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Abstract
In this paper we describe the sys-
tem submitted by UHH to the CoNLL–
SIGMORPHON 2018 Shared Task: Univer-
sal Morphological Reinflection. We pro-
pose a neural architecture based on the
concepts of UZH (Makarov et al., 2017),
adding new ideas and techniques to their
key concept and evaluating different com-
binations of parameters. The resulting sys-
tem is a language-agnostic network model
that aims to reduce the number of learned
edit operations by introducing equivalence
classes over graphical features of individ-
ual characters. We try to pinpoint ad-
vantages and drawbacks of this approach
by comparing different network configura-
tions and evaluating our results over a wide
range of languages.

1 Introduction

The system described in this paper1 was submit-
ted for the CoNLL–SIGMORPHON 2018 Shared
Task (Cotterell et al., 2018), part 1 only. This as-
signment challenges the participants to design sys-
tems that generate inflected forms based on an input
lemma and feature set as shown in Figure 1.

Training data is usually provided in three differ-
ent volumes (see Table 1), all conforming to the
UniMorph standard proposed by Kirov et al. (2018).
The entire data set comprises 103 languages, al-
though not every training volume is available for
every language. In addition, some languages have
significantly less training samples than the maxi-
mum depicted in Table 1.

With such a high count of diverse languages, our
system is not tailored towards specific linguistic

∗These authors contributed equally
1Source code available at https://gitlab.com/

nats/sigmorphon18

bungas N;INST;PL
⇓

bungām

Figure 1: An example for word inflection in Lat-
vian, ”a drum/drums”

# of Samples

Volume max avg

low 100 99.6
medium 1.000 934.5
high 10.000 8553.6

Table 1: Maximum training data volumes

features of a language, but instead learns transition-
based character actions to transform a lemma into
its inflected form. We try to limit the number of
output actions that our network has to learn by
grouping certain characters into common groups
based on graphical features like accents or symbol
modifiers. Lastly, we propose a method to enhance
the training data of the low setting without the use
of external resources.

2 String Transducer

The inflection process itself is realized in our sys-
tem through a finite set of edit actions, resulting
in a standard transducer process. An input string
is traversed left-to-right via an index pointer that
indicates which symbol is currently being regarded.
The following actions are available:
• EMIT s (for any symbol s): Appends s to the

output string, irrespective of pointer symbol
• COPY: Append the pointer symbol to the out-

put string
• PATCH x: Apply the graphical patch matrix
x (cf. Section 3) to the pointer symbol and
append the result to the output string
• MOVE: Increment the pointer to continue
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traversing the input word
• EOW (end of word): Stop traversing the string

and consider the current output string as the
final inflection result

2.1 Alignment
We chose to implement our own mechanism to
align input lemma and output strings, to accommo-
date for our patch concept.

The aligner itself is based on plain Levenshtein
metrics (Levenshtein, 1966), with the additional
constraint that two symbols a, b are considered
equal (cost 0) if there is a patch that transforms
a into b. We then pick the alignment with the low-
est cost according to this customized Levenshtein
metric to encourage our system to learn COPY and
PATCH actions as much as possible.

2.2 Oracle Algorithm
The actions needed to transform an input lemma
w into the inflected target form t are generated
through a deterministic algorithm that acts as static
oracle gold standard. This algorithm works with an
aligned pair (w′, t′) as input, where the original w
and t are filled with arbitrary characters not appear-
ing in the original strings. The exact procedure can
be seen in algorithm 1 with #-symbols being used
as gap fill characters.

Algorithm 1 Deriving oracle actions gold standard
from aligned input strings

for all (cw, ct) in alignment do
if cw = # then
actions.append(EMIT ct)

else if ct = # then
actions.append(MOVE)

else if cw = ct then
actions.append(COPY)
actions.append(MOVE)

else if patchtable.contains(cw, ct) then
actions.append(PATCH cw to ct)
actions.append(MOVE)

else if cw 6= ct then
actions.append(EMIT ct)
actions.append(MOVE)

end if
end for
actions.append(EOW)
return actions

Lemma Inflection Features

Baumhaus Baumhäuser N;ACC;PL
Kanarienvogel Kanarienvögeln N;DAT;PL
Milchkuh Milchkühen N;DAT;PL

Table 2: German noun declension examples: tree
house, Canary bird, (milk-)cow

Lemma Inflection Features

chacer chaçons V;POS;IMP;1;PL
évincer évinçant V.PTCP;PRS
concevoir conçusse V;SBJV;PST;1;SG

Table 3: French verb conjugation examples: to
hunt, to cut up, to conceive (of)

3 Patches

An essential part of our system concept is to intro-
duce so-called patches that act as string transducer
actions. A patch in this context is a shortcut oper-
ation between two graphically similar characters
(see Figure 2), like the acute accent that transforms
the letter a into the letter á. It acts as a partial func-
tion p(x), so that the same patch can be applied to
the letter e to yield p(e) = é — however it does
not produce a valid result character when applied
to the letter b for example.

