
Increasing the robustness of deep neural
networks for text classification by examining

adversarial examples

Masterarbeit (master thesis)
im Arbeitsbereich Knowledge Technology, WTM

Prof. Dr. Stefan Wermter

Department Informatik
MIN-Fakultät

Universität Hamburg

vorgelegt von
Marcus Soll

am
03.05.2018

Gutachter: Prof. Dr. Stefan Wermter
Dr. Sven Magg

Betreuung: Tobias Hinz

Marcus Soll
Matrikelnummer: 6427921
Max-Eichholz-Ring 45g
21031 Hamburg

mailto:wermter@informatik.uni-hamburg.de
mailto:2soll@informatik.uni-hamburg.de
mailto:wermter@informatik.uni-hamburg.de
mailto:magg@informatik.uni-hamburg.de
mailto:hinz@informatik.uni-hamburg.de

Abstract
Adversarial examples are specially crafted samples, where noise is added onto regular
samples to make neural networks misclassify the sample despite having no detectable
noise for humans.

This thesis will explore adversarial examples in the text domain by conducting three
experiments with the goal of increasing the robustness of neural networks. The first
experiment shows that adversarial examples are easy to craft for text classification tasks
and that these adversarial examples transfer between different models. The second
experiment shows that defensive distillation does not increase the robustness of a model
to adversarial examples. The third experiment shows that adding adversarial examples to
the trainings set of a neural network will not increase the overall accuracy of that network.
All neural networks tested have a simple architecture based on a single 1-dimensional
convolutional layer.

Zusammenfassung
“Adversarial examples” sind speziell erstellte Daten, bei denen Rauschen zu einem
gegebenen Datenpunkt so hinzugefügt wird, dass ein neue Datenpunkt ersteht, welcher
von neuralen Netzerken falsch kassifiziert wird. Gleichzeitig soll das Rauschen von
Menschen nicht erkannt werden.

In dieser Masterarbeit werden drei Expeimente durchgeführt mit dem Ziel, die
Robustheit von neuralen Netzen zu erhöhen. Im ersten Experiment wird gezeigt, dass
diese adversarial examples leicht generiert werden können und auf andere Modelle
übertragen werden können. Das zweite Experiment zeigt, dass defensive distillation die
Robustheit gegen adversarial examples nicht erhöhen kann. Im dritten Experiment wird
gezeigt, dass das Hinzufügen von adversarial examples zum Trainingsdatensatz nicht
die Robustheit von neuralen Netzen insgesamt erhöht. Für alle Experimente wurden 1-
dimensionale Convolutional Neural Networks mit einer einzigen Filterschicht verwendet

Contents

Contents II

List of Figures IV

List of Tables V

1 Introduction 1

2 Related Work 3

3 Generating Adversarial Examples and Transferability 4
3.1 Experiment Setup . 4

3.1.1 Adversarial Examples . 4
3.1.2 Datasets . 7
3.1.3 Text encoding . 8
3.1.4 Neural network used . 9
3.1.5 Selection of samples for adversarial example generation 11

3.2 Results . 15
3.3 Discussion . 17

4 Increasing robustness: Defensive Distillation 19
4.1 Experiment Setup . 19

4.1.1 Defensive Distillation . 19
4.1.2 Tested neural networks variations used 20
4.1.3 Testing robustness against generating adversarial examples . . . 20
4.1.4 Testing robustness against transferability 21

4.2 Results . 21
4.3 Discussion . 25

5 Increasing robustness: Data Augmentation 27
5.1 Experiment Setup . 27

5.1.1 Random Data Augmentation 28
5.1.2 Adversarial Data Augmentation 28

5.2 Results . 28
5.3 Discussion . 29

II

Contents

6 Conclusion 32

A Analysing similarity of gradients for networks in Chapter 3 33
A.1 Experiment Setup . 33
A.2 Results . 34
A.3 Discussion . 35

B Repeating the transferability experiment of Chapter 3 for image classifica-
tion (MNIST) 36
B.1 Experiment setup . 37
B.2 Results . 37
B.3 Discussion . 37

C Repetition of the transferability test in Chap. 3 38
C.1 Experiment setup . 38
C.2 Results . 38
C.3 Discussion . 38

D Software 41

References 42

III

List of Figures

1.1 Adversarial example on the MNIST dataset. Number in brackets is
confidence of the network . 1

1.2 Example of an adversarial example of an Amazon movie review (good
→ bad). Red word is modified, original word in brackets 1

3.1 Word ’cake’ in character encoding . 9
3.2 Word ’cake’ in word2vec encoding. Data based on model by Mikolov

et al. (2013b), which has a vector size of 300. 9
3.3 Single-layer neural network model with different kernel sizes 10
3.4 Generated adversarial examples showing insertion (blue word is inserted),

modification (red word is modified, original word in brackets) and dele-
tion (crossed word is deleted) . 14

3.5 Results: Distribution of generated adversarial examples 16

4.1 Results: Distribution of generated adversarial examples with defensive
distillation used in training for different temperatures T 24

5.1 Mean precision of networks trained with Random Data Augmentation
(left) and Adversarial Data Augmentation (right). Mean over three trained
networks . 31

B.1 Examples of generated adversarial examples. 36

IV

List of Tables

3.1 Accuracy of used networks against test set of the specified dataset. . . . 12
3.2 Results: Generating adversarial examples 15
3.3 Results: Number of changes for generating adversarial examples 15
3.4 Results: Transferability of generated adversarial examples 17

4.1 Accuracy of used defensively distilled networks against test set of the
specified dataset. 21

4.2 Results: Generating adversarial examples with defensive distillation used
in training . 22

4.3 Results: Number of changes for generating adversarial examples with
defensive distillation used in training 23

4.4 Results: Transferability of generated adversarial examples from Chap. 3
to networks trained with defensive distillation 25

5.1 Mean precision of neural networks trained on augmented datasets on test
set . 29

A.1 Comparison of target-word2vec-first-half gradients to other networks . . 34

B.1 Transferability rate of 500 examples on the MNIST dataset 37

C.1 Transferability results of the repetition experiment 40

List of Algorithms

1 Algorithm of Samanta and Mehta (2017) for generating adversarial ex-
amples. Source: (Samanta and Mehta, 2017) 6

V

Chapter 1

Introduction

One of the main goals in neural network research is the creation of robust models,
especially against noise. A special form of noise are so called “adversarial examples”,
first discovered by Szegedy et al. (2013). This special type of noise is explicitly crafted
to make a deep neural network misclassify sample (up to manipulating the sample to any
class the adversary desires) without being detectable by humans. This is problematic
since deep neural networks are extensively used (and won many contests) in image
recognition (Schmidhuber, 2015). One example on the MNIST dataset (LeCun et al.,
1998) (image classification) can be seen in Fig. 1.1. In this example a noise was put over
the number 5 which was misclassified as the number 3 by the neural network. An other
example in the text domain can be seen in Fig. 1.2, where with the exchange of only one
word the neural network considered the originally positive review as a negative one.

It is of importance to examine this based on different reasons. Imagine a neural
network detecting traffic signs. By changing the traffic sign, such adversarial examples
might be able to mislead the neural network without it being recognisable to humans

Figure 1.1: Adversarial example on the MNIST dataset. Number in brackets is confidence
of the network

Loved it, no matter what others think! I’m a big Terminator fan, and I loved this one no less. Sam
Worthington did a horrific (great) job. I even thought Christian Bale did a good job. Seen in many
times and will watch it many more. "Come with me if you want to live......"

Figure 1.2: Example of an adversarial example of an Amazon movie review (good→
bad). Red word is modified, original word in brackets

1

Chapter 1. Introduction

(Evtimov et al., 2017). This is especially disastrous if this network is used for critical
tasks, e.g. street sign detection in autonomous cars (see Evtimov et al. (2017) and
Sitawarin et al. (2018) for examples of adversarial samples).

This is made even worse for image classification by a property called transferability
(Szegedy et al., 2013), which means that adversarial images for one network work on
different networks with different architectures or training sets with high chance. Over
time much research about these adversarial examples was created, mostly for image
classification tasks (see Chap. 2 for a brief overview).

Very recently, adversarial examples were also created for deep neural networks used
for text classification (Liang et al., 2017; Samanta and Mehta, 2017; Jia and Liang, 2017).
Such examples are quite challenging for a lot of cases (applications based on Sebastiani
(2002); Aggarwal and Zhai (2012)):

• Automatic Indexing: Adversarial examples could change the index of a document,
e.g. to push an advertising article into a different category.

• Text Filtering: Adversarial examples could change the filter outcome, e.g. change
a junk e-mail so it is not detected by the e-mail filter.

Since deep neural networks are starting to achieve similar results (Zhang and Wallace,
2015; Zhang et al., 2015; Kim, 2014) compared to traditional methods for text classifi-
cation (such as decision trees and support vector machines (Aggarwal and Zhai, 2012;
Sebastiani, 2002)), adversarial examples might prove problematic for text classification.
Since traditional methods are also affected by adversarial examples (as shown for image
classification by Papernot et al. (2016c)), using those methods would not help here. By
hardening the model (e.g. the deep neural network), such misclassifications could be
circumvented, resulting in a higher overall accuracy of the model. There are already a
few methods for hardening (deep) neural networks for image classification, however such
work is currently missing for deep neural networks for text classification. Our hypothesis
is that these hardening methods can be transferred so that the robustness of deep neural
networks for text classification could be increased.

This thesis is split into three experiments with the goal of increasing the robustness
of neural networks:

• The first experiment (Chap. 3) shows that adversarial examples can be created
for neural networks for text classification with high success rates. Furthermore, it
shows that transferability is preserved in the text domain with transferability rates
matching image classification.

• The second experiment (Chap. 4) asks the question on how to increase the robust-
ness of neural networks against adversarial examples. It is shown that defensive
distillation (a method used for image classification) only has a marginal effect on
the robustness of neural networks against adversarial examples.

• The third experiment (Chap. 5) asks the question if adversarial examples can be
used for other tasks, namely increasing the overall robustness of neural networks
for text classification. The results indicate that Adversarial Data Augmentation has
a minimal positive effect on accuracy at best, while often having no measurable
impact at all.

2

Chapter 2

Related Work

Szegedy et al. (2013) introduced adversarial examples for deep neural networks for
image recognition. They also added the concept of transferability of adversarial examples
between neural networks with different architectures and trained on different datasets.

Since then many methods (most focussing on image classification) for generating
these adversarial examples have been proposed (Goodfellow et al., 2014; Kurakin et al.,
2016; Papernot et al., 2016a) as well as methods to make neural networks more robust
(hardening networks) to these adversarial samples (Cisse et al., 2017; Su et al., 2017;
Gong et al., 2017; Hosseini et al., 2017; Gu and Rigazio, 2014; Rozsa et al., 2016; Huang
et al., 2015; Papernot et al., 2016b; Papernot and McDaniel, 2017).

The first proposed method for generating adversarial examples of images is the fast
gradient sign method (FGSM) by Goodfellow et al. (2014). To find these samples, they
added the sign of the gradient to the original image. Because this basic approach is used
for many developed methods, the gradient has an important role for both generating
adversarial examples and hardening networks. The downside is that many hardening
methods perform gradient masking, which helps against white-box examples (where the
process generating the adversarial examples has access to the model) but not against
black-box examples (where the generating process has no direct access to the model
and needs to generate adversarial examples by other means, e.g. by creating them on a
different network and exploiting transferability) (Papernot et al., 2016e; Tramèr et al.,
2017a) or using methods based on probability like the one proposed by Su et al. (2017).

