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Abstract

In the context of robotic automation, inspection tasks are becoming increasingly impor-
tant. In endoscopic inspections, a robot has to enter into a hollow cavity, such as a fuel
tank. For motion planning within these constrained environments, inverse kinematics (IK)
plays a crucial role. This thesis analyzes the deficiencies of current IK solvers in these
environments. For this purpose, a benchmarking software and a benchmarking dataset
are created. Based on two state-of-the-art solvers, BioIK and RelaxedIK, several solver
improvements with a focus on endoscopic inspections are implemented and evaluated.
The results show that directly including collision checking into the solvers is not feasible
with the currently integrated collision detection library. The solve rates were significantly
increased by implementing cost functions that instead make use of geometric properties of
the problem. Additional analyses of the influence of optimization solvers and solver pa-
rameters reveal little room for improvement, while adapting the seed state shows greater
potential.
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Chapter 1

Introduction

In recent years, robots have become widely used across industries to automate processes
and reliably perform repetitive tasks. Often, tasks that are difficult to perform for a human
or that pose a risk to the worker’s safety are of special interest for robotic automation.
These tasks can then be performed by an automated, semi-automated, or remote-con-
trolled robot. In each case, a crucial part of the task is motion planning, meaning that a
plan for the movement of the robot’s joints has to be created. Most robots consist of a
series of links and joints, called the kinematic chain. In motion planning, the movement
of the robot’s end effector, i. e., the last link in the kinematic chain, plays an important
role because a tool or sensor is often attached to it. Finding the joint configuration to
attain a certain end effector pose is called inverse kinematics (IK).
The opposite problem of inverse kinematics is forward kinematics, the task of calculating
an end effector pose given the robot’s configuration. While forward kinematics is easy to
solve by applying the offsets and rotations for each motor to the pose of the base link, the
inverse kinematics problem is much harder. In general, no closed-form solution exists and
certain target poses can be unsolvable, for example when not enough degrees of freedom
are available to achieve a given pose, or non-unique, when multiple configurations exist
that result in the same end effector pose.
While many different inverse kinematics solvers exist, they are often evaluated in simple
scenarios that do not have a high number of obstacles in the environment. These algo-
rithms perform badly in highly constrained environments because they do not account
for collisions during the optimization routine. Instead, the validity of a solution is only
checked after a solution has been found.
Collision-aware inverse kinematics solvers play a role in many types of problems, such
as gripping an object from a full shelf, navigating an arm around an occluded table, or
performing inspection in narrow spaces. This thesis focuses on inverse kinematics in endo-
scopic inspection environments where robots are deployed to enter a hollow space through
a small opening for inspection or repair. The primary subject of this work is ELISE, an
endoscopic robot that is currently under development at the Institute for Maintenance,
Repair, and Overhaul of the German Aerospace Center (DLR). It is developed to inspect
parts of planes, for example fuel tanks or jet engines, especially in the context of hydro-
gen-powered aviation, and consists of three metal rods connected by revolute joints with
a camera or tool mounted at the tip. By nature, endoscopic inspection tasks take place
in highly constrained environments: Only a very limited set of robot configurations can
pass through the opening without colliding with the environment, for example the fuel
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tank. In the process of automating these tasks, it is pertinent to autonomously find robot
configurations that reach certain poses inside the tank.
This thesis aims to answer the following two research questions:

1. What automated methods can be used to evaluate inverse kinematics solvers?
2. Which approaches are effective in improving inverse kinematics solvers for endoscopic

inspections?

To evaluate the performance of existing solvers on these tasks, a benchmarking dataset
with non-endoscopic and endoscopic scenarios is created. Then, several improvements to
current inverse kinematics solvers are implemented and evaluated on the created bench-
marking dataset.
The implementation is done for the ROS 2 framework [Mac+22], a framework that is
widely used in robotics, especially in the research community. It uses the MoveIt [Chi16]
library which is a motion planning library in ROS 2.
The thesis is structured in the following way. The next chapter introduces the funda-
mentals required for understanding the subsequent chapters. In Chapter 3, existing in-
verse kinematics solvers are presented and their advantages and disadvantages are high-
lighted. Existing inverse kinematics and kinematic structure benchmarks are described.
The benchmarking dataset is introduced in Chapter 4, along with a description of the
process of its creation. As part of this thesis, a benchmarking library called EBIKE is
developed and described in Chapter 5. Chapter 6 presents initial evaluations of current
IK solvers on the dataset, while Chapter 7 details the implementation process. In Chap-
ter 8, the various possible improvements to inverse kinematics solvers are described and
evaluation results are presented and discussed. The thesis concludes with a summary of
the findings in Chapter 9.
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Chapter 2

Fundamentals

This master’s thesis focuses on the kinematics and control mechanisms of robotic systems.
Accordingly, it is essential to define important terms used throughout the thesis. The
chapter starts by explaining key robotic concepts, including basic terminology, forward
and inverse kinematics, and rotation representations. Then, the libraries that are used in
the implementation are presented. The robotic platform, ELISE, is introduced, and an
overview of applications for endoscopic robots is given.

2.1 Robotic Terms

A robot is “a machine that can perform a complicated series of tasks by itself.”¹ It consists
of a series of joints, typically articulated by servo motors, which are connected by links

¹https://www.oxfordlearnersdictionaries.com/definition/english/robot, accessed 24/04/2024

[SK16]. The links are assumed to be rigid. The most important types of joints are rev-
olute joints and linear joints. While revolute joints allow movement around an axis,
linear joints permit movement along an axis. Joints have joint limits that determine
how far the joint can move. The positions of all joints determine the configuration of a
robot. The minimum number of variables required to describe the configuration of a robot
is called its degrees of freedom. If the joints are independent, the degree of freedom
is equivalent to the number of joints. An illustration of a simple robotic arm with three
links and joints is shown in Figure 2.1.

Figure 2.1: Two-dimensional robotic arm illustrating basic concepts

3
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The series of links and joints of a robot is called a kinematic chain, with the final link
being called the end effector. The end effector is particularly relevant as it interacts
directly with its environment using mounted tools or sensors. A robot can have multiple
kinematic chains and therefore multiple end effectors. In three-dimensional space, also
called Cartesian space, an object’s pose is defined by its position and orientation.
Position is typically expressed as a set of x, y, and z coordinates, while orientation can be
represented using various methods, including rotation matrices, quaternions, axis-angle
descriptions, or Euler angles (see Section 2.3). The distance between two positions is the
linear distance, the norm of the vector connecting them. The distance between two
orientations, the angular distance, is the angle of rotation required to rotate one rota-
tion to the other. The pose of a robot’s end effector can be expressed either in Cartesian
space, stating its position and orientation, or in joint space, specifying the angles of the
joints in the kinematic chain. The choice of representation depends on the nature of the
conducted task. In this thesis, the focus is on converting one into the other.

2.2 Forward Kinematics

In robotics, forward kinematics describes the problem of calculating the pose (position
and orientation) of a robot’s end effector from the configuration of its joints and its kine-
matic structure. The calculation is straightforward. Each joint is defined by its offset to
its parent joint and its applied transform. The offset is a fixed transform between the two
joints that depends on the kinematic structure of the robot. The applied transform of
a joint depends on its configurations. Starting with the pose of its base link, the offsets
and transforms of all joints can be applied sequentially [SK16]. The equation for forward
kinematics is generally expressed as 𝑥 = 𝑓(𝑞) where 𝑞 is the vector representing the ro-
bot’s configuration (the values of the joints) and 𝑥 is the vector giving the end effector
pose. Figure 2.2 illustrates the problem on the two-dimensional robot arm where the pose
of the end effector depends on the three joint positions 𝑞0, 𝑞1, and 𝑞2.

Figure 2.2: Forward kinematics illustrated on a two-dimensional robotic arm
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2.3 Rotation Representations

Rotations can be represented in several different ways. The most intuitive way of defining
them is using Euler angles. Euler angles are a vector of three angles that describe three
successive rotations. The axes around which the rotations are performed must be given
with the representation. Take, for example, the order Z-Y-X, then, the first angle describes
the rotation around the Z axis, the second angle describes the rotation around the rotated
Y axis, and the last angle then rotates around the twice rotated X axis. The rotations
can also be performed around non-moving axes, this representation is called fixed angles.
In addition to being ambiguous because of the required axis order, both Euler angles and
fixed angles suffer from the problem that the first two rotations can occur in such a way
that the third rotation is around an axis that was already a previous rotation axis; this
is called a gimbal lock or representation singularity. [SK16]
Another rotation representation is rotation matrices. The rotation described by such a
matrix is applied by multiplying the matrix with a vector to be rotated. The rotation
matrix is a three-by-three matrix whose columns are orthonormal vectors that give the
new axes after the rotation in terms of the old axes. Convenient properties of rotation
matrices are that rotations can be concatenated by multiplying their rotation matrices
and that the inverse of a rotation matrix is its transpose. [SK16]
By Euler’s rotation theorem [Eul76], any rotation or sequence of rotations can be described
as a single rotation around a fixed axis. This description makes it possible to describe a
rotation by this axis and the angle of rotation, called the axis-angle notation, represented
by a unit vector 𝑤̂ = (𝑤𝑥, 𝑤𝑦, 𝑤𝑧)

𝑇  pointing along the axis of rotation and the angle of
rotation 𝜃 [SK16]. When the axis-angle notation is used to describe the difference between
two rotations, 𝜃 is their angular distance. The axis-angle values can also be combined by
multiplying the axis and the angle, leading to a three-variable representation where the
vector norm gives the angle of rotation. Whenever the function Axis-Angle is used in
the remainder of this thesis, it refers to this three-variable representation.
Finally, a quaternion 𝜀 [Ham44] is composed as 𝜀 = 𝜀0 + 𝜀1𝑖 + 𝜀2𝑗 + 𝜀3𝑘 where 𝑖, 𝑗, 𝑘 are
operators such that

𝑖𝑖 = 1, 𝑖𝑗 = 𝑘, 𝑗𝑖 = −𝑘,
𝑗𝑗 = 1, 𝑗𝑘 = 𝑖, 𝑘𝑗 = −𝑖,
𝑘𝑘 = 1, 𝑘𝑖 = 𝑗, 𝑖𝑘 = −𝑗

The conjugate of a quaternion is defined as 𝜀 = 𝜀0 − 𝜀1𝑖 − 𝜀2𝑗 − 𝜀3𝑘. Unit quaternions
are quaternions for which the product with their conjugate is equal to 1, i. e., the sum of
their squared parameters is equal to 1. They can be used to describe rotations and are
obtained from an axis-angle pair in the following way:

𝜀0 = cos
𝜃
2

𝜀1 = 𝑤𝑥 sin
𝜃
2

𝜀2 = 𝑤𝑦 sin
𝜃
2

𝜀3 = 𝑤𝑧 sin
𝜃
2

Conveniently, concatenation of two rotations can be done by multiplying their quater-
nions, and the inverse of a unit quaternion is, by definition, its conjugate. [SK16]
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2.4 Transformation Matrices

Any rigid transformation, i. e., a translation and rotation in space without deformation,
can be represented as a transformation matrix.

𝑇 = (𝑅0
𝑡
1)

𝑅 is a 3 × 3 rotation matrix, 𝑡 is a 3 × 1 translation vector. The inverse of a transforma-
tion matrix can easily be calculated.

𝑇−1 = (𝑅
𝑇

0
−𝑅𝑇 𝑡
1
)

Consecutive transformations are defined by the product of their transformation matrices.
The set of all transformation matrices forms a Lie group [LE93] which is called SE(3).
An element of SE(3) can be transformed to the Lie algebra 𝔰𝔢(3). The Lie algebra 𝔰𝔢(3) is
represented by a six-dimensional twist vector that describes velocities along and around
an axis required to reach the transformation represented by an element of SE(3). The
function that maps elements from SE(3) to 𝔰𝔢(3) is called the logarithm map. [Sel05]

2.5 Jacobian Matrices

In robotics, the Jacobian is the matrix of all partial derivatives of the forward kinematics
function.

𝐽(𝑞) =

⎝
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎛ 𝜕𝑥
𝜕𝑞1
𝜕𝑦
𝜕𝑞1
⋮
𝜕𝜑
𝜕𝑞1

𝜕𝑥
𝜕𝑞2
𝜕𝑦
𝜕𝑞2
⋮
𝜕𝜑
𝜕𝑞2

…

…
⋱
…

𝜕𝑥
𝜕𝑞𝑛
𝜕𝑦
𝜕𝑞𝑛
⋮
𝜕𝜑
𝜕𝑞𝑛⎠
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎞

It is a 𝑚× 𝑛 matrix where 𝑚 is the number of degrees of freedom of the end effector and
𝑛 is the number of joints. In the context of this thesis, 𝑚 is always six because the end
effector has six variables, three for its position in three-dimensional space and three for
the orientation.
The Jacobian matrix can be used to calculate the forward dynamics, i. e.,

̇𝑥 = 𝐽(𝑞) ̇𝑞

Here, ̇𝑥 is the velocity of the end effector and ̇𝑞 is the velocity of the joints.
The Jacobian describes how the movement of the joints influence the movement of the
end effector. Therefore, it can also be used to analyze the range of motion that can be
covered in a given configuration. If some velocities in Cartesian space are not achievable
with any joint velocities, the configuration is called singular and its Jacobian matrix does
not have full rank. As an example, if it is impossible to move any joint such that the end
effector moves in positive x direction, the configuration is singular.
The joint velocity vectors can be divided into two linear subspaces: the range space and
the null space. The null space is defined as 𝑁 = { ̇𝑞 | 𝐽(𝑞) ̇𝑞 = 0}, the joint velocities that

6



Fundamentals Jacobian Matrices

have no influence on the Cartesian space velocities of the end effector. All other velocity
vectors influence the end effector velocities and are called the range space. A three-di-
mensional robot that has more than six degrees of freedom always has a non-empty null
space because there are joint movements that can be negated by the movement of other
joints. A singularity further increases the size of the null space and reduces the range
space because more joint movements cannot influence the end effector movement. Since
the velocities in the null space do not influence the end effector velocity, they can also be
used to achieve other goals such as obstacle or singularity avoidance.
For singularity avoidance, three measures are used to define the distance to a singularity.
The first is the manipulability measure 𝜇 = √|𝐽𝐽𝑇 | which is zero at singularities. The
second measure is the condition number 𝜅 = 𝜎1

𝜎𝑚
, i. e., the quotient of the smallest and

largest singular value of the Jacobian. It is infinite at singularities because the smallest
singular value becomes zero. As a third measure, the smallest singular value 𝜎𝑚 can be
used directly. [SK16]
Obstacle avoidance could for example be achieved by searching the null space for colli-
sion-free solutions, but the potentially large size of the null space makes this approach
unpractical.

2.6 Inverse Kinematics

Figure 2.3: Inverse kinematics illustrated on a two-dimensional robotic arm

Inverse kinematics (IK) is the opposite of forward kinematics. Mathematically, it can
be expressed as 𝑞 = 𝑓−1(𝑥), where 𝑞 denotes the joint configuration needed to achieve a
specific end effector pose 𝑥. Figure 2.3 illustrates the IK problem on the two-dimensional
robot arm. The pose 𝑥 of the end effector is given and the joint values 𝑞0, 𝑞1, and 𝑞2
required to reach this position have to be determined.
In practice, this is useful for a variety of tasks. For example, a robot could determine
the pose of an object in space via its camera, then calculate a pose where its hand could
grasp the object and finally move the hand to that pose. For the last step, calculating
how its joints have to be configured to reach that pose, inverse kinematics are required.
Extending the example, the robot has to move from its current pose to the target pose.
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For this movement, a trajectory, i. e., a path that the hand follows over time, has to be
planned and executed. A simple approach is to create a trajectory in joint space. This
means that the interpolation forming the trajectory happens for each joint independently.
The resulting movement is often unnatural as the end effector moves on a complicated
trajectory in Cartesian space. An alternative is to compute a trajectory in Cartesian
space. This requires interpolation in Cartesian space and solving inverse kinematics for
each step of the path. While this can result in a more natural movement, other issues may
arise, e. g., because joint limits are reached or jumps in joint space that are not executable
by the robot happen.
A problem with inverse kinematics is that while forward kinematics are simple to calculate
and a single solution exists, for the inverse problem, multiple solutions may exist, i. e.,
multiple configurations exist where the same end effector pose is reached, or no solutions
might exist, for example, because the end effector pose is not reachable.
The two main types of inverse kinematics solvers are analytical and numerical solvers
[SK16]. Analytical solvers use a closed-form solution adapted to a given robot that
directly returns the required joint positions given an end effector pose. They can either
be formed based on the geometric properties of the robot or algebraic considerations of
the robot’s kinematics. Geometric solutions are often a result of trigonometric equations
that can be found in the robot’s kinematic structure or other geometric properties, such
as intercepting or parallel lines. Algebraic solvers are created by mathematically invert-
ing the forward kinematics equations. Unfortunately, both the geometry of a robot and
the forward kinematics equations become more complex with increasing complexity of
the robot, for example more degrees of freedom or a more difficult kinematic structure.
Therefore, for a lot of robots, no analytical solution is known and it might not even exist.
However, if the exist, analytical inverse kinematics solvers find solutions extremely fast
(similar to forward kinematics) because they only have to solve a set of equations.
The other group of solvers are numerical solvers. Numerical solvers do not directly
find an optimal solution. Instead, they iteratively improve solutions until a termination
criterion is reached. The two principal approaches to numerical solvers are Inverse Ja-
cobian-based methods and optimization-based methods. Other approaches include evo-
lutionary algorithms which represent candidate solutions as individuals that reproduce
over generations and memetic algorithms which combine evolutionary and optimization
algorithms. For some of these inverse kinematics solvers, it is also possible to specify ad-
ditional cost functions that define costs for positional or rotational errors or other criteria
such as collisions, joint displacements, etc. Examples of these cost functions are given in
Sections 3.1.3 and 3.1.6.

