
B A C H E L O R T H E S I S

Automated Inference of Web Software
Packages and Their Versions

vorgelegt von

Pascal Wichmann

MIN-Fakultät

Fachbereich Informatik

Sicherheit in Verteilten Systemen

Studiengang: Informatik

Matrikelnummer: 6792948

Betreuer: Matthias Marx, M. Sc.

Erstgutachter: Prof. Dr.-Ing. Hannes Federrath

Zweitgutachter: Prof. Dr. Dominik Herrmann

Task Description

Today, many websites are dynamically generated by server-side software, such as Wordpress
or Joomla. This approach can reduce the workload of administrators. However, there is
also the risk of exposing personal data of users, if administrators run outdated versions
with vulnerabilities. While website owners are able to look up which version they use,
users often have no possibility to check websites for outdated software. To make informed
decisions whether or not to trust a website with their personal data, they would need to
infer the type of software and its version on the server.

Therefore, the task of this thesis is to find a technique which can be used to remotely detect
software versions used on the server. The technique shall be implemented in the form
of a non-interactive command-line tool. Consequently, this tool can be used to evaluate
whether publicly available pieces of information, e. g., headers, the HTML body, and static
files served, are sufficient to differentiate between different versions of software packages
with high accuracy. The method is given access to the software for which the version
should be detected beforehand. The tool should be easily extendable without having
to implement custom detection algorithms for each software package. Finally, potential
limitations of the approach should be discussed.

2

Abstract

Many websites use popular software packages, e. g., content management systems such as
Joomla, Typo3, or Wordpress. A site using outdated versions of these software packages
might be vulnerable to security issues and thereby endanger the privacy and security of
its users.

Common content management systems consist of a large number of individual files that are
available on a web server. For example, such systems provide static assets like JavaScript
or stylesheet files enhancing the user experience. At least some of those assets are unique
to a specific software version and can therefore be used to identify it. For some of these
files, the content may be characteristic for a particular version.

This thesis implements VersionInferrer, a tool to index static files of many popular software
packages and efficiently apply that generated index to infer the software version used by
websites. VersionInferrer implements a generic approach which does not require manual
adaptions for individual software packages.

VersionInferrer is evaluated against a sample set of 500 000 popular websites. For 19.5% of
those, it is able to detect the usage of one of the 16 tested software packages. For 67.9%
of those sites, VersionInferrer yields an unambiguous estimation for a specific version. Of
the sites for which at least one version was detected, 25.5% may use a version for which
known vulnerabilities exist. A manual verification of 50 sites showed that the results of
VersionInferrer are reliable with only few exceptions.

The work confirms the results of previous research that revealed outdated software on a
considerable number of websites. With VersionInferrer, there is a tool that simplifies such
examinations and makes them available to ordinary users. The provided transparency can
create an additional incentive for website operators to update their sites.

3

Contents

1 Introduction 7
1.1 Motivation . 7
1.2 Related Work . 8
1.3 Reference Implementation . 11
1.4 Organization of the Thesis . 11

2 Problem Analysis 12
2.1 Characteristics of Software Packages and Versions 12
2.2 Characteristics of Websites . 13
2.3 Combining the Characteristics of Software Packages and Websites 14

3 Fundamentals 15
3.1 Inverse Document Frequency . 15
3.2 Decision Trees . 15
3.3 Association Rule Mining . 16
3.4 Wappalyzer Project . 17
3.5 File Normalization . 17

3.5.1 Fuzzy Hashing . 17
3.5.2 Abstract Syntax Trees . 18
3.5.3 Simple File Normalization Techniques 20

3.6 Outdated Software Versions and Risk Analysis 20
3.7 Software Stability and Robustness . 21

4 Detection Technique 22
4.1 Abstractions . 22
4.2 Static File Processing . 24
4.3 Index Construction . 24
4.4 Software Package and Version Inference 24

4.4.1 Gaining Initial Estimates . 25
4.4.2 Finding Strong Guesses Using Iterations 25
4.4.3 Rating Guesses . 26
4.4.4 Exceptional Situations . 27

4.5 Parameterization . 27

5 Evaluation 30
5.1 White-Box Evaluation . 30
5.2 Black-Box Evaluation . 32

5.2.1 Sample Set . 32
5.2.2 Results . 32
5.2.3 Result Verification . 35

4

6 Challenges and Limitations 38
6.1 Challenges Solved in the Course of this Thesis 38

6.1.1 Bias by Generic Site Assets . 38
6.1.2 Index Size . 38

6.2 Limitations . 39
6.2.1 Limitations of VersionInferrer . 39
6.2.2 Limitations of the Evaluation . 39

7 Ethical Considerations 41

8 Prevention of Version Fingerprinting 42
8.1 Removing Explicit Hints . 42
8.2 Moving Static Assets to Non-Default Locations 42
8.3 Merging Static Assets . 42
8.4 Adding “Dummy” Assets . 43

9 Future Work and Conclusion 44
9.1 Future Work . 44

9.1.1 Server-Side Frameworks . 44
9.1.2 Client-Side Libraries . 44
9.1.3 Dynamic Site Assets . 45
9.1.4 Parameterization . 45
9.1.5 Content Delivery Networks . 45
9.1.6 Notifying Website Operators . 45

9.2 Conclusion . 46

Bibliography 48

Appendices 52

A Usage of the Reference Implementation 52
A.1 Obtaining the Software . 52
A.2 Creating the Index . 52
A.3 Inferring the Version of a Website . 52

5

List of Figures

2.1 Site Assets Loaded by the WordPress Admin Panel 13

3.1 Example of a Decision Tree . 16
3.2 Abstract Syntax Tree for a Python Script (Euclidean Algorithm) 19

4.1 Software Package and Source Code Abstractions 23
4.2 Software Definition of Wordpress . 23
4.3 The Two Steps of the Inference Process 25

A.1 Example Output of VersionInferrer . 53

List of Tables

1.1 Comparison of Fingerprinter, BlindElephant, and VersionInferrer 10

4.1 Parameters Used by the Reference Implementation 27

5.1 Results of Scanning a Clean Drupal Installation 30
5.2 Results of Scanning a Clean Joomla Installation 31
5.3 Results of Scanning a Clean WordPress Installation 31
5.4 Number of Scanned Sites . 33
5.5 Frequency of Counts of Different Guessed Versions 33
5.6 Detected Software Packages . 34
5.7 Number of Sites With Vulnerable Software Versions Detected 34
5.8 Number of Sites With Vulnerable Software Versions Detected by Package 36
5.9 Results of the Manual Verification . 36

6

1 Introduction

1.1 Motivation

Many websites use popular software packages, e. g., content management systems (CMSs)
such as Joomla [24], Typo3 [37], or Wordpress [41]. A site using outdated software versions
may be vulnerable to security issues and thereby endanger the privacy and security of
its users. This issue is rated as a severe problem by the open web application security
project (OWASP) ten most critical web application security risks [28].

Another related issue is the use of third-party libraries by many software systems, e. g.,
JavaScript libraries like jQuery [35], or server-side libraries like Django [7]. An outdated
version of those libraries may pose a security vulnerability. When the developers are not
aware of vulnerabilities in libraries they use, the resulting product is likely to contain such
exploitable vulnerabilities.

Software systems have unique characteristics, some of them varying between versions.
For example, websites usually provide static assets like JavaScript or stylesheet assets
enhancing the user experience. At least some of those assets are unique to a specific
software version and can therefore be used by web security analysts to identify the version
of the software system used by a website. If outdated versions are found, this may be
an indicator of poor operations and security processes, especially if versions with known
security vulnerabilities are detected.

For open source software, static assets can be automatically collected and mapped
to specific versions from their public source code repositories. This thesis introduces
VersionInferrer, a tool that implements methods to index static assets of many popular
web software packages. The generated index allows to infer the software version used
by websites efficiently, i. e., causing a minimum number of requests to the analyzed web
server. Reducing the number of requests keeps the server load low, which is important
when applying the method without informing the site operator in advance (for ethical
considerations cf. Chap. 7).

There are multiple use cases for VersionInferrer. On the one hand, it can be used by
professionals during a black-box penetration test. On the other hand, it may also empower
regular web users, because it enables them to determine whether a particular site neglects
security best practices.

On their own, low-level results, i. e., the currently used version number, are only useful for
advanced users. However, the version information could also be presented in a more user-
friendly manner (e. g., by stating whether the version is subject to known vulnerabilities).
It could also be integrated into security assessment and benchmark platforms such as
PrivacyScore [22].

7

1.2 Related Work

This section summarizes the related research on the prevalence and impact of outdated
software versions on the web. Afterwards, relevant related work on automated software
inference is presented.

Van Goethem et al. provide an analysis of several security features in use on the web [8].
They focus on general security measures, e. g., insecure transport layer security (TLS)
implementations, sensitive information leakages, and mixed-content inclusion. Additionally,
V.G. et al. analyze outdated server software and CMSs using a small set of software
systems, which consists of WordPress, Joomla, vBulletin, and MediaWiki. According to
their finding, 8.39% of the analyzed websites use an outdated CMS version, which is a
significant number given the small set of CMS software packages.

Vasek et al. investigate risk factors for web server compromise [38]. They show that popular
CMSs can create a large attack surface, which is correlated to their popularity. Their work
clarifies that outdated software versions are a risk that should be mitigated.

Nikiforakis et al. evaluate the usage of third-party providers for JavaScript library inclusion,
focusing on potential vulnerabilities caused by the incorporation of external scripts [26].
They give an overview of the impact content delivery networks serving libraries have on
web security.

Lauinger et al. analyze the usage of outdated JavaScript libraries on popular websites [16].
Their work focuses on the client-side security of websites deteriorated by outdated and
vulnerable JavaScript libraries. They analyze which websites use outdated libraries and
find common causes for it.

Wappalyzer [1] aims to detect all technologies used by a website, i. e., used CMSs, frame-
works, and programming languages. To achieve that, they use various indicators for all
supported software packages, for example, regular expressions, header checks, or icons. The
accuracy of their results differs based on the strength of the indicators. Some indicators
are rather unreliable, e. g., frequently yielding false positives. Wappalyzer could still be
used to get first estimates on which to base further guesses on. Furthermore, no specific
versions are detected. The Wappalyzer project provides comprehensive datasets that can
be used to infer software packages on websites. Therefore, VersionInferrer uses it to get
first estimates for the inference process.

The “web app tool sniffer” Chrome extension [25] checks the list of source files referenced on
a visited webpage against a mapping of known files to frameworks and software packages.
However, it only considers the information about static files from a single request made
by the browser. In addition, it only detects software packages and frameworks and not
their versions, e. g., it states that a site is using Drupal by displaying its logo.

Pyfiscan [31] allows server administrators to scan their local filesystem for outdated web
software packages. This enables hosting providers to check whether their customers are
using outdated and vulnerable software versions. As pyfiscan inspects local filesystems
and not the publicly accessibly webroots, it is not feasible for scanning arbitrary websites
for outdated versions in order to assess their security and privacy features. While pyfiscan
addresses multiple software packages at once, others focus a specific package to provide

8

in-depth information. For example, the wp_check_plugin_dir project provides a
script [12] that cheks for plugin vulnerabilities in a local WordPress plugin directory.

