristiano, Domenec Puig, and M Garcıa. Locomotion control of biped
robots on uneven terrain through a feedback cpg network. In XIV Workshop
of Physical Agents, pages 1–6, 2013.

97

Bibliography

[11] Julián Cristiano, Domènec Puig, and Miguel Angel Garćıa. Locomotion
control of a biped robot through a feedback cpg network. In ROBOT2013:
First Iberian Robotics Conference, pages 527–540. Springer, 2014.

[12] Julián Cristiano, Domenec Puig, and Miguel Angel Garćıa. Generation and
control of locomotion patterns for biped robots by using central pattern
generators. 2017.

[13] Igor Danilov, Bulat Gabbasov, Ilya Afanasyev, and Evgeni Magid. Zmp
trajectory from human body locomotion dynamics evaluated by kinect-based
motion capture system. In VISIGRAPP (3: VISAPP), pages 162–168, 2016.

[14] M. Freese E. Rohmer, S. P. N. Singh. V-rep: a versatile and scalable robot
simulation framework. In Proc. of The International Conference on Intelli-
gent Robots and Systems (IROS), 2013.

[15] R. Eberhart and J. Kennedy. A new optimizer using particle swarm theory.
Proceedings of the Sixth International Symposium on Micro Machine and
Human Science, pages 39–43, 1995.

[16] Agoston E Eiben and James E Smith. Introduction to evolutionary comput-
ing. springer, 2003.

[17] Gen Endo, Jun Morimoto, Takamitsu Matsubara, Jun Nakanishi, and Gor-
don Cheng. Learning cpg-based biped locomotion with a policy gradient
method: Application to a humanoid robot. The International Journal of
Robotics Research, 27(2):213–228, 2008.

[18] S. Feng, E. Whitman, X. Xinjilefu, and C. G. Atkeson. Optimization based
full body control for the atlas robot. In 2014 IEEE-RAS International Con-
ference on Humanoid Robots, pages 120–127, Nov 2014.

[19] Andy Field. Discovering statistics using SPSS. Sage publications, 2009.

[20] L. A. Fuente, M. A. Lones, A. P. Turner, L. S. Caves, S. Stepney, and A. M.
Tyrrell. Adaptive robotic gait control using coupled artificial signalling net-
works, hopf oscillators and inverse kinematics. In 2013 IEEE Congress on
Evolutionary Computation, pages 1435–1442, June 2013.

[21] Tao Geng, Bernd Porr, and Florentin Wörgötter. Fast biped walking with
a reflexive controller and real-time policy searching. In Advances in Neural
Information Processing Systems, pages 427–434, 2006.

[22] David E Goldberg. Genetic algorithms in search, optimization, and machine
learning. Addison-Wesley Professional, 1989.

[23] David E Goldberg and Kalyanmoy Deb. A comparative analysis of selection
schemes used in genetic algorithms. Foundations of genetic algorithms, 1:69–
93, 1991.

98

Bibliography

[24] Sten Grillner. Neural control of vertebrate locomotion-central mechanisms
and reflex interaction with special reference to the cat. In Feedback and motor
control in invertebrates and vertebrates, pages 35–56. Springer, 1985.

[25] John H Halton. On the efficiency of certain quasi-random sequences of points
in evaluating multi-dimensional integrals. Numerische Mathematik, 2(1):84–
90, 1960.

[26] Hooshang Hemami and R Farnsworth. Postural and gait stability of a planar
five link biped by simulation. IEEE Transactions on Automatic Control,
22(3):452–458, 1977.

[27] Masato Hirose and Kenichi Ogawa. Honda humanoid robots development.
Philosophical Transactions of the Royal Society of London A: Mathematical,
Physical and Engineering Sciences, 365(1850):11–19, 2007.

[28] John H Holland. Genetic algorithms and the optimal allocation of trials.
SIAM Journal on Computing, 2(2):88–105, 1973.