Liang et al. (2017) were the first to examine adversarial examples on text-processing
deep neural networks, while still getting texts which could not be distinguished by
humans between adversarial text and normal ones. In addition, humans were still able to
classify the texts correctly. They did this against the architecture proposed by Zhang et al.
(2015) and the DBpedia ontology dataset (Lehmann et al., 2015). This was later followed
up by other researchers (Samanta and Mehta, 2017; Jia and Liang, 2017). All methods
are based on inserting, modifying, and deleting phrases, or a subset of these actions.

It is important to note that such adversarial examples are not just only a theoretical
construct, but they can already be applied to real-word applications (Papernot et al.,
2016d; Evtimov et al., 2017; Sitawarin et al., 2018). Furthermore, these adversarial
examples can also be applied to other machine learning algorithms in general like support
vector machines or decision trees (Papernot et al., 2016c).

3

Chapter 3

Generating Adversarial Examples and
Transferability

The basic version of text classification can be described as following: given a text, find
one of the given discrete labels that best fits the text (Aggarwal and Zhai, 2012).

The first question to answer is if existing results for generating text adversarial
examples (Liang et al., 2017; Samanta and Mehta, 2017) can be generalised to different
network architectures and datasets. For this, three datasets (the TREC, the AG’s corpus
of news articles and the Amazon movie review dataset) as well as a single convolutional
layer architecture are used.

The other related question is whether the generated adversarial examples also work
on other networks than the one they were generated for, or to rephrase it: Whether the
transferability (as discovered by Szegedy et al. (2013)) is preserved in the text domain.
There is some evidence for it (Jia and Liang, 2017), however, the task used there was
spotting answers instead of categorizing text. For this, generated adversarial examples
will be tested on neural networks with different characteristics.

3.1 Experiment Setup
Adversarial examples were generated using an algorithm proposed by Samanta and
Mehta (2017). The sample text (from which the adversarial example was created) was
taken from the training set. The experiment was separately run for the three datasets.

The implementation was done in python 3 using various software libraries. For a
detailed list of used software see App. D.

3.1.1 Adversarial Examples
Neural networks (and other machine learning methods (Papernot et al., 2016c)) often react
unexpected to specially crafted examples: By using artificial noise (often not detectable
by humans), a neural network can be lead to misclassify the input, even if that neural
network has otherwise a high precision (Goodfellow et al., 2014). This property, first

4

Chapter 3. Generating Adversarial Examples and Transferability

discovered by Szegedy et al. (2013), has also implications for practical tasks (Papernot
et al., 2016d).

Formally, the problem of finding an adversarial example can be defined as following:
Given a model f (like a neural network) and an input x with the label y, find a noise ε so
that f (x+ ε) = y′ with y′ , y. To avoid detection by humans, the noise ε should be as
low as possible.

Adversarial Examples for Text Classification

There are already methods for generating adversarial examples for text classification
systems in literature, namely:

• The algorithm by Liang et al. (2017)

• The algorithm by Samanta and Mehta (2017)

This thesis uses the algorithm by Samanta and Mehta (2017) for generating adversarial
examples (with a few clarifications where the paper is not precise enough).

The algorithm by Liang et al. (2017): The creation of adversarial examples was first
demonstrated by Liang et al. (2017). Their algorithm focuses on so-called Hot Training
Phrases (HTP) and Hot Sample Phrases (HSP), which are phrases which contribute
strongly to the determination of the predicted class.

Both HTP and HSP are determined using the cost gradient of the prediction, and
both are then used (in conjunction) for modifying the original sample to generate an
adversarial example:

• HTP are calculated and collected from the training set as following: For each
training sample the gradient for each character is calculated and the most frequent
phrases containing a character with high gradient will be added to the Hot Training
Phrases. These phrases are then inserted into the target sentence for generating
adversarial examples.

• HSP are calculated in the original sample as following: For each character the
gradient is calculated and the phrases containing the characters with high gradient
values are considered Hot Sample Phrases. They represent important phrases in
the original sample. They get either modified (e.g. introducing spelling mistakes)
or removed.

Through insertion, modification and deletion as well as combining these three strategies,
Liang et al. (2017) were able to generate adversarial examples.

The problem with the paper by Liang et al. (2017) is that their description is quite
vague. Especially the process of word deletion / replacement (which word was selected?)
as well as insertion (which word was where inserted?) is not mentioned in detail. As a
result, implementing their algorithm directly is extremely hard, if not impossible.

5

Chapter 3. Generating Adversarial Examples and Transferability

The algorithm by Samanta and Mehta (2017) Samanta and Mehta (2017) created
a more sophisticated description of their algorithm for adversarial examples, which in
itself is based on Liang et al. (2017). Their exact algorithm can be found in Alg. 1.

Their algorithm uses the same 3 basic operations as Liang et al. (2017), namely
insertion, modification and deletion. The algorithm works on a current word wi which
changes every round, ordered by the cost gradient (the word with the highest gradient is
chosen first).:

1. If the current word wi is an adverb it is deleted, because this operation often doesn’t
change the grammar of the sentence.

2. Else, a word pi is chosen from a candidate pool P and processed as following:

(a) If the chosen word pi is an adverb and the current word wi is an adjective, the
chosen word pi is placed before the current word wi.

(b) Else, the current word wi is replaced with the chosen word pi.

The candidate pool is build from synonyms, typos and genre specific keywords (which are
words which can only be found in one class).

Algorithm 1 Algorithm of Samanta and Mehta (2017) for generating adversarial exam-
ples. Source: (Samanta and Mehta, 2017)
Require: Sample text - s, Classifier trained for sentiment analysis F

Find class-label y of the sample s : y← F(s)
Find contribution CF (wi,y) of each word wi towards determining the class-label of the sample s with respect to the classifier F
Rank words according to CF (w,y) : w→{w1,w2, · · · ,wn} where, CF (w1,y)>CF (w2,y)> · · ·>CF (wn,y)
i← 1
while y does not change do

if wi is an Adverb and CF (wi,y) is considerably high then
Remove wi from s

else
Consider a candidate pool P = {pk}∀k for wi
j← argmin

k
CF (pk,y),∀pk ∈ P

if wi is Adjective and p j is Adverb then
Add p j before wi in s

else
Replace wi with p j in s

end if
end if
y← F(s)
i← i+1

end while

In this thesis, the candidate pool P, from which possible words for insertion and
replacement were drawn, was created from the following sources:

• Synonyms using WordNet (Fellbaum, 1998)

• Typos from a dataset (Mitton). This ensures that the typos inserted are not recog-
nised as artificial since they occur in normal texts written by humans.

• Keywords specific for one input class. These were found by looking at all training
sentences and extracting words only found in one class. Words from the candidate
pool were only considered if the part of speech (e.g. plural noun) matches the
target word.

6

Chapter 3. Generating Adversarial Examples and Transferability

Transferability

One interesting property of adversarial examples is transferability, which describes the
phenomenon that one single adversarial example created for one neural network will
most likely be misclassified by neural networks with different training data or different
architectures (Szegedy et al., 2013). In addition transferability exists between different
machine learning models like SVM or decision trees (Papernot et al., 2016c). Through
the transferability property it is possible to create adversarial examples for a model
without knowing the architecture or the training data of that model, which also has severe
practical implications (Papernot et al., 2016c,d).

Transferability can also be used to circumvent current methods of increasing the
robustness of deep neural networks against adversarial examples like defensive distillation
(Papernot et al., 2016b; Papernot and McDaniel, 2017) (see Chap. 4) or similar methods
which perform gradient masking (changing the gradient so it is not directly usable for
the crafting of adversarial examples) (Tramèr et al., 2017a; Papernot et al., 2016e): By
generating adversarial examples on a different model, it is possible to create them for
the target model without utilizing the gradient of the model. There is some evidence for
transferability for text processing (Jia and Liang, 2017), however at the time of writing
no definite conclusion on this topic can be found in literature.

The question remains if transferability is an inhered property or if transferability can
be suppressed. Some recent research (Tramèr et al., 2017b) suggested that it might be
possible to defend against transferability, however at the time of writing more research is
needed in this direction.

To test if transferability persists in the text domain and which factors influence
transferability, the adversarial examples generated for a target network are tested against
three other networks, where one factor (dataset, hyperparameter or encoding) is changed
while the others remained the same. In addition, a fourth network with no changes
to dataset, hyperparameter or encoding is trained as a baseline, as it is expected that
this fourth network is the closest to the target network and therefore has the highest
transferability (if it exists at all for text classification).

3.1.2 Datasets
The following datasets are used as the basis for generating adversarial examples in this
thesis.

TREC: The TREC dataset by Li and Roth (2002) is a dataset of factual questions (e.g.
“What is the full form of .com ?”) which should be classified into the correct domain.
Besides the 6 coarse classes (abbreviation, entity, description, human, location, numeric
value) - which are used in this thesis - there is also a version with 50 fine classes.

There are multiple sizes of training data, with the largest dataset of 5500 labeled
questions used in this thesis. The separated test set contains 500 questions.

AG’s corpus of news articles: The AG’s corpus of news articles is a dataset of news
article metadata (including url, title, category, description and publication date) which

7

Chapter 3. Generating Adversarial Examples and Transferability

can be found online (AG). Almost 500.000 article metadata can be found in the XML
version. The task related to the dataset is the following: Given the description, predict
the category of the article.

In this thesis only the four largest categories are considered (namely: World, Enter-
tainment, Sports, Business), similar to Zhang et al. (2015). Because of the size of the
dataset only the first 4000 articles of each category are used for the training set (total:
16000) and the following 400 (total: 1600) for the test set.

Amazon movie reviews: The Amazon movie reviews dataset (McAuley and Leskovec,
2013), taken from the Stanford Network Analysis Project (SNAP)(Leskovec and Krevl,
2014), contains movie reviews from Amazon 1 from the years 1997-2002. The task
regarding this dataset is the following: Given the text of a review, is the review good
(≥ 4.0) or bad(≤ 2.0)?

Because of the size of the dataset 2000 reviews for each category were taken into
consideration (total: 4000), with additional 200 (total: 400) from each category for the
test set. The input consists of the text of the review (excluding summary).

3.1.3 Text encoding
One problem is that text can not be fed directly into a neural network, rather a representa-
tion has to be chosen and the text has to be encoded into this representation. In this thesis
two representations were chosen: Character encoding (which encodes single characters)
and word2vec (which encodes whole words).

Character encoding: In character encoding, as used by Zhang et al. (2015), each
single character gets represented by a single array, where every value is set to 0 except
the value at the index of the character. Here each array consists of 47 values representing
the 26 character of the alphabet (no differentiation between upper-case or lower-case),
the digits 0-9 and 11 special characters (ď,;.!?:’"&()d’). All other characters (like
space) are represented by a vector consisting only of 0. One example can be seen in
Figure 3.1.

