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Abstract

For the purpose of theoretically assessing the performance of differential operators for
computational discontinuity localization, we investigate here the localization capability of
regularized first and second order differential operators given a variety of continuous
image structure. For the 1-D case, we are concerned with mathematical notations for
common models of one-dimensional intensity functions for which we analyze the
performance of different operators with respect to their intrinsic localization error. For the
2-D case, we propose the scalable cylinder model of curved intensity variations as a
generalization of both the 1-D step and the ramp edge model. In particular, we analyze the
intrinsic localization error of the Laplacian operator (with the Laplacian of Gaussian as the
regularized filter kernel), and the first as well as the second order directional derivative
(with the corresponding derivative of the Gaussian as the regularized filter kernel) for
different parametrizations of the cylinder model (e.g. radius and scale of discontinuity).
Novel results from analytical and numerical solutions will be presented and discussed for
both the 1-D and the 2-D case.
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Zusammenfassung

Mit dem Ziel einer Beurteilung der Performanz von Differentialoperatoren zur
Lokalisation von Diskontinuititen in ein- und zweidimensionalen Signalen, wird in dieser
Arbeit die Lokalisationsgenauigkeit von regularisierten Differentialoperatoren 1. und 2.
Ordnung fiir eine Reihe von prototypischen kontinuierlichen (Bild-) Strukturen
theoretisch untersucht. Fiir den eindimensionalen Fall betrachten wir fiir allgemeine, in
der internationalen Literatur hiufig diskutierte Modelle eindimensionaler
Intensitdtsfunktionen, fiir die wir die Performanz verschiedener Operatoren im Hinblick
auf ihre intrinsischen Lokalisationsungenauigkeiten analysieren. Fiir den
zweidimensionalen Fall schlagen wir das Modell eines skalierbaren Zylinders - als
Verallgemeinerung eines 1-D Sprungkanten- und Rampenmodells - vor, auf dessen
Grundlage lokale Intensitiitsvariationen unterschiedlicher Flichengeometrien angenihert
werden konnen. Im einzelnen untersuchen wir den intrinsischen Lokalisationsfehler des
Laplace-Operators (mit dem Laplace der GauBfunktion als regularisiertem Filteroperator)
und sowohl der ersten als auch zweiten Richtungsableitung der Bildfunktion (mit der
jeweiligen Ableitung 1. bzw. 2. Ordnung der GauBfunktion als korrespondierende
regularisierte Filteroperatoren) fiir verschiedene Parametrisierungen des Zylindermodells,
z.B. Radius und Skalierung der Diskontinuitiit. Neue Ergebnisse analytischer und
numerischer Losungen werden gezeigt und fiir den ein- bzw. zweidimensionalen Fall
diskutiert.
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Abstract. For the purpose of theoretically assessing the performance of differential operators for computational discontinuity
localization, we investigate here the localization capability of regularized first and second order differential operators given a
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(with the corresponding derivative of the Gaussian as the regularized filter kernel) for different Parametrizations of the cylinder
model (e.g. radius and scale of discontinuity). Novel results from analytical and numerical solutions will be presented and
discussed for both the 1-D and the 2-D case.
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1. Introduction and Motivation

Considering computational (or machine) vision processes as a quantitative analysis and mensuration |
(22], e.g. a calibrated instrument for remote sensing or medical domain applications, provokes awkw
questions related to common engineering requirements such as accuracy, reliability, reproducibility, corr
ness, and robustness. Following the metaphor of a calibrated delicate instrument, a potential user i
particular task- and domain-specific situation has to strive for being assured of a guarantee for an abso
minimum or maximum error maybe even in terms of a fidelity certificate. In domains where accuracy
critical issue, the user of a machine vision based instrument - given a task specification - thus has to m
the best choice between a variety of instruments on the basis of facts derived from either the theoretic
or experimentally proven scientific frontier [21].

In the context of computational vision, and particularly for discontinuity localization, the main is
related to such an envisaged fidelity measure are [42]:

® The selection of an approach for evaluation and comparision of the performance of operators,

o the objective determination of the superiority of a particular operator with respect to the actual t:
and

o the assessment of the generality of the operator with respect to the prevailing image structure.

Although no general theory for performance and robustness evaluation of operators for computatic
discontinuity localization does exist so far, a plethora of scientific papers addressed this issue in the p:
The attempts may be broadly categorized as follows:

a) Starting either from mathematical models of receptive fields known from neurobiology or from p:
determined performance criteria, continuous operators are defined in an analytical form, and sut
quently the performance is theoretically validated or theoretically evaluated by a comparative :
competitive assessment of the performance (via an analytic solution in the ideal case).

b) Discrete operators are designed, e.g. by appropriately sampling continuous ones, followed by a s
sequent validation assessment in either qualitative terms via pure visual inspection of the resu
verbally explicated empiry, or quantitative terms via tables of fidelity measures.

In any case, the validation or assessment requires data, which are either given by continuous models
the expected image structure or discrete images believed to possess typicality. While continuous moc
so far have been defined only for the classical step edge and, only recently, for the ramp edge, the va
of definition of discrete test image data is still under dispute ([42]; see also [17] for early attempts). W
respect to the above mentioned dichotomy, this categorization may be also considered as a valid strat.
in the sense of continuous case at first and discrete case at second. However, this non-trivial appro.
requires both, a mathematically tractable definition of the theoretical problem and, in a painstaking w
the consideration of sampling, tesselation, quantization, and noise side effects. In addition, the realizatior
a carefully defined and controllable experimental testbed as well as a thorough definition of a test strati

would be of paramount importance (if not a methodological prerequisite) to assure valid scientific rest
(see [35] for a proposal).

We oppose the purely experimental validation and assessment of operators, but argue in favour of a th
retical analysis of the continuous case to a maximum extent prior to discrete case experiments (provic
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that this is possible for a particular problem). Why? Above all, only such an endeavour guarantees to prove
the intrinsic theoretical error limits in the sense of an lower- or upper-bound error from which precise local
or global measures for operator performance can be derived which are clearly beyond primae facie evidence
from visual inspection (the worst but still practized case) of the results of operators for discontinuity lo-
calization. Following this line of strengthening the theoretical basis of computational vision, we will in a
paradigmatic way present novel analytical models of a variety of 1-D and 2-D continuous image structure
(including scale of discontinuities by Gaussian blurring) along with analytical and numerical solutions to
the problem of assessing the localization performance of regularized differential operators for discontinuity
localization in the continuous case.

After having motivated our research, we will briefly introduce the basic ideas and concepts explicated in
detail in the remainder of this paper. As argued above, accurate, reliable, and stable numerical solutions
for the ill-posed problem of discontinuity localization play an important role in early computational vision.
Paradigmatic work on regularization to achieve numerical stability was reported in e.g. [45] and [3]. It has
been shown, for instance, that the Gaussian filter is a valid approximation of the optimal regularization
filter, derived theoretically from an underlying optimization problem. Beside the Gaussian filter generating
the scale of the discontinuities within our intensity models, we also have to consider a second Gaussian filter
for the regularization of the ill-posed differential operators in our analysis. We distinguish between the two
different Gaussian kernels by referring to their standard deviations as Omod and a,., respectively.

While the numerical stability of this type of regularized operators has been investigated in detail (see
e.g. [45] and [3]), a theoretical analysis of the accuracy of discontinuity localization schemes, leading to
quantitative results, has not been yet addressed in full detail.

For the purpose of arriving at mathematical foundations for discontinuity localization schemes and allowing
for a precise validation of the performance of different operators, models of discontinuities have been recog-
nized to be essential. Discontinuity models such as step edges ([12], [34], [20]) and arbitrarily scaled ramps
([46], [27], [4]) have been proposed in the past. However, a thorough and complete competitive and com-
parative assessment of the ability of operators to both reliably detect and accurately localize discontinuities
has not been achieved in the past.

Although the detailed discussion of the previous work on the problem of 1-D and 2-D discontinuity local-
ization will be done within the discussions of our own results for the 1-D and 2-D case respectively, we want
to summarize some general aspects of this work here.

It has been shown only for specific cases that even for ideal, viz. continuous and noiseless, intensity functions
the operator response cannot be predicted per se due to either the degrees of freedom of local intensity
variations ([33], [37]), or the intrinsic deficiencies of operators. With respect to the latter, Berzins [7]
for instance reported on zero crossing displacements around the location of an ideal V-junction in 2-D
intensity functions, while Clark [15] in his analysis of staircase shaped intensity functions even observed
phantom zero crossings. In addition to these general problems, the numerical realization of operators,
as they have been mathematically defined for the continuous case, degrades their theoretically predicted
localization capability. The discrete nature of sampled intensity functions with, e.g. additive Gaussian,
noise additionally prevents from predictable results once operators usually defined for the 1-D continuum
are applied to discrete images. As a consequence, Lunscher and Beddoes [29] carefully analyzed filter
parameter design which is an indispensable prerequisite to achieve accurate and reliable results in the
presence of noise.

Apart from the localization problem, the scale problem, e.g. step edges and arbitrary ramp edges at
prior unknown image locations, inheres also in discontinuity localization. Only recently, a small number of
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papers addressed the severe problem of scale in discontinuity localization and proposed numerical multi-scale
integration schemes to appropriately combine operator responses from multiple scales ([46), [27], [4]).

Finally, it can be safely stated that another major drawback in 2-D computational discontinuity localization
is the common premise of 1-D discontinuity models, e.g. particularly one-dimensional image intensity
functions which are assumed to be

a) coplanar with the cutting plane along the local gradient direction and

b) to have zero principal curvatures at least in its inflection point.

As a consequence of this basic assumption of a linear replicative variation of the 1-D discontinuity model
along the tangent direction, 2-D discontinuity localization operators expectedly exhibit only sub-optimal
performance in the presence of a higher complexity of intensity surfaces with respect to differential geometry.
For a detailed discussion see section 2.3 on the results of the 1-D discontinuity models and section 3.3 on
the results of the 2-D cases.