[29] Christian Hubicki, Jesse Grimes, Mikhail Jones, Daniel Renjewski, Alexander
Spröwitz, Andy Abate, and Jonathan Hurst. Atrias: Design and validation
of a tether-free 3d-capable spring-mass bipedal robot. The International
Journal of Robotics Research, 35(12):1497–1521, 2016.

[30] A. J. Ijspeert and A. Crespi. Online trajectory generation in an amphibious
snake robot using a lamprey-like central pattern generator model. In Pro-
ceedings 2007 IEEE International Conference on Robotics and Automation,
pages 262–268, April 2007.

[31] Auke Jan Ijspeert. Central pattern generators for locomotion control in
animals and robots: A review. Neural Networks, 21(4):642–653, 2008.

[32] JBAJ Ijspeert. A simple adaptive locomotion toy-system. In From Animals
to Animats 8: Proceedings of the Seventh [ie Eighth] International Conference
on Simulation of Adaptive Behavior, volume 8, page 153. MIT Press, 2004.

[33] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In International Con-
ference on Machine Learning, pages 448–456, 2015.

[34] Takanishi Ishida and Yamazaki Kato. Realization of dynamic walking
on biped locomotion robot wl-10rd. Journal of Robotic Society of Japan,
3(4):67–78, 1985.

[35] Akio Ishiguro, Akinobu Fujii, and Peter Eggenberger Hotz. Neuromodulated
Control of Bipedal Locomotion Using a Polymorphic CPG Circuit. Adaptive
Behavior, 11(1):7, 2003.

99

Bibliography

[36] I. B. Jeong, C. S. Park, K. I. Na, S. Han, and J. H. Kim. Particle swarm
optimization-based central patter generator for robotic fish locomotion. In
2011 IEEE Congress of Evolutionary Computation (CEC), pages 152–157,
June 2011.

[37] Chia-Feng Juang. A hybrid of genetic algorithm and particle swarm opti-
mization for recurrent network design. IEEE Transactions on Systems, Man,
and Cybernetics, Part B (Cybernetics), 34(2):997–1006, 2004.

[38] D Juričić and M Vukobratović. Mathematical modeling of biped walking
systems. ASME Publ. 72-WA/BHF, 13, 1972.

[39] Shuuji Kajita, Hirohisa Hirukawa, Kensuke Harada, and Kazuhito Yokoi.
Introduction to humanoid robotics, volume 101. Springer, 2014.

[40] Shuuji Kajita, Fumio Kanehiro, Kenji Kaneko, Kiyoshi Fujiwara, Kensuke
Harada, Kazuhito Yokoi, and Hirohisa Hirukawa. Biped walking pattern
generation by using preview control of zero-moment point. In Robotics and
Automation, 2003. Proceedings. ICRA’03. IEEE International Conference
on, volume 2, pages 1620–1626. IEEE, 2003.

[41] Shuuji Kajita, Fumio Kanehiro, Kenji Kaneko, Kazuhito Yokoi, and Hirohisa
Hirukawa. The 3d linear inverted pendulum mode: A simple modeling for a
biped walking pattern generation. In Intelligent Robots and Systems, 2001.
Proceedings. 2001 IEEE/RSJ International Conference on, volume 1, pages
239–246. IEEE, 2001.

[42] Shuuji Kajita, Mitsuharu Morisawa, Kanako Miura, Shin’ichiro Nakaoka,
Kensuke Harada, Kenji Kaneko, Fumio Kanehiro, and Kazuhito Yokoi. Biped
walking stabilization based on linear inverted pendulum tracking. In Intelli-
gent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference
on, pages 4489–4496. IEEE, 2010.

[43] Akiya Kamimura, Haruhisa Kurokawa, Eiichi Yoshida, Satoshi Murata, Ko-
hji Tomita, and Shigeru Kokaji. Automatic locomotion design and experi-
ments for a modular robotic system. IEEE/ASME Transactions on mecha-
tronics, 10(3):314–325, 2005.