Figure 2: Example patch generated from o to ô (on
the right)

3.1 Idea and Motivation
The basic idea for these patches comes from the
tendency of some languages to slightly modify the
root of the word during inflection. This can ei-
ther be due to phonological requirements (Kendris,
2001) or historical linguistic influences (Wiese,
2009; Wunderlich, 1999). Two examples for inflec-
tion in German (note the added Umlaut symbols
for the inflected forms) and French (with added
cedilla marks) can be seen in Table 2 and 3, respec-
tively. The underlying intention is to capture this
modification to the word stem while retaining the
idea that it still is based on the same letter or group
of letters. A plain transducer would identify n and
ñ as different symbols, and consequently generate
EMIT actions the same way it would for f and g.



Another motivation was the previous work per-
formed on machine translation systems by Liu et al.
(2017). They achieved promising results by explor-
ing visual features on the sub-character level for
machine translation, and their ideas and implemen-
tations proved useful as a starting ground for the
concept presented in this section.

3.2 Generation
To calculate meaningful patches, we render all
unique and distinct symbols contained in a given
training set into binary 2D pixel matrices that con-
tain information whether a pixel is set/black or not.
The resulting matrices are then compared with an
element-wise XOR operation that yields all pixels
different between the two images. We furthermore
only consider patch matrices that are based on the
same ASCII character and that don’t surpass a cer-
tain heuristic threshold of set pixels. Through these
checks, patches from i.e. x to m get discarded be-
cause although possible, it does not produce any
advantage to use them in the transducing compo-
nent. The resulting effect would be the exact same
as a straight-forward EMIT action.

The only non-intuitive heuristic involves the let-
ter i, which contains a dot on top of a vertical bar
that ”disappears” when applying typical patches
like accents. To counter this effect, we introduced
a hard-coded set of replacement rules where the
letter i is effectively replaced by the Turkish dot-
less ı in graphical representations, in order to fool
the system into correctly applying modifications.
A similar principle might apply to other symbols
in languages unknown to the authors, so the pro-
posed architecture is capable of extending to more
symbol exceptions if desired.

3.3 NFD Unicode Decomposition
The Unicode standard proposes normalization
forms2 that are capable of converting between com-
posite symbols and their integral parts. In particu-
lar, the NFD normalization achieves an effect very
similar to our patch concept.

However, when designing the system we con-
sciously decided against the use of such a feature,
mostly because we were not aware of the complex
NFD standard and coding a similar system by hand
was not a viable alternative at all.

2see http://www.unicode.org/reports/
tr15/

3.4 Font Choice and Rendering
The font choice for our system has to focus on two
main aspects:

1. It has to always render all characters in the
exact same position

2. It should have high Unicode coverage to be
able to render as many foreign alphabets’ sym-
bols as possible

Regarding point 1, we only considered mono-space
fonts and examined 14 of them. Most of them were
appropriate, only two of them still had issues with
pixel-perfect alignment of the target symbols on
several occasions. Regarding Point 2, we did not
find a single font that covered all alphabets in use
for this Shared Task, so we had to take some draw-
backs and accept rendering of ”unknown symbol”
placeholders for some languages.

The symbol rendering is handled through the
pygame3 library. More sophisticated alternatives
perform anti-aliasing that nullifies the desired effect
of pixel-based comparison. An anti-aliased letter a
looks slightly different than the same letter ä with
German Umlaut added on top, and the resulting
patch would contain this noise and therefore be
different from the one between e.g. o and ö.

3.5 Equivalence Classes
After rendering, all resulting patch matrices are
grouped by pixel similarity, resulting in a finite
number of equivalence classes that can later be
used as actions for the transducer. These actions
are symmetrical, so that irrespective of lemma and
inflection order we define p(p(c)) = c.

