UH
iﬁ
L2 % Universitat Hamburg

DER FORSCHUNG | DER LEHRE | DER BILDUNG

MASTERTHESIS

An Empirical Study of Testability in JavaScript
Projects

by

Finn Carstensen

MIN-Fakultét

Fachbereich Informatik

Studiengang: Informatik
Matrikelnummer: 7065446
Abgabedatum: 03.09.2023

Erstgutachter: Prof. Dr. Walid Maale;j
Zweitgutachter: Dr.-Ing. André van Hoorn

Betreuer: Pavel Reich

Abstract

Testability is a quality attribute of software that enables an efficient testing process where
faults are likely to be found. Testability has been a subject of scientific research for
decades, but there are gaps to be filled. Most research in this field focuses on Java,
which is not the only relevant language in today’s software development. This thesis
focuses on JavaScript as a versatile language that is frequently used in many frontend
and backend applications.

The goal of this work is to answer two main research questions. The first question is
the following: What is the level of testability in JavaScript open-source projects and
what are the characteristics of testable JavaScript? The question complements existing
research for Java to analyze the impact of JavaScript’s particularities on how testability
is reflected in the source code. Additionally, observations about the testability level
across the analyzed projects are made. An empirical study on a newly created dataset
of 384 public open-source JavaScript and TypeScript repositories is done to find source
code metrics that indicate the level of testability. The creation process was designed for
reusability in future studies. 39% of the repositories contained at least one test case.
Testability metrics were selected by performing a correlation analysis between pairs of
test and source code metrics. A scoring system built on the resulting set of 34 metrics is
proposed that can be applied by a developer to assess the testability of source code. The
findings are that TypeScript appears to be more testable across open-source projects and
that the level of testability seems to depend on the application area. Also, projects that
contain test cases appear to have higher testability on average.

The second research question is: What refactorings are done in JavaScript open-source
projects to enhance testability? Complementing a recent study on Java projects, the goal
was to find out how developers improve testability in JavaScript open-source projects
and how this information can be used to guide developers in refactoring their code for
better testability. In a semi-automated process, refactorings were searched in a set of
802 commits that modify related test and source code files. Every commit was manually
reviewed to identify refactorings for testability. In total, 42 testability refactorings have
been found. Derived from them, ten refactoring procedures are proposed to improve
testability in certain scenarios.

Acknowledgements

I would like to mention some people who supported me in creating this work. First I
would like to thank my supervisor, Pavel Reich, who shared his experience with me and
also reviewed some data to improve the meaningfulness of the results I found. I am also
thankful for the feedback and guidance in finding a suitable topic for this thesis from
Prof. Dr. Walid Maalej. The remarks of my friend Michael Raykhlin helped me a lot in
improving the readability of this work. Last but not least, I would like to thank Mosabbir
Khan Shiblu, who gave me access to the refactoring mining tool he developed for his
master’s thesis.

Contents

Abbreviations
1 Introduction
L1 Motivation. e
1.2 ResearchQuestions
1.3 Structure Overviewo
2 Fundamentals
2.1 Testingof Software
2.2 Testing in Open-Source Software
2.3 Language Features of JavaScript
2.4 TestinginlJavaScript
2.5 Testability of Software
2.6 Metrics for Testability Measurement
2.7 JavaScriptonGitHub oo
2.8 Refactorings for Testability
3 Approach
3.1 Sampling Strategy
3.2 Testability Analysis
3.3 Selection of Testability Metrics
3.4 Finding Refactorings
4 Analysis
4.1 Dataset e
411 MetaData.
4.1.2 Manual Classification
4.2 Testability in JavaScript-Projects
42.1 CollectionofMetrics
4.2.2 Correlation Analysis
4.2.3 Testability Level Analysis
424 ComparisonwithJava
4.3 Refactorings for Testability
43.1 FindingCommits

4.3.2 Mining Refactorings

11
12
14
15
17
21
21

433 CommitAnalysis
4.3.4 Testability Refactoring Procedures
4.3.5 Comparison with Java Patterns

5 Conclusion
5.1 Threats to Validity
5.2 Future Work

References

Appendix

Abbreviations

AC Afterent Coupling. 31, 32
API Application Programming Interface. 13, 14, 69
AST Abstract Syntax Tree. 9, 24, 42, 43

BCOV Branch Coverage. 32, 33
CC Cyclomatic Complexity. 30-32

DIT Depth of Inheritance Tree. 28
DOM Document Object Model. 14, 39, 65

EC Efferent Coupling. 31, 32
ECMA European Computer Manufacturer’s Assiciation. 13
ES ECMAScript. 13, 14, 56

FCOV Function Coverage. 32, 33
GUI Graphical User Interace. 9, 10, 15

HB Halstead Bugs. 31, 32

HD Halstead Difficulty. 31, 32

HE Halstead Effort. 31, 32

HL Halstead Length. 31, 32

HT Halstead Time. 31, 32

HTML HyperText Markup Language. 65
HVOC Halstead Vocabulary. 31, 32
HVOL Halstead Volume. 31, 32

JS JavaScript. 39

JSON JavaScript Object Notation. 24, 37

JSTS JavaScript Testability Score. 69

JSTT JavaScript Testability Tool. 5, 24, 27, 36, 42, 44, 48, 53, 55, 69

KISS Keep It Simple, Stupid. 16

LCOM Lack of Cohesion in Methods. 28
LCOV Line Coverage. 32, 33

LOC Lines Of Code. 12, 25, 30-32
LOCC Lines Of Code Comments. 30, 32

Abbreviations

LOCL Logical Lines Of Code. 30, 32
LOCR Test Lines Of Code to Lines Of Code Ratio. 33

MC Method Calls. 31, 32

MI Maintainability Index. 31, 32
MVC Model View Controller. 63
MVVM Model View ViewModel. 63

NBI Number of Bytecode Instructions. 28
ND Nesting Depth. 31, 32

NOC Number of Classes. 30

NOF Number Of Functions. 30, 32
NOM Number of Methods. 30

NOP Number Of Parameters. 31, 32
NOTC Number Of Test Cases. 32, 33
NPM Node Package Manager. 24

NPM Number of Public Methods. 28
NPRIM Number of Private Methods. 28
NTC Number of Test Cases. 12, 19

PAP Percent Public And Protected. 28

RBT Risk-Based Testing. 7
REST Representational State Transfer. 13, 24, 36, 53, 69

SBST Search-Based Software Testing. 18

SCOV Statement Coverage. 32, 33

SDLC Software Development Lifecycle. 68

SOLID Single responsibility, Open-closed, Liskov substitution, Interface segregation,
Dependency inversion. 16

SUT System Under Test. 6, 9—-11

TDD Test-Driven Development. 3, 11
TLOC Test Lines Of Code. 19

TRs Testability Refactorings. 58, 59
TS TypeScript. 39

UI User Interace. 9, 15, 27, 55, 58, 65, 67
VCS Version Control System. 21

XSS Cross-Site Scripting. 14

1 Introduction

1.1 Motivation

Probably every developer should know that testing is a crucial part of software devel-
opment. [6, 32, 64, 67] The task of testing is time-consuming and comes with different
challenges and difficulties. Plenty of research was done in the past decades dealing with
topics like types of tests, principles, automation, test generation, testing in practice and
much more. [36] Depending on the requirements for software, testing can consist of unit
testing, performance testing, security testing and integration testing, to name the most
common. [44, p. 10] For certain types of testing, the architecture and programming style
of the underlying software are of great importance. [25, 33, 19] Guidelines for writing
testable software and principles like Test-Driven Development (TDD) aim for a mini-
mum effort in testing source code. [63] If source code is written without testability in
mind, it may require changes when tests are added later. Even though academia paid
attention to the testability of software, there are some gaps to be filled.

Testability is an important software characteristic. Testing already consumes up to 50
percent of the development effort [55, p. 1][64, p. 9], so it should be avoided to unneces-
sarily increase it by not thinking about testability when writing code. It will take longer
to write tests if the source code is hard to understand. More complex tests will be needed
if the source code lacks cohesion or has high coupling. Testability issues can range from
architecture to implementation level. [19, p. 437] Building testable software will save
resources and speed up the development process. [13, p. 87] Another problem is that
tests will reveal fewer faults when the testability is low. [2, 35] As an example, think
about a complex method with hundreds of possible paths depending on the input. It is
unlikely that test cases will be written for every path, so problematic inputs may remain
uncovered. If the method is split into parts with only a few paths each, it is easier to
cover them in individual tests for each part. If software has low observability, faults that
appear during the computation may remain undetected if the output is still correct.
When reading through the literature, the first thing to be noticed is that some program-
ming languages get less attention than others. Much research deals with software written
in Java, which stands out when reading systematic literature reviews like the work from
Garousi et al. [35] There are examples of literature where authors explicitly recom-
mended that researchers should examine other languages than Java too, like the work
of Kaur and Singh regarding refactoring activities on GitHub. [52, p. 40] Research for
JavaScript regarding testability seems to be rare. Even though Java and JavaScript share
part of their names, they were designed for different purposes and use different concepts

1 Introduction

and syntax. According to GitHub’s yearly Octoverse reports [40], JavaScript is still the
most frequently used language in GitHub repositories since 2014. Itis versatile, it is used
in most of today’s websites to enable functionality, it can be used to create scripts and
automation and even to set up web servers. On the other hand, some language features
make it prone to errors, which confirms the need for proper testing. Due to the undebat-
able importance of JavaScript it should gain similar attention in software development
research. TypeScript also made its way up to the fourth place in the ranking of popular
languages in the Octoverse report, since it entered the top ten in 2017. Because it is a
superset of JavaScript, it may be interesting to include it in research for JavaScript.

1.2 Research Questions

This thesis shall answer two main research questions to fill some of the mentioned
gaps. For simplification, in the following the subject of investigation is referred to as
JavaScript projects. But to be exact, this includes extensions and modifications of the
JavaScript language like TypeScript. Also, the term does not refer to all projects that
exist in the world. The limitations will be explained in chapter 3 in more detail.

The first question emerges because it is investigated for languages like Java but not for
JavaScript. The question is: What is the level of testability in JavaScript open-source
projects and what are the characteristics of testable JavaScript? Like maintainabil-
ity, testability is nothing that can easily be measured. It is often described as consisting
of properties like controllability, observability and simplicity. [30, 35, 32] There is no
simple metric or aggregate of metrics that allows exactly measuring how testable soft-
ware is, but it may be possible to find metrics that can indicate if software fulfills a
certain aspect of well-testable software. That could either be achieved theoretically by
finding metrics that go together with concepts of testable software or practically by an-
alyzing existing code. Other studies already found some metrics that seem to be related
to testability for Java code, for JavaScript the question remains unanswered. Due to
the differences between the two languages, it is expected that results for Java do not
necessarily apply to JavaScript too. It is an interesting question if there are differences
between Java and JavaScript in this regard.

As in any field of software development, people strive to make processes as efficient as
possible. Repetitive tasks should be avoided and swarm intelligence should be utilized
to avoid common mistakes and save time. In the context of testability, Reich and Maalej
already started examining patterns of refactorings. [71] They analyzed pull requests
from GitHub to find refactorings that were done to improve testability. They focused on
Java code and found ten composite refactorings. This work serves as an inspiration for
the second research question in this thesis and allows a comparison of the results. The
approach to finding those refactorings will be different though, reasoned by the use of
a different dataset and the disadvantages of the other approach. In summary, the second

1 Introduction

research question is: What refactorings are done in JavaScript open-source projects
to enhance testability? If possible, patterns will be extracted from the findings to guide
developers in similar situations and for tool support.

1.3 Structure Overview

Chapter 2 will give an overview of the research and concepts that form the basis of this
work. First, aspects of testing that are important to understand testability are explained,
starting with a general perspective and ending in the context of the JavaScript language.
Next, the term testability is described in more detail and methods to assure and improve
testability are presented. This includes existing approaches to measuring testability, with
a focus on computable software metrics. At the end of the chapter, existing research on
improving testability through refactorings is summarized.

Chapter 3 describes the approach that is followed in this thesis to achieve the two re-
search goals. This starts with the generation of a representative dataset for the selected
sampling frame. This work will use a newly assembled dataset to reflect the current
state of open-source JavaScript projects on GitHub. With this dataset, it is described
how testability is analyzed through the collection of software metrics with subsequent
correlation analysis.

Chapter 4 covers the main work of this thesis. The process of obtaining the information
of interest is explained step-by-step. For a structured and clear workflow and a compre-
hensive presentation of collected data, a tool called JavaScript Testability Tool (JSTT)
is developed. The data is evaluated and the findings are explained.

The last chapter summarizes the work by critically looking at the results and discussing
limitations. The latter include problems that have occurred and may have a negative
impact on the results. It is also discussed how the findings can be used for future work.

2 Fundamentals

To get deeper into the subjects of this thesis, some general knowledge about concepts
and associated literature is necessary. First, it is important to know what testing software
means and why it is an essential part of software development. It is shortly introduced,
which different techniques, methods and types of testing exist. It is described what
challenges and particularities emerge in the context of JavaScript testing. Second, an
overview of the testability aspect of software is given. That includes how it is defined
throughout the literature and how it can be measured. Then, it is briefly explained how
JavaScript is represented on GitHub. The chapter ends with an overview of existing
work on refactorings for testability.

2.1 Testing of Software

Software testing is the process of evaluating if the System Under Test (SUT) meets its
specified requirements. [46, p. 177] It verifies the quality of software by systematically
exercising it. [55] Testing can find errors in a program, but can never prove the absence
of all errors. [66, p. 52] That is why it always makes sense to add missing test cases,
even in later phases of the Software Development Lifecycle (SDLC). It follows, that
improving the testability of software is useful at any point in time too. In safety-critical
applications, formal and mathematical methods that aim to prove the correctness derived
from the specifications are used. [66, p. 54]

The short-term goal of testing is to find faults in the system that lead to unexpected
behavior, which can be fixed afterward. The long-term goal is to ensure that the system
meets its requirements, even after code changes. [66, p. 20] This section will address
fundamental aspects of software testing to provide a general overview. The subject of
this thesis is testability, which is strongly connected to testing, but testing covers many
more topics that are not directly affected by testability. For this reason, this section will
not cover the planning or execution of every facet in detail but give a high-level overview
of testing.

Software testing builds upon the specification of the software, which is the obliga-
tory document for stakeholders defining all the settled requirements. The specification
includes functional requirements which describe the expected functionality and non-
functional requirements which address concerns regarding aspects like performance,
availability, security and maintainability. [66, p. 48] The requirements have a very im-
portant role in software testing since test developers need to know what to test for. The
quality of the specification and documentation artifacts resulting from the planning phase

2 Fundamentals

of a project has a great impact on the quality of the test suite. [26, pp. 21-22] Tests are
not an extension or substitute for specification though, because they lack the needed ab-
straction and are not accessible to everyone, especially stakeholders not involved in the
coding process. [60] Expected and unexpected behavior needs to be well-documented so
that the tests are likely to reveal faults. If so, tests could also be automatically generated
from the specification. Motwani and Brun presented an approach to extract test oracles
from natural language specification. Test oracles are the data that is used in test cases,
e.g., combinations of inputs and outputs. Obtaining those oracles can be hard, e.g., for
complex algorithms. [62]

Software testing and development are depending on each other. [26, p. 16] Writing
testable code is a precondition for executing tests and writing tests is necessary to en-
sure a unit is working correctly before it is used further. In a case study, Ghafari et al.
analyzed the relation of bugs to test coverage of software by looking into bugs described
in issue trackers. They found that only very few components affected by bugs were
tested. [38, p. 3] It confirms that testing eliminates defects. However, their findings
may not apply in general since it was only a case study.

While testing is very important for the quality of the underlying software, it can be a
costly process that needs to be well-managed and planned. Testing usually needs about
half the time of the development effort. [55, p. 1] Often a tradeoff between the testing
effort and a feasible amount of resources for testing needs to be made. [46] Resources
are often limited and deadlines can negatively impact testing when the production code
to be tested is not handed to the test developers on time. [66, p. 61]

The minimum effort for testing highly depends on the criticality of the software, e.g.
software in a hospital that is used to evaluate the vitals of a patient is more important
to be well-tested than a blog on the internet. Before a software development project
even starts, the risks are evaluated. Risk assessment is an important process that can
essentially influence the business success of software. [28] It is questioned if and how
much testing can reduce the identified risks. In monetary terms, the cost of mitigating
risks should not exceed one-fifth of the potential loss. [26, p. 10] Testing 100 percent
of the software is unrealistic, so the tests need to reduce the risks as much as possible
within the given resources. [26, pp. 9—11][66, p. 71] Therefore, a prioritization of tests
needs to be done to examine the point at which the existing tests are sufficient. The
reduction of the highest risks should be the highest priority in testing. This approach
is called Risk-Based Testing (RBT). [28, 70] RBT can be kept in mind to understand
why some parts of software are better tested than others. Generally, the business risk of
developing software can be reduced by reducing the number of defects in the software.
[26, pp. 17-18]

A popular rule of thumb is that the cost to correct an issue in the code increases signif-
icantly the later it is done within the SDLC. However, a study by Menzies et al. from
2017 disproves this rule in an empirical study, showing that the effort to remove defects

2 Fundamentals

was not significantly greater in later phases of the SDLC of recent software projects, at
least in the used sample. [58]

There are ways to measure the effectiveness of test suites. A common technique is to
compute the code coverage of tests. Statement coverage simply checks which and how
many lines of the source code were executed while running the test cases. Branch cover-
age reflects which and how many logical branches of the code were executed, branches
emerge whenever the next statement for execution is dependent on a condition. Path
coverage takes this even further and reflects which and how many individual paths of
statements were executed. A path can contain multiple decision points and full path
coverage can therefore reveal more defects than just full branch coverage. [26, pp. 107—
110]

Testing is an activity that should be performed throughout the whole SDLC. It can be
separated into four different phases: Unit testing, integration testing, system testing and
acceptance testing. Unit testing is the testing of smaller units of software in isolation,
to guarantee each delivers the expected behavior. Integration testing takes place when
modules are put together to test if a larger task works as expected. System testing is the
testing of the software as a whole from each possible perspective and is often based on
the specification of the system. [46, 55, 66] Acceptance testing ensures that the user is
satisfied with the software product and accepts to use it. [66, p. 51]

There are three major testing techniques, black box testing, white box testing and grey
box testing. [48, pp. 31-32] White box testing can apply to all of the mentioned testing
phases and means that the test developer has full insight into the production code. It tests
the actual functionality of the code while challenging the different execution paths. [55,
p. 3] Black box testing does not use implementation details, but can still be applied to
all testing phases. It tests the software by checking if the initially defined requirements
are met. [55, pp. 2-3] The software can still be executed but without insight into the
actual implementation. [26, p. 68] Grey box testing tries to use the advantages of the
two other techniques. Tests are written with some knowledge about internal structures
but treat the unit under test as a black box.

Another distinction in testing can be made between positive and negative testing. Pos-
itive testing is verifying that valid interactions or inputs lead to the expected results.
Negative testing is verifying that incorrect but possible interactions or inputs do not
break the software and lead to unwanted effects. Positive testing is often higher prior-
itized in software development since it is easier and less time-consuming. [26, p. 18]
Nevertheless, users often tend to interact with a system in unexpected ways. Since they
may not completely understand the system as well as a developer does, they will use the
system differently. The discrepancy between the mind of a user and a developer makes
it hard for the latter to find all the negative test case scenarios users may produce.
When speaking of software testing, often execution testing is meant. Execution (also
dynamic) testing is running the software to get test results. There also exists another

2 Fundamentals

method that does not require executing the software, which is static testing. Static testing
can be done on a vast amount of artifacts, like requirements, specification documents or
the source code. The testing of documents can remove many problems even before the
source code is written. [26, p. 18] Static testing of the source code can improve code
quality without any information on the runtime behavior. [55, p. 2] It often uses the
Abstract Syntax Tree (AST) representation of the code to find problems. For example,
many IDEs or editors use linter tools to give the developer instant feedback on code
smells or syntax mistakes.

Testing is not all done manually, reducing cost and effort. For example, regression test-
ing automates the process of running tests after code changes, allowing for instant feed-
back if something breaks and making sure no new bugs are introduced into the software.
[26, p. 106] Mutation testing is the testing of the test suite itself, it generates versions
of the source code with small faulty changes and checks if the test suite runs through.
[61, p. 429] The research interest in test automation like this has been high over the last
decades.

So far, requirements used for testing were not considered in detail. Requirements can
address different aspects of software. Requirements can address functional correctness,
performance or security. Each aspect needs separate tests. Functional tests mostly check
the outputs against inputs. An input could be a value passed to a function or an interaction
with a User Interace (UI). The output does not necessarily need to be a return value but
can also be a state change. A Graphical User Interace (GUI) is a challenging subject of
software testing because GUISs are often changing frequently. [69, p. 1] GUI tests differ
from other functional tests and need to be considered separately.

Performance testing verifies if the SUT meets the constraints for response time and
throughput. Such constraints are important because users will be frustrated if they have
to wait for a long time to get a response from the system, for some systems this will lead
to economic damage. Performance testing should be done after functional testing when
the correctness of the SUT is on a sufficient level. It is considered more difficult than
functional testing since it only gives useful results if done correctly. [26, p. 69] E.g., the
response time of a function can not be measured representatively if it is only executed
once. The response time may vary depending on the underlying operating system, the
amount of other parallel tasks or background processes like garbage collection. The en-
vironment of performance testing needs to mimic the environment where the software
will run in production as closely as possible. In performance testing, peak loads of the
system are of special interest. The software may have timeframes where it is used more
extensively and is expected to still satisfy the user’s needs. [26, p. 129] E.g., an online
store can recognize a heavy load on Black Friday sales with way more concurrent ses-
sions than usual. If the system breaks and customers are not able to checkout, this will
lead to economic damage for the vendor. If performance constraints are not fulfilled, the
code may be inefficient and needs performance optimizations or the underlying hardware

2 Fundamentals

needs to be upgraded.

Security testing is often also crucial and should guarantee that only authorized interac-
tions with a system are allowed, that data is only accessible by authorized actors and that
information transfer is encrypted safely. One technique in security testing is taint analy-
sis, which examines the flow of data in software to find vulnerabilities that could lead
to Cross-Site Scripting (XSS) or the exposure of sensitive data such as passwords. [7,
p. 9] However, security testing will not be a subject of this thesis, since it is often done
with external software that statically scans artifacts for vulnerabilities. Thus it will not
be reflected in available artifacts of open-source software repositories. Testability is not
a criterion for those scanners by design because they can analyze any code and check for
known vulnerabilities. A recent study by Brito et al. found that most automatic security
vulnerability detection tools for JavaScript suffer from very low precision, indicating
that this field needs improvements. [17] Other tools utilize test suites, but it is unlikely
to create meaningful results when most of the security testing is missed.