2.7 ROS and MoveIt

The Robot Operating System (ROS) is a middleware used
in robotics. It is widely used in research and industry for
a number of different robots, such as quadruped robots,
submarine robots, drones [Mac+22], and even soccer-play-
ing robots [BHW17]. The software platform provides the Figure 2.4: ROS logo²

means to split the software running on a robot in cohesive, modular nodes that communi-
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cate via message exchange. The current version of the project, ROS 2, focuses on security,
reliability, and large scale systems by basing the communication on the Data Distribution
Service (DDS). ROS is developed open source and supported by a large community from
research and industry.

²License: CC-BY-NC 4.0, https://github.com/ros-infrastructure/artwork

MoveIt is software for “motion planning, manipulation, 3D perception, kinematics, con-
trol, and navigation” [Chi16]. It is widely used and can handle many different robots. For
kinematics, a plugin-based architecture is used that supports different solver implemen-
tations for different robots. By default, a numerical solver for inverse kinematics is used.
MoveIt is currently stewarded by PickNik Robotics and supported by a “community of
collaborators and maintainers”³.

³https://picknik.ai/moveit/, accessed 13/08/2024

An alternative to MoveIt is Tesseract [Arm24], a relatively new motion planning frame-
work with integration into ROS 2 developed by the Southwest Research Institute. At the
point of writing, the package is still “under heavy development and subject to change”4

4https://github.com/tesseract-robotics/tesseract/blob/0.24.1/README.md

and the documentation is practically nonexistent, disqualifying the library for use in this
thesis.

5http://wiki.ros.org/urdf/XML/joint, accessed 15/08/2024

Figure 2.5: Depiction of a joint in a URDF5

In ROS 2, robots are represented using the unified robot description format (URDF). In
a URDF file, a kinematic chain is defined as a series of joints that each have a transform
𝑇origin from the previous joint and apply a transform 𝑇joint that depends on the joint
configuration. For revolute joints, for example, 𝑇joint is a rotation around a single axis.
Figure 2.5 shows a sketch of such a joint, with its origin relative to the parent joint and its
rotation around an axis. The URDF describes a transform from a base to an end effector
that is composed of several joint transformations.

2.8 Collision Detection

Collision detection is the problem of detecting whether two or more objects in space
collide, i. e., they partially occupy the same space. Related, proximity computation de-
scribes the process of computing the shortest distance between any two points of two ob-
jects. It is sometimes also called separation distance query or collision distance query.
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Penetration depth refers to the minimum translation movement required to move two
colliding objects into non-collision.
In general, collision detection is split into a broad phase and a narrow phase. In the
broad phase, objects that may collide are pre-selected and objects that do not collide
are excluded. This can for example be done by wrapping the objects in bounding boxes
and checking for collisions between them. This broad phase detection is usually very fast
because it does not require a precise analysis of the geometry of the objects. If and only
if two objects are detected as colliding in the broad phase, the pair is passed on to the
narrow phase. In this phase, exact collision detection is performed, taking into account
the precise meshes of the objects. A mesh is a collection of vertices, edges, and faces that
define the shape of an object. [Eri05]
The Flexible Collision Library (FCL) [PCM12] is a general-purpose collision detection
and proximity query library and is used by default in MoveIt. It supports different types
of objects and different algorithms based on the object types. For broad-phase collision
detection, FCL uses Sweep and Prune. This algorithm uses axis-aligned bounding boxes
and detects collisions by checking for overlap between the bounding box intervals on each
axis separately. Objects are detected as colliding when their intervals overlap on all three
axes. The algorithm has an expected runtime in 𝑂(𝑛) for 𝑛 objects by keeping the interval
lists sorted.
In the narrow phase, FCL uses the Gilbert-Johnson-Keerthi (GJK) algorithm [GJK88]
for collision detection and distance calculation and the Expanding Polytope Algorithm
(EPA) [Van01] for penetration depth computation. The GJK algorithm works by itera-
tively improving a geometric representation of the overlap of two objects until it deter-
mines whether they intersect. For non-convex or non-polytope objects, FCL uses Bound-
ing Volume Hierarchies (BVHs). Alternatives are spatial decomposition techniques, for
example kd-trees or octrees, but the authors claim that BVHs are faster [PCM12].
The library also supports continuous collision checking, i. e., checking whether moving
objects collide at any point in time. Since exact penetration depth computation has a very
high complexity (𝑂(𝑛6) for non-convex objects [Kim+03]), FCL only approximates the
penetration depth for mesh-based models by calculating the penetration depth between
the colliding triangles of the meshes, giving only a lower bound of the actual penetration
depth.
While GPU support and parallelization can significantly improve collision detection speed,
neither is supported by FCL. The authors of FCL developed an algorithm in 2012 that
uses GPU-based parallel collision detection, greatly improving the number of collision
queries that can be executed per second [PM12]. However, the code is not integrated into
any library.
HPP-FCL [Pan+15] is a newer collision library by FCL’s authors that improved the per-
formance of the GJK algorithm by a factor of two [Mon+22]. As in the original GJK
algorithm, it only supports convex objects.
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Instead of FCL, MoveIt also supports using Bullet for collision detection. Many Bullet
features, such as parallelization and GPU usage, are not supported by MoveIt6. To date,
there are no ongoing plans to integrate GPU usage into MoveIt7.

6https://github.com/moveit/moveit/issues/1646, accessed 09/08/2024
7https://discourse.ros.org/t/gpu-acceleration/31611/3, accessed 09/08/2024

2.9 Robotic Platform

The principal robot in this thesis is ELISE which is developed by the Institute for Main-
tenance, Repair, and Overhaul of the German Aerospace Center (DLR). Since its devel-
opment is not completed at the point of writing this thesis, the kinematic model of the
entire robot is only available in simulation. Figure 2.6 provides a rendering of the robot,
illustrating its current design.

Figure 2.6: Rendering of ELISE on a UR10 arm (created by Florian Heilemann, DLR),
annotated

Figure 2.7: Closeup of ELISE’s joints (rendering created by Florian Heilemann, DLR),
joint rotation axes are added in blue

ELISE has three revolute joints that connect parts of a thin metal rod. They are actuated
using an antagonistic rope mechanism. The controlling motors are located in a box at the
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base of ELISE, called FAXE. For each joint, two ropes are directed through the shaft of
ELISE and connected to the two motors controlling the joint. To move the joint, one of
the motors pulls on one rope while the other one slowly releases the other in a controlled
way, holding it such that the joint does not have any slack. Figure 2.7 shows a closeup of
ELISE’s joints and the axes of rotation.

Figure 2.8: Rendering of ELISE entering a fuel tank (created by Florian Heilemann,
DLR)

Figure 2.9: Eeloscope2 on UR10e arm inspecting an aircraft wing [Ric24]

On the tool mount at the end of ELISE, different sensors or manipulators, such as a
camera, an ultrasonic sensor, a welding unit, or a gripper, can be attached. ELISE’s shaft
is horizontally divided into two parts, the bottom part is used for the rope mechanism,
and the top part is left for wiring of the attached tool. ELISE itself can be attached to
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different bases as an end-of-arm tool. One possible base for ELISE is the UR10 arm, a
robotic arm with six degrees of freedom.
The practical use of ELISE is to perform endoscopic tasks because the kinematic structure
makes it possible to enter through small maintenance ports and place instruments in con-
strained spaces. These tasks are concentrated on the maintenance, repair, and overhaul
(MRO) sector and can include scanning the object to find fissures or repairing the object
by welding. The objects on which ELISE’s design is focused are related to transport,
mainly hydrogen fuel tanks for use in storage or automotive vehicles and jet turbines.
Figure 2.8 shows the robot entering a hydrogen tank through a maintenance port.
Another robot was developed during the FuTaMa2 (Fuel Tank Maintenance 2) project at
the same institute, the Eeloscope2 robot. It can also be attached to a UR10 robotic arm
and was designed for inspection tasks, with three RGB-D cameras mounted at its end
effector. It consists of a curved but fixed shaft, enabling it to enter through some open-
ings like aircraft maintenance ports, but also restricting its range compared to ELISE.
Figure 2.9 shows a rendering of the robot.

2.10 Robotic Inspection

Robotic inspections are used in many different fields, such as civil infrastructure, ships,
turbines, and aircraft [Alm+16]. These inspection tasks are often dangerous for humans
and successful spotting of damages is critical for the system’s safety. Automation using
robots can increase the safety of these inspections by introducing repeatable and quan-
tifiable methods.
Generally, an inspection consists of three parts: coverage path planning, model recon-
struction, and inspection. In coverage path planning, viewpoints are selected from which
all parts of the object are visible and a trajectory is planned between them. In the next
step, a model of the object is generated from the data accumulated in the first step.
Finally, the actual inspection can take place using, for example, anomaly detection algo-
rithms [RM23].
Depending on the inspected object, a wide range of sensors can be used. Next to videos or
still cameras, crucial for visual inspection, ground-penetrating radar, infrared, sonar, li-
dar, gyroscopes, and microphones are other sensors used in non-destructive testing. More
specific sensors, such as seismic sensors, methane gas sensors, or long wavelength IR for
humidity detection are also used in some cases. [NJ95]
An advantage of automated inspection is that quantitative and qualitative information
can be collected and stored side-by-side, making inspection results more repeatable and
reliable. Storing inspection results also makes it possible to track the maintenance and
defect history of an object and facilitate repairs [HDW21]. In aircraft MRO, this informa-
tion can, for example, be integrated into data aggregation tools such as Airbus Skywise8

or Lufthansa AVIATAR9 (“Digital Twins”).

8https://aircraft.airbus.com/en/services/enhance/skywise, accessed 20/08/2024
9https://www.lufthansa-technik.com/en/aviatar, accessed 20/08/2024

13

https://aircraft.airbus.com/en/services/enhance/skywise
https://www.lufthansa-technik.com/en/aviatar


Fundamentals Robotic Inspection

Figure 2.10: Aircraft fuel tank inspection [NWX18]

2.11 Fuel Tank Maintenance

Regular maintenance checks are scheduled to ensure the safety of an aircraft. A cru-
cial part of these checks is fuel tank maintenance, as fuel tanks are highly safety-criti-
cal because of the flammable fuel contained within them. Important aspects of a fuel
tank system are leakage protection, explosion protection, structural strength, and clean-
liness [HDW21]. For this reason, the European Union Aviation Safety Agency and the
Federal Aviation Administration have published regulations dictating strict fuel tank
maintenance checks [Fed01]. During these checks, General Visual Inspections and Visual
Checks of certain system parts are performed by a human inspector, often called a “tank
diver”. Figure 2.10 shows an illustration of such a visual inspection. For the inspection,
the human has to enter the tank through a manhole on the bottom side of the wing.
Then, equipped with a flashlight and personal protective equipment, they have to manu-
ally inspect the tank. A second person has to assist to ensure the safety of the tank diver.
Before starting the inspection, several safety precautions must be taken to remove fuel
residue and explosive or toxic gases.
Tasks suitable for automation by robots are often described with four “D”s: Dirty, Dull,
Dangerous, and Dear. Generally, “the more of these attributes a given task has, the more
likely it is to be turned over to digital machines.” [MB17] The task of fuel tank mainte-
nance fulfills all of them. It is dirty because of the fuel residue in the tank, it is dull
because it is a repetitive task that takes a lot of time. The task is also dangerous because
it presents health risks to the inspector. Finally, it is dear, i. e., expensive, referring to
the high cost of operations and the critical nature of the inspection. All of these criteria
make the task of fuel tank inspection relevant for automation using robots.

2.12 Endoscopic Robots

The objective of fuel tank inspection is similar to the idea of endoscopic robots in medi-
cine because in both cases, a robot enters through a small hole into a larger cavity where
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10https://www.intuitive.com/de-de/products-and-services/da-vinci, accessed 20/08/2024

Figure 2.11: Da Vinci Xi, a robot used in robot-assisted minimally invasive surgery10

it has to move around. The type of surgery performed with these robots is called robot-
assisted minimally invasive surgery (RMIS). In RMIS, the robot is usually composed
of two parts, the proximal and the distal part. The proximal part is situated outside of the
patient, often attached to a table or fixed frame. The distal part is inside the patient and
contains further joints that move tools during the surgery. On the body of the patient, a
trocar, a medical device which consists of a hollow tube, is attached and allows the distal
part to pass through into the body cavity.
The link connecting the proximal and the distal part must always pass through the trocar,
making its position a so-called remote center of motion (RCM). Some robots, for ex-
ample, the DaVinci surgical robot, ensure this by the design of the robot [Che+20]. Such
a structure may consist of parallelograms or belts that constrict the robot’s movements.
While mechanical enforcement of the constraint is generally considered safer, there is also
an interest in software-based remote center of motion enforcement because it allows for
more flexible use of robots and less elaborate mechanical constructions.
Figure 2.12 shows a surgical tool that should move through the trocar. The point denoted
with 𝑝rcm is the point that should match the trocar position. It can be defined as

𝑝rcm = 𝑝pre + 𝑝𝑇𝑟 𝑝𝑠𝑝𝑠

where 𝑝pre is the beginning of the surgical tool that goes though the RCM, 𝑝𝑠 is the unit
vector in direction of the surgical tool link, and 𝑝𝑟 = 𝑝trocar − 𝑝pre. The error, also called
residual, i. e., the difference between the desired and actual value, is

𝑟rcm = 𝑝𝑇𝑒 𝑝𝑒 = (𝑝trocar − 𝑝rcm)
𝑇 (𝑝trocar − 𝑝rcm).

Deriving 𝑟rcm with respect to 𝑞 yields the Jacobian of the RCM 𝐽rcm.
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Figure 2.12: Remote center of motion in a surgical robot [DCH24]

𝐽rcm = −2𝑝𝑇𝑒
𝜕𝑝rcm
𝜕𝑞

= −2𝑝𝑇𝑒 ((𝐼3 − 𝑝𝑠𝑝𝑇𝑠 )𝐽pre(𝑞) + (𝑝𝑠𝑝𝑇𝑟 + 𝑝𝑇𝑟 𝑝𝑠𝐼3)
𝜕𝑝𝑠
𝜕𝑞
)

with

𝜕𝑝𝑠
𝜕𝑞

=
1
‖𝑝𝑠‖

(𝐼3 − 𝑝𝑠𝑝𝑇𝑠 )(𝐽post(𝑞) − 𝐽pre(𝑞)).

A detailed derivation of this result can be found in Appendix A of [DCH24].
This Jacobian of the RCM describes how each joint before the RCM changes the position
of the RCM. It fulfills a similar role for the RCM as the end effector Jacobian does for
the end effector. Its usage for inverse kinematics solvers in medical contexts is explored
in Sections 3.1.7 and 3.1.8. The application of the remote center of motion for fuel tank
inspection is discussed in Section 8.5.
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Chapter 3

Related Work

This chapter reviews related work, beginning with a presentation of inverse kinematics
solvers that are relevant for the remainder of the thesis. It then presents different existing
benchmarking approaches.

3.1 Inverse Kinematics Solvers

Figure 3.1: Family tree of IK solvers. Left is optimization-only, right combines evolu-
tion with optimization. The optimization methods are represented by colors.
Publication date increases from top to bottom. Relations between solvers are
marked with arrows.

In this section, existing Inverse Kinematics solvers are described. The basic functionality
of each solver is outlined and their strengths and weaknesses are discussed. Figure 3.1
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shows an overview of the described solvers, including their underlying approaches. The
solvers presented in this chapter form the basis for the improvements that are imple-
mented in Chapter 8.

3.1.1 KDL

Arguably the most widespread inverse kinematics solver in the robotics community [BA15]
is the Orocos KDL solver (Open Robot Control Software Kinematics and Dynamics Li-
brary) [SAO21]. It is the default inverse kinematics solver in MoveIt [CSC24]. The solver
is a numerical solver that is based on the inverse Jacobian.