Once the patches are grouped, the original pixel
representation is discarded so that our data can be
arranged as a simple lookup table where patches
are represented by numerical indices – as can be
seen in Table 4.

We deal with unseen characters during predic-
tion by populating the lookup table over a big por-
tion of the entire Unicode plane, and then filtering
the result based on a given input alphabet: We keep
all rows of any patch p in the pre-populated table
if at least one example of p was observed in the
input alphabet. Although this computation is quite
costly, we can still keep runtime demands at a min-
imum because the whole overview only has to be
computed once. Individual languages can then be
filtered out ”on demand” while holding a complete

3see https://www.pygame.org/docs/ref/
font.html
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Symbol Patch Result

e 3 è
a 3 à

· · ·
o 17 ø

Table 4: Symbol patch lookup table

copy of the Unicode-based lookup table in memory.

4 Enhancing Training Data

To improve our training on low data quantities, our
system can enhance training data by generating ar-
tificial samples based only on the existing data. By
detecting patterns in words with the same features
and generating more data with the same patterns,
we assumed that this would aid the network in
detecting and applying patterns, such as common
prefix and suffix changes.

Similar approaches were taken by submis-
sions for previous CoNLL–SIGMORPHON Shared
Tasks. The winning submission (Kann and Schütze,
2016) of the 2016 Shared Task employed data
enhancement for the low resource setting. The
team of the 2017 submission from Bergmanis et al.
(2017) used two variants of a sequence autoen-
coder, with one using lemmas and target forms
as inputs and the other using randomly generated
strings. The additional training data proved to in-
crease the average performance on development
sets. Kann and Schütze (2017) used several aug-
mentation methods, including a rule based system.
Silfverberg et al. (2017) employ a data augmen-
tation system splitting a word in three parts - in-
flectional prefix, word stem and inflectional suffix -
and then generating new words using existing pre-
and suffixes. Further works using data augmenta-
tion are provided by Zhou and Neubig (2017) and
Nicolai et al. (2017).

4.1 Basic Enhancement Process
To generate artificial training samples for a data
set, our system sorts the input data into groups of
inflections that share the same features. Within
each group, it aligns and compares each pair of
lemma and inflected form with every other pair,
only retaining the common characters at the aligned
positions. The different characters are replaced
semi-randomly using a language model based on
n-grams with one gap each. Finally, these gaps are
filled with letters from the dataset based on their

n-gram Letter Frequency p

?ad r 433 0.4446
p 182 0.1869
t 107 0.1099

. . . . . . . . .

?ade r 265 0.5311
p 91 0.1824
n 46 0.0922

. . . . . . . . .

Table 5: Excerpt from the language model for
swedish (low volume)

frequency (an example is discussed in Section 4.2),
using the same letters for both the artificial lemma
and inflected form. If there are still any gaps left,
more characters are selected based on n-grams from
the language model.

The system produces a specified number of
words per alignment match. While creating the sys-
tem we found that more than five enhanced words
per match is not beneficial to the end result, with
one word generated per match being the best option
for most languages. We have also tried adding a
constraint regarding the minimum number of occur-
rences of a pattern necessary to produce artificial
words, but found no improvement overall by speci-
fying this minimum support during development.

4.2 Language Model Example
In Table 6, after inserting iomm, one more gap
(symbolized by #) is left to fill. To find an appro-
priate letter, the current word is compared to the
language model’s n-grams, starting with n = 5
and reducing n while shifting the beam from left
to right until an n-gram with the corresponding gap
is found in the language model. In this case, the
longest n-gram found is the 4-gram ?ade that can
also be seen in Table 5. Through using each let-
ter’s probability (the frequency of the n-gram in the
dataset where the letter replaced the ?-symbol) the
letter to replace the ? gets chosen; in this example
it is p.

Theoretically, this system improves with bigger
data sets as there are potentially more patterns to be
discovered. Unfortunately this also means that for
low quantities of data, where enhancement would
be most beneficial, the quality of the enhanced data
is lower than for higher quantities of data, where it
is not as needed.



skapad skappade
#fixad ##fixade

####ad #####ade
⇓ ⇓

iommad iomm#ade
⇓ ⇓

iommad iommpade

Table 6: An example for creating artifical data for
skapad – skapade (ADJ;DEF), ”created”

5 System Architecture

The system proposed in this work is an encoder-
decoder recurrent neural network combined with
hard attention and the string-based transducer
shown in Section 2. The architecture is displayed in
Figure 3. After processing the inputs through both
encoder and decoder the resulting action sequence
is applied on the lemma string by the transducer to
produce the inflected word.