When talking about testing, a technique following another approach needs to be men-
tioned, which is using assertions. They are constraints on the behavior of software that
can find faults in programs during runtime. [72, p. 19] They are a mechanism to im-
prove the observability of software. The drawback is that they can negatively impact
the performance of a system since they are evaluated at runtime. That is why Voas and
Miller proposed to only use assertions where other testing techniques are limited. Addi-
tionally, assertions may be removed from the code after it has been tested sufficiently.
[82, pp. 152—152]

Testing can be done manually or automatically. Manual testing is a resource-intensive
task but can be useful in certain scenarios. It is common practice to automate as much as
possible in the testing process. [51, p. 1] Frameworks for writing, running and evaluating
test cases exist for the majority of programming languages. Over the years, many tools
for test automation have evolved. They follow different approaches and address different
problems, so the selection of the right tools requires some knowledge. [81, p. 223] Like
manual testing, a prerequisite for test automation is that the source code is testable. For
poor code and architecture, automated testing will not be beneficial. For this reason,
automation can also be used to test if the code is testable. [51, p. 3] For GUI testing,
automation is particularly hard because the appearance or layout can change very often
and devices can have different dimensions. That often leads to the necessity of changing
the associated test code. Ensuring a high level of testability is particularly important for
GUIs, because this way test automation can be more effective and the effort for this
resource-intensive task can be minimized. Polepalle et al. found that requirements for
high testability in general also apply for GUIs. [69]

Another important step in creating tests is the generation of test data. This process should
not only rely on the manual test cases the developer came up with. They may test a
certain aspect of the SUT thoroughly but might miss other important cases. So the man-

10

2 Fundamentals

ual test cases should be complemented with automatically generated ones. [60, p. 100]
Nowadays, there are plenty of tools that do much of the work in test generation, aiming
for a high code coverage and using knowledge about common edge cases collected over
decades. Algorithms for automatic test data generation have existed for a long time, e.g.,
evolutionary algorithms. [24] Ferguson and Korel differentiate between three types of
data generators which are random, path-oriented and goal-oriented. The random tech-
nique generates random data. Path-oriented data generation analyzes a program and
generates data that challenges specific paths. Goal-oriented data generation creates data
that leads to the execution of specific statements, independent from the path. [29, p. 64]
Also, random testing does a good job of finding faults that manually generated test cases
did not get. [60, p. 100] Fuzz testing is an established approach, that uses random as well
as unanticipated and invalid inputs to test the reliability of the SUT. [21, p. 210]

The level of testability influences the required resources for testing since a testable pro-
gram does not need refactorings to allow the execution of new tests. A famous concept
in software engineering is Test-Driven Development (TDD). It came up in the context of
extreme programming and tried to shift more attention to testing. It corresponds to unit
testing and requires the tests to be written before the production code. Each time a new
functionality should be added, the tests need to be written first. Studies have shown that
this process reduces faults, increases code quality and can even speed up development.
[22] TDD kind of forces the developer to write testable code, so the expectations. Since
the test already exists, the code must be testable by the underlying tests. Miiller intro-
duced assignment controllability as a metric to measure testability and finds a positive
correlation to the use of TDD. [63] George and Williams conducted a case study with
two groups of programmers, one using TDD and the other writing tests after writing the
production code. The TDD group produced higher quality and better testable code but
needed more time to achieve that. [37]

As already stated, there is a lot more to say about software testing, but considering every
aspect would go beyond the scope of this thesis. The goal was to give an overview of
what testing can consist of and how testability influences testing. This is necessary when
tests in real-world projects should be analyzed, which is part of the work of this thesis.

2.2 Testing in Open-Source Software

The principles and aspects of testing described in the previous section are mostly tailored
to classic software development, where a need for software exists in a company and an
in-house team or an external software house is instructed to implement it. For open-
source software, the whole development process is different from proprietary software.
An open-source project may be started due to the personal needs of one or more peo-
ple, or it may be initialized by a company with economic interest. Often, open-source
projects aim to solve a common problem. Contributors usually do not get paid, so their

11

2 Fundamentals

motivation emerges from their interest in being able to use the software. [14]
Open-source development is often community-driven and may lack concrete specifica-
tion documents. [23, p. 136] There may be sparse and informal documentation about
what the software does and how to use it, but it usually does not cover many details.
The software is often evolving through feature requests or bug reports from the commu-
nity. That is why those artifacts are an important part of the specification of the project.
The issue is that it can be challenging to locate the desired information in this scattered
knowledge base. Because of the differences in project planning and documentation, the
testing process also differs. If no detailed specification exists, test cases can not be de-
rived from it. That shifts the responsibility for testing to the individual contributors.
There is most likely no person or team dedicated to testing. When browsing through
open-source repositories, one can often find guidelines that instruct contributors to test
their changes or features themselves. New features can easily be proposed by commu-
nity members to be added to the production code. Contributions often get reviewed by
the community or some main contributors, which serves as quality assurance, also re-
garding tests. In open-source projects, the tests are often part of the specification, when
the reflected requirements are not written down elsewhere. In open-source development,
the repository on a platform like GitHub is the main artifact that is accessible to every-
one. Maintaining other artifacts like specification documents can be difficult due to the
organization of the project. So keeping all the information here can also be beneficial in
some ways.

An empirical study by Kochhar et al. used a corpus of more than 20,000 open-source
software projects from GitHub to analyze the prevalence of tests and correlations to the
number of developers, the number of bugs and bug reportings and the used program-
ming language. They found that bigger projects in terms of Lines Of Code (LOC) are
more likely to have tests, but the Number of Test Cases (NTC) per LOC decreases with
growing project size. 61.65% of projects did contain test cases. [53] Madeja et al. did
a similar empirical study, focussing on the correlation between the prevalence of test
cases and the identification of corresponding resources using the word “test”. Using a
dataset of 6.3 million GitHub projects with Java as their primary language, they found
that 51.57% contained at least one test case. However, they noticed that an estimated
67% of projects with at most two test cases only contain example test cases, causing
them to estimate that only 38.84% contain actual test cases. [57]

2.3 Language Features of JavaScript

JavaScript, often referred to as the language of the web, is an indispensable technol-
ogy in today’s software infrastructure. It is the default for browsers, for which it was
initially invented. Technologies like NodeJS! allow server-side execution of JavaScript

'https://nodejs.org/

12

https://nodejs.org/

2 Fundamentals

and therefore the building of applications like REST APIs. There exists a standardized
specification of the JavaScript language, namely ECMAScript or just ES.? Different in-
stitutions implemented their own versions of the standard, which differ from each other
on the implementation level. Popular JavaScript engines are SpiderMonkey? and V8*.
JavaScript is object-oriented but has some features that make it different from other lan-
guages. It is interpreted, meaning that code is evaluated at runtime and the execution
depends on the source code rather than binary files. It is dynamically typed, meaning
that the type of an object is determined at runtime. Type coercion allows for the run-
time conversion of types, e.g. using a number as a string. [21, p. 59] There exists a
famous extension of JavaScript that adds types to the languages, which is TypeScript.
All objects in JavaScript are of the same structure, they hold a dynamic set of proper-
ties. Additionally, everything in JavaScript is an object, even functions. JavaScript is
prototype-based, which is significantly different from statically typed, class-based lan-
guages like Java. [7, p. 19] Java or C++ use classes to describe objects comparable to
blueprints that can be extended to implement inheritance. In JavaScript, prototypes are
used as a mechanism that handles encapsulation, inheritance and polymorphism. [21,
p. 20] In Java, encapsulation is implemented through the use of the keywords private,
public and protected. JavaScript does not have a mechanism like this, but you can still
hide properties from the public interface by using local variables inside objects or the #-
prefix for class members. Properties defined on the object are instance properties, which
can also be functions.

In terms of inheritance, there is a basic object prototype that every other object inherits.
JavaScript uses prototype chaining for inheritance, meaning that a property is searched
along the reference chain until it is found. JavaScript uses ad hoc polymorphism, mean-
ing that the context of the call influences the result. Function calls can supply any number
of arguments, independent of how many the function signature expects. [21, pp. 22-23]
JavaScript applications do not use prototypes for code reuse as frequently as applica-
tions written in Java or C++ do. [86, p. 868] That influences the possibility of using
metrics related to inheritance for the analysis of JavaScript code, which will be further
described in the following chapters. Being a dynamically typed language also means
that properties can be added or removed at runtime. Using “duck typing”, determining
if an operation can be done on an object only depends on the properties of an object [7,
p. 4].

JavaScript’s approach to executing code is the event loop, meaning that events are pro-
cessed sequentially by listeners. The implementation of the run-to-completion concept
takes care that functions are executed completely before other functions are invoked.
[21, pp. 81-82] Only when waiting for asynchronous results, other executions can be

’https://www.ecma-international.org/
Shttps://spidermonkey.dev/
‘https://v8.dev/

13

https://www.ecma-international.org/
https://spidermonkey.dev/
https://v8.dev/

2 Fundamentals

done meanwhile. JavaScript executes everything in a single thread, so no concurrency
exists by default. In newer implementations of JavaScript, workers can be used to ex-
ecute code in another thread, but they are limited to specific actions and do not share
resources. [21, pp. 96-97]

2.4 Testing in JavaScript

An empirical study from 2017 by Fard and Mesbah found that 22% of JavaScript projects
did not have any test code. There is a difference between frontend and backend code
though. Server-side code is tested more often with only 3% of projects not having tests.
The used dataset was selected from various sources and represented different domains.
They also found that root causes for untested code are event-dependent or asynchronous
callbacks and DOM-related code, because it may be harder to test. [27] Unfortunately,
the sampling was not random and mostly included popular projects, thus it is not neces-
sarily representative.

Testing JavaScript applications has some differences from testing applications written
in other languages. Most of the research in testing focuses on object-oriented languages
like Java and C++. JavaScript is object-oriented as well, but as described in the previous
chapter it has its peculiarities. Due to its dynamic nature, static analysis of JavaScript
is more difficult than in other languages. [7, 47] Especially interactions with the Docu-
ment Object Model (DOM) are difficult to test, because DOM structures can get quite
large and complex, and the code might rely on certain elements or structures. [7, p. 2]
This challenge only exists in the frontend though, while many JavaScript applications
represent server logic and do not face this issue.

JavaScript has some unique properties regarding performance testing. Since it is single-
threaded, concurrency is not a concern in the testing of JavaScript applications. A prob-
lem is the variety of engines used to execute JavaScript. That particularly affects the
performance, leading to different execution times of the same code on each engine. Per-
formance optimizations that fit one engine can even worsen performance on another
engine. Across the versions of one engine, there may be significant differences in per-
formance too. [74] It is important to keep that in mind when testing the performance
of JavaScript applications. The variety of JavaScript implementations also leads to the
importance of another testing category, which is compatibility testing. ES explicitly al-
lows adding language features, so there are APIs that are not consistently implemented
across all engines. Compatibility testing ensures that the code can be executed across
all targeted platforms. [59]

JavaScript has some unique security concerns. A good example of a feature that stands
out here is the possibility to dynamically add and execute code with the eval function.
Among other difficulties, this increases the likelihood of XSS vulnerabilities. [7, pp. 21—
22]

14

2 Fundamentals

For automatic test generation, two input spaces need to be considered, the event space
and the value space. [73, p. 514] Since JavaScript’s execution is event-based, different
events or their order can influence the behavior. Hence, sequences of events need to
be tested. The value space consists of values for the possible input types like strings,
numbers or booleans. Saxena et al. proposed a tool that explores the value space using
a concolic (concrete and symbolic) execution framework, consisting of a symbolic ex-
ecution engine combined with a string constraint solver and addresses the event space
through GUI exploration. [73] There are several other approaches to exploring the value
space, often using similar concolic execution techniques. [7, p. 24]

This thesis includes TypeScript projects in the analysis since it is a superset of JavaScript.
The static analysis of TypeScript is easier than it is for JavaScript because TypeScript
delivers the type annotations that JavaScript is missing. For example, Park uses Type-
Script definitions of JavaScript applications to allow more effective static analysis of the
latter. [68]

Unit testing in JavaScript has no such standard as Java for example. Java has the fully
integrated unit testing framework JUnit, whilst for JavaScript there exists a large variety
of different tools. Like production code, test code can suffer from bad quality and code
smells. Jorge et al. studied the presence of test smells in very popular JavaScript projects,
finding that test smells can be found across all of them. [47]

For frontend JavaScript applications, there is the additional need to test the UI. There
are established tools to assist this workflow like Selenium® or Cypress®. They allow the
writing of test code for interactions with the GUI similar to writing common unit tests.

2.5 Testability of Software

The ISO/IEC 25010:2011 standard defines testability as the ”degree of effectiveness
and efficiency with which test criteria can be established for a system, product or com-
ponent and tests can be performed to determine whether those criteria have been met”
[45] and sees it as part of maintainability. Efatmaneshnik and Ryan claim the consen-
sus for testability to be ’defined as the degree to which a component or system can be
tested in isolation” [25, p. 1]. Freedman defines testability as a measure composed of
the two attributes controllability and observability, which were originally used to assess
the testability of hardware but are also applicable for software. [32] Since the goal of
testing is to find faults, bugs and errors, testability can also be seen as “’the tendency for
software to reveal its faults during testing” [85, p. 1]. A testable program also means
that the effort for automated testing is low and is a prerequisite for high-quality tests.
[38] Improving testability usually has the goal of reducing the cost of testing and in-
creasing the probability of finding faults in testing. [33, p. 1] Various authors present

Shttps://www.selenium.dev/
®https://www.cypress.io/

15

https://www.selenium.dev/
https://www.cypress.io/

2 Fundamentals

their definitions of testability while often focusing on specific dimensions related to their
work, Garousi et al. list 33 different definitions found in a systematic literature review.
[35, pp. 4-5] The different definitions show that testability is a broad term that can be
analyzed in different dimensions.

In this thesis, testability is generally treated as the ease and the degree to which a system
and its units can be tested to reveal their faults. If a system has a high level of testa-
bility, it means it is well-testable. The focus is on unit tests since testing a system as a
whole is often not reflected in the available artifacts for open-source software, namely
the source code. High testability means the effort to test a system is low and vice versa.
That includes the generation of test data, test code and running the tests. If changes
need to be made to the source code to test it properly, testability problems can be as-
sumed. Testability is also generally known to be correlated to software quality, where
higher testability leads to higher quality. [35, p. 2] Accordingly, the usage of tools that
assist developers in writing higher-quality code can also improve testability. Many such
tools for JavaScript like ESLint’, JSHint® or SonarQube’ are using static code analysis,
some like DLint [41] also use dynamic code analysis. There are guidelines for writing
testable code that go hand in hand with guidelines for writing good code in general. For
example, Trostler mentions code readability, loose coupling and simplicity as important
principles for writing testable code. [80] This reflects elementary coding principles like
Keep It Simple, Stupid (KISS) or Single responsibility, Open-closed, Liskov substitu-
tion, Interface segregation, Dependency inversion (SOLID).

Gao and Shih define an analysis model for component testability, which is an aggregate
of measures for five software attributes. The attributes are understandability, observ-
ability, controllability, traceability and test support capability. Understandability con-
siders the documentation artifacts of a component, which are requirements specification,
API specification and the user reference manual. [34] Since their approach acts on the
component level, the measures analyze black box testability and do not consider the ac-
tual implementation. However, the documentation on the source code level (like code
comments) can also contain helpful information for testing if the mentioned artifacts
are insufficient, so they could be used for measuring testability as well. [2, p. 2] E.g.,
when there is no detailed interface documentation, code comments can show how to use
and also how to test a software unit. In Gao and Shih’s model, observability consid-
ers the observability of GUI events and interactions, functions, external interactions and
message-based communication.

Controllability refers to the ability to control the environment, state of the component,
execution, testing and functions. Traceability considers the format of program traces, the
ability to insert or delete code for tracing, different trace types, trace collection and trace

"https://eslint.org/
$https://jshint.com/
‘https://www.sonarsource.com/products/sonarqube/

16

https://eslint.org/
https://jshint.com/
https://www.sonarsource.com/products/sonarqube/

2 Fundamentals

storage. Traceability is further separated into five categories: Component operations,
performance, states, events and errors. Test support capability refers to test generation,
management, coverage analysis and execution. [34]

Testability is not a distinct aspect of software, it has similar goals to maintainability, for
example. As testability is seen as an important aspect of software that can help reduce
cost and improve efficiency and software quality throughout the phases of the SDLC
[2, p. 2], measures of the degree of testability are necessary. Although testability is
essential, it can be hard to evaluate, because it is composed of different aspects and might
be subjective. [5, p. 55] As a precondition for testing, there must exist a well-defined set
of requirements regarding the expected behavior of a software unit. It may not be easy
to ensure the completeness of this set. Specification, especially regarding requirements,
is an essential part of the testability of software. A testable software unit should allow
for testing all of the requirements. But if there are no requirements specified, even well-
testable source code cannot be properly tested.

Next, testability depends on suitable tooling. E.g., for units depending on external units
or libraries, a mocking tool may be necessary. The skill and experience level of the test
developer is an important factor too when it comes to understanding the unit under test.
Additionally, the quality and variety of written test cases depend on the mind of the test
developer, because when he just tries to show that the SUT is working correctly, he will
come up with test cases that prove his belief. In contrast, a test developer that wants to
find errors will write other test cases that challenge the program in all edge cases he can
imagine. [66, p. 71]

Voas and Miller proposed sensitivity analysis as a technique to assess the testability of a
system based on their definition of testability. It is composed of three elementary steps,
which are observing the effect of a given input distribution on the original program,
mutants of the program and the program with a modified data state. [82, 83, 84] Higher
sensitivity means higher testability since high sensitivity means that software can reveal
its faults. [33, p. 2]

2.6 Metrics for Testability Measurement

The first part of this empirical study consists of measuring the level of testability, there-
fore a foundation of testability metrics is needed. As already stated, there is no single
metric that measures testability as a whole. Testability is - like maintainability - an
attribute of software that is influenced by various factors throughout the software de-
velopment process. Aside from the aspects of testability that are hard to measure, dif-
ferent studies proposed measures that can be computed reliably from the source code.
A distinction into two types can be made, there are static metrics that can be computed
by analyzing the source code, and there are dynamic metrics that can be computed by
running the software. Most studies on testability metrics focussed on object-oriented

17

2 Fundamentals

languages, leading to many metrics reflecting the relations between classes. [35, 2, 10,
11,13, 18, 49, 50, 78] No recent studies focussing on metrics for assessing the testability
in JavaScript, which is the subject of this thesis, could be found. Since JavaScript is not
class-based, some metrics are not applicable in their original form. Nonetheless, some
of the proposed testability metrics related to classes could be used for JavaScript, if they
were adapted to reflect the individual properties of the language.

A literature review was done to collect metrics related to testability. Some empirical
studies tried to find applicable metrics by calculating the correlations between test and
source code metrics. Since there needs to be a basis of metrics to find correlations, often
assumptions were made. There is quite a lot of literature on testability metrics in general.
In the following, only studies that proposed metrics useful for the subject of this thesis
are mentioned. Proposed metrics from those studies, that were found not to be useful,
will be omitted as well. Literature that proposed metrics is briefly introduced.

Alenezi collected static metrics for test effectiveness, which is correlated to testability.
[2]

Binder proposed metrics mostly for measuring the testability of classes in the object-
oriented paradigm. [13]

Filho et al. recently found a set of metrics either from a black or a white box perspective.
[30]

Bruntik and van Deursen used object-oriented metrics for predicting class testability.
[18]

Trostler mentions some metrics connected to code complexity in the context of writing
testable JavaScript. He describes low complexity as a main criterion for writing testable
code. He sees a difference in the complexity of algorithms reflected in the code and the
complexity of the code itself. It is likely necessary to have complex algorithms, but the
surrounding code does not need to be complex as well. He also sees linting tools like
ESLint as a provider of a good measure for testable code, since readability is connected
to testability. [80]

Badri et al. studied the relationship between the testability and cohesion metrics to pre-
dict the testability of classes. [9]

Bajeh et al. empirically studied the suitability of object-oriented metrics as testability
indicators. [11]

Arcuri and Geleotti used “Testability Transformations” to improve Search-Based Soft-
ware Testing (SBST) and verified their findings by using code coverage as a metric.
[8]

Kasisopha et al. developed a machine-learning model to predict the testability level of
classes using a selection of metrics as input variables. [50]

Nasrabadi and Parsa built a classifier model using a large set of software metrics be-
longing to the size, complexity, cohesion, coupling, visibility and inheritance of object-
oriented software to predict the code coverage of automatically generated tests by pop-

18

2 Fundamentals

ular frameworks. The predicted coverage was used as an indicator of testability. [65]
Terragni et al. studied the relationship between test effort and object-oriented software
metrics respecting test quality, which is quantified through code coverage and mutation
score. [79]

Table 2.1 shows all potentially relevant metrics collected from the mentioned work. The
first column shows the abbreviation. The second column shows the meaning. The third
column shows the literature that used the metric and the last column connects the metric
to the corresponding attribute of software. In the literature, the most frequently men-
tioned attributes that shall indicate the level of testability are controllability and observ-
ability, additional ones are simplicity and comprehensibility. [30, 35, 32] In general,
most of the metrics used measure an aspect of the complexity of code. The metrics will
be further evaluated in the next chapter to generate a final set of testability metrics, that
can be used in the context of this thesis.

Especially two metrics, TLOC and NTC, were often selected as the indicators of testa-
bility to further find correlations with other metrics. [78, 18, 54, 30] The use of these
metrics is reasonable, even if it does not necessarily need to reflect testability. Ideally,
the test code to source code ratio should be one-to-one [2, p. 2], so a big test suite (in
relation to the size of the corresponding source code) can indicate high testability. Nev-
ertheless, a counterargument against the exclusive use of these two metrics can be found
easily. If the test code is small, the software could just lack test cases or have poor test
quality, even if the source code is well-testable. [79, p. 241] Therefore, other metrics
need to be considered as well.

Table 2.1: Testability metrics from literature

Metric Description Source Attributes
LOC Lines Of Code [2, 30, 65, 79, | Size, Complexity
80]
NBI Number of Bytecode Instructions [2, 79] Size
LOCCOM | Lines Of Code Comments [2,79] Understandability
TLOC Test Lines Of Code [18, 54, 78, Understandability,
79] Testability
NTC Number of Test Cases [18, 30, 50, Testability
78, 79]
TCOV Test Code Coverage [8, 79] Testability
TBCOV Test Branch Coverage [79] Testability
TMC Number of Method Calls in Test Class [79] Testability
TWMC Weighted Method Complexity in Test [79] Testability
Class
TAMC Average Method Complexity in Test [79] Testability
Class

19

Continued on next page

2 Fundamentals

Table 2.1 — Continued from previous page

Metric Description Source Attributes
DEP Dependencies of Tests [30] Complexity
NS Number of Steps (in test case) [30] Complexity
DPT Depth Test [30] Complexity
NTD Number of Test Data (for each test case) | [30] Complexity
Tassert Number of Assertions in class under test | [9, 54, 79] Complexity
TNOO Number Of Operations in Tests [54] Complexity
CC Cyclomatic Complexity [30, 65, 78, Complexity
80]
AVCC Average Cyclomatic Complexity [11] Complexity
MAXCC | Maximum Cyclomatic Complexity [11] Complexity
TCC Total Cyclomatic Complexity [11] Complexity
NMC Number of Method Calls [2, 79] Complexity
LCOM Lack of Cohesion in Methods [9, 13, 30, 65, | Complexity
79]
HVOL Halstead Volume [11] Complexity
LOCC Lines Of Code per Class [50] Size
RFC Response For a Class [2, 13,50, Complexity
79]
TRFC Test Response For a Class [54] Complexity
WMC Weighted Methods per Class [2, 13, 18, 30, | Complexity
50, 79]
AMC Average Method Complexity [79] Complexity
TWMPC | Test Weighted Methods Per Class [54] Complexity
EC Efferent Coupling (Import Coupling) [11, 50, 78, Complexity
79]
AC Afferent Coupling (Export Coupling) [11, 30, 65, Complexity
78, 79]
CBO Coupling Between Objects [13, 50, 79] Complexity
DCBO Dynamic Coupling Between Objects [78] Complexity
NOC Number Of Classes [78, 30, 65] Size, Complexity
NOM Number Of Methods [13, 30, 78, Complexity,
11, 65] Encapsulation
PAP Percent Public And Protected [13] Encapsulation
PAD Public Access to Data members [13] Encapsulation
DIT Depth of Inheritance Tree [11, 30, 65, Complexity
79]
NOA Number Of Attributes [30, 65] Controllability
NOP Number Of Parameters [30, 65] Controllability

20

Continued on next page

2 Fundamentals

Table 2.1 — Continued from previous page

Metric Description Source Attributes
NP Number Of Preconditions [30] Controllability
NOST Number Of Statements [65] Size

NPM Number of Public Methods [79] Encapsulation
NPRIM Number of Private Methods [79] Encapsulation

2.7 JavaScript on GitHub

GitHub is one of the most popular platforms for hosting code and other artifacts benefit-
ting from a powerful Version Control System (VCS). As of today, a lot of open-source
software hosts their code on GitHub, enabling developers from all over the world to eas-
ily participate in its evolution. While the open-source concept has a positive influence
on many aspects of software development, it is also beneficial for studying facets of
software. According to their website, GitHub hosts more than 300 million repositories
[39] written in various programming languages. For every repository, a main language
is predicted by GitHub itself using a third-party service. While that may lead to mis-
classifications in some cases, repositories are mostly labeled with the language that is
mostly used. For JavaScript and TypeScript, GitHub holds a total of about 27 million
repositories. How that information is retrieved is explained in section 3.1.