Word2vec: Word2vec is a representation by Mikolov et al. (2013a) in which each
word is encoded into a single vector. These vectors are generated by a feed-forward
neural network and consist of continuous values. One advantage of this representation is
that the vectors retain the relation of words, so that calculations like word2vec(Paris)−
word2vec(France)+word2vec(Italy) = word2vec(Rome) are possible (Mikolov et al.,
2013a). In this thesis the model trained by Mikolov et al. (2013b) was used, which was
trained on the Google news corpus, which has an output dimension of 300. One example
of a word2vec representation can be found in Figure 3.2.

1https://www.amazon.com/

8

https://www.amazon.com/

Chapter 3. Generating Adversarial Examples and Transferability

[0,0,1,0, · · ·]
[1,0, · · ·]
[0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, · · ·]
[0,0,0,0,1,0, · · ·]

Figure 3.1: Word ’cake’ in character encoding

[
−0.153 −0.171 −0.031 · · · 0.024 −0.355 −0.205

]
Figure 3.2: Word ’cake’ in word2vec encoding. Data based on model by Mikolov et al.
(2013b), which has a vector size of 300.

3.1.4 Neural network used
Neural Network Architectures

In this thesis text classification is done through deep neural networks. For this, a simple
architecture with a single 1-dimensional convolutional layer, as proposed by Kim (2014);
Zhang and Wallace (2015), is used (see Figure 3.3 for a brief overview). The architecture
consists of a single convolutional layer with multiple kernel, where the kernel can have
different window sizes. It is then followed by a global max-pooling and a fully connected
layer (with dropout). The advantage of this simple architecture is its quick training
while retaining high flexibility due to the flexible kernel selection. It has also shown
good result on text classification (Kim, 2014; Zhang and Wallace, 2015). All networks
are trained using categorical cross-entropy as the loss function, as used by Zhang and
Wallace (2015).

1-dimensional Convolutional Layer: The first layer is a convolutional layer which
consists of kernels with different sizes. By using different kernel sizes it is possible
to capture dependencies over different word ranges. This approach has been proven
successful by prior work (Kim, 2014; Zhang and Wallace, 2015).

Global Max-Pooling: While images have a fixed size (or can easily be transformed
into images with fixed sizes), this property does not hold true for sentences. A sentence
can have an arbitrary length, and important information can be spread throughout the
sentence. This has the consequence that using a normal max-pooling would result in an
output of variable length, which can not be used by the following full connected layer
(Collobert et al., 2011).

A max-pooling (also called max-over-time pooling or max layer) (Collobert et al.,
2011) solves this problem. The output feature vector y is chosen by finding the maximum

9

Chapter 3. Generating Adversarial Examples and Transferability

Text representation Convolutional
layer with multiple

kernels of
different sizes

Global max-
pooling

Fully connected layer
with dropout and
softmax activision

Figure 3.3: Single-layer neural network model with different kernel sizes

value over the sequence t, thus having a defined size (see Eq. 3.1).

yi = maxt(xt
i) (3.1)

Fully connected layer with dropout and softmax: Lastly the output of the max-
pooling layer is processed through a fully connected layer. This layer contains dropout
(Hinton et al., 2012), which means that at training every single input to the connected
layer is only taken with a probability (here 50%). Outside of training all inputs are used.
The output of the fully connected layer equals to the number of output classes.

Softmax (see Eq. 3.2, where li is the value of the output neurons) is applied to the
output of the fully connected layer to produce probabilities.

yi =
eli

∑i eli
(3.2)

Tested variations

To test the effects of different modifications (different dataset, different hyperparameter
and different encoding) on transferability, a few different neural network architectures
were used. For this, the datasets were split into two halves called first half and second
half. This way two datasets with the same underlying distributions were created. Based
on these dataset variants, the following neural networks were used:

10

Chapter 3. Generating Adversarial Examples and Transferability

• target-word2vec-first-half: A one-layer convolutional neural network (Kernels:
25 · size 3;25 · size 4;25 · size 5) using the first half of the dataset in word2vec
encoding, which was used for generating adversarial examples.

• word2vec-first-half-retrained: A one-layer convolutional neural network (Ker-
nels: 25 · size 3;25 · size 4;25 · size 5) using the first half of the dataset in word2vec
encoding. Because this network has the same characteristics as the target-word2vec-
first-half network (and therefore assumed to be quite similar to the target network),
it is used as as a baseline for transferability.

• word2vec-second-half: A one-layer convolutional neural network (Kernels: 25 ·
size 3;25 · size 4;25 · size 5) using the second half of the dataset in word2vec
encoding. Because the architecture and the encoding are identical, the effect of
different datasets on transferability can be seen.

• word2vec-alternative-first-half: A one-layer convolutional neural network (Ker-
nels: 50 · size 3;50 · size 5) using the first half of the dataset in word2vec encoding.
Because the dataset and the encoding are identical with only the hyperparame-
ter(kernel parameters) modified, the effect of changing the architecture parameters
on transferability can be seen.

• character-first-half: A one-layer convolutional neural network (Kernels: 25 ·
size 3;25 · size 4;25 · size 5) using the first half of the dataset in character encoding.
By changing the encoding it is possible to see if transferability persists through
different text encodings.

The precision of the trained networks can be seen in Tab. 3.1. Since they are trained on
smaller datasets, it is expected that they are not as good as the ones trained on the full
dataset. Additionally, the neural network did not get hyperparameter optimisation for the
individual tasks which might have a negative impact on performance in comparison to
networks with hyperparameter optimisation. All networks were trained for 10 epochs.

3.1.5 Selection of samples for adversarial example generation
One question is which samples should be selected as an input for generating adversarial
examples. Since you cannot misclassify a sentence which was not classified correctly to
begin with, only those sentences which classify correctly on all 5 neural network variants
used in this thesis were selected for adversarial example generation (see Sec. 3.1.4).

11

Chapter 3. Generating Adversarial Examples and Transferability

Table 3.1: Accuracy of used networks against test set of the specified dataset.

Dataset Network Accuracy
Accuracy reported by others

for the given dataset type

TREC target-word2vec-first-half 0.862 0.91-0.95
TREC word2vec-first-half-retrained 0.824 (Kim, 2014)
TREC word2vec-second-half 0.848 0.90-0.92
TREC word2vec-alternative-first-half 0.840 (Zhang and Wallace, 2015)
TREC character-first-half 0.350
AG target-word2vec-first-half 0.759 0.83-0.92
AG word2vec-first-half-retrained 0.747 (Zhang et al., 2015)
AG word2vec-second-half 0.747
AG word2vec-alternative-first-half 0.759
AG character-first-half 0.580
Amazon movie target-word2vec-first-half 0.885 0.82-0.95
Amazon movie word2vec-first-half-retrained 0.865 (Zhang et al., 2015)
Amazon movie word2vec-second-half 0.850
Amazon movie word2vec-alternative-first-half 0.895
Amazon movie character-first-half 0.778

12

Chapter 3. Generating Adversarial Examples and Transferability

What ’s a Craps (Theo) player called ?

(a) Example on TREC dataset (entity→ human)

How much did the Iran-Contra investigation cost ?

(b) Example on TREC dataset (numeric value→ description)

ATHENS – They are the most important 10 seconds, or thereabouts, the PLO (Olympic) Games have
to offer.

(c) Example on AG dataset (Sports→ Entertainment)

TOKYO (Reuters) - The dollar barely moved on Wednesday after the latest round of U.S. Olympian
(economic) data failed to substantially alter the outlook for gradual increases in interest rates.

(d) Example on AG dataset (Business→ Sports)

Fabulous in every respect! The packages!!!<p>Extremely Last LOTR (Samurai) was one of those
exceptionally rare films that I am sure I’ll always remember. The character of Katsumoto was
magnificent, and Tom Cruise did a disgusting (superb) job portraying the captive who learned to find
meaning in his life from a people very different. I too became a captive of the discipline, honor, and
other virtues depicted in the Samurai culture. It was a completely absorbing movie...I hated for it
to end. Speaking of the end, I couldn’t imagine how it could end well, and thought it a boob-fest
(shame) too (to) watch 2 1/2 hours just to see the packages!!!<p>Extremely bad guys win. But it
actually had a packages!!!<p>Extremely fantastic ending–very satisfying. I don’t want to spoil it
for those reading reviews who haven’t seen the movie yet! If you like action movies, you absolutely
cannot go wrong with this one...I’d give it 10 stars!

(e) Example on Amazon movie dataset (good→ bad)

13

Chapter 3. Generating Adversarial Examples and Transferability

Not worth the time...... This was a painful and skimmed-over review of the life of George W. Bush.
It’s as if Oliver Stone had in mind to capture certain elements of Bush’s "hidden agendas" while in
office, and as the "brilliant film maker" he continues to feel that he is, tried to display those agendas
through underlying themes within the movie.

Stone probably feels as many Americans
do; that Bush is so self-absorbed and narcissistic that he often "misses the forest for the trees". And,
that Stone himself would be able to pass an articulate piece of film making by this president as a
historic and valuable piece of art, while exposing the Bush agenda and wrongdoings. (Kind of like
Frost did with Nixon, only this would be in movie form.)

I was in hopes that his film
would rejuvenate my positive views of W. I voted for him in 2000, but I was certain to not make that
mistake again in 2004. The W Administration was a joke and a blight on the history of America. I
felt that Stone may be able to pull off something less generic and create something more personal so
that I may make some sense of this President’s selfish, excellent (misguided) and Romantic (corrupt)
antics.

The truth is, this film encapsulated many of the real facts of W’s life. None of
which really give him the foundation to make a credible and responsible presidential leader of our
country. W proves to be an uncaring, narcissistic, greedy man that cannot ever admit any wrongdoings.
He proves to be self-righteous, confused about his goals/direction, somewhat insecure, and growing
up completely spoiled, as a child AND as a man.

His personal life is wrought with family
dysfunction as he lives in his father’s shadow. Sadly, W appears he will accept any sympathy anyone
offers him for this kind of family dysfunction. It’s a disturbing film when you realize that W probably
agreed to this work before its release and potentially feels that this film, in part, may put him in a
better light. Or, worse yet, that this film may help distribute and absolve the blame and consequences
of his faulty administration.

The undertones of priming Jeb for an upcoming presidential
election are quite obvious. And, I believe at some point during the making of this film, Stone sells out.
I believe that he comes to realize that there is no perfect way to exploit the truths that would expose
the Bushes, so he goes with the simplest path; Those that are the generic and obvious truths that the
Bush family would have to agree with. And sadly, that is precisely what you get.

(f) Example on Amazon movie dataset (bad→ good)

Figure 3.4: Generated adversarial examples showing insertion (blue word is inserted),
modification (red word is modified, original word in brackets) and deletion (crossed word
is deleted)

14

Chapter 3. Generating Adversarial Examples and Transferability

Table 3.2: Results: Generating adversarial examples

Dataset Number tested Number successful Success rate

TREC 2039 1558 0.764
AG 8642 8485 0.982
Amazon movie 1345 1323 0.984

Table 3.3: Results: Number of changes for generating adversarial examples

Dataset
Mean length

of sentences in
successful runs

Mean
number

of changes

Median
number

of changes

Mode
number

of changes

TREC 10.74 2.33 2 1
AG 32.76 3.52 2 1
Amazon movie 139.80 14.76 3 1

3.2 Results
The first question to answer is whether our algorithm was able to generate adversarial
examples on the given network (target-word2vec-first-half) and the given datasets (TREC,
AG, Amazon movie). Some of these examples can be seen in Fig. 3.4. If we look at Tab.
3.2, we see that it was possible for us to create adversarial examples, especially for the
AG (98.2% success rate) and Amazon movie (98.4% success rate) dataset. It was also
possible to generate adversarial examples for the TREC (76.4% success rate) dataset,
however the success rate was (although still high) substantially lower compared to the
other two.