5.1 Baseline
The baseline system that was distributed along with
the details for this Shared Task by the organizers is
based on pattern matching in strings. It is heavily
inspired by the methods proposed in the research
of Liu and Mao (2016).

For any given pair of aligned input lemma and
output form, the baseline extracts prefix and suffix
rules throughout the entire string, and then greedily
applies them on a new input lemma that is to be
inflected. The replacement rules are derived incre-
mentally, so that if multiple rules would match a
new sample, the longest one gets applied to pro-
duce the most accurate results possible.

Further details about the baseline system can
be found in the proceedings of last year’s Shared
Task (Cotterell et al., 2017), as the architecture is
virtually identical.

5.2 Neural Network Model
We use the same neural network architecture across
all 103 languages and training set sizes (low,
medium, high). The neural network acts as an ora-
cle for the string transducer shown in Section 2. Its
inputs are the lemma of a word and the features of
the inflected target form. The outputs correspond
to the defined transducer actions (COPY, PATCH p,
MOVE, EMIT s and EOW).

We use an encoder-decoder architecture (Cho
et al., 2014; Sutskever et al., 2014) to transform

Decoder 
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Inputs

embedding
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concatenation

GRU
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hidden
state
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Figure 3: System architecture

a sequence of characters into a sequence of trans-
ducer actions. The decoder uses hard monotonic at-
tention which has been found beneficial for the task
of morphological inflection (Aharoni and Goldberg,
2016; Aharoni et al., 2016) and allows our system
to meaningfully perform COPY and PATCH opera-
tions.

Both encoder and decoder contain a single gated
recurrent unit (GRU) introduced by Cho et al.
(2014) and character embeddings to obtain a dense
numerical representation from each input symbol.
The encoder is using a bi-directional GRU whose
outputs are summed up from both directions. Since
the encoder is uni-directional we only use the for-
ward path of the hidden encoder state to start the
decoder. The decoder concatenates the character
embedding, attention context and feature tensor as
a combined input to the GRU. The decoder GRU
output is fed into a linear transform followed by a
log softmax layer to obtain the log-likelihoods for
each transducer action.

Biases and weights for the GRUs and linear lay-
ers are initialized randomly from a uniform dis-
tribution U(−

√
1/s,

√
1/s) where s is the size of

the hidden layer (GRU) or number of input features
(linear layer). The embedding weights are initial-



ized randomly from a normal distribution N (0, 1).
The input lemma is processed at once by the en-

coder, generating output representations for every
input character and hidden state representations for
the whole input sequence. By using an external
loop the decoder produces one transducer action
per step. In each step the previous hidden state
and output action, inflection features, as well as
the attended encoder output is put into the decoder.
Which encoder output is being attended is con-
trolled by the index pointer of the transducer. If the
network outputs a MOVE action, the index pointer
is increased so that the decoder will see the next
encoder output in the following loop iteration. Ac-
tions moving the index pointer beyond the input
lemma are discarded.

To improve the prediction performance we im-
plemented a beam-search decoding process. This
results in multiple paths out of which the path with
the highest probability is selected to produce the
final inflected word. An additional transducer state
object stores the decoder hidden state, predicted ac-
tion and its log-likelihood plus the resulting output
string for each step and path in the beam.

5.3 Training
As the network outputs a sequence of transducer
actions, the training targets are not the inflected
words but an action sequence which produces the
correct inflected form when applied on the lemma.
This action sequence is generated by looping over
the aligned lemma and inflection word in lockstep.
For each character combination the corresponding
actions are appended to the new output sequence.
The detailed algorithm is described in Section 2.2.

Training updates are performed via backpropa-
gation with the Adam optimizer (Kingma and Ba,
2014) using the following parameters: Learning
rate α = 0.005, momentum decays β1 = 0.9,
β2 = 0.999, numerical stabilizer ε = 10−8 and
a weight decay (L2 penalty) of 0.001.

The beam-decoding allows a global normaliza-
tion of the model according to Andor et al. (2016).
Unfortunately, training the model with global nor-
malization in beam-search failed to converge. An-
dor et al. (2016) used pre-training with local nor-
malization to overcome this difficulty, but since we
could not find a robust way to switch local to global
normalization during training for all 103 languages,
we used local normalization only. Once the correct
path falls out of the beam, the log-likelihoods of

the correct path build the basis of our custom loss
function.