With its mature API, it is possible to automatically retrieve almost any kind of repository
data, with some limitations due to usage constraints like rate limits. GitHub gives the
user many features at hand, which can enrich software artifacts with useful information.
For example, issues and pull requests can be labeled with some keywords to give a quick
insight into their purposes. Nevertheless, many features are optional and are not heavily
used in many projects. Even comments for, e.g., commits are not mandatory and do not
have a standardized format. It can be any informal text that the developer thought about
while publishing his work.

Smaller projects may tend to make less use of advanced features like labels or pull re-
quests. In bigger projects, when more people need to work together and understand what
others did, those features make life easier. For studies and analyses, it must be kept in
mind, that consistent use of advanced features and documentative artifacts cannot be
assumed.

2.8 Refactorings for Testability

Back in 2011, Harman introduced the term festability refactoring as part of testability
transformation to improve the software’s ability to support test data generation. It is an
interesting approach because the goal is not only to make code more testable for a devel-

21

2 Fundamentals

oper but also for automatic test generation. He describes ways to find suitable refactor-
ings and advises future researchers to go deeper into the field of testability refactorings.
[43]

Already over 20 years ago, lists of refactoring types like the one proposed by Fowler [31]
came up to summarize and explain common refactoring practices. Testability refactor-
ings are a subset of these and only certain types are likely to be able to improve testability.
When studying the motivations behind refactorings in GitHub repositories, Silva et al.
found that improving testability is indeed an existing motivation for the extract method
refactoring, even though the number of occurrences is low compared to others. [75,
p. 863] This finding indicates to watch out especially for this type of refactoring when
searching for testability refactorings.

Cinnéide et al. studied an automated refactoring approach to improve software testa-
bility. They used a tool to automatically refactor software regarding design issues and
asked software engineers to write test cases before and after refactoring. Their study
design might have some problems because they only used one self-constructed example
application for which the developers should write tests. In contrast to their expectations,
developers found the refactored application not easier to test. [19] Since not all refactor-
ings are refactorings for testability, it is not clear if the ones they did can be considered
testability refactorings. Otherwise, the developers should have had more problems writ-
ing tests for the unrefactored code.

The classification of testability refactorings is negotiable. It might be up to a developer’s
experience and style if he considers refactoring helpful for the creation of tests. When
studying testability refactorings, it is important to clearly define what can be considered
refactoring for testability. Is it just essential ones that are required for testing or is it also
making testing easier, e.g., by making the source code more readable or less complex?
It depends on the definition of testability that is used. When testability is seen as “the
degree to which a component or system can be tested in isolation” [25, p. 1], understand-
ability is not a relevant attribute because testing is possible even if it is more complex
or takes more time. On the other hand, when the ease of testing a system is taken into
account, understandability is important and more refactoring types like moving methods
within the same block level or renaming methods are qualified for testability refactor-
ings. The decision, of whether refactoring was done for testability, is not always trivial.
The purpose of refactoring could be to improve the software quality, and a positive im-
pact on testability could be a side effect.

To find refactorings in software projects, subsequent revisions of code need to be com-
pared. For GitHub projects, these artifacts are commits and pull requests. Coelho et al.l
studied the presence of refactorings in pull requests. In their sample of pull requests,
they found 30.2% pull requests that induced refactorings, which appeared to be differ-
ent from other pull requests in terms of the number of commits, comments and changed
files. They also found that the majority of pull requests featuring refactorings had these

22

2 Fundamentals

refactorings induced by code reviews. [20] Refactoring caused by review is unlikely to
be for testability if not part of the review’s result was missing tests. Even though this
work did not focus on testability, the big amount of refactorings induced by pull requests
is promising for finding refactorings for testability in commits and pull requests.
Sometimes it is necessary to perform multiple steps in the form of refactorings that are
related to each other. These are called composite refactorings. Sousa et al. proposed
heuristics to identify composite refactorings in commits. They found that most compos-
ite refactorings happen within the same commits and not across different ones. Further,
they identified 111 composite refactoring patterns and found that it is likely that new
code smells are introduced if composite refactorings are not done completely. [77]
Testability refactorings can also be composites. Reich and Maalej recently found ten
composite testability refactoring patterns in an empirical study of pull requests on
GitHub. [71] They were the first researchers to analyze how developers refactor code
to create or modify unit tests at scale. Their research was done with Java projects and
serves as inspiration for the work in this thesis.

23

3 Approach

This chapter will describe the methodology that is used in this thesis. Besides the analy-
sis and evaluation of results, many tasks can and should be done in an automated way.
Especially for tasks that need to be repeated for each entry of the dataset, automation
is the key to efficiently getting the work done. Since this thesis deals with JavaScript,
scripts and logic for analysis are written in JavaScript as well. The tools, e.g., for com-
plexity analysis, parsing and AST traversal of JavaScript code, are often written in the
same language. There is also a variety of libraries available, that can be easily integrated
with package managers like NPM.

In addition to the need for scripts that can do some important tasks, there is a need for a
comprehensive and clear interface to work with the data and keep track of the progress.
Any data that is collected is stored in the JSON format since it is the standard way to
work with data in JavaScript. Additionally, it has a readable and intuitive syntax. Data
is locally stored in files, separated by their purpose.

Based on the requirements, a tool is implemented that uses a NodeJS backend to interact
with the file system, communicate with external APIs and run analysis tasks. Addi-
tionally, a web-based Ul is implemented. It communicates with the backend through a
REST-API and enables a proper interaction with data. Using the Bootstrap' framework,
UI components can be created with minimum effort. Besides some general HTML lay-
outs, the tool consists of nearly only JavaScript code. For simplification, the tool is called
JavaScript Testability Tool (JSTT) in the rest of the thesis. The features of the tool were
implemented as they were needed and iteratively improved during the classification and
analysis process because not all particularities of the analyzed projects were known in
the beginning. Errors were carefully monitored during runtime so that the code could be
adapted to minimize the risk of erroneous scripts.

The source code of JSTT and all the collected data are available in the replication pack-
age and on GitHub?. Setup instructions and more information on the tool as well as the
collected data are available in the README file.

3.1 Sampling Strategy

The sampling of data for scientific studies is a part that is often treated with not enough
attention. Since sampling essentially influences the quality of a study’s results, it should

'https://getbootstrap.com/
’https://github.com/Caramba997/JSTT

24

https://getbootstrap.com/
https://github.com/Caramba997/JSTT

3 Approach

be done carefully and follow some guidelines. Baltes and Ralph recently created a crit-
ical review of sampling in software engineering research. A main point of critique was
that most studies are not representative, even if they claim to be. [12, p. 94]

This thesis will conduct an empirical study, so the selected sample should be as rep-
resentative as possible. The first step is to identify the population of data. As already
stated, this work will analyze JavaScript and TypeScript projects. Since the source code
must be somehow available, only open-source projects are considered. For proprietary
software, it is hard if not impossible to get a representative sample, because there likely
exists no collection containing all or even a significant part of proprietary software. So
the population is the entirety of JavaScript (and TypeScript) open-source projects.
There are some necessary restrictions to be made, to allow a feasible and efficient process
of sampling the data. The first problem is that there exists no explicit data on how
many JavaScript open-source projects exist in the world. They may be published on
many different platforms or locations. There exists no complete list or collection of all
projects. That is why the data source needs to be restricted. This thesis uses GitHub, the
most popular platform for hosting open-source software, for sampling. There are other
similar platforms like GitLab, Bitbucket or SourceForge, but considering all available
platforms would be too much effort for the scope of this work. GitHub is a good choice
because it is the most popular one and has a powerful API that allows you to search
and query all the required data. Additionally, GitHub is frequently used in other similar
studies. [11, 78, 1, 71, 79] GitHub holds hundreds of millions of projects, from which
over 27 million are classified as JavaScript or TypeScript projects, not including forks.
The last restriction is to only consider projects rated with five or more stars, which is also
used by Bogner and Merkel. [15] Projects with a low number of stars tend to also have
low activity. [16] Other empirical studies, that used GitHub projects for their dataset also
made some restrictions to exclude particularly small or irrelevant projects. Kochhar et
al. only included projects with more than 500 Lines Of Code (LOC) to exclude “’toy
projects” in their dataset. [53, p. 104] Especially for the second part of this thesis, a
certain amount of development activity in the project is required. The restriction also
reduces the risk of analyzing projects that are not used or not relevant anyway. Some
studies put even more weight on the popularity of the projects and only use the top or
at least highly rated ones. [27, 47, 76] But since the study’s results should reflect the
generality of projects, the lower star restriction is used. The first goal of this thesis is to
find software metrics that correlate with test metrics, where low-quality code would lead
to bad results. The fact that a repository has some stars does not enforce good quality
but it is expected that it encourages a certain quality level.

No restrictions are made on the timeliness of repositories. Other studies sometimes only
use projects that have recent activity, but testing is no new trend and projects without
recent activity are expected to be relevant as well.

The resulting set of projects is the sampling frame of this work, JavaScript open-source

25

3 Approach

N
_______________ -
JavaScript/
TypeScript on
) (0]
[Projects. . | (PPN L GitHub
n="? S n=27.182.401
n="7
on
> NPM
............... J n=2.329.265
........ 7
_______________________ 7

Random Sampling N~

384 (95% CL)
271 (90% CL)
165 (80% CL)

— >
>=5 stars CL = Confidence Level Sample
n=590.779

Figure 3.1: Sample creation

projects on GitHub with five or more stars. Simple random sampling is used to generate
a sample that is representative of the sampling frame. Using an available online tool?,
the required sample size is calculated. An error margin of five percent and a confidence
level of 95 percent is used, which is common to get meaningful results while having a
handleable sample size. A lower error margin would drastically increase the required
sample size. Figure 3.1 illustrates the sampling process with the restrictions made, as it is
described. The set of projects on NPM is also represented because NPM was considered
a possible data source as well. It was discarded because it holds way fewer projects than
GitHub and the source code is often located on GitHub anyway. It is also expected that
NPM projects focus more on reusability since they consist of packages that others can
use, but other applications should not be excluded.

3e.g., https://www.openepi.com/SampleSize/SSPropor.htm or https://www.calculator.n
et/sample-size-calculator.html

26

https://www.openepi.com/SampleSize/SSPropor.htm
https://www.calculator.net/sample-size-calculator.html
https://www.calculator.net/sample-size-calculator.html

3 Approach

3.2 Testability Analysis

To answer the first research question, the first part of this thesis will deal with collecting
and analyzing software metrics to see if a connection can be drawn between test and
source code metrics. Hypothetically, source code complexity metrics should correlate
with test metrics. As explained in the fundamentals, there are principles and best prac-
tices to write testable code. In general, more complex code will be harder to test. That
means a more complex module has more complex tests and test code. For example, if
the cyclomatic complexity of a module or function is higher, one would need more test
cases and more lines of test code to achieve a good branch coverage.

The analysis will build upon the dataset of projects that was described earlier. In a
semi-automated process, different information will be collected from each project. Two
categories of information are of interest. The first one is general information about the
project like the field of use, application type, relevance and other metadata. Of special
interest is the existence of tests, the type of tests (functional, performance, Ul), and the
use of test frameworks. Some types of tests may occur not very frequently. Ul tests will
of course only occur when a User Interace is present. Performance tests are usually not
implemented as often as unit tests. Security tests will most probably not be reflected
in the project’s codebase, but this hypothesis will be confirmed or disproved after the
analysis.

The second category of information comprises the software metrics. For each project and
its corresponding source code and test files, as many of the predefined metrics as possible
are collected. Most metrics will be static ones, so it should be possible to calculate them
for most of the files. Since in general, dynamic metrics can only be collected when it
is possible to run the test or program, they will be collected whenever possible. The
only dynamic metrics that will be collected correspond to testing, so the tests need to
be executed. A reasonable amount of effort is made to get the tests up and running
to collect the metrics of interest. Running tests or software can be a challenging task
due to preconditions, software dependencies or insufficient documentation regarding
instructions for setup and installation. As a consequence, this is not always possible.
Since a big set of projects should be analyzed, the collection of metrics should be au-
tomated as much as possible. Nevertheless, the process should be monitored closely to
enable manual actions in error scenarios. Due to varying file structures, programming
styles and other peculiarities of the projects, the automated workflows may have wrong
mappings or results, so it needs to be possible to inspect results easily and check for or
correct faults. JSTT provides a comprehensive user interface for working with the data
and starting the scripts.

An important task that is done with JSTT’s Ul is the establishing of connections between
test and source code files. For correlation analysis, pairs of metrics are needed. The task
consists of creating one-to-one mappings for the files, which is not always possible, so

27

3 Approach

source code files can appear in multiple connections. This is the case when multiple test
files test the same module, e.g., when a project uses big bundled files or the tests are
integration tests.

Once all projects are processed, the correlations between test and source code metrics
are computed. The results and the set of metrics can be compared to findings in other
studies, even if they target other languages like Java. It will be interesting to see possible
similarities or differences. The set of metrics will also be used to develop a scoring
system that allows assessing the level of testability of source code. The scoring system
is applied to the source code in the sample and the results are evaluated to find out which
factors lead to better or worse testability.

3.3 Selection of Testability Metrics

As already mentioned, most studies on analyzing testability focused on Java applica-
tions. In section 2.6, metrics for testability measurement collected from the literature
were described, and table 2.1 summarizes the findings. A selection of them will be
used in this thesis. Metrics that apply to class-based software architecture and can not
be adapted to JavaScript’s script nature are discarded. An example of this is Depth of
Inheritance Tree (DIT) because even though there is syntax to inherit from classes in
JavaScript, the many possibilities in dynamic prototype chaining make it very hard to
determine the DIT. Metrics regarding the visibility of class members like Percent Pub-
lic And Protected (PAP), Number of Public Methods (NPM) and Number of Private
Methods (NPRIM) are also problematic in JavaScript. As explained in section 2.3, it
is possible to create public and private class members, but the visibility of methods or
variables, in general, can be changed dynamically. Those metrics would be suitable if
only TypeScript projects were analyzed.

When there was no tool found to collect metrics for JavaScript and it is unlikely that
a custom script can reliably compute them, they are discarded as well. An example of
this is Lack of Cohesion in Methods (LCOM). Another example is Number of Bytecode
Instructions (NBI) because JavaScript is an interpreted language and different engines
produce different bytecode. The remaining metrics form a basis for this work. They are
extended with additional complexity metrics that the used analysis tools output anyway,
like the Halstead metrics.

After the collection of metrics from all the projects, a correlation analysis is done be-
tween test and source code metrics, as it is commonly practiced in the literature. [2, 10,
11, 18, 30] The reason for the correlation analysis is that the testability of the source
code is expected to be reflected in some metrics. The testability of the source code is
also expected to influence aspects of the test code, which are reflected in metrics again.
If a strong correlation is found between a source and a test code metric, the source code
metric influences the test code and is therefore connected to testability.

28

3 Approach

1: Analysis of testability level

Clasrigltgasgtnaand C:!E‘r:;ée:é g‘:d Correlation Testability indicating
_ R analysis metrics
Sample collection metrics Y

.

Create scoring
system to assess Testability scores for
the testability source code files
level

Figure 3.2: Approach to find testability metrics

The outcome of the correlation analysis will be used to give some advice on how to
assess the testability of JavaScript code. The metrics that have a significant correlation
to test measures are likely to be important for testability if the corresponding test metrics
are found to be relevant. As an example, coverage test metrics are interesting because
they are good indicators of the performance of test suites. Also, test complexity metrics
can show the ease of testing. It will be discussed if the results make sense in the matter
of testability indication. Limitations on this will be discussed in the end. Figure 3.2
illustrates the process of finding source code metrics related to testability.

In the following, the selection of metrics to be calculated is explained. They will later
be evaluated and only some will be used in the evaluation. At this point, a large set of
metrics is beneficial and unnecessary metrics can just be discarded later on. The tables
3.1 and 3.2 show an overview of all metrics. Table 3.1 shows the metrics related to the
source code and table 3.2 shows the metrics related to the test code.

Metrics can belong to two different scopes. The first is module scope (M), where a
module is a file of code. The second is function scope (F). In the course of this thesis,
those letters are appended to the metric names to indicate the scope. E.g., locM means
module scope and /ocF means function scope. Many metrics can be computed for both
scopes. Since JavaScript is a scripting language and not class-based, a file/module may
contain code that is not wrapped in functions. For this reason, function metrics can not
always be computed, but generally, it is interesting to calculate metrics for both scopes.
Since a single value is wanted for each metric, function scope metrics are calculated as
aggregate values per module. The sum (total), average (avg), median (med), minimum
(min) and maximum (max) are computed for further use. In the course of this thesis, the
short forms in brackets are appended to the metric names to indicate the aggregate. E.g.,
ccF total means the sum of cyclomatic complexities for all functions of a module.

The resulting set of metrics holds a total of 24 metrics on module scope and 75 metrics
on function scope. Six of the metrics on module scope apply only to the test code and

29

3 Approach

the rest applies to both source and test code.

LOC

Lines Of Code (LOC) is a generally interesting and easy computable static metric for
the size of software. Additionally, it was often found to be correlated to testability. It
counts the number of physical lines of code in a module/function.

LOCC

Lines Of Code Comments (LOCC) counts the lines of code comments in a module.
Documentation of software affects readability and understandability, so a higher amount
of comments may lead to higher testability.

LOCL

Logical Lines Of Code (LOCL) is a variation of the LOC metric. Since LOC highly
depends on the code style, this metric can give a more generalized view of the actual
size of the code.

NOF

Since JavaScript is not class-based, metrics like Number of Classes (NOC) or Number
of Methods (NOM) do not directly apply but can be adapted. Number Of Functions
(NOF) is another size metric and states the number of functions in a module. Since a
file is treated as a module and metrics are calculated per file, a metric for the number of
modules makes no sense. In JavaScript, the source code is often separated into different
files to get a similar separation of concerns like one would do with classes.

CC

Cyclomatic Complexity (CC) is a popular complexity metric, that counts the number of
individual paths through a piece of code, which can be applied to different scopes. A
higher value means more complex code and - for source code - indicates the need for
more test cases to cover all individual paths.

Halstead metrics

Halstead metrics are complexity metrics that are based on separating the source code
into operators and operands. Derived from complexity, some metrics aim to provide
estimates for the effort for testing and comprehension. [42] In the following, the used
Halstead metrics are briefly explained.

30

3 Approach

Halstead Length (HL) is the total number of operators and operands.

Halstead Vocabulary (HVOC) is the number of unique operators and operands.
Halstead Difficulty (HD) is the ratio of unique operators to the total number of operators.
Halstead Volume (HVOL) is the product of HL and the logarithm of HVOC.

Halstead Bugs (HB) is the expected number of bugs.

Halstead Effort (HE) is the effort required to understand or implement a piece of code
and is the product of HD and HVOL.

Halstead Time (HT) is the estimated time to write a piece of code.

NOP

Number Of Parameters (NOP) is the number of parameters of a module.

Ml

Maintainability Index (MI) is a composite of other metrics and gives an estimation of
how well-maintainable a module/function is. Its components are HVOL, CC, LOC and
the ratio of comments to LOC.

EC

Efferent Coupling (EC) is also called import coupling and states the number of imported
modules.

AC

Afferent Coupling (AC) is also called export coupling and states the number of modules
that import the given module.

ND

Nesting Depth (ND) is the maximum level of nested blocks.

MC

Method Calls (MC) is the number of method calls in the module.

Coverage metrics

Coverage metrics can indicate the effectiveness of test suites by stating how much and
which parts of the underlying source code is executed when running the tests. Different
scopes can be considered.

31

3 Approach

Line Coverage (LCOV) states the percentage of lines that are executed.

Statement Coverage (SCOV) states the percentage of statements that are executed.
Function Coverage (FCOV) states the percentage of functions that are executed.
Branch Coverage (BCOV) states the percentage of branches that are executed.

NOTC

Number Of Test Cases (NOTC) is the total number of test cases in a test file.

TLOCR

The ratio of TLOC and LOC is a good indicator of how well a system is tested, meaning
a higher number of LOC usually leads to a higher number of TLOC. Ideally, the ratio
of test and production code should be 1:1, so a value smaller than 1 can reveal missing
tests. [2, p. 2] Fard and Mesbah used this as a quality metric for tests. [27]

Table 3.1: Source code testability metrics

Metric | Description Scope
LOC Lines Of Code M, F
LOCC Lines Of Code Comments M
LOCL Logical Lines Of Code M, F
NOF Number Of Functions F
CC Cyclomatic Complexity M, F
HL Halstead Length M, F
HVOC | Halstead Vocabulary M, F
HD Halstead Difficulty M, F
HVOL Halstead Volume M, F
HB Halstead Bugs M, F
HE Halstead Effort M, F
HT Halstead Time M, F
NOP Number Of Parameters M
MI Maintainability Index M
EC Efferent Coupling M
AC Afferent Coupling M
ND Nesting Depth M, F
MC Method Calls M

32

3 Approach

Table 3.2: Additional test code testability metrics
Metric | Description Scope
LCOV Line Coverage M
SCOV Statement Coverage M
FCOV Function Coverage M
M
M
M

BCOV | Branch Coverage
NOTC Number Of Test Cases
LOCR Test Lines Of Code to Lines Of Code Ratio

3.4 Finding Refactorings

Code does not always allow for proper testing in the first place. Tests are induced or im-
proved over time and may require changes in the source code as well. Those changes can
be called refactorings for testability. After studying the presence of tests in JavaScript
projects, Fard and Mesbah proposed to study “refactoring techniques towards making
the code more testable and maintainable”. [27, p.239]. Reich and Maalej already ana-
lyzed refactorings for testability written in the Java language. [71]

To find out how developers improve their code to make it more testable, the dataset with
the additional information gathered to answer the first research question can be used. The
sample is used to retrieve commits and pull requests. More precisely, the repositories
that were found to have tests are used as a starting point to search for commits that
modify pairs of source and test files. The goal is to find refactorings in the source code
that were needed to allow the creation or improvements of test code. Refactorings that
improve the code quality in aspects like readability, maintainability or modularity in
general could often also be seen as improvements in testability, but only those that are
done to allow better testing are considered as refactorings for testability at this point. So
it is the purpose of the refactoring that matters. Otherwise, it would be difficult to draw
a line between the refactorings during the classification.

To find refactorings, the source and test code need to be somehow related. The con-
nections between the source and test files are already established in the first part of the
analysis. It is now possible to search for commits that modify the pairs of files. Some
of the resulting commits are expected to contain refactorings for testability.

Another approach that is used by Reich and Maalej [71] utilizes keywords to identify
relevant pull requests for finding refactorings for testability. In the following, this ap-
proach will be called the keyword approach. Using keywords is a common practice
[3, 20] to find commits of interest since it is easy and does not require a lot of addi-
tional work. Nevertheless, keywords do not guarantee that all relevant results are found
because they assume developers documented their intentions carefully in their commit
messages. And even if the refactorings are documented, there is a huge variety of terms

33

3 Approach

2: Testability improvements - Find testability refactorings
Find commits that .) .

modify related test and Automatically Check if refa(}tlorlngs - —

source code files + search for are for testability and List of testability
Sample : i i iti > i
p associated pull refactorln_gs in search for additional refactorings
requests commits ones

Extract refactoring List of testability

procedures for ——>| refactoring

testabiltiy procedures

Figure 3.3: Approach to find testability refactorings

that are used to describe them. Therefore, besides the keyword-generated sample, Reich
and Maalej also used a random sample for comparison. [71] AlOmar et al. iteratively
studied commit messages and found a list of 87 patterns used to indicate refactorings.
[4] This long list shows the difficulty of using textual descriptions to find the commits
of interest.