KDL(target, timeout, seed):
1 𝑞 ← seed
2 while timeout not exceeded
3 ee_pose ←FK(𝑞)
4 Δtwist ←Diff(ee_pose, target)
5 if Max(‖Δtwist.𝑝‖, ‖Δtwist.𝑟‖) < 10−5:
6 return true
7 𝐽 ←Jacobian(𝑞)
8 𝐽† ←Pseudo-Inverse(𝐽)
9 𝑞 ← 𝑞 − 𝐽†Δtwist

10 𝑞 ←Clip(𝑞)
11 return false

Diff(𝑎, 𝑏):
1 return 𝑎.𝑝 − 𝑏.𝑝, Axis-Angle(𝑎.𝑟−1𝑏.𝑟)

Algorithm 3.1: KDL algorithm

It works in the following way (see Algorithm 3.1): Starting with a given seed or all-zero
configuration, forward kinematics are computed. Then, the difference of the end effector
pose to the target pose is computed. The difference is computed as the position differ-
ence and the axis-angle representation of the rotation differences. From this, an error
is computed as the maximum of the linear distance and the angular distance between
the poses (linear and angular error). If both errors are below a threshold, the problem
is considered solved. Otherwise, Newton’s method is used to find a configuration where
the joint configuration error is zero. Newton’s method is a method that can find a root
of a function by repeatedly calculating the root of the function’s tangent at a candidate
solution and taking this root as the new candidate solution.
In KDL, the root of the error function 𝑒(𝑞) has to be found, where the error function
describes the distance of the end effector pose to the target pose when the robot is in
configuration 𝑞. Using Newton’s method with the function 𝑒(𝑞) gives 𝑞𝑘+1 = 𝑞𝑘 −

𝑒(𝑞𝑘)
𝑒′(𝑞𝑘)

.
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The derivative of 𝑒(𝑞) = |𝑓(𝑞) − 𝑡| is the Jacobian matrix of 𝑓(𝑞) because the linear error
term disappears in the derivative. Using the Jacobian, the step of Newton’s method be-
comes 𝑞𝑘+1 = 𝑞𝑘 − 𝐽−1(𝑞𝑘)𝑒(𝑞𝑘) where 𝐽−1(𝑞𝑘) is the inverse of the Jacobian. Since the
inverse cannot be calculated when the Jacobian is not square, the pseudo inverse 𝐽†, a
generalization of the inverse for non-invertible matrices, is used instead. After the value
of 𝑞𝑘+1 is determined, forward kinematics can be calculated again and if the error is still
larger than the tolerance, the next step of Newton’s method is calculated to get a better
approximation.
In 2019, a few changes have been made to the solver to avoid the solver being stuck and
improve the handling of singularities¹¹. A change to avoid singularities is to reduce the

¹¹https://github.com/moveit/moveit/pull/1321

step size, i. e., apply only a fraction of the update in line 9 in the algorithm, when the
error increases from one iteration to the next. When the solver is stuck in a singularity,
so the solution is not reached but no update can be made, all joints are wiggled randomly
to increase the chance of finding a new solution. In addition, joints that were clipped
in line 10 of the algorithm are weighted lower in the next iteration. That means that
their corresponding columns in the Jacobian matrix are weighted lower, leading to smaller
updates for these joints.
While this approach is quite fast for simple scenarios and is practically unbeaten when
a seed configuration close to the target configuration is given, Newton’s method can get
stuck in local minima. Additionally, it is not possible to include joint limits directly in
the calculations because they are not represented in the error function. The only way to
include joint limits is to clip the intermediate solutions, resulting in a worse approxima-
tion of a solution or possibly in no solution at all because the solver gets stuck. While
the solver changes described above mitigate this partly, they remain a workaround. It is
also not possible to include other constraints such as collision avoidance or arbitrary cost
functions into Inverse Jacobian-based methods.

3.1.2 TracIK

An approach that tries to improve several disadvantages of KDL is TracIK [BA15]. TracIK
starts two processes in parallel, one Inverse Jacobian-based and one optimization-based
solver, and returns the solution of the process that finishes first. The Inverse Jacobian-
based solver uses the normal KDL solver, but when the solution is not optimal and does
not improve, i. e., a local minimum is detected, the solver is restarted with a random
seed. For the optimization-based solver, the problem is formulated as a nonlinear opti-
mization problem that is solved using sequential quadratic programming. The nonlinear
optimization problem minimizes the objective function Φ = 𝑝err ⋅ 𝑝𝑇err where 𝑝err is the six-
element Cartesian space error vector of the candidate solution. The authors also investi-
gated using the L2-norm of the error vector and the dual quaternion distance between
the solution and the target, where the latter in theory better integrates linear and rota-
tional error, but both were outperformed by the dot product. In the problem definition
given to the solver, constraints are added for the joint limits. The SLSQP (Sequential
Least Squares Programming) algorithm was used, implemented in the nlopt-cpp library.
Internally, it uses the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm which is a
Newton-approximation method. Therefore, the random restart approach that was added
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to the Inverse Jacobian solver proved useful for the optimization solver as well. Since the
SQP solver can natively handle constraints, an improvement regarding situations where
the Jacobian-based solver runs into joint limits was achieved. The approach of formulat-
ing the IK problem as an optimization problem is also applied in other solvers such as
the RelaxedIK family that is described in Section 3.1.6. TracIK also slightly changed the
error metric used for termination:

Termination(target, current):
1 errpos ← target.rot−1 ∗ (target.pos − current.pos)
2 errrot ← target.rot−1 ∗ Axis-Angle(target.rot−1 ∗ current.rot)
3 return Equal((errpos, errrot), 0, 10−5)

Algorithm 3.2: Termination metric used in TracIK

This metric uses the vector necessary to translate “target” to “current” and the rota-
tion axis and angle to rotate “target” to “current”. To verify whether the difference is
small enough, it is checked whether all of these values are approximately equal to zero,
with a tolerance of 10−5. Compared to KDL’s termination metric, the multiplication of
target.rot−1 does not change the magnitude of the error vectors, only the reference frame.
The equality check compared to the norm check introduces some additional freedom of
a factor of 

√
3 ≈ 1.73. The reason for the difference is two-fold. Previously, both solvers

used the Equal method on the difference between “target” and “current”. TracIK added
the multiplication by target.rot−1 in 2016 to make it possible to specify permissible error
margins in the target frame¹². KDL changed their metric in 2019 to unify the handling of

¹²Commit 6994051a2e1cdb45294ffa4883caa823879a7009

position-only and full-pose-IK¹³. The practical difference between the metrics is consid-
ered negligible.

¹³Commit 6cda52babe508546f8d28b9abc08f33648d27ce1

The TracIK solver provides different modes. The default mode is Speed, returning a so-
lution as soon as it is found. Other modes are Distance, Manip1, and Manip2, where Dis-
tance reduces the joint space distance to the seed state and the Manip modes return the
solution that had the highest manipulability. Manipulability means that the configuration
is far away from a singularity. Manip1 aims to maximize the manipulability measure 𝜇,
Manip2 minimizes the condition number 𝜅, as defined in Section 2.5. All modes except
Speed use the complete available time to find as many solutions as possible to choose
from. As joint space distance and manipulability are not considered in this thesis, only
the Speed mode is used.
An advantage of this solver is that it is very fast and beats the KDL algorithm in all cases
because it incorporates the algorithm into the solver. A disadvantage is that no additional
constraints or cost functions can be specified.

3.1.3 BioIK

BioIK [SHZ19] is a memetic solver that combines evolutionary algorithms, particle swarm
optimization, and gradient-based solvers. An evolutionary algorithm represents candidate
solutions as individuals in a population, where good individuals reproduce to create off-
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spring by mixing their solutions. In BioIK, each individual is a configuration of the robot.
In addition to the configuration, each individual also has a momentum that describes
the difference to its parent. This element of particle swarm optimization is used to track
improvements of the solution between generations.

Figure 3.2: BioIK evolutionary algorithm [SHZ19]

The population starts with 𝑛 − 1 random configurations and the seed configuration. The
individuals are then ranked by a fitness function that includes the distance of the end
effector from its target pose but can also contain arbitrary other cost functions. In each
step of the algorithm, the individuals reproduce and mutate, the best individuals are
exploited and the worst ones are removed. For exploitation, the elite individuals, i. e., the
𝑘 best individuals according to the fitness function, are optimized using the algorithm L-
BFGS. These elite individuals cannot be removed from the population.
Then, all individuals in the population are added to a mating pool. They are the possible
parents that reproduce to create offspring. For each of the 𝑛 − 𝑘 non-elite individuals of
the population, parents are selected from the mating pool and create a new individual
by recombination, mutation, and adoption. The parent selection happens with a rank-
weighted random function, i. e., the best individuals are more likely to be picked than the
worst. In recombination, the genes (i. e., joint configurations) of the parents are mixed
by applying a randomly weighted average of their genes and adding a random mix of
their gradients. For mutation, a mutation rate is calculated that depends on the rank and
fitness of the parents, so that children of less fit parents are mutated more than those of
fitter parents. Finally, the created child is adopted by randomly adding genes from the
average of their parents and a third individual called prototype selected in the same way
as the parents. This adoption serves the purpose of adding a momentum to individuals
that brings them in the direction of better individuals and is inspired by particle swarm
optimization. The fitness of the new individual is then evaluated and if its parents are less
fit, they are removed from the mating pool. This removal of parents is used to encourage
niching so that multiple local extrema can be exploited in parallel.
The new individual or, if the mating pool is empty, randomly created individuals, are
added to the offspring. Elites and offspring form the new population which is again eval-
uated for its fitness. If an individual is close enough to the target, it is returned as the
solution. There is also a wipe-out criterion that detects if no improvement to the best
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BioIK():
1 assign seed as solution
2 initialize population
3 incorporate solution
4 create PopulationSize − 1 random individuals
5 evaluate and sort individuals by fitness
6 calculate extinction factors
7 try update solution
8 while not terminated do
9 assign whole population to mating pool

10 for all elite individuals do
11 perform exploitation using L-BFGS-B
12 for all non-elite individuals do
13 if mating pool is not empty then
14 select parents and prototype from mating pool
15 create new individual by recombination, mutation, and adoption
16 constrain genes to dimension bounds
17 evaluate fitness
18 remove worse parents from mating pool
19 else
20 create random individual
21 evaluate fitness
22 add individual to offspring
23 select elites and offspring as new population
24 sort individuals by fitness
25 calculate extinction factors
26 try update solution
27 if wipe out criterion fulfilled then
28 reinitialize population
29 return solution

Algorithm 3.3: BioIK algorithm from [SHZ19], slightly adapted

solutions was made in the last iteration. In this case, the whole population is reinitialized.
The authors state that population size and number of elites are the only parameters of
the algorithm, and they recommend between 50 and 150 individuals and 2-5 elites. Algo-
rithm 3.3 shows an overview of the algorithm, Figure 14 illustrates its flow graphically.
BioIK supports the following goals: Position, Orientation, Look At, Distance, Displace-
ment, Joint Value, and Joint Function. Position and Orientation are goals specifying the
target pose directly. Look At rotates the end effector such that it is oriented toward a
target. Displacement minimizes joint differences to the previous iteration, Joint Value
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minimizes the distance to a target joint value, and Joint Function minimizes an arbitrary
function of the joint configuration. The Distance goal is used for collision avoidance. The
authors acknowledge that “collision avoidance is an issue which is often neglected by
generic inverse kinematics solvers” [SHZ19]. The error for the distance function is defined
as

𝑒distance =
⎩{
⎨
{⎧∞ if 𝑑 ≤ 𝑑min

1
𝑑−𝑑min

else

where 𝑑 is the distance to any object and 𝑑min is a distance threshold. According to the
paper, this goal is “fast to compute” but no more information on the computation of the
distance itself is given. Since the algorithm is implemented for Unity, it is possible that
collision object information is provided by the game engine.
The algorithm provides an interesting approach to solving inverse kinematics by combin-
ing multiple bio-inspired techniques. This encourages exploration of the solution space
but is more time-intensive. The results presented in [Sta+16] show that BioIK has a
higher solve rate than TracIK but requires at least 40 times as much time. The original
implementation is only available for Unity and not open source.

3.1.4 BioIK 2

BioIK was reimplemented in C++ as a MoveIt plugin in [Rup17]. Using BioIK as a
starting point, an adaption of the BioIK algorithm was also developed with a focus on
performance increase. This algorithm, called BioIK 2 [Rup+18], differs in some ways from
the original implementation.
First of all, the algorithm is run with multiple threads in parallel (default: 4), these are
called islands. On each island, multiple species (default: 2) develop next to each other
and compete for the best individual. The evolutionary and memetic optimizations are
always executed for multiple generations instead of a single time. The population size
and number of children are also selected differently, there are only two individuals in the
population that are used to create 16 children. For these children, the so-called secondary
goals are evaluated and used to pre-select a random number between 1 and 16 of them.
Then, for the pre-selected children and the parents, their fitness according to the primary
goals is evaluated and only the best two individuals are kept as the next parents. The
differentiation between primary and secondary is done according to the computing ex-
pense of the goals; goals that can be evaluated in joint space and are therefore cheaper
to evaluate are defined as secondary goals.
For the best individual in a species, exploitation is performed using a custom gradient
descent method. For determining the step size used when the gradient is applied, a line
search is implemented that can use either a linear or a quadratic equation to approximate
the fitness landscape and estimate the optimal step size. A wipeout is only performed for
the species on an island that does not contain the best individual and only if it did not
improve in the last step or with a random probability of 10%. It replaces all individuals
in the population with the same random individual. The algorithm terminates when a
sufficiently good solution is found or a timeout occurs. The termination metric is the
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same as in TracIK for the PoseGoal. For additional goals, the result of their cost function
must be less than 10−10.
The implementation also provides a substantial number of pre-defined goals that can be
combined and weighted to form the particle cost functions. These goals include a MaxDis-
tanceGoal between a link and a target, a Line Goal, Direction Goal, Avoid Joint Limits
Goal, an IKCostFnGoal accepting arbitrary MoveIt IK cost functions, and many more. All
BioIK goals except the DistanceGoal usable for collision avoidance are also implemented,
presumably the DistanceGoal was removed because of its high computational complexity.

BioIK2():
1 assign seed as solution
2 for all (2) species
3 initialize population
4 set all (2) individuals to solution
5 while not terminated do
6 for all species
7 for memetic_evolution_gens generations
8 for all children (16)
9 select (the only 2) parents from population

10
create new individual by mutating the first parent and adding
a mix of the parent gradients

11 constrain genes to dimension bounds
12 sort children by secondary goals

13
pre-select a random number of children (1..16) by secondary
goals

14 for all pre-selected children and parents
15 evaluate primary fitness
16 keep the best (2) individuals in the population
17 for all elite individuals (1)
18 for memetic_opt_gens generations
19 perform exploitation using gradient descent
20 sort species by fitness
21 if a species (except best) did not improve or w.p. 10%
22 wipe out this species
23 choose best individual as solution
24 return solution

Algorithm 3.4: BioIK 2 algorithm

BioIK 2 focuses on performance optimization compared to the original algorithm and
other existing solvers. Most changes to the algorithm have been evaluated and shown to
improve the efficiency in [Rup17]. A notable performance increase that is not algorithmic

24



Related Work BioIK 2

is the usage of approximated forward kinematics. For that, forward kinematics is only
calculated once per step (after line six in Algorithm 3.4) and only for the best individual.
For all consecutive forward kinematics calculations, the solution is extrapolated using the
Jacobian. This is done by multiplying the Jacobian with the joint offsets and adding the
result to the calculated forward kinematics solution.

Mode Description Threads

bio2
BioIK 2 without optimization (purely
evolutionary)

4

bio2_memetic
BioIK 2 with memetic optimization and quadratic
step size (default)

4

bio2_memetic_l
BioIK 2 with memetic optimization and linear
step size

4

bio2_memetic_lbfgs BioIK 2 using LBFGS for memetic optimization 4

bio1 BioIK 4

gd 1

gd_2 2

gd_4 4
Gradient Descent

gd_8 8

gd_r 1

gd_r_2 2

gd_r_4 4
Gradient Descent with reset when stuck

gd_r_8 8

gd_c 1

gd_c_2 2

gd_c_4 4
Gradient Descent which accepts current solution
when stuck

gd_c_8 8

jac 1

jac_2 2

jac_4 4
Pseudo-Inverse Jacobian Solver

jac_8 8

neural
Neural network predicting offsets to initial
solution

1

neural2 Neural network predicting solution 1

optlib_*
Optimization solvers using BFGS/L-BFGS-B/L-
BFGS/NelderMead/Gradient Descent/Conjugated
Gradient Descent/Newton Descent

1/2/4

Table 3.1: BioIK modes
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The C++ implementation of BioIK supports various modes shown in Table 3.1. The bio1
algorithm implements the original BioIK algorithm, with a change in the exploitation
method. Instead of using L-BFGS, a heuristic exploitation method is used that iterates
over all genes, randomly increases and decreases them, and keeps changes that improve
the result. The bio2 algorithms are four variants of the optimized algorithm. They differ
in their use of exploitation of the elite solutions. When used, it can either be calculated
using gradient descent with linear or quadratic step size, or with a numerical solver
(L-BFGS, as in the original BioIK algorithm). Since the paper found that the quadratic
step size for gradient descent performed best, this is the default solver. In addition, a
gradient descent solver with different behaviors when the solver is stuck on a local min-
imum and a pseudo-inverse Jacobian solver is implemented. These solvers are available
with a different number of threads (one to eight). Another family of solvers is added
that is purely optimization-based. These solvers are implemented using cppoptlib and
can use different numerical solvers. Two implementations based on neural networks are
also implemented, one that predicts the solution to the IK problem and one that predicts
offsets from the current configuration required to achieve the target pose. Both of them
are trained during the startup of the solver.
An advantage of the BioIK C++ package is that it provides many different solvers that
can be compared to each other. Also, the variety of available goals and the option of
adding custom goals makes the solver applicable to many different situations. On the
other hand, the code is research code that is hard to read and therefore hard to adapt,
in many cases it is unclear which parts of the code are actually used, and an overview of
the algorithm (created in Algorithm 3.4 as part of this thesis) is missing. In addition, it
is not clear whether the default “bio2_memetic” algorithm is always the best or if there
are some use cases where other solvers are better.

3.1.5 PickIK

PickIK [Wea24] is a reimplementation of BioIK that focuses on code quality and thread
safety. PickIK is implemented by researchers from PickNik Robotics, a robotics company
that is using and supporting ROS 2 and MoveIt. PickIK is open source, as are all of the
solvers mentioned, and was until recently actively developed. During the writing of this
thesis, PickIK maintainers stated that they no longer work on the IK solver and switched
to TracIK14.