The loss function shown in eq. (1) is based on
the locally normalized path probability presented
in eq. (4) of Andor et al. (2016). It calculates the
negated sum over the log-likelihood l of the correct
action in each step of the path. Dividing by the nat-
ural logarithm of the sequence length s results in
a consistent loss magnitude, thus helping the train-
ing process to converge more easily. We assume
this is the case because we sum up the error across
all steps, also punishing the correct predictions if
the system was not 100% confident. The resulting
loss L is used to perform the training update back
through the entire network.

L = −
∑s

i li
ln (1 + s)

(1)

Although local normalization restored conver-
gence of learning, we could not find a significant
advantage in using multiple beams during training.
One explanation why our model did not benefit
from beam-search might be that it requires many
training updates. Punishing the correct steps in the
decoding process leads to many updates while with
beam-search updates may be too infrequent.

Our final training and evaluation is done with
a beam-size of 1. However, the architecture is
prepared to utilize both beam-search and global
normalization in the future. Training with a single
beam and evaluating with multiple beams to find
better predictions is also supported. Due to the
complex implementation of beam search and com-
bined batching the system works on single training
samples by using a batch size of 1.

5.4 Comparison to previous architectures
Although our approach follows the ”Align and
Copy” idea of Makarov et al. (2017) the architec-
tures differ. Makarov et al. proposed two different
models: Hard attention model with copy mecha-
nism (HACM) and hard attention model over edit
actions (HAEM). Both contain an encoder-decoder
with LSTMs. HACM uses a mixture of character
generation and copying probability distribution to
implement the copy mechanism.

Our architecture is more similar to HAEM. The
latter uses additional LSTMs storing representa-
tions of the predicted inflected form, action history
and deleted lemma characters. The decoder feeds
a concatenation of the feature vector, currently at-
tended encoder output and extra representations



through a rectified linear unit followed by a soft-
max to produce outputs like COPY, WRITE and
DELETE.

6 Tuning and Evaluation

While we used the same architecture for all lan-
guages and training set sizes, we performed individ-
ual hyperparameter optimization for each language-
size-pair. The parameters tested are the hidden size
of encoder/decoder (32, 64, 128), size of the char-
acter embeddings (8, 16), whether to use patches
or not and what amount of additional training data
to hallucinate with the enhancer (1×, 5×).

During the development we noticed that the re-
sults are strongly influenced by the random ini-
tialization of the network weights. We therefore
tested every parameter combination with five differ-
ent random seeds to mitigate this issue. Our final
evaluation on the test set used the best parameters
we found during the hyperparameter search on the
development set for each language-size-pair.

Furthermore, we observed our model sometimes
fails to output EOW and instead either tries to copy
non-existent lemma characters or endlessly EMITs
the same character. The string transducer includes
fixes for these issues when the pointer has moved
beyond the input lemma. In this case COPY and
PATCH do not modify the output sequence at all
and EMIT actions cannot append the previously
written character again. However, this results in a
few missing characters at the end of inflected forms
in some corner cases.

7 Results and Discussion

Compared to the other CoNLL–SIGMORPHON
2018 Shared Tasksubmissions, our system proved
to be in the mid-range (top 59%-67%). By average
accuracy, it improved the most over other submis-
sions for the medium volume datasets. While the
average accuracy increased from 40.3% on the low
set by 33.7 points to 74.0% on the medium set, it
improved by only 3.5 more points from the medium
set to 77.5% on the high set.

An overview over the results on the medium data
set is shown in Table 7. It shows that this system
is working exceptionally well on some languages
compared to the baseline, such as Swahili or Mur-
rinhpatha. Likewise, this system performs remark-
ably worse on some languages, such as Haida and
Neapolitan.

Language Ours BL

Top languages Uzbek 100.0 96.0
Mapudungun 100.0 82.0
Classical-Syriac 97.0 99.0

Worst languages Old-Irish 6.0 16.0
Haida 16.1 61.0
Latin 21.4 37.6

max(Ours - BL) Swahili 95 0.0
Murrinhpatha 88.0 0.0
Zulu 81.8 0.1

max(BL - Ours) Neapolitan 49.0 94.0
Haida 16.0 61.0
Latin 21.4 37.6

Above baseline: 73 avg. diff.: 20.2
Below baseline: 29 avg. diff.: −7.7

Table 7: Results for our system compared to the
baseline. Languages with the best and worst accu-
racies and languages that were the furthest above
and below the baseline, trained on the medium set
and evaluated on the test set.