The goal of this thesis is not only to find refactorings but those that improve testability.
Due to the expected difficulty of achieving a high recall with keywords and the fact that a
dataset of handleable size exists, all commits that contain changes in both source and test
files will be used to find refactorings for testability. Reich and Maalej used the keyword
approach because they expected the approach proposed here to fail in giving meaningful
results. It is an interesting question how the two approaches perform in comparison.
This strategy also led to the decision to use commits instead of pull requests. Pull re-
quests consist of at least one commit and may better describe the changes that were made.
But especially small repositories that do not have many contributors do not necessarily
make use of pull requests. The dataset does not only hold big projects that are likely to
use the pull-based development, it is expected that the use of only pull requests would
lead to missing relevant refactorings for testability. Also, the textual descriptions of pull
requests are not needed to identify the relevant ones and pull requests are just wrap-
pers with additional meta information around commits. It is expected that co-changes
in source and test code are not distributed around different commits in the same pull re-
quest, since refactorings that are needed to write, improve or extend tests will be needed
just at this moment and not beforehand or afterward. Commits also have equally or fewer
changes than corresponding pull requests which makes an analysis more manageable.
In the resulting commits, refactorings are identified automatically with existing refac-
toring mining tools. These tools are rare for JavaScript, it appears that most tools focus
on other languages like Java. The commits are therefore always reviewed manually too
to find missing refactorings. For every mined refactoring it is determined if it improves

34

3 Approach

testability. Additionally, the source and test code are analyzed to find missed refac-
torings for testability. Figure 3.3 illustrates the process to answer the second research
question.

35

4 Analysis

4.1 Dataset

As described in section 3.1, the sample is a random selection of GitHub repositories that
are written in JavaScript or TypeScript and rated with five or more stars. A workflow
containing three elementary steps was developed to create the sample. Each step is
automated and can be executed with JSTT.

In a preliminary step, the exact total number of repositories matching the criteria is re-
trieved. GitHub has an extensive REST-API that allows searching for various types of
resources. The approach was to conduct a search query that includes the criteria and then
see how many results the GitHub API returns. Since only the total number of reposito-
ries is of interest, it is sufficient to make the query return only the first match. The API
returns the total number of results matching the query separately.

There is one issue with this process that has to be worked around. GitHub has restric-
tions on how many resources and how much time an API request can take, so the de-
sired total number can not be determined by one single search request. Without further
query restrictions, the API response indicates that the results are incomplete. Because
of this, a way to split the data into well-defined parts is needed. A solution is to group
repositories by creation date. It is queried again for every year separately starting with
the launch of the GitHub platform and ending with the year this study was conducted
(2023). When the response still indicates incomplete results, the period of one year is
split into three parts with four months each, which was found to be sufficient to always
deliver complete results. This process is done for JavaScript and TypeScript separately
since directly including both languages would increase the complexity of the query and
the periods would be needed to be even smaller. Besides, it was interesting to know
how many repositories exist for each language. The total number of repositories for
each period and language were accumulated. The result was that GitHub holds a total
of 593,813 repositories matching the criteria, with 79% (470,561) being JavaScript and
21% (123,252) being TypeScript. Derived from the total number of repositories, the
required sample size was found to be 384.

The second step is to generate some random numbers for a random selection of reposi-
tories for analysis. The randomness comes from truly random numbers generated with
random.org'. The numbers are in the range of one to the total number of repositories.
The third step is fetching the repositories. A similar approach to step one is used to map

"https://www.random.org/

36

https://www.random.org/

4 Analysis

each random number to a repository. The results from step one, which are periods with
a corresponding number of repositories, are reused here. For each random number, it
is checked in which period it belongs. A period holds numbers starting from the total
number of repositories in all previous periods plus one and ending with the start number
plus the total number of repositories in the period. This way, it can be identified in
which period to search for the repository. Due to restrictions of the GitHub API, the
period needs to be split again in most cases. The API allows you to retrieve the first
1000 results for a query, even if you only want one match. The results are paginated,
but GitHub returns no result if you request a page that is outside the limit. If the random
number minus the period starting number is bigger than 1000, the period is split in half.
Out of the two resulting periods, the one that has its ending number greater or equal to the
random number is used as the new period used to search for the repository. This divide-
and-conquer approach is repeated until the repository can be retrieved. Every resulting
period from this process with its information about the total number of repositories is
cached for reuse on the remaining randoms.

Unfortunately, the repositories returned by a search query can not be ordered by the
creation date. That means that in the last iteration of the divide-and-conquer process,
not the exact repository that would be chronologically at the desired position is returned.
The order of the results for a query depends on GitHub’s ranking algorithm for the best-
matching repositories. Since no search term is specified in the query, it is not completely
clear, how best matches are determined by the GitHub API. Nonetheless, the process is
expected to be accurate enough to deliver a random sample. The alternative would be to
retrieve all repository data for a period that holds 1000 or fewer repositories and order
them by creation date manually. This way, the process would take significantly more
resources concerning storage space and time.

In the end, a dataset with 384 distinct repositories is created as the basis of this work.

4.1.1 Meta Data

Before it comes to the collection of metrics, some general insights into the dataset are
retrieved. The ratio of JavaScript to TypeScript projects is approximately the same as in
the sampling frame, only differing in the decimals of the percentage. Of the 384 repos-
itories, 303 are classified as JavaScript and 81 as TypeScript. GitHub uses a third-party
library to determine the languages of a project’s files. That is not always correct, as the
dataset shows. In general, projects often contain not only code of one language but a to-
tal of 5 projects that were classified as JavaScript projects did not contain any JavaScript
code. They just contain JSON or configuration files that are written in JavaScript but
only used to configure some libraries.

Some projects have files containing JavaScript code but with special file endings, they
are not seen as misclassifications. 2 projects use the file extension .gs, which stands for

37

4 Analysis

jest |
mocha | S

chai
jasmine
karma HEE——
sinon
qunitjs
istanbul

tape
react-scripts
assert
should
cypress
supertest
ava
nodeunit
tap

nyc

coveralls
react-addons-test-utils
ng

selenium
wd
sauce-test
testit
casperjs
tinytest
codecov
webdriverio
mockery
lerna

truffe

nock
test-director
coverage-node
testing-library
hardhat

nx

tsc

vite

o
=
o

20 30 40 50

M JavaScript M TypeScript

Figure 4.1: Test frameworks

38

4 Analysis

Google Apps Script and is basically JavaScript. One project uses the file extension .pac,
which stands for Proxy Auto-Config and contains a JavaScript function.

Due to the misclassifications, the actual total number of JavaScript projects is 298. In
the following, all numbers refer to the total number without misclassifications (Total:
379, JavaScript: 298). Percentage numbers are rounded.

91 repositories are owned by organizations and 288 repositories are owned by individual
GitHub users. The star rating ranges from five to 34,429 with an average of 245.8 but
a median of 21, indicating that most repositories are not very highly rated. Only one
repository, which is JavaScript, has way above 10,000 stars, the second most-rated one
has 4,104 stars. Disregarding the most popular repository, the ratings are similar for
JavaScript and TypeScript with the same median and slightly different averages (Median:
21, Average: JS 150 & TS 175).

It was checked how many repositories use NPM because the usage of the package man-
ager makes it easy to check for dependencies or the prevalence of tests by searching for
scripts that trigger test runs. The identification is based on whether the repository con-
tains a package.json file or not. This action was done using the GitHub API by searching
for the file in the repository but validated in the manual reviews which will be explained
later. It came out that 290 repositories (77%) use NPM. Further, while only 72% of
JavaScript projects used NPM, all but two TypeScript projects did.

As a measure of the development activity in projects, the total number of commits and
pull requests for each repository were retrieved using the GitHub API. The dataset holds
57,349 commits and 17,359 pull requests in total. It appears to be that TypeScript has
significantly more activity than JavaScript projects. For both languages, the minimum
number of commits is 1 and the minimum number of pull requests is 0. Average and
median values in contrast are higher for TypeScript regarding commits (average +45%
and median +89%). Regarding pull requests, the difference is even more significant
(average +202% and median +350%).

4.1.2 Manual Classification

Some information about the projects in the dataset is difficult to obtain automatically.
That is why some information is gathered manually for each repository. In the following,
all manually collected data and its results are explained.

First, it is checked if the project contains frontend or backend code to be able to com-
pare the results later. Frontend code is seen as code that interacts with a graphical user
interface, most often with a DOM. Backend code is seen as code that contains server
logic. It is also possible that a project has no frontend or backend code, which means
the execution environment is not determined. E.g., the code could consist of scripts that
can run anywhere to do some calculations for some input value or it could be an API
connector that could either be used on a server or locally in a script. Projects that contain

39

Websites
Development
Demonstration
Data Transfer
Plugin

Games

Server
Productivity
Security
Multimedia
Creativity
Social Networks
Testing
Documentation
Utility

Browser Extension
Crypto
Database
Algorithms
Files

Payment
Shopping
Monorepo

Al

Mobile
Network

Smart Home
Science
Privacy
Statistics

Blog
Concurrency
Sports

Health

Real Estates
Parser

Trading
Graphics

Gastronomy

o

N
o

4 Analysis

iy
o
D
o
(o]
o

M JavaScript M TypeScript

Figure 4.2: Project categories

=
o
o

120

140

4 Analysis

frontend and backend logic often use a UI framework like React. The dataset contains
210 projects with frontend and 131 projects with backend logic. For TypeScript, there
are proportionally slightly more projects with backend code than for JavaScript.
Probably most important, for each project it is evaluated if it contains tests or not. A
project is classified as having tests if at least one test case is found. In some projects, the
only existing test cases are commented out or written in another language than JavaScript
or TypeScript, in these cases, the projects are classified as not having tests. If a project
has tests, it is further evaluated if unit tests, Ul tests and performance tests are present.
In total, 148 projects (39%) had tests. Interestingly, this number matches the expected
amount of tested GitHub projects written in Java estimated by Madeja et al. [57] Still,
the number differs significantly from the 78% of JavaScript projects having tests in the
study by Fard and Mesbah [27, p. 234]. They used a different dataset that focuses on
more popular JavaScript projects, making it clear that the selection of the sampling frame
heavily influences the presence of tests. In this sample, with 48%, TypeScript projects
appear to be more tested than JavaScript projects with only 37%. 50 of the 210 projects
having frontend code are implementing at least one UI test case that tests interactions
with or the correct rendering of UI components. Only 5 projects contain performance
tests.

In nearly all projects, at least one framework is used for testing. The most frequently
used test framework is Jest, followed by Mocha, Chai and Jasmine. Figure 4.1 shows
all identified test frameworks with their frequency, also for JavaScript and TypeScript
separately.

46 of the projects have textual artifacts not written in English, which sometimes made
it harder to determine their purpose. Most non-English projects are Chinese. For every
project, the categories it belongs to were examined. A project can belong to more than
one category. As an example, a project that is used for demonstration often is assigned to
another category that says what is demonstrated. Figure 4.2 shows how many projects
there are in each category. Approximately 30% have code that is related to websites,
which could be custom functionality or a plugin or library to use on a website. 23% of
the projects contain code that is related to software development. That could be tooling
or libraries for certain tasks or demonstrations on how something can be done. The third
biggest category holds projects that demonstrate something. As already said, the demon-
stration could be related to development but it could also be a project to experiment with
something. The data transfer category holds projects that range from implementations
of network protocols to libraries that do some data exchange with external APIs.

4.2 Testability in JavaScript-Projects

This section will describe the process of answering the first research question in detail.
It explains, how every step of the process is done and which results occurred.

41

4 Analysis

4.2.1 Collection of Metrics

The goal is to calculate correlations between test and source code metrics. For this
reason, three pieces of information are needed. The first two are test and source code
metrics for each file of the corresponding type. Also, the connections of test files to the
source files under test are needed. For correlation analysis, there has to be a one-to-one
mapping of metrics. It is not always possible to map one test file to exactly one source
file, in this case, the connection is omitted to not impact the results negatively.

With the help of JSTT, every project that has test cases is analyzed sequentially. There
are scripts to extract static metrics from source and test files automatically. Test files
are identified by keywords in their paths. It is looked for either fest, spec or cypress,
which appeared to be sufficient for most cases. The last keyword is used, because when
the Cypress testing framework is used, files may be located in a cypress folder. The
test keyword was found to be used very frequently throughout projects, even as part of
the filename or as the name of a folder. The spec keyword is also frequently used to
identify test files in JavaScript projects. Kochhar et al. also used the test keyword when
analyzing projects of different languages for the presence of tests. [53] Madeja et al.
used the fest keyword to find test files and analyze the correlation of the usage of the
keyword within a file with the number of test cases in Java. [56, 57] For JavaScript, it
appeared to be insufficient to use the fest keyword alone. Since every project is reviewed
manually after the automatic evaluation, the final identification of test files should be
fairly accurate. In some cases, files were classified falsely by JSTT due to many different
styles of structuring projects and naming resources, they were manually corrected. For
identifying performance tests, the keywords bench and perf were used.

The mapping of test files to source files was also done automatically by comparing the
file names and paths and checking the imports in test files. For some projects, this
worked perfectly but for others, it did not. So the mapping was reviewed and adjusted
manually. For performance tests, the mapping was done manually because the effort for
the few projects that had performance tests was moderate. Metrics were calculated for
performance test files like they were for unit tests. It turned out that only four repositories
had performance tests.

To calculate the static metrics, a variation of the ESComplex library is used, which com-
putes many complexity metrics given a piece of code. There are not many libraries
available for metric collection in JavaScript, even this one is not very actively main-
tained anymore. But it appeared to still work as desired. Coupling metrics, nesting
depth, number of method calls and lines of code comments are computed by custom
algorithms operating on either the AST or the string representation of code. It was a
challenge to support all possible formats of code, which were mostly JS, TS and React’s
versions of JS (JSX) and TS (TSX). For JavaScript, there exist some files with differ-
ent file extensions that can be treated as usual JS. ESComplex can, when configured
correctly, process all needed formats. The right plugins need to be set up beforehand,

42

4 Analysis

depending on the file type. ESComplex uses the Babel parser to generate the ASTs of
code, which is also used for the custom metric computation outside of ESComplex.
One additional metric, the ratio of test to source code, could be computed from the
existing metrics after the connections between test and source code were established.
As explained in section 3.3, the ratio should be 1:1. For this reason, the metric was
expected to be a good indicator of testability.

As expected, none of the projects had implemented security tests. They may be using
them but it is not documented, so no conclusions can be drawn here.

For every project with test cases, some additional metrics needed to be collected man-
ually. The number of test cases could not be reliably computed automatically, because
depending on the testing framework used or even the programming style, the methods or
ways used to implement a test case vary. Often, test frameworks define methods named
it or test to let you write test cases, but there are different ways like defining test cases
in arrays and looping through them afterward.

A relatively large effort was put into collecting coverage metrics for tests. The amounts
of statements, branches, functions and lines of source code that get executed when run-
ning tests were expected to be a promising measure for the testability of the source code.
It was not always possible to execute tests or compute the coverage. There are many dif-
ferent reasons for that. Especially for old projects that were not updated for a long time,
dependencies did not exist or were not working anymore. A problem was missing or
insufficient documentation about the prerequisites to run the test suites too. It was often
not clear how the environment needs to be set up when software depends on it. This
study was done on Windows, most probably many projects were written on Linux sys-
tems. Even projects were found that documented they could only run on Apple systems.
Some things like build tasks errored on Windows even if they should function because
prerequisites were installed. E.g., some build tasks needed Python and other software
installed, but it was difficult to get the right versions and dependencies, especially for
old projects. Some projects did have test files but with only boilerplate code that was
not properly implemented or executable.

From the 148 projects having tests, for 45 projects the tests could not be executed. For
another 32 projects, some or all tests were failing. The reasons for failing tests were
partly the same as for the not executable ones. Dependencies were outdated, the envi-
ronment was missing something and some tests failed because of incorrect code. For
both the tests that executed correctly and those that produced failures due to apparent
code issues, attempts were made to produce coverage metrics. There is one popular tool
for coverage computation, that is used commonly and supports most testing frameworks.
It is called nyc and is a command line interface for the Istanbul engine. It instruments
the source code and outputs a summary at the end. Depending on the testing framework,
there may be some configuration and setup needed to calculate coverage metrics. For
some Ul tests, the code needed to be instrumented beforehand and the coverage needed

43

4 Analysis

to be collected from the browser’s console. There were many different setups required
to get as many coverage reports as possible. Finally, coverage could be computed for
434 source code files in 74 projects. In general, 843 pairs of test and source code metrics
from 139 projects could be established.

4.2.2 Correlation Analysis

Correlations are computed using Spearman’s Rank Coefficient, which is a common prac-
tice in similar research. [2,9, 10, 11, 18, 54, 78] It is also referred to as Spearman’s RHO.
The advantage of using Spearman over Pearson’s correlation coefficient, another famous
method of determining correlations between two datasets, is that it does not require the
relationship to be linear, any monotonic correlation is recognized by Spearman’s method.
That is achieved by not using absolute values but ranks for each piece of data. The rank
coefficient is a value between -1 and 1, while values close to 0 indicate there is no corre-
lation. A negative value means that one variable increases while the other one decreases.
A positive value means that both variables increase or decrease. Which values indicate
a significant correlation depends on the author you choose. For Xiao et al. it is an ab-
solute value of the correlation coefficient greater than 0.5. [87] This limit is also used
in other studies [2, 78], while some use even lower limits for significant correlations [9,
18, 54]. An absolute correlation coefficient between 0.3 and 0.5 indicates a moderate
correlation, everything below indicates none or a weak correlation. [87]

In addition to the correlation coefficient, the p-value is computed for each relation, which
indicates if the result is significant. P-values give the probability that the null hypothesis
can be discarded, with the null hypothesis stating that the calculated correlation did ap-
pear randomly. Only when the p-value is low, the correlation coefficient is significant.
The limit for an acceptable p-value depends on the field of study, often 0.05 or 0.01 is
used. [87]

Unfortunately, existing libraries for JavaScript to calculate the correlation coefficient
were not giving satisfying results. They either returned false results, were unable to
give any results or were missing the p-values. For this reason, a little Python API was
implemented that only calculates correlation coefficients and corresponding p-values
and returns them to JSTT. Python seems to be more extensively used for statistics and
was found to have better and more reliable libraries in this field.

Correlations are calculated for each possible pair of test and source code metrics. The re-
sult is that 43 correlations are strong with absolute correlation coefficients ranging from
0.5042 to 0.6539. Table 4.3 shows the correlation coefficients, for better readability only
strong correlations are displayed. 1310 pairs of metrics are moderately correlating, but
only the strong correlations are used for further evaluation. Since the dataset of metrics
is relatively large, the p-values for all strong correlations are very low (between 1le—19
and le—65) and allow discarding the null hypothesis and considering the correlations

44

4 Analysis

as significant. The branch coverage metric bcovM appears to be the most meaningful
test metric since it negatively correlates with 33 source complexity metrics. The source
metric dpM, which is the maximum nesting depth of a module, negatively correlates
with the line coverage test metric /covM. A conclusion from this is that more complex
modules lead to lower test coverage and thus to lower testability.

The efferent coupling of a module ecM correlates with ecM for the associated test file. It
is the only positive strong correlation. It is also the only encapsulation source code metric
with a strong correlation. It may indicate that tests for modules with many dependencies
need those dependencies too. During the classification phase, it could be noticed that
it depends on the used testing framework which dependencies are needed. Sometimes,
tests do not have a single dependency. The test framework loads itself during runtime
and the module under test is imported automatically by naming conventions. The test
file test.spec.js® in the LancerComet/lens.js repo is an example that only imports the
module under test. Other test files import multiple testing libraries and also libraries
to set up the local test environment and load fixtures, e.g. generator spec.js® in the
mustardamus/lehm repository. The associated source file has an even higher number of
imports, but the imports differ from the ones in the test file.

The last test metric that appears in the strong correlations is /ocrM, the ratio of test code
to source code. Since it is calculated using the /locM metric of the source code, the
strong correlations to locM and loc/M are obvious and meaningless. locrM correlates
with most Halstead complexity metrics on module scopes. That also holds for bcovM,
which additionally correlates to the Halstead metrics on function scope. The Halstead
metrics appear in about 60% of the strong correlations and seem to be a good indicator
of testability.

For the source metrics on function scope, aggregate values were used. Only the total and
max aggregates appeared in the strong correlations. When both aggregates of the same
metric appear, it is always the total that has a higher correlation coefficient. Contrary
to the maximum, the total takes all functions into account and may better represent the
module as a whole. However, a complex function in a module seems to lead to lower
branch coverage as well.

For every one of the complexity metrics in the strong correlations, a higher value means
higher complexity, so it goes along with the guidelines and advice to write testable code
that the coverage gets higher when the complexity gets lower. Interestingly, no test
complexity metric other than ecM strongly correlates with source code metrics. That
means no significant connection between the complexity of the test and the source code
could be drawn. Instead, it is the test coverage that connects the quality of tests to the
quality of the source code. A problem is that it is not guaranteed that the developers of
the analyzed tests aimed for maximum test coverage. If they did but the coverage is low,

’https://github.com/LancerComet/lens. js/blob/master/test/specs/test.spec.js
*https://github.com/mustardamus/lehm/blob/master/test/generator_spec.js

45

https://github.com/LancerComet/lens.js/blob/master/test/specs/test.spec.js
https://github.com/mustardamus/lehm/blob/master/test/generator_spec.js

4 Analysis

one could conclude that the testability is low because it was not possible to achieve a
high test coverage. This is a general problem that will be further discussed in the threats
to validity.

4.2.3 Testability Level Analysis

In summary, 35 distinct source code metrics strongly correlate with test metrics. Using
this set of metrics, the repositories in the dataset are compared regarding their level of
testability. A rank-based scoring system is proposed to assess the level of testability for
a file. The goal is not to find an absolute value that shall assess the testability but to
compare the files. It would require further studying to find the optimal values for each
metric regarding testability if they even exist. A rank-based approach, like it was used
to calculate the correlation coefficients in Spearman’s RHO, allows comparing metric
values independent of the distribution of the value space. For all complexity metrics in
the set, a lower value often leads to better testing, so lower values are considered to lead
to better testability. All 35 metrics are equally weighted.

Before explaining the scoring system, some limitations need to be mentioned. As al-
ready stated in section 2.5, testability is a complex software attribute and can involve
many different aspects. The metrics that are used here are mostly complexity metrics
and miss other important characteristics. E.g., the visibility of methods and attributes
is very important for testability, because a method with low complexity can still not be
tested when it is not accessible in tests. When counting understandability as part of testa-
bility, code comments, formatting and naming are also important aspects of source code
because they can heavily influence the effort a developer has to understand a module and
write tests for it. To conclude, the scoring system only addresses one important aspect
of testability, which is code complexity.

The scoring system is built on the metrics calculated for all source code files in the used
dataset but can be applied to any other file afterward. In the following, the process is
explained. First, all existing values from every analyzed source code file for the 35
testability-related metrics are collected in sets, meaning only distinct values are kept.
These sets are sorted in ascending order. Now, for every source code file the ranks for
each metric are derived. This is done by checking the index of each value in the sorted
sets. A lower rank means a better metric value and therefore better testability. The rank
equals the index plus one to make the ranks start at one. Files that have equal values for
a metric also have the same rank for this metric.

The ranks are normalized to the range of zero and 100 to guarantee an equal weight of
every metric in the score. To get one single rank value for each file, the average rank
of all available metrics is computed. This allows ranking a file even if it misses some
of the values for the 35 metrics. It appeared that this was the case for some files, which
mostly missed the metrics on function scope. JavaScript as a scripting language does not

46

Source code metric

dpM
locF_total
locF_max
loclF_total
ccF_total
ccF_max
hbF_total
hbF_max
hdF_total
hdF_max
heF_total
heF_max
hiIF_total
hIF_max
htF_total
htF_max
hvocF_total
hvolF_total
hvolF_max
nopF_total
dpF_total
locM
lociM

ccM

hbM

hdM

heM

hiM

htM
hvocM
hvolM
nopM

dpM

mcM

ecM

lcovivi

4 Analysis

Test metric

bcovivi

ecM

locrm

-0.5042

-0.6028

-0.5364

-0.5904

-0.5980

-0.5629

-0.5977

-0.5155

-0.6221

-0.5666

-0.5885

-0.5504

-0.6047

-0.5235

-0.5885

-0.5504

-0.5845

-0.5975

-0.5155

-0.5425

-0.5349

-0.5643

-0.6257

-0.5975

-0.5321

-0.6454

-0.6169

-0.5538

-0.6539

-0.6433

-0.5323

-0.6186

-0.5476

-0.6433

-0.5323

-0.5968

-0.5787

-0.6169

-0.5538

-0.5936

-0.6397

-0.5958

0.5075

Figure 4.3: Correlation coefficients

47

4 Analysis

necessarily require the developer to use functions. Sometimes the complexity analysis
of files also failed.

Based on the average rank, the source files were put in order. For more convenience, the
average rank is inverted to retrieve a testability score as a value between 0 and 100. A
high value for this score means good testability. Finally, all analyzed source files in the
dataset are put in a sequence ordered by the testability level. The list can be browsed in
JSTT.