In the following chapters of this paper we will thus particularly investigate the localization capability of
different operators with respect to a variety of local intensity functions in 1-D and in 2-D from a theoretical
point of view. For the 1-D case, regularized first and second order derivatives as applied to step edges,
ramps, roofs and bars (also undergoing Gaussian blurring) will be analyzed in depth. For the 2-D case,
we will extend the 1-D step and ramp edge model to a cylinder model with control of local differential
geometry via independent parametrization of radius, contrast, and discontinuity scale.

To briefly recapitulate, discontinuity localization schemes have been usually derived from the 1-D continuum,
whereas for the case of 2-D intensity functions only the assumption of a linear replication of 1-D intensity
variation models in tangent direction assures optimal localization capabilities. For the 2-D case, it has been
argued that precise discontinuity localization hence has to be carried out for one-dimensional discontinuities
only (generated by cutting planes in 2-D intensity surfaces that contain the intensity axis (< 0,0, f(z,y) >),
thus treating the problem as for the 1-D case but for different orientations (see [2]). However, this approach
necessarily requires a number of differently oriented ( 1-D) convolutions, interpolation on the 2-D regular
grid and a subsequent interpolation between the different operator outputs for the sampled orientation
space. Motivated by the research on discontinuity localization based upon the Laplacian of Gaussian at
first reported in [30], the performance of Laplacian of Gaussian based discontinuity localization has been
compared to the non-linear second order directional derivative in the gradient direction (which yields the
true edge location, see e.g. [45], [20]). Based on Canny’s optimization approach [12] in order to find a more
robust operator for localization of 1-D step edges with respect to stability in case of noise, a great amount
of approaches favoured directional operators based on the first order derivative (e.g. [27], [4]). Therefore,
we concentrated in our 2-D analysis on the localization capability of the Laplacian of Gaussian and the
first order directional derivative operator with respect to curved and scaled intensity functions related to
the cylinder model.
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2. Discontinuity Localization in 1-D Intensity Functions
2.1 Models of 1-D Intensity Functions

In this chapter we will investigate the intrinsic localization accuracy of regularized first and second order
differential operators for four different 1-D discontinuity models as proposed in [33] and [37], respectively. In
particular, the examined intensity functions in 1-D are the ideal step, the ramp, the bar (or pulse) and the
roof. The step edge is the most frequently used model in the development and evaluation of discontinuity
detection and localization schemes (see e.g. [7], [20], [12], [19]). This simplest type of intensity function
models a sudden change in the brightness function which in turn represents either a single physical cause
or a combination of such causes ([31]). A ramp edge is a coarse approximation of an extended, i.e. smooth,
transition between two neighboring intensity niveaus. These two idealized intensity functions approximate
local contrast changes over a spatial range of different locations. Combinations of these contrast changes
have been considered as specific image structure primitives, since they may be covered by the significant
spatial support of a particular operator of finite extent therefore contributing to operator response. The
most popular representatives of such models are the bar and the roof, respectively. The bar (or pulse)
represents a one-dimensional cut through a light intensity line stroke on a dark background. The standard
bar primitive can thus be synthesized by two steps of equal contrast magnitude but inverse polarity. By
reversing the order of combination of the two steps with respect to a particular traversing direction, a cut
through a dark line on bright background is modelled. This type of intensity variation is sometimes called
a slit (see [37]). The roof is simply generated by two ramps with an opposite sign of slope. This special
type of intensity variation has been observed to occur in images of concave geometry discontinuities of
polyhedral surfaces ([23]). Figure 1 (a)-(d) provides a sketch of these functions also indicating the inherent
free parameters for definition of the functions.

The simple bar function introduced above was defined as a combination of two separated steps of equal
magnitude but inverse polarity. This definition can be relaxed by introducing a relative contrast ratio a
(see also [41]). Therefore, we can construct bar shaped intensity functions with neighbouring regions of
different intensity niveaus, which we subsequently refer to as generalized bars. By inverting the sign of the
ratio a, the commonly known staircase model can be synthesized. In the case of two combined step changes
of equal polarity ( corresponding to a = —1 ) a two-step stair is generated. Figure 1 (e), (f) shows sketches
of a generalized bar and a staircase, both for ratios a in the interval [0,1] and [-1, 0], respectively.

2.2 Accuracy of Localization for the Standard 1-D Models

For the general 1-D case, discontinuity detection by finding local extrema in the first order derivative of
the intensity function is identical to discontinuity detection by finding zero crossings of its second order
derivative. We thus can restrict our analysis to solve for zero crossings of the second order derivatives for
each of the different discontinuity models introduced above.

Let H denote the Heaviside function, defined by

o ifz<o
H(’)‘{l ifz>0

(see [39]). A step edge discontinuity in an intensity function with positive flank located at position z = Z
and local contrast ¢, can then be denoted by
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219



fstep(-'r) =cC- H(:C - Z)

Using a Gaussian with standard deviation o, G,, as the kernel of the regularization filter ([45)), the zero
crossing of the second order derivative applied to the Gaussian filtered intensity function Sstep is located at
Zstep sOlving

62(f.1!ep @ Ga)

0z? (z’“’p) =0,

where fy1., ® G, denotes the convolution of fuep with G,. Differentiating this convolution twice, we find
for the points of zero CTOSSING Z y¢ep :

‘C'(zatep_ Z) ] _(3step- Z)z

V2T - g3 gl 202

Step edges can thus be precisely localized by finding the maximum of the first order derivative or - equiva-
lently - by finding the zero crossings of the second order derivative. This result is independent of the scale
of the Gaussian regularization kernel, parametrized by o. The zero crossing locations in the scale space (the
corresponding graph in scale space is called the fingerprint by e.g. [47), (48], [43]) thus generate a straight
vertical line. :

J=0 = Zstep = 2. (1)

Turning to the ramp edge discontinuity model, let us define I(3%) =H(z+ Z) - H(z - Z). For the ramp
edge model intensity function with positive slope within the interval [-Z,Z] and contrast ¢ we can denote

Framp(2) = ¢+ (Il(3) ® H(2)).

The zero crossings of the second order deivative of the Gaussian filtered ramp function are located at Trampy
solving

32 ram ® Go’
(f 0:2 )(zramp) =0,

which corresponds to

C'((6(2+Z)—6(I—Z))@G,(I)):O = Tramp = 0. (2)

where §(z) denotes the generalized delta function. We thus find that the localization of a ramp edge
discontinuity by first and second order derivatives is precise as well. Therefore, its fingerprint in scale space
is identical to that of the ideal step, namely a straight line.

Before we investigate the bar (pulse) and the roof, let us now introduce two useful parameters.

¢ First, we rescale z by normalizing it with respect to the radius R (half the width) of the corresponding
structure (e.g. bar and roof), z = z/R.
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e Second, we define the ratio a = R/o, where R is half the width of the structure and o is the standard
deviation of the Gaussian regularization filter.

Using these two parameters, we get a normalized scale Space representation with respect to the scaling of
individual primitives. For the two remaining 1-D intensity functions as well as for all of the 2-D cases (see
Section 3.2) these ratios will be of great practical value.

Let us now define the bar model by the concatenation of two step edges of inverse polarity, same magnitude
of contrast ¢ and separation of the step locations by a distance 2R. For simplicity, but without loss of
generality, we assume that the bar is centered at z = 0 (see Figure 1 (c)), yielding

frar(2) = - T(53).

For the location of the zero crossing of the second order derivative applied to the Gaussian filtered bar
function fyqr, we must solve the equation

az(fbar ® Ga) (zbar = R)2 (Ibar + R)2
o (o) = (e = B) expl=BUZ TN (g4, 4 R gl B RS

We find the normalized location of the zero Crossing Zyq, = Tser/R (on the positive half axis) from

cosh(a® - £par) — Zpar - sinh(a? - Fp0p) = 0 = Zpar - tanh(a? - Z4,,) = 1. (3)

One of these two equations has to be solved numerically for y,,. We calculated the graph of the dependence
of Zj,. on the ratio a from the first of the two equations. The result is shown in Figure 2 in Section 2.3
where we discuss the results of the derivations for all 1-D cases.

Next, we investigate the roof shaped intensity variation, which results from the self-convolution of a bar
intensity function (%), i.e. A(E) = (%) ® (%) (see [9]). Denoting the local contrast ¢ as shown in
Figure 1 (d) we find

z z
froos(z) = C'(H(E) ® H(E))’
which leads to the result of convolution and differentiation:

aQ(frooj ® Go)
dz%

(z) =c-((8(z + R) - 26(z) + 6(z - R)) ® G, (z)) = 0.

This equation can be solved analytically for z, yielding

2
r00s = 27 +nfexp(5) + fexp(a?) - 1 (4)

for the normalized zero crossing location Zro0f = Zroof/R. A graph of the dependence of z,,, 7 on the ratio
a is given in Figure 3 also in Section 2.3.
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As we have argued above, the generalized bar function can be simply defined by introducing the contrast
ratio a into the equation for the simple bar, which then yields the following expression for the generalized
bar intensity function:

fopar(z) =c-(H(z = R) —a-H(z + R)).

For the second order derivative of this function convolved with the Gaussian, we find

2 r o - R ; g5 :
a (fgng’ G )(::) = _\/2__:_._05 (z-R) 'exP[_%U'-’_)] -(z+R)- exp[—E;Tz)*].

while for the zero crossing Tghar We arrive at the equation

a - exp(a’s gpar) + exp(—a’igpa,) — - [a- exp(a’%gpar) — exp(—a’Zgpqr)] = 0.