Guess [40] is a website providing users with the option to submit URLs which are scanned
for used frameworks. Unfortunately, it does not provide any insights on how they gain
those results. The author of Guess has been contacted during the research for this thesis.
He did not disclose any internal details of the tool but only named aspects similar to those
regarded by Wappalyzer. “built with” [4] is a similar tool which provides more information
with less accuracy.

The W3Techs project [29] provides extensive surveys on the usage of web technologies,
including the use of CMSs and specific versions. However, they neither disclose their
analysis methods nor their source code. Instead, they only provide a short summary giving
a very rough overview of their methods.

Several other projects can be used during the detection process. The OWASP maintains
a favicon database [27] containing checksums of popular software packages’ icons. These
can be used to get a first estimation of the software package in use. In addition, it may
reduces the number of possible versions.

Fingerprinter [6] generates fingerprints for websites and software packages. A fingerprint
in this context consists of identifiers of the static files of a website, or a software package.
Those fingerprints can be applied to infer a software version for a URL in three modes. The
first one checks every single fingerprint from the database of software package fingerprints
against the webroot. The second one checks only those which uniquely identify a specific
version. The last mode only compares the fingerprints of those files which are referenced
from the provided URL. The user has to specify the software package for Fingerprinter to
detect its version. Only those features required for the fingerprinting itself are provided by
this tool. Furthermore, software packages which disclose their versions in common ways
and therefore do not need fingerprinting for detection are explicitly not supported. In
contrast to VersionInferrer, Fingerprinter does not optimize the number of requests (cf.
Chap. 7).

BlindElephant [36] is a similar fingerprinting tool. In addition to the functionality provided
by Fingerprinter, they use a more extensive inference process resulting in multiple returned
versions ordered by their probabilities. The name of the software package of which the
version should be detected is required as well. Table 1.1 compares Fingerprinter and
BlindElephant to VersionInferrer.

9

Table 1.1: Comparison of Fingerprinter, BlindElephant, and VersionInferrer

Fingerprinter BlindElephant VersionInferrer

version inference without any
knowledge about a website except
for its URL

7 7 3

detection of multiple technologies
on a single website 3 (7)a 7b

generic indexing of software pack-
ages without package-specific
information

(7)c 7 3

minimization of the load gener-
ated on the web server (i. e., the
number of requests)

7 7 3

intuitive usage 7 7 3

a. The tool can be used multiple times for separate technologies, thus being able to detect multiple
technologies if used multiple times.

b. VersionInferrer can be extended to support multiple technologies as well.
c. An object-oriented approach is used that supersedes the redundancy of code, but several custom

functions are required for each software package.

10

The plugin-based whatweb tool [13] utilizes several methods to detect software packages
and versions. Its plugins combine simple checks like HTML headers as well as fingerprinting
approaches like the related works presented before. This focus on plugins allows arbitrary
methods to be integrated into whatweb. Therefore, it is primarily a collection of several
tools that give helpful insights on the internals of websites.

Similar fingerprinting approaches are used in other areas than the web as well. For example,
nmap [20] uses a fingerprinting approach of the TCP/IP stack to detect operating systems
on the network [19].

Concluding, several researches have been made regarding vulnerable web software and the
inference of software versions. However, only a few projects focus on developing a reliable
and easy-to-use method to automatically detect software versions in use by arbitrary
websites. Furthermore, it is not sufficient to keep the client-side scripts up to date. A
vulnerable backend software can have an even bigger impact on the security of website
users. Therefore, both the used JavaScript libraries and their versions as well as the
server-side software need to be assessed. This thesis focuses on assessing the server-side
software packages.

1.3 Reference Implementation

In this thesis, VersionInferrer is presented, an automated tool that infers software packages
and versions used by websites. It is handed in together with this thesis as a proof-of-
concept. The implementation is also released as free software [39]. A short explanation of
the usage of VersionInferrer is provided in Appendix A.

1.4 Organization of the Thesis

The thesis starts out in Chap. 2 by analyzing the problems that need to be solved for
the automated inference of website software packages. Several fundamentals for the index
construction and the version inference are explained in Chap. 3, followed by a presentation
of the approach in Chap. 4. An evaluation of the chosen approach including automated
and manual verification of the results is presented in Chap. 5. Limitations of that approach
as well as challenges encountered during this thesis are discussed in Chap. 6. Chapter 7
discusses ethical considerations of providing a tool that detects versions. Chapter 8 presents
protective strategies for site owners which make it more difficult to infer the version.
Finally, Chap. 9 proposes future work and concludes this thesis.

11

2 Problem Analysis

This chapter discusses the problems that need to be solved in order to construct an
automated method inferring software packages and versions used by websites.

The following assumptions were determined to be reasonable for the development of a
version inference tool. It has the possibility to retrieve arbitrary paths from the internet.
The tool is provided with a URL of a website that should be analyzed for its used software
packages and their versions. Furthermore, it has access to the source code of software
packages beforehand.

2.1 Characteristics of Software Packages and Versions

A software package usually consists of source code that executes on the server as well as
source code that is run on the client. The server-side code is not available to website users,
but only the results of the server-side execution. In contrast, the client-side code is sent
to the user as it has to run in the user’s browser.

The server either serves the client-side source code unprocessed, i. e., as static files, or
generates it dynamically, e. g., for localization and internationalization purposes. However,
dynamically generated source code may contain static parts.

Figure 2.1 shows the site assets that the admin dashboard of the WordPress software
references. The resources marked with a green dot are static, the others are dynamically
generated during runtime.

Distinct software releases can differ in the server-side source code as well as in the client-
side source code. Those differences in the client-side source code can be detected by
retrieving the source code over HTTP, like a web browser would do. Changes in the
server-side source code result in different behavior of the website. This can not generally
be recognized from the data transmitted by the server. Instead, it can only be observed
after having analyzed the differences in the server-side logic.

Most software packages are maintained using a version control system (VCS) such as Git.
Those contain metadata about software releases and allow the comparison of different
versions. For open source software, the VCS repositories are usually publicly available.
Therefore, those can be used to check out the source code for specific versions of that
software.

Releases of software packages usually contain information about the software, changes of
the version at hand, and documentation on its installation. A common way to deliver such
information is using README or CHANGELOG files within the release. Some packages
place such files in the same directory as the program files that are deployed to the webroot.
Therefore, it is likely that a site operator deploying such a software package does not
remove those files, making them available to the public. For example, the WordPress

12

Figure 2.1: Site Assets Loaded by the WordPress Admin Panel

software package contains a README file that explains what WordPress is, lists its
requirements, and describes the steps necessary for its installation. While it does not
contain a version identifier, the combination of the versions of the dependencies as well
as the copyright information yield several README files that are unique to one specific
WordPress version.

Furthermore, software packages may provide information about themselves, e. g., by using
a generator meta attribute or a footer containing the name of the software and possibly
its version. Some software packages allow this behavior to be changed in the configuration.
For example, WordPress serves a generator meta attribute that contains the package and
version identifier by default. Moreover, the initial site theme contains a footer containing
the string “Proudly powered by WordPress”.

2.2 Characteristics of Websites

A website can be retrieved using its uniform resource locator (URL). This contains a
domain name or IP address identifying the host from which the webpage should be
requested. The actual request is sent using the hypertext transfer protocol (HTTP). The
server replies with a response that consists of a response body containing the actual
content as well as headers specifying information about the response, and the status.

Both the headers and the response body can contain information about software packages
in use by the website. Some software packages set an HTTP header called X-Powered-By
that contains the name and the version of the package. The response body contains the
code that should be interpreted by the browser of the client, or additional assets required
to render the webpage, e. g., style definitions, image files, data files, or similar. Depending
on the application, it can also contain arbitrary files for download.

13

The contents of the HTTP response can either be dynamically generated or static. Dynamic
content has the property that it can depend on the request sent to the server as well as
the environment. For example, a request may contain information about the current user
– a session identifying him across multiple requests, or a preferred language to display
information in.

Static assets can be optimized during deployment to reduce the transmission time. This can
be achieved by minifying client-side source code files (e. g., removing redundant spaces and
newlines, or replacing identifiers by shorter names) or compressing data files (e. g., images).
Additionally, static assets can be embedded within the body of dynamically generated
responses. In this case, parts of dynamic pages are actually static. To compare those
parts against known artifacts of software packages, they must be extracted from the page.
However, extracting them in a generic way is not possible, because the extraction method
depends on the specific implementation of the underlying software package. Therefore,
reliable extraction requires additional information for each software package.

2.3 Combining the Characteristics of Software Packages and Websites

Given the knowledge of the characteristics of software packages and their versions, and
of websites, it is possible to infer the software versions that are in use by websites. The
characteristics of the website can be determined by sending specific requests and analyzing
the returned responses. An efficient approach for that will be described in Sect. 4.4.
In order to compare the characteristics of websites with those of software packages,
the characteristics of the software packages need to be known as well. To prevent the
necessity of analyzing all supported software packages for each website, an index of the
characteristics of the software packages can be built in advance. The construction of such
an index is explained in Sect. 4.3.

The primary characteristics dealt with in this thesis result from the assets for the client.
That includes static files served by the web server, optimized static site assets, and also
dynamically generated information like the markup of the main page.

To infer a software package and version of a given website, the generated index is queried
for the software packages’ characteristics. The performance of this approach is evaluated
in Chap. 5.

14

3 Fundamentals

This chapter reviews techniques that have informed the design of VersionInferrer.

3.1 Inverse Document Frequency

The inverse document frequency (IDF) is used to calculate the importance of specific
words within a set of documents. Frequently used words differentiate less between multiple
documents while rarely used words bring a higher information gain. Therefore, rare words
are weighted higher than frequent words. The IDF is calculated by the following formula
where N is the total number of documents and ni the number of documents containing
the term ti [30]:

idf(ti) = log N

ni

This IDF can also be applied for static files. The words correspond to the static files from
the index, and the documents to the software versions. Consequently, static files that are
in use by many different software packages and versions, i. e., common JavaScript libraries
like jQuery, do not generate much entropy. At the same time, a static file which is in use
by a single software version only is rather valuable for the recognition. This property is
modeled using the IDF.

3.2 Decision Trees

Decision trees are used to model decisions and their possible outcomes. A decision tree
is a hierarchical data structure that defines several splits based on attributes of data
samples using test functions. It consists of nodes that correspond to the data attributes
being tested. Each node has outgoing branches according to the possible outcomes of its
tests [14]. Figure 3.1 shows an example of a decision tree.

A common algorithm for decision tree construction is the ID3 algorithm. It starts with a
tree with one node (the root node) containing all items. The attribute with the highest
entropy is selected and an outgoing branch from the node created for each value, moving
the items to the new nodes based on their value of the chosen attribute. This step is called
split. It is repeated recursively on all nodes until all attributes have been split [14].

To receive an outcome from a decision tree, it is evaluated against complete datasets,
i. e., all attributes of all the items are already known and the full tree is constructed in
advance. For the inference of software versions based on static site assets, determining
information for a decision is expensive (e. g., requires at least one request to the web
server). In addition, a lot of information from the index is usually not required because the
main webpage already allows the exclusion of the majority of known static files. Therefore,

15

hash(a.css) ?= 7fa

hash(a.js) ?= 8ca

Version A

yes

unknown

no

yes

hash(b.js) ?= ac9

Version C

yes

hash(b.js) ?= bb2

Version B

yes

unknown

no

no

no

Figure 3.1: Example of a Decision Tree

constructing a complete decision tree would result in a huge overhead due to the creation
of many unused branches. Instead, VersionInferrer dynamically decides which site asset
could yield a high entropy given the previously gained information. This is similar to the
decision tree approach, but does not require constructing a full decision tree.