The best way to evaluate the scoring would be to write tests for some of the files, but this
is too much additional work at this point. Without this, it is difficult to make accurate
assumptions about the file’s testability. Some of the files are randomly reviewed. What
stands out is that files with a low score appear to be much longer than files with a high
score. This result could be expected by the selection of metrics that are used. A smaller
and less complicated file can be easier to test, but what also stands out is that sometimes
the code is not accessible for other code outside of the file and thus is not well testable.
Determining if a part of the code should be publically visible or not is not an easy task.
Due to the many possibilities of exposing a method or variable, it is also very hard to
determine the visibility programmatically. It can be declared with different syntax and
even dynamically by adding or removing attributes from the public API during runtime.
The testability score that is proposed here addresses code complexity as one aspect of
testability but will need to be complemented with other characteristics that are hard to
capture in metrics.

Using the testability scores, it is analyzed if certain kinds of projects are more testable
than others. Therefore, the files are grouped by different attributes, which are the file
types, the categories of the software that were determined earlier, the used test frame-
works and more. Average file type and category ranks can be found in tables 4.1 and
4.2, and the other ones can be found in the source code of JSTT. What stands out re-
garding the file types is that TypeScript appears to be more testable than JavaScript.
The d.ts files are ranked in the first place, but those files hold TypeScript declarations
and not actual source code, so a lower complexity and thus a higher score is expected.
The declarations can still be tested, even if that works differently from testing program
code. TypeScript (TS) and React’s TSX have a significantly higher average testability
score than JavaScript (JS). React’s JSX has a little lower score than TS and TSX but a
significantly higher score than JS. The remaining three file types (mjs, gs, cjs) are only
rarely used and thus do not rely on a big data source. While they can be considered to
hold basic JavaScript code, they are ranked lower than TS. GS and CJS have very low
scores and thus seem to have bad testability. The findings are an interesting addition to
the work of Bogner and Merkel, who compared software quality of JavaScript and Type-
Script using code smells, understandability and bug fixes. They found that TypeScript
applications had higher code quality in terms of code smells and better understandability.
[15] It seems like TypeScript developers are more skilled or at least put more effort into

48

4 Analysis

Rank | File type | Average score | No. files | No. repos
1 d.ts 96.14 170 69

2 ts 90.43 2619 85

3 mjs 88.35 6 5

4 tsx 88.34 1202 37

5 Jsx 86.76 345 13

6 js 77.28 7932 329

7 gs 69.19 15 2

8 cjs 52.24 10 3

Table 4.1: Average testability scores by file type

producing code of good quality. Maybe TypeScript is more often used by more experi-
enced developers and beginners tend to stick with JavaScript. TypeScript is a superset
of JavaScript and therefore has features that add complexity to the language. Those
hypotheses will need to be validated in a separate study.

The average scores for categories shown in table 4.2 also reflect expectations concern-
ing the criticality of the project. Projects categorized as crypto, shopping, security and
payment have a significantly higher testability score than utility, creativity, browser ex-
tensions and social networks. Of course, this may only hold for the used sample of
repositories with many being small and without much economic interest. With growing
economic interest, the criticality may also increase for a certain project. Interestingly,
algorithms appear to also have very low testability scores. The fact that the scoring sys-
tem focuses on code complexity explains this circumstance because algorithms, e.g., for
encryption, can be very complex.

For the average ranks of files per used test framework in the corresponding repository,
Jjest as the most used framework is also in the top seven with an average rank of 89.10.
The top five frameworks are only used in one or two repositories, so there might not be
sufficient data to make repository-independent assumptions for them. On the other end,
jasmine and karma have lower scores around 81. Files from projects with frontend code
do not have a significantly different average score (79.50) than files from projects with
backend code (81.82), backend projects perform slightly better.

It was also analyzed if the testability level of a file correlates with the star rating of the
corresponding repository. A plot of the distribution of data can be found in appendix 1.
For better readability, the distribution for the top-rated repository is shown in another
figure in appendix 2. The correlation was computed using Spearman’s RHO. With a
correlation coefficient of —0.131 and a p-value of 2.81e—48 there is no correlation found
between the testability level and the star rating.

An interesting observation can be made when comparing the average scores of files in
tested and untested projects. Files in projects that have at least one test case have a signif-

49

4 Analysis

icantly higher average score (86.91) than files in projects without any test code (77.43).
It follows that code generally is less complex and thus easier testable if developers have
testing in mind.

Table 4.2: Average testability scores by category

Rank Category Average score No. files No. repos
1 Gastronomy 93.713 45 1
2 Parser 93.645 4 1
3 Crypto 92.596 1232 7
4 Security 88.813 1447 19
5 Payment 88.798 367 5
6 Shopping 88.29 210 5
7 Demonstration 88.207 1628 61
8 Science 86.628 26 3
9 Sports 86.07 7 1
10 Server 84.842 342 22
11 Documentation 84.603 148 12
12 Privacy 84.267 9 2
13 Real Estates 83.947 7 1
14 Development 83.461 2238 86
15 Blog 83.197 232 2
16 Network 83.163 63 4
17 Health 83.024 15 1
18 Data Transfer 82.882 214 25
19 Testing 82.552 215 11
20 Websites 81.304 4002 116
21 Database 81.206 155 6
22 Al 81.1 45 4
23 Mobile 80.821 101 4
24 Games 80.745 578 22
25 Multimedia 80.744 446 15
26 Plugin 80.499 571 23
27 Monorepo 80.41 1651 4
28 Graphics 80.254 5 1
29 Smart Home 79.961 226 3
30 Concurrency 79.862 3 1
31 Productivity 79.778 671 20
32 Utility 79.095 48 10
33 Creativity 75.204 253 13

Continued on next page

50

4 Analysis

Table 4.2 — Continued from previous page

Rank Category Average score No. files No. repos
34 Trading 70.736 1 1
35 Browser Exten- | 69.455 123 8
sion
36 Files 68.083 272
37 Social Networks | 65.344 1096 12
38 Algorithms 64.182 61
39 Statistics 63.303 19 2

4.2.4 Comparison with Java

As described in chapter 2, existing work focused on analyzing testability in Java appli-
cations. Their findings are compared with the findings from this thesis for JavaScript.
In the following, a metric is referred to with the name used in this thesis, the name used
in the mentioned study is given in brackets if needed.

Alenezi found source code metrics that correlate with test case effectiveness represented
by the mutation score. Looking at the intersection of metrics, for both languages, there
is a strong correlation to the locM, mcM (NMC) and ccF total (WMC) source code
metrics. The strong correlation to loccM (LOCCOM) that Alenezi also found did not
appear for JavaScript. [2] The work of Badri and Toure came to similar results. They
calculated correlations between test and source code metrics and found /ocM (LOC) and
mcM (NMC) to be significantly correlated to test metrics. [10]

Similar to the approach in this thesis, Bajeh et al. used test coverage metrics to find corre-
lated source code metrics for object-oriented software. Interestingly, they observed only
weak correlations and did not find metrics significantly related to testability, but they
only used a small dataset with six Java applications and only included tests that achieved
a code coverage of more than 60%. [11] Bruntink and van Deursen also checked the
correlations of test metrics to source code metrics, using two Java applications as a data
source. They found strong significant relations to ecM (FOUT), locM (LOCC), noF
(NOM) and ccF _total (WMC). [18] Except for noF (NOM), the results were similar in
this thesis. Filho et al. found a large list of strongly correlating metrics when studying
the relation between test and source code metrics. This includes locM (LOC), ecM (EC),
acM (AC), ccF total (WMC), noFF (NOM), ccM (CC) and noM (NOCL). The data is
retrieved from two Java applications, from the reviewed literature it is the only work that
found so many strong correlations. [30] For acM (AC), noF (NOM) and noM (NOCL),
there was no strong correlation found for JavaScript.

The Halstead metrics that are used in this thesis were not used in the mentioned studies.
Unfortunately, some studies rely on a small dataset of software projects. Apart from that,
some metrics commonly appear in multiple studies as proposed indicators of testability,

51

4 Analysis

namely locM (LOC), ccF _total (WMC), ecM (FOUT) and mcM (NMC). The same re-
sults arose for JavaScript. noF (NOM) and noM (NOCL) appeared multiple times in the
Java studies but not for JavaScript, so there might be a difference originating from the
scripting nature of JavaScript.

4.3 Refactorings for Testability

The dataset and the information described in the previous chapters form the basis to find
refactorings for testability, aiming to answer the second research question. Assuming
that developers need to make modifications to the source code to create, update or ex-
tend tests, the goal is to find those refactorings and analyze them regarding patterns and
frequency.

4.3.1 Finding Commits

Repositories that were already found to not have tests are discarded for this task, leading
to 145 repositories with 31006 commits and 12029 pull requests in total. The GitHub
API allows filtering commits by a given filename. So for every pair of source and test
files in a repository, it is searched for commits changing the source file and for com-
mits changing the test file. Commits that are in the result set of both queries are saved
for assessment. Additionally, for every one of those commits it is searched for pull re-
quests that are associated with it. If existing, the pull requests are saved to give more
information about changes in a commit if needed during the analysis.

A total of 802 commits that fulfill the criteria are found, with 340 associated pull re-
quests. The average number of found commits per repository is approximately 5.53,
with a median of 2 and a maximum of 61. For 26 repositories, no commits matching the
criteria were found, leaving 119 repositories with commits.

4.3.2 Mining Refactorings

Unfortunately, for JavaScript there is very limited tool support for automated refactoring
mining. Two tools were found that could be used.

The first one is a popular tool that has existed since 2017 and got an update in 2020
called RefDiff 2.0*. The authors also published some papers explaining the purpose and
performance of the tool. [76] While the tool initially came with support for only Java,
the current version also supports JavaScript and C. The authors state good precision
and recall for JavaScript refactoring mining, but they did not find an annotated dataset
for refactorings in commits for this language. Their design of the precision and recall

“https://github.com/aserg-ufmg/RefDiff

52

https://github.com/aserg-ufmg/RefDiff

4 Analysis

validation on very small and non-representative samples does not give enough proof for
a good performance. The focus of the tool is still clearly Java. 10 different refactoring
types are supported for JavaScript.

The second tool that can find refactorings in JavaScript commits is JsDiffer. It was
developed as part of a master’s thesis and is an adaption of a popular Java refactoring
mining tool called RefactoringMiner 2.0°. The source code is not publically available
but the author permitted the usage for this thesis. The tool has similar goals to RefDiff
2.0 but achieves lower performance in comparison. It supports 18 different types of
refactorings.

The refactoring miners for JavaScript come with limitations and appear to stand behind
their Java alternatives. One limitation was especially obstructive at first, which was the
support of variations of the JavaScript language. The tools do not support TypeScript or
React’s variations of both forms. It was crucial to overcome this limitation and modify
the tools to support TypeScript. The cores of both tools are written in Java, but both use
JavaScript to parse JavaScript source code. Both make use of the Babel parser® which is
one of the most popular parsers for JavaScript and has good support of the latest language
features and a plugin architecture. Both tools were similarly modified so that they can
additionally parse TypeScript and React’s .jsx and .tsx files. Depending on the file’s
type, different plugins are loaded in the Babel parser and maximum file type support is
achieved.

The second aspect that needed to be modified for both tools was the interface. The tools
are Java projects and are expected to be used in Java applications. The tool used for
nearly all tasks in this thesis - JSTT - is a NodeJS application and should be able to
communicate with the refactoring miners. So both miners are wrapped with a minimal
REST API using the Spring Boot framework’, exposing one endpoint that expects the
name of a repository and a list of commit identifiers (SHAs) and returns the identified
refactorings for each commit. Due to compatibility reasons, the RefDiff API was set up
as an IntelliJ project and the JsDiffer API was set up as an Eclipse project.

For all test-pair commits that were determined previously, refactorings were mined with
both tools. The mining process is automated in JSTT and the results are stored per
repository and commit in a JSON file. Error scenarios were evaluated and the tools
could be adapted in some cases to be able to process most of the files in commits. The
adaptations were mostly configurations of the used plugins in the Babel parser. RefDiff
appeared to be the more robust tool meaning it produced fewer processing and runtime
errors. JsDiffer sometimes froze without warnings while processing specific files, so
those needed to be skipped manually. The presence of quite some error scenarios in
combination with the lower maturity of the miners indicates the need for manual analysis

Shttps://github.com/tsantalis/RefactoringMiner
®https://babeljs.io/docs/babel-parser
"https://spring.io/projects/spring-boot

53

https://github.com/tsantalis/RefactoringMiner
https://babeljs.io/docs/babel-parser
https://spring.io/projects/spring-boot

4 Analysis

in addition to automated refactoring mining. Errors mostly appeared while parsing and
the reasons were often illegal or deprecated syntax or encoding.

The refactoring miners found a total of 3379 refactorings distributed around 252 com-
mits in 67 repositories, with an average of 23.30 refactorings per repo and 12.75 per
commit. Table 4.3 shows insights into the found refactorings. It shows the total num-
ber of refactorings per type, which tool found them and how many commits contained
refactorings of the type. JsDiffer supports more refactoring types and found about 85%
of the refactorings outputted by both tools, but many of them have no relevance to this
work. Refactorings that just rename anything will not enable writing tests. They may
lead to better understandability which may make testing easier for a developer, but as
already stated, this work will only consider refactorings to be for testability if they were
clearly done for this purpose. Especially for automated test generation, the names do not
matter. Moving a file is also not interesting here because it does not matter where a file
is located to test it. The same holds for most other refactorings that move methods and
classes, if the move is done within the same block level. The remaining refactorings are
the most promising ones to find refactorings for testability.

Table 4.3: Mined refactorings

Total | Type Tool No. commits
1059 Move File JsDiffer 31
528 Rename Variable JsDiffer 74
377 Move Class JsDiffer 12
254 Rename File JsDiffer 32
148 Rename Method JsDiffer 41
146 INTERNAL MOVE RefDiff 2.0 18
123 Rename Parameter JsDiffer 24
122 RENAME RefDiff 2.0 54
122 MOVE RefDiff 2.0 29
94 Add Parameter JsDiffer 38
94 Remove Parameter JsDiffer 16
69 Move And Rename File JsDiffer 10
68 Move Method JsDiffer 6
48 EXTRACT RefDiff 2.0 25
32 MOVE RENAME RefDiff 2.0 17
29 Move And Rename Class JsDiffer 10
18 EXTRACT MOVE RefDiff 2.0 8
17 Extract Method JsDiffer 11
10 Rename Class JsDiffer 5
10 Inline Method JsDiffer 2

54

Continued on next page

4 Analysis

Table 4.3 — Continued from previous page

Total | Type Tool No. commits
7 INLINE RefDiff 2.0 5
2 Change Variable Kind JsDiffer 2
1 INTERNAL MOVE RENAME RefDiff 2.0 1
1 Extract And Move Method JsDiffer 1

4.3.3 Commit Analysis

To enable a systematic and structured analysis of commits, JSTT is extended to provide a
UI to work with commits and refactorings (shown in appendix 6 and 7). An overview of
all commits allows for sequentially classifying all commits. Commits can be marked as
done or just for attention at a later point in time. The progress and the found refactorings
for testability are tracked. Commits can be opened in a detail page, where all refactor-
ings, a link to the GitHub page and associated pull requests are shown. Refactorings can
be commented on and marked as refactorings for testability. Additional refactorings that
were not found by the mining tools can be easily added. The comprehensive Ul gives
an intuitive representation of all relevant data and provides a straightforward workflow
for classification.

In the first step, all 252 commits that had mined refactorings were manually reviewed
and analyzed. It was checked if any of the mined refactorings were done for testability.
Commit messages as well as connected pull requests and their descriptions helped to
understand what was done. The approach for reviewing depended on some aspects of the
commit. Source code files that were added in the commit can not contain refactorings, if
the code introduces new features and the file creation was not due to code extraction from
an existing module. Often, it was helpful to first look into the test files and search for
changes that could require changes in the source code. If there were huge modifications
in the test files, it was helpful to first look into the corresponding source file and search
for refactorings. In addition to the review of mined refactorings, it was searched for
other refactorings that were done for testability.

After that, the remaining 550 commits for which the mining tools could not find any
refactorings were analyzed. Code changes were reviewed in the same way as for the first
252 commits and it was manually searched for refactorings for testability. In some cases,
it was easy to skip the commit because files were added but not modified, especially in
initial commits. In other cases, it took a long time to understand what was done or to
review all of the changes in large commits. Examples of changes where it was hard
to decide if they are testability refactorings are methods that were added to the public
interface to expose some values or other internals that already existed before the commit.
Especially when those new methods are not used in the source code but in the tests, it
was a hard decision if the method is a new feature or if it is needed for testing. Some

55

4 Analysis

Total Type No. commits | No. repos
Add parameter
Internal move

Export function
Extract

Set test environment
Move rename

Add getter

Wrap

Add return value

Add attribute

Export object

Move config to object
Split module

DN = =
o ==

— = = = = DN DN WD W
e e ek ek N = = D N = O\
— e = e = = N = = W N = 0

Table 4.4: Testability refactorings

repositories consist of libraries that can be used by other applications, so new methods
can be just new features for the API. In those cases, a deeper understanding of the source
code and the commit context was essential.

Some observations could be made when reviewing the test files. Tests were mostly unit
tests, some were integration tests. Performance tests were rare and security tests could
not be found. The use of assertions seems to be uncommon as well. Assertions are not a
native concept in the ES language specification, so external libraries need to be utilized
when assertions should be used.

In total, 42 refactorings for testability in 22 different commits from 16 different reposi-
tories were identified. They are shown in table 4.4 and a complete list of the refactorings
for testability with their locations can be found in appendix table 1. That makes about
2.7% of commits that include testability refactorings. A big difference regarding the
number of results exists between the commits with refactorings identified by the mining
tools and the commits without those refactorings. From the 252 commits with mined
refactorings, 13 commits (approximately 5.2%) contained a total of 30 testability refac-
torings. Accordingly, 9 (approximately 1.6%) of the remaining 550 commits contained
a total of 12 testability refactorings. 27 of the testability refactorings were not found by
the mining tools but instead within the manual reviews. That shows the need for manual
reviews instead of relying on the results from the tools. It confirms the previously stated
observation that the tooling for JavaScript in this field is underdeveloped. The tools need
to support more refactoring types and have better accuracy.

To improve the reliability of the achieved results, 71 of the 802 commits were addi-
tionally reviewed by the supervisor of this thesis. The selection of commits was partly

56

4 Analysis

random, while it was assured that some commits did contain testability refactorings re-
garding the results of the author of this thesis. He was asked to review them to compare
the results with those of the author of this thesis. The first comparison took place af-
ter the supervisor reviewed the first half of the 71 commits. When different results for a
commit appeared, they were reevaluated to achieve consensus. The same holds for com-
mits where the decision was not clear. After the comparison, the supervisor reviewed the
second half of the commits. The results were compared again. The second reviewer did
find one additional refactoring for testability but missed some of the refactorings iden-
tified by the author of this thesis. Every commit that was found to contain refactorings
for testability was reviewed by the author of this thesis at least three times on different
days.

The low number of testability refactorings is plausible because the used approach does
not focus on commits that are likely to introduce refactorings or testability improve-
ments. The approach aims to get complete results for the selected sample. That makes
it more difficult to compare the findings with the work by Reich and Maalej [71], who
used keywords to search for potentially relevant pull requests. In their sample, they
found that approximately 25% of the analyzed pull requests contained testability refac-
torings, which is significantly more. Apart from the pull requests selected by keywords,
they also analyzed a small random sample of pull requests that modify test and source
code files simultaneously. They found that 12.7% of the random pull requests included
refactorings for testability. This number is still significantly higher than the 2.7% of
commits containing testability refactorings identified in this thesis. This opens the ques-
tion of the reasons for the difference. Possible reasons may be that in JavaScript projects,
fewer refactorings for testability are done, that the used datasets differ in their creation
process or that pull requests contain refactorings for testability more frequently.

To check if a keyword-based approach would have worked for the sample in this thesis, it
was searched for the same keyword combinations associated with testability in commits
and pull requests. The commits and pull requests are the same which led to the results
described before. In commits, the commit message is used and in pull requests, the
title and the body are used. The search was done case-insensitively. Searching for the
word testable led to zero results, the same holds for the word testability. Searching for
commits whose messages contain both keywords fest and refactor gave 14 results. Only
one of those commits contains exactly one refactoring for testability. Searching for the
same keyword combination in pull requests gave 29 matches, but those did not contain
testability refactorings. It is proved that the keyword-based approach does miss most
of the refactorings for testability, which is an important disadvantage. Developers seem
not to mention this special type of refactoring when describing their changes. Another
problem is that a certain amount of repositories are using other languages than English,
so English keywords will not fit at all. The accuracy of the keyword search was very
low. It remains unclear, if refactorings for testability are less frequent in JavaScript

57

4 Analysis

projects than in Java projects or if developers miss out on mentioning them. To answer
this question, the same approach that Reich and Maalej used would need to be studied
on a larger scale for JavaScript.

As table 4.4 shows, four refactoring types occurred in more than one commit. The /n-
ternal Move refactoring has ten occurrences but all within the same commit. The Add
Parameter refactoring appears to be the most frequently used one in the analyzed sam-
ple. The Export Function refactoring is used when an existing or new function is added
to the public interface and occurs five times. The Extract refactoring is used when code
is extracted from a scoped block to exist on its own. This often means that code is ex-
tracted from a function and put into its own function. Three times this refactoring was
done for testability. All the testability refactorings are described in more detail in the
following when refactoring patterns are extracted from the findings. What stands out is
that only two refactorings improve Ul testability.

Name Test type | No. TRs | Associated refactoring
types

Add parameter Unit 11 Add parameter

Wrap code Unit 11 Internal Move, Wrap

Widen access Unit 3 Export function, Export
object

Create helper Unit 3 Export function

Use environment variables | Unit 3 Set test environment

Extract code Unit 6 Move rename, Extract, Split
module

Add getter Unit 2 Add getter

Add return value Ul 1 Add return value

Programmatic Unit 1 Move config to object

configuration

Add property to identify Ul 1 Add attribute

Ul element

Table 4.5: Refactoring procedures to improve testability

4.3.4 Testability Refactoring Procedures

To use the findings to help developers improve the testability of JavaScript code, proce-
dures that apply in certain scenarios are extracted from the refactorings. They will not be
called patterns because the term pattern is often used for something that can be observed
frequently. Unfortunately, the procedures rely on a small source of data, so it is not clear
if they are likely to be commonly used across all JavaScript projects. If necessary, the

58

4 Analysis

procedures are illustrated using real-world examples. Only the relevant parts of the real-
world code are shown, so the examples are not complete. The procedures are extracted
from the testability refactorings that were identified under the assumption that they are
useful. Table 4.5 summarizes the procedures and the number of Testability Refactorings
(TRs) that form the foundation of the procedures. The table also shows for which types
of tests the procedures were used. The types of tests stated there do not necessarily mean
that the procedures do not apply to other tests, but there was no evidence found.