Using the identities e* = cosh(az) + sinh(az) and e~%* = cosh(az) — sinh(az) we finally yield

(a+1)-cosh(a"’-igba,)-i-(a-1)-sinh(a2‘£gba,)—z“:gba,.-[(a-1)-cosh(a2-5:gaar)+(a+l)-sinh(az-:‘:gba,)] =0 (5)

For a = 1 this equation reduces to the one we have derived above for the case of a simple bar function
(eqn. (4)). Again, we have to apply a numerical scheme to find the roots of this equation. Figure 4
in Section 2.3 shows the graphs of the zero crossing locations for different contrast ratios 0 < a <71
(Figure 4 (a)) and a > 1 (Figure 4 (b)).

As described in Section 2.1, the staircase model of local intensity functions is derived from the one for the
generalized bar by simply changing the sign of the ratio of the individual contrast magnitudes of the two
steps. It has to be noted here that for the staircase certain problems arise if the discontinuity detection
scheme is based on finding zero crossings in the second order derivative of the Gaussian filtered staircase.
Whereas maxima of the first order derivative occur at the positions of the two individual flanks only, the
zero crossing locations of the second order derivative correspond to inflection points in the filtered function,
i.e. local extrema (maxima and minima) of the first order derivative. Therefore, in addition to the zero
crossings at the locations of local maxima of the first order derivative, an additional discontinuity point
candidate occurs between the two step locations. This zero crossing was first investigated by Clark [14] (see
also [15]) and characterized as a phantom edge. Several methods have been proposed for its classification
from the zero crossings in 1-D and 2-D intensity functions. This problem is beyond the scope of our paper,
but the reader is forwarded to the literature cited above (see also [25]).

For the numerical solution for the zero crossing locations of the staircase intensity function, eqn.(5) is
parametrized with contrast ratios @ < 0. For convenience, eqn.(5) has been rewritten such that positive
values of a enter into the equation, yielding

(1—-a)-cosh(a’-:E,ba,)—(1+a)-sinh(az-é,b")-l-z'gb,,-[(1+a)-cosh(02-£,ba,)—(1—a)-sinh(az-igbm)] =0 (6)

The graphical representations of the results for zero crossing locations are shown in Figure 5. The illustra-
tions are separated for results of 0 < |a| < 1 (Fig. 5 (a)) and |a| > 1 (Fig. 5 (b)) and presented as well as
discussed in Section 2.3.
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This concludes the derivation of the equations of zero crossing locations of the second order derivative of
Gaussian filtered 1-D intensity functions depicted in Figure 1 (a)-(f). All models investigated so far have
not taken into account the possible scaling of the structure by prior blurring with Gaussian, in order to
generate e.g. differently scaled discontinuities of error integral type or ridge like structures. How does
such a scaling of the structure influence our results ? Let o,,,q be the standard deviation of the blurring
Gaussian, and denote the standard deviation of the Gaussian used for regularization as Oreg (corresponding
to o in the preceding formulas). The combined effect of the convolution of an intensity function with
the two Gaussian kernels is equal to the convolution of this function with a single Gaussian kernel with
standard deviation g,y = /02, + a:‘;ad. Therefore, all results derived for the step, ramp, simple bar, roof,
generalized bar, and staircase model hold true. We only have to rescale the original a within all formulas

to @ = (0reg/\/02g + 02 ,q) - @, While all the #’s remain unchanged.

2.3 Discussion of Results

In this chapter, we will discuss the results of the numerical solution to discontinuity localization based upon
the normalized scale space representation, and we relate our results to those reported in the literature.

Let us first give a short review of the most relevant contributions from the literature. Within the numerous
publications, most investigations and analyses of linear discontinuity localization operators were made
on the basis of the ideal step edge model. Basically, the publications can be classified into two groups
(corresponding to the dichotomy introduced in Chapter 1).

First, operators have been designed and optimized with respect to performance criteria, such as localization,
uniqueness and noise insensitivity. Among these we believe the works of Canny (e.g. [12]) and L.Spacek
([44]) to be the most important. Canny in [10], [11] and [12] proposed an optimization approach to operator
design in order to derive optimally suited operators for the detection and localization of discontinuities in
different 1-D intensity functions. The criteria which served as the basis for his optimization procedure
have been selected with respect to the uniqueness of operator response in case of disturbance of the signal,
localization accuracy of the estimated point of discontinuity and noise insensitivity. Canny was able to
derive optimally suited operators for step edges and bar intensity functions. The corresponding filter kernel
derived for the step edge operator was similar to the first order derivative of a Gaussian.

Following Canny’s work, Spacek [44] in a theoretical paper thoroughly investigated the design of a 1-
D finite width step edge localization operator on the basis of the first order derivative. In particular he
developed three analytical criteria for the design of an optimal operator which are expressed via quantitative
performance measures. Given a composite functional which combines analytical performance measures for
signal strength (e.g. signal-to-noise ratio), localization accuracy and noise suppression, Spacek derived an
analytical solution for this optimum operator by maximization of a quadratic functional using standard
variational calculus. The same principles were applied to the design of an operator which optimizes the
noise suppression measure only. Spacek further provided a detailed comparison of his optimal (cubic spline)
operator with the Canny operator based on the quantitative performance measures mentioned above.

In correspondence to the first class of the dichotomy introduced in Chapter 1, we review former work on
the analysis of operators which have been defined on the basis of some prior given filter kernel (such as
the Gaussian). As it can be immediately seen from our motivation, our own work reported in this article
belongs to this type of approach.

Shah et al. [43] qualitatively investigated the localization capability of the Laplacian of Gaussian operator
for isolated 1-D ideal step, ramp, bar (pulse), and staircase models. From the resulting fingerprints of the

223



zero crossings locations in scale space, they observed two different classes of zero crossings:

e Stationary zero crossing locations for step and ramp edge models, and

» Nonstationary, free zero crossing locations for bar and staircase model, where the amount of the
displacement for these zero crossing locations depend on the actual scale, whereas the direction of the
displacement is governed by the relative polarity of the two concatenated step edges constituing the
bar or the staircase intensity function respectively (propagation effect).

The same behavior has been also qualitatively documented for the discrete noisy 1-D case and (by simply
replicating 1-D discontinuity models in a linear fashion) for the case of synthetic 2-D intensity functions.

Based upon the results of Shah et al., Piech [41] has shown how to derive the fingerprints for the ideally
oriented linear 2-D step, bar, and staircase models directly from the fingerprints of the generating 1-D
models. With respect to the propagation effect she demonstrated that for a given bar or staircase with
width d the two constituing step edges tend to influence each other’s zero crossing locations once the scale
exceeds d/3. We will comment on this quantitative statement of Piech within the discussion of our results
below.

Lu and Jain [38] drew upon Piech’s findings and provided a detailed discussion on the occurrence of zero
crossings of the second order derivative of Gaussian filtered bar and staircase intensity functions, including a
generalization to more difficult neighbourhood contrasts. The authors again only qualitatively investigated
the direction of the shift of the zero crossing with respect to the true location of the discontinuity for
increasing scale.

However, Huertas and Medioni [24] also analyzed edge position accuracy for zero crossings in Laplacian of
Gaussian filtered intensity functions. The authors qualitatively derived conditions for imprecision in the
location of zero crossings with respect to the location of the discontinuity. For bars of width d they claimed
accurate localization if d > w, where w = 2¢ corresponds to the diameter of central excitatory/inhibitory
region of the second order derivative of a 1-D Gaussian. This seems obvious from the fact that in those
cases the operator support only captures one flank of the bar leading to the simpler case of the isolated
step edge discontinuity. In cases where d < s (s denoting the diameter of the Gaussian convolution kernel)
the locations are reported to be accurate. In case of d < w the zero crossings are displaced by (w — d)/2.
In order to overcome the localization error for bar and staircase, J.S.Chen and G. Medioni [13] proposed
an iterative scheme for successive refinement of estimates for discontinuity locations. Huertas and Medioni
also investigated the ramp and the roof intensity functions. For the ramp model with d < s a zero crossing
can be computed, located in the center of the ramp. For d > s no reliable discontinuity localization by zero
crossing detection is possible since the corresponding first derivative of this ramp will result in a plateau of
certain width. The roof intensity function, where d denotes the width of one constituing ramp, causes zero
crossings in the Laplacian of Gaussian operator response which are shifted with respect to the true location
of the discontinuity if d < w. According to Huertas and Medioni one yields conditions as in the case of
the isolated ramp for d < w with the subconditions discussed above. We will comment on the quantitative
statements of Huertas and Medioni below.

Bergholm ([5], [6]) derived a closed solution for the evaluation of zero crossing locations for bars similar
to the one we derived in the preceding chapter, but lacking the compact representation with respect to a
normalized scale space. The author showed numerical results for selected parameter combinations only.

This concludes our review of the most important contributions from the literature, and we want to discuss
now the quantitative results which we have derived in the preceding section.
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Our first investigation concentrates on the analysis of discontinuity localization for the isolated step and
ramp model, respectively. We achieved the result that the localization of discontinuities always corresponds
to the true location of the considered discontinuity. The scale space fingerprint for the discontinuities in
both intensity functions thus is simply a straight line parallel to the axis that denotes the scale parameter.

Exceeding these two trivial cases, we also analyzed intensity functions with joint occurrence of multiple
primitives, such as bar (pulse), roof, generalized bar and staircase models. These primitives have the
common property to fall into the region covered by significant values of the operator kernel as scale increases,
leading to mutual interference of the two discontinuities.

Figure 2 (a) shows the graph of zero crossing location z;,, as a function of the normalized scale parameter a.
The coordinate axis, denoting the zero crossing location, is scaled with respect to the radius (half the width)
R of the bar. The shape of the curve explains the qualitative observations reported within the literature
cited above. One can easily recognize that the simple categorization of Huertas and Medioni [24] does not
hold. The case for which d > w and d < w correspond to the two cases @ > 1 and o < 1, respectively,
where d = 2R and w = 2. For the case of @ > 1 the zero crossing locations significantly deviate from

position. In additon to the graphical representation and the analytical expression the following table shows
the numerical values of # for some selected a to achieve a better insight into the results.