3.3 Association Rule Mining

Association rule mining deals with the discovery of relations between itemsets. It allows
the construction of statements of how likely items influence each other, e. g., how likely it is
that an item occurs together with another item, or whether the probability is low that an
item occurs if another occurred as well. Association rule mining usually deals with several
transactions consisting of itemsets, e. g., purchases of customers in a supermarket [42].

Association rules are of the form A → B. This rule states that an itemset containing
the item (or the set of items, depending on the specific definition) A also contains the
item(set) B.

Definition 1. The support of an item within a dataset is the number of transactions
that contain it [42].

Definition 2. The confidence of an association rule A → B is the probability that a
transaction contains the item B under the condition that it contains the item A [42].

The task dealt with in this thesis is similar to the tasks handled in association rule mining.
In this thesis, static assets from websites are considered. Given a guess for a specific
software version, the assets expected under the assumption that the guess is true can
be extracted from the index. By retrieving those paths (or a subset of them) from the
webroot, the ratio of expected assets that actually exist and whose contents match the
expectations can be determined. Thus, we do not consider transactions in this thesis, but
collections of static files.

The methods of association rule mining can be transferred to VersionInferrer, thus
giving a formal background on how to define support and confidence. However, no explicit
association rule construction is used in this thesis. Furthermore, not the complete collection

16

of static files is known, but only a subset of the assets of a website is retrieved that is
based on the expected entropy of the files.

3.4 Wappalyzer Project

The Wappalyzer project [1], which has been introduced in Sect. 1.2, develops a tool which
uses generic patterns on websites to detect technologies and software packages they use.
They maintain a comprehensive JSON file (the “apps” file) containing the information
that Wappalyzer uses to detect software packages. This file is used by VersionInferrer
in order to find first estimates for the inference process. Using these first estimates, the
fingerprinting approach can be applied more targetedly, i. e., without the need to retrieve
a lot of files which probably do not exist on the webroot.

Wappalyzer is not directly used as a subroutine within VersionInferrer, but the results
of requests are compared against the apps file. This contains checks for HTTP headers,
for HTML meta tags, for specific patterns contained in the body of a request, and for
specific script tags indicating a specific software package. These indicators are used to get
a first estimate of a software package, not yet a specific version of a package. The main
fingerprinting approach described in Sect. 4.4 is used to isolate potential versions of those
packages yielded in the first estimation phase.

While Wappalyzer executes the JavaScript code embedded on websites during their analysis,
VersionInferrer only parses the HTML and the HTTP response headers. Therefore, the
context of the JavaScript environment is not regarded for the first estimation using the
Wappalyzer apps file. This has positive security implications as no program code retrieved
from the web is executed during the analysis. Furthermore, this makes the analysis more
efficient as no additional code (possibly requiring arbitrary time to complete) needs to be
run. Nevertheless, this comes at the cost of potentially missing information that is only
visible when executing the program code of the website.

3.5 File Normalization

3.5.1 Fuzzy Hashing

Usual cryptographic hashes like SHA-1 [5] can be used to recognize identical files. However,
already a single differing bit produces a significantly different hash. While this is an
important property for cryptographic hash functions, in the context of (static) files from
a webroot, small modifications are rather common. For example trailing newlines or
the concatenation of multiple static assets into a single file are commonly found in site
deployments [15]. Using cryptographic hashes, such files would not yield a match when
compared to the index as they are not exactly identical.

Fuzzy hash functions [17] provide a possible solution by generating similar hashes for
similar input data. Therefore, a similarity to known files within the index suffices to gain
further information where a conventional hash would not provide any further insights.
This allows the detection of files which are almost but not completely identical.

17

A primary application of fuzzy hashing algorithms is in malware and spam protection.
Those hashes are used to compare executable files or emails against hashes of known
bad artifacts. The literature highly focuses on the attack surface of those algorithms as
vulnerabilities in those fuzzy hash functions could be exploited in order to bypass malware
protection software. Therefore, using a single fuzzy hash function for such purposes is not
secure, but a combination of multiple such algorithms can be sufficiently secure [17]. For
the purpose of comparing files from source code repositories to deployed files, the dangers
of intentional collisions are negligible as they are not used to protect against malware.
Software package maintainers and website operators could exploit vulnerabilities in fuzzy
hashing algorithms in order to make the version detection of their packages more difficult,
but this is rather unlikely and the fuzzy hashes are not used as the only comparison
mechanisms. Furthermore, the static file versions of software packages are available and
can be compared to files found on the web using different methods.

Most of the fuzzy hashing schemes proposed in the literature have the property that fuzzy
hashes of similar files differ only slightly from each other, i. e., have a low edit distance.
To find all the files within a database of fuzzy hashes which are similar to a given file, the
edit distance of the fuzzy hash of the given file to every file in the database needs to be
calculated. All the files in the database whose edit distance to the compared file is below
a specific threshold yield a match. This aggregation is rather expensive if done naively as
the calculation of the edit distance can not easily be optimized using database indexes or
similar technologies. Especially when the database contains a very high number of files –
as is the case for the static file index proposed in this thesis –, it is too slow to be used in
practice to search for every file retrieved from a webroot in the database. This problem
does not exist with hashes where an exact match is required as any database management
system is able to efficiently search for exact matches in huge amounts of data. Therefore,
more efficient alternatives than the edit distance of fuzzy hashes are required in practice.
Data structures like k-d trees [3] or r-trees [10] support similarity searches. However, it
needs to be evaluated if these data structures can be used with fuzzy hashes.

A comparison of the performance of different fuzzy hashing techniques and related
approaches is left for future work. The VersionInferrer prototype matches files without
fuzzy hashing and was found to perform already reasonably well (cf. Sect. 5).

3.5.2 Abstract Syntax Trees

An abstract syntax tree (AST) is a semantic representation of a source code grammar that
is independent from a specific programming language a program is written in. ASTs can
contain annotations about the source code [9]. Due to the properties of ASTs, differences
in the source code that do not have a semantic impact do not change the generated AST,
e. g., different indentations in the simplest case. Furthermore, when only the structure of
the tree is compared, different names of expressions can be considered as equal. Especially
files with minification applied are rather common on websites, thus yielding to several
different variable names used in actually identical files. Figure 3.2 gives an example of an
AST for Python code implementing the Euclidean algorithm.

ASTs can be used as an abstraction for source code files. They can be used for the
normalization of files before the indexing or analysis process to get a deterministic
canonical form resilient against source code minification. However, static files of different

18

while b != 0:
if a > b:

a -= b
else:

b -= a
return a

Image Source: By Dcoetzee [CC0], via Wikimedia Commons, https://commons.wikimedia.org/
w/index.php?title=File:Abstract_syntax_tree_for_Euclidean_algorithm.svg&oldid=126128927

Figure 3.2: Abstract Syntax Tree for a Python Script (Euclidean Algorithm)

19

https://commons.wikimedia.org/w/index.php?title=File:Abstract_syntax_tree_for_Euclidean_algorithm.svg&oldid=126128927
https://commons.wikimedia.org/w/index.php?title=File:Abstract_syntax_tree_for_Euclidean_algorithm.svg&oldid=126128927

software versions may only differ in the naming of specific variables or results of a similar
small refactoring. Those static files of different versions would be regarded as identical
when applying the AST.

To ensure the reliability of using ASTs for file matching, it has to be ensured that they
actually yield deterministic results, i. e., provide the same output for the same input
independent from the environment or software version. A way to achieve that is to use the
normalization explained in Sect. 3.5.3 which has the purpose of converting data structures
into deterministic canonical forms.

The construction of an AST is rather expensive. While building the index, the AST for
hundreds of files has to be constructed. When indexing hundreds of software versions
of several software packages, this results in a far longer execution time than without
using ASTs. A prototypical implementation of AST-based matching was found to have a
prohibitive impact on the performance of VersionInferrer. Therefore, as with fuzzy hashing,
the integration and evaluation of ASTs is left for future work.

3.5.3 Simple File Normalization Techniques

Identical program files can be represented in different ways, thus yielding to different
checksums when using cryptographic hash functions. While fuzzy hashing algorithms as
presented in Sect. 3.5.1 can be used to detect similar files, querying fuzzy hashes in the
database is rather expensive, thus not being a feasible option in practice.

File normalization provides another method to achieve a similar goal. During normalization,
files are cleaned into a canonical form that is the same for files which are semantically
identical. The concrete normalization depends on the file type, e. g., for text files, trailing
newlines and spaces can be stripped in the simplest case. Applying such a normalization
leads to identical (cryptographic) checksums for files that were only similar before being
processed. Unlike the checksums generated by the fuzzy hashing schemes which require a
fuzzy matching against the index, the checksums of the normalized files can be compared
against the index efficiently using exact matches, thus not comprising the disadvantages
of using fuzzy hashes.

3.6 Outdated Software Versions and Risk Analysis

Different software packages employ different versioning and release strategies, checking
whether a version is up-to-date is not straight-forward. For example, many software
packages provide (several) long-term-support release branches that receive security patches
while the main development is done on a different release branch that receives regular
updates. Thus, it is not sufficiently reliable to compare the release date of an inferred
software version to the release date of the most recent stable version released. Instead,
release strategies specific to each software package need to be modeled. As these strategies
can be arbitrary, it is not possible to elaborate a reliable generic method to check the
up-to-dateness of a software version that does not use software-specific information.
Consequently, only the most recent stable version (identified by its release date instead of
it version number) is regarded as up-to-date in the evaluation (cf. Chap. 5).

20

It is important to have the most recent software version of a release branch installed
because it often contains security patches. Accordingly, the existence of known security
vulnerabilities for a specific software version implies risks accompanied to its usage and
indicates that a newer version has probably been released. Common vulnerabilities and
exposures (CVE) records can be used to automatically check for security vulnerabilities.
Those usually contain information about the software package as well as the versions
affected by the vulnerability. However, the information regarding the specific versions
affected is not always accurate. The results gained from using the CVE data are therefore
not completely reliable. Nevertheless, they can be used for an automated assessment of the
risks arising from the use of a website using outdated software. VersionInferrer constructs
CVE statistics from the publicly available datasets1. VersionInferrer compares the results
of the inference against those CVE statistics to provide the user with information about
security vulnerabilities.

3.7 Software Stability and Robustness

To ascertain the stability of the VersionInferrer implementation as well as its robustness in
unexpected situations, testing is required. The reference implementation contains several
test cases that test core features of the software. These test cases can be used to verify
that code changes or updates of the environment do not break the software.

1. CVE statistics for YEAR can be retrieved from https://static.nvd.nist.gov/feeds/json/cve/1.0/nvdcve-
1.0-YEAR.json.gz

21

https://static.nvd.nist.gov/feeds/json/cve/1.0/nvdcve-1.0-YEAR.json.gz
https://static.nvd.nist.gov/feeds/json/cve/1.0/nvdcve-1.0-YEAR.json.gz

4 Detection Technique

This chapter presents the techniques that are used within the VersionInferrer tool.