[44] Y. Kamogawa, K. Yamada, H. Masuta, and H. o. Lim. Stability control and
pattern generation for biped humanoid robot. In 2013 13th International
Conference on Control, Automation and Systems (ICCAS 2013), pages 910–
915, Oct 2013.

[45] K. Kaneko, K. Harada, F. Kanehiro, G. Miyamori, and K. Akachi. Humanoid
robot hrp-3. In 2008 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 2471–2478, Sept 2008.

100

Bibliography

[46] K. Kaneko, F. Kanehiro, M. Morisawa, K. Miura, S. Nakaoka, and S. Kajita.
Cybernetic human hrp-4c. In 2009 9th IEEE-RAS International Conference
on Humanoid Robots, pages 7–14, Dec 2009.

[47] Kenji Kaneko, Fumio Kanehiro, Mitsuharu Morisawa, Kazuhiko Akachi,
Go Miyamori, Atsushi Hayashi, and Noriyuki Kanehira. Humanoid robot
hrp-4-humanoid robotics platform with lightweight and slim body. In Intelli-
gent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference
on, pages 4400–4407. IEEE, 2011.

[48] Yi-Tung Kao and Erwie Zahara. A hybrid genetic algorithm and parti-
cle swarm optimization for multimodal functions. Applied Soft Computing,
8(2):849–857, 2008.

[49] Ichiro Kato. Development of wabot 1. Biomechanism, 2:173–214, 1973.

[50] J Kennedy and R Eberhart. Particle swarm optimization. Proceedings of
IEEE International Conference on Neural Networks, 4:1942–1948, 2002.

[51] Matthias Kerzel, Erik Strahl, Sven Magg, Nicolás Navarro-Guerrero, Stefan
Heinrich, and Stefan Wermter. Nico - neuro-inspired companion: A devel-
opmental humanoid robot platform for multimodal interaction. In Proceed-
ings of the IEEE International Symposium on Robot and Human Interactive
Communication (RO-MAN), pages 113–120, Aug 2017.

[52] Jesse Van Den Kieboom. Biped Locomotion and Stability - A Practical
Approach. Master’s thesis, University of Groningen, The . . . , (March):66,
2009.

[53] Jeong-Jung Kim, Jun-Woo Lee, and Ju-Jang Lee. Central pattern generator
parameter search for a biped walking robot using nonparametric estimation
based particle swarm optimization. International Journal of Control, Au-
tomation and Systems, 7(3):447–457, 2009.

[54] Hiroshi Kimura, Seiichi Akiyama, and Kazuaki Sakurama. Realization of
dynamic walking and running of the quadruped using neural oscillator. Au-
tonomous Robots, 7(3):247–258, Nov 1999.

[55] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980, 2014.

[56] Jens Kober, J Andrew Bagnell, and Jan Peters. Reinforcement learning
in robotics: A survey. The International Journal of Robotics Research,
32(11):1238–1274, 2013.

[57] J Zico Kolter and Andrew Y Ng. Policy search via the signed derivative. In
Robotics: science and systems, page 34, 2009.

101

Bibliography

[58] J. Kuffner, S. Kagami, K. Nishiwaki, M. Inaba, and H. Inoue. Online footstep
planning for humanoid robots. In 2003 IEEE International Conference on
Robotics and Automation (Cat. No.03CH37422), volume 1, pages 932–937
vol.1, Sept 2003.

[59] Scott Kuindersma, Robin Deits, Maurice Fallon, Andrés Valenzuela, Hongkai
Dai, Frank Permenter, Twan Koolen, Pat Marion, and Russ Tedrake.
Optimization-based locomotion planning, estimation, and control design for
the atlas humanoid robot. Autonomous Robots, 40(3):429–455, 2016.

[60] M. A. Lewis, F. Tenore, and R. Etienne-Cummings. Cpg design using in-
hibitory networks. In Proceedings of the 2005 IEEE International Conference
on Robotics and Automation, pages 3682–3687, April 2005.

[61] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with
deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.

[62] Marco Locatelli. A note on the griewank test function. Journal of global
optimization, 25(2):169–174, 2003.