Zero Crossing Location for Bar Function

2.25 1.000
2.00 1.000
1.75 1.004
1.50 1.020
1.25 1.073
1.00 1.200
0.75 1.472
0.50 2.087
0.25 4.042

Figure 2 (b) shows the graph of the zero crossing location £,,, s for the roof intensity function. Again, we
can see that the strict categorization of Huertas and Medioni [24] is in contradiction to the result we have

representation.
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Figure 2: The graphs of the numerical solutions for the 1-D (a) bar, and (b) roof edge model



[ Zero Crossing Location for Roof Function

| (True location at z, = 0.5) |

225 0.318 |
2.00 0.336
1.75 0.361
1.50 0.398
1.25 0.454
1.00 0.543
0.75 0.698
0.50 1.021
0.25 2.010

Let us finally discuss our results on the generalized bar and the staircase model. In order to model line like
intensity functions with neighbouring regions of different intensity niveaus, we have introduced — according
to Piech [41] - a contrast ratio parameter a into the bar model. In case a = 1 we get the original bar
function. Piech has shown fingerprints, i.e. scale space representations of zero crossing positions of filtered
generalized bar functions, for ratios a = l,a=2anda=8.

Figure 3 (a) shows the graphs for the generalized bar for contrast ratios a in the interval [0.1,1.0] with
step size Aa = 0.1 between the different curves. The analysis yields almost precise localization of the
discontinuity for a@ > 2 independent of the ratio parameter a. For scale values a < 2 the amount of
displacement of the zero crossing with respect to the true discontinuity localization increases as the value
of a decreases. Figure 3 (b) provides the graphs for ratios a in the interval [1.0,1.9] with the same step size
as before. The results are in accordance with the behaviour just described for Figure 3 (a). As for the bar
and the roof edge the results are additionally demonstrated within the following table.

Zero Crossing Location for Generalized Bar Function

(True location at z, = 1.0) ]

|a=0.5|a=1.0| a=-1:5 |

[225] 1.000 | 1.000 | 1.000 |
2.00 | 1.001 1.000 1.000
1.75 | 1.008 1.004 1.002
1.50 [ 1.038 1.020 1.014
125415 17126 1.073 1.051
1.00°]" 1327 1.200 1.145
0.75.| 1.761 1.472 1.344
0.50 | 2.851 2.087 1.762
0.25 | 7.649 4.042 2.780

With the introduction of the ratio a in the generalized bar function we were not only able to generate
arbitrary generalized bar functions with individual neighbouring niveaus, but also - by inverting the sign
of the ratio factor a - staircase models with different step heights. As an example @ = —1 corresponds
to a model with two consecutjve steps with equal step height. Shah, Sood and Jain [43] as well as Lu
and Jain [38] have argued on a qualitative basis that the shift of the zero crossing location for staircases
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is into the opposite direction as compared to the case of a simple bar function. Within the analysis of
the scale space fingerprint of such a staircase with equal step heights they demonstrate the existence of
a merging point, where the locations of the zero crossings corresponding to two individual steps, merge
with a third one located half the way in between the two and remain stable at this point #,,, = 0 as the
scale further increases (see [43], Figure 8, and (14], Figure 6). Going from coarser to finer scales the zero
crossing locations thus bifurcate at the merging point. The single coarse scale zero crossing is in accordance
with the behaviour we have shown for the ramp edge, because the staircase can be considered as a coarsely
sampled ramp edge. At the bifurcation point the individual zero crossings split into the two regular zero
crossings corresponding to the two step positions, and one phantom zero crossing described by Clark ([14],
(15]), which is due to the local minimum of the first order derivative of the low pass filtered staircase half
the way in between the two flanks. In the direct surrounding of the bifurcation point one has a critical
behaviour, called a fold catastrophe [14], in cases where the contrast ratio of the steps slightly changes from
ai=1F

Figure 4 (a) provides the graphs of zero crossing locations for staircases according to our analysis with
step contrast ratios a in the interval [-1.0, —0.1] and with a stepsize of Aa = 0.1 between the different
curves. The special case of a = —1 is easily identified as the curve that collapses from Z,:;r = 1.0 down to
Zstair = 0.0. All other ratios have absolute values less than 1. With respect to Figure 1 (f) ratios |a| < 1.0
cause the left step to dominate over the right one. Within our numerical solutions for Z4air We treat
Z,air a5 a function of a, so that we cannot associate more than one value with a particular a. Therefore,
we derive the zero crossing locations for the minor contrast discontinuity until the scale space singularity
occurs. Starting from the point of crossing over - clearly identified for each curve - we find the final part
of the zero crossing locations for the dominating discontinuity of the staircase. In Figure 4 (b) the absolute
values of the contrast ratio are greater than 1. The values have been taken from the interval [-2.0, -1.1].
The zero crossings shown in the graph correspond to the dominating step of the staircase.

The work of Piech [41] discussed above was formulated for edges separated by a distance d = 2R irrespec-
tively of the polarity of the individual edges. The finding of a critical point of mutual influence at @ = 1.5
cannot be supported from our analysis. Even for the contrast ratio @ = —1 a significant deviation from the
true location of the discontinuity can be observed. For decreasing values of a the magnitude of the shift
further increases. As for the other models, numerical results for selected values of o and a are shown within
the concluding table.

Zero Crossing Location for Generalized Bar Function

(True location at . = 1.0)

a ai‘:g!uu-
a=-05(a=-1.0 a=-1.5
2.25 1.000 1.000 1.000
2.00 0.999 1.001 1.001
1.75 | 0.991 0.996 0.997
1.50 0.945 0.975 0.984
1.25 | -0.950 0.880 0.930
1.00 | -0.825 0.000 0.733
0.75 | -0.591 0.000 0.406
0.50 | -0.424 0.000 0.262
025 | -0.353 0.000 0.213
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Figure 5: The local curvatures of 2-D intensity functions

3. Discontinuity Localization in 2-D Intensity Functions
3.1 A Zeroth Order Model for 2-D Intensity Functions

Assume we are given a 2-D intensity function and we look for the locations of discontinuities within the

intensity function, which are defined by the locations of vanishing local curvature in the direction of the
: 2 : t

local gradient g;é = 0 (for notation see Appendix B).

If our localization scheme is based on the Laplacian operator, we can derive from elementary differential
geometry that the operator response of the Laplacian at points of vanishing curvature along the gradient
direction is not zero, but

A.ﬂ%:O - |Vf[ * Kisophote

where Kisophote denotes the local curvature of the isophote at the position of vanishing curvature along the
gradient direction (see Figure 5).

The derivation of these equation can be found in Appendix B, where we also show that

¢ zero crossings in A f that coincide with g;é zero crossings are always located on intensity surface
patches with local zero Gaussian curvature (x = 0, i.e. locally flat points generated by the boundary
of two parabolic patches with opposite sign of mean curvature), and

o that Af zero crossings not coinciding with a g%{r zero crossing are always located in a hyperbolic
(intensity) surface patch, i.e. x < 0.

In summary, zero crossings of the Laplacian operator are located either in locally flat - bounding convex
and concave parabolic patches - or in hyperbolic patches. Since in general we have to deal with hyperbolic
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Figure 6: The zeroth order 2-D intensity model

surface patches, we will find a shift of the zero crossing of the Laplacian operator with respect to the
true discontinuity location (indicated by vanishing local curvature along the gradient direction) along the
direction of the local radius vector of the osculating circle.

For the purpose of quantitatively investigating this effect, we therefore define a zeroth order model of 2-D
intensity functions by a Gaussian filtered cylinder, which can be independently parametrized by the radius
R of the cylinder and the oy,4 of the Gaussian kernel. Let us initially assume omoq = 0, i.e. a crisp cylinder
of radius R (see Figure 6).

This zeroth order model can be extended to higher order models by taking into account more than the
constant term - represented by R — of the Fourier descriptors of the 2-D contour. For the definition of these
higher order models see Appendix D.

3.2 Accuracy of Localization for the Zeroth Order 2-D Model

3.2.1 The Laplacian of Gaussian Operator

In this subsection we derive an expression for the shift of the location of the Laplacian of Gaussian zero
crossing with respect to the true discontinuity location defined by the zero crossing of the second order
directional derivative along the gradient of the intensity function. As we have shown above there is always

a shift of the Laplacian of Gaussian zero crossing location unless the local curvature of the isophote is zero.
As argued above we have chosen our zeroth order model such that this curvature is nonzero but constant:

x(r’ ¢) = H(R = r)

The location of the zero crossings of the Laplacian of Gaussian applied to this intensity function follows
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from the convolution of the two functions

(x® AG,)(r,¢) = (Ax ® G,)(r,¢) = 0

where G,(r, ¢) denotes the isotropic Gaussian regularization kernel with standard deviation o.

The convolution is evaluated in detail in Appendix C.1. The result of this convolution is

R2 + T2
202

(Ax ® G, )(r,¢) = 2t N,a? exp(-

) - [Jo(ia®f) + i7Jy(ia®f)] = 0,

where we have introduced the normalized representation # = r/R and @ = R/o (in correspondence to the
1-D case), the first and second order Bessel functions J1 and J;, and the normalizing constant N, for the
2-D isotropic Gaussian. For the location 77,5 of the zero crossings of the Laplacian of Gaussian we find
from this equation

Jo(ia*fLog) + ifLoc i (ia?FL0g) = 0,

which, using the modified Bessel functions o and I; as defined in Appendix C as well, is equivalent to

Io(a*tLoG) = Frogli(a?FLog) = 0. (7)

This equation has to be solved numerically, and the result is shown in Figure 7. The result will be discussed
together with the results of the first and second order directional derivatives within Section 3.3.

3.2.2 The First and Second Order Directional Derivatives of Gaussian Operators

In addition to the Laplacian of Gaussian operator investigated within the preceding section, we now derive
an expression for the the first and second order directional derivatives of a Gaussian kernel to be used
for discontinuity localization. Because of the rotational symmetry of our problem we can reduce our

investigation to one arbitrary direction without any loss of generality. Let us thus choose the z—axis as the
reference direction.