4.1 Abstractions

The focus of this thesis is to provide a generic approach that does not need to be adjusted
to specific software packages. To achieve that, abstractions to the software packages, their
versions, and their static files are required.

Figure 4.1 gives an overview of the used abstractions. First of all, the software definitions
contain general metadata of software packages, e. g., their name(s), vendor, and license.
In addition, code providers are used to access the source code, providing a well-defined
interface. They can implement arbitrary methods to retrieve the source code and versions,
i. e., using version control system repositories, downloadable archive files, or local filesystem
paths. The path mapping defines a mapping from the source code tree path to the webroot
path. This is required to construct the expected webroot path of static files based on
their location within the source. Lastly, the ignored paths can be used to exclude files or
directories within the paths that are mapped to the webroot using the path mapping from
indexing.

Using these abstractions, all software packages with available source code can be indexed
using a common approach. Figure 4.2 shows the usage of those abstractions for the
WordPress software package. A similar generic definition can be created for any other
software package in order to allow the automated indexing.

Additional abstractions are used for the data store backing the index. All access to the
index is handled through a backend abstraction.

VersionInferrer uses a relational SQL database as data store. Due to the construction of
relational databases, aggregations can be calculated rather efficiently on database level and
indices can be used to further improve the performance of frequent queries. Nonetheless,
the abstractions allow the usage of any other data store as a backend as well.

Further abstractions are used for static file types. These abstractions are used for the
decision whether a file is of a specific type, whether it is relevant for the indexing or
the inference process, and for the preprocessing of its contents, i. e., the canonicalization
described in Sect. 3.5.3. Moreover, the file abstractions provide a modular way of adding
(or removing) supported file types.

22

Software Definition

• software package

• provider(s)

• path mapping

• ignored paths

Software
Package

• name

• vendor

Path Mapping

/ /public
/help /doc

Code Provider

Git Provider

• remote url
Archive Provider

• directory index url

Tarball Provider

Zipfile Provider

Figure 4.1: Software Package and Source Code Abstractions

• software package
– name: WordPress
– vendor: WordPress

• code provider: Git provider
– url: https://github.com/WordPress/WordPress.git

• path mapping: / → /

• ignore paths: None

Figure 4.2: Software Definition of Wordpress

23

https://github.com/WordPress/WordPress.git

4.2 Static File Processing

The files loaded from the source code directories and retrieved from the analyzed websites
are processed before they are used for indexing or inferring, respectively.

The file type abstractions described in Sect. 4.1 are used to determine the file type.
Furthermore, they define whether a specific file (based on its determined type) should be
considered during index construction or during the inference.

The processing of static files includes converting them into a canonical form as described
in Sect. 3.5.3. Due to the drawbacks of abstract syntax trees and fuzzy hashing algorithms
described in Sect. 3.5, they are not used in the final prototype of VersionInferrer. Instead,
only JSON and YAML files are brought into a canonical form by enforcing a deterministic
order of items within key-value structures and lists, and stripping leading and trailing
spaces.

4.3 Index Construction

To identify candidate versions from static files, an index of known static files is required
for comparison. As many popular software packages exist and most of them have frequent
releases, an automated way of creating such an index is needed. The number of required
manual adaptions for each software package should be minimal.

To construct the index, the known software packages are loaded from the available
definitions. For each of them, all released stable versions are fetched using the abstractions
described in Sect. 4.1.

To index a software version, its source code is obtained using the source code provider.
Subsequently, all relevant static files are determined using the file type abstractions.
These abstractions define a processing procedure. The actual processing is described in
Sect. 4.2.

To reduce the required computation time, the indexing is applied incrementally, i. e.,
ignoring all versions which have been indexed previously.

4.4 Software Package and Version Inference

The user only provides a URL of a website for which VersionInferrer should infer the
software package and its version. VersionInferrer’s inference procedure is divided into two
steps. Firstly, initial guesses are identified using the response from the provided URL.
These guesses consist of a software package and its version. Secondly, the list of guesses
is used to get webroot paths from the index providing entropy to differentiate between
the guesses. This second step is repeated several times until a best guess is inferred or
too many webroot paths do not provide new information gain. The process is graphically
visualized in Fig. 4.3. The following sections describe the two steps in detail.

24

gain initial
estimates

retrieve path
from webroot

guesses

repeat until enough support
or no further gain

populate

use

improve

Figure 4.3: The Two Steps of the Inference Process

4.4.1 Gaining Initial Estimates

First of all, VersionInferrer tries to detect a set of software versions that might be used on
that site. In order to achieve that, the page served at the provided URL is retrieved. The
response is analyzed for some general hints, e. g., a generator meta tag. That tag often
contains the name of the used software package and – in some default configurations –
includes a version string as well.

In addition, the data of the Wappalyzer project presented in Sect. 3.4 is used to get names
of software packages that might be in use. For that, both the response headers and the
response body are compared against the Wappalyzer data for those software packages that
are stored in the index. Since the Wappalyzer data does not include version information
for most of the software packages, all the versions of a software package are added to the
set of initial estimates.

Furthermore, all the assets that are referenced from the main page are retrieved and
compared against the index. All the indexed versions that use any of those assets are
added to the set of first estimations.

4.4.2 Finding Strong Guesses Using Iterations

After having collected first estimates for the used software versions, these are improved in
multiple iterations to yield guesses.

Each iteration uses the guesses that have been yielded in the previous iteration. The first
iteration uses the initial estimates instead of guesses from the previous iteration.

To improve these guesses, paths with a high entropy are required to further differentiate
between the current guesses. Thus, the index yields new paths, which correspond to
decisions in a decision tree. In detail, the number of software versions from the set of
guesses that use a static file from the index is determined for each known static file. Then,
these are ordered by their IDF as explained in Sect. 3.1. Those paths that have already
been retrieved are excluded to prevent the redundant retrieval of site assets.

25

The paths with the highest estimated entropy are then retrieved from the webroot.
The exact number of retrievals per iteration depends on the parameters (cf. Sect. 4.5).
Furthermore, more assets are retrieved if requests fail, configured by a parameter as well.

Those retrieved paths are not necessarily referenced from the website. This can provide
additional information that is not directly available from the regular website, i. e., some
assets might only be referenced for authenticated users, or when a specific feature is
enabled by the site administrator.

After having retrieved the determined paths, the information they provide is used to rate
all guesses and possibly add new guesses, which is explained in the next subsection. It
results in a new set of best guesses that are a subset of all guesses.

If the best guesses are not improved in an iteration, the counter of useless iterations
is increased. When this counter reaches a configurable value, the analysis is stopped
regardless of the quality of the result.

Based on the new set of best guesses, another iteration is started or the analysis stopped.
If there is already only one single best guess left and its support is high enough (cf.
Sect. 4.4.3), it is returned as a result and no further iterations are executed. In addition,
the maximum number of iterations is configurable. When that number is reached, the
analysis stops and no further iterations are used to improve the result.

4.4.3 Rating Guesses

Guesses are rated based on the information that the retrieved site assets and their webroot
paths provide. This rating is used to determine a subset of best guesses. Furthermore,
these best guesses are rated on whether they have enough support to accept them as a
final result.

Each guess is rated according to the number of assets retrieved from the webroot of the
site that match the index, that did not match the index, or that did not exist on the
expected path on the webroot. These ratings are weighted using the IDF described in
Sect. 3.1, giving rare assets a higher weight than static files that are in use by many
software packages. Furthermore, the positive and negative matches are weighted according
to the parameterization as explained in Sect. 4.5.

The rating of the guesses is similar to the support definition used in association rule
mining explained in Sect. 3.3. Therefore, the weighted rating of the guesses divided by
the number of guesses is called support.

Having rated all guesses, comparing them is possible. Often, some guesses have a very low
support that does not significantly increase. Such guesses are therefore not regarded in
iterations to improve the efficiency. In addition, this optimizes the entropy and therefore
reduces the length of the path towards the final guess in the corresponding decision tree.
It is still possible for new insights of future iterations to improve the support of such
guesses, thus making them relevant for new path decisions.

The guess with the best rating is called the best guess. If multiple guesses have the same
rating, the best guess is a set of multiple guesses. It is possible that the final result of

26

VersionInferrer is a set of multiple best guesses. In that case, no further distinction between
those versions (and possibly packages) is possible with the given parameterization.

To assess the support of a set of guesses, the guess decisiveness is determined. It is
calculated by the mean of the differences from the support of the best guess to the support
of every other guess. This is used to measure the information gain of an iteration. The
change of this decisiveness from an iteration to the next is called the iterations gain. If the
gain is below a configurable threshold, the iteration is marked as useless (cf. Sect. 4.4.2).

4.4.4 Exceptional Situations

Firstly, if no first software version estimate can be guessed in the first step, it is not clear
which assets should be retrieved in the second step. Potentially, it would be necessary
to retrieve a lot of site assets in order to isolate the search space, and the probability
of actual results is rather low. Therefore, the second step is skipped and VersionInferrer
terminates without a result if no single estimate is yielded by the first step.

Secondly, many failing HTTP requests are considered as a possible attack indication by
several website hosters. Therefore, if many retrievals fail within an iteration, the inference
process is aborted.

4.5 Parameterization

VersionInferrer has to make several decisions, including about what paths to retrieve from
a webroot, how to assess gained information, and whether more iterations are required
to get enough confidence for the guess. While constructing the index, decisions about
what files to include and how they are processed are required. These decisions depend on
several factors, some of them influencing each other. Furthermore, the optimal decisions
highly depend on the site that is being analyzed. As VersionInferrer focuses on providing
a generic approach towards the web application inference, such optimal decisions can
not always be taken. Balancing between false positives, false negatives, and resource
consumption requires adaptable settings which are presented in Table 4.1.

Table 4.1: Parameters Used by the Reference Implementation

Parameter Description

guess ignore distance The minimum distance of the support of distinct guesses
required to discard the weaker guess (default value: 3)

guess ignore min posi-
tive support

The minimum positive support the best guess needs to
have in order to discard any guess at all (default value: 2)

guess relative ignore
distance

The relative distance of the best guess’s support to the
support of inferior guesses that is required to ignore the
inferior guesses (default value: 0.3)

27

guess limit The number of guesses that should be considered to select
paths with high entropy (default value: 7)

iteration min improve-
ment

The minimum improvement in the support of the best guess
compared to other guesses in order to mark an iteration
as not worthless (default value: 0.5)

max iterations The maximum number of iterations allowed in total (de-
fault value: 15)

max iterations without
improvement

The maximum number of iterations that are allowed to not
yield an improvement until the analysis is stopped (default
value: 3)

min absolute support The minimum absolute support that the best guess needs
to have in order to be accepted (default value: 10)

min support The minimum support that the best guess needs to have
relative to the number of site assets that have been regarded
in order to accept the guess (default value: 0.2)

positive match weight The weight to apply on positive matches (i. e., site assets
that are part of the guessed software version and actually
match the asset deployed on the analyzed site) (default
value: 1)

negative match weight The weight to apply on negative matches (i. e., site assets
that are part of the guessed software and do not exist on
the analyzed site at the expected path or do not match
the asset from the index (default value: 0.1)

failed asset weight The weight to apply on assets that can not be retrieved
due to a request failure (default value: 1)

min assets per itera-
tion

The minimum number of successful assets that should be
retrieved to stop an iteration early (default value: 2)

max assets per itera-
tion

The maximum number of assets that should be tried to be
retrieved within an iteration (default value: 8)

html parser The backend that is used to parse hypertext markup lan-
guage (HTML) source code (default value: html.parser)

html relevant elements The HTML tags that are relevant for the detection of
referenced site assets (default value: a, link, script, style)

cache directory The directory in which to store cache data, i. e., VCS
repositories from software packages for indexing (default
value: cache)

supported schemes The schemes/protocols that are supported for file retrieval
(default value: http, https)

28

http timeout The maximum number of seconds to wait for an answer
from the web server before terminating the request (default
value: 3)

There are different categories of parameters. Firstly, technical parameters define imple-
mentation details such as which backend should be used in order to parse responses and
source code files, or which parts of source code (e. g., which HTML tags) are relevant.
Secondly, decisional parameters define the actual beviour during the analysis of websites.
This includes the required confidence for guesses in order to accept them, or the distance
of distinct guesses that is required to discard the weaker guesses.