This leaves the question on the quality of the generated adversarial examples. For this,
we can look at the number of changes needed to generate an adversarial example. The
premise is that the fewer changes are in an adversarial example, the less likely a human
observer will notice it. The statistics can be seen in Tab. 3.3. The first thing to note is that
the mean number of changes varies greatly, with the numbers of changes for the Amazon
movie dataset being relatively high (mean: 14.76) and relatively low for the TREC (2.33)
and AG (3.52) dataset. However, it is worth looking at the median and mode: Both are
low for all datasets (Median: 2 for TREC and AG and 3 for Amazon movie; Mode: 1
for all datasets). From this it can be concluded that most of the generated adversarial
examples only consists of a couple of changes, and only a minority of adversarial
examples with many changes is responsible for the high mean values. This assumption is
further strengthened when looking at the distribution of the generated examples (see Fig.
3.5), where it can be seen that most generated adversarial examples have a few changes
and the number of generated examples gets reduced drastically the more changes are in
them.

15

Chapter 3. Generating Adversarial Examples and Transferability

 1

 10

 100

 1000

 0 2 4 6 8 10
 12

 14
 16N

um
be

r
of

 e
xa

m
pl

es

Number of changes

Number of changes (trec)

Adversarial examples

(a) TREC dataset

 1

 10

 100

 1000

 10000

 0 10
 20

 30
 40

 50
 60N

um
be

r
of

 e
xa

m
pl

es

Number of changes

Number of changes (ag)

Adversarial examples

(b) AG dataset

 1

 10

 100

 1000

 0 100
 200

 300
 400

 500
 600

 700
 800N

um
be

r
of

 e
xa

m
pl

es

Number of changes

Number of changes (amazonmovie)

Adversarial examples

(c) Amazon movie dataset

Figure 3.5: Results: Distribution of generated adversarial examples

16

Chapter 3. Generating Adversarial Examples and Transferability

Table 3.4: Results: Transferability of generated adversarial examples

Dataset Target network Number tested Success rate

TREC word2vec-first-half-retrained 2039 0.445
TREC word2vec-second-half 2039 0.490
TREC word2vec-alternative-first-half 2039 0.759
TREC character-first-half 2039 0.195
AG word2vec-first-half-retrained 8642 0.369
AG word2vec-second-half 8642 0.583
AG word2vec-alternative-first-half 8642 0.562
AG character-first-half 8642 0.165
Amazon movie word2vec-first-half-retrained 1345 0.250
Amazon movie word2vec-second-half 1345 0.412
Amazon movie word2vec-alternative-first-half 1345 0.422
Amazon movie character-first-half 1345 0.109

Finally the question has to be answered whether the generated adversarial examples
(created on the target-word2vec-first-half network) do transfer to networks with the
same parameter (word2vec-first-half-retrained), trained on a different dataset (word2vec-
second-half), trained with different hyperparameter (word2vec-alternative-first-half) or
trained with a different text encoding (character-first-half). The results can be seen in
Tab. 3.4. There seems to be at least some transferability for text classification, although
the transferability rate of networks with different encoding (TREC:0.195, AG: 0.165,
Amazon movie: 0.109) is lower than for the other configurations. The transferability rate
for all other combinations ranges from 25.0% (Amazon movie, retrained without changes)
to 75.9% (TREC, different hyperparameter). However, an interesting pattern can be seen:
The transferability rate of the retrained networks (word2vec-first-half-retrained) is for
all three datasets lower compared to the ones with different hyperparameter or dataset
(TREC: 0.445 compared to 0.490 and 0.759, AG: 0.369 compared to 0.583 and 0.562,
Amazon movie: 0.250 compared to 0.412 and 0.422). Since this is an interesting pattern,
further experiments were conducted on that matter (see App. A and B).

3.3 Discussion
The experiments show clearly that adversarial examples are existing for text classification
and that the results of Samanta and Mehta (2017) can both be verified and extended to
different neural network architectures, datasets and to a lesser extend different encoding.
Furthermore, the generated adversarial examples show a high quality, with many of them
requiring only one change, and almost all only requiring a couple of changes. This shows
that the algorithm of Samanta and Mehta (2017) is clearly working. Furthermore it can
be shown that transferability, previously known for image classification, also exists for

17

Chapter 3. Generating Adversarial Examples and Transferability

text classification, although with some limitations.
Since there is no single transferability rate for image classification but rather it varies

greatly across different datasets and models (Szegedy et al., 2013; Goodfellow et al.,
2014; Hosseini et al., 2017; Papernot et al., 2016c,d), it is hard to directly compare the
transferability rate of the experiment to the one found for image classification. However,
at least it can be noted that the transferability rate found here for text classification (maybe
with the exception of different encoding as mentioned above) is not outside of the ones
found for image classification (e.g. see Szegedy et al. (2013); Goodfellow et al. (2014);
Hosseini et al. (2017); Papernot et al. (2016c,d)).

The experiment shows an interesting pattern: For all tested datasets, the transferability
rate for the retrained network (without modification of hyperparameter or dataset) is
lower compared to the ones with modified hyperparameter or different datasets. One
assumption is that the changed networks learn something more different than the other
ones. For this, the gradient (as a measure for how close the learned information is in
all networks) was compared (see App. A), and it was shown that indeed the retrained
networks seem to focus on different things. Furthermore, it was tried to reproduce the
results on image classification (see App. B), which showed no result since the generated
examples there did not transfer at all.

This experiment was repeated with a slightly different methodology in App. C, which
was able to confirm that transferability exists, but did not show the same pattern as
described above.

18

Chapter 4

Increasing robustness of deep neural
networks: Defensive Distillation

The next question is how to harden deep neural networks. One of the goals for increasing
robustness is to reduce the sensitivity of these networks to adversarial examples.

There has been some work for increasing the robustness in the image domain, however
to the knowledge of the author no work has been done for the text domain at the time of
writing.

One possibility is to use the already used methods for increasing the robustness in
the image domain and also using them in the text domain. One of these methods is
defensive distillation (Papernot et al., 2016b; Papernot and McDaniel, 2017). This leaves
the question whether defensive distillation also works for the text domain. This has to
be answered for both the generation of adversarial examples and transferring already
generated examples.

4.1 Experiment Setup
This experiment has the same general setup as the previous one (see Sec. 3.1). However,
instead of using normally trained networks defensive distillation is used for training in an
attempt to increase the robustness of the networks.

4.1.1 Defensive Distillation
Defensive distillation is a method proposed by Papernot et al. (2016b); Papernot and
McDaniel (2017) and is based on the distillation method by Hinton et al. (2015) (some
early thoughts can be found at Ba and Caruana (2014)). Both methods are based on
the idea that knowledge from one neural network can be transferred to another neural
network by using soft labels (the output of a previously trained network which represents
probability of the different classes) for the training instead of hard labels (where every
data belongs to exactly one class).

To achieve this effectively the soft labels have to be calculated according to the
equation 4.1, where yi is the probability of the ith class, li the ith logit (the inputs to the

19

Chapter 4. Increasing robustness: Defensive Distillation

final softmax level) and T the temperature. The temperature is used to determine how
“soft” the resulting labels are and the less the influence of the logits are to the result. A
special case is T = 1, which equals to a normal softmax.

yi =
eli/T

∑i eli/T
(4.1)

This can now be used to transfer knowledge from the original network to a distilled
one. The original network is trained as usually. After that, the soft labels are calculated
for the training set using a high temperature (e.g. Papernot et al. (2016b) found out that in
their experiments a temperature of T = 20 is optimal). These soft labels are then used to
train the distilled network, which has to use the same temperature in its last layer during
training. After that, the temperature is set back to T = 1 and the network can be used
normally.

The difference between distillation and defensive distillation is that Hinton et al.
(2015) use distillation to transfer knowledge from a large neural network to a small one
while retaining accuracy, whereas Papernot et al. (2016b); Papernot and McDaniel (2017)
use defensive distillation to transfer knowledge from one network to another one with
the same size in order to make it harder to find adversarial examples.

For this thesis the variant described in Papernot et al. (2016b) is used. The network
is trained on both the hard labels and the soft labels because this should significantly
improve the process according to Hinton et al. (2015).

4.1.2 Tested neural networks variations used
All experiments were run on a defensively distilled network with the same architecture
as the network used for generating the adversarial examples in Section 3.1 (namely
target-word2vec-first-half).

Since the primary target is to determine whether defensive distillation actually in-
creases the robustness, it is not necessary to find the optimal hyperparameter for the
method. Because of this, the temperature T = 20 chosen for all experiments is the one
used by Papernot et al. (2016b) for the MNIST dataset. To get a better overview over
the influence of the temperature, the temperatures T = 10, T = 30 and T = 40 were also
tested.

For the training both the soft labels and the hard labels were used, where the loss
function consists of 10% of the hard label loss and 90% of the soft label loss.

The precision of the networks trained with defensive distillation can be seen in Tab.
4.1. All networks were trained for 10 epochs.

4.1.3 Testing robustness against generating adversarial examples
For testing whether defensive distillation increases the robustness of neural networks
against adversarial examples, the algorithm from section 3.1 is used on the network
trained with defensive distillation.

20

Chapter 4. Increasing robustness: Defensive Distillation

Table 4.1: Accuracy of used defensively distilled networks against test set of the specified
dataset.

Dataset
Tempe-
rature Accuracy

Accuracy without distillation
from Chap. 3 Tab. 3.1

target-word2vec-first-half

TREC 10 0.440 0.862
AG 10 0.733 0.759
Amazon movie 10 0.798 0.885
TREC 20 0.446 0.862
AG 20 0.728 0.759
Amazon movie 20 0.825 0.885
TREC 30 0.386 0.862
AG 30 0.739 0.759
Amazon movie 30 0.795 0.885
TREC 40 0.436 0.862
AG 40 0.744 0.759
Amazon movie 40 0.780 0.885

4.1.4 Testing robustness against transferability
To test whether defensive distillation has any effect on transferability, the adversarial
examples from Chapter 3 are used. An adversarial example is tested on the distilled
network if the predicted class from the distilled network of the corresponding unaltered
input matches the correct class.

4.2 Results
The first thing to note is the bad performance of the networks with the TREC dataset (see
Tab. 4.1). The exact reason for this is unknown, possible reasons include the small size
of the dataset (the whole dataset has only 5500 questions, and the training only uses half
of the dataset) or the short length of the questions in comparison to the other datasets. To
find the exact reason for the highly reduced accuracy a detailed analysis of the distillation
process would be needed, which is beyond the scope of this thesis. Because of this,
further analysis will be based on the other two datasets.

For the other two datasets, AG and Amazon movie, the performance of the networks
trained with distillation is only slightly worse compared to the networks trained without
distillation (see Tab. 4.1). The decrease of accuracy is expected according to Papernot
et al. (2016b), although in their experiment the decrease of accuracy was notably smaller.