Add parameter

The most frequent refactoring for testability can either consist of a single or a compos-
ite refactoring. Adding a parameter to a function or class constructor allows passing
additional data. Depending on the context, the parameter may be added to other func-
tions as well, making the procedure a composite refactoring consisting of multiple Add
Parameter refactorings. A reason to use this procedure can be that a mocked object
should be used in the function during testing. Another reason could be that any de-
fault value should be overwritten during testing. When the parameter is not necessarily
needed in the production environment because it would always hold the same value, a
parameter default can be used. In the following, a reduced example of a parameter that
is added to a constructor to allow the use of a mocked function is shown.® Figure 4.1
shows the constructor before refactoring. In figure 4.2, a parameter for a fetch func-
tion is added to allow overwriting the default fetch function. In the associated test file
shown in figure 4.3, a simple mock function is passed to prevent the default behavior.

constructor (jwtToken: string) {
this._jwtToken = jwtToken;

}
Figure 4.1: BffApiClient.js (before)
constructor (jwtToken, fetchFunc = null) {
this._jwtToken = jwtToken;
this._fetch = fetchFunc || fetch;
}

Figure 4.2: BffApiClient.js (after)

$https://github.com/ably-labs/fully-featured-scalable-chat-app/commit/1dd9eab2
b88591789ec2bbf869178b1c5b030fd1

59

https://github.com/ably-labs/fully-featured-scalable-chat-app/commit/1dd9eab2b88591789ec2bbf869178b1c5b030fd1
https://github.com/ably-labs/fully-featured-scalable-chat-app/commit/1dd9eab2b88591789ec2bbf869178b1c5b030fd1

4 Analysis

beforeEach (() => {
fetchMock = () => { return fetchResponse; };
sut = new BffApiClient("token", fetchMock);
B g

Figure 4.3: BffApiClient.test.js

Wrap code

This procedure has similar motivations to Add Parameter. It consists of two steps. At
first, a wrapper which could be a function or a class is created. It should have at least
one parameter to pass some value that can be used in the class or function body. The
second step is to move existing code into the created wrapper to allow the use of the
parameter value. The code may need to be modified so that it makes use of the pa-
rameter value. The procedure can be used when the creation of an execution context
for some code is needed. This procedure is an extension of Add Parameter where the
signature to which the parameter is added needs to be created first. In the example be-
low, the procedure is illustrated in a reduced version of real-world usage.” Figure 4.4
shows a function before refactoring. In figure 4.5, the function is wrapped in another
function that has a version parameter. The version is used to give different outputs
in the wrapped function. While this can be used to use different versions in the pro-
duction environment, this can also be used to provide different behavior in a test con-
text. Figure 4.6 shows that the wrapper is called with a test version parameter. The
example is just used to demonstrate the idea, the real usage is not as simple as illus-
trated here and includes multiple atomic /nternal Move and Add Parameter refactorings.

function getBaseEnchantmentLevel(itemId, materialld) { ... }

Figure 4.4: mc.js (before)

‘https://github.com/Zazcallabah/mce/commit/474cb2elaac9dfcde7af02f8556828ad09
0eb5a20

60

https://github.com/Zazcallabah/mce/commit/474cb2e1aac9dfcde7af02f8556828ad090e5a20
https://github.com/Zazcallabah/mce/commit/474cb2e1aac9dfcde7af02f8556828ad090e5a20

4 Analysis

var makeMC = function(version) {
function getBaseEnchantmentLevel(itemId, materialld) {
if (version === "test") {
return ...;
}
if (version === "1.2") {
return ...;
}
if (version === "1.3") {
return ...;
}
}
}

Figure 4.5: mc.js (after)

var _mc = makeMC("test");

Figure 4.6: test_simulate.js

Widen access

This procedure consists of one atomic refactoring that addresses problems with the vis-
ibility of functions. It can be used when a class or function needs to be tested on its
own but is not accessible by the test code. It can be also used for other private vari-
ables and objects. In the following, it is referred to all these types as objects, because in
JavaScript, functions and classes are also objects under the hood. Making objects public
can be achieved in different ways. First, it should be noted that importing and exporting
modules in JavaScript works differently in ES6 or CommonJS modules. In modern ES6
modules, the keywords import and export can be used. In CommonlJS, importing needs
to be done with the require function and exports need to be added to module.exports.
So making an object accessible from outside the module can be achieved by using those
language features and exporting it. If the object to be exported is a private member of a
class, it can easily be converted to a public member. While in TypeScript there are the
reserved keywords public, private and protected, in vanilla JavaScript this is achieved
with a little syntactic difference. Class members are public by default but can be made
private by prepending a # to the name. To make any other value public it can be added
to the this object which refers to the class instance.

61

4 Analysis

Create helper

Sometimes it is useful to create a helper function in the source code that does some task
which is especially useful in testing. The helper has full access to private properties in-
side the source code, so that can be necessary or at least an easier way than doing compli-
cated things in the test code to achieve the same result. Of course, the helper needs to be
accessible from outside the module. A common example of a helper is a reset function,
as itis added in the example!'? in figure 4.7. Like it is shown in figure 4.8, tests can use the
same instance of stats this way without making changes to it that influences other tests.

stats._reset = function(){
store = {};
pipes = 0;
stats.enabled = true;

I

Figure 4.7: stream/stats.js (after)

test('logging starts on pipe', function(t) {
stats._reset () ;

B

Figure 4.8: test/stream/stats.js

Use environment variables

Telling the code that it should execute in a test environment can be achieved in many
ways. With Add Parameter and Wrap Code, two of them are already explained. An-
other possibility is to use environment variables. This allows to set a variable that is
available in the whole application without modifying interfaces. Figure 4.9 shows an ex-
ample!! where the environment variable is checked to determine which code to execute.

Yhttps://github.com/pelias/openstreetmap/commit/571b6d2009b37bd2e01f3f0f78b29
a2f6ddebbef

"https://github.com/BreakOutEvent/breakout-frontend/commit/1b78b5829628d86a900
£7270d7e617e309e69252

62

https://github.com/pelias/openstreetmap/commit/571b6d2009b37bd2e01f3f0f78b29a2f6dde6bef
https://github.com/pelias/openstreetmap/commit/571b6d2009b37bd2e01f3f0f78b29a2f6dde6bef
https://github.com/BreakOutEvent/breakout-frontend/commit/1b78b5829628d86a900f7270d7e617e309e69252
https://github.com/BreakOutEvent/breakout-frontend/commit/1b78b5829628d86a900f7270d7e617e309e69252

4 Analysis

global.IS_TEST = process.env.FRONTEND_RUN_TESTS === 'true';
if (!IS_TEST) {

} else {
)

Figure 4.9: app.js (after)

Extract code

In application design, there are patterns like Model View Controller (MVC) and Model
View ViewModel (MVVM) that are supposed to separate code by responsibilities.
Also for distinct features, it makes sense to separate their code. Separation not only
makes sense at the module scope but also function scope. Tests should also test
distinct functionalities, sometimes leading to the need for refactorings to improve
cohesion or enforce design patterns. It may also be necessary to split functions
or extract parts of them into a new one. In testing, this can have multiple bene-
fits. The first advantage is that each part can be tested independently. That may
improve test effectiveness, simplify tests and increase test coverage. The second
advantage is that it is possible to replace a certain part of the logic with a mock.
An example of the mocking can be seen below.'> Figure 4.10 shows the function
that is created from existing code and added to the public class interface. Figure
4.11 shows the test code where this function is replaced with a mocked version.

makeQuestion(question) {

}

Figure 4.10: gravity.js
gravity.makeQuestion = (question) => {
i

Figure 4.11: gravity.spec.js

2https://github.com/jupiter-project/gravity/commit/9620c4a94899d7d7cb416b071d
2ab462f7ea84fd

63

https://github.com/jupiter-project/gravity/commit/9620c4a94899d7d7cb416b071d2a5462f7ea84fd
https://github.com/jupiter-project/gravity/commit/9620c4a94899d7d7cb416b071d2a5462f7ea84fd

4 Analysis

Add getter

This procedure refers to the addition of a specific type of function, which is the getter
function. Getters are used to allow retrieving the values of private and inaccessible
variables. There are different reasons why a getter is needed in tests. The first one is
that the test should check if a certain value is correct during or after the execution of
some code. The second reason is that the getter function should be mocked to return a
different value in tests.

Add return value

Increasing the observability of code, this procedure applies when functions have no re-
turn value. When a function is called in tests, it is common that the outcome should be
checked. There are multiple ways to inspect the outcomes which heavily depend on the
context. But there are cases where it is beneficial if the function returns data that allows
checking out the outcome directly.

Programmatic configuration

It is a common practice for some libraries to load configuration options from a file. In
testing, it may be cleaner if the creation of such a file is not needed and the configuration
can be done programmatically in the test code. In the following, an example'® is illus-
trated. Figure 4.12 shows a function that expects the name of a config file and loads this
file from the given directory. Figure 4.13 shows the modified version that expects the
config as an object. This way the complicated way of creating a configuration object and
saving it to the file system shown in figure 4.14 is not needed anymore. Now, the config-
uration can just be passed to the function as an object like it is illustrated in figure 4.15.

export const buildBook = async (
configFilename: string,
projectDir = path.dirname(configFilename),
) => A

const config: ConfigJson = await readConfig(configFilename)

Figure 4.12: build-book/index.ts (before)

Bhttps://github.com/erukiti/easybooks/commit/992eff78e886533b74cbce3e3eeaf9af
5301dabd

64

https://github.com/erukiti/easybooks/commit/992eff78e886533b74cbce3e3eeaf9af5301da5d
https://github.com/erukiti/easybooks/commit/992eff78e886533b74cbce3e3eeaf9af5301da5d

)

4 Analysis

export const buildBook = async (config: ConfigJson, projectDir:
string) => {

3

Figure 4.13: build-book/index.ts (after)

const conf = JSON.stringify({ ... })

writeFile(path.join(tmpDir, 'test.json'), conf, {
encoding: 'utf-8',

B

await buildBook(path.join(tmpDir, 'test.json'))

Figure 4.14: build-book.test-harness.ts (before)

const conf: ConfigJson = { ... }
await buildBook(conf, tmpDir)

Figure 4.15: build-book.test-harness.ts (after)

Add property to identify Ul element

One form of a basic Ul test checks if the Ul renders correctly. To test if a Ul-component
renders correctly, it needs to be possible to identify it in the DOM. That might be
difficult if the output for the component is just a structure of basic HTML elements.
Instead of validating a complex structure, the component could just receive an attribute
that identifies it. Figures 4.16 and 4.17 show how the role attribute is added to the
component, figure 4.18 shows the test that can now find it using the attribute.'*

const LoadingContainer = styled.div.attrs(({ className, light })
=> ({
className:

B

Figure 4.16: Loader.js (before)

“https://github.com/smswithoutborders/SMSWithoutBorders.com/commit/elebdfbbd9
eb5ebb7e3b353cbf8637ab54c01b4b

65

https://github.com/smswithoutborders/SMSWithoutBorders.com/commit/e1ebdfbbd9eb5e5b7e3b353cbf8637ab54c01b45
https://github.com/smswithoutborders/SMSWithoutBorders.com/commit/e1ebdfbbd9eb5e5b7e3b353cbf8637ab54c01b45

4 Analysis

const LoadingContainer = styled.div.attrs(({ className, light })

=> ({
role: 'alert',
className:

B

Figure 4.17: Loader.js (after)

it ("Renders Loader", async () => {
render (<Loader message="processing ..." />);
expect (screen.getByRole("alert")) .toBeInTheDocument () ;

B

Figure 4.18: Loader.spec.js (after)

4.3.5 Comparison with Java Patterns

As already mentioned, there is one similar study on refactorings for testability by Reich
and Maalej. [71] They identified ten refactoring patterns in the analyzed pull requests.
In the following, similarities and differences to the procedures proposed in this thesis
are discussed. Proposals from this thesis are called procedures and their proposals are
called patterns.

Starting with the similarities, the Widen access procedure can be compared to the
widen_access_for_invocation and widen_access_for override pattern, all three address
visibility. The patterns are separated by their purpose, which is either override or
invocation. In this thesis, the different purposes were combined into one procedure due
to the small number of related refactorings for testability.

The Extract code procedure combines four patterns, which differ in their tar-
get of extraction and again in their purpose. extract class for override and
extract_method_for override are used to be able to mock the class or method.
extract_class_for invocation and extract _method for invocation are used when a class
or method is not visible to the test code.

The add_constructor_param pattern is used to create a class instance with additional
dependencies. The Add parameter procedure is similar but not limited to constructors. In
JavaScript, constructors have different importance than in Java because of the different
language concepts that are already described in detail in chapter 2.

The Add getter procedure has similarities to the extract attribute for assertion pattern.
For both, the goal is to give access to an internal variable by adding a getter function.
Some procedures or patterns do not occur in both studies. In JavaScript, it is not pos-

66

4 Analysis

sible to overload functions or constructors. In Java, overloading is allowed. The cre-
ate_constructor pattern, as a variation of the add_constructor _param, is used to create
another constructor for testing. A similar procedure for JavaScript will not apply due to
the mentioned restrictions.

A procedure that appears to be relevant in JavaScript but not in Java is Wrap code. In
Java, code is always wrapped in classes, but JavaScript is a scripting language and may
require to create wrappers for certain parts of the code.

Only two procedures for Ul testing were found, which are Add return value and Add
property to identify Ul element. There is no sufficient data to compare JavaScript and
Java regarding procedures and patterns for Ul testing. JavaScript was invented for
browser usage and therefore Uls play an important role in frontend JavaScript code,
but Java can also be used to create Uls.

The remaining procedures and patterns are expected not to be language-specific but were
not found or maybe not searched for in the respective other analyses. For example, the
Create helper procedure is used to improve controllability and did not occur in the Java
study, but it might apply to Java as well. When comparing the findings from both studies,
it stands out that the patterns and procedures often solve similar testability problems.
They are supplemented by patterns and procedures that evolve due to the particularities
of the languages.

67

5 Conclusion

In this thesis, two research questions were answered using a newly created dataset of
GitHub repositories. The dataset is built using random sampling to fulfill the need for
a representative sample of open-source JavaScript repositories on GitHub with five or
more stars. It is annotated with meta information like categories, existence of tests,
dependencies, test frameworks and more. 39% of the repositories in the dataset contain
at least one test case. A dataset like this appeared to be rare during the literature review,
so the dataset can be further used in future studies.

The first research question addresses the level of testability in JavaScript open-source
projects and the characteristics of testable JavaScript. Using correlation analysis of test
and source code metrics, a set of testability-related metrics was established. The se-
lection of metrics appeared to be similar to existing studies done for Java applications.
Those metrics can be monitored by developers to help create more testable source code.
A scoring system was proposed to allow assessing the level of testability of source code
files. Using this scoring system, the source code files in the dataset for which metrics
could be calculated were evaluated and compared by different attributes. Outstanding
findings are that TypeScript code has better testability than JavaScript code on average.
The same holds for projects with higher requirements for the absence of bugs in cate-
gories like crypto, shopping, security and payment compared to categories like utility,
creativity, browser extensions and social networks. Additionally, projects that contain
test cases appear to have better testable code than projects without tests. The drawback
of the scoring system is that testability is a complex quality attribute and the scoring
system does not address all aspects. It focuses on code complexity as part of testability
but misses aspects like the visibility of methods. In summary, the approach allows the
comparison to similar work but it is still no complete solution for testability assessment.
Using the same dataset, refactorings for testability were studied to answer the second
research question. The goal was to check how developers improve their code to achieve
better testability. An approach that aims not to miss those refactorings is followed, lead-
ing to good but few results. Commits that modify related source code and test files
were analyzed with the help of associated pull requests. The approach was compared to
another existing approach that utilizes keyword search to find pull requests containing
refactorings for testability in a bigger dataset. While the other approach may achieve a
higher precision when applied to a big dataset, it was proven that it would have missed
most of the refactorings for testability in the sample used in this thesis.

The analysis of the commits showed that it is quite difficult to find properties that de-
fine commits with testability refactorings, but some insights would help if the study was

68

5 Conclusion

repeated. A main improvement would be reducing the manual effort. A part of this is a
higher precision of the commit selection without worsening the recall. That would allow
the inclusion of more repositories and therefore commits in the initial dataset without
increasing the manual effort. Some types of commits like initial commits and commits
that do not change but only create source code files of interest can be ignored. An-
other part is the refactoring detection. Some refactoring types appeared not to be used
for testability improvements, those can be ignored. An improved refactoring detection
would also bring huge benefits and could decrease manual effort drastically. It came out
that the majority of refactorings for testability were not supported by the mining tools.
If they were supported, there would be no need for manually reviewing all code changes
in commits.

Extracted from the findings, ten refactoring procedures were proposed that developers
can use to improve the testability of their code. Since those procedures rely on a rela-
tively small dataset of refactorings for testability with sometimes only one underlying
occurrence in the analyzed commits, more code will need to be analyzed to verify their
relevance. That could be achieved with better commit selection and refactoring detection
as described above.

In addition to the mentioned contributions to this field of study, this thesis ships with
an extensive and comprehensive tool (JSTT') that can visualize much of the examined
data and automates many common tasks that are also interesting in other research. The
creation of the dataset is easily replicable not only for JavaScript but for any language
that is present on GitHub. This way, random datasets of varying sizes and restrictions
can be created with very little effort. This may support JavaScript testability gaining
more attention in academic research due to the lack of similar datasets. Aside from
the dataset creation, the tool has an extensive REST-API for tasks like metric collection,
commit and pull request fetching and querying the GitHub API and NPM registry. Some
exemplary screenshots of JSTTs UI can be found in the appendix.

Derived from JSTT, a little command-line tool called JavaScript Testability Score (JSTS)
is built that analyzes JavaScript and TypeScript projects and calculates testability scores
for the corresponding files. It uses the ranking data that is collected from the dataset
described in section 4.2.3 as a basis. It can be used by a developer to assess the testability
of his code, also calculated metrics and their scores can be outputted. The usage is
documented and JSTS is publically available in the NPM registry?.

5.1 Threats to Validity

Due to the creation procedure of the dataset used in this thesis, it is considered to be
representative of the mentioned sampling frame. The drawback of including less pop-

"https://github.com/Caramba997/JSTT
’https://www.npmjs.com/package/js-testability-score

69

https://github.com/Caramba997/JSTT
https://www.npmjs.com/package/js-testability-score

5 Conclusion

ular repositories than most other studies may be lower code quality. In the correlation
analysis and also the search for testability refactorings it may negatively influence the
results when source code and tests are not following standards of good programming.
It is difficult to find characteristics of testable code when the tests used in the analysis
are missing test cases or quality because the developer did not aim to achieve good test
coverage and quality. In more popular repositories that will be less of a problem because
the code is reviewed and maintained by more people and the interest in good quality is
higher.

In the course of this thesis, a lot of tasks were automated using custom scripts. Even
though they were developed while aiming for correctness and the results were reviewed
carefully, the absence of errors can not be guaranteed. Errors in the scripts may influence
the outcomes and thus the findings of this thesis.

The correlation analysis as well as the search for commits are based on manually es-
tablished connections of source code and test files. For unit tests, this was often not a
big problem, but there were test files that could not be assigned to a source code file
that easily. It is also not always possible to do a one-to-one mapping. The final con-
nections may contain some errors or miss some cases. That might slightly influence the
calculated correlations or lead to missing refactorings for testability.

The review of commits to find testability refactorings was mainly done by one person,
which is the author of this thesis. More than three years of professional experience in
client- and server-side JavaScript programming are good preparation for the task but
may still be insufficient to understand all the different facets of the language that are
used across the repositories. To minimize the risk of falsely labeling commits, the su-
pervisor of this thesis also analyzed a smaller sample of the commits. While he has
great experience in programming and also studies refactorings for testability, he is not
that familiar with JavaScript. Those circumstances may lead to missed occurrences in
the examined code. The chance of falsely classifying refactorings as refactorings for
testability is expected to be low because only occurrences that clearly address testability
in the opinion of the author of this thesis are labeled as such and are evaluated multiple
times.

5.2 Future Work

While testability is extensively studied for the Java language, this thesis continues ex-
ploring the research topic for JavaScript. There are many possibilities to kick off new
studies from here. One thing that should be done is to replicate more Java studies to
further analyze the similarities and differences of testability in both languages. It would
also be interesting to use other sources to create a dataset like SourceForge or NPM to
see if this leads to different results. Regarding testability metrics, it remains unclear if
the outcome will be the same if a dataset with more popular repositories is used because

70

5 Conclusion

they are expected to have code with higher quality. The proposed scoring system mainly
focuses on source code complexity, but other aspects like the accessibility of functions
or variables from outside of the module are important too.

The findings from this thesis indicate some differences in testing and testability between
JavaScript and TypeScript, which were also recognized in other studies. TypeScript
appeared to be more testable. Future work could dive deeper into the reasons for those
differences, e.g., if the skill set of the developer is a relevant factor.

Since only a few refactorings for testability were found in this thesis and the research in
this field is generally sparse, more work should be done on this topic. Furthermore, the
proposed refactoring procedures should be verified using a bigger data source and tested
by real developers. Once a set of relevant patterns is created and verified, a tool that can
be practically used by JavaScript developers to guide them in writing testable code can be
implemented. That could consist of real-time monitoring of an overall testability score
and identified problems and additionally proposed refactorings to improve existing code.

71

References

[1]

[2]
[3]

[4]

[5]

[6]
[7]

[8]

[9]

[10]

Feras Al Kassar et al. “Testability Tarpits: the Impact of Code Patterns on the Se-
curity Testing of Web Applications”. In: Network and Distributed System Security
(NDSS) Symposium (2022). URL: https://www.ndss-symposium. org/wp-
content/uploads/2022-150-paper . pdf (visited on 03/15/2023).

Mamdouh Alenezi. Investigating Software Testability and Test cases Effective-
ness. 2022. por: 10.48550/ARXIV.2201.10090.

Mohammad AlMarzouq, Abdullatif AlZaidan, and Jehad AlDallal. “Mining
GitHub for research and education: challenges and opportunities™. In: Inter-
national Journal of Web Information Systems 16.4 (2020), pp. 451-473. 1SSN:
1744-0084. por: 10.1108/IJWIS-03-2020-0016.

Eman AlOmar, Mohamed Wiem Mkaouer, and Ali Ouni. “Can Refactoring
Be Self-Affirmed? An Exploratory Study on How Developers Document
Their Refactoring Activities in Commit Messages”. In: 2019 [EEE/ACM
3rd International Workshop on Refactoring (IWoR). 2019, pp. 51-58. por:
10.1109/IWoR.2019.00017.

Nadia Alshahwan et al. “Improving Web Application Testing using testability
measures”. In: 2009 11th IEEE International Symposium on Web Systems Evolu-
tion. Sep., 2009, pp. 49-58. por: 10.1109/WSE. 2009 .5630393.

Paul Ammann and Jeff Offutt. Introduction to software testing. 2nd ed. Cambridge
University Press, 2016. 1sBN: 1316773124, 9781316773123.

Esben Andreasen et al. “A Survey of Dynamic Analysis and Test Generation for
JavaScript”. In: ACM Comput. Surv. 50.5 (2017). 1ssN: 0360-0300. por: 10.1145/
31067309.

Andrea Arcuri and Juan P. Galeotti. “Enhancing Search-Based Testing with Testa-
bility Transformations for Existing APIs”. In: ACM Trans. Softw. Eng. Methodol.
31.1 (2021). sep. 1ssN: 1049-331X. por: 10.1145/3477271.

Linda Badri, Mourad Badri, and Fadel Toure. “An empirical analysis of lack of
cohesion metrics for predicting testability of classes”. In: International Journal
of Software Engineering and Its Applications 5.2 (2011), pp. 69—85. URL: https:
//citeseerx . ist .psu.edu/document ?repid=repl&type=pdf&doi=
b621e9c7e8fe26e2e355505ffb29cdaf14aa358a (visited on 03/15/2023).
Mourad Badri and Fadel Toure. “Empirical Analysis of Object-Oriented Design
Metrics for Predicting Unit Testing Effort of Classes”. In: Journal of Software
Engineering and Applications Vol.05No0.07 (2012). 19738, p. 14. por: 10.4236/
jsea.2012.57060.

72

https://www.ndss-symposium.org/wp-content/uploads/2022-150-paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2022-150-paper.pdf
https://doi.org/10.48550/ARXIV.2201.10090
https://doi.org/10.1108/IJWIS-03-2020-0016
https://doi.org/10.1109/IWoR.2019.00017
https://doi.org/10.1109/WSE.2009.5630393
https://doi.org/10.1145/3106739
https://doi.org/10.1145/3106739
https://doi.org/10.1145/3477271
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=b621e9c7e8fe26e2e355505ffb29cdaf14aa358a
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=b621e9c7e8fe26e2e355505ffb29cdaf14aa358a
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=b621e9c7e8fe26e2e355505ffb29cdaf14aa358a
https://doi.org/10.4236/jsea.2012.57060
https://doi.org/10.4236/jsea.2012.57060

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

References

AMOS O. Bajeh et al. “Object-oriented measures as testability indicators:
An empirical study”. In: J. Eng. Sci. Technol 15 (2020), pp. 1092—-1108. URL:
https : / /www . researchgate . net / profile / Abdullateef - Balogun /
publication/340580611 OBJECT-ORIENTED MEASURES AS_TESTABILITY
INDICATORS AN_EMPIRICAL_STUDY/1links/5e91£889299bf13079913c9d/
OBJECT - ORIENTED - MEASURES - AS - TESTABILITY - INDICATORS - AN -
EMPIRICAL-STUDY.pdf (visited on 09/02/2023).