To determine the default parameters, different values and their impact have been tested.
The default values listed in Table 4.1 yielded good results for a set of websites with
known versions. Future research might include the optimization of the parameter values
(cf. Sect. 9.1.4).

Some parameters influence others. For example, the relative and absolute distance required
to ignore guesses depend on each other. If the distance is sufficiently high to be above
either of them, the guess is ignored independently from the other parameter.

29

5 Evaluation

In order to assess the reliability of VersionInferrer, its accuracy is evaluated with real-world
software packages. Firstly, white-box evaluation is carried out to test the tool against
websites of which the used software package and version is known. Secondly, a black-box
evaluation analyzes the behavior of VersionInferrer when scanning arbitrary websites of
which the exact software package and version is not known.

5.1 White-Box Evaluation

A white-box evaluation analyzes synthetic sites that have been set up for this purpose. Thus,
ground truth (software package and exact version) is known. Such a white-box approach
allows an evaluation of the theoretical performance of VersionInferrer. This section presents
the results of this white-box evaluation using the Drupal and the WordPress software
packages.

During the white-box evaluation, VersionInferrer’s index contained all the versions that
were released. Hence, more recent versions were already known to the index while scanning
old versions. If the versions had been scanned while they were the most recent version,
the newer versions would not have been known to the index.

Table 5.1 shows the inference results for clean Drupal installations, Table 5.2 for clean
Joomla installations, and Table 5.3 for clean WordPress installations. All the tested
versions are detected correctly by VersionInferrer. Except for the 4.9.4 and 4.9.3 versions
of WordPress and the 3.7.4 and 3.7.5 versions of Joomla, VersionInferrer uniquely identifies
the correct version, i. e., its result consists of a single guess. Version 4.9.4 of WordPress is
a maintenance release that only fixes a server-side issue. Versions 3.7.5 of Joomla fixed a
server-side bug that was introduced in version 3.7.4. Therefore, VersionInferrer cannot
differentiate between those versions as they do not change the static assets.

Table 5.1: Results of Scanning a Clean Drupal Installation

Version Correct version guessed Additional versions guessed
8.0.0 3 –
8.0.1 3 –
8.0.2 3 –
8.4.0 3 –
8.4.1 3 –
8.4.2 3 –
8.4.3 3 –
8.4.4 3 –

30

Table 5.2: Results of Scanning a Clean Joomla Installation

Version Correct version guessed Additional versions guessed
3.7.0 3 –
3.7.1 3 –
3.7.2 3 –
3.7.3 3 –
3.7.4 3 3.7.5
3.7.5 3 3.7.4
3.8.0 3 –
3.8.1 3 –
3.8.2 3 –
3.8.3 3 –
3.8.4 3 –
3.8.5 3 –

Table 5.3: Results of Scanning a Clean WordPress Installation

Version Correct version guessed Additional versions guessed
3.9 3 –
3.9.1 3 –
3.9.2 3 –
3.9.3 3 –
3.9.4 3 –
4.9 3 –
4.9.1 3 –
4.9.2 3 –
4.9.3 3 4.9.4
4.9.4 3 4.9.3

31

Upgrading software packages instead of a clean installation can lead to inferior results when
using VersionInferrer (cf. Sect. 6.2). Therefore, updated Drupal, Joomla, and WordPress
sites have been analyzed in the white-box evaluation. These sites were not set up with a
clean installation of the target version, but instead updated from a previous version. For
Drupal, version 8.4.0 was installed initially, upgraded to version 8.4.2, and then upgraded
to version 8.4.4. For Joomla, version 3.8.0 was installed initially, upgraded to version 3.8.3,
and then upgraded to version 3.8.5. For WordPress, version 3.9 was installed initially,
upgraded to version 4.9, and then upgraded to version 4.9.4. After each upgrade step,
VersionInferrer was used to analyze the site. VersionInferrer yields the same results for
the chosen upgraded versions as for the cleanly installed.

5.2 Black-Box Evaluation

While the white-box approach allows an evaluation of the theoretical performance of
VersionInferrer, websites may not use cleanly installed or updated software packages. For
example, website operators can apply custom patches to the software packages they use,
which can modify aspects of their site. Therefore, public websites need to be analyzed
with VersionInferrer to assess the quality of the approach on real websites.

5.2.1 Sample Set

There are multiple sources that distribute lists of popular websites. A well-known provider
of such lists is Alexa (a service run by Amazon). The Alexa Top 1 Million list [2] is used
by many researchers (e. g., by Helme in his regular scans, cf. [11]). However, the Alexa
Top 1 Million has some inherent drawbacks. Firstly, the ranking may be biased because it
is based on usage statistics collected from users of the Alexa toolbar. Secondly, the list
is provided without any metadata such as the time of the last update. Thirdly, it is not
clear under what license the list is provided. Therefore, it is not used in this thesis.

An alternative to the Alexa Top 1 Million Sites is the Majestic Million [23] which does
not suffer from these limitations. The ranking of the domain names within the Majestic
Million is based on the number number of subnets that refer to them, which is supposed to
be more robust than just counting the number of websites that contain a link to a specific
site. It is provided under a Creative Commons license allowing it to be used freely.

The domains contained in the Majestic Million list are used as a sample for an evaluation
of VersionInferrer. The 500 000 most popular sites according to the Majestic Million have
been scanned in the course of this thesis.

The index consists of 16 software packages (cf. Table 5.6). All versions that were published
in the VCSs of the software packages at the time of the evaluation are indexed.

5.2.2 Results

Table 5.4 summarizes the results of the sample set. Failures occurred for 38 sites, which
means no connection to the web server could be established or the domain name could
not be resolved. Inference results could be obtained for approximately 19.5% of the sites.

32

Table 5.4: Number of Scanned Sites

Sites with inference result 97 273
Sites without inference result 402 689
Sites with one guessed package 97 273
Sites with more than one guessed package 0
Failed sites 38
Total sites 500 000

Table 5.5: Frequency of Counts of Different Guessed Versions

Versions guessed Frequency
0 402 689 (80.5%)
1 66 043 (13.2%)
2 6 510 (1.3%)
3 21 107 (4.2%)
4 1 260 (0.3%)
5 1 246 (0.2%)
6 456 (0.1%)
7 651 (0.1%)

The decision for a specific software package is unambiguous in the evaluated sample set,
i. e., no result contains guesses for multiple different packages.

Table 5.5 shows the frequency with which different guesses occurred, i. e., between how many
versions (of potentially different software packages) VersionInferrer could not differentiate
further. For example, five different guesses for a site mean that VersionInferrer could
only distinguish that the site is probably using one of those five software versions. For
the majority of sites for which versions could be inferred (approximately 13.5%), the
inferred version is unique, i. e., exactly one version was guessed. Hence, many sites have
distinguishable characteristics to infer their exact version.

Table 5.6 shows on how many websites a particular software package was detected. Except
for Etherpad Lite, all packages that were contained in the index during the evaluation
were detected on at least one website. WordPress is the package that was detected most
often with a high lead over the other software packages. This matches the market share
analysis results provided by related works like the W3Techs project [29].

Table 5.7 contains information on how many sites of the sample set are likely to use
vulnerable software versions. Site Results that yielded a set of multiple version guesses may
contain only some vulnerable versions. Therefore, four different categories of vulnerable
sites are regarded.

33

Table 5.6: Detected Software Packages

Package Using sites Proportion
WordPress 72 255 74.3%
Drupal 12 826 13.2%
Joomla! CMS™ 8 578 8.8%
TYPO3 2 101 2.2%
OpenCart 632 0.6%
PrestaShop 326 0.3%
MediaWiki 136 0.1%
Moodle 135 0.1%
Contao Open Source CMS 102 0.1%
phpBB 85 0.1%
SOGo 45 < 0.1%
DokuWiki 31 < 0.1%
Magento Open Source 17 < 0.1%
ownCloud 3 < 0.1%
Nextcloud 1 < 0.1%
Etherpad Lite 0 0.0%
Total 97 273 100.0%

Table 5.7: Number of Sites With Vulnerable Software Versions Detected

Most recent guess vulnerable 24 021 25.5%
Any guess vulnerable 43 347 46.0%
All guesses vulnerable 23 973 25.4%
No guess vulnerable 53 926 57.2%

34

1. A site is considered vulnerable if the most recent guess of the result is vulnerable.
The most recent guess is chosen by its release date: the newest version guessed is
regarded as most recent, not respecting long-term-support release branches and
similar constructs that might distort the selection.

2. A site result is classified as any guess vulnerable if at least one of the guesses the
method has inferred is vulnerable according to the CVE statistics.

3. A site is classified as all guesses vulnerable when all determined software version
guesses contain known vulnerabilities

4. A site result is rated as no guess vulnerable if none of the guesses contains known
vulnerabilities according to the CVE data.

For results that yield a single distinct guess, the first three categories are equivalent. For
the results that did not narrow down to a guess of a single version, the most recent guess
vulnerability category is equivalent to a best-case assumption, e. g., it is assumed that the
site operator runs the most recent version of the qualifying versions.

The number of sites on which vulnerable software versions were detected is shown in
Table 5.8. The vulnerability detection relies on CVE statistics collected from published
data as described in Sect. 3.6. The matching of CVE records to software versions is not
always accurate and the quality of the references within the CVE data differs among
different software packages and different vulnerability records. Different aspects influence
the amount of vulnerable versions detected on the web. For example, the Magento Open
Source CMS has a very low number of CVE identifiers. All currently known CVEs of that
software package affect only versions that are at least one year old.

A detailed empirical evaluation is out of scope for this thesis. Therefore, results will only
be discussed for two software packages in the following. Similar results have been found
in previous experiments, e. g., by Lauinger et al [16], and by Vasek et al. [38].