14https://github.com/PickNikRobotics/pick_ik/issues/70

PickIK offers more parameters for the evolutionary algorithm, for example population
and elite sizes, wipeout tolerance, and maximum number of generations. A main disad-
vantage of PickIK, especially compared to BioIK 2, is its low speed. According to profiling
results, this speed difference can mainly be explained by the forward kinematics that
are extrapolated in BioIK 2 but fully calculated in PickIK. The authors are aware of
the issue but aimed to incorporate the method into the larger MoveIt framework rather
than implementing it in their own code.15 This would have the advantage that it would

15https://github.com/PickNikRobotics/pick_ik/issues/60

be available to more users but also takes more time as more people are involved in the
required decisions.

26

https://github.com/PickNikRobotics/pick_ik/issues/70
https://github.com/PickNikRobotics/pick_ik/issues/60


Related Work PickIK

PickIK also implements different modes. The default mode is “global”, in this mode, the
evolutionary algorithm with the memetic optimization is used. The “local” mode is an
exact reimplementation of the “gd” algorithm of BioIK 2, i. e., a gradient descent solver
with linear step size estimation.
An extensive code review of PickIK shows multiple differences in implementation to the
BioIK algorithm. As no research paper has been published for PickIK, it is not known
whether these differences are done on purpose or if they are implementation errors, but the
authors claim to have an implementation “equivalent to bio1 and bio2_memetic solvers”.
In reality, they present a solution that is similar to bio1, but has the following deviations
from the original algorithm:

• For exploitation, gradient descent with linear step size estimation (as in
bio2_memetic_l) is done instead of using L-BFGS-B.

• During reproduction, only elites are used as parents and they are selected uniformly.
Originally, all individuals are considered parents, and their choice is weighted by
their rank.

• After recombination, the gradient of the child is set to zero instead of a random
mixture of the parent gradients.

• No adoption is performed.
• In the wipeout check, only the best solution is considered when the iteration is

checked for improvement instead of all elites.
• Wipeout completely resets the population instead of keeping the best solution.
• The termination metric of KDL (linear and angular distance) is used, but with a

default threshold of 10−3 instead of 10−5.

Especially the last point might be crucial to the algorithm’s performance, as the solver
essentially forgets all previously made progress whenever a wipeout occurs.

3.1.6 RelaxedIK

Another solver family is the RelaxedIK family, currently consisting of RelaxedIK, Col-
lisionIK, and RangedIK. All solvers in this family are optimization-based solvers that
formulate the problem as a constrained non-linear optimization problem. The objective
function is a weighted sum of goal functions that differ between the solvers of the family.
The first version, RelaxedIK [RMG18], lays its focus on generating smooth trajectories.
For that, in addition to position and orientation goals for the end effector and a function
for self-collision, goals are added that minimize the velocity, acceleration, and jerk of
the joints and the velocity of the end effector. For all of these goals, a special objective
function, called groove loss, is used. This groove loss is defined as the sum of a polynomic
function, in this case of degree four, and a Gaussian. This makes it possible to have the
loss function generally follow a polynomic, making it easy to have a clear gradient leading
to the target value, and have a “groove” around the target value (Figure 3.3 D).

groove(𝑥) = (−1)𝑛 exp(−
(𝑥 − 𝑠)2

2𝑐2
)+ 𝑟 ⋅ (𝑥 − 𝑠)𝑔

In the groove loss function, 𝑥 is the parameter that is the optimization target, it is the
output of a goal function. The other parameters determine the shape of the loss function.
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𝑠 corresponds to the center of the function, 𝑐 gives the width of the Gaussian, 𝑟 changes
the transition between the polynomial and the Gaussian, 𝑔 is the degree of the polynomial,
and 𝑛 ∈ {0, 1} changes the sign of the Gaussian, either punishing (𝑛 = 0) or rewarding
(𝑛 = 1) values of 𝑥 near 𝑠.
The authors claim that this function makes it easier and more intuitive to choose weights
for different objectives because the output for any input value to the loss function is
−1 for the optimal value, 0 at the edge of the groove, and then increases to infinity. In
this way, multiple objectives can be combined using a weighted sum of their losses. The
groove in the loss function makes it possible to fulfill conflicting goals by deviating from
some goals to fulfill others, for example, it is possible to slightly deviate from the target
orientation if this helps to avoid a high jerk in a joint.
In addition to the objective function, hard constraints are added for joint position and
velocity limits as well as the manipulability measure 𝜇 which is used to steer clear of
singularities. An interesting approach for self-collision is that a neural network is used for
the detection. According to the authors, the neural network trains comparably fast (30
minutes) and performs the check faster than conventional methods.
To solve the optimization problem, scipy’s SLSQP solver is used. With this approach, the
state-of-the-art solver TracIK could be outperformed by the authors on the measure of
trajectory smoothness, but not on the measure of end effector pose error.

Figure 3.3: Loss functions used in the RelaxedIK family. Top row shows building blocks
for bottom row. [Wan+23]

CollisionIK [Rak+21], the next iteration of RelaxedIK, adds environment collision avoid-
ance to the solver. In addition to the goals of RelaxedIK, a goal for collision avoidance is
used. This goal has the form 𝜀2𝑑2  which is calculated for the distances 𝑑 between all links
and collision objects and then summed up. The resulting value is used as input to the
groove loss function. 𝜀 is two times the link radius, which was chosen as a cut-off distance
between collision and non-collision. The distance checking uses the ncollide3d [Cro22]
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library for collision checking on the convex hulls of objects. It uses axis-aligned bounding
boxes in a Bounding Volume Tree in the broad phase and the GJK algorithm in the
narrow phase.
CollisionIK supports different modes: In addition to the “normal” mode, the orientation
goal can be completely ignored, making it possible to better plan collision-free trajectories
where the end effector position follows a trajectory, and the adaptive orientation mode,
where the weight of the orientation goal is adapted based on how close the robot is to
collision, keeping the requested orientation when possible but adapting its weight when
it is necessary to remain collision-free.
In this solver, the optimization method was changed to the proximal averaged Newton-
type method (PANOC), but the authors state that it also works with other non-linear
solvers such as SLSQP.
The newest version of the solver, RangedIK [Wan+23], adds a new loss function, the
swamp loss (Figure 3.3 E). This function has a range where it has a low value bounded
by “walls” that drive the objective away from too extreme values, giving the variable a
valid range of values. Semantically, it represents goals where a range of values is good for
the objective, for example to avoid joint limits.

swamp(𝑥′) = (𝑎1 + 𝑎2𝑥′
𝑚)(1 − exp(−

𝑥′𝑛

𝑏𝑛
))− 1

𝑥′ =
2𝑥 − 𝑙 − 𝑢
𝑢 − 𝑙

𝑥′ scales 𝑥 so that the range between lower bound 𝑙 and upper bound 𝑢 is mapped to
(−1, 1). The parameters 𝑎1 and 𝑎2 define the transition between the wall and the poly-
nomial, 𝑛 determines the wall steepness, 𝑏 the wall locations depending on 𝑙 and 𝑢, 𝑚
is the degree of the polynomial. 𝑏 can be determined by solving 1 − exp(− 1

𝑏𝑛 ) = 0.95 to
ensure that a maximum penalty of 0.95 is given inside of the swamp.
The swamp loss can also be combined with the groove loss to form the swamp groove loss
(Figure 3.3 F). This loss allows a goal where a range of values is desired but a certain
value is preferred. For example, the end effector of the robot can be preferred to have a
certain orientation but other orientations within a range around the goal are also valid.
Figure 3.3 A-C shows the three building blocks gaussian, wall, and polynomial. Using
them, the groove, swamp, and swamp groove loss functions can be built (Figure 3.3 D-F).
In addition, RangedIK drops support for environment collisions and changes the self-
collisions from a neural network to a calculated method that uses the swamp loss to keep
the distance between all non-adjacent links above a lower limit of two centimeters. A
wrapper for RangedIK is also available for ROS 2, but only supports a limited message
interface and is not integrated into a larger framework such as MoveIt [Rak24].

3.1.7 Inverse Kinematics of Minimally Invasive Surgical Robots

The research paper A Concurrent Framework for Constrained Inverse Kinematics of Min-
imally Invasive Surgical Robots [Col+23] compares different types of inverse kinematic
solvers and their combinations for use in minimally invasive surgery. They compare an
inverse-Jacobian method, an optimization method, and a hierarchical programming ap-
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proach as well as concurrent combinations of them. All of the solvers do not only solve
for the end effector pose but also for keeping the remote center of motion stable. For the
inverse-Jacobian method, this is done in the following way: In addition to the usual term
that uses the pseudo-inverse Jacobian for the desired end effector position, the Jacobian of
the remote center of motion is considered. This is done by defining a hierarchy of the tasks
and solving the second task in the null space of the first. Recall that the null space is the
space of solutions that do not change any solutions for a particular task, for example, for
a seven-degree-of-freedom robot solving for a six-dimensional pose, the redundant joint
makes it possible to reach the target in multiple ways. This null space can then be used to
optimize a second task. The implementation uses the following formula from Chiaverini
[Chi97] that makes it possible to set different priorities for the tasks:

̇𝑞 = 𝐽†rcm𝐾rcm𝑒rcm + (𝐼𝑛 − 𝐽†rcm𝐽rcm)𝐽†ee𝐾ee𝑒ee

𝐾ee and 𝐾rcm are gain matrices that are set to 100𝐼 and 𝐼 , respectively, where 𝐼 is the
identity matrix. 𝐽rcm and 𝐽ee are the Jacobians of the end effector and the RCM, as de-
fined in Section 2.5 and Section 2.12, respectively. 𝑒rcm is the distance between the shaft
and the RCM target (𝑝𝑒 in Figure 2.12), 𝑒ee is defined as the log6(𝑇err) where 𝑇err is the
transform from the actual to the desired pose. log6 is the logarithm from Lie algebra,
transforming an SE(3) transform to a six-dimensional vector. The resulting inverse-Jaco-
bian based solver leverages both Jacobians to solves both tasks simultaneously.
In the solver using the optimization method, the tasks are weighted with a high weight
for the RCM task and a low weight for the tool pose task. Then, their combined error
is minimized using a nonlinear optimization solver, and constraints are added for joint
limits. The optimization is done using IPOPT’s HSL/MA57 solver.
The hierarchical programming approach formulates both tasks as quadratic problems
with linear constraints. One task, in this case the RCM, is solved first, and its solution
is incorporated into the formulation of the second task. This ensures that the solution of
the second task does not violate the first solution.
Their evaluation shows that the best results were obtained by running the inverse-Ja-
cobian solver and one of the other solvers in parallel, with a slight advantage for the
hierarchical programming approach. This highlights that concurrently running multiple
different solvers can leverage the advantages of both.
This paper uses the same approach as TracIK by running multiple different solvers in
parallel. Incorporating the pivot point into the Jacobian method is a promising approach
that can greatly improve the convergence speed.

3.1.8 PivotIK

PivotIK [DCH24] is a memetic algorithm by the same authors as the concurrent frame-
work from the preceding section. Even though the authors do not explicitly say so, the
algorithm is almost the same as the BioIK algorithm. Two changes have been made to
include a remote center of motion.
First, the fitness function that is used to evaluate the individuals uses not only the end
effector position error but also the distance to the remote center of motion. Different
fitness functions were evaluated and even though the one used in BioIK resulted in the
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fewest number of generations, their fitness function was the fastest overall. The resulting
function is

Φ(𝑥) = 𝜇rcm𝑒rcm(𝑥) + 𝜇ee𝑒ee(𝑥)

𝑒ee(𝑥) = ‖ log6(𝑇eedes𝑇
−1
eeact) ‖2

It is a weighted sum of the distance between the shaft and the RCM point (𝑒rcm) and the
end effector error (𝑒ee). The end effector error is computed from the difference between
the actual and desired poses using the log6 function from Lie algebra.
The second change is that the elite exploitation does not use a gradient descent approach
because gradient computation is deemed too expensive by the authors. Instead, a single
step of the inverse-Jacobian approach from their previous paper was used to optimize
these individuals. The authors claim that the original gradient calculation from BioIK
can cause convergence failures when more constraints are used.
Even though not explicitly stated in the paper, the algorithm published in their GitHub
repository16 also contains the particle swarm optimization concepts of BioIK, including

16https://github.com/davilac/PivotIK

gradients for each individual and the concept of adoption. The evaluations in the paper
were done using the C++ implementation of the solver; this solver is not yet made open
source, only a slower version written in Python was published. Also, PivotIK is compared
to multiple other solvers but not to the solver the authors found was best in their previous
publication.

3.1.9 CuRobo

Recently, NVidia published a solver that leverages GPU parallelization, called
CuRobo [Sun+23]. It performs multiple IK queries with different seeds in parallel using an
adapted version of L-BFGS and particle-based optimization. In this algorithm, the MPPI
solver [WAT15], a highly parallel, sampling-based particle optimization solver is run for
a few iterations. Its result is then used as a seed for L-BFGS, which can then further
improve the precision. Both of these solvers are implemented as CUDA kernels and run
in parallel on the GPU. The speedup of this method compared to other approaches is
substantial but depends on the batch size. With a batch size of 100, it is 42x faster than
TracIK when collisions are ignored and 85x faster when collisions are avoided. Larger
batch sizes increase this difference. For small batch sizes or single-problem execution, the
performance is generally worse than that of other IK solvers.
For collision detection, the robot is represented by a collection of spheres. The collision
detection is split into self-collision avoidance and world collision avoidance. For self-col-
lision, the penetration depth between pairs of spheres is calculated. The authors found
that they could reduce the number of penetration depth tests by 50% by excluding pairs
of spheres that could never collide. The self collision cost was then the maximum pene-
tration depth of any two spheres. For world collision, a cost function is used that scales
linearly to the penetration depth in the case of collision and was zero when the objects
were not in collision, except for a buffer zone of three centimeters, where a quadratic
function was used to have a smooth transition between collision and non-collision. The
collision environment used for distance calculations of meshes uses a bounding volume

31

https://github.com/davilac/PivotIK


Related Work CuRobo

hierarchy provided by NVIDIA warp. The speed of distance queries using this environ-
ment outperforms the existing methods PyBullet [CB16] and STORM [Bha+21] starting
from a batch size of 1, at higher batch sizes the performance of CuRobo is several orders
of magnitude better. [Sun+23]
The CuRobo solver is very promising because it makes use of GPUs for inverse kinematics
and motion planning on a large scale. However, the project is still very new and not
well-documented. At the time of writing, a MoveIt integration is available for the motion
planner but not for the inverse kinematics solver17.

17https://github.com/NVIDIA-ISAAC-ROS/isaac_ros_cumotion, accessed 22/08/2024

3.2 Benchmarking

Benchmarking can be used to compare different solutions to a problem in a repeatable
and reliable way. In this section, existing benchmark approaches are described. First,
benchmarking techniques for inverse kinematics solvers are detailed, then a library for
benchmarking of kinematic structures, REACH, is presented.

3.2.1 IK Benchmarking

Currently, there is limited research on benchmarking datasets for inverse kinematics.
Benchmarking tools usually work in the following way: Random joint positions are sam-
pled, forward kinematics is performed to calculate the end effector pose, and this pose
is then given to the inverse kinematics solver. Examples of this approach can be found
in [BA15, Col+23, Rup+18, SHZ19]. It ensures that all end effector poses are solvable
and guarantees a certain configuration distribution in joint space. The joint configura-
tion can also be sampled from a Halton sequence to ensure equal distribution across the
joint space [Sun+23]. An example of a recently published library implementing this type
of benchmarking is ik_benchmarking [Rae23]. While this type of benchmarking is easy
to perform and can evaluate an algorithm for its speed and accuracy for simple inverse
kinematics tasks, it fails to grasp more complex scenarios because neither is the actual
workspace of the robot considered nor are environmental conditions factored into the re-
sult. An approach that improves on the first problem is to generate a grid of target poses
that should be reachable by the robot and test which poses can be solved by the inverse
kinematics solver. Still, the environment is not considered but the result is applicable to
the (Cartesian-space) workspace area of the robot.
In research focused on collision checking, another approach is sometimes used. A task is
created where the robot’s end effector has to follow a certain Cartesian-space trajectory
given some constraints, for example the end effector has to follow a square path while
avoiding collision with a block. This approach is used in [Col+23, Rak+21, Sun+23].
[Sun+23] uses the MotionBenchMaker dataset [Cha+22], a benchmark for motion plan-
ning tasks. This dataset includes a number of different scenes and robots where tasks
such as reaching for a certain object have to be performed. Solving such a task includes
motion planning and collision-aware inverse kinematics. A theoretical advantage of the
MotionBenchMaker is that it is easily extensible and multiple different tasks for a scene
can be generated automatically by varying object positions and orientations. The dataset
generator, the visualization, and the benchmarking software as well as the underlying
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Robowflex library [KK22] by the same authors only support ROS 1 with no plans for
ROS 2 support in the “immediate future”.18 This effectively makes extending the dataset
and benchmarking ROS 2 software unfeasible with the MotionBenchMaker.