[63] Zhenli Lu, Shugen Ma, Bin Li, and Yuechao Wang. Serpentine locomo-
tion of a snake-like robot controlled by cyclic inhibitory cpg model. In
2005 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 96–101, Aug 2005.

[64] Takamitsu Matsubara, Jun Morimoto, Jun Nakanishi, Masa-aki Sato, and
Kenji Doya. Learning cpg-based biped locomotion with a policy gradient
method. Robotics and Autonomous Systems, 54(11):911–920, 2006.

[65] K Matsuoka. Sustained oscillations generated by mutually inhibiting neurons
with adaptation. Biological cybernetics, 52(6):367–376, 1985.

[66] Kiyotoshi Matsuoka. Mechanisms of frequency and pattern control in the
neural rhythm generators. Biological Cybernetics, 56(5-6):345–353, 1987.

[67] Kiyotoshi Matsuoka. Analysis of a neural oscillator. Biological cybernetics,
104(4):297–304, 2011.

[68] Tad McGeer. Passive dynamic walking. The international journal of robotics
research, 9(2):62–82, 1990.

[69] Giorgio Metta. icub: an open platform for research in robotics & artificial
intelligence. In CCIA, page 5, 2015.

[70] Marcell Missura and Sven Behnke. Omnidirectional capture steps for bipedal
walking. In 2013 13th IEEE-RAS International Conference on Humanoid
Robots (Humanoids), pages 14–20. IEEE, 2013.

102

Bibliography

[71] Marcell Missura and Sven Behnke. Online learning of foot placement for
balanced bipedal walking. In 2014 IEEE-RAS International Conference on
Humanoid Robots, pages 322–328. IEEE, 2014.

[72] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel
Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fid-
jeland, Georg Ostrovski, et al. Human-level control through deep reinforce-
ment learning. Nature, 518(7540):529–533, 2015.

[73] M. Okada, K. Tatani, and Y. Nakamura. Polynomial design of the nonlinear
dynamics for the brain-like information processing of whole body motion. In
Proceedings 2002 IEEE International Conference on Robotics and Automa-
tion (Cat. No.02CH37292), volume 2, pages 1410–1415 vol.2, 2002.

[74] Jimmy Or. A hybrid cpg–zmp control system for stable walking of a simu-
lated flexible spine humanoid robot. Neural Networks, 23(3):452–460, 2010.

[75] Chandana Paul. Sensorimotor control of biped locomotion. Adaptive Behav-
ior, 13(1):67–80, 2005.

[76] N. Perrin, O. Stasse, F. Lamiraux, Y. J. Kim, and D. Manocha. Real-time
footstep planning for humanoid robots among 3d obstacles using a hybrid
bounding box. In 2012 IEEE International Conference on Robotics and
Automation, pages 977–982, May 2012.

[77] Mitchell A Potter and Kenneth A De Jong. A cooperative coevolutionary
approach to function optimization. In International Conference on Parallel
Problem Solving from Nature, pages 249–257. Springer, 1994.

[78] Torsten Reil and Phil Husbands. Evolution of central pattern generators for
bipedal walking in a real-time physics environment. IEEE Transactions on
Evolutionary Computation, 6(2):159–168, 2002.

[79] L Righetti and A J Ijspeert. Programmable Central Pattern Generators: an
application to biped locomotion control. Proceedings of the 2006 IEEE In-
ternational Conference on Robotics and Automation, 2006(May):1585–1590,
2006.

[80] Ludovic Righetti, Jonas Buchli, and Auke Jan Ijspeert. Dynamic hebbian
learning in adaptive frequency oscillators. Physica D: Nonlinear Phenomena,
216(2):269–281, 2006.

[81] Ludovic Righetti and Auke Jan Ijspeert. Pattern generators with sensory
feedback for the control of quadruped locomotion. In Robotics and Automa-
tion, 2008. ICRA 2008. IEEE International Conference on, pages 819–824.
IEEE, 2008.