The highest proportion of vulnerable sites were found for the Joomla package. The majority
of sites that use Joomla is using version 2.5.28, which is the final release of the 2.X branch.
That release branch is no longer maintained and contains known vulnerabilities. Many
site operators have not yet upgraded their websites to the 3.X release branch, thus using
a vulnerable version. For DokuWiki, the number of sites where any guess is vulnerable
is much higher than the number where all guesses are vulnerable. This implies that for
DokuWiki, security vulnerabilities are fixed in dedicated releases that do not result in
publicly visible changes of static assets, i. e., only the vulnerable part of the server-side
code is changed in updates. As a consequence, VersionInferrer cannot unambiguously
determine whether a site is running the vulnerable version of DokuWiki or the patched
version.

5.2.3 Result Verification

To estimate the quality of the results yielded by VersionInferrer, the accuracy of the results
was verified via manual inspection. However, given the sample size of 500 000 websites,
it is infeasible to verify the results for all websites reliably. Instead, a subsample of 50
randomly selected sites is drawn and verified.

35

Table 5.8: Number of Sites With Vulnerable Software Versions Detected by Package

Package Vulnerable sites (guesses) Using sitesMost recent Any All
Joomla! CMS™ 98.8% 98.9% 98.8% 8 578
Moodle 88.1% 92.6% 84.4% 135
MediaWiki 66.9% 86.0% 65.4% 136
TYPO3 39.9% 47.1% 39.9% 2 101
phpBB 35.3% 47.1% 0.0% 85
Drupal 28.8% 29.7% 28.7% 12 826
WordPress 14.9% 40.9% 14.9% 72 255
PrestaShop 7.7% 8.3% 7.4% 326
DokuWiki 3.2% 71.0% 3.2% 31
Contao Open Source CMS 0.0% 0.0% 0.0% 102
Magento Open Source 0.0% 0.0% 0.0% 17
Nextcloud 0.0% 0.0% 0.0% 1
OpenCart 0.0% 30.4% 0.0% 632
SOGo 0.0% 0.0% 0.0% 45
ownCloud 0.0% 0.0% 0.0% 3

Table 5.9: Results of the Manual Verification

Correct result 43
- Exact manual verification possible 35
- No exact manual verification possible 8

Wrong inference result 7
- Wrong version 6
- Wrong package 1

For manual verification, each site is retrieved with a web browser. The source code and
static objects are analyzed for conclusive hints that disclose the used software package and
the used version. In contrast to the automated process of VersionInferrer, manual inference
is more accurate due to human intuition and experience such as knowledge about typical
administrative endpoints that may disclose a package due to “typical” layout elements.
The result of manual verification is then compared with the guess of VersionInferrer.
Where no accurate information about the specific version could be determined, but the
software package could be verified, the result is judged as correct. This was the case for
eight results.

Table 5.9 shows the results of this manual verification. Only one of the 50 results that were
manually verified did not match the software package that was detected by VersionInferrer.
Instead, that website served a domain parking page stating that the domain has expired.
As the automated scanning of the 500 000 websites took several days, it may very well be
the case that the domain was still active at the time of scanning and expired only later.

Six software packages were correctly detected but with the wrong version. All of those
randomly selected websites with a wrong result served a WordPress in a version that was

36

more recent in the minor version identifier than the version detected by the automated
tool. The more recent version that was actually deployed on those websites was not
known to the index at the time of scanning. The deployed release was a security release of
WordPress released at the time of scanning. After updating the index to include those
newer versions, a repeated analysis yielded the correct version for some of these sites.
Others, however, were still classified with the wrong version, or the version could not
unambiguously be detected. Therefore, these versions are likely to contain only minimal
changes that are not enough to differentiate between them reliably based on the publicly
available site assets.

Altogether, only one of the fifty randomly selected inference results yielded a wrong
software package which is likely to be no wrong result of the inference method as explained
before. As shown in the table, 43 results contained the correct version that was actually
in use by the analyzed websites (including the eight results where no accurate manual
classification of the version was possible).

In the sample used for the verification, VersionInferrer performs well, even without tuning
of the default parameters (cf. Sect. 4.5). This indicates a very small probability for false
positives. Limitations of the evaluation are considered in Sect. 6.2.2.

37

6 Challenges and Limitations

Multiple challenges were encountered. While some of them could be solved, others are a
limitation of the chosen approach. This chapter gives an overview of the most important
challenges and limitations.

6.1 Challenges Solved in the Course of this Thesis

6.1.1 Bias by Generic Site Assets

Several generic libraries exist that are widely used on the web as static site assets, i. e.,
JavaScript libraries like jQuery [35]. Many software packages use such libraries as well.
Thus, comparing such a site asset to the index database yields a lot of matching versions
of different software packages. The combination of multiple such generic assets can cause
false positives in VersionInferrer. However, combinations of such generic libraries might as
well create a unique fingerprint of a software package.

To lower the impact of the problem of generic assets, the IDF described in Sect. 3.1 is
used to weight the relevance of site assets. A site asset that is used by a lot of software
packages gets a lower weight in the index than those assets that occur only rarely.

6.1.2 Index Size

A high number of software versions are indexed by VersionInferrer. This leads to a huge
amount of data that needs to be stored in the database of the index, resulting in an
increasing demand on storage space. Furthermore, users of VersionInferrer would rather
not create the complete index themselves but instead download a precomputed index from
the internet. Thus, measures need to be taken to reduce the size of the index database.

VersionInferrer uses a relational database backend by default. Each static file is stored in
it only once. To store file usages, references from software versions to these static files are
used. This minimizes the redundancy within the index. The resulting SQLite database
yields good compression ratios that allow fast transmissions over the internet. The database
used for the evaluation in Chap. 5 has a size of 230 MB. Using gzip compression, that
size can be reduced to 80 MB.

38

6.2 Limitations

6.2.1 Limitations of VersionInferrer

Firstly, many software packages enforce authentication for a subset of their features. This
often causes several static site assets to be unreferenced for anonymous users. As a result,
they are hidden from VersionInferrer. However, assets known to the index are retrieved
even if no reference to them is found on the website. Therefore, such assets can be used
by VersionInferrer as long as the assets are served without enforcing authentication.

Secondly, dynamic site assets are generated during the runtime by the software package.
Thus, they are not contained within the VCS repository. Consequently, such assets are
invisible to VersionInferrer during the index construction. During the analysis, they do not
provide any insights as they are unknown to the database. At the same time, a manual
analysis would allow the inspection of dynamically generated content. For example, the
Nextcloud software package contains a dynamic version.php file that contains detailed
information about the used version.

Thirdly, a common way to update web software packages on websites is by uploading
the contents of a new release archive to the webspace above the previous version. Files
that have been removed in the new version are then kept on the webspace. If such a
dangling asset is regarded by VersionInferrer, it indicates an older version than the website
is actually using due to this old file.

Fourthly, VersionInferrer’s parameters can be used to improve the false positive and false
negative rates. However, these are tendentially contrary demands. While VersionInferrer
can be configured to accept guesses earlier – thus reducing the number of false negatives –,
this increases the risk that false positives are yielded, e. g., if the static files do not actually
belong to the inferred software package.

Fifthly, the risk assessment of software versions is based on CVE data. However, this data
is not always accurate, e. g., for some vulnerabilities, no CVE identifier might be requested.
In addition, the mapping of software versions in the CVE data to software versions in the
index of VersionInferrer is not always reliable. For example, the exact version string of
CVE software versions can have a different format than the version identifier extracted
from the VCS repository. This has an impact on the reliability of the risk assessment.

Sixthly, and last, it is easy to pretend running a specific web application without actually
using it. Several methods to produce such false results are discussed in Chap. 8.

6.2.2 Limitations of the Evaluation

The evaluation in Chap. 5 uses VersionInferrer to analyze the 500 000 top sites according
to the Majestic Million list. While this evaluation yields usable results, some aspects that
might influence them need to be considered.

Firstly, only the homepages of the main domains provided in the Majestic Million list
were analyzed. Some websites might serve a small static site on their primary domain
and use a subdomain for actual contents, e. g., a webshop or a blog. Such subdomains are

39

not analyzed during the evaluation, resulting in fewer positive results than scanning such
referenced subdomains would have yielded.

Secondly, the evaluation uses a sample set of sites with high popularity. Thus, it contains
a lot of sites that are operated by big companies that do not use ready-to-use software
packages but develop their own software. Only a small number of middle-class sites
operated by regular people is included in the sample set. Although this prevents a
representative analysis of the market shares of software packages on the web, the sample
set is sufficient for the evaluation of VersionInferrer whose goal is to infer information
about the software used by any given website.

Thirdly, and last, the verification method of the evaluation does not allow conclusions about
false negatives, because only sites for which VersionInferrer found a result were considered
for the manual verification. To gain insights about false negatives, the verification could
be repeated with a sample set that consists of sites for which VersionInferrer could not
find a result. That verification would try to infer the used software package and version
manually.

40

7 Ethical Considerations

The work from this thesis provides users a tool that can be used to detect technologies
used by websites. Firstly, this information can easily be related to security issues they
might be vulnerable to. While this is important knowledge for ordinary website users as
well as people affiliated with the operation of the website, adversaries can also use this
knowledge for more targeted attacks. Therefore, the insights provided by this thesis are of
dual use.

To make it hard to exploit vulnerabilities of websites, no details regarding the potential
vulnerabilities (e. g., CVE identifiers) are presented to the user. Instead, only the fact
that there might be vulnerabilities is communicated. This gives ordinary users enough
information to be warned of potential risks without providing an attacker with helpful
resources for exploitation. While an adversary could patch VersionInferrer to display CVE
identifiers, a manual lookup of vulnerabilities for a specific software version is possible
anyway.

Secondly, the tool can potentially be used without asking the website operators for their
permission to analyze their sites. Therefore it is important to ensure that the normal
operation of the analyzed websites is not disturbed.

VersionInferrer generates traffic for the websites it analyzes by sending HTTP requests.
However, the amount of those requests is minimized as much as possible. The load
produced on the server is not greater than the load an ordinary user following a few links
on the site would produce.

Running VersionInferrer against a site without having obtained the owner’s permission
is quite similar to scanning a site with a TLS scanner such as Qualys SSL Scan or
executing a scan with PrivacyScore. Such acts are legal (in Germany) because only
publicly available files are accessed and no access control mechanisms are circumvented
during the process [21].

41

8 Prevention of Version Fingerprinting

VersionInferrer could be used by attackers to detect new targets (cf. Chap. 7). Consequently,
site operators might have an incentive to harden their sites against such an automated
detection. Even operators of up-to-date sites might have such a motivation since attackers
may remember the software packages in use to run newly available exploits right after
their availability, maybe even before official patches are released. Thus, site operators
might not only want to hide the specific version, but that they are using a ready-to-use
software package. While this can be criticized as being a security-by-obscurity strategy, it
is an effective approach to reducing the risk of successful attacks. This chapter focuses
on protective strategies for site owners to complicate the automated detection of their
software packages and versions by VersionInferrer.

8.1 Removing Explicit Hints

The inference heavily relies on the first estimates. Preventing VersionInferrer from getting
any first estimates reduces the probability of yielding usable results significantly. Therefore,
a site reducing common package detection hints like default meta tags, software-specific
headers, or typical page contents already has a rather good protection against VersionInfer-
rer. However, this only reduces the success probability of VersionInferrer. Other methods
that to not try to reduce the number of requests as much as possible could, e. g., skip the
step of the first estimations and retrieve all URLs contained in the index.