18https://github.com/KavrakiLab/robowflex/issues/306

Solver Approach Metric

Joint space
Cartesian

space
Solve rate

Average
Error

Average
Time

Others

TracIK
[BA15]

✓ × ✓ ✓ × ×

BioIK
[SHZ19]

✓ × ✓ × ✓ ×

BioIK 2
[Rup+18,
Rup17]

✓ ✓ ✓ × ✓ ×

RelaxedIK
[RMG18]

× ✓ × ✓ ✓ ✓

CollisionIK
[Rak+21]

× ✓ × ✓ × ✓

RangedIK
[Wan+23]

× ✓ ✓ ✓ × ✓

Concurrent
Framework
[Col+23]

× ✓ ✓ × ✓ ×

PivotIK
[DCH24]

✓ ✓ ✓ ✓ ✓ ×

CuRobo
[Sun+23]

✓ ✓ × × ✓ ×

Table 3.2: Evaluation metrics of inverse kinematics papers

In Table 3.2, benchmarking approaches and metrics used in different papers on inverse
kinematics solvers are aggregated. The approach refers to whether joint configurations
were randomly generated or Cartesian-space goals were used. The most important metrics
solve rate, average error, and average time were analyzed. Some papers included average
rotational and positional error, this was combined as average error. Other metrics focus
on goals such as trajectory smoothness or manipulability measure.
From the table, it is clear that Cartesian-space evaluation is both important and present
in a lot of solvers. However, these evaluations are often limited to a specific use case.
For example, [Col+23] and [DCH24] focus on keeping a remote center of motion; their
evaluations therefore include a robotic arm following a trajectory while passing through
a given point (see Figure 3.4). The most generalized evaluation approaches are present
in CuRobo [Sun+23] and the RelaxedIK family ([RMG18], [Rak+21], [Wan+23]). For
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Figure 3.4: Example benchmark of inverse kinematics with a remote center of motion
(RCM) [Col+23]

the RelaxedIK family, the code used for evaluation, however, is not published. CuRobo
uses the MotionBenchMaker dataset, but for inverse kinematics evaluation, only a single
instance of a single scenario (bookshelf-small-panda) was used. BioIK 2 benchmarks using
a grid test and two wheel turning tasks, but no quantitative data is shown for the latter.

3.2.2 Kinematic Benchmarking

During the development of new robots, it is important to verify that a newly designed
robot can adequately fulfill its task. In contrast to research applications where a robot has
to fulfill several different purposes, industrial robots are often constructed for a specific
use case and can therefore be adapted to better suit their task. To evaluate the kinematic
structure of such a robot, kinematic benchmarking can be used. This type of benchmark-
ing can be performed using the REACH (Robotic Evaluation And Comparison Heuristic)
library developed by the Southwest Research Institute (SwRI) for their use in industrial
applications. To evaluate the usability of the robot, a 3D model of an object is loaded into
the library. The library then evaluates how well the robot can reach the object, which
is relevant for industrial tasks like painting, soldering or inspecting the object. For this
evaluation, points are sampled from the surface of the object and inverse kinematics is
performed for each of the points and the given robot. Additionally, the resulting positions
are evaluated for different goals, such as manipulability or distance to the joint limits.
Based on these evaluations, a score is calculated and the target points are colored accord-
ing to the score in a visualization to show how well the robot can reach the object. After
the initial execution, an optimization loop is started that seeds the IK with results from
nearby points to obtain solutions where none were found previously or improve previous
results. The developers used the library to evaluate different kinematic structures for a
robot that should remove the paint from an aircraft (see Figure 3.5).
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Figure 3.5: Kinematic benchmarking of a robot operating on a plane [Rip23]

While the development goal of the library was to evaluate kinematic structures, it can
also be used to evaluate inverse kinematics. When the target points on the object are
known to be reachable by the robot, the results of the library evaluate the performance
of the inverse kinematics solver. Swapping the solver or changing its parameters cause a
change in the reachability results that are captured by the library.
Additionally, the structure of the library is highly flexible and extensible. The inverse
kinematics solver, the target point generator, and the evaluator are plugins that can be
swapped out or modified to suit one’s needs.
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Benchmarking Dataset

In this thesis, a benchmarking dataset for inverse kinematics is created to better com-
pare different inverse kinematics solvers in endoscopic or high-collision scenarios. For this
dataset, it has to be considered which tasks should be covered by the dataset and which
kinds of scenarios should be created to represent the problem domain. For the tasks, the
decision was made to add objects to the workspace of the robot and let the end effector
touch random points on their surfaces. These surface points are then used as targets for
the inverse kinematics solver, the object serves as a collision object.
Selecting single points as targets serves two purposes. First, a planner in robotics works
from an initial (usually the current) configuration of the robot and the target configuration
at the goal pose. Using these two poses, the planner works out a trajectory, for example
by interpolating in the configuration space or by creating a Cartesian-space trajectory
with waypoints. Regardless of the trajectory generation method, a joint configuration for
the target pose has to be found. If no such target configuration is available, planning
fails. Therefore, an IK solver used in combination with a planner must be able to solve
any possible target position without being provided with a solution in proximity. The
second reason for using single target points is the focus on inspection tasks. In these
tasks, a planner generates points at or around an object that provide a high coverage of
the object, i. e. all target surfaces of the object can be seen from the union of all view-
points. This process is called coverage path planning and has been covered by extensive
research [GC13]. After generating target poses, the robot’s sensor has to travel along
these points to collect the requested data. Once again, inverse kinematics has to be used
for all of the points on the trajectory. A common approach is to use random sampling for
point generation. The use case of coverage path planning can therefore also be covered
by sampling random points on object surfaces.
For the dataset, seven objects were selected that provide varying levels of collisions. An
additional scenario with no objects and random poses is also available. Figure 4.1 shows
the objects in the dataset. The green object is the collision object, the red arrows are the
target poses given to the solver.
The Random scenario was added to compare the behavior with and without collisions and
to compare the benchmarking to previous, joint-based benchmarks. There are no collision
objects in this scenario, only self-collisions are not allowed. The first two objects are two
tables of different sizes, Table and SmallTable. Since tables are common everyday objects
often used with robots, for example in research, industry, or household applications, the
solvers are expected to perform quite well here. The target points are all sampled from

36



Benchmarking Dataset

Figure 4.1: Scenarios in the evaluation dataset. In reading order: Random, Table, Small-
Table, TableObjects, Shelf, Barrel, HydrogenTank, HydrogenTankSmall. The
visualization is done in rViz.

the top surface of the table, and a low number of collisions is expected when trying to
find a solution for these points. In the next scenario, TableObjects, six cylindrical objects
are placed on top of the small table. Instead of the table surface, all reachable cylinder
surfaces, i. e., the sides and caps, are used as targets. In Figure 4.1, the arrows are omit-
ted to provide a clearer view of the objects. Again, this object was selected because it
is a scenario relevant for research, industry, and household applications where an object
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should be grasped or inspected while being surrounded by multiple other objects. The
next object is another common household object, a quadratic Shelf. It offers a higher
number of possible collisions than the previous scenarios and still has a relevant use case,
for example in pick-and-place or cleaning tasks. The structure of an individual section
already provides some similarity to an endoscopic task as the targets are surrounded by
obstacles on most sides. An even more constrained scenario is the next, the Barrel sce-
nario, where the robot has to reach inside a barrel-like object standing on the ground.
The inside of the barrel has been chosen to be hexagonal rather than round to avoid
issues of the concave surface making it impossible to touch a target positions. The next
two tasks represent hydrogen fuel tanks and are therefore called HydrogenTank and Hy-
drogenTankSmall. The tanks are identical except their opening which has a diameter of
7 cm for HydrogenTank and 3.5 cm for HydrogenTankSmall. All target poses are on the
inside of the tanks. These scenarios are particularly challenging due to the high number
of collisions, representing real-world constraints in endoscopic inspection tasks.
All mentioned objects have been created in Blender and were exported as Stanford PLY
files. The objects were then modified, removing all surfaces except the surfaces from which
target points for the robot were sampled, i. e. the upper side of the table or the inner side
of a fuel tank. These files are used to create PCD files by randomly sampling points on
the surface of the object using pcl_mesh_sampling from the Point Cloud Library (PCL)
package. The PCD files and the original PLY files are used as input for the REACH
library for evaluating different inverse kinematics algorithms. It is important to note that
even though the arrows suggest that the orientation of the end effector is free around the
arrow’s axis, due to limitations in REACH and MoveIt, a fully constrained target pose is
given to the solver.
All objects and target poses were manually reviewed to make sure that all target poses
are reachable with ELISE. Even though this is a manual overhead, it helps to make
the results comparable and avoids differentiating between unreachable and unsuccessfully
solved poses.
The final dataset containing the different scenarios suitable for evaluation solver perfor-
mance in endoscopic and non-endoscopic environments with varying degrees of collisions
is used in the remaining evaluations of this thesis.
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EBIKE

Since no evaluation library for inverse kinematics solvers in complex environments cur-
rently exists, one was created as part of this Master’s thesis. This chapter outlines the un-
derlying considerations, describes the implementation, and presents an example demon-
strating the library’s usefulness.

5.1 Motivation

To perform the evaluation of different IK solvers and the dataset, software was required
that facilitates evaluation, comparison, and parameter optimization of the different
solvers. Such a library should be able to create a baseline for inverse kinematics solvers
and compare solvers to others regarding their success rate and speed in different scenar-
ios. Development of new inverse kinematics solvers will be facilitated because changes to
the solver can be evaluated more easily. With the results showing a trade-off between
success rate and solving speed, the end user of the IK solver can decide which of these is
more important as this depends on the problem domain (e. g., real-time vs. pre-planned).
Components for persisting, visualizing, and printing results should also exist.
In addition to evaluation and comparison of different solvers and solvers with different
parameters, there should also be structures that can be used for automatic parameter
optimization of the inverse kinematics solvers. This makes hand-tuning parameters for
specific situations dispensable because the situations and possible parameter ranges can
be added to the library and automatic parameter optimization takes care of finding the
optimal parameter values.

5.2 Implementation

In order to fulfill these requirements, the EBIKE library
was developed as part of this thesis. EBIKE stands for
Enhancement and Benchmarking of Inverse Kinematics in
Environments.
This library allows benchmarking and comparing any IK
solvers that are implemented as MoveIt plugins. Parame-
ter optimization is currently only possible for PickIK be-
cause it is the only available solver with parameters that

Figure 5.1: EBIKE logo

can be adapted. The optimization uses the Optuna [Aki+19] library, which is typically
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used for hyperparameter optimization in machine learning applications. Given one or mul-
tiple objectives and multiple parameters, it aims to find the parameter set that minimizes
or maximizes the objectives. In contrast to other optimization routines, hyperparameter
optimization focuses on a low number of parameter evaluations and different types of
parameter distributions, such as discrete, uniform-continuous, or logarithmic-continuous.
The library uses the Tree-Structured Parzen Estimator (TPE) [Ber+11] for sampling of
new parameters. The estimator chooses new sampling points by repeatedly determining
the parameter values that yield the highest expected improvement. This is done by mod-
eling the objective with a surrogate function that is optimized in its stead. The parameter
values that maximize the surrogate are used as the new sampling point for the objective,
the objective’s result then updates the surrogate for the next iteration. Optuna is easy to
set up and supports running on a distributed system.

The EBIKE library provides several base classes that can be extended, facilitating inclu-
sion of custom scenarios, IK solvers, and robots. This helps to make the library future-
proof, making it possible to use it for new problems.

Figure 5.2: UML class diagram of EBIKE

Figure 5.2 shows the structure of the library as a UML class diagram. The main class is
Benchmark. It uses REACH’s Python API to run a REACH study on the given scenarios
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and robots, using the selected IK solvers. In the REACH configuration, the optimization
loop is skipped to only evaluate the single-point inverse kinematics performance. REACHs
internal datastructures were modified to capture relevant inverse kinematics statistics
(success rate, solve time, and solver iterations described below) and add them to the
study results available in Python.
The IK, Robot, and Scenario classes are used to configure the corresponding elements of
the study. Each of these classes has subclasses for the different options that can be used.
Currently, IK classes for KDL, TracIK in the Speed and Distance modes, BioIK in selected
modes, and PickIK exist. It is possible to add any other IK solver that is supported by
MoveIt. All extensions to current IK solvers that are described in Chapter 8 are imple-
mented as additional IK subclasses. The robots that currently exist are the UR10 and
the ELISE robot. The existing scenarios are outlined in Chapter 4.
For optimization, the BenchmarkOptimization class is used. It builds on the Benchmark class
to perform the benchmark and uses another implementation of the IK class, PickIKOptuna,
that makes it possible for Optuna to adapt the parameters used by the solver.

Figure 5.3: Entity-Relationship Model of EBIKE

The results of evaluation trials are stored in a results database. The database uses SQLITE
and contains two tables. The experiment table stores metadata of an experiment, the
results table stores the evaluation results for every single pose. Figure 5.3 shows the
detailed database structure.
Evaluation graphs are generated using PyPlot from the results stored in the database.
In order to specify the structure of these plots, configuration text files can be created.
For example, the file in Listing 5.1 will generate a graph for the Barrel and for the Shelf
scenario, each containing the data for the five specified solvers on ELISE. Results are
averaged over the last three trials, minimum and maximum values are also shown in the
graphs. Custom labels, colors, and line styles can be specified.

elise
KDL,TracIKDistance,TracIKSpeed,PickIK,BioIK
labels:KDL,TracIK (Distance Mode),TracIK (Speed Mode),PickIK,BioIK
colors:0,1,1,2,3
styles:solid,solid,dotted,solid,solid
barrel
shelf

Listing 5.1: Example configuration file for EBIKE's visualization
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The source code has been published on GitHub under the open source MIT license19.

19https://github.com/DLR-MO/ebike

5.3 Example

To give an example for a case where the library gives new insights, benchmarks are created
for a UR10 robot arm. First, four inverse kinematics solvers are compared to each other
on randomly generated poses. This corresponds to standard IK benchmarks that are often
used to evaluate these solvers. Next, the solvers are run on the SmallTable scenario. This
scenario was chosen because the UR10 arm can reach all target poses. Most of the other
scenarios contain points that are too far away or too occluded to be reached by the large
tip of the arm. The results of the experiments are displayed in Figure 5.4. The top row
shows the success rates when a timeout of 1000ms is used. The bottom row shows the
cumulative distribution of the solve rate over time. On the x-axis, the duration it takes
for solving a single position is shown. The y-axis indicates which fraction of the target
poses could be solved within the duration. As an example, the purple line for PickIK on
Random shows that about 20% of the targets were solved within 10ms. BioIK and TracIK
found no more solutions after approximately 3ms.

Figure 5.4: EBIKE output for UR10 on Random and SmallTable scenarios using four
different IK Solvers. Note that the bottom two graphs are truncated at 50ms,
the full timeout was 1000ms.
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It is obvious that while the solvers perform well on the random scenario, where they find
almost all available solutions, the scenario containing collisions proves much more difficult
because the solvers do not properly handle collisions. It also highlights differences between
the solvers that were not apparent from the random sample. For example, PickIK per-
forms better on SmallTable than on Random because it does not handle targets near the
workspace boundaries well but restarts the solver when the final solution collides. These
differences clearly emphasize the need for software that can reliably compare different IK
solvers in surroundings that are not straightforward to solve. The reasons for the differ-
ent performance of the other solvers and improvements in collision-rich environments are
analyzed and developed in the remaining chapters of this thesis.
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Baseline

This chapter presents the baseline performance of state-of-the-art IK solvers on the bench-
marking dataset, serving as a reference for the improvements introduced in Chapter 8.
The selected IK solvers are those that are usable as MoveIt kinematics plugins. These
solvers are KDL, BioIK, PickIK, and TracIK. For KDL, only one variant of the solver
exists. As described in Section 3.1.2, only the “Speed” mode of TracIK is used, returning
the first solution that was found. PickIK supports two modes, “local” and “global”, where
the former is a gradient descent implementation, the latter an evolutionary algorithm.
For the evaluations, only the “global” mode is used. The most modes are available for
BioIK. They are described in Section 3.1.3, but only the default mode is used in these
evaluations. Other BioIK variants are evaluated in Section 7.3.
First, as a general comparison, the solvers are compared in a collision-free environment.
For this, the Random scenario is used, where 1000 valid joint states are randomly sampled
to generate reachable end effector poses. These poses are then used as input to the IK
solvers and their success rates and solve times are recorded.
Then, the real-world scenarios of the benchmarking dataset are evaluated. The goal is to
find a configuration where the end effector reaches the target pose on the surface of the
object, touching it, but not colliding with it in any place. The objects are described in
Chapter 4. All evaluations are performed on the ELISE robot mounted on an UR10 arm.