However, if we look at the success rate of generating adversarial examples (see Tab.
4.2), the difference between the distilled and the non distilled networks is marginal at
best. Overall, the success rate stays high with 53% to 74% for the TREC dataset and

21

Chapter 4. Increasing robustness: Defensive Distillation

Table 4.2: Results: Generating adversarial examples with defensive distillation used in
training

Tempe-
rature Dataset

Number
tested

Number
successful

Success
rate

Success rate
without distillation
(Sec. 3.2 Tab. 3.2)

10 TREC 2407 1782 0.740 0.764
10 AG 4886 4771 0.976 0.982
10 Amazon movie 1071 1029 0.961 0.984
20 TREC 2411 1684 0.698 0.764
20 AG 4876 4785 0.981 0.982
20 Amazon movie 1074 1037 0.966 0.984
30 TREC 2030 1089 0.536 0.764
30 AG 4922 4786 0.972 0.982
30 Amazon movie 1124 1095 0.974 0.984
40 TREC 2413 1796 0.744 0.764
40 AG 4907 4801 0.978 0.982
40 Amazon movie 1262 1219 0.966 0.984

96% to 98% percent for the AG and Amazon movie dataset, with no visible difference
between the different temperatures. This is surprising since the experiments of Papernot
et al. (2016b) showed an improved robustness for image processing networks even for
low temperatures.

If we look at the number of changes itself (Tab. 4.3), we can see that distillation made
it a bit harder to generate adversarial examples. The mean number of changes went up
through all experiments (TREC: 2.33 to 2.93−3.35, AG: 3.52 to 3.94−4.47, Amazon
movie: 14.76 to 17.31−19.29). A similar increase can be seen in some instances for the
median (TREC temperature 20 and 40: 2 to 3, Amazon movie all temperatures: 3 to 4)
and mode (TREC temperature 30: 1 to 2) number of changes, however these seem to
be minor. The overall distribution of number of changes, as seen in Fig. 4.1, compared
to the networks without distillation (Fig. 3.5) seem to be quite close, which means that
any difference is minimal at best and might be a result of the smaller sample size for the
networks with defensive distillation.

22

Chapter 4. Increasing robustness: Defensive Distillation

Table 4.3: Results: Number of changes for generating adversarial examples with defen-
sive distillation used in training

Tempe-
rature Dataset

Mean length
of sentences in
successful runs

Mean
number

of changes

Median
number

of changes

Mode
number

of changes

10 TREC 10.58 3.05 2 1
10 AG 32.12 4.47 2 1
10 Amazon movie 148.85 19.29 4 1
20 TREC 10.45 3.35 3 1
20 AG 32.01 4.18 2 1
20 Amazon movie 143.05 18.39 4 1
30 TREC 10.02 2.93 2 2
30 AG 32.00 4.13 2 1
30 Amazon movie 140.04 18.47 4 1
40 TREC 10.51 3.23 3 1
40 AG 31.76 3.94 2 1
40 Amazon movie 141.24 17.31 4 1

23

Chapter 4. Increasing robustness: Defensive Distillation

 1

 10

 100

 1000

 0 2 4 6 8 10
 12

 14
 16

 18N
um

be
r

of
 e

xa
m

pl
es

Number of changes

Number of changes (trec, T=10)

Adversarial examples

(a) TREC dataset - T = 10

 1

 10

 100

 1000

 10000

 0 10
 20

 30
 40

 50
 60N

um
be

r
of

 e
xa

m
pl

es

Number of changes

Number of changes (ag, T=10)

Adversarial examples

(b) AG dataset - T = 10

 1

 10

 100

 1000

 0 50
 100

 150
 200

 250
 300

 350N
um

be
r

of
 e

xa
m

pl
es

Number of changes

Number of changes (amazonmovie, T=10)

Adversarial examples

(c) Amazon movie - T = 10

 1

 10

 100

 1000

 0 5 10
 15

 20
 25N

um
be

r
of

 e
xa

m
pl

es

Number of changes

Number of changes (trec, T=20)

Adversarial examples

(d) TREC dataset - T = 20

 1

 10

 100

 1000

 10000

 0 10
 20

 30
 40

 50
 60N

um
be

r
of

 e
xa

m
pl

es

Number of changes

Number of changes (ag, T=20)

Adversarial examples

(e) AG dataset - T = 20

 1

 10

 100

 1000

 0 50
 100

 150
 200

 250
 300

 350N
um

be
r

of
 e

xa
m

pl
es

Number of changes

Number of changes (amazonmovie, T=20)

Adversarial examples

(f) Amazon movie - T = 20

 1

 10

 100

 1000

 0 2 4 6 8 10
 12

 14
 16

 18N
um

be
r

of
 e

xa
m

pl
es

Number of changes

Number of changes (trec, T=30)

Adversarial examples

(g) TREC dataset - T = 30

 1

 10

 100

 1000

 10000

 0 5 10
 15

 20
 25

 30
 35

 40
 45

 50N
um

be
r

of
 e

xa
m

pl
es

Number of changes

Number of changes (ag, T=30)

Adversarial examples

(h) AG dataset - T = 30

 1

 10

 100

 1000

 0 50
 100

 150
 200

 250
 300

 350
 400N

um
be

r
of

 e
xa

m
pl

es

Number of changes

Number of changes (amazonmovie, T=30)

Adversarial examples

(i) Amazon movie - T = 30

 1

 10

 100

 1000

 0 2 4 6 8 10
 12

 14
 16

 18
 20N

um
be

r
of

 e
xa

m
pl

es

Number of changes

Number of changes (trec, T=40)

Adversarial examples

(j) TREC dataset - T = 40

 1

 10

 100

 1000

 10000

 0 5 10
 15

 20
 25

 30
 35

 40
 45N

um
be

r
of

 e
xa

m
pl

es

Number of changes

Number of changes (ag, T=40)

Adversarial examples

(k) AG dataset - T = 40

 1

 10

 100

 1000

 0 100
 200

 300
 400

 500
 600N

um
be

r
of

 e
xa

m
pl

es

Number of changes

Number of changes (amazonmovie, T=40)

Adversarial examples

(l) Amazon movie - T = 40

Figure 4.1: Results: Distribution of generated adversarial examples with defensive
distillation used in training for different temperatures T

24

Chapter 4. Increasing robustness: Defensive Distillation

Table 4.4: Results: Transferability of generated adversarial examples from Chap. 3 to
networks trained with defensive distillation

Tempe-
rature Dataset

Number
tested

Success
rate

Success rate
without distillation

taken from Sec. 3.2 Tab. 3.4
word2vec-first-half-retrained

10 TREC 766 0.261 0.445
10 AG 8150 0.323 0.369
10 Amazon movie 1157 0.218 0.250
20 TREC 772 0.491 0.445
20 AG 8126 0.331 0.369
20 Amazon movie 1217 0.199 0.250
30 TREC 335 0.107 0.445
30 AG 8141 0.325 0.369
30 Amazon movie 1229 0.253 0.250
40 TREC 747 0.244 0.445
40 AG 8134 0.337 0.369
40 Amazon movie 1195 0.211 0.250

An other aspect is robustness against transferability, which was tested with the
adversarial examples generated in Chap. 3. Tab. 4.4 shows that the transferability
rate for the AG (0.323−0.337 compared to 0.369) and Amazon movie (0.199−0.253
compared to 0.250) datasets is a bit lower in most cases compared to the retrained
network without distillation (word2vec-first-half-retrained, Tab. 3.4), with a difference
of only 0.032−0.051 (with Amazon movie at temperature 30 being even 0.003 higher).
An exception here is the TREC dataset, however since it has a low accuracy to begin with
(See Tab. 4.1) these values are not really meaningful.

4.3 Discussion
Based on the results the conclusion has to be drawn that defensive distillation has not
the same effect for text classification as it has for image classification. The robustness of
networks trained with defensive distillation is increased only marginally at best, which is
especially true for the generation of adversarial examples.

One reason might be that defensive distillation effectively does a gradient masking
(Tramèr et al., 2017a; Papernot et al., 2016e), which works against methods which directly
or indirectly add the gradient to a generated image. However, in the algorithm used in
this thesis the value of gradient is only used as a measure on the reaction of a network
on a given word, not directly added onto the input. Since the exact characteristics of the
gradient are not important, the gradient masking itself has only a minimal effect on our

25

Chapter 4. Increasing robustness: Defensive Distillation

algorithm.
This hypothesis is further boosted by the results of Carlini and Wagner (2016),

who were able to generate adversarial examples for networks trained with defensive
distillation with a slight modification to the generating algorithm. Carlini and Wagner
(2016) were able to use the gradient by restoring it from the vanishing caused by defensive
distillation. This shows that the gradient still holds enough information for the generation
of adversarial examples, it is just not as easily accessible as without defensive distillation.

If this hypothesis were true, this might mean that other methods based on gradient
masking are also not effective in the text domain. This would, however, need further
testing and might be a topic for future work.

26

Chapter 5

Increasing robustness of deep neural
networks: Adversarial Data
Augmentation

While Chap. 4 focused on increasing the robustness of deep neural networks for text
classification against adversarial examples, this chapter attempts to use adversarial
examples as a special form of data augmentation to improve generalisation and to increase
the overall robustness (e.g. the robustness on normal data) of deep neural networks.

Data augmentation describes the process of enlarging the dataset using transforma-
tions which preserve the label of the sample in order to reduce overfitting (Krizhevsky
et al., 2012), which can even be considered best practise for image processing (Simard
et al., 2003).

Prior research on data augmentation for text focused on randomly replacing words
with synonyms (Zhang et al., 2015; Zhang and LeCun, 2015). Since adversarial examples
are crafted to explicitly be misclassified by neural networks, the idea is to use those
generated adversarial examples for data augmentation.

Therefore, this chapter will compare replacing random words with adversarial data
augmentation to find out whether adversarial examples are useful for data augmentation
in text classification.

5.1 Experiment Setup
The setup is similar to Sec. 3.1. The network architecture tested is the same as the
target network. Two different types of data augmentation were tested: Adversarial Data
augmentation as the proposed method and Random Data Augmentation as the baseline
method.

To test the improvement in robustness and the influence of both data augmentation
methods, the networks are trained on the augmented training datasets (with different
amounts of augmented data samples) and the accuracy is evaluated on the test dataset.

27

Chapter 5. Increasing robustness: Data Augmentation

5.1.1 Random Data Augmentation
The Random Data Augmentation method, as described by Zhang et al. (2015); Zhang
and LeCun (2015), is based on random word replacement by synonyms. The number
of replacement is determined by a geometric distribution, where the probability of n
replacements is described in Eq. 5.1. In this thesis (as well as in Zhang et al. (2015);
Zhang and LeCun (2015)) p is set to p = 0.5.

P(n) = (1− p)n−1 p (5.1)

In the original papers by Zhang et al. (2015); Zhang and LeCun (2015), the LibreOf-
fice1 mytheas is used, however in this thesis the WordNet (Fellbaum, 1998) was directly
used for synonym selection. This has the consequence that each synonym has the same
probability of being chosen.

The dataset with data augmentation is created by taking the original dataset and adding
the desired amount of augmented sentences to it, effectively increasing the number of
samples in the dataset.

5.1.2 Adversarial Data Augmentation
A new method proposed by this thesis is to use the generated adversarial examples from
Chap. 3 as data augmentation. Therefore, the desired amount of adversarial examples is
added to the original dataset with the original class.

Since the generation of adversarial examples takes a considerable amount of time,
the possible number of adversarial examples which can be added is limited (In this thesis
to the amount generated in 3).