7.1 Patches
Our system is generally able to deduce a meaning-
ful set of patches (that is, a lookup table with more
than one trivial entry) for about one third of all
languages. While the precise numbers differ per
training volume, the overall performance is justi-
fied given the font choice discussed in Section 3.4.
We could possibly achieve a higher coverage by
combining different fonts for different languages,
but for us the manual tuning process did not out-
weigh the work efforts this selection would have
required.

We can still observe that out of 42 languages
with patches, our hyperparameter tuning algorithm
opted to use patches in 17 cases on the low en-
vironment. While 17

42 = 40, 4% clearly signifies
little to no global improvement, the same fraction
rises to 29

42 = 69% when evaluating on the medium
environment.

In other words, the usefulness of patches rises
(among languages that use patches at all) when
training our system on larger quantities of data.
However at the same time, the selection of which
languages actually use patches to achieve maxi-
mum accuracy partially differs. Only slightly more
than half of the 17 positively patching languages in
the low environment also apply patches on medium,
so it is imperative to consider the actual linguistical
structures behind the data in order to maximise the
benefit of this method.

Lastly, one could combine the NFD system ex-
plored in Section 3.3 with the already implemented



font rendering to achieve hybrid patch generation
in an effort to maximise its effectiveness. This idea
was not pursued further by us and is left open as
future work.

7.2 Data Enhancer
On low volume, the accuracy on the development
set increased for 42 of the enhanced data sets (best
of enhancement by 1 / by 5) when compared to the
accuracy on the regular data set. For 53 sets they
decreased, no matter the enhancement proportion.
The probability of these being random observances
is 0.3049 (Zar, 1998). However, by testing the
accuracy of the enhanced and the regular training
data for each language on the development set, we
can select which languages will be enhanced and
which will not. This is part of the hyperparameter
search from Section 6. On the low development
set, the enhancer is leading to a total improvement
of 1.245% in accuracy and a negligible 0.044 char-
acters in Levenshtein distance, with improvements
for single languages of up to 10.8% (french). The
average improvement is 3.6667%.

7.3 Network Hiccups
Our system’s accuracy is poor on Haida and
Neapolitan compared to other submissions and the
baseline. The reason is that for both languages the
post-processing used to combat a missing EOW is
often triggered erroneously. The example below
shows our system missing the last character in the
output because the transducer discards the second
identical action to EMIT an a in this case.
• ñı́iyä→ ñı́iyä’wa (prediction)
• ñı́iyä→ ñı́iyä’waa (target)

As the inflected words are almost correct, the Lev-
enshtein distance is much lower than the accuracy
might indicate. For Haida the Levenshtein dis-
tance is even significantly lower than the baseline
results. In hindsight, it would have been better to
replace non-ending predictions with the lemma in-
stead of trying to clean the output as the negative
side-effects most likely outweigh any benefits. In
the future, a better approach would be to improve
the training process by using a dynamic oracle for
the target sequence and correctly implementing
global normalization with beam-search decoding.
These changes are likely to eliminate the need for
any post-processing.

Another weakness of our system is the inability
to transform a prefix into a suffix or vice versa as
shown in the following German language example:
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Figure 4: Histogram showing the effect of beam
size 16 compared to size 1 on the test set (trained
on low)

• abstellen→ stellt (prediction)
• abstellen→ stellt ab (target)

This behavior is expected as our neural network
works with hard monotonic attention. It would
need to store the information within the hidden-
state over the whole sequence as it cannot attend the
encoder outputs from the beginning again. A cure
for this symptom would be to use a model with soft
attention – which in turn cannot meaningfully use
COPY or PATCH operations on the input lemma.

7.4 Beam-Decoding
While we did not use beam-decoding for the offi-
cial results, we experimented with the evaluation
performance after the submission. Figure 4 shows
the number of languages for which beam-decoding
with 16 beams makes a difference in comparison
to greedy decoding. For half of the languages there
are either no or only negligible differences in ac-
curacy. About one third shows a small positive
effect. Some languages show a larger accuracy
increase while only few languages show a small
accuracy decrease. A binomial test shows that the
probability of the increase being random is as low
as 2.4× 10−10. Beam-decoding therefore clearly
leads to an increase in accuracy which matches
the intuition of beam-decoding producing better or
equal results compared to greedy decoding.
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