Figure 6.1: Cumulative solve rates for the Random scenario, complete timeout and de-
tailed view of the first 5ms
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Duration 5ms 10ms 100ms 1000ms Mean

KDL 98.9% 99.9% 100.0% 100.0% 0.475ms

TracIK 79.6% 79.6% 79.6% 79.6% 0.205ms

PickIK 20.1% 42.6% 79.0% 92.7% 55.250ms

BioIK 74.1% 74.1% 74.1% 74.1% 0.252ms

Iterations 1 2 3 5 10 100 Mean

KDL 77.2% 93.2% 97.6% 99.4% 100.0% 100.0% 1.343
its

TracIK 79.6% 79.6% 79.6% 79.6% 79.6% 79.6% 1.000
its

PickIK 78.4% 86.8% 89.0% 90.4% 91.7% 92.7% 1.422
its

BioIK 74.1% 74.1% 74.1% 74.1% 74.1% 74.1% 1.000
its

Table 6.1: Solve rates after given durations and solver iterations on Random

From the cumulative solve rates on Random presented in Figure 6.1, it is apparent that
three out of four solvers find solutions very quickly. KDL, TracIK, and BioIK manage to
find about 80% of the solutions after less than 1ms. KDL is the only algorithm that man-
ages to find all solutions. TracIK and BioIK stop to find new solutions relatively quick,
PickIK continues to a maximum duration of about 700ms, but also does not manage to
find all solutions.
The tabular overview in Table 6.1 shows the solve rate within a range of durations (5ms,
10ms, 100ms, 1000ms) and the mean solve time for all successful solves. This format
was used to quantify how quickly the solvers find solutions. The mean value should only
be considered in combination with the number of solutions found after the full timeout
because a solver that quickly stops finding solutions but does not find all of them has a
better mean solve rate than a solver finding all solutions but more slowly.
The second table shows the number of iterations done by the algorithms. One iteration
here means that one call to the solution callback, usually performing collision checking,
was done. In the case of the Random scenario, the solution callback was only used to de-
tect self collisions. From the results table, it can be seen that TracIK and BioIK only use
a single iteration and fail immediately if the solution callback fails. The results also show
that while PickIK is much slower than KDL, the algorithm performs better in the first
iteration. There, 78.4% of the solutions are found, compared to 77.2% found by KDL in
the first iteration. KDL then quickly proceeds to increase the fraction of solutions found in
the next iterations and surpasses PickIK. The measure of solver iterations therefore helps
to evaluate the difference between implementation and theoretical solver performance.
For example, a solver that considers collisions might take more time but work better on
fewer solver iterations, showing that there is a high potential that could be unlocked if
the implementation is improved.
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Figure 6.2: Partial coverage (80.4%) of Table using TracIK in rViz

For the collision scenarios, similar behavior with worse performance can be seen. Fig-
ure 6.2 shows the results of TracIK on Table. The table was not fully covered because
collision-free configurations could only be found for the front part of the table, not for the
back part. Similar behavior was observed for BioIK. Figure 6.3 shows the quantitative
results for Table. Again, TracIK and BioIK did not find all results and PickIK did not find
any solutions that took longer than 500ms. In this scenario, the time onset is different
than in the random scenario, no solver found solutions in the first 1.5ms, whereas in the
random scenario, most solutions were already found within that time frame. The results
for SmallTable and TableObjects look similar to those of Table. Detail views for Barrel
and Shelf are shown in Figure 6.4. In these scenarios, the solvers find solutions very slowly
because of the high number of colliding objects. Only KDL manages to find all solutions
within the timeout of 1000ms. The hydrogen tank scenarios are even more extreme, KDL
is the only solver that manages to find a reasonable fraction of solutions, and even these
are at 56.8% and 15.2% for the HydrogenTank and HydrogenTankSmall scenarios, respec-
tively. The plots for all scenarios can be found in Appendix A1, the quantitative results
in Appendix A3.
The results of the solvers show that there is a clear need for improvement of IK solvers in
collision-rich environments. Even relatively simple scenarios pose problems for state-of-
the-art solvers. The hydrogen tank scenarios are not solvable by them within a reasonable
amount of time.
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Figure 6.3: Cumulative solve rates for the Table scenario, complete timeout and detail
until 5ms

Figure 6.4: Solver performance on Barrel and Shelf scenarios, detail view until 50ms. On
Shelf, TracIK and BioIK find almost no solutions, the graphs are therefore
barely visible.

Figure 6.5: Hydrogen tank scenarios. Only KDL can solve a significant number of targets.
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Implementation

This chapter describes the implementation of the MoveIt plugins used in the evaluations
in Chapter 8, focusing on the two inverse kinematics solvers RelaxedIK and BioIK. Re-
laxedIK is an optimization-based solver, with its C++ implementation developed as part
of this work. BioIK 2, a memetic solver that combines evolutionary algorithms and opti-
mization, was already available as a MoveIt plugin but was modified to make previously
hard-coded parameters configurable.
The code developed in this thesis is implemented for the ROS 2 framework and the MoveIt
motion planning library. The inverse kinematics solvers are created as MoveIt kinematics
plugins.

7.1 MoveIt Kinematics Plugins

Kinematics plugins for MoveIt are C++ classes derived from the KinematicsBase class.
This class defines several methods that should be implemented. The initialize method
can be used to set up the solver and initialize data structures for later use. As a
kinematics plugin is instantiated per joint model group, pre-calculations regarding this
group can already take place. The main methods of the class are the getPositionIK
and searchPositionIK methods. getPositionIK should be used for local solvers only, i. e.,
solvers that search for a solution in proximity to the previous solutions. Random restarts
and jumps in joint space are not allowed as this method is supposed to be used for tra-
jectory tracking. The searchPositionIK, by contrast, is allowed to find any solution to
the IK problem it receives. In MoveIt’s code base, mostly searchPositionIK is used. Most
notably, it is the function that is used in the setFromIK method of the RobotState object,
which is the only use of inverse kinematics that is exposed by MoveIt.
The work in this thesis only uses the searchPositionIK method as it is the more general
one. One signature of the method is shown in Listing 7.1. There are multiple other, over-
loaded uses of the function, but they do not contain more information required for this
thesis.
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  bool
  searchPositionIK(const geometry_msgs::msg::Pose& ik_pose,
                   const std::vector<double>& ik_seed_state,
                   double timeout,
                   std::vector<double>& solution,
                   const IKCallbackFn& solution_callback,
                   moveit_msgs::msg::MoveItErrorCodes& error_code,
                   const kinematics::KinematicsQueryOptions& options) const;

Listing 7.1: Signature of searchPositionIK20

20https://github.com/moveit/moveit2/blob/2.10.0/moveit_core/kinematics_base/include/moveit/
kinematics_base/kinematics_base.h#L253-L257

The ik_pose parameter is the target for the IK solver. The ik_seed_state is the initial
seed used by the solver. It is initialized with the current state of the robot. The timeout is
the maximum time available, in seconds. solution is the output parameter of the func-
tion. solution_callback is a function provided to the solver that should test whether a
found solution is valid. It is mostly used for collision checking. error_code is an output
parameter giving further information on a failed execution. options are more options
given to the solver. They can, for example, be used to specify that a problem only has to
be solved approximately.
MoveIt kinematics plugins are not collision-aware and have no information about the en-
vironment. Usually, the solution callback is used for collision checking, but it only provides
a binary valid/invalid decision and no further information. Custom goals can be used to
add this information by using the options parameter, but this requires a non-standard
extension of the KinematicsQueryOptions struct. In Tesseract, inverse kinematics plugins
are also not environment-aware “to simplify the process of implementing both forward
inverse kinematics”²¹.

²¹https://tesseract-docs.readthedocs.io/en/latest/_source/core/overview/index.html#tesseract-
kinematics, accessed 09/09/2024

7.2 RelaxedIK C++

The C++ implementation of RelaxedIK is done within the ROS 2 framework. The soft-
ware itself is designed as a plugin for the MoveIt motion planning library and called
relaxed_ik_cpp.
In relaxed_ik_cpp, the searchPositionIK function is defined and creates an instance of
an nlopt-cpp optimization problem that is then solved using SLSQP. The problem that
is minimized consists of multiple objectives that are managed by an objective master. All
objectives provide their own cost function and are assigned a weight. The weighted sum
of the individual costs result in the total cost. In addition, a gradient is calculated by the
objective master. The gradient is computed numerically by changing all parameters by
a small value (10−7) and recalculating the cost functions. The loss function differences
divided by epsilon build the gradient.
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Figure 7.1: Class diagram of RelaxedIK. RelaxedIKPlugin inherits from MoveIt’s
KinematicsBase. It uses nlopt_cpp to call ObjectiveMaster which holds multi-
ple Objectives, calculates their function values and approximates a gradient.

In contrast to BioIK, an advantage of RelaxedIK is that the objective functions are called
much less often. An analysis on the Random scenario, which both solvers can solve very
quickly, shows the difference: BioIK requires an average of 20300 objective function calls
on the 1000 targets of Random, RelaxedIK only requires an average of 582 calls. Natu-
rally, the number of objective function calls depends on the difficulty of the problem and
whether the solve was successful or failed within the given timeout.

Figure 7.2: Histogram of objective function calls for BioIK and RelaxedIK. The plot
shows how many of the 1000 targets of the Random scenario required how
many objective function calls. RelaxedIK consistently requires fewer calls.
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In the implementation of RelaxedIK, the same result verification method as for TracIK
and BioIK is used, i. e., the position and axis-angle difference vectors are not larger than
10−5 in any dimension. No verification method for other goals has been implemented.

Figure 7.3: Comparison of RelaxedIK to other MoveIt IK solverson Random, Table, Shelf,
and HydrogenTank. RelaxedIK is the fastest solver to find all solutions on
simpler scenarios and is only outperformed by KDL on more complex sce-
narios. Appendix A2 shows the results on more scenarios.

Figure 7.3 shows RelaxedIK on selected scenarios in comparison to the current IK solvers
available for MoveIt. RelaxedIK outperforms all existing solvers on the Random, Barrel,
Shelf, and Table scenarios. On TableObjects and SmallTable, its performance is similar
to KDL, on HydrogenTank and HydrogenTankSmall, KDL performs better. In contrast
to KDL, RelaxedIK’s goals can be adapted and tuned for specific problems. Combined
with its high performance, this makes it a strong candidate for further improvements in
Chapter 8.

7.3 BioIK

BioIK is also a MoveIt Kinematics Plugin and therefore shares some general structures
with RelaxedIK. BioIK has been extensively profiled and optimized in [Rup+18]. For
example, the default MoveIt RobotState class is replaced by custom forward kinematics
as forward kinematics are the part of the calculation that took the most time. The BioIK
implementation has been adapted to make some parameters configurable, making it pos-
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sible to perform automatic parameter optimization using EBIKE. These parameters are
listed and described in Table 7.1.

Parameter Description Default Value

population_size Number of possible parents 2

child_count Number of children 16

elite_count Number of elites 1

threads
Number of parallel (independent)
threads

4

species_count Number of populations per thread 2

memetic_evolution_gens Number of iterations for evolution 8

memetic_opt_gens Number of iterations for optimization 8

Table 7.1: Configurable parameters for BioIK

Allowing changes to the population size raises the question for how the parents should
be selected if more or less than two individuals are available. It is clear that the behavior
should not be changed when the population size is set to 2, where the better individual
is used as parent1 and the worse individual is used as parent2. The decision is therefore
made to always select two distinct parents from the population and make the better one
parent1. The selection happens randomly and individually for each child to be created.
In addition to the parameters, BioIK’s optimization solvers have been made available for
ROS 2.
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IK Solver Improvements

This chapter describes the improvements made to existing inverse kinematics (IK) solvers.
Most changes are applied to RelaxedIK and BioIK because these solvers accept cost func-
tions. Although PickIK also supports cost functions, it uses the same principle as BioIK
but with significantly lower performance.
The evaluation is done using the EBIKE library developed in Chapter 5. An IK solver is
evaluated by consecutively attempting to solve 1000 different, randomly generated, points
on the surface of the objects. For the Random scenario, 1000 target positions that are ran-
domly distributed across the joint space are given to the solver. All target poses are solved
independently of each other. No seed is given to the solvers and the solver timeout is set to
one second, unless explicitly stated otherwise. All results are averaged across three trials,
with the evaluation graphs displaying the average, minimum, and maximum values. The
solvers used for evaluation are explained in detail in Section 3.1, their termination criteria
are also explained there. For TracIK, BioIK and RelaxedIK, the linear error is always
below 1.73 ⋅ 10−5 meters, the angular error is below 1.73 ⋅ 10−5 rad ≈ 10−3 degrees. For
KDL and PickIK, the maximum linear or angular error is 10−5. This difference is due to
the implementation of the error function but it is not deemed critical for the evaluations.
In the context of this evaluation, BioIK always refers to the default (bio2_memetic) mode
of the C++ reimplementation of BioIK (see Section 3.1.4).
All evaluations are performed on an AMD Ryzen 9 7950X 16 core / 32 threads processor
running Ubuntu 22.04 and ROS 2 Rolling.

8.1 Rejection Sampling

None of the current solvers except KDL and RelaxedIK handle failed solution callbacks
correctly. If the solution callback failed, these solvers return immediately with a negative
result even when the timeout is not exceeded. This is critical for collision avoidance. All
of the solvers do not internally handle collisions, therefore the solution callback is the
only way in which they are treated. Failing the IK when the callback fails leads to missing
solutions. To circumvent this problem, KDL and RelaxedIK perform rejection sampling:
When an IK solution is found but the solution callback fails, the solver is restarted with a
random seed. This is repeated until a solution passing the callback is found or the timeout
is exceeded. TracIK and BioIK 2 do not perform rejection sampling; PickIK does, but the
implementation is wrong²².

²²https://github.com/PickNikRobotics/pick_ik/pull/73
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Adding rejection sampling to existing solvers is relatively easy. The complete code of
the solver except for setup is wrapped in a while loop that runs as long as time is still
available. Whenever the code previously returned without a solution, the robot is reset
to a random configuration and the solver is restarted with an updated timeout.

Figure 8.1: Results of IK solvers with and without rejection sampling. KDL is added as
a baseline. On HydrogenTank, TracIK and BioIK do not solve a single target.

Figure 8.1 shows the improvements made by adding rejection sampling. On the left, the
results on Random are shown. The difference for TracIK and BioIK is clear, they previ-
ously stopped optimizing at less than 80%, with the change they continue until all solu-
tions are found, both surpassing KDL on their way. While TracIK initially finds solutions
faster, BioIK is the first solver to find all solutions. PickIK does not show a difference
for small durations, but where the solver previously stopped finding new solutions after
approximately 150ms, the correct implementation of rejection sampling continues finding
solutions.

Duration
Rejection
Sampling?

5ms 10ms 100ms 1000ms

KDL ✓ 98.9% 99.9% 100.0% 100.0%

× 79.6% 79.6% 79.6% 79.6%
TracIK

✓ 100.0% 100.0% 100.0% 100.0%

× 20.1% 42.6% 79.0% 92.7%
PickIK

✓ 28.0% 45.9% 82.5% 95.8%

× 74.1% 74.1% 74.1% 74.1%
BioIK

✓ 100.0% 100.0% 100.0% 100.0%

Table 8.1: Results of IK solvers with and without rejection sampling on Random

Table 8.1 confirms the results. All solvers with rejection sampling correctly implemented
find all solutions when the full timeout is available, only PickIK still does not find all
solutions.
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Regarding solver iterations, we can see in Table 8.2 that TracIK now uses 1.315 iterations
on average, BioIK uses 1.36 iterations on average and PickIK increased its average itera-
tions from 1.422 to 2.356.

Solver
Mean Iterations without

Rejection Sampling
Mean Iterations with
Rejection Sampling

KDL - 1.343

TracIK 1.000 1.315

PickIK 1.422 2.356

BioIK 1.000 1.360

Table 8.2: Mean solver iterations with and without rejection sampling on Random

The right panel of Figure 8.1 shows that TracIK and BioIK with rejection sampling
manage to outperform KDL. All other scenarios show similar improvements; TracIK and
BioIK with rejection sampling consistently show similar but slightly better solve rates
than KDL.
These evaluations show that rejection sampling is a very simple strategy to increase the
solve rates for problems that use a solution callback to handle self- or environment col-
lisions.
All following situations where the solvers BioIK, TracIK, or PickIK are mentioned use
the implementations with rejection sampling. RelaxedIK and KDL already use rejection
sampling in their base implementation.

8.2 Collision Distance

As a first approach to incorporate collision checking directly into the IK solver, the
distance to collision was used. This function is already implemented in MoveIt as the
distanceToCollision function. Similar to the approach in CollisionIK [Rak+21], the func-
tion ( 2𝜀

𝜀+𝑑)
2
 is used to weigh the distance 𝑑. 𝜀 serves as a cut-off point between collision

and non-collision; if 𝑑 is equal to 𝜀, the cost is exactly 1. The output of this cost function
was used as input for the groove loss and the same parameters as in CollisionIK have
been used (𝑠 = 0, 𝑐 = 2.5, 𝑛 = 1, 𝑟 = 0.035, 𝑔 = 4).
In CollisionIK, the distance from all links to all obstacles is used. While this potentially
results in a higher number of distance calculations, the results might be more usable by
the algorithm because a clearer gradient might be present if a change to the configuration
only brings parts of the robots further away from collision. However, the implementation
of this approach in MoveIt with FCL proved difficult. Therefore, only the overall distance
to a collision was used. This approach can help to steer away of collisions, but all colliding
states have the same cost and states where the end effector is touching or almost touching
the surface of an object have almost the same cost as a collision.
To reduce the complexity of collision checks, MoveIt’s allowed collision matrix (ACM) can
be leveraged. This matrix specifies which collisions are checked and which are ignored. In
this case, the UR arm can be added to the matrix so that all collisions of the arm are
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ignored. This should speed up distance calculations because only collision distance from
ELISE’s three links to the mesh are calculated.
Implementing and executing this idea shows that this approach is not feasible. Neither
BioIK nor RelaxedIK manages to find a single solution within the one-second timeout.
Using the ACM to reduce the number of possible contacts, RelaxedIK is able to find
around 0.2% of the solutions within the time frame.