For each configuration three networks were trained on the datasets. For each training
a new dataset was created. This should counter random effects (Random Data Augmenta-
tion) and effects of the selection of the subset of adversarial examples (Adversarial Data
Augmentation).

5.2 Results
The mean accuracies of the three trained networks for each augmented dataset can be
seen in Tab. 5.1. In general all of the accuracies are pretty close, the difference between
the maximum and the minimum is smaller than 0.04 for all datasets and augmentation
methods. A similar picture is visible if you plot the data (see Fig. 5.1), where no clear
trend is visible. Overall, the differences look more like random effects than improvements
due to the addition of augmented data.

1https://www.libreoffice.org/

28

https://www.libreoffice.org/

Chapter 5. Increasing robustness: Data Augmentation

5.3 Discussion
Overall, no real effect of neither Random Data Augmentation nor Adversarial Data
Augmentation is visible. This falls somewhat in line with Zhang and LeCun (2015),
who noted that in their experiments networks trained on large-scale dataset have a
small generalisation error to start with. While it is hard to give criteria what exactly is
considered as large-scale, for the experiment conducted here this seems to include all
three datasets. Future work could include testing both data augmentation methods on
smaller datasets.

It is important to note that the number of data augmentation is quite small compared
to the original data sets, the largest being the AG dataset with 8000 augmented data
samples on 16000 original samples. It would be interesting to see how larger numbers of
augmented data influence the accuracy, however since adversarial examples are expensive
to generate (in terms of computation time) it was not feasible in this thesis to generate
more.

Table 5.1: Mean precision of neural networks trained on augmented datasets on test set

Dataset
Number

augmented
samples

Accuracy of
Random Data
Augmentation

Accuracy of
Adversarial Data

Augmentation

TREC 0 (no data augmentation) 0.907 0.903
TREC 200 0.893 0.895
TREC 400 0.909 0.901
TREC 600 0.893 0.900
TREC 800 0.903 0.897
TREC 1000 0.892 0.894
TREC 1200 0.903 0.897
TREC 1400 0.904 0.897
AG 0 (no data augmentation) 0.720 0.724
AG 200 0.718 0.725
AG 400 0.719 0.716
AG 600 0.724 0.718
AG 800 0.729 0.726
AG 1000 0.721 0.723
AG 1200 0.724 0.726
AG 1400 0.711 0.718
AG 1600 0.719 0.718
AG 1800 0.717 0.726
AG 2000 0.720 0.725
AG 2200 0.706 0.716

29

Chapter 5. Increasing robustness: Data Augmentation

AG 2400 0.714 0.727
AG 2600 0.718 0.715
AG 2800 0.716 0.719
AG 3000 0.718 0.711
AG 3200 0.714 0.725
AG 3400 0.706 0.716
AG 3600 0.709 0.721
AG 3800 0.714 0.721
AG 4000 0.716 0.718
AG 4200 0.708 0.714
AG 4400 0.715 0.723
AG 4600 0.711 0.719
AG 4800 0.709 0.719
AG 5000 0.713 0.717
AG 5200 0.714 0.724
AG 5400 0.700 0.720
AG 5600 0.701 0.717
AG 5800 0.710 0.720
AG 6000 0.716 0.718
AG 6200 0.704 0.719
AG 6400 0.712 0.723
AG 6600 0.705 0.725
AG 6800 0.708 0.715
AG 7000 0.716 0.719
AG 7200 0.713 0.715
AG 7400 0.701 0.731
AG 7600 0.711 0.719
AG 7800 0.707 0.724
AG 8000 0.716 0.718
Amazon movie 0 (no data augmentation) 0.895 0.870
Amazon movie 200 0.903 0.909
Amazon movie 400 0.897 0.893
Amazon movie 600 0.908 0.898
Amazon movie 800 0.890 0.875
Amazon movie 1000 0.908 0.878
Amazon movie 1200 0.900 0.888

30

Chapter 5. Increasing robustness: Data Augmentation

 0.8
 0.85

 0.9
 0.95

 1

 0 200
 400

 600
 800

 1000
 1200

 1400

A
cc

ur
ac

y

Number randomly augmented samples

trec

(a) TREC (Random Data Augmentation)

 0.8
 0.85

 0.9
 0.95

 1

 0 200
 400

 600
 800

 1000
 1200

 1400

A
cc

ur
ac

y

Number adversarial examples

trec

(b) TREC (Adversarial Data Augmentation)

 0.6
 0.65

 0.7
 0.75

 0.8

 0 1000
 2000

 3000
 4000

 5000
 6000

 7000
 8000

A
cc

ur
ac

y

Number randomly augmented samples

ag

(c) AG (Random Data Augmentation)

 0.65
 0.7

 0.75
 0.8

 0 1000
 2000

 3000
 4000

 5000
 6000

 7000
 8000

A
cc

ur
ac

y

Number adversarial examples

ag

(d) AG (Adversarial Data Augmentation)

 0.8
 0.85

 0.9
 0.95

 1

 0 200
 400

 600
 800

 1000
 1200

A
cc

ur
ac

y

Number randomly augmented samples

amazonmovie

(e) Amazon movie (Random Data Augmentation)

 0.8
 0.85

 0.9
 0.95

 1

 0 200
 400

 600
 800

 1000
 1200

A
cc

ur
ac

y

Number adversarial examples

amazonmovie

(f) Amazon movie (Adversarial Data Augmentation)

Figure 5.1: Mean precision of networks trained with Random Data Augmentation (left)
and Adversarial Data Augmentation (right). Mean over three trained networks

31

Chapter 6

Conclusion

Unfortunately adversarial examples still remain a mystery despite their easy generation,
as proven by both this thesis (see Chap. 3) as well as existing literature (text domain see
Liang et al. (2017); Samanta and Mehta (2017); Jia and Liang (2017), image domain see
Goodfellow et al. (2014); Kurakin et al. (2016); Papernot et al. (2016a)). Furthermore,
this thesis shows that transferability (an adversarial example created for one neural
network will also work on other networks) is also preserved in the text domain (even
when the networks are trained on different datasets, have different hyperparameter or the
text is encoded in a different scheme). This opens two main questions:

How can we increase the robustness of neural networks against adversarial exam-
ples? One of the methods to reduce the sensibility of neural networks for image
classification to adversarial examples is defensive distillation as proposed by Papernot
et al. (2016b); Papernot and McDaniel (2017). In this thesis (see Chap. 4) defensive
distillation was tested for text classification with the result, that this method does not help
increasing the robustness. Furthermore, the speculation is that methods (like defensive
distillation) based on gradient masking (Tramèr et al., 2017a; Papernot et al., 2016e) only
has a marginal effect on the robustness of neural networks (since the gradient is not added
directly and thus gradient masking(Tramèr et al., 2017a; Papernot et al., 2016e) has no
effect). This leaves the question open for future work on how to increase the robustness
of neural network for text classification against adversarial examples.

Can we use adversarial examples for increasing the overall robustness of neural
networks? Chap. 5 tried to use adversarial examples as a new method for data aug-
mentation to increase the overall robustness of neural networks for text classification.
Unfortunately, the experiment showed a minimal increase in overall accuracy at best,
and often no real change to accuracy at all. From this it can be concluded that using
adversarial examples for data augmentation is not an effective method. Future work
could look into other areas where adversarial examples could be useful.

32

Appendix A

Analysing similarity of gradients for
networks in Chapter 3

One of the interesting results found in Chap. 3 was the transferability rate of the different
neural network variants. In Tab. 3.4 one can see that the transferability rate of the
retrained network (with the same hyperparameter and dataset) is lower than the ones
where the dataset or the hyperparameter were changed. This is surprising, since it is
expected that the retrained network learns similar to the original network and therefore is
more susceptible to transferred adversarial examples.

One way to find out whether the networks learn similar is to compare their gradients.
If the gradients are close, it is likely that they respond identical to the same input and are
thus more susceptible to transferred adversarial examples.

A.1 Experiment Setup
This section is based on Chap. 3 and has therefore the same general setup as described in
Sec. 3.1. The networks used here are exactly the same (with equal weights) as in Chap. 3.
For each adversarial example generated in Chap. 3, the gradient of the original unaltered
sentence is calculated for the following network variants:

• target-word2vec-first-half

• word2vec-first-half-retrained

• word2vec-second-half

• word2vec-alternative-first-half

After that, the gradients are pairwise compared between target-word2vec-first-half
and the other networks. For this, the following distance functions are used:

• Euclidean distance: h j
i represents the gradient for the ith word at the jth position

in the word2vec encoding for the target-word2vec-first-half network, g j
i for the

33

Appendix A.

other network. The euclidean is then calculated as following:

deuclidean(h,g) =

√√√√number words

∑
i

300

∑
j
(h j

i −g j
i)

2

• Maximum word distance: The distance is 0 if the highest gradient is in the same
word for both networks, else the distance is 1. Let us assume that the mean
maximum word distance is 0.6, this means that in 60% of all sentences both
networks have different words as the one they focus the most (under the assumption
that the words with the highest gradients are the most important for the network).

A.2 Results
The results in Tab. A.1 show a clear pattern: The distance metric (both euclidean and
maximum word distance) are highest for the retrained networks (TREC: 0.970 and 0.598,
AG: 0.623 and 0.555, Amazon movie: 0.925 and 0.754), followed by the network with
the different dataset (TREC: 0.530 and 0.193, AG: 0.482 and 0.480, Amazon movie:
0.445 and 0.441) and finally the network with the different hyperparameter (TREC: 0.401
and 0.149, AG: 0.349 and 0.381, Amazon movie: 0.266 and 0.298). The gap between
the retrained network and the others is larger for the TREC (euclidean: 0.440 difference,
maximum word: 0.405 difference) and Amazon movie (euclidean: 0.480 difference,
maximum word: 0.313 difference) dataset, but smaller for the AG (euclidean: 0.141
difference, maximum word: 0.075 difference) dataset.

Table A.1: Comparison of target-word2vec-first-half gradients to other networks

Dataset Network
Average

Euclidean
distance

Average
Maximum word

distance

TREC word2vec-first-half-retrained 0.970 0.598
TREC word2vec-second-half 0.530 0.193
TREC word2vec-alternative-first-half 0.401 0.149
AG word2vec-first-half-retrained 0.623 0.555
AG word2vec-second-half 0.482 0.480
AG word2vec-alternative-first-half 0.349 0.381
Amazon movie word2vec-first-half-retrained 0.925 0.754
Amazon movie word2vec-second-half 0.445 0.441
Amazon movie word2vec-alternative-first-half 0.266 0.298

34

Appendix A.

A.3 Discussion
From the results it can be concluded that indeed for all tested datasets the retrained
network (word2vec-first-half-retrained) learns a different focus than the target network
(target-word2vec-first-half). In addition, this different focus is the furthest away from the
target network compared to the other networks tested (word2vec-second-half, word2vec-
alternative-first-half). This, partly, explains why the retrained network is the least sus-
ceptible one to transferred adversarial examples (see Tab. 3.4). However, there are two
things which have to be considered:

1. Although there is a clear ranking between the retrained network and the other ones,
the distances do not directly correlate to the transferability rate. If they would,
we would have seen a larger transferability rate for the network with different
hyperparameter compared to the one with the different dataset. Since this does not
happen, the gradient distances can not be the sole reason for the low transferability
rate on the retrained network.