Sebastian Baltes and Paul Ralph. “Sampling in software engineering research: a
critical review and guidelines”. In: Empirical Software Engineering 27.4 (2022),
p. 94. 1ssN: 1573-7616. por: 10.1007/s10664-021-10072-8.

Robert V. Binder. “Design for testability in object-oriented systems”. In: Com-
munications of the ACM 37.9 (1994), pp. 87-101. urL: https://dl.acm.org/
doi/pdf/10.1145/182987.184077 (visited on 03/14/2023).

Jirgen Bitzer, Wolfram Schrettl, and Philipp J.H. Schrdder. “Intrinsic motivation
in open source software development”. In: Journal of Comparative Economics
35.1(2007), pp. 160—169. 1ssN: 0147-5967. por: 10.1016/5.jce.2006.10.001.
Justus Bogner and Manuel Merkel. “To Type or Not to Type? A Systematic Com-
parison of the Software Quality of JavaScript and Typescript Applications on
GitHub”. In: Proceedings of the 19th International Conference on Mining Soft-
ware Repositories. MSR °22. New York, NY, USA: Association for Computing
Machinery, 2022, pp. 658—669. 1sBN: 9781450393034. por: 10.1145/3524842.
3528454.

Hudson Borges, Andre Hora, and Marco Tulio Valente. “Understanding the Fac-
tors That Impact the Popularity of GitHub Repositories”. In: 2016 IEEE Interna-
tional Conference on Software Maintenance and Evolution (ICSME). Oct, 2016,
pp. 334-344. por: 10.1109/ICSME.2016.31.

Tiago Brito et al. Study of JavaScript Static Analysis Tools for Vulnerability De-
tection in Node.js Packages. 2023. por: 10.48550/ARXIV.2301.05097.

M. Bruntink and A. van Deursen. “Predicting class testability using object-
oriented metrics”. In: Source Code Analysis and Manipulation, Fourth IEEE
International Workshop on. Sep., 2004, pp. 136—-145. por: 10 . 1109 / SCAM .
2004 .16.

Mel O. Cinnéide, Dermot Boyle, and Iman Hemati Moghadam. “Automated
Refactoring for Testability”. In: 2011 IEEE Fourth International Conference
on Software Testing, Verification and Validation Workshops. March, 2011,
pp. 437-443. por: 10.1109/ICSTW.2011.23.

Flavia Coelho et al. “An Empirical Study on Refactoring-Inducing Pull Re-
quests”. In: Proceedings of the 15th ACM / IEEE International Symposium
on Empirical Software Engineering and Measurement (ESEM). ESEM °21.

73

https://www.researchgate.net/profile/Abdullateef-Balogun/publication/340580611_OBJECT-ORIENTED_MEASURES_AS_TESTABILITY_INDICATORS_AN_EMPIRICAL_STUDY/links/5e91f889299bf13079913c9d/OBJECT-ORIENTED-MEASURES-AS-TESTABILITY-INDICATORS-AN-EMPIRICAL-STUDY.pdf
https://www.researchgate.net/profile/Abdullateef-Balogun/publication/340580611_OBJECT-ORIENTED_MEASURES_AS_TESTABILITY_INDICATORS_AN_EMPIRICAL_STUDY/links/5e91f889299bf13079913c9d/OBJECT-ORIENTED-MEASURES-AS-TESTABILITY-INDICATORS-AN-EMPIRICAL-STUDY.pdf
https://www.researchgate.net/profile/Abdullateef-Balogun/publication/340580611_OBJECT-ORIENTED_MEASURES_AS_TESTABILITY_INDICATORS_AN_EMPIRICAL_STUDY/links/5e91f889299bf13079913c9d/OBJECT-ORIENTED-MEASURES-AS-TESTABILITY-INDICATORS-AN-EMPIRICAL-STUDY.pdf
https://www.researchgate.net/profile/Abdullateef-Balogun/publication/340580611_OBJECT-ORIENTED_MEASURES_AS_TESTABILITY_INDICATORS_AN_EMPIRICAL_STUDY/links/5e91f889299bf13079913c9d/OBJECT-ORIENTED-MEASURES-AS-TESTABILITY-INDICATORS-AN-EMPIRICAL-STUDY.pdf
https://www.researchgate.net/profile/Abdullateef-Balogun/publication/340580611_OBJECT-ORIENTED_MEASURES_AS_TESTABILITY_INDICATORS_AN_EMPIRICAL_STUDY/links/5e91f889299bf13079913c9d/OBJECT-ORIENTED-MEASURES-AS-TESTABILITY-INDICATORS-AN-EMPIRICAL-STUDY.pdf
https://doi.org/10.1007/s10664-021-10072-8
https://dl.acm.org/doi/pdf/10.1145/182987.184077
https://dl.acm.org/doi/pdf/10.1145/182987.184077
https://doi.org/10.1016/j.jce.2006.10.001
https://doi.org/10.1145/3524842.3528454
https://doi.org/10.1145/3524842.3528454
https://doi.org/10.1109/ICSME.2016.31
https://doi.org/10.48550/ARXIV.2301.05097
https://doi.org/10.1109/SCAM.2004.16
https://doi.org/10.1109/SCAM.2004.16
https://doi.org/10.1109/ICSTW.2011.23

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

References

New York, NY, USA: Association for Computing Machinery, 2021. 1sBN:
9781450386654. por: 10.1145/3475716.3475785.

Mark E. Daggett, ed. Expert JavaScript. Berkeley, CA: Apress, 2013. 1sBN: 978-
1-4302-6098-1.

Chetan Desai, David Janzen, and Kyle Savage. “A Survey of Evidence for Test-
Driven Development in Academia”. In: SIGCSE Bull 40.2 (2008). jun, pp. 97—
101. 1ssN: 0097-8418. por: 10.1145/1383602.1383644.

Wei Ding et al. “How Do Open Source Communities Document Software Ar-
chitecture: An Exploratory Survey”. In: 2014 19th International Conference on
Engineering of Complex Computer Systems. Aug, 2014, pp. 136-145. por: 10.
1109/ICECCS.2014.26.

Jon Edvardsson. “A survey on automatic test data generation”. In: Proceedings of
the 2nd Conference on Computer Science and Engineering. 1999, pp. 21-28. URL:
https://faculty.cc.gatech.edu/~harrold/6340/cs6340_£all2009/
Readings/test.data.genration.survey.pdf (visited on 09/02/2023).
Mahmoud Efatmaneshnik and Michael Ryan. “A Study of the Relationship be-
tween System Testability and Modularity”. In: INCOSE International Symposium
26.1 (2016), pp. 1922—-1931. por: 10.1002/j.2334-5837.2016.00270.x.
Gerald D. Everett and Raymond McLeod Jr. “Software testing”. In: Testing Across
the Entire (2007).

Amin Milani Fard and Ali Mesbah. “JavaScript: The (Un)Covered Parts”. In:
2017 IEEE International Conference on Software Testing, Verification and Vali-
dation (ICST). 2017, pp. 230-240. por: 10.1109/ICST.2017.28.

Michael Felderer and Ina Schieferdecker. “A taxonomy of risk-based testing”.
In: International Journal on Software Tools for Technology Transfer 16.5 (2014),
pp. 559-568. 1ssN: 1433-2787. por: 10.1007/s10009-014-0332-3.

Roger Ferguson and Bogdan Korel. “The Chaining Approach for Software Test
Data Generation”. In: ACM Trans. Sofiw. Eng. Methodol. 5.1 (1996). jan, pp. 63—
86. 1sSN: 1049-331X. por: 10.1145/226155.226158.

Francisco Gutenberg S. Filho et al. “Correlations among Software Testability
Metrics”. In: Proceedings of the XIX Brazilian Symposium on Software Quality.
SBQS ’20. New York, NY, USA: Association for Computing Machinery, 2021.
ISBN: 9781450389235, por: 10.1145/3439961 .3439972.

Martin Fowler. Refactoring. Wie Sie das Design bestehender Software verbessern.
ger. 2nd ed. Fowler, Martin (VerfasserIn). Frechen: mitp, 2020. 1474 pp. 1SBN:
9783958459427.

Roy S. Freedman. “Testability of software components”. In: IEEE Transactions
on Software Engineering 17.6 (1991), pp. 553—-564. URL: http://mason.gmu.
edu/~kbaral4/Papers/Freedman1991.pdf (visited on 09/02/2023).

74

https://doi.org/10.1145/3475716.3475785
https://doi.org/10.1145/1383602.1383644
https://doi.org/10.1109/ICECCS.2014.26
https://doi.org/10.1109/ICECCS.2014.26
https://faculty.cc.gatech.edu/~harrold/6340/cs6340_fall2009/Readings/test.data.genration.survey.pdf
https://faculty.cc.gatech.edu/~harrold/6340/cs6340_fall2009/Readings/test.data.genration.survey.pdf
https://doi.org/10.1002/j.2334-5837.2016.00270.x
https://doi.org/10.1109/ICST.2017.28
https://doi.org/10.1007/s10009-014-0332-3
https://doi.org/10.1145/226155.226158
https://doi.org/10.1145/3439961.3439972
http://mason.gmu.edu/~kbaral4/Papers/Freedman1991.pdf
http://mason.gmu.edu/~kbaral4/Papers/Freedman1991.pdf

[33]

[34]

[35]

[36]

[37]

[38]

[39]
[40]

[41]

[42]

[43]

[44]

References

Fu Jianping, Liu Bin, and Lu Minyan. “Present and future of software testability
analysis”. In: 2010 International Conference on Computer Application and Sys-
tem Modeling (ICCASM 2010). Vol. 15. Oct, 2010, pp. V15-279-V15-284. por:
10.1109/ICCASM.2010.5622622.

J. Gao and M.-C. Shih. “A component testability model for verification and
measurement”. In: 29th Annual International Computer Software and Ap-
plications Conference (COMPSAC’05). Vol. 2. 2005, 211-218 Vol. 1. por:
10.1109/COMPSAC.2005.17.

Vahid Garousi, Michael Felderer, and Feyza Nur Kilicaslan. “A survey on soft-
ware testability”. In: Information and Software Technology 108 (2019), pp. 35—
64. 15sN: 0950-5849. por: 10.1016/j.infsof.2018.12.003.

Vahid Garousi and Mika V. Méntyld. “A systematic literature review of literature
reviews in software testing”. In: Information and Software Technology 80 (2016),
pp- 195-216. 1ssN: 0950-5849. por: 10.1016/j.infsof .2016.09.002.

Boby George and Laurie Williams. “A structured experiment of test-driven de-
velopment”. In: Information and Software Technology 46.5 (2004). Special Is-
sue on Software Engineering, Applications, Practices and Tools from the ACM
Symposium on Applied Computing 2003, pp. 337-342. 1ssN: 0950-5849. por:
10.1016/j.infsof .2003.09.011.

Mohammad Ghafari, Markus Eggiman, and Oscar Nierstrasz. “Testability First!”
In: 2019 ACM/IEEE International Symposium on Empirical Software Engineer-
ing and Measurement (ESEM). 2019, pp. 1-6. por: 10 . 1109 / ESEM . 2019 .
8870170.

GitHub Inc. GitHub About. 2023. URL: https://github. com/about (visited
on 09/02/2023).

GitHub Inc. GitHub Octoverse. 2022. URL: https://octoverse.github.com/
(visited on 09/02/2023).

Liang Gong et al. “DLint: Dynamically Checking Bad Coding Practices in
JavaScript”. In: Proceedings of the 2015 International Symposium on Soft-
ware Testing and Analysis. ISSTA 2015. New York, NY, USA: Association
for Computing Machinery, 2015, pp. 94-105. 1sBN: 9781450336208. DpoTI:
10.1145/2771783.2771809.

T. Hariprasad et al. “Software complexity analysis using halstead metrics”. In:
2017 International Conference on Trends in Electronics and Informatics (ICEI).
May, 2017, pp. 1109—1113. por: 10.1109/ICOEI . 2017 . 8300883.

Mark Harman. “Refactoring as Testability Transformation”. In: 2011 IEEE
Fourth International Conference on Software Testing, Verification and Valida-
tion Workshops. March, 2011, pp. 414-421. por: 10.1109/ICSTW.2011.38.

Itti Hooda and Rajender Singh Chhillar. “Software test process, testing types
and techniques”. In: International Journal of Computer Applications 111.13

75

https://doi.org/10.1109/ICCASM.2010.5622622
https://doi.org/10.1109/COMPSAC.2005.17
https://doi.org/10.1016/j.infsof.2018.12.003
https://doi.org/10.1016/j.infsof.2016.09.002
https://doi.org/10.1016/j.infsof.2003.09.011
https://doi.org/10.1109/ESEM.2019.8870170
https://doi.org/10.1109/ESEM.2019.8870170
https://github.com/about
https://octoverse.github.com/
https://doi.org/10.1145/2771783.2771809
https://doi.org/10.1109/ICOEI.2017.8300883
https://doi.org/10.1109/ICSTW.2011.38

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

References

(2015). URL: https://citeseerx.ist.psu.edu/document ?repid=repl&
type=pdf&doi=0fbelb5515e747025d950658fbc039e98b29b801 (visited on
09/02/2023).

International Organization for Standardization, ed. ISO/IEC 25010:2011 Systems
and software engineering — Systems and software Quality Requirements and
Evaluation (SQuaRE) — System and software quality models. URL: https://
www.1so.org/obp/ui/#iso:std:iso-iec:25010:ed-1:v1:en (visited on
03/09/2023).

Muhammad Abid Jamil et al. “Software Testing Techniques: A Literature Re-
view”. In: 2016 6th International Conference on Information and Communica-
tion Technology for The Muslim World (ICT4M). Nov, 2016, pp. 177-182. por:

10.1109/ICT4M.2016.045.

Dalton Jorge, Patricia Machado, and Wilkerson Andrade. “Investigating Test
Smells in JavaScript Test Code”. In: Proceedings of the 6th Brazilian Symposium
on Systematic and Automated Software Testing. SAST *21. New York, NY, USA:

Association for Computing Machinery, 2021, pp. 36—45. 1sBN: 9781450385039.
DOI: 10.1145/3482909.3482915.

Irena Jovanovi¢. “Software testing methods and techniques”. In: The IPSI BgD
Transactions on Internet Research, pp. 30—41. URL: http://vipsi.org/ipsi/
journals/journals/tir/2009/january/full’20journal . pdf#page=31

(visited on 03/21/2023).

Supaporn Kansomkeat, Jeff Offutt, and Wanchai Rivepiboon. “Increasing
Class-Component Testability”. In: IASTED Conf. on Software Engineering.
2005, pp. 156-161. 1sBN: 0-88986-464-0.

Natsuda Kasisopha, Songsakdi Rongviriyapanish, and Panita Meananeatra.
“Method Evaluation for Software Testability on Object Oriented Code”. In: 2020
59th Annual Conference of the Society of Instrument and Control Engineers of
Japan (SICE). 2020, pp. 308-313. por: 10.23919/SICE48898.2020 .9240322.

Jussi Kasurinen, Ossi Taipale, and Kari Smolander. “Software test automation
in practice: empirical observations”. In: Advances in Software Engineering 2010
(2010). UrRL: https://downloads .hindawi . com/archive/2010/620836 .

pdf (visited on 09/02/2023).

Satnam Kaur and Paramvir Singh. “How does object-oriented code refactoring
influence software quality? Research landscape and challenges”. In: Journal of
Systems and Software 157 (2019), p. 110394. 1ssN: 0164-1212. por: 10.1016/j .

jss.2019.110394.

Pavneet Singh Kochhar et al. “An Empirical Study of Adoption of Software Test-
ing in Open Source Projects”. In: 2013 13th International Conference on Quality
Software. July, 2013, pp. 103—-112. por: 10.1109/QSIC.2013.57.

76

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=0fbe1b5515e747025d950658fbc039e98b29b801
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=0fbe1b5515e747025d950658fbc039e98b29b801
https://www.iso.org/obp/ui/#iso:std:iso-iec:25010:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:iso-iec:25010:ed-1:v1:en
https://doi.org/10.1109/ICT4M.2016.045
https://doi.org/10.1145/3482909.3482915
http://vipsi.org/ipsi/journals/journals/tir/2009/january/full%20journal.pdf#page=31
http://vipsi.org/ipsi/journals/journals/tir/2009/january/full%20journal.pdf#page=31
https://doi.org/10.23919/SICE48898.2020.9240322
https://downloads.hindawi.com/archive/2010/620836.pdf
https://downloads.hindawi.com/archive/2010/620836.pdf
https://doi.org/10.1016/j.jss.2019.110394
https://doi.org/10.1016/j.jss.2019.110394
https://doi.org/10.1109/QSIC.2013.57

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

References

Aymen Kout, Fadel Toure, and Mourad Badri. “An Empirical Analysis of a Testa-
bility Model for Object-Oriented Programs”. In: SIGSOFT Softw. Eng. Notes 36.4
(2011). aug, pp. 1-5. 1ssN: 0163-5948. por: 10.1145/1988997.1989020.

Lu Luo. “Software testing techniques”. In: Institute for software research interna-
tional Carnegie mellon university Pittsburgh, PA 15232.1-19 (2001), p. 19. URL:
https://ignite.org.pk/wp-content/uploads/2018/12/1388051766 _
rfpl_Software-testing-techniques.pdf (visited on 09/02/2023).

Matej Madeja et al. “Automating Test Case Identification in Java Open Source
Projects on GitHub”. In: Computing and Informatics Journal 2021.Vol. 40 No. 3
(2021), pp. 575-605. poI: 10.48550/arXiv.2102.11678.

Matej Madeja et al. “Empirical Study of Test Case and Test Framework Presence
in Public Projects on GitHub”. In: Applied Sciences 11.16 (2021). 1ssN: 2076-
3417. por: 10.3390/app11167250. URL: https: //www . mdpi . com/2076-
3417/11/16/7250 (visited on 02/14/2023).

Tim Menzies et al. “Are delayed issues harder to resolve? Revisiting cost-to-fix
of defects throughout the lifecycle”. In: Empirical Software Engineering 22.4
(2017), pp. 1903—-1935. 1ssN: 1573-7616. por: 10.1007/s10664-016-9469-x.
Ali Mesbah and Mukul R. Prasad. “Automated Cross-Browser Compatibility
Testing”. In: Proceedings of the 33rd International Conference on Software Engi-
neering. ICSE *11. New York, NY, USA: Association for Computing Machinery,
2011, pp. 561-570. 1sBN: 9781450304450. por: 10.1145/1985793.1985870.
Bertrand Meyer. “Seven Principles of Software Testing”. In: Computer 41.8
(2008). Aug, pp. 99-101. 1ssn: 1558-0814. por: 10.1109/MC.2008. 306.
Shabnam Mirshokraie, Ali Mesbah, and Karthik Pattabiraman. “Guided Mutation
Testing for JavaScript Web Applications”. In: IEEE Transactions on Software
Engineering 41.5 (2015), pp. 429—444. por: 10 . 1109/ TSE . 2014 . 2371458.
(Visited on 02/14/2023).

Manish Motwani and Yuriy Brun. “Automatically Generating Precise Oracles
from Structured Natural Language Specifications”. In: 2019 IEEE/ACM 41st In-
ternational Conference on Software Engineering (ICSE). May, 2019, pp. 188—
199. por: 10.1109/ICSE.2019.00035.

Matthias M. Miiller. “The Effect of Test-Driven Development on Program Code”.
In: Extreme Programming and Agile Processes in Software Engineering. Ed. by
Pekka Abrahamsson, Michele Marchesi, and Giancarlo Succi. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2006, pp. 94-103. 1sBN: 978-3-540-35095-8. por: 10.
1007/11774129 _10.

Glenford J. Myers, Tom Badgett, and Corey Sandler. The art of software testing.
Now covers testing for usability, smartphone apps, and agile development envi-
ronments. eng. 3. ed. Hoboken, NJ: Wiley, 2012. 240 pp. 1sBN: 9781118031964.
DOL: 10.1002/9781119202486.

77

https://doi.org/10.1145/1988997.1989020
https://ignite.org.pk/wp-content/uploads/2018/12/1388051766_rfp1_Software-testing-techniques.pdf
https://ignite.org.pk/wp-content/uploads/2018/12/1388051766_rfp1_Software-testing-techniques.pdf
https://doi.org/10.48550/arXiv.2102.11678
https://doi.org/10.3390/app11167250
https://www.mdpi.com/2076-3417/11/16/7250
https://www.mdpi.com/2076-3417/11/16/7250
https://doi.org/10.1007/s10664-016-9469-x
https://doi.org/10.1145/1985793.1985870
https://doi.org/10.1109/MC.2008.306
https://doi.org/10.1109/TSE.2014.2371458
https://doi.org/10.1109/ICSE.2019.00035
https://doi.org/10.1007/11774129_10
https://doi.org/10.1007/11774129_10
https://doi.org/10.1002/9781119202486

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

References

Morteza Zakeri Nasrabadi and Saeed Parsa. “Learning to Predict Software Testa-
bility”. In: 2021 26th International Computer Conference, Computer Society of
Iran (CSICC). 2021, pp. 1-5. por: 10.1109/CSICC52343.2021 . 9420548.
Gerard O’Regan. Concise Guide to Software Testing. eng. 1st ed. 2019. Springer
eBooks Computer Science. O’Regan, Gerard (VerfasserIn). Cham: Springer,
2019. 84 pp. 1sBN: 978-3-030-28493-0. por: 10.1007/978-3-030-28494-7.
Jiantao Pan. “Software testing”. In: Dependable Embedded Systems 5.2006
(1999), p. 1. URL: https://citeseerx.ist.psu.edu/document ?repid=
repl & type = pdf & doi = 28abbfdcd695£6££c18c5041£8208dcfc8810aat
(visited on 09/02/2023).

Jihyeok Park. “JavaScript API Misuse Detection by Using Typescript”. In: Pro-
ceedings of the Companion Publication of the 13th International Conference on
Modularity. MODULARITY ’14. New York, NY, USA: Association for Comput-
ing Machinery, 2014, pp. 11-12. 1sBN: 9781450327732. por: 10.1145/2584469.
2584472.

Chahna Polepalle, Ravi Shankar Kondoju, and Deepika Badampudi. “Evidence
and Perceptions on GUI Test Automation - An Exploratory Study”. In: 15th Inno-
vations in Software Engineering Conference. ISEC 2022. New York, NY, USA:
Association for Computing Machinery, 2022. 1sBN: 9781450396189. por: 10 .
1145/3511430.3511442.

Felix Redmill. “Theory and practice of risk-based testing”. In: Software Test-
ing, Verification and Reliability 15.1 (2005). https://doi.org/10.1002/stvr.310
https://doi.org/10.1002/stvr.310, pp. 3—20. 1ssN: 0960-0833. por: 10 . 1002 /
stvr.310.

Pavel Reich and Walid Maalej. “Testability Refactoring in Pull Requests: Patterns
and Trends”. In: IEEE/ACM 45th International Conference on Software Engi-
neering (ICSE) 2023 (2023), pp. 1508—1519. por: 10.1109/ICSE48619.2023.
00131.

D. S. Rosenblum. “A practical approach to programming with assertions”. In:
IEEE Transactions on Software Engineering 21.1 (1995). Jan, pp. 19-31. por:
10.1109/32.341844.

Prateek Saxena et al. “A Symbolic Execution Framework for JavaScript”. In:
2010 IEEE Symposium on Security and Privacy. May, 2010, pp. 513-528. por:
10.1109/SP.2010.38.

Marija Selakovic and Michael Pradel. “Performance Issues and Optimizations
in JavaScript: An Empirical Study”. In: Proceedings of the 38th International
Conference on Software Engineering. ICSE °16. New York, NY, USA: Associ-
ation for Computing Machinery, 2016, pp. 61-72. 1sBN: 9781450339001. por:
10.1145/2884781.2884829.