8.2 Moving Static Assets to Non-Default Locations

After building first estimates from the main page and its referenced assets, known paths are
retrieved for the inference to get actual guesses. If the static files are moved to non-default
paths, the retrieval of the paths known to the index will not be successful. Therefore,
no further information can be gained by simply retrieving the indexed paths from the
webroot. Nonetheless, all static files used by the software package need to be referenced
from it somewhere. Accordingly, this can only trick automated tools like VersionInferrer
and does not prevent the software package and version from being inferred in a manual
analysis of the website.

8.3 Merging Static Assets

Static files need to be referenced somewhere on the website in order to fulfill their function.
These referenced assets can easily be investigated for inference without the need to know
their paths in advance. Therefore, it is necessary to modify the static assets shipped by

42

the software package. One approach is to concatenate all included static files of the same
type into a single file (if that is not already done as a standard feature by the software
package maintainers). Since the deployed files differ from the files shipped by the package
maintainers, this reduces the probability of a match with indexed files, as all files are
indexed separately.

8.4 Adding “Dummy” Assets

VersionInferrer determines the best guesses – which are returned as the result – based
on the assets that it has retrieved. Serving several static assets that lead to a different
software package than that in use can cause the tool to determine this wrong software
package as best guess. This method is targeted at the specific approach of VersionInferrer
and does not help against manual inference attempts.

Reflecting, there are several measures that site operators can take to harden their websites
against automated inference of their used software packages and versions. While an
inference using VersionInferrer can be prevented, complete protection against (manual)
inference can not be achieved with sustainable effort, especially when details of a specific
software package are used to infer its version. Needed assets can not be hidden reliably
because they need to be referenced from the website somewhere. It is only possible to
increase the number of candidates in some degree by adding further not actually used
assets.

43

9 Future Work and Conclusion

This chapter presents avenues for future research and the concluding remarks.

9.1 Future Work

A website can consist of more than a single software package, of modified versions (“forks”)
of software packages, or of custom software that is developed in-house or on behalf of
the website operator. Such websites have common characteristics as well, several of them
detectable using a generic approach similar to VersionInferrer. This section discusses some
aspects that could be studied in future work.

9.1.1 Server-Side Frameworks

Several frameworks such as Django or Ruby on Rails provide web developers with tools
and abstractions that are commonly required for the web use case. Many ready-to-use
web software packages as well as customly developed websites use such frameworks.

Security vulnerabilities in such frameworks can have severe consequences as the framework
code is executed on the web server that usually has access to the data of all users [18].
While the framework maintainers usually provide security updates in a timely manner,
the maintainers of software packages that use such frameworks might not notice the
availability of such security updates and thus fail to patch their systems. Therefore,
gaining information about the frameworks that are used by websites is an important aim
for improving the security and privacy on the web.

9.1.2 Client-Side Libraries

There are several open source JavaScript libraries assisting software developers with the
creation of client-side code, such as jQuery [35]. They are not only used by several software
packages, but also in many customly built software projects.

Vulnerabilities in client-side libraries can endanger the website user as well. New vul-
nerabilities in popular JavaScript libraries are found on a regular basis. While patched
releases of the libraries are usually available before the end of the embargo period of such
vulnerabilities, the outdated, vulnerable versions are still widely used on the web (Lauinger
et al. provide a survey on this topic [16]). Hence, it is valuable to have an automated
approach allowing the detection of libraries used by websites as well as their exact versions.
Such an approach could take advantage of the measures for the construction of a static
file index that are proposed in this thesis.

44

9.1.3 Dynamic Site Assets

Some software packages generate their site assets during runtime. This way, they can
not be indexed in a straightforward manner as they are not included within the VCS
repository. Furthermore, they depend on the environment, e. g., the tools installed on
the target system, or the locale of the specific site. Thus, they can neither be added nor
compared to the index using the proposed method.

Future research could elaborate a method to convert such assets into a canonical form
trying to eliminate or normalize all environment-dependent contents.

9.1.4 Parameterization

The default parameters used in this thesis provide convenient results in the evaluation.
However, it may be possible to increase the reliability of the results and reduce the load
generated on web servers by optimizing the parameters. Future research could therefore
consider a comprehensive evaluation of the impact of different parameters.

9.1.5 Content Delivery Networks

The proposed method heavily relies on static assets that are retrieved from a sites webroot.
Many sites use content delivery networks (CDNs) that serve static files. These CDNs
distribute the traffic among several servers at different locations, dynamically choosing a
server that is near to the user. This increases the performance of websites and reduces the
costs for the website operator.

When a CDN is used by a website, the static files usually can not be found on the webroot
but are served from a dedicated domain of the CDN. This prevents VersionInferrer from
finding any assets that provide information about the website.

Furthermore, CDNs often contain static files for several different software packages and/or
versions. This makes it difficult to gain reliable information about the website even if the
fact that it uses a CDN is known.

These issues could be mitigated in a future version of VersionInferrer by retrieving a target
website with an instrumented browser (such as Selenium [32]) in order to observe the
URLs from which assets are retrieved. This data could then be used to dynamically adapt
the paths from the index.

9.1.6 Notifying Website Operators

Many websites of the scanned sample set are likely to run vulnerable software. The
operators of those websites may not be aware of the resulting threats. Notifying site
operators would benefit their security and ultimately the security of their customers.

Future research could perform a study on the reaction of website operators when they
are notified of problems with their websites detected by VersionInferrer as well as the
improvements this notification actually has, i. e., how many websites are updated upon
the notification. Similar studies were already performed, e. g., by Stock et al. [34, 33].

45

9.2 Conclusion

Popular software packages, e. g., content management systems such as Joomla, Typo3, or
Wordpress, are used on many websites. A site using outdated versions of those packages
may have security vulnerabilities that endanger the privacy and security of its users.
Therefore, users should be able to determine on their own what software version a website
uses.

This thesis presented VersionInferrer, a tool that implements techniques for the automated
inference of software versions on the web. VersionInferrer does not require specific infor-
mation about software packages. It can be utilized by several users, including professional
penetration testers, advanced users, and regular web users.

To gain information, VersionInferrer focuses on static files that software packages ship.
An index of those static files is constructed based on VCS repositories of the software
packages.

This index allows the selection of paths whose retrieval provides high entropy. The path
selection uses an approach similar to decision trees, and techniques from association rule
mining. Furthermore, the data of the Wappalyzer project is used to infer initial information
about the used software package.

In a white-box evaluation, VersionInferrer was able to infer the correct version for 30
analyzed versions of three software packages. A black-box evaluation showed that it yields
good results when used on a sample set of real-world websites. It inferred a software
package and version for 19.5% of the 500 000 scanned websites. For 67.9% of these websites,
the software version was distinctively inferred. A manual verification on a subsample of
50 sites revealed that the inferred version was correct for 86% of the sites, the package for
98% of them.

Using publicly available CVE data, it is possible to assess the risks that can emerge from
the usage of websites that run outdated software versions. Concretely, the evaluation shows
that 25.5% of the successfully analyzed sites may be subject to known vulnerabilities.

VersionInferrer is not flawless but subject to some limitations, e. g., it neither analyzes
dynamic site assets, nor regards assets whose retrieval enforces authentication. Limitations
of VersionInferrer and possible solutions to some of them were discussed in this thesis.

Moreover, defensive techniques and ethical issues were considered. Several methods that
allow site operators to make it more difficult to infer the software packages they use were
presented.

The work confirms the results of previous research that revealed outdated software
on a considerable number of websites. With VersionInferrer, there is now a tool that
simplifies such examinations and makes them available to ordinary users. Empowering
users with tools like VersionInferrer helps to improve transparency, which in turn may
create additional incentives for website operators to update their sites in a more timely
manner.

46

Acronyms

AST abstract syntax tree

CDN content delivery network

CMS content management system

CVE common vulnerabilities and exposures

HTML hypertext markup language

HTTP hypertext transfer protocol

IDF inverse document frequency

OWASP open web application security project

TLS transport layer security

URL uniform resource locator

VCS version control system

47

Bibliography

[1] Elbert Alias. Wappalyzer: Identify technology on websites. 2017. url: https://
wappalyzer.com/ (visited on 09/23/2017).

[2] Amazon. Alexa Top 1 Million. 2018. url: http ://s3 .amazonaws.com/alexa-
static/top-1m.csv.zip (visited on 02/16/2018).

[3] Jon Louis Bentley. Multidimensional Binary Search Trees Used for Associative
Searching. In: Commun. ACM 18.9 (1975), pp. 509–517.

[4] BuiltWith. built with. 2017. url: https://builtwith.com/ (visited on 09/23/2017).
[5] D. Eastlake and P. Jones. US Secure Hash Algorithm 1 (SHA1). RFC 3174. http:

//www.rfc-editor.org/rfc/rfc3174.txt. RFC Editor, Sept. 2001.
[6] erwanlr. Fingerprinter. 2017. url: https://github.com/erwanlr/Fingerprinter.git

(visited on 09/23/2017).
[7] Django Software Foundation. Django web framework. 2017. url: https://www.

djangoproject.com/ (visited on 02/16/2018).
[8] Tom van Goethem et al. Large-Scale Security Analysis of the Web: Challenges

and Findings. In: Trust and Trustworthy Computing: 7th International Conference,
TRUST 2014, Heraklion, Crete, June 30 – July 2, 2014. Proceedings. Ed. by Thorsten
Holz and Sotiris Ioannidis. Cham: Springer International Publishing, 2014, pp. 110–
126.

[9] Dick Grune et al. Modern Compiler Design. 2nd. Springer Publishing Company,
Incorporated, 2012.

[10] Antonin Guttman. R-Trees: A Dynamic Index Structure for Spatial Searching. In:
SIGMOD’84, Proceedings of Annual Meeting, Boston, Massachusetts, June 18-21,
1984. 1984, pp. 47–57.

[11] Scott Helme. Alexa Top 1 Million Analysis - August 2017. 2018. url: https :
//scotthelme.co.uk/alexa-top-1-million-analysis-aug-2017/ (visited on 02/15/2018).

[12] Michael Helwig. wp_check_plugin_dir. url: https://github.com/mhelwig/wp_
check_plugin_dir.

[13] Andrew Horton. whatweb. 2017. url: https://www.morningstarsecurity.com/
research/whatweb (visited on 09/23/2017).

[14] Mehmed Kantardzic. Data Mining: Concepts, Models, Methods and Algorithms.
New York, NY, USA: John Wiley & Sons, Inc., 2002.

[15] KeyCDN. 18 Tips for Website Performance Optimization. 2017. url: https://www.
keycdn.com/blog/website-performance-optimization/ (visited on 12/29/2017).

[16] Tobias Lauinger et al. Thou Shalt Not Depend on Me: Analysing the Use of Outdated
JavaScript Libraries on the Web. In: Proceedings of the Network and Distributed
System Security Symposium (NDSS). San Diego, CA, USA, 2017.