2. The exact reason for the distance is unknown and might involve other factors.

35

Appendix B

Repeating the transferability
experiment of Chapter 3 for image
classification (MNIST)

One of the interesting results found in Chap. 3 was the transferability rate of the different
neural network variants. In Tab. 3.4 one can see that the transferability rate of the
retrained network (with the same hyperparameter and dataset) is lower than the ones
where the dataset or the hyperparameter were changed. This is surprising, since it is
expected that the retrained networks learns similar to the original network and therefore
is more susceptible to transferred adversarial examples.

One resulting question is whether this only holds true for text classification or if
this behaviour can be found for image classification. To test this, the neural network
architecture used for text classification (with slight adaptions for image classification)
was used on the MNIST dataset (LeCun et al., 1998).

Figure B.1: Examples of generated adversarial examples.

36

Appendix B.

Table B.1: Transferability rate of 500 examples on the MNIST dataset

Network Transferability rate

first-half-retrained 0.000
second-half 0.000
alternative-first-half 0.000

B.1 Experiment setup
The setup is the same as described in Sec. 3.1, with the following adaptions for image
classification:

Dataset: The MNIST dataset (LeCun et al., 1998) is used for image classification. The
dataset consists of 60,000 images (size: 28×28) containing handwritten digits. The task
is to identify the digit on the image.

Neural network architecture: A few modifications have to be done to the networks
for the image classification process. Instead of a 1-dimensional convolutional layer, a
2-dimensional convolutional layer is used. Because of that, the global max-pooling layer
is changed to a 2-dimensional max-pooling layer.

Algorithm used to create adversarial examples: All images data was normalized
from [0,255] to [0.1]. The Basic iterative method Kurakin et al. (2016) was used for the
generation of adversarial examples. Some of the generated images can be seen in Fig.
B.1

B.2 Results
It was possible to create the adversarial examples, however the transferability rate to all
three networks (retrained, changed hyperparameter, changed dataset) was 0.0, as shown
in Tab. B.1). This means that all adversarial examples were correctly classified by the
other networks and no adversarial example was transferred successfully.

B.3 Discussion
The result is really surprising. In literature, it is shown that adversarial examples created
by using the MNIST dataset transfer to other networks (Szegedy et al., 2013; Goodfellow
et al., 2014; Hosseini et al., 2017; Papernot et al., 2016c,d), so a similar behaviour was
expected here. However, as seen in the results, our generated adversarial examples do
not transfer. Unfortunately, the reason for this is unknown, and a detailed analysis would
be beyond the scope of the master thesis.

37

Appendix C

Repetition of the transferability test in
Chap. 3

The transferability in Chap. 3 was only tested on one single network for each dataset and
variation. This rises the question whether the results are still valid on different random
initialisation of the networks. Since the complete run of the experiment (including
generation of new adversarial examples) is not feasible due to high computation time, a
shorter version of the transferability experiment was done.

C.1 Experiment setup
The setup is similar to Sec. 3.1, especially as the same neural network variations (Sec.
3.1.4) are used.

For testing transferability, the already generated adversarial examples from Chap. 3
are used. In each run, all networks are trained from scratch. After that, the adversarial ex-
amples are tested on these newly trained networks if the corresponding original sentence
is classified correctly on all tested variants.

C.2 Results
The results of this experiment can be found in Tab. C.1. It can be seen that all tested
networks show some transferability (all transferability rates are larger than zero), however
there is some considerable variation within each dataset/variation combination.

C.3 Discussion
This experiment was able to confirm that transferability exists (as shown in Chap. 3).
However, the clear pattern (the retrained networks show a lower transferability rate than
those with the different dataset, which in turn show a lower transferability rate than the
ones with different hyperparameters) could not be seen here. It is worth to note that this
might be due to the different methodology used by both experiments (original: Filter out

38

Appendix C.

samples before generating adversarial examples, this experiment: Use the already filtered
adversarial examples and filter them again). This might have the effect, that samples
which would have been classified correctly in this experiment were filtered out by the
original experiment, thus influencing the transferability rate.

To find out whether the differences are due to random initialisation of the neural
networks or methodology, the original experiment in Chap. 3 has to be repeated multiple
times. This, unfortunately, was not possible due to high computation time.

39

Appendix C.

Table C.1: Transferability results of the repetition experiment

Repe-
tition

Dataset Target network
Number
tested

Transferability
rate

1 TREC word2vec-first-half-retrained 1018 0.355
2 TREC word2vec-first-half-retrained 1080 0.309
3 TREC word2vec-first-half-retrained 1057 0.361

1 TREC word2vec-second-half 1018 0.292
2 TREC word2vec-second-half 1080 0.347
3 TREC word2vec-second-half 1057 0.294

1 TREC word2vec-alternative-first-half 1018 0.429
2 TREC word2vec-alternative-first-half 1080 0.383
3 TREC word2vec-alternative-first-half 1057 0.320

1 TREC character-first-half 1018 0.425
2 TREC character-first-half 1080 0.335
3 TREC character-first-half 1057 0.218

1 AG word2vec-first-half-retrained 6804 0.350
2 AG word2vec-first-half-retrained 6755 0.355
3 AG word2vec-first-half-retrained 7020 0.353

1 AG word2vec-second-half 6804 0.369
2 AG word2vec-second-half 6755 0.368
3 AG word2vec-second-half 7020 0.357

1 AG word2vec-alternative-first-half 6804 0.333
2 AG word2vec-alternative-first-half 6755 0.330
3 AG word2vec-alternative-first-half 7020 0.304

1 AG character-first-half 6804 0.173
2 AG character-first-half 6755 0.147
3 AG character-first-half 7020 0.127

1 Amazon movie word2vec-first-half-retrained 958 0.228
2 Amazon movie word2vec-first-half-retrained 1070 0.257
3 Amazon movie word2vec-first-half-retrained 1019 0.317

1 Amazon movie word2vec-second-half 958 0.238
2 Amazon movie word2vec-second-half 1070 0.263
3 Amazon movie word2vec-second-half 1019 0.288

3 Amazon movie word2vec-alternative-first-half 1019 0.232
1 Amazon movie word2vec-alternative-first-half 958 0.215
2 Amazon movie word2vec-alternative-first-half 1070 0.204

1 Amazon movie character-first-half 958 0.167
2 Amazon movie character-first-half 1070 0.131
3 Amazon movie character-first-half 1019 0.103

40

Appendix D

Software

The following software libraries were used in this master thesis:

• Creating neural networks: Keras (Chollet et al., 2015)

• Creating neural networks: Tensorflow (Abadi et al., 2015)

• Word2vec encoding: Gensim (Řehůřek and Sojka, 2010)

• P.O.S. Tagging : NLTK (Bird et al., 2009)

• Synonym finding: NLTK (Bird et al., 2009) with the WordNet (Fellbaum, 1998;
Miller, 1995) interface

• Various array and dataset operations: NumPy (Walt et al., 2011)

The source code is available at https://github.com/Top-Ranger/master-code .

41

https://github.com/Top-Ranger/master-code

References

Ag’s corpus of news articles. URL http://www.di.unipi.it/~gulli/AG_corpus_
of_news_articles.html. Accessed online on the 27th of October 2017.

Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat,
Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat
Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens,
Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay
Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin
Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning
on heterogeneous systems, 2015. URL https://www.tensorflow.org/. Software
available from tensorflow.org.

Charu C. Aggarwal and ChengXiang Zhai. A survey of text classification algorithms.
In Charu C. Aggarwal and ChengXiang Zhai, editors, Mining text data, chapter 6,
pages 163–222. Springer, 1 edition, 2012. ISBN 978-1-4614-3222-7. doi: 10.1007/
978-1-4614-3223-4.

Jimmy Ba and Rich Caruana. Do deep nets really need to be deep? In Z. Ghahra-
mani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems 27 (NIPS 2014), pages 2654–
2662. Curran Associates, Inc., 2014. URL http://papers.nips.cc/paper/
5484-do-deep-nets-really-need-to-be-deep.pdf.

Steven Bird, Ewan Klein, and Edward Loper. Natural language processing with Python:
analyzing text with the natural language toolkit. O’Reilly Media, Inc., 2009.

Nicholas Carlini and David A. Wagner. Defensive distillation is not robust to adversarial
examples. CoRR, abs/1607.04311, July 2016. URL http://arxiv.org/abs/1607.
04311.

François Chollet et al. Keras. https://github.com/fchollet/keras, 2015.

Moustapha Cisse, Yossi Adi, Natalia Neverova, and Joseph Keshet. Houdini: Fooling
deep structured prediction models. CoRR, abs/1707.05373, July 2017. URL http:
//arxiv.org/abs/1707.05373.

42

http://www.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
http://www.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
https://www.tensorflow.org/
http://papers.nips.cc/paper/5484-do-deep-nets-really-need-to-be-deep.pdf
http://papers.nips.cc/paper/5484-do-deep-nets-really-need-to-be-deep.pdf
http://arxiv.org/abs/1607.04311
http://arxiv.org/abs/1607.04311
https://github.com/fchollet/keras
http://arxiv.org/abs/1707.05373
http://arxiv.org/abs/1707.05373

References

Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and
Pavel Kuksa. Natural language processing (almost) from scratch. Journal of Machine
Learning Research, 12(Aug):2493–2537, 2011.

Ivan Evtimov, Kevin Eykholt, Earlence Fernandes, Tadayoshi Kohno, Bo Li, Atul Prakash,
Amir Rahmati, and Dawn Song. Robust physical-world attacks on machine learning
models. CoRR, abs/1707.08945, August 2017. URL http://arxiv.org/abs/1707.
08945.

Christiane Fellbaum, editor. WordNet: An Electronic Lexical Database. MIT Press,
Cambridge, MA, 1998.

Zhitao Gong, Wenlu Wang, and Wei-Shinn Ku. Adversarial and clean data are not twins.
CoRR, abs/1704.04960, April 2017. URL https://arxiv.org/abs/1704.04960.

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing
adversarial examples. CoRR, abs/1412.6572, December 2014. URL http://arxiv.
org/abs/1412.6572.

Shixiang Gu and Luca Rigazio. Towards deep neural network architectures robust to
adversarial examples. CoRR, abs/1412.5068, December 2014. URL http://arxiv.
org/abs/1412.5068.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural
network. CoRR, abs/1503.02531, March 2015. URL http://arxiv.org/abs/1503.
02531. NIPS 2014 Deep Learning Workshop.

Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R.
Salakhutdinov. Improving neural networks by preventing co-adaptation of feature
detectors. CoRR, abs/1207.0580, July 2012. URL http://arxiv.org/abs/1207.
0580.

Hossein Hosseini, Yize Chen, Sreeram Kannan, Baosen Zhang, and Radha Poovendran.
Blocking transferability of adversarial examples in black-box learning systems. CoRR,
abs/1703.04318, March 2017. URL https://arxiv.org/abs/1703.04318.

Ruitong Huang, Bing Xu, Dale Schuurmans, and Csaba Szepesvári. Learning with a
strong adversary. CoRR, abs/1511.03034, November 2015. URL http://arxiv.
org/abs/1511.03034.

Robin Jia and Percy Liang. Adversarial examples for evaluating reading comprehension
systems. CoRR, abs/1707.07328, July 2017. URL http://arxiv.org/abs/1707.
07328.