Looking for the maxima of the first order directional derivative along the direction of this derivative is the
same as looking for the zero crossings of the second order directional derivative along this direction, for the

same elementary reasons as in the 1-D case. For both discontinuity localization schemes we thus have to
solve for

%y
(F ® G,)(T,¢) = 0:

resulting in (see appendix C.2 for details)
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0%y
(5;5 ® Gs)(r,0) =
R* +
202

r

r? T(ia?
) - [cos(2¢)J3(ia R

T ! e
—2¢ N, a2 exp(— ) = Jo(ia®=) = i(1 + cos(2¢)) = Ji (ia’=)] = 0,
R R R
where we have introduced the same normalized notation as for the Laplacian of Gaussian case in the
preceding subsection, and the second order Bessel function Jj.

For the location 7., of the zero crossing of the second order directional derivative of a Gaussian kernel we
find from this equation

cos(2¢)J2(ia’fgzz) = Jo(iafgzz) — i(1 + c0s(2¢))fGzzJ1 (10’7 Gzz) = 0,

which, using the modified Bessel functions I (see Appendix C) instead of J, is equivalent to

IO(sz'Gzr) + 505(245)]2(02’:(?::) s (1 ar- COS(2¢))FGr:II(a2fG::) = 0.

As in the case of the Laplacian of Gaussian, this equation has to be solved numerically. The result is shown
in Figure 9, and will be discussed together with the results from the Laplacian of Gaussian in the following
section.

3.3 Discussion of Results

In a large number of publications on edge localization in 2-D intensity functions, the displacement of the
detected location of a discontinuity with respect to the true location, indicated by the zero crossing of the
second order directional derivative along the local gradient direction, has been discussed.

Based upon early work of Abdou and Pratt [1], Kitchen and Malin (26] published an analytical study
of classical discontinuity localization schemes - such as proposed by Sobel, Prewitt and Roberts - with
respect to their magnitude and directional response. The model underlying Kitchen and Malin’s analysis
assumes an infinite straight unit step edge, with an orientation between 0 and 45 degrees with respect to
the ordinate, passing through a unit square pixel in a noise-free discrete image. This unit square pixel is
also considered the center of the convolution mask. The result of this thorough investigation sets limits to
the performance that can be expected from these conventional simple discontinuity localization schemes.

Beyond this type of investigations by simply extending 1-D concepts into 2-D (see the discussions within
subsection 2.3 on the results of the 1-D cases), mainly the Laplacian operator applied to Gaussian filtered
intensity functions has been analyzed in more detail by Clark (14], Berzins (7], Bergholm [6] and Lei [36)
with respect to the intrinsic 2-D problems caused by differential geometry of 2-D intensity surfaces (see also
[32] and, in particular, the detailed analysis in [45)).

Clark not only investigated the Laplacian operator on the basis of the local differential geometry of the
intensity surface, but also observed resulting phantom edges due to the involved zero crossing method.
Similar to our analysis Clark showed that zero crossings of g—:‘é not necessarily coincide with zero crossings
of the Laplacian operator. However, a qualitative estimation of this effect was not within the scope of his
paper. Such a qualtitative analysis was done by Bergholm within his thesis on the information of edges
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and optical flow. Herein, Bergholm [6] described rounding-off and ezpansion effects of the discontinuity
contours based on the Laplacian of Gaussian operator.

In contrast to this qualitative analysis of the discontinuity localization of Laplacian of Gaussian schemes,
only a few quantitative investigations can be reported. At first, Berzins [7] analysed in detail the rounding-
off effect for perfect V-junctions, built by a predefined angle a, assuming infinite extension of the structure.
or at least a large extent compared to the standard deviation of the regularizing Gaussian kernel.

An approach most similar to ours was published by Lei [36] in 1988. In a theoretical paper Lei extended
Spacek’s [44] contribution to solely local curvature measurement, based on an analysis of the level-crossings
curvature of a special type of intensity function. In reducing the degrees of freedom of the model for the
underlying intensity function by a coupling of the local contrast to the scale of the discontinuity, Lei derived
an analytic expression for the shift of the zero crossing location of the Laplacian operator with respect to the
true location. This shift was shown to be proportional both to the local gradient magnitude at the position
R of the true discontinuity and to a function of the ratio between ¢ and R, which we have introduced as
a in our analysis. In addition to the loss of generality with respect to the intensity function model, Lei's
solution also does not show the full scaling property with respect to the model blurring parameter o as
described below. The numerical solutions of our result on the Laplacian of Gaussian for the unblurred
cylinder model are shown in Figure 7 (a) and Figure 7 (b). While Figure 7 (a) has a linear scaling on both
axes, Figure 7 (b) has a logarithmic scaling of the zero crossing coordinate. It can bee seen from the two
figures that the relative error of the location of the Laplacian of Gaussian zero crossing with respect to
the radius R of the cylinder is a strongly decreasing function of the ratio a between R and the standard
deviation o,., of the regularizing Gaussian. Indeed this decay is stronger than exponential as can be seen in
Figure 7 (b), where the zero crossing coordinate has been scaled logarithmically. This behaviour is precisely
what one intuitively expects due to the fact that an increasing a (corresponding to a decreasing o,., for
fixed R) leads to an increasing straightness of the contour of the cylinder on a spatial scale compared to
Oreg. Thus to the operator, the contour looks more and more like a halfplane step edge, which is the
generalization of the 1-D step edge to 2-D. As we have derived in chapter 2, the localization of the zero
crossing of the second order derivative corresponds to the true location of the discontinuity. Thus the zero
crossing of the Laplacian of Gaussian in 2-D is expected to converge asymptotically to the location of the
cylinder discontinuity. From Figures 7a and 7b it can bee seen as well that there is no real critical point
of the scheme, i.e. a point a where a substantial change of the underlying effects can be observed. One
generally is attracted to interpret some points of such a graph as being more important than the others.
However, often those points are closer related to the characteristics of graphical representation alone than
to an effect of the underlying problem. The Figures should thus be understood as characteristic curves of
the Laplacian of Gaussian operator applied to 2-D intensity function with locally constant curvature. In
combination with the selection of a Gaussian filter for regularization of discontinuity localization, which
always tends to increase the standard deviation of the Gaussian to achjeve a sufficient smoothing capability,
the intrinsic localization error of the Laplacian operator on image structures of arbitrary size can be either
estimated from the characteristic curve or derived from the underlying equation. In Figure 8 we show a
graph corresponding to the shifted lines of zero crossings for values of a between a = 0.2 and a = 4.0.

Within the discussion of Lei’s results we mentioned the full scaling property of our result. The equations
for the zero crossing locations derived in this chapter always correspond to the case of a crisp cylinder.
Our zeroth order model on the other hand allows arbitrary Gaussian blurring of the crisp cylinder to yield
arbitrarily scaled discontinuities. As for the 1-D case we simply have to rescale a by replacing Oreg in the

nominator of a by o.sy = VO2g + 02 4 ie. rescaling a to & = (0reg/0ess) - @. In order to complete the
graphical and analytical results by some numerical values of # for selected values of @ we calculated the
following table.
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[| Zero Crossing Location for Laplacian of Gaussian

a ] ALY ’:LoG;__ H
2.25 ETRSE WA
2.00 1.135
1.75 1.181
1.50 1.256
1.25 1.384
1.00 1.608
0.75 2.026
0.50 2.919
0.25 5.701

In Figure 9 (a) and Figure 9 (b) we show the corresponding results for the directional derivatives. While
Figure 9 (a) shows the corresponding error curves for six different angles ¢ = 0,15,30,45, 60,75 degrees,
Figure 9 (b) shows the graph of the spatial displacement of zero crossings in the plane of the intensity
functions fora =2toa =7.

The same arguments given for the Laplacian of Gaussian hold for the directional derivatives as well. In
addition, we would stress that for small angles ¢ and for @ > 1 the ratio # is smaller than 1 leading to a
discontinuity localized inside of the cylinder. Due to the continuity of the ratio 7 with respect to a there
has to be a value a’ where the detected location corresponds to the position of the true location. This
can be seen from Figure 9 (b), the graph of the spatial displacement of zero crossings in the plane of the
intensity functions. For the directional derivatives the same full scaling property as discussed for the 1-D
operators and for the Laplacian of Gaussian holds. A corresponding table is shown below.

” Zero Crossing Location for Directional Derivative
e O E R R R KA

Q TGz
$=0[6=30]6=060] =15
2.25 | 0.915] 098 | 1.370 2.206
2.00 [ 0.904 | 0.992 | 1.446 2.402
1.75 | 0.903 | 1.009 | 1.549 2.657
1.50 | 0.926 | 1.052 | 1.693 3.999
1.25 [ 0.997 | 1.143 | 1.908 3.483
1.00 | 1.145 | 1.319 | 2.250 4.215
0.75 | 1.435 | 1.656 | 2.855 5.447
0.50 | 2.065 | 2.38¢ | 4.125 7.946
0.25 | 4.032 | 4.665 | 8.063 15.572
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4. Conclusions

In this paper we have thoroughly investigated the problem of theoretically assessing the intrinsic error of
discontinuity localization schemes for 1-D and 2-D intensity functions. Our analysis has been carried out
on the basis of

a) operators defined on continuous spaces such as the first and second order derivative for the 1-D case,
the Laplacian operator and directional differential operator for the 2-D case,

b) image structures modeled as idealized functions such as

1. the step, ramp, bar, roof, generalized bar and staircase function for the 1-D case,

2. the cylinder model as a zeroth order function for the case of 2-D intensity functions,
including arbitrary scales ( generated by Gaussian blurring ) of the discontinuities for both cases.

c) regularization of the ill-posed (differential) operators by Gaussian filters.