78

https://doi.org/10.1109/CSICC52343.2021.9420548
https://doi.org/10.1007/978-3-030-28494-7
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=28abbfdcd695f6ffc18c5041f8208dcfc8810aaf
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=28abbfdcd695f6ffc18c5041f8208dcfc8810aaf
https://doi.org/10.1145/2584469.2584472
https://doi.org/10.1145/2584469.2584472
https://doi.org/10.1145/3511430.3511442
https://doi.org/10.1145/3511430.3511442
https://doi.org/10.1002/stvr.310
https://doi.org/10.1002/stvr.310
https://doi.org/10.1109/ICSE48619.2023.00131
https://doi.org/10.1109/ICSE48619.2023.00131
https://doi.org/10.1109/32.341844
https://doi.org/10.1109/SP.2010.38
https://doi.org/10.1145/2884781.2884829

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

References

Danilo Silva, Nikolaos Tsantalis, and Marco Tulio Valente. “Why We Refactor?
Confessions of GitHub Contributors”. In: Proceedings of the 2016 24th ACM
SIGSOFT International Symposium on Foundations of Software Engineering.

FSE 2016. New York, NY, USA: Association for Computing Machinery, 2016,
pp- 858-870. 1sBN: 9781450342186. por: 10.1145/2950290.2950305.

Danilo Silva et al. “RefDiff 2.0: A Multi-Language Refactoring Detection Tool”.

In: IEEE Transactions on Software Engineering 47.12 (2021), pp. 2786-2802.

DOI: 10.1109/TSE.2020.2968072.

Leonardo Sousa et al. “Characterizing and Identifying Composite Refactorings:

Concepts, Heuristics and Patterns”. In: Proceedings of the 17th International Con-
ference on Mining Software Repositories. MSR ’20. New York, NY, USA: As-
sociation for Computing Machinery, 2020, pp. 186—197. 1sBN: 9781450375177.

DOI: 10.1145/3379597 .3387477.

Amjed Tahir. “A study on software testability and the quality of testing in object-
oriented systems”. University of Otago, 2016. URL: http://hdl.handle.net/

10523/6143 (visited on 09/02/2023).

Valerio Terragni, Pasquale Salza, and Mauro Pezze. “Measuring Software Testa-
bility Modulo Test Quality”. In: Proceedings of the 28th International Confer-
ence on Program Comprehension. ICPC °20. New York, NY, USA: Association
for Computing Machinery, 2020, pp. 241-251. 1sBN: 9781450379588. por: 10.

1145/3387904.3389273.

Mark Ethan Trostler. Testable JavaScript: Ensuring Reliable Code. O’Reilly Me-
dia, Inc, 2013. 1sBN: 978-1-449-32339-4.

Mubarak Albarka Umar and Chen Zhanfang. “A study of automated software test-
ing: Automation tools and frameworks”. In: International Journal of Computer
Science Engineering (IJCSE) 6 (2019), pp. 217-225. URL: http://www.ijcse.

net/docs/IJCSE19-08-06-011.pdf (visited on 09/02/2023).

J. M. Voas and K. W. Miller. “Putting assertions in their place”. In: Proceedings of
1994 IEEE International Symposium on Software Reliability Engineering. Nov,
1994, pp. 152—-157. por: 10.1109/ISSRE.1994.341367.

J. M. Voas and K. W. Miller. “Software testability: the new verification”. In: IEEE
Software 12.3 (1995). May, pp. 17-28. 1ssN: 1937-4194. por: 10 . 1109/52 .

382180.

Jeffrey Voas. “Software testability measurement for intelligent assertion place-
ment”. In: Software Quality Journal 6.4 (1997), pp. 327-336. 1ssN: 1573-1367.

DOI: 10.1023/A:1018532607070.

Jeffrey M. Voas and Keith W. Miller. “Applying a dynamic testability technique
to debugging certain classes of software faults”. In: Software Quality Journal 2.1

(1993), pp. 61-75. 1ssN: 1573-1367. por: 10.1007/BF00417427.

79

https://doi.org/10.1145/2950290.2950305
https://doi.org/10.1109/TSE.2020.2968072
https://doi.org/10.1145/3379597.3387477
http://hdl.handle.net/10523/6143
http://hdl.handle.net/10523/6143
https://doi.org/10.1145/3387904.3389273
https://doi.org/10.1145/3387904.3389273
http://www.ijcse.net/docs/IJCSE19-08-06-011.pdf
http://www.ijcse.net/docs/IJCSE19-08-06-011.pdf
https://doi.org/10.1109/ISSRE.1994.341367
https://doi.org/10.1109/52.382180
https://doi.org/10.1109/52.382180
https://doi.org/10.1023/A:1018532607070
https://doi.org/10.1007/BF00417427

[86]

[87]

References

Shiyi Wei, Franceska Xhakaj, and Barbara G. Ryder. “Empirical study of the dy-
namic behavior of JavaScript objects”. In: Software: Practice and Experience
46.7 (2016), pp. 867-889. por: 10.1002/spe . 2334.

Chengwei Xiao et al. “Using Spearman’s correlation coefficients for exploratory
data analysis on big dataset”. In: Concurrency and Computation: Practice and
Experience 28.14 (2016), pp. 3866-3878. por: 10.1002/cpe. 3745.

80

https://doi.org/10.1002/spe.2334
https://doi.org/10.1002/cpe.3745

Appendix

1000 cre te e eeien e e e e ee s
3000 A
o
£ 2000 +
. [
1000 + .
- L] - - - - -
’ . . pAGERTR --'_- s PAIRENS '_".‘r'.'-;ﬂ_ll
- ames se - s oas R &
S AT W R :
PEIEIAAS. DR 32X = X T -
0 20 40 60 80 100
rank
Appendix 1: Testability level in relation to star rating of repository
36000
35000
o
m - - - — WS AN BN SR S SRS .
% 34000 -
33000
2I0 3I0 4I0 5I0 GID TID BID 9ID llI)O
rank

Appendix 2: Testability level in relation to star rating for top-rated repo

81

Appendix

Table 1: List of testability refactorings

Type Repo : SHA File : Line

Internal Zazcallabah/mce : 474cb2elaa | BEFORE: js/mc. js: 81

move c9dfcde7af02£8556828ad090e5 | AFTER: js/mc. js: 106
a20

Internal Zazcallabah/mce : 474cb2elaa | BEFORE: js/mc.js: 137

move c9dfcde7af02f8556828ad090e5 | AFTER: js/mc.js: 153
a20

Internal Zazcallabah/mce : 474cb2elaa | BEFORE: js/mc.js: 22

move c9dfcde7af02£8556828ad090e5 | AFTER: js/mc.js: 10
a20

Internal Zazcallabah/mce : 474cb2elaa | BEFORE: js/mc.js: 29

move c9dfcde7af02£8556828ad090e5 | AFTER: js/mc.js : 4
a20

Internal Zazcallabah/mce : 474cb2elaa | BEFORE: js/mc.js: 46

move c9dfcde7af02£8556828ad090e5 | AFTER: js/mc.js: 77
a20

Internal Zazcallabah/mce : 474cb2elaa | BEFORE: js/mc.js: 8

move c9dfcde7af02f8556828ad090e5 | AFTER: js/mc. js: 21
a20

Internal Zazcallabah/mce : 474cb2elaa | BEFORE: js/mc. js: 63

move c9dfcde7af02£8556828ad090e5 | AFTER: js/mc.js : 94
a20

Internal Zazcallabah/mce : 474cb2elaa | BEFORE: js/mc.js: 75

move c9dfcde7af02£8556828ad090e5 | AFTER: js/mc. js: 181
a20

Internal Zazcallabah/mce : 474cb2elaa | BEFORE: js/mc.js: 113

move c9dfcde7af02£8556828ad090e5 | AFTER: js/mc. js: 133
a20

Internal Zazcallabah/mce : 474cb2elaa | BEFORE: js/mc.js: 35

move c9dfcde7af02f8556828ad090e5 | AFTER: js/mc.js: 67
a20

Add Zazcallabah/mce : 474cb2elaa | BEFORE: js/simulation. js: 3

parameter | c9dfcde7af02f8556828ad090e5 | AFTER: js/simulation. js: 3
a20

Add Zazcallabah/mce : 474cb2elaa | BEFORE: js/simulation. js:

parameter | c9dfcde7af02£8556828ad090e5 | 48

a20

AFTER: js/simulation. js: 46

82

Continued on next page

Appendix

Table 1 — Continued from previous page

Type Repo : SHA File : Line
Add Zazcallabah/mce : 474cb2elaa | BEFORE: js/simulation. js:
parameter | c9dfcde7af02f£8556828ad090e5 | 96
a20 AFTER: js/simulation.js: 94
Add Zazcallabah/mce : daccbdfb6e | BEFORE: js/storage.js: 27
parameter | 2b96081ade356£87504e03667ae | AFTER: js/storage.js: 53
15a
Add Zazcallabah/mce : daccbdfb6e | BEFORE: js/page.js: 1
parameter | 2b96081ade356£87504e03667ae | AFTER: js/page.js: 1
1ba
Add jupiter-project/gravity: 1f | BEFORE: config/gravity. js:
parameter | 6cde75ddd2047f1ecOb6b345b48 | 879
692fc26cebb AFTER: config/gravity. js:
854
Add jupiter-project/gravity: 1f | BEFORE: config/gravity. js:
parameter | 6cde75ddd2047f1ecOb6b345b48 | 879
692fc26cebb AFTER: config/gravity. js:
854
Export pelias/openstreetmap : 571b6 | BEFORE: stream/stats. js
function d2009b37bd2e01£3f0£78b29a2f | AFTER: stream/stats.js : 53
6ddebbef
Export jupiter-project/gravity : 97 | BEFORE: src/components/sig
function 6d36a7e22683balaf0898fd50e2 | nup. jsx: 8
Ob2e88afb3a AFTER: src/components/sign
up.jsx: 8
Export MarioArnt/azure-ad-jwt-lite | BEFORE:
function : b6e152930765d£5959b27db36 | AFTER: src/index.ts : 230
125de79870c£84b
Export ably-labs/fully-featured-sc | BEFORE: api/common/JwtGene
function alable-chat-app : dd0c528903 | rator.ts: 9
08a83bcbe700e0038c88e35903a | AFTER: api/common/JwtGener
672 ator.ts: 16
Export ably-labs/fully-featured-sc | BEFORE: api/common/service
function alable-chat-app : d6ffaaebaa | s/UserService.ts: 109

33d55c3£1b6d583727585b7f£9f
608

AFTER: api/common/services
/UserService.ts : 112

&3

Continued on next page

Appendix

Table 1 — Continued from previous page

Type Repo : SHA File : Line

Add authO/node-saml : b124b6bfa0 | BEFORE: 1ib/saml11. js: 24

parameter | a40fc8818ababbc41b5f423bab6 | AFTER: 1ib/saml1l. js: 25
818

Add authO/node-saml : b124b6bfa0 | BEFORE: 1ib/saml120. js : 24

parameter | a40fc8818ababbc41b5f423bab6 | AFTER: 1ib/saml20. js : 25
818

Add clubajax/HeadlessBrowser : ¢ | BEFORE: browser. js: 1

parameter | 2e275£037226cc6d745d2e9f1da | AFTER: browser.js: 1
8bf245d1d5e8

Add ably-labs/fully-featured-sc | BEFORE: app/src/sdk/BffApi

parameter | alable-chat-app: 1dd9eab2b8 | Client.ts: 5
8591789ec2bbf869178b1c5b030 | AFTER: app/src/sdk/BffApiC
fdi1 lient.js: 3

Set test en- | BreakOutEvent/breakout-fron | BEFORE: app. js

vironment | tend : 1b78b5829628d86a900f7 | AFTER: app.js: 38
270d7e617e309€69252

Set test en- | BreakOutEvent/breakout-fron | BEFORE: app. js

vironment | tend: 1b78b5829628d86a900f7 | AFTER: app. js: 214
270d7e617e309€69252

Set test en- | BreakOutEvent/breakout-fron | BEFORE: services/i18n. js

vironment | tend : 1b78b5829628d86a900f7 | AFTER: services/i18n. js: 30
270d7e617e309e69252

Move Zazcallabah/mce : daccbdfb6e | BEFORE: js/page.js: 153

rename 2b96081ade356£87504e03667ae | AFTER: js/viewmodel. js : 49
1ba

Move Zazcallabah/mce : daccbdfb6e | BEFORE: js/page.js: 136

rename 2b96081ade356£87504e03667ae | AFTER: js/viewmodel. js : 30
15a

Extract pelias/openstreetmap : a7603 | BEFORE: stream/address_ext
5d9e2540ad787e446250d1abbld | ractor.js: 14
16fc101a AFTER: stream/address_extr

actor.js: 5
Extract SkyZeroZx/API-NestJS-Sky-Ca | BEFORE: src/common/decorat

lendar : bd6677b4aeb5507bac22
aeb512eb5be2e696035412¢

ors/user.decorator.ts: 3
AFTER: src/common/decorato
rs/user.decorator.ts: 3

84

Continued on next page

Appendix

Table 1 — Continued from previous page

Type Repo : SHA File : Line
Add getter | mapbox/scroll-restorer : 6a4 | BEFORE:
6e93db34ae13£f80b409bal1b746 | AFTER: util/get_window. js:
d7bddbd4e0 2
Add getter | Winter22S0FE2720/online-sho | BEFORE: Code/src/classes/S
pping-system: 80b0958deb49e | hoppingCart.ts
88b308b79fc9e2a5d345843a3cb | AFTER: Code/src/classes/Sh
oppingCart.ts: 17
Wrap Zazcallabah/mce : 474cb2elaa | BEFORE: js/mc. js
c9dfcde7af02f8556828ad090e5 | AFTER: js/mc.js: 1
a20
Add return | sheikhmishar/localhost-tunn | BEFORE: views/src/js/uiHel
value el : 78£fc1e356806c038c348335 | pers.js
240cc770ac42a48e4 AFTER: views/src/js/uiHelp
ers.js: 71
Extract jupiter-project/gravity: 96 | BEFORE: config/gravity. js:
20c4a94899d7d7cb416b071d2a5 | 1012
462f7eaB84fd AFTER: config/gravity. js:
1011
Add smswithoutborders/SMSWithou | BEFORE: src/components/Loa
attribute tBorders.com: elebdfbbd9eb5 | der.js
e5b7e3b353cbf8637ab54c01b45 | AFTER: src/components/Load
er.js: 9
Export sametpalitci/yelp-clone : 18 | BEFORE:
object 81cd447£d5b2bdc86844b5428dc | AFTER: server/app. js: 28
74£217fcbf7
Move erukiti/easybooks : 992eff78 | BEFORE: src/build-book/ind
config to €886533b74cbce3e3eeaf9afb30 | ex.ts: 66
object 1dabd AFTER: src/build-book/inde
x.ts: 71
Split m-ripper/vuex-multi-history | BEFORE: src/HistoryPlugin.
module : 150b492e459465£2917dd69b8 | ts

53dbf9489c40dab

AFTER: src/VuexHistory.ts,
src/VuexHistoryPlugin.ts

&5

Appendix

1S Testability Home Project

Creceow) (oo comms

Calc dependencies

—

- a

Project: version_1

Classification progress: 1009% (384/384)
Total repos: 384

Have no JS: 1% (5/384)

Have Tests: 39% (148/379)

Have Ul-Tests: 24% (50/210)

Have Performance-Tests: 1% (5/379)
Are JavaScript: 298

Are TypeScript: 81

Are organizational: 91

Are individual: 288

Max Stars: 34429

Min Stars: 5

Are NPM: 290

Total PRs: 17359

Total Commits: 57349

Have Frontend: 210

Have Backend: 131

Dependencies v

Appendix 3: Screenshot of the repository overview in JSTT

=) (e i

IS Testability Home Project Repos @

info v
Metrics v
Comnections v
Manusl data collction A~

Classification

Attribute Input
IsNPM (]
packagejson . B

cdsiener. I

e
“author': "CGMWire <contact@cg-wire.com> (httpi//cg-wire.com)’,
“version’: 020,

0,
“description’: An easy to use viewer to display 3D models n the browser”.

“serve': /node_modules/in/static-server’, Iz
HasTess o
s ing e o
[o
s Performance Tests
Testrunimpossile
Has Frontend L
Has Backend
Noavscript
NotEngish
Categories Muttimedia
Available options . v
[— ansinocha
Avmitlecptions | _ o
Depencences NorehoM)
Avaiable optons | _ o

Appendix 4: Screenshot of the repository detail page in JSTT

86

Appendix

JS Testability ~Home Project orrelati levels

Correlation matrix ~

_total paramFavg paramF_med paramF.min paramfmax dpFtotal dpFavg dpF med dpFmin dpF.max ecM acM locM loccM loclM ccM hbugsM hdiffM heffortM hlengthM htimeM hvocabM hvo

IcovM 01007 02721 -0.2287 _ro.|s45 -0.1006 -0025| 00569

scovM 0.0916 0.2662 -0.2377 -0.1827 -0.0945 0.0409 0.0543).

beovM -0.0864 0.1638 -0.2064 -0.1110 - -0.0385 0.0859 —
noF 02113 0.0753 0.2672 0.1722 0.1781 0.1873 0.1230 0.1652 -0.0341 0.1164 0.1884 0.1996 02483 0.2280 0.2332 02772 02541 0.2380 0.2541 0.1995 023
locF_total . 02311 0.0957 - 02732 0.2425 0.2248 0.0745 0.2663 0.0274 00268 02831 0.2890 _ 0.2838 .
locF_avg 0.1376 0.0862 0.2216 0.2441 02128 01714 -00149 0.2534 0.1155 -0.1096 0.2693 02553 02950 02899 0.2889 - 0.2987 0.2919 02987 02732 0.2¢
locF_med 0.0148 -0.0022 0.0942 0.1138 01335 0.1077 -0.0417 0.1486 00997 -0.1754 0.1744 0.1676 0.1791 0.1633 0.1779 0.1553 0.1691 01772 0.1691 0.1833 0.7
locF_min -0.0328 -0.0058 -0.0435 -0.1302 -0.1270 -0.1177 -0.0580 -0.1422 -0.0370 -0.1807 -0.0710 -0.0388 -0.0735 -0.0355 -0.0750 -0.0901 -0.0826 -0.0749 -0.0826 -0.0708 -00
locF_max 0.2284 0.1296 0.2958 0.2515 0.2030 0.1793 0.0292 0.2433 0.0845 0.0194 02780 0.2623 0.2944 0.2796
loclF_total 0.2382 0.0901 0.2872 0.2349 0.1912 0.1738 0.0340 0.2280 0.0261 00719 02566 02617 0.2686
loclF_avg 0.1203 0.0651 0.1400 0.0744 0.0274 0.0137 -0.1339 0.0788 0.1428 00376 0.1279 0.1090 0.1885 0.1809 0.1720 02197 0.1907 0.1767 0.1907 0.1504 017
loclF_med 0.0477 0.0277 0.0719 0.0225 0.0161 0.0156 -0.1015 0.0564 0.1377 00088 0.0643 0.0498 0.1108 0.1225 0.0939 0.1269 0.1039 0.0967 0.1039 0.0788 0.0¢
loclF_min -0.0821 -0.0154 -0.0948 -0.1711 -0.1627 -0.1512 -0.1353 -0.1468 0.0449 00270 -0.1118 -0.1516 -0.0860 -0.0631 -0.0982 -0.1009 -0.1026 -0.0982 -0.1026 -0.0880 -00
loclF_max 0.2315 0.0859 0.2579 0.2055 0.0936 0.0456 -0.0777 01737 00727 00367 02555 02478 _ 0.2727 .
«ccF_total 0.2220 0.0731 0.2783 0.2425 0.2226 0.2052 0.1041 0.2255 -0.0444 00783 02365 02428 02878 0.2592 0.2787 - 0.2959 0.2841 0.2959 0.2410 027
cF_avg 0.0298 -0.1092 0.1892 0.2442 0.1701 0.1305 -0.0115 0.1995 -0.0791 -0.0900 02297 0.1942 02517 0.2254 0.2474 02524 02522 0.2475 0.2522 0.2424 024
ccF_med -0.0467 -0.0752 0.0685 0.1084 0.0922 0.0484 0.0258 0.1019 -0.0901 -0.0426 0.0847 0.0468 00776 0.0911 0.0756 0.0953 0.0852 0.0760 0.0852 0.0712 0.07
ccF_max 0.0325 -0.1136 0.1948 02515 01721 0.1320 -0.0149 0.2064 -0.0775 -0.0885 02403 02041 02600 02344 02561 02607 0.2610 0.2563 02610 02509 025

wbuost ot 0267 oosze NN 2203 o220 orsw oosss ozrer oooss ooseo NN oo NN

<

Strong correlations

Appendix 5: Screenshot of the metric correlation matrix in JSTT

JS Testability ~ Ho:

ngs (SDiffer)

>

Info

Progress: 100% (252/252)
Refactorings: 3390

Testability Refactorings: 30

Commits with Testability Refactorings: 13
Repos with Testability Refactorings: 8
Commits

Total: 802

Average: 5.531034482758621
Median: 2

Min: 0

Max: 61

PRs

Total: 340
Average: 2.3448275862068964
Median: 0

Min: 0

Max: 45

<

Testal

y Refactorings

Filter

Only with mined Refactorings v
Done Marked [l Has Testability Refactorings Marked & Testability Refactorings

SHA Repo PRs

v GitHub

1 19¢10239fa7572031e6¢79485¢b7ae davetayls/jquery kinetic 1 1

<L

2 149fcage10f: 1 1 17 davetayls/jquery.kinetic 1 13

<
@

davetayls/jquerykinetic 0 2

Zazcallabah/mce 0 14 v

€

5 o 16e2a577825180131de6649e6 Zazcallabah/mce 0 18 v

@

Appendix 6: Screenshot of the commit overview for testability refactorings in JSTT

87

Appendix

JS Testability Home Refactorings

(A retacioing

Info

Repo: pelias/openstreetmay
SHA: a76035d9e2540ad787e446250d1abb1d15fc101a
Refactorings: 4

PRs: 103

v # Type Tool Revision Location Type File Test File Line Simple Name Local Name Parameters

n 1 EXTRACT.MOVE RefDiff BEFORE Function stream/way fitterjs 5 exports exports
AFTER Function stream/node filterjs 9 isP ist isP ist node

n 2 EXTRACT RefDiff BEFORE Function stream/way filterjs 5 exports exports
AFTER Function stream/way_filterjs 9 isP ist isP ist way

n 3 EXTRACT RefDiff BEFORE Function stream/node filterjs 5 exports exports
AFTER Function stream/node filterjs 9 isP ist isP ist node

4 _EXTRACT manual BEFORE - stream/address_extractorjs address_extractorjs 14 -
= AFTER - stream/address_extractorjs address_extractorjs 5 - hasvalidAddress item

Appendix 7: Screenshot of the refactorings list for a commit in JSTT

88

Eidesstattliche Erklirung
Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit im Masterstudi-
engang Informatik selbststindig verfasst und keine anderen als die angegebenen Hilf-
smittel — insbesondere keine im Quellenverzeichnis nicht benannten Internet-Quellen
— benutzt habe. Alle Stellen, die wortlich oder sinngeméll aus Verdffentlichungen
entnommen wurden, sind als solche kenntlich gemacht. Ich versichere weiterhin, dass
ich die Arbeit vorher nicht in einem anderen Priifungsverfahren eingereicht habe.

Hamburg, den 03.09.2023 Fn CGoudesen

Vorname Nachname

Veroffentlichung
Ich stimme der Einstellung der Arbeit in die Bibliothek des Fachbereichs Informatik zu.

Hamburg, den 03.09.2023 Fn CGoudesen

Vorname Nachname

	Abbreviations
	Introduction
	Motivation
	Research Questions
	Structure Overview

	Fundamentals
	Testing of Software
	Testing in Open-Source Software
	Language Features of JavaScript
	Testing in JavaScript
	Testability of Software
	Metrics for Testability Measurement
	JavaScript on GitHub
	Refactorings for Testability

	Approach
	Sampling Strategy
	Testability Analysis
	Selection of Testability Metrics
	Finding Refactorings

	Analysis
	Dataset
	Meta Data
	Manual Classification

	Testability in JavaScript-Projects
	Collection of Metrics
	Correlation Analysis
	Testability Level Analysis
	Comparison with Java

	Refactorings for Testability
	Finding Commits
	Mining Refactorings
	Commit Analysis
	Testability Refactoring Procedures
	Comparison with Java Patterns

	Conclusion
	Threats to Validity
	Future Work

	References
	Appendix