Solver Successful
Total
time

Calls to
objective
function

Time
spent on
collision
checking

Time per
collision
check

✓ 334.4ms 63100 × ×
RelaxedIK

× 1001.2ms 206000 × ×

RelaxedIK with
 CollisionDistance

× 1011.3ms 547
1009.1ms
(99.8%)

1.866ms

✓ 463.2ms 820
457.6ms
(98.7%)

0.583ms
RelaxedIK with

ACMCollisionDistance
× 1002.8ms 2280

991.2ms
(98.8%)

0.448ms

Table 8.3: Time spent on collision checking in RelaxedIK (averaged over the 1000 IK
queries of HydrogenTank). Results are grouped by their query success and
rounded.

In order to better understand the reasons why so few solutions are found, these results
are investigated for RelaxedIK. Table 8.3 shows quantitative results of RelaxedIK on Hy-
drogenTank. When RelaxedIK is run with the default PoseGoal, the objective function is
called very often. When a solution is found, it is called on average 60k times, when no
solution is found and the full timeout is used, it is called 200k times. This corresponds to
approximately 200 objective function calls per millisecond for both successful and unsuc-
cessful queries. When collision distance checking is used, the number of objective function
calls is greatly reduced to around 500 calls. The reason for this is that a single collision
distance check requires almost 2ms, so that 99.8% of the solver time is spent within the
collision distance checking call. When the ACM is used to disable most collisions, the
distance query time is reduced by almost 70%. Therefore, more calls to the objective
function can be made and the solver is more likely to find results. In the experiment
shown in the Table 8.3, this was successful for 0.2% of the targets. Without the collision
distance queries, some solutions are also found within 500-800 objective function calls,
therefore it makes sense that these are also found using the CollisionDistance goal.
For BioIK, the number of objective function calls is even more extreme: When a result
was found, the average was approximately 1.9 million evaluations, when no solution was
found, the objective function was evaluated 6.6 million times. Even on the random sce-
nario on which the solver is optimized, the average number of calls was 20k and the
minimum number of calls required to find any solution was approximately 6000. This
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shows that even with a perfectly shaped objective function that requires as much time as
the collision distance check, no solution would be found.
The experiments showed that using the collision distance, even when the number of col-
lision checks is greatly reduced, is too cost-expensive because a single collision distance
query already requires around 0.5ms, limiting the number of objective function calls.

8.3 Penetration Depth

Instead of using the distance to a collision, the penetration depth can be used as a measure
for collision cost. While this does not help the solver steer clear of collisions, it helps in
guiding it away from collisions. In practice, this might be more relevant because it makes
it possible for the robot to touch or hover over a surface without inflicting high cost.
The function (𝑑𝜀)

2
 is used, resulting in a quadratic cost for higher penetration depths

and using an epsilon guiding the cost function such that a penetration depth of 𝜀 yields
a cost of 1. For RelaxedIK, the groove loss is used, with the parameters 𝑠 = 0, 𝑐 = 0.01,
𝑛 = 1, 𝑟 = 10, 𝑔 = 2. These parameters are the same as for the pose goals, except that 𝑐
was adapted to punish relatively small penetration values more strongly.

Figure 8.2: Penetration depth results on HydrogenTank. While the solvers using pene-
tration depth perform worse in terms of time, they perform better in terms
of calls to the solution callback. BioIK (DepthGoal with ACM) did not solve
a single target.

Figure 8.2 shows the results of using penetration depth with BioIK and RelaxedIK.
Clearly, both solvers are slower when penetration depth is used than when no penetration
depth is used. However, when looking at solver iterations, the solvers using penetration
depth require fewer iterations to find solutions than the solvers without penetration depth.
This shows that using penetration depth is a good metric for a cost function because it
does help the solver find solutions.
The profiling results for RelaxedIK can be seen in Table 8.4. Penetration depth calcula-
tion is much faster than collision distance queries, taking around 11ns compared to 1.9ms.
Therefore, the solver can reach more solver iterations and is able to find more solutions.
Still, more than 90% of the solver time is spent within the penetration depth query, mak-
ing it more difficult to explore and exploit as well as when no penetration depth query is
used. Once again, this effect is more extreme for BioIK where more calls to the objective
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Solver Successful Total time
Calls to
objective
function

Time
spent on

penetration
depth

calculation

Time per
penetration

depth
calculation

✓ 334.4ms 63100 × ×
RelaxedIK

× 1001.2ms 206000 × ×

✓ 440.7ms 36100
393.4ms
(88.2%)

0.011ms
RelaxedIK with

 Penetration Depth
× 1000.1ms 84900

903.6ms
(90.3%)

0.011ms

✓ 468.4ms 79900
346.9ms
(72.9%)

0.004msRelaxedIK with
 Penetration Depth

 and ACM × 1000.1ms 176000
747.1ms
(74.7%)

0.004ms

Table 8.4: Time spent on penetration depth checking in RelaxedIK (averaged over the
1000 IK queries of HydrogenTank). Results are grouped by their query success
and rounded.

function are necessary. While the solver iterations for both are similar, indicating that
using the penetration depth metric works equally well for both solvers, BioIK is slowed
down even more by the queries.
As in the previous section, the penetration depth query has also been facilitated by em-
ploying the ACM. While the speed of the penetration depth checking is reduced, the
solver also finds fewer solutions (14.1% instead of 23.1% with a timeout of 1000ms). This
shows that the penetration depth when only the endoscopic part is considered does not
fully capture the extent of the problem.

Figure 8.3: Penetration depth solver and collision distance solver with a timeout of 10s

In order to better evaluate the potential of the penetration depth solver and the collision
distance solver, they are run again with a larger timeout of 10s. The results are shown
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in Figure 8.3. In terms of time, both solvers remain outperformed by KDL. Regarding
solver iterations, however, the penetration depth solver remains in a constant lead to
KDL, while the collision distance solver is not able to compete. This emphasizes the result
that penetration depth is a better cost function than collision distance, regardless of their
computation times.

8.4 Improving Distance Query Efficiency

Unfortunately, distance and penetration depth queries in FCL are quite expensive com-
pared to simple collision checking. As shown in the previous sections, distance queries are
especially expensive. Tests of two simple colliding, non-convex meshes gives approximate
times of 3μs per collision checking call compared to 60μs per distance call. Penetration
depth calculation, in contrast, does not require a significant time overhead compared to
collision checking. These results show that it is difficult to perform a high number of
distance queries in the short time frame available for an inverse kinematics solver. An
approach that could be used to improve distance checking time would be padding-based
binary search. FCL makes it possible to give objects padding, i. e., a layer around the
object where a penetration already counts as a collision. Normally, padding is used to
ensure safety margins around objects and avoid them moving extremely close to each
other. Instead, padding can also be used to perform binary search of an objects collision
distance. In the time required to perform a single distance call, 20 collision checking calls
can be performed, each cutting the current distance accuracy in half. Starting with an
accuracy of for example 40 centimeters, as objects that are further away from each other
than that can be considered irrelevant, 20 bisections would result in an accuracy of 380nm
which is much more precise than required. Instead, ten queries would already bring the
accuracy to a sub-millimeter resolution, cutting the distance query time in half. Unfor-
tunately, this approach is not possible because padding is not correctly implemented in
FCL. A patch has been suggested but is not available for ROS 2 at the time of writing²³.

²³https://github.com/moveit/geometric_shapes/pull/238

Even when the patch is available, the gradient created with this method might not be
usable because only discrete steps of possible distances are possible. In addition, the faster
collision distance queries might not yield better overall results because even with larger
timeouts tried in the previous section, the collision distance did not serve as a good cost
function.
Since a lot of the calculations in RelaxedIK stem from the calculation of the gradient, it
would also greatly improve the query speed if these calculations could be reduced. When
distance or penetration depth queries are performed with FCL, the contact normal is also
provided, i. e., the vector that points from one colliding object to the other. This vector
could be used to calculate an approximation of the gradient because it gives the direction
in which the penetration depth or collision distance decreases or increases for each colli-
sion object. Such an improvement could increase the efficiency of the solver, but as the
solver quality measure of solver iterations instead of solve time is already independent of
the solver efficiency, this approach was not implemented within the scope of this thesis.

59

https://github.com/moveit/geometric_shapes/pull/238


IK Solver Improvements Improving Distance Query Efficiency

8.5 RCM Objective

Figure 8.4: Illustration of different targets solved by traversing a remote center of motion
(in red)

A remote center of motion can be added as an objective as well. For this, the remote
center of motion has to be defined manually for each object in the dataset. When using
the equation for 𝑝rcm from Section 2.12, the link that has to pass through the remote
center of motion has to be defined in advance. If it is not desired to constrain the robot to
a single link passing through the RCM, the formulation has to be adapted to work for all
links. Therefore, a clamp operator is included into the function to clamp the value of 𝑝𝑟𝑝𝑠
to a value between zero and one. This ensures that the projection of the RCM always
lies on the current link and not anywhere else on the corresponding line. The complete
objective function is then taken as the minimum of all the distances between the target
point and the projected RCM point.

𝑓RCM = min
𝑙1,𝑙2 consecutive

‖𝑝trocar − 𝑝rcm(𝑙1, 𝑙2)‖

with

𝑝rcm(𝑙1, 𝑙2) = 𝑝𝑙1 + clamp(𝑝𝑙1𝑝𝑠(𝑙1, 𝑙2), 0, 1)𝑝𝑠(𝑙1, 𝑙2)

𝑝𝑠(𝑙1, 𝑙2) =
𝑝𝑙2 − 𝑝𝑙1
‖𝑝𝑙2 − 𝑝𝑙1‖

A disadvantage of this method is that it assumes all links to be straight. It is therefore
not usable for robots with curved links such as Eeloscope2 (see Figure 2.9). Additionally,
it would be advantageous to remove manual annotation requirements from the process.
However, automatically detecting the orifice in a mesh is not trivial and out of scope for
this thesis.

Figure 8.5: Results of RCMGoal on HydrogenTank and HydrogenTankSmall

For RelaxedIK, the output of the objective function is wrapped in the groove loss function
with parameters 𝑠 = 0, 𝑐 = 0.01, 𝑛 = 1, 𝑟 = 10, 𝑔 = 2. The function output is used directly
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for BioIK, but the condition that the cost function has to be smaller than 10−10 to accept
the solution was replaced by enforcing a distance of no less than 1mm to the RCM.
The results show that both BioIK and RelaxedIK show substantial improvement when
the RCMGoal is used compared to the baseline. Interestingly, BioIK seems to improve
significantly more than RelaxedIK when the goal is used. A reason for this could be that
the respective weight of the goal is different for BioIK and RelaxedIK and therefore the
RCMGoal influences the overall cost differently. Still, it is evident that the RCMGoal
is very promising and significantly improves the results on HydrogenTank and Hydro-
genTankSmall. For most of the other scenarios, for example Shelf or TableObjects, this
approach is not usable because there is no clear RCM that can be used.
The function can also be changed such that only one link can be used to traverse the
RCM. For that, only the argument of the min function is used as the objective function.
As Figure 8.6 shows, this results in faster convergence. However, some points are not
reached that were reached with the previous approach because it is not possible to reach
them when the longest link is used for the RCM.

Duration 5ms 10ms 100ms 1000ms

BioIK 0.1% 1.3% 17.3% 68.9%

BioIK (RCMGoal single link) 3.8% 33.8% 94.0% 95.2%

BioIK (RCMGoal multiple links) 0.0% 1.2% 55.6% 98.6%

RelaxedIK 0.6% 1.1% 14.1% 48.4%

RelaxedIK (RCMGoal single link) 2.9% 43.1% 94.3% 96.1%

RelaxedIK (RCMGoal multiple links) 2.0% 16.6% 74.6% 99.7%

Figure 8.6: Comparison of different RCM goals on HydrogenTank. Best values are printed
in bold.
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PivotIK builds upon the same approach but uses a different method for optimization.
BioIK is also able to reach the pose and keep the RCM much faster, but still many of the
obtained configurations result in collisions.
The Python implementation had a similar speed on my computer24 as on theirs (around
75ms). The C++ implementation seems to be considerably faster (they claim 0.75ms

24Intel Core i7-1365U (6 cores / 12 threads)

per solve). However, when using ELISE and the hydrogen tank goals (without collision
checking) the solver is much slower, its solve speed reduces to an average of 741 ms per
solve. Assuming the advantage of the C++ implementation scales linearly, it would be
able to solve the problem in 7.41ms. While this result reaches the pose and keeps the
RCM, it does not necessarily avoid all collisions. BioIK performance on ELISE was at
9.7ms with the RCMGoal, which is slower, but in the same order of magnitude. The
C++ implementation of PivotIK is not published at the time of writing, so there is no
way of verifying their results or testing the IK solver on ELISE. Therefore, the current
implementation of PivotIK cannot be used to speed up the solving process, but a future
C++ release could potentially change that. The difference to BioIK, however, is compa-
rably small so that no significant speedup is expected from the C++ implementation.

8.6 Collision Point Distance

Since the analytical RCM objective described in the previous chapter does not work if the
robot does not have straight links, a solution considering link geometries has to be found.
To find the distance between a robot and a point in space, the collision checking library
can be leveraged. A possible approach for this is to create a collision scene containing
only the robot and a sphere at the RCM, disabling self-collisions and checking for collision
distance.
In order to make sure to only encourage using the RCM with the correct link, the allowed
collision matrix can be used. Collisions between all links can be allowed, only between
the target link and the RCM object, they should be forbidden. Therefore, the collision
distance is only calculated between these objects.
Concerning the implementation, a sphere of diameter 1cm was added to MoveIt’s plan-
ning scene at the RCM point. The distance was calculated using the distanceToCollision
method and used as input for the groove loss (parameters: 𝑠 = 0, 𝑐 = 0.01, 𝑛 = 1,
𝑟 = 10, 𝑔 = 2).
When no ACM is used, i. e. any link can go through the RCM, the approach is signi-
ficantly slower than the RCMGoal. For small timeouts, the solver also performs worse
than the RelaxedIK solver without any additional goals. However, starting from 200ms,
the goal starts to outperform the pose-only solver. A final score of approximately 75%
is reached on HydrogenTank after the full 1000ms timeout. The collision point distance
function without an ACM is therefore not a suitable objective function.
When the ACM is used, the solver performs very well, solving 97.5% of the targets. Sur-
prisingly, this is more than the solve rate of the analytical RCM solver using the single
link (96.1%). A reason for this could be that the solver can terminate slightly earlier than
when the RCMGoal is used because the diameter of the collision object and the robot

62



IK Solver Improvements Collision Point Distance

Figure 8.7: Comparison of RCM goals on HydrogenTank and HydrogenTankSmall

link make the objective function reach its minimum slightly earlier. The same reason
could explain the worse performance when the opening of the fuel tank is smaller. There,
every additional centimeter of deviation from the opening center increases the chance of
collisions drastically.
On HydrogenTank, both solvers manage to find more than 50% of the solutions during
the first solver iteration.

Solver Successful
Total
time

Calls to
objective
function

Time
spent on
collision
checking

Time per
collision
check

✓ 334.4ms 63129.9 × ×
RelaxedIK

× 1001.2ms 206476.4 × ×

✓ 33.15ms 11863.8
12.7ms
(22.4%)

1.15𝜇s
RelaxedIK with

 Collision Point Distance
× 1000.2ms 516297.9

553.6ms
(55.4%)

1.15𝜇s

Table 8.5: Time spent on collision point distance in RelaxedIK when the ACM is used
(averaged over the 1000 IK queries of HydrogenTank). Results are grouped by
their query success.

Table 8.5 shows the detailed time analysis of the solver. Calculating the collision distance
between a sphere and a single link of the robot is very fast, taking only 1.15 microseconds.
Therefore, much less of the calculation time is spent on collision checking and the solver
can perform many calls to the objective function. As can be seen, the RCM metric reduces
the average number of objective function calls when a solution is found from around 63k
to 12k.
This result shows that collision checking and distance query is not generally slow but
depends on the problem. Using a single collision object to enforce an RCM goal is a viable
alternative to the analytical approach and therefore makes it possible to leverage the ad-
vantages of the RCM goal for robots with non-straight links. The differences between the
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analytical and numerical RCM goals with multiple links highlight the importance of fast
objective function execution. Even though the objective function is good, as the analytical
experiments show, not as many solutions are found because the function execution takes
too much time. Solver iterations are independent of objective function execution times
and provide a good measure of the potential of an objective function.

8.7 Line Objective

Figure 8.8: Illustration of the line objective, keeping a link (circle) on the red line

Another constraint that is highly specific to the problem of fuel tank inspection is to con-
strain the position of ELISE’s first link, the longest bar, to a line. The line goes through
the opening of the container and runs parallel to its length. Placing the base of ELISE’s
first link on this line, the robot should always pass through the opening without colliding
with the container. The disadvantage of this method is that it only works for elongated
objects and robots that have a long, rod-like link. It is also required to specify not only
the opening point but also the direction in which the container extends.
The simplest formulation of this objective is the following, constraining a single point 𝑝
of the robot to a line along 𝑛 through 𝑝𝑙.

𝑓line = ‖𝑝𝑙 − 𝑝𝑝‖

with

𝑝𝑝 = 𝑝 − (𝑛 ⋅ (𝑝 − 𝑝𝑙))𝑛

This is also available as the LineGoal in BioIK 2.
However, this approach does not constrain the orientation of the link. This can be achieved
by including the orientation as a separate goal. The BioIK OrientationGoal, for example,
is implemented in the following way:

𝑓orientation = min(‖𝑞𝑙 − 𝑞‖2, ‖𝑞𝑙 + 𝑞‖2)

An alternative is to calculate the angle between the two quaternions, i. e.,

𝑓orientation = 2arccos(|𝑞 ⋅ 𝑞𝑙|)

According to [Rup+18], the first variant of the function leads to faster convergence as it
is faster to compute and has a better gradient.