Novel results from analytical equations and their numerical solutions have been presented and discussed
for both the 1-D and the 2-D case given idealized and arbitrary scaled intensity functions modelling image
structures.

In the following we will briefly elaborate on the explanatory power and practical use of the resulting formulas,
graphs and tables. First, from a practical point of view, the graphs can be considered as characteristic
curves of the various differential operators with respect to their intrinsic localization capabilities. Thus,
given a particular problem and task (see below) we will be able to explicitely derive intrinsic error bounds
of the various operators from the corresponding equations (or the graphs or tables) such as to predict
their principle localization capability. Secondly, as a consequence, we can simply select the - in a sense
of theoretical localization acurracy - optimally suited operator for a particular problem and task on the
basis of the proven error bounds. However, again from a theoretical point of view, such a selection is
a multicriterial optimization problem for which we now can offer a pragmatic solution useful e.g. for an
engineer and his task at hand. Assume, for instance, that for a particular image class and imaging device, we
can determine the signal-to-noise characteristics and thus find an appropriate parametrization of a Gaussain
regularization filter according to [18]. Furthermore we assume that we have available a priori knowledge
about the image structure to be expected, say step and bar edge discontinuities at certain spatial scales.
Clearly for such a particular case we can decide on the selection of an optimal operator on theoretical
grounds by simply comparing the corresponding localization errors of all operators at hand, given R, 0mod
(both from the knowledge on the image structure) and Oreg from the regularization filter according to
[18]. In contrast, given a priori knowledge on the image structures and a minimally acceptable error for
a particular mensuration task, we can also select the optimum operator by the procedure sketched above.
Please note that this pragmatic approach possibly implies also achieving a compromise taking into account,
beside stability and localization accuracy, criteria such as ease of implementation etc..

However, as pointed out above, our theoretical analysis draws upon the continuous case only, resulting
in theoretically proven inherent error bounds. Consequently, in the future we will further investigate the
problems related to the discrete case, i.e.
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a) effects of quantization and sampling of the image intensity function and the operators upon the
characteristic curves,

b) determination of characteristic lines of various discrete operators as applied to, for instance, synthetic
images of gradually increasing complexity, and

c) effects of a varying signal-to-noise ratio upon characteristic lines of discrete operators.

Moreover we are concerned with the applications of our analysis to accurate discontinuity localization in
e.g. magnetic resonance images for which we

a) can reliably estimate the noise characteristic, and
b) can easily define the prevailing image structure (e.g. arbitrary scaled step and ramp edge discontinu-
ities).
Acknowledgements
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Appendix A: Derivation of Equations for 1-D Intensity Functions
A.l1 Step edge

The 1-D intensity function for the step edge located at position z = Z having local contrast ¢ is defined to
be

Sstep(z) = - H(z - Z)
where H denotes the Heaviside function defined as!

0 ifz<0
71f(°”)={1 ifz>0

The second order derivative of the Gaussian filtered function fstep yields

?(c-H(z = Z) @ Go(z)) .

a7 c-8'(z-2Z)® G,(z).

Using the derivative sifting property of the unit impulse ([9]), the convolution of the derivative of the delta
function - defined in the common sense of distributions - shifted by Z with the Gaussian, yields the first
order derivative of this Gaussian centered at location Z. The zero crossing of this function determines the
localization point of the discontinuity for the filtered step edge model to be

_C . (Iatcp e Z) .exp[—(z'up -— Z)2

=)
V2r .03 (202) ]
i.e.
Latep = Z.

A.2 Ramp edge

We define the function for the ramp discontinuity by using a rectangular function II(5%) = H(z + Z) -
H(z — Z) (the difference between two shifted Heaviside functions) which is convolved with a Heaviside
function. Without loss of generality, the function IT can be assumed as centered at the origin. The resulting
intensity function framp has therefore positive slope within the interval -Z,2):

Jramp(2) = ¢+ (II(322) ® H(z)).

The second order derivative of the Gaussian filtered function framp yields

'In the literature, e.g. [9], [40], [39], we find several distinct definitions for the Heaviside function with respect to the
functional value at location z = 0. The notation for the Heaviside function we use here is the one of [39].
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B x
8%(c- (N(5%) 3::(:)) 2G5 (6(z +2) - 6(z = 2)) ® Go(2).

Since the convolution is a linear operation, the sum of the two delta functions can be treated separately.
The estimated localization Zramp Of the discontinuity is found at the zero crossing of the above equation.
Thus, we have to solve

B Lo + Y2 Go(Zramp — R)) = 0.

This is equivalent to

& 2 1 —RY
\/2_:_0 - [exp( (I'El;;g.; 2 )-exp(———-—(x'z;;) =0

After the separation of the components we get

2 2 2 2
“Tramp -R- Tramp -R n ~ZTramp ) R. Tramp : -R
exp( 20_2 ) exp( 02 ) exp( 20,2 ) T exp( 20,2 ) exp( 0_2 ) EXP( 202 )
and finally

2R - r

Therefore, the discontinuity of the ramp transition as defined above is always located at
Zramp =0. O

A.3 Bar (Pulse) primitive

-

As defined in A.2, a rectangular intensity variation that models a bar can be described as the difference of
two shifted Heaviside functions. Without loss of generality, we defined the bar to be centered at the origin,
therefore the two flanks are located at —R and R, respectively. The bar function is then defined by

Joar(z) = € (=),

and the second order derivative of the Gaussian filtered function foar gives

(c-M(FH)® G,(z))
oz?

=c-[f(z+R)-8(z - R)] @ Go(z).

As expected, this result reflects the fact that a bar function can be considered as the first derivative of a
ramp. Therefore, the next steps in the derivation are straightforward: The zero crossing of the function are
found at
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c "(xbar = R)2 _(:bor + R)2
il [(zbar — R) 'EXP(T) - (Zpar + R) EXP(T)] =0
which is equivalent to
_(Ibar - R)'Z _(Ibar + R)2 _(Ibar - R)2 "'(Ibar G R)z
Zbar * [exp(———7—) — exp( 297 =R [exp(T) +exp(——— =il

We now replace the variable z4q, by Zper ( Which is scaled with respect to the radius R of the bar function
(see Section 2.2), Z4ar = Zpar/R). The above equation thus reduces to

_(zbar = R)z
20?

_(Ibar - R)2
202

(jbar o 1) A exp( ) AT (ibcr n 7 1) d exp( )

and further to
Zhar

s 2R
(xbar 7 1) F exp(a_

2 )=i'bar+1-

In order to get unified results, we further introduce the variable a = R/ as described in Section 2.2, which
leads to

exp(2a? - Zpar) + 1 = Zpay - [exp(2a? - F4g,) = 1] = 0.

Multiplying this equation with exp(—a? - Z4,,) and using the identities cosh(z) = 3[exp(z) + exp(~z)] and
sinh(z) = 3 [exp(z) — exp(—z)] we finally get

cosh(a® - Zpa,) = Zpar -sinh(a? - Zpqr) = 0
or, equivalently,
Zpie tanh(02 57 e

A.4 Roof primitive

A roof shaped intensity function A can be precisely described by the self convolution of a bar function, i.e.
A(%) = TI(£)®II(£). If the bar is centered at the origin, the roof is located at the same location extending
over the interval [~ R, R]. The function f,o,s with slope of the two flanks equal to |¢/R)| is given by

Jroos(2) = € T(Z) @ T(F)-

The second order derivative of the Gaussian filtered function is
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0%(c- ((£) ®TI(£)) ® Go(z)) _ B(c-((8(z + 1R) = 6(z —= 1R)) ® (H(z + IR) - H(z - 1 R))) ® G,(z))
0z? %, o0z

Separating the first convolution of the right hand side from the other ones and using Fourier's shift theorem
we yield the simple result

¢+ (8(z + 5R) = 6(z = 3R)) ® (M(z + 3 B) - H(z - SR)) = (H(z + R) - 2H(z) + H(z - R).

The second order derivative of the Gaussian filtered roof then yields

ai(f,oaf(;lf Co(2)) s ny Prs(e) 4 52 RJ S Go(2).

For the evaluation of the localization accuracy, we again have to determine the zero crossing of this function.
The convolution of the Gaussian with a sequence of delta functions results in replicated Gaussians located
at the positions of the deltas. We thus get for z,50f :

c —\ZTroo +R)2
8 (Zroof

\/2_1r-o"[ex( 202

(3roof L R)2

2
-I -
S0 . sl —eatoe] N

The term exp(-zfao!ﬂa’) can be eliminated from the equation and we replace z, R and & by the scaled
parameters Z and a yielding

1
[exp(_a.2 i iﬂ:mj) b exp(az ‘ irooj)] X eXP(-iaz) =9
Introducing the hyperbolic cosine as in Appendix A.3 we yield
2, - 1
Q Troof = aJ'COSh[exp(EQ)],

Using the identity arcosh(z) = In(z + v/z¥ = 1) finally yields an analytical expression for the zero crossing
location Z,,0¢

" 1 a?
Troaf = oy ln[exp(—2-) + \/exp(a?) - 1].

A.5 Generalized Bar (Pulse) and Staircase function

In A.3 the (simple) bar primitive was defined as the difference of two shifted Heaviside functions, both
with contrast c, located at —R and R, respectively. By introduction of a contrast ratio a, as described in
Section 2.2, different contrasts of the two constituing steps are allowed, the second step height related to
the first by the factor a. The generalized bar function is therefore defined as
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fgbur(x) — [H(I " R) s H(: o R)]v
and the second order derivative of the Gaussian filtered function fobar yields

d*(c-(H(z+ R)—a-H(z - R))® G,(z))

ar? =C'[6’(I+R)—a-6'(z-—R)}GG,(I).

Using the intermediate results of the derivations for the simple bar, and again introducing the normalized
scaling parameters & and a, we derive the corresponding intermediate result for zero point location of the

generalized bar z g4, :
a-exp(2a® - Zgpar) + 1 = £pqr - [a - exp(2a? - Egbar) = 1] =0,
or equivalently
[a - exp(a® - Zgbar) + exp(—a? - Zg4ar)] = Zgbar - [a - exp(a? *Zgbar) — eXp(=a’ - Z44,)] = 0.