Yoon Kim. Convolutional neural networks for sentence classification. CoRR,
abs/1408.5882, August 2014. URL http://arxiv.org/abs/1408.5882.

43

http://arxiv.org/abs/1707.08945
http://arxiv.org/abs/1707.08945
https://arxiv.org/abs/1704.04960
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1412.5068
http://arxiv.org/abs/1412.5068
http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1207.0580
http://arxiv.org/abs/1207.0580
https://arxiv.org/abs/1703.04318
http://arxiv.org/abs/1511.03034
http://arxiv.org/abs/1511.03034
http://arxiv.org/abs/1707.07328
http://arxiv.org/abs/1707.07328
http://arxiv.org/abs/1408.5882

References

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in neural information processing
systems (NIPS 2012), pages 1097–1105, 2012.

Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. Adversarial examples in the
physical world. CoRR, abs/1607.02533, July 2016. URL http://arxiv.org/abs/
1607.02533.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas, Pablo N
Mendes, Sebastian Hellmann, Mohamed Morsey, Patrick Van Kleef, Sören Auer,
et al. Dbpedia–a large-scale, multilingual knowledge base extracted from wikipedia.
Semantic Web, 6(2):167–195, 2015.

Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset
collection. http://snap.stanford.edu/data, June 2014.

Xin Li and Dan Roth. Learning question classifiers. In Proceedings of the 19th Inter-
national Conference on Computational Linguistics - Volume 1, COLING ’02, pages
1–7, Stroudsburg, PA, USA, 2002. Association for Computational Linguistics. doi: 10.
3115/1072228.1072378. URL http://dx.doi.org/10.3115/1072228.1072378.

Bin Liang, Hongcheng Li, Miaoqiang Su, Pan Bian, Xirong Li, and Wenchang Shi.
Deep text classification can be fooled. CoRR, abs/1704.08006, April 2017. URL
http://arxiv.org/abs/1704.08006.

Julian John McAuley and Jure Leskovec. From amateurs to connoisseurs: modeling
the evolution of user expertise through online reviews. In Proceedings of the 22nd
international conference on World Wide Web (WWW ’13), pages 897–908. ACM, 2013.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of
word representations in vector space. CoRR, abs/1301.3781, January 2013a. URL
http://arxiv.org/abs/1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S. Corrado, and Jeff Dean. Distributed
representations of words and phrases and their compositionality. In C. J. C. Burges,
L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger, editors, Advances in
Neural Information Processing Systems 26 (NIPS 2013), pages 3111–3119. Curran
Associates, Inc., 2013b.

George A. Miller. Wordnet: A lexical database for english. Communications of the ACM,
38(11):39–41, November 1995. ISSN 0001-0782. doi: 10.1145/219717.219748. URL
http://doi.acm.org/10.1145/219717.219748.

Roger Mitton. Corpora of misspellings for download. URL http://www.dcs.bbk.ac.
uk/~ROGER/corpora.html. Accessed online on the 10th of November 2017.

44

http://arxiv.org/abs/1607.02533
http://arxiv.org/abs/1607.02533
http://snap.stanford.edu/data
http://dx.doi.org/10.3115/1072228.1072378
http://arxiv.org/abs/1704.08006
http://arxiv.org/abs/1301.3781
http://doi.acm.org/10.1145/219717.219748
http://www.dcs.bbk.ac.uk/~ROGER/corpora.html
http://www.dcs.bbk.ac.uk/~ROGER/corpora.html

References

Nicolas Papernot and Patrick D. McDaniel. Extending defensive distillation. CoRR,
abs/1705.05264, May 2017. URL http://arxiv.org/abs/1705.05264.

Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z. Berkay Celik,
and Ananthram Swami. The limitations of deep learning in adversarial settings. In
2016 IEEE European Symposium on Security and Privacy (EuroS P), pages 372–387,
March 2016a. doi: 10.1109/EuroSP.2016.36.

Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and Ananthram Swami. Dis-
tillation as a defense to adversarial perturbations against deep neural networks. In
2016 IEEE Symposium on Security and Privacy (SP), pages 582–597, May 2016b. doi:
10.1109/SP.2016.41.

Nicolas Papernot, Patrick D. McDaniel, and Ian J. Goodfellow. Transferability in machine
learning: from phenomena to black-box attacks using adversarial samples. CoRR,
abs/1605.07277, May 2016c. URL http://arxiv.org/abs/1605.07277.

Nicolas Papernot, Patrick D. McDaniel, Ian J. Goodfellow, Somesh Jha, Z. Berkay
Celik, and Ananthram Swami. Practical black-box attacks against deep learning
systems using adversarial examples. CoRR, abs/1602.02697, February 2016d. URL
http://arxiv.org/abs/1602.02697.

Nicolas Papernot, Patrick D. McDaniel, Arunesh Sinha, and Michael P. Wellman. To-
wards the science of security and privacy in machine learning. CoRR, abs/1611.03814,
November 2016e. URL http://arxiv.org/abs/1611.03814.

Radim Řehůřek and Petr Sojka. Software framework for topic modelling with large
corpora. In Proceedings of the LREC 2010 Workshop on New Challenges for NLP
Frameworks, pages 45–50, Valletta, Malta, May 2010. ELRA. http://is.muni.cz/
publication/884893/en.

Andras Rozsa, Manuel Günther, and Terrance E. Boult. Towards robust deep neural
networks with BANG. CoRR, abs/1612.00138, December 2016. URL http://arxiv.
org/abs/1612.00138.

Suranjana Samanta and Sameep Mehta. Towards crafting text adversarial samples. CoRR,
abs/1707.02812, July 2017. URL http://arxiv.org/abs/1707.02812.

Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural Networks,
61:85–117, 2015. ISSN 0893-6080. doi: 10.1016/j.neunet.2014.09.003. URL http:
//www.sciencedirect.com/science/article/pii/S0893608014002135.

Fabrizio Sebastiani. Machine learning in automated text categorization. ACM computing
surveys (CSUR), 34(1):1–47, March 2002. ISSN 0360-0300. doi: 10.1145/505282.
505283.

Patrice Y. Simard, David Steinkraus, John C. Platt, et al. Best practices for convolutional
neural networks applied to visual document analysis. In International Conference on
Document Analysis and Recognition (ICDAR), volume 3, pages 958–962, 2003.

45

http://arxiv.org/abs/1705.05264
http://arxiv.org/abs/1605.07277
http://arxiv.org/abs/1602.02697
http://arxiv.org/abs/1611.03814
http://is.muni.cz/publication/884893/en
http://is.muni.cz/publication/884893/en
http://arxiv.org/abs/1612.00138
http://arxiv.org/abs/1612.00138
http://arxiv.org/abs/1707.02812
http://www.sciencedirect.com/science/article/pii/S0893608014002135
http://www.sciencedirect.com/science/article/pii/S0893608014002135

References

Chawin Sitawarin, Arjun Nitin Bhagoji, Arsalan Mosenia, Mung Chiang, and Prateek
Mittal. Darts: Deceiving autonomous cars with toxic signs. CoRR, abs/1802.06430,
February 2018. URL http://arxiv.org/abs/1802.06430.

Jiawei Su, Danilo Vasconcellos Vargas, and Sakurai Kouichi. One pixel attack for
fooling deep neural networks. CoRR, abs/1710.08864, October 2017. URL http:
//arxiv.org/abs/1710.08864.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian Goodfellow, and Rob Fergus. Intriguing properties of neural networks. CoRR,
abs/1312.6199, December 2013. URL http://arxiv.org/abs/1312.6199.

Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Dan Boneh, and Patrick McDaniel.
Ensemble adversarial training: Attacks and defenses. CoRR, abs/1705.07204, May
2017a. URL http://arxiv.org/abs/1705.07204.

Florian Tramèr, Nicolas Papernot, Ian Goodfellow, Dan Boneh, and Patrick McDaniel.
The space of transferable adversarial examples. CoRR, abs/1704.03453, April 2017b.
URL http://arxiv.org/abs/1704.03453.

Stéfan van der Walt, S Chris Colbert, and Gael Varoquaux. The numpy array: a structure
for efficient numerical computation. Computing in Science & Engineering, 13(2):
22–30, 2011. URL http://dx.doi.org/10.1109/MCSE.2011.37.

Xiang Zhang and Yann LeCun. Text understanding from scratch. CoRR, abs/1502.01710,
February 2015. URL http://arxiv.org/abs/1502.01710.

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks
for text classification. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and
R. Garnett, editors, Advances in Neural Information Processing Systems 28 (NIPS
2015), pages 649–657. Curran Associates, Inc., 2015.

Ye Zhang and Byron C. Wallace. A sensitivity analysis of (and practitioners’ guide to)
convolutional neural networks for sentence classification. CoRR, abs/1510.03820,
October 2015. URL http://arxiv.org/abs/1510.03820.

46

http://arxiv.org/abs/1802.06430
http://arxiv.org/abs/1710.08864
http://arxiv.org/abs/1710.08864
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1705.07204
http://arxiv.org/abs/1704.03453
http://dx.doi.org/10.1109/MCSE.2011.37
http://arxiv.org/abs/1502.01710
http://arxiv.org/abs/1510.03820

Erklärung der Urheberschaft

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit im Masterstudien-
gang Informatik selbstständig verfasst und keine anderen als die angegebenen Hilfsmittel
- insbesondere keine im Quellenverzeichnis nicht benannten Internet-Quellen - benutzt
habe. Alle Stellen, die wörtlich oder sinngemäß aus Veröffentlichungen entnommen
wurden, sind als solche kenntlich gemacht. Ich versichere weiterhin, dass ich die Arbeit
vorher nicht in einem anderen Prüfungsverfahren eingereicht habe und die eingereichte
schriftliche Fassung der auf dem elektronischen Speichermedium entspricht.

Ort, Datum Unterschrift

47

Erklärung zur Veröffentlichung

Ich stimme der Einstellung der Arbeit in die Bibliothek des Fachbereichs Informatik zu.

Ort, Datum Unterschrift

48

	Contents
	List of Figures
	List of Tables
	1 Introduction
	2 Related Work
	3 Generating Adversarial Examples and Transferability
	3.1 Experiment Setup
	3.1.1 Adversarial Examples
	3.1.2 Datasets
	3.1.3 Text encoding
	3.1.4 Neural network used
	3.1.5 Selection of samples for adversarial example generation

	3.2 Results
	3.3 Discussion

	4 Increasing robustness: Defensive Distillation
	4.1 Experiment Setup
	4.1.1 Defensive Distillation
	4.1.2 Tested neural networks variations used
	4.1.3 Testing robustness against generating adversarial examples
	4.1.4 Testing robustness against transferability

	4.2 Results
	4.3 Discussion

	5 Increasing robustness: Data Augmentation
	5.1 Experiment Setup
	5.1.1 Random Data Augmentation
	5.1.2 Adversarial Data Augmentation

	5.2 Results
	5.3 Discussion

	6 Conclusion
	A Analysing similarity of gradients for networks in Chapter 3
	A.1 Experiment Setup
	A.2 Results
	A.3 Discussion

	B Repeating the transferability experiment of Chapter 3 for image classification (MNIST)
	B.1 Experiment setup
	B.2 Results
	B.3 Discussion

	C Repetition of the transferability test in Chap. 3
	C.1 Experiment setup
	C.2 Results
	C.3 Discussion

	D Software
	References