48

https://wappalyzer.com/
https://wappalyzer.com/
http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
https://builtwith.com/
http://www.rfc-editor.org/rfc/rfc3174.txt
http://www.rfc-editor.org/rfc/rfc3174.txt
https://github.com/erwanlr/Fingerprinter.git
https://www.djangoproject.com/
https://www.djangoproject.com/
https://scotthelme.co.uk/alexa-top-1-million-analysis-aug-2017/
https://scotthelme.co.uk/alexa-top-1-million-analysis-aug-2017/
https://github.com/mhelwig/wp_check_plugin_dir
https://github.com/mhelwig/wp_check_plugin_dir
https://www.morningstarsecurity.com/research/whatweb
https://www.morningstarsecurity.com/research/whatweb
https://www.keycdn.com/blog/website-performance-optimization/
https://www.keycdn.com/blog/website-performance-optimization/

[17] Amanda Lee and Travis Atkison. A Comparison of Fuzzy Hashes: Evaluation,
Guidelines, and Future Suggestions. In: Proceedings of the SouthEast Conference.
ACM SE ’17. Kennesaw, GA, USA: ACM, 2017, pp. 18–25.

[18] John Leyden. Ruby off the Rails: Enormo security hole puts 240k sites at risk. 2013.
url: https://www.theregister.co.uk/2013/01/10/ruby_on_rails_security_vuln/
(visited on 02/18/2018).

[19] Gordon Lyon. Nmap OS Detection. 2018. url: https://nmap.org/book/man-os-
detection.html (visited on 02/18/2018).

[20] Gordon Lyon. Nmap Security Scanner. 2018. url: https://nmap.org (visited on
02/18/2018).

[21] Max Maass, Anne Laubach, and Dominik Herrman. PrivacyScore: Analyse von
Webseiten auf Sicherheits- und Privatheitsprobleme. In: INFORMATIK 2017. Ed.
by Maximilian Eibl and Martin Gaedke. Gesellschaft für Informatik, Bonn, 2017,
pp. 1049–1060.

[22] Max Maaß et al. PrivacyScore: Improving Privacy and Security via Crowd-Sourced
Benchmarks of Websites. In: Privacy Technologies and Policy - 5th Annual Privacy
Forum, APF 2017, Vienna, Austria, June 7-8, 2017, Revised Selected Papers. 2017,
pp. 178–191.

[23] Majestic. The Majestic Million. 2018. url: https://majestic.com/reports/majestic-
million (visited on 01/16/2018).

[24] Open Source Matters. Joomla! CMS. 2017. url: https://www.joomla.org/ (visited
on 07/16/2017).

[25] James Nadeau. Chrome Sniffer Extension. 2017. url: https : / / github . com/
jamesjnadeau/web-app-tool-sniffer (visited on 07/19/2017).

[26] Nick Nikiforakis et al. You Are What You Include: Large-scale Evaluation of Remote
Javascript Inclusions. In: Proceedings of the 2012 ACM Conference on Computer
and Communications Security. CCS ’12. Raleigh, North Carolina, USA: ACM, 2012,
pp. 736–747.

[27] OWASP. Favicon Database. 2017. url: https ://www.owasp.org/index.php/
OWASP_favicon_database (visited on 09/23/2017).

[28] OWASP. OWASP Top 10 2017. url: https://www.owasp.org/images/7/72/
OWASP_Top_10-2017_%28en%29.pdf.pdf.

[29] Q-Success. W3Techs: Web Technology Surveys. 2017. url: https://w3techs.com/
(visited on 09/23/2017).

[30] Stephen Robertson. Understanding inverse document frequency: on theoretical
arguments for IDF. In: Journal of Documentation 60.5 (2004), pp. 503–520.

[31] Henri Salo. Pyfiscan free web-application vulnerability and version scanner. 2017.
url: https://github.com/fgeek/pyfiscan (visited on 09/23/2017).

[32] SeleniumHQ. Browser Automation. 2013. url: http://www.seleniumhq.org/ (visited
on 02/18/2018).

[33] Ben Stock et al. Didn’t You Hear Me? – Towards More Successful Web Vulnerabil-
ity Notifications. In: Proceedings of the 25th Annual Symposium on Network and
Distributed System Security (NDSS ’18). Feb. 2018.

49

https://www.theregister.co.uk/2013/01/10/ruby_on_rails_security_vuln/
https://nmap.org/book/man-os-detection.html
https://nmap.org/book/man-os-detection.html
https://nmap.org
https://majestic.com/reports/majestic-million
https://majestic.com/reports/majestic-million
https://www.joomla.org/
https://github.com/jamesjnadeau/web-app-tool-sniffer
https://github.com/jamesjnadeau/web-app-tool-sniffer
https://www.owasp.org/index.php/OWASP_favicon_database
https://www.owasp.org/index.php/OWASP_favicon_database
https://www.owasp.org/images/7/72/OWASP_Top_10-2017_%28en%29.pdf.pdf
https://www.owasp.org/images/7/72/OWASP_Top_10-2017_%28en%29.pdf.pdf
https://w3techs.com/
https://github.com/fgeek/pyfiscan
http://www.seleniumhq.org/

[34] Ben Stock et al. Hey, You Have a Problem: On the Feasibility of Large-Scale Web
Vulnerability Notification. In: 25th USENIX Security Symposium, USENIX Security
16, Austin, TX, USA, August 10-12, 2016. 2016, pp. 1015–1032.

[35] The jQuery Foundation. jQuery JavaScript framework. 2017. url: https://jquery.
com/ (visited on 07/16/2017).

[36] Patrick Thomas. BlindElephant: Web Application Fingerprinter. 2017. url: http:
//blindelephant.sourceforge.net/ (visited on 09/23/2017).

[37] TYPO3 GmbH. TYPO3 CMS. 2017. url: https : / / typo3 . org/ (visited on
07/16/2017).

[38] Marie Vasek and Tyler Moore. Identifying Risk Factors for Webserver Compromise.
In: Financial Cryptography and Data Security - 18th International Conference, FC
2014, Christ Church, Barbados, March 3-7, 2014, Revised Selected Papers. 2014,
pp. 326–345.

[39] Pascal Wichmann. VersionInferrer. 2018. url: https://github.com/wichmannpas/
webapp-version-inferrer (visited on 02/18/2018).

[40] Ivo van der Wijk. Guess: Detect CMS, Framework, Webserver and more. 2017. url:
http://guess.scritch.org/ (visited on 09/23/2017).

[41] WordPress. WordPress CMS. 2017. url: https : / /wordpress . org/ (visited on
07/16/2017).

[42] Mohammed J. Zaki and Wagner Meira Jr. Data Mining and Analysis: Fundamental
Concepts and Algorithms. Cambridge University Press, 2014.

50

https://jquery.com/
https://jquery.com/
http://blindelephant.sourceforge.net/
http://blindelephant.sourceforge.net/
https://typo3.org/
https://github.com/wichmannpas/webapp-version-inferrer
https://github.com/wichmannpas/webapp-version-inferrer
http://guess.scritch.org/
https://wordpress.org/

Appendices

51

A Usage of the Reference Implementation

A.1 Obtaining the Software

The reference implementation can be obtained from its public VCS repository available at
[39]. Furthermore, it is contained on the storage media provided with this thesis.

The software is written in Python 3. Its dependencies can be installed from the Python
Package Index, which is a central repository for Python packages. Running the com-
mand pip install -r requirements.txt in the root of the source tree installs
all required dependencies.

A.2 Creating the Index

To be able to infer the software versions that websites use, it is required to have an index
of the available software packages. This can be constructed using the tools provided by
the reference implementation.

The command ./update_index.py fetches the VCSs of the upstream software packages
and indexes their versions. If the command is used when the index already contains software
versions, only versions that are not completely indexed are added. This allows a regular
fast incremental update of the index.

A.3 Inferring the Version of a Website

The analyze_site.py script is a wrapper around the inference components of the
reference implementation. It requires a URL of the website that should be analyzed.
Furthermore, an optional json-file parameter specifying a JSON output file can be
provided. Detailed information about the analysis results are saved to that file in the
machine-readable JSON serialization. This can be used to utilize the tool in other software
packages.

Figure A.1 shows the output of VersionInferrer for a WordPress installation. The first
output line contains statistics of how many resources were retrieved from the web server.
The second line contains the best guesses. The numbers in the brackets (+A[a]-B[b]) state
how many assets matching that specific version were found (A), how many expected assets
were not found or did not match the expected version (B), and the weighted positive
and negative strengths (a, b). These weighted strengths are determined as explained
in Sect. 4.4.3. When a more recent version is available, the user is warned about this
fact. However, this information only regards the release date of the version and not the
additional indicators described in Sect. 3.6 that are used for the vulnerability classification
in the evaluation.

52

$./analyze_site.py http://192.168.122.42 --json-file
wordpress_result↪→

{'retrieved_assets_total': 9, 'retrieved_resources_total': 10,
'retrieved_resources_successful': 9}↪→

[<Guess 'WordPress 4.9.1 (+8[21.344485266933134]-0[0])'>]
More recent version WordPress 4.9.4 released, possibly

outdated!↪→

Figure A.1: Example Output of VersionInferrer

53

Eidesstattliche Versicherung

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit im Bachelorstudien-
gang Informatik selbstständig verfasst und keine anderen als die angegebenen Hilfsmittel –
insbesondere keine im Quellenverzeichnis nicht benannten Internet-Quellen – benutzt habe.
Alle Stellen, die wörtlich oder sinngemäß aus Veröffentlichungen entnommen wurden, sind
als solche kenntlich gemacht. Ich versichere weiterhin, dass ich die Arbeit vorher nicht
in einem anderen Prüfungsverfahren eingereicht habe und die eingereichte schriftliche
Fassung der auf dem elektronischen Speichermedium entspricht.

Ich stimme der Einstellung der Arbeit in die Bibliothek des Fachbereichs Informatik zu.

Hamburg, den 19. Februar 2018

Pascal Wichmann

54

	Introduction
	Motivation
	Related Work
	Reference Implementation
	Organization of the Thesis

	Problem Analysis
	Characteristics of Software Packages and Versions
	Characteristics of Websites
	Combining the Characteristics of Software Packages and Websites

	Fundamentals
	Inverse Document Frequency
	Decision Trees
	Association Rule Mining
	Wappalyzer Project
	File Normalization
	Fuzzy Hashing
	Abstract Syntax Trees
	Simple File Normalization Techniques

	Outdated Software Versions and Risk Analysis
	Software Stability and Robustness

	Detection Technique
	Abstractions
	Static File Processing
	Index Construction
	Software Package and Version Inference
	Gaining Initial Estimates
	Finding Strong Guesses Using Iterations
	Rating Guesses
	Exceptional Situations

	Parameterization

	Evaluation
	White-Box Evaluation
	Black-Box Evaluation
	Sample Set
	Results
	Result Verification

	Challenges and Limitations
	Challenges Solved in the Course of this Thesis
	Bias by Generic Site Assets
	Index Size

	Limitations
	Limitations of VersionInferrer
	Limitations of the Evaluation

	Ethical Considerations
	Prevention of Version Fingerprinting
	Removing Explicit Hints
	Moving Static Assets to Non-Default Locations
	Merging Static Assets
	Adding ``Dummy'' Assets

	Future Work and Conclusion
	Future Work
	Server-Side Frameworks
	Client-Side Libraries
	Dynamic Site Assets
	Parameterization
	Content Delivery Networks
	Notifying Website Operators

	Conclusion

	Bibliography
	Appendices
	Usage of the Reference Implementation
	Obtaining the Software
	Creating the Index
	Inferring the Version of a Website