Using the hyperbolic sine and cosine introduced in Appendix A.3 we get the final result for the location of
the zero crossing for the generalized bar as

[(a+1)-cosh(a? *Egbar)+(a—1)-sinh(a? *Zgbar)] = Zgbar *[(a—1)-cosh(a? *Zgbar)+ (a+1)-sinh(a? Zoban)| =0

For a = 1 this equation reduces to cosh(a? - z) - Z -sinh(a?®- £) = 0, representing the equation we derived
for the simple bar.

The intensity function of staircases, being a combination of steps of equal polarities, can be considered
as a special type of the generalized bar, where the ratio factor a is negative. Therefore, we can use the
above equation for the determination of zero crossing locations of the second order derivative of differently
parametrized staircases. For convenience, in order to parametrize with positive values for a, the equation
has been rewritten. Straightforwardly, we get

Zstair * [a - exp(a? - Zjtair) + exp(—a? *Estair)] = [a-exp(@® - #1air) — exp(—a® - E41air)] = 0.
corresponding to

[(1 —a)-cosh(az-:?:,m-,.)—(l +a)-sinh(a? *2 stair )|+ Zatair (1 +a)-cosh(a2-i:,m,-,.) —(1—-a)-sinh(a® ‘Bitave)] = B8
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Appendix B: Elements of Differential Geometry for 2-D Intensity Functions

This appendix contains some elements of differential geometry as they are of interest to the localization of
2-D discontinuities. The necessity of introducing differential geometry becomes obvious from the attempt to
describe the problem of discontinuity localization in terms of the local characteristic of the intensity function.
This approach generally leads to a change of the coordinate system from the cartesian coordinates ) =i
to a curved coordinate system (u;);=1..n, related to the problem under consideration, such that every point
7 can be described by the corresponding z or u coordinate values respectively.

Along the tangents of the curves u; = const. we define a local system of unit vectors é,, by normalizing the
tangent vectors:

| R ar0 sgoren
e = 5’!1_, [”au‘“]

Related to each coordinate system we further define entities characteristically for this coordinate sysytem,
which allow the formulation of a problem entirely in terms of these entities, so that the form of the resulting
equations becomes independent of the underlying coordinate system. The entities to be introduced for our
purposes are the metric tensor g;; and the Christoffelsymbols l"f:- defined as:

S . e
Yiiss au. Uy

k _ 1w 0gu B9 0y
4 Ppons 2 [aui 1 ou*  ou! )

where we have used the Einstein convention for automatic summation over indices occurring twice.

Using these definitions we can write the Laplacian operator for arbitrary coordinate systems as

R e
T By Byl TS B
P ey oL © 0
iy 1) - T ) e
= Bwow? tlgg tTag Iz

For the problem of 2-D discontinuity localization we adapt the curved coordinate system to the itensity
function f in such a way that the first coordinate unit vector €y, = €y, is along the gradient direction of
f, while the second coordinate unit vector €u, = €, is locally perpendicular to the first one.

From these definitions we directly find for the metric tensor g,; = €&, * €y, = &;;. To find the result of the
Laplacian operator applied to the intensity function f in these coordinates, we have to insert the metric
tensor into the Laplacian, yielding

o R R 5 R i e
o du? i ou?, ¥ r"Bu,. * P”Bu,. * F“auu i Oun,

Because we choose &,, along the gradient of f we immediately find 3‘-’}‘1: = |V f|, while ai:;L = 0 because

nl

we choose €, orthogonal to the gradient of f along curves of constant values of y i
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Inserting this into A f and calculating the Chistoffelsymbols by inserting gi; thus yields

DL,
e .
auﬁ Ty Bunl
2
= 5;2' o+ Kisophote * Ivfl,
n

A —

]V /]

which represents the shift of the zero crossing location of the Laplacian according to the curvature of the
isophote and the local intensity gradient.

There is a second point of view concerning the differential geometry of intesity surfaces, which follows from
the noncurved coordinate system defined by the direction of the gradient of f and the orthogonal direction.
Let us call these coordinate axes as z,, and z,, respectively.

For the surface normal curvature in the gradient direction z, we find
b 1 a*f
W VIFVIE Ot
from which it has been concluded [45] that zero crossings in x, and g%{ must coincide. In addition to this

finding we have derived more extensive results. Looking at the normal curvature in the direction orthogonal
the gradient direction we find

("‘n)&

o 1 o f
R e 8%,

\ : A e 2 2
Since for our uncurved coordinate system - z,,, Zny ~ the Laplacian operator is given by Af = g;{r + a?: we
n nl

can conclude that zero crossings of the Laplacian that coincide with zero crossings of % are always located
on intensity surface patches with local zero Gaussian curvature k = 0, i.e. locally flat points generated by
the boundary of two parabolic patches with opposite sign of mean curvature.

From the two equations for the curvatures given above we can write

Af =14+ (V2 -[(14 (V) (kn)oo + (Kn)og+x]

Introducing the principle curvatures x; and K2 in accordance to differential geometry as well as the angle ¢
between the direction of normal curvature (%n)é and the principal curvature, we find from Euler’s formula

at points of A f = 0 with nonvanishing a%-?f'
nl

2+ (V) o 2-(Vf)?
(V) + —CO'E—] K1 =[(Vf) + WI “K2.

Thus Af zero crossings not coinciding with a zero crossing of the curvature along gradient direction are
always located in hyperbolic intensity surface patches, i.e. Gaussian curvature x < 0.
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Appendix C: Derivation of Equations for Zeroth Order 2-D Model

Content of Appendix C is the derivation of the formulas for the discontinuity localization schemes in two
dimensions. Prior to the derivations for the different cases let us summarize the derivatives of the zeroth
order 2-D intensity function in polar coordinates

x(r,¢) = H(R - ),

where H denotes the Heaviside function defined by

H(z) = {

1''ifz>0
0 otherwise.

with respect to Polar and Cartesian coordinates as we will need them later:

x(r, 9)

(8)

oy —~cos¢-§(R~-r) (9)

3"((9;*"’”) —sing-6(R -r) (10)

__67)5(;; ¢) cos’¢-6'(R-r) - sin:qs *6(R-r) (11)
2

azxa(yr;¢) sin2¢6'(R_r)_ coi ¢.6(R_r) (12)

AX(8) = 6(R-r)+8(R-1) (13)

Here § denotes the common Delta-distribution and ¢ denotes the first order derivative of & in the usual
sense of distributions.

In addition we define the complex n-th order Bessel function (2] as
—in 7 .
Ju(2)= —/ cos(n@)e'*=f4g,
™ Jo

and the modified n-th order Bessel function

Ii2) = e""lg.]u(ze?)

Appendix C.1: Laplacian of Gaussian

This Appendix contains the derivation of the formula for the the Laplacian of Gaussian applied to the
zeroth order 2-D model.
The convolution of the intensity function (eqn. (8)) with the Laplacian of the Gaussian

o2

G(r,¢) = N, exp(- 597
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is

(x ® AG)(r,¢) = (Ax ® G)(r,9).

With the Laplacian operator in polar coordinates applied to the zeroth order 2-D function as given in
(egn. (13)) the convolution of the Laplacian of Gausian and M in polar coordinates yields

o0l ip2
(X6 Gl(r, pyN =R fo fo T'df'dfb'[(%é(R — 1)+ 8(R - 1))

12 + 12 = 2rr' cos(¢’ — &)
exp(- r )l

where we have used the identity
cos(¢' — ¢) = cos pcos @' + sin @sin ¢'.
With the definition of the complex zeroth order Bessel function
Has %/ﬂ' ezp(—iz cos B)dp

the integration over ¢’ can be done and one yields

r'? 4 r2 rr!

(Ax ® G)(r,8) 2nN,(f0°° dr'8(R = ') exp(~ 5 o1 )

” 2 l

)o(i—3))

+r
202

r? Rr
) Jo(l?)

o r
+ f dr't'6'(R — r') exp(-
0
R? +
202

(= =]
+ ./o dr'r’'§'(R — 1') exp(-

2m N, (exp(-

r'? 4 p2 rr!
257 )Jo(I?))

where we have finally evaluated the § distribution in the first integral.

Because of

[ e@s@uz = -

3J0(.'r)

az _JI(IL

where J; denotes the first order Bessel function, we can evaluate the second integral in accordance to the
definition of the §' distribution
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R*+r? Rr
(Ax®G)(r,0) = 21rN,gxp(- 557 )-Jo(:-o_—z)

r’?-i-rz

202
R? 4+ r? .Rr
677 i o

R? 4 2 .Rr
77 ) " JoligT)

R? R* 4+ r? Dk
+2xNo 7 - exp(=—5——) - Jo(i=3)

.Rr R? +r? .Rr
+ 2TI’N¢1§ . exp(--——iﬁ—) . Jl(l.?)

+ 27N, —6-—(1" -exp(—

oo ) Jo(i=3))ri=r

27 N, exp(—

- 27N, exp(-

Thus we can finally express the result of the convolution as

R? 4+ 12 R?r <4 i - L
543 )'(JO(‘?E)'f"EJI('?‘E))

RZ
(Ax®G)(r,¢) = 27rNa; - exp(-

Hence for the zero crossings we get

R? s

(AXx® G)(r,¢) =0 <= Jo(i;;%)+i-}i.],(:?§)=0_

With the only free parameter as a = R/o and introducing the normalized radius # = r/R this finally yields
the equation

Jo(ia®#) + i7Jy (ia’F) = 0,
which simplifies in terms of the modified Bessel functions as defined above to
Io(a®f) = #1)(a%) = 0.