103

Bibliography

[82] Yoshiaki Sakagami, Ryujin Watanabe, Chiaki Aoyama, Shinichi Matsunaga,
Nobuo Higaki, and Kikuo Fujimura. The intelligent asimo: System overview
and integration. In Intelligent Robots and Systems, 2002. IEEE/RSJ Inter-
national Conference on, volume 3, pages 2478–2483. IEEE, 2002.

[83] Jacob Shekel. Test functions for multimodal search techniques. In Fifth
Annual Princeton Conference on Information Science and Systems, pages
354–359, 1971.

[84] Gordon M. Shepherd. Neurobiology. Oxford University Press, 1994.

[85] XH Shi, YC Liang, HP Lee, C Lu, and LM Wang. An improved ga and a novel
pso-ga-based hybrid algorithm. Information Processing Letters, 93(5):255–
261, 2005.

[86] Bruno Siciliano and Oussama Khatib. Springer handbook of robotics.
Springer Science & Business Media, 2008.

[87] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and
Martin Riedmiller. Deterministic policy gradient algorithms. In Proceedings
of the 31st International Conference on Machine Learning (ICML-14), pages
387–395, 2014.

[88] I.M. Sobol. On quasi-monte carlo integrations. Mathematics and Computers
in Simulation, 47(2):103 – 112, 1998.

[89] Paul SG Stein. Neurons, networks, and motor behavior. MIT press, 1999.

[90] Shigeki Sugano and Ichiro Kato. Wabot-2: Autonomous robot with dexter-
ous finger-arm–finger-arm coordination control in keyboard performance. In
Robotics and Automation. Proceedings. 1987 IEEE International Conference
on, volume 4, pages 90–97. IEEE, 1987.

[91] Tomomichi Sugihara, Yoshihiko Nakamura, and Hirochika Inoue. Real-time
humanoid motion generation through zmp manipulation based on inverted
pendulum control. In Robotics and Automation, 2002. Proceedings. ICRA’02.
IEEE International Conference on, volume 2, pages 1404–1409. IEEE, 2002.

[92] Richard S Sutton and Andrew G Barto. Reinforcement learning: An intro-
duction, volume 1. MIT press Cambridge, 1998.

[93] Richard S. Sutton, Andrew G. Barto, and Harry Klopf. Reinforcement Learn-
ing : An Introduction Second edition , in progress. 2016.

[94] Gilbert Syswerda. Uniform crossover in genetic algorithms. In Proceedings
of the 3rd International Conference on Genetic Algorithms, 1989, 1989.

[95] Csaba Szepesvári. Algorithms for reinforcement learning. Synthesis lectures
on artificial intelligence and machine learning, 4(1):1–103, 2010.

104

Bibliography

[96] G. Taga, Y. Yamaguchi, and H. Shimizu. Self-organized control of bipedal
locomotion by neural oscillators in unpredictable environment. Biological
Cybernetics, 65(3):147–159, 1991.

[97] George E Uhlenbeck and Leonard S Ornstein. On the theory of the brownian
motion. Physical review, 36(5):823, 1930.

[98] Miomir Vukobratović and Branislav Borovac. Zero-moment pointthirty five
years of its life. International Journal of Humanoid Robotics, 1(01):157–173,
2004.

[99] Miomir Vukobratovic and Davor Juricic. Contribution to the synthesis of
biped gait. IEEE Transactions on Biomedical Engineering, (1):1–6, 1969.

[100] Miomir Vukobratović and J Stepanenko. On the stability of anthropomorphic
systems. Mathematical biosciences, 15(1-2):1–37, 1972.

[101] Matthew M. Williamson. Neural control of rhythmic arm movements. Neural
Networks, 11(7-8):1379–1394, 1998.

[102] Jing Yang, Jing Ning, and Chengju Liu. Locomotion control of seven-link
robot with cpg-zmp. In Control Conference (CCC), 2016 35th Chinese, pages
4517–4522. IEEE, 2016.