Appendix C.2: First Order Directional Derivative

This appendix contains the derivation of the formula for the points of maxima within the first order
directional derivative of the Gaussian filtered, zeroth order 2-D intensity function. Because of the overall
circular symmetry of the problem, we can restrict ourself to one specific direction for the differentiation
without any loss of generality. Therefore we take the partial derivative with respect to the z-direction.

A necessary and sufficient condition for the maximum we are looking for is the vanishing of the second
order derivative with respect to z, because we only search for the maximum along the z-direction. Thus
with the Gaussian as defined above, we have to calculate

%x
(@ ®G)(r,¢)=0
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Let us first calculate the convolution for the second order derivative with respect to r.

Inserting the result of the derivatives (eqn. (9-12)) into the convolution with the Gaussian in the very same
way as for the Laplacian of Gaussian yields

==} 27
(Xss ® G)(ri4) = N, f f rdr'dg/((Fi(r', &) — Fo(r', 8')) (14)
0 0
2 2000 ’ hy
-exp(-—r it 22:2COS(¢ ¢))], (15)

where we have defined

/ / 32 1 !
Xzz(T', @) = a)é(fad’)

Fi(r',¢') = cos?¢’ - §'(R-1')
in2 A
P 4) = SE8(R-1)

The two integrals for F; and F; are calculated sequentially within the following subsections.

First Integral

The integral over F, is abbreviated as F 1(r,¢) and can be written
F =l N r2 i Iyl ’ rn
1(r, 4) = ,exp(-2—-a-2—)fo dr'r'8/(R = r')exp(=5—) Fro,

where we have defined

td 2 2

Fi¢ = d¢’ cos’ ¢' exp[— cos(¢’ - ¢)).

0 g

Using some trigonometric identities one can verify

cos’ ¢’ = %(1 + c0s2¢ cos 2(¢’ ~ @) — sin 2¢sin 2(¢' — ¢)).

Inserting this identity for cos? ¢’ into F1¢ leaves us with three terms for integration over ¢ :

r dur B hdq&’ (rr’ &
i = 5 doexn(S cos(d' - 9))
b
= ‘.l'Jo(—lF),
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2 !
Fiiste -1-/ d¢' exp( =7 cos(' - ¢)) - cos 26 cos 2( &' — &)
2 Jo o?

]

2r rr!
cos 2¢j d¢’ exp(—i— cos¢') - cos 2¢'
0 o

rr!
—27 cos 2¢J2(-l'0—2) ,and

2x ’
Fisa = %jo dq&'exp(% cos(¢’ — @)) - sin 2¢ sin 2(¢' - 9)
=

The vanishing of Fy4 3 can be easily seen by symmetry arguments.
Collecting together the three terms finally yields
et rr!
f1¢ =T (Jo(—t;',:;) = COs 2¢ p Jz(—l;)).

Now we can solve for F'1 inserting Fy4 into the integral for F'1 by evaluation of the §' distribution, yielding

r2
Fl(r,¢) = =xN,exp —m).
4 3 o 54 4
7 exp(=5=5) (Jo(=i=7) = cos 26J2(~i=7)))rer.

Using the general identities for Bessel functions
9 n
a_z'(znjn(z)) = 2"Ja1(2) and
Jon(2) = (=1)"Ja(2),

the derivations of the terms corresponding to the two Bessel functions can be done in a straight forward
manor, yielding

arf [1‘ exp(-2 g)JO(- po )]r’-R =

exp -%) [(1 = a?)Jo(=ia®F) + ia’fJy(—ia7))
and

6?" -r exp(-—) cos?c:ng(-:—)],a-R =
ez p(— R )cos2¢ [(1 +02)Jg( -ia r)+ ia rJ;(--ta 7)),

where we have defined a = R/o and f = r/R again. Collecting together the two terms for the final result
of the first integral F1, we arrive at

Fi(r,¢) = =N, exp(— i ) (1 + a?) cos 2¢J5(—ia? ) +
+(1 - az)Jo(—m ) + ia®#(1 + cos 2¢)J1(-ia’#)]
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Second Integral

To calculate the final result of the convolution (eqn. (14)) we have to solve the integral over F,, which we
abbreviate as F2(r, ¢) for simplicity of notations. We find

T2 o0 r2
F2(r,¢) = =N, exP(-W)jn dr'§(R - T’)exp(—%";)fzw
where we have defined
= rr'
e j d¢/sin? ¢’ exp[— = cos(¢' — 9)]
0 o
analogous to the first integral. Simply enough it holds that
sin?¢’ = %(1 — cos 2¢ cos 2(¢' — ¢) + sin 2¢sin 2(¢' — ¢)).

Inserting this into F34 and comparing the resulting integrals with the coresponding integrals of Fy,; we
immediately see that

Fae = F191 — Fre.2 — Fre.3-

From the results for ;4 we get
AT rr'
F2¢ =7 - (Jo(=i—3) + cos 26 Ja(-i—)),

and we can solve the integral for F'2(r, ) after inserting F34 into the integral for F2 by simply evaluating

the é distribution. With our abbreviations @ and # from above we get

r? + R?
202

F2(r,¢) = —w N, exp(— ) - [cos 2¢J2(—ia®F) + Jo(—ia’F))

The Zero Crossings

Collecting together F1 and F2 we finally yield

(X:.t ® G)(f' ¢) = Fl(f‘, ¢) 3 F?(T, ¢) =
- i R? S ) 2 f i 1
L Ja - [cos 2¢J3(ia’F) = Jo(ia’F) — i(1 + cos 2¢)7J; (ia®F)),

where we have used another identity for Bessel functions

7N, exp(

Tn(2) = (=1)"Jn(~2).

Finally we introduce the modified Bessel functions to get the result for the zero crossings of the convolution
to be

Io(at) + cos 2¢ - [(af) = (14 cos2¢) - 7 - 1(af) = 0
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Appendix D: On Higher Order 2-D Models

Within this final appendix, we discuss a possible extension for the derivation of the equation for zero
crossings of the Laplacian of Gaussian to higher order models of 2-D intensity functions.

Let therefore the contour of the object be described by the dependence of the radius R on the polar angle
@. Restricting to closed contours R(0) = R(2r), we can expand R(¢) into a Fourier series yielding

R(é) = Ro + [Z ai cos k@ + by sin k),

k=1

where the ax and b, are sometimes called Fourier Descriptors within the image analysis literature.

In generalization to Appendix C, we now have

x(r,8) = H(R(¢) - r)
and we additionally have to take care of the ¢ term within the Laplacian operator in polar coordinates

d k) 0%

a
s e Bt e

| =

which we could neglect in Appendix C.

The result of the r—term of the Laplace operator can be taken from Appendix C.1 by simply replacing R
by R(¢). For the evaluation of the ¢—term, we abbreviate

Fi(¢) = axcos ko + by sin ko,

such that we have

x(r,¢) = H(Ro + [Y_ Fi(¢)] - r).

k=1

The second partial derivative with respect to ¢ can be done straight forward, using the definitions of the §
distribution and its derivative.

We get
2 r oo (%)
X0 SRR L8R+ (3 R - 1)
6¢ k=1 ’ k=1
S RR@) 5 iR+ (3 (@) - )
k=1 k=1

Collecting together the terms for the derivatives with respect to r and @ respectively finally yields
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AX(,8) = (3 =[S KRB =) 8(Ro+ (3 Fe(e)] - )
i k=1 L k=1

H1+ (X AP 5)-8(Ro+ (3 Fu(9)] - 7)
k=1

kaz]
This two terms now have to be convolved with the Gaussian.

Let us outline the general way of solving these integrals for the first term of Ay.

First the integration over r' is done by evaluating the § distribution, so that we find the integral over ¢' to
be solved:

(k1 k2 Fi(')]
(Ro + [2%21 Fr(¢')])

2
(AX®GJ1,¢(T,¢)=/O de¢'(1 + )

expl-5—[r* + (Ro + [k; Fe(8))? = 2r(Ro + [3 Fu(@")]) cos(¢' - 9)))]

k=1

Assume that the contour can be described by a finite number N of Fourier descriptors, so that the infinite
series become finite sums. Finding the ratio of sums containing cos k¢’ and sin k¢’ within the intergal leads
directly to the substitution z = exp(i¢’). This will

* transfer the real integral from 0 to 2r to an integral within the complex plane over the unit circle
[z| = 1 and d¢ = Hdz.

* make the finite sums of cos k¢’ and sinkd’ terms simply a polynomial in 2, because cos(k¢') =
3(zF + z7%) and sin(k¢') = (2% = 27F)

Thus we will find after the substitution

(X ® G)1u(r, ) = jl{lzl dz ;’2:8 exp[=Pu(z,7, )],

where Py(z), Pa(z) and P,(z) are polynomials in z whose coefficients depend simply on the Fourier descrip-
tors of the contour.
The solution of this type of integral is straight forward using the residue theorem from complex analysis:

Let G be a domain within the complex plane C, and S C G a discrete set of points such that the function
f from G\S into C is holomorphic. The points within § are thus isolated singularities of f. Let I be a
closed path within C and let I'n § = @, than

fr dzf(z) = 211 (3" wr(s)res,(f)],

8€S

where res,(f) is the first negative coefficient of the Laurent series of f, and wr(s) is the winding number
of T' with respect to s.

Is f(z)= %(_f.l, as it is for our cases, res,(f) = g(s).

To apply the theorem to our integral we have to

256



o identify the set of singularity points of our integrand. These singularities are obviously given by the
zeros of the nominater polynomial P,(z). We thus solve for all zeros of P, which gives us the set S.

¢ calculate the winding numbers of our path with respect to each s € . Because we integrate over the
boundary of the unit circle |z| = 1, the winding number for each s is simply 1, when s lies within the
unit circle |s| < 1, and the winding number is 0 else. We thus have to determine the subset S’ C S of
zeros of P, within the unit circle.

e for each s € s’ we finally calculate the residuum simply by factoring out (z - s) from P,(z), and
inserting s into the remaining function within the integral using the rule for residua given above.
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