[103] Zhangguo Yu, Maoxing Zheng, Qinqin Zhou, Xuechao Chen, Libo Meng,
Weimin Zhang, Aiguo Ming, and Qiang Huang. Disturbance rejection con-
troller for biped walking using real-time zmp regulation. In ROMANSY
21-Robot Design, Dynamics and Control, pages 179–188. Springer, 2016.

[104] Dingguo Zhang, Philippe Poignet, Ferdinan Widjaja, and Wei Tech Ang.
Neural oscillator based control for pathological tremor suppression via func-
tional electrical stimulation. Control Engineering Practice, 19(1):74–88, 2011.

105

Bibliography

106

Erklärung der Urheberschaft

Hiermit versichere ich an Eides statt, dass ich die vorliegende Master’s Thesis
im Studiengang Intelligent Adaptive Systems selbstständig verfasst und keine an-
deren als die angegebenen Hilfsmittel - insbesondere keine im Quellenverzeichnis
nicht benannten Internet-Quellen benutzt habe. Alle Stellen, die wörtlich oder
sinngemäß aus Veröffentlichungen entnommen wurden, sind als solche kenntlich
gemacht. Ich versichere weiterhin, dass ich die Arbeit vorher nicht in einem an-
deren Prüfungsverfahren eingereicht habe und die eingereichte schriftliche Fassung
der auf dem elektronischen Speichermedium entspricht.

Ort, Datum Unterschrift

107

Erklärung zur Veröffentlichung

Ich stimme der Einstellung der Master’s Thesis in die Bibliothek des Fachbereichs
Informatik zu.

Ort, Datum Unterschrift

109

	1 Introduction
	1.1 Motivation
	1.2 Research Objectives
	1.3 Organization

	2 Background
	2.1 Biological Motivation
	2.2 Artificial Central Pattern Generators
	2.2.1 Hopf Oscillator
	2.2.2 Matsuoka Oscillator
	2.2.3 Choice of Oscillator

	2.3 Genetic Algorithms
	2.4 Policy Gradient Reinforcement Learning
	2.4.1 Basics of Reinforcement Learning
	2.4.2 Policy Gradient Methods
	2.4.3 Deep Deterministic Policy Gradient

	3 Related work
	3.1 Model-based Methods
	3.1.1 Zero-Moment-Point based Methods
	3.1.2 Footstep Planning
	3.1.3 Human Motion Capture

	3.2 Natural Dynamics-based Methods
	3.2.1 Passive Dynamics
	3.2.2 Active Dynamics

	3.3 Biologically Inspired Methods
	3.3.1 Central Pattern Generators
	3.3.2 Hybrid Methods

	3.4 Discussion

	4 System Architecture
	4.1 Overview
	4.2 Structure of the Low-level Controller
	4.2.1 CPG Network Configuration
	4.2.2 Pacemaker Oscillator
	4.2.3 Feedback Pathways

	4.3 Structure of the High-level Controller
	4.3.1 Control Mechanism
	4.3.2 High-level Neural Network Controller

	5 Low-level Control
	5.1 Evolution of a Basic Gait
	5.1.1 Setup
	5.1.2 Genetic Algorithm Parameters
	5.1.3 Chromosome Structure and Parameter Bounds
	5.1.4 Fitness Function
	5.1.5 Results

	5.2 Gait Analysis
	5.2.1 Evaluation Parameters and Setup
	5.2.2 Results

	5.3 Discussion

	6 High-level Control
	6.1 Problem Formulation
	6.1.1 Agent and Environment
	6.1.2 Design of Reward Function
	6.1.3 High-Level Controller Training

	6.2 Experiments
	6.2.1 DDPG Hyperparameters
	6.2.2 Setup
	6.2.3 Training Results
	6.2.4 Test Results

	6.3 Discussion

	7 Conclusion
	7.1 Summary
	7.2 Contributions
	7.3 Future Work

	A Low-level Controller Results (M2)
	A.1 Genetic Algorithm Results
	A.2 Gait Analysis Results

	Bibliography