Duration 5ms 10ms 100ms 1000ms

BioIK (LineGoal) 6.7% 17.9% 96.1% 97.9%

RelaxedIK (LineGoal) 2.3% 20.1% 95.0% 97.4%

Table 8.6: Quantitative results of LineGoal on HydrogenTank

64



IK Solver Improvements Line Objective

Figure 8.9: Results of the line objective on both fuel tanks

The only targets that are not found are those that are very close to the opening. Interest-
ingly, KDL is able to find them. The results on HydrogenTankSmall shown in Figure 8.10
give a clearer view of the problem. Because of the link lengths and joint limits of ELISE,
the targets can only be reached when the robot arm is lifted or lowered. Figure 8.11 shows
a pose that was not achievable using the LineGoal.
To conclude, the LineGoal gives good results for a lot of targets, but it also constrains
the link’s position considerably. Its usability depends strongly on the geometries of the
robot and the specifics of the problem because it does not represent an idea that is as
intuitive as the RCM goal.

Figure 8.10: Cross section of HydrogenTankSmall with targets reached by RelaxedIK.
Red arrows show reachable targets, black are not reached. The opening is
on the right side, the line objective goes horizontally through the red point.
BioIK results look similar.

Figure 8.11: Example solution for a target that is unreachable when using the LineGoal.
Due to link geometries and joint limits, the second joint of the endoscope
is below the opening, requiring the first link to be tilted. The line that the
root of the endoscope (circle) should be on is marked in red.
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8.8 Alignment Objective

Figure 8.12: Illustration of the alignment objective, constraining the orientation of a link
along an axis

The line objective constrains the position of a link of the robot. It may be desirable to
instead constrain its direction. For this reason, the alignment objective can be used. It
encourages a link to align with a given axis.
The cost function for the alignment objective is chosen as the distance between the unit
vectors in the target and the current orientation. The vector distance is used instead
of a quaternion difference because the rotation around the direction vector does not
matter. This cost function is already available as the DirectionGoal in BioIK and was
added to RelaxedIK. RelaxedIK uses the groove loss with parameters 𝑠 = 0, 𝑐 = 0.1, 𝑛 = 1,
𝑟 = 10, 𝑔 = 2.

Figure 8.13: Results of the alignment objective on HydrogenTank. A comparison to the
previous approaches can be found in Section 8.17.

Duration 5ms 10ms 100ms 1000ms

BioIK (AlignmentGoal) 3.1% 5.7% 92.4% 96.7%

RelaxedIK (AlignmentGoal) 5.4% 8.1% 81.5% 96.6%

Table 8.7: Quantitative results for AlignmentGoal on HydrogenTank

The results show that the alignment objective also works for HydrogenTank, but the per-
formance is worse than for the line objective. The reason for this is that, like for the
line objective, the link geometries and joint limits of ELISE do not make is possible to
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find solutions that fulfill the alignment criteria and do not collide. The example shown
in Figure 8.11 also does not work for the alignment objective; the objective constrains
the problem even so much that no solutions at all are found on HydrogenTankSmall.
Therefore, use of the alignment objective is discouraged because it constricts the robot’s
solution space too much and depends highly on the problem geometries.

8.9 Look At Objective

Figure 8.14: Illustration of the look at objective. The red arrows have to point towards
the tank opening

Instead of using the alignment of the first endoscopic link, its direction toward the open-
ing can be used as a metric. In principle, this is similar to the RCM objective because
the link of the robot is straight and when it is pointed towards the tank opening, it
will also go through the remote center of motion. This objective, however, also allows
another link to go through the opening as long as the first link points towards it. The
goal can be implemented as the dot product between the forward axis of the first link and
the normalized vector between the link and the opening. This implementation is already
available in BioIK as the LookAtGoal.

Figure 8.15: Results of the look at objective with BioIK on HydrogenTank and Hydro-
genTankSmall. A comparison to the previous approaches can be found in
Section 8.17.

As can be seen, the goal also leads to a fast convergence, but not all points are reached.
In contrast to the previous approaches, the solve rate on HydrogenTankSmall is also very
good, with over 60% solve rate within the first solver iteration.
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8.10 Kinematic Decoupling

Figure 8.16: Illustration of kinematic decoupling

An approach that works fundamentally different than the previous, cost-function-based
approaches is to split the robot into its endoscopic (distal) and non-endoscopic (proximal)
part. The endoscopic part is the part of the robot that enters the constrained environ-
ment. For the setup used in this thesis, ELISE is the distal part and the UR10 arm is the
proximal part. With this partition, the inverse kinematics problem can be solved in two
steps (see Figure 8.16). First, a solution for the endoscopic part is searched. This can be
any solution for the joints of the endoscopic part that starts from the target pose and does
not collide, optimally also reaching out of the constrained environment to avoid collisions
of the proximal part. In the next step, inverse kinematics for the non-endoscopic part is
solved. Here, the proximal part’s end effector has to reach the pose of the distal part’s
base link. In this process, collisions do not have to be considered because the solution of
the proximal part is outside of the constrained environment. Both partial solutions are
then merged to obtain the solution for the full robot. This way, a solver using kinematic
decoupling solves the inverse kinematics problem by splitting it into two tasks, one with
few degrees of freedom and many potential collisions, the other with few collisions and
more degrees of freedom.
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To achieve kinematic decoupling, the URDF (see Section 2.7) of the endoscopic part has
to be inverted, i. e., a URDF has to be found that represents the inverted transform of
the end effector while using the same joint configurations as the original robot. This can
be achieved in the following way:

𝑇ee = 𝑇1𝑇2𝑇3 = 𝑇1origin𝑇1joint𝑇2origin𝑇2joint𝑇3origin𝑇3joint
𝑇−1ee = 𝑇−13 𝑇−12 𝑇−11 = 𝑇−13joint𝑇

−1
3origin𝑇

−1
2joint𝑇

−1
2origin𝑇

−1
1joint𝑇

−1
1origin

This inverted transform can not be directly translated back to a URDF because it starts
with a joint transformation and ends with an origin transform. Therefore, new parts of
joints have to be added as identity transforms 𝐼 at the start and end of the transform:

𝑇−1ee = 𝐼𝑇−13joint𝑇
−1
3origin𝑇

−1
2joint𝑇

−1
2origin𝑇

−1
1joint𝑇

−1
1origin𝐼

= 𝑇 ′3𝑇 ′2𝑇 ′1𝑇 ′0

with

𝑇 ′3 = 𝐼𝑇−13joint 𝑇 ′2 = 𝑇−13origin𝑇
−1
2joint

𝑇 ′1 = 𝑇−12origin𝑇
−1
1joint 𝑇 ′0 = 𝑇−11origin𝐼

𝑇 ′0 is therefore a fixed joint, the other joints take the configuration values from their cor-
responding joints in the original URDF. The complete chain then reproduces the original
kinematic chain.
This URDF inversion was done manually for ELISE to evaluate the use of kinematic
decoupling. Automating the process is left for future work.
The inverted URDF is used as input for the distal IK solver. Any target or cost function
given to the IK solver also has to be transformed to be expressed relative to the original
target, which is now the base of the inverted distal part. Therefore, when 𝑇𝑝 is the target,
any pose, position, or orientation given to additional goals has to be multiplied with 𝑇−1𝑝
to perform this transform.
For solving the endoscopic part, the question remains which cost function should be used
to help the solver steer toward the opening of the container. Different possibilities emerge.
First, the penetration depth is considered. This approach does not work well because
while the depth is non-zero in collision cases and zero in non-collision cases, it does not
provide a clear gradient, possibly because it is approximated in FCL. Maximizing the
distance to collision does not work either because it is always zero in collision cases and
therefore does not have a gradient. Another idea is to maximize the distance between
the contact point and the target, making the solver try to move the collision as far away
from the target as possible. This approach can indeed lead to finding the way out of the
constrained environment when the way out, e. g., the tank opening, is at the end of the
object. However, it does not work in general because the opening does not always coincide
with the point that is the farthest away. Since ELISE only has three degrees of freedom,
it might also be possible to perform a grid search in configuration space. However, this
approach is probably not efficient enough to be applicable in high-collision environments
like the fuel tanks.
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When only the fuel tank scenarios are considered, some of the objectives from the previ-
ous sections can be used as well. The problem with many of these objectives is that they
are much less clear when applied to the distal part only. For example, the LookAtGoal
might find solutions that put the base link on the opposite side of the tank, making it
unreachable for the proximal part.

Figure 8.17: Illustration of the distal solver goal, the end of the distal part should be as
close to the red point as possible.

Figure 8.18: Results of kinematic decoupling on HydrogenTank and HydrogenTankSmall

A very simple alternative to these goals is to use a cost function optimizing for the posi-
tion of the base link and giving a target that encourages the base link to point in the
direction of the opening (see Figure 8.17). When the IK solver is set to solve the problem
approximately, the end of the endoscopic part will be as close to this point as possible,
resulting in it going though the tank opening. Since the solver for the distal part cannot
solve the problem perfectly, a timeout has to be set. 1ms was found to be sufficient to
find a solution. The proximal solver then uses the remaining time. The solver for the
distal part will always find the same solution because the endoscopic part of the robot
has only three degrees of freedom, leaving no redundancy for the solution. Therefore, the
resampling strategy from Section 8.1 is not applicable and only a single solver iteration
has to be considered.
This approach manages to solve 100% of the targets in the first iterations on Hydro-
genTank. On HydrogenTankSmall, it only manages to find 54% because of the problem
mentioned in Section 8.7. Figure 8.18 shows the results. The presented implementation
is using BioIK for both the proximal and the distal solver.
Finding additional goals that work well with kinematic decoupling is left for future work.
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8.11 Optimization Solvers

The RelaxedIK implementation for C++, described in Section 7.2, uses nlopt-cpp as the
optimization backend. It supports a variety of solvers, some of which are local, some are
global, some use a gradient, others do not. In this thesis, it is interesting to find a solver
which works best for the use case of inverse kinematics. As the fitness landscape is quite
complex, I suspect that a global solver works better than a local solver, and that a gra-
dient should be used in order to guide the solver into the right direction after a potential
global minimum was found.
Preliminary experiments on the Random scenario show that the global solvers perform
quite badly. While some of them find solutions that are in proximity of the targets,
they often use up the full timeout for finding them. Subsequent local optimization to
improve the result often leads to success but requires more additional time. The best
global solver is StoGO, a gradient-based global optimizer that divides the search space
into rectangles that are then searched with a local optimization solver. The other global
solvers, i. e., DIRECT, AGS, ISRES, and ESCH do not give better results. The local
solvers generally provide better results, with PRAXIS and Nelder-Mead giving the best
results for gradient-free solvers. The best-performing solver is SLSQP, other gradient-
based solvers, such as LBFGS, VAR, and TNEWTON also perform well, but worse than
PRAXIS and Nelder-Mead. The BOBYQA and SBPLX algorithms require a little more
time, the COBYLA, MMA, and CCSAQ algorithms even take considerably longer. They
are therefore excluded.

Figure 8.19: Different optimization solvers on three problems. Left to right: Random sce-
nario, Shelf scenario, HydrogenTank with the RCMGoal ACM objective.

Figure 8.19 shows evaluations of the different local solvers on three different problems.
For the Random scenario, the SLSQP solver performs best and most of the other solvers
show similar results, except BOBYQA, which is slower. The Shelf scenario shows similar
results. The third panel shows the HydrogenTank scenario with the RCM objective using
the ACM. Here, a difference between gradient-free and gradient-based solvers becomes
the most clear. In addition, SLSQP is slightly outperformed by the other gradient-based
solvers.
The analysis shows that the SLSQP solver is a good choice for the inverse kinematics
solver. Its speed and accuracy mostly surpass the other solvers. Lack of global solving
capabilities seems to be compensated by the random restarts.
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8.12 Seeding

MoveIt kinematics solvers accept, in addition to the target pose, a seed state. This seed
state should be used to initialize the solver and find solutions that are close to the seed.
Normally, it is set to the current state of the robot. An exemplary use case is to track a
trajectory where new solutions should always be close to previous solutions. Of course,
this feature can also be used to help the IK solver find solutions that are hard to reach.
For example, a solution that already places the robot’s end effector inside of a container
could be used as a seed to find more solutions inside this container. The seed can either be
supplied manually or be generated from the IK solver itself, e. g., by providing the solver
with more time for the first solve than for subsequent solves using the generated seed.
In this section, the influence of a seed is evaluated. For this, only the HydrogenTank and
HydrogenTankSmall scenarios are selected because for them, the seed configuration is
straightforward. It should be a configuration where the endoscopic part of the robot is
inserted into the object. Seed for the scenarios were supplied manually.

Figure 8.20: Seed position used for HydrogenTank

Figure 8.21: Solver performance when a seed is used on HydrogenTank. There is no sig-
nificant difference between seed and no seed.
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Solver No Seed Straight Seed Seed pointing to target

KDL 0.0% 0.0% 48.2%

TracIK 0.0% 0.0% 44.6%

BioIK 0.0% 0.1% 31.4%

RelaxedIK 0.6% 1.0% 10.1%

Table 8.8: Success rates for the first iteration when a seed is used on HydrogenTank.
The straight seed extends the endoscopic joints fully, the target seed uses a
configuration for a single target as seed.

The results show a surprisingly small influence of the seed for all solvers. After the first
call to the solution callback, it makes sense that the seed no longer influences the solution
because all seed information is lost when rejection sampling is performed. Therefore, if
the first solution found was not collision-free, the behavior is the same as without a seed.
For the first call, the reason could be that the endoscopic part of the robot was positioned
straight inside the the tank. Reaching a target therefore requires a large movement of the
endoscopic joints while any movement of the arm joints should be avoided. This specificity
will not be fulfilled by any solver that does not account for the collision object.

Figure 8.22: Targets reached by KDL with a seed within the first solver iteration. The
seed configuration is shown by the robot model

When a seed that already reaches a target is used, this hypothesis could be tested because
the surrounding targets would be found within the first solver iteration. Using a solved
target pose as seed results in significantly better results. KDL and TracIK then find al-
most 50% of the solutions within the first iteration. Table 8.8 shows a comparison of the
two seeds and no seed. For the deterministic solvers, the seed configuration has to be
randomized after the first solution failed the callback. For BioIK, as it is randomized, the
seed could be used multiple times with different results. For that, I implemented a version
that does not randomize its configuration after the solution callback failed, but instead
reuses the seed. The results are shown in Figure 8.23. For the normal solver, the seed
brings a significant initial increase in reached targets, targets that could not be solved
within the first iteration are not reached with a higher probability later on. When the seed
is kept, the next iterations still discover more solutions. However, the overall capabilities
of exploration are limited and the normal solver eventually surpasses the one that keeps
the seed.
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Figure 8.23: Seed variants for BioIK on HydrogenTank: no seed, seed pointing to a target,
seed pointing to a target without random re-initialization

For HydrogenTankSmall, when a seed is used, the KDL solver can solve 26.4% of the
targets within the first iteration. While this is less than on HydrogenTank, it is still a
comparably high number of solutions that are found with a relatively easy approach.
Combining the seed with other approaches developed in this thesis results in more solu-
tions being found within the first solver iteration. However, their results do not improve
significantly because a lot of these solutions would have been found within the first few
iterations anyway.
A different approach to handling a seed would be to use joint weights that penalize
a large movement of some joints. In this case, movement of the endoscopic joints and
wrist_3_joint, the joint that controls the rotation around the endoscopic axis, could be
allowed, while movement of the other arm joints is reduced.
To conclude, a well-selected initial seed can improve the solve rates significantly. It would
be a viable approach to solve for a target using a high timeout or more complex goals
and then use this as seed for another solver. KDL, for example, manages to solve around
50% of the targets collision-free within a single iteration of the solver when a good seed
is given.

8.13 Surface Inspection

In surface inspection tasks, the end effector of the robot does not need to touch its target
pose. Instead, a camera is mounted on the end effector and takes pictures or videos of the
surface which is located at a certain distance from the camera. While this is technically
identical to adding a virtual end effector that has to touch the surface to the tip of the
robotic arm, a camera has more tolerances toward inaccuracies than a gripper. Therefore,
the pose of the camera can be rated using a value function that gives the highest value to
the perfect camera position but allows for discrepancies in the distance and angle toward
the target. This can potentially change IK performance because a different measure of
performance is introduced. In this section, approaches to this cost function approach are
implemented and evaluated using custom goals for RelaxedIK.
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Figure 8.24: Illustration of inspection criteria. The camera on the top right is inspecting
the red target.

For surface inspection, three complementary criteria can be used: The distance to the
target is the distance from the robot’s end effector with the camera to the point that
should be inspected. A good value for it depends on the focal distance of the camera. The
FOV angle is the angular distance between the center of the camera’s field of view and
the target object. Keeping it small ensures that the object is centered in the image. The
normal angle is the angle between the normal of the plane the target is on and the camera.
Small values correspond to a camera that is positioned above the target. In addition, these
criteria may be extended with line-of-sight checking, i. e., checking whether an object
is between the sensor and the target. Since this requires potentially expensive collision
checking operations, it can be replaced with a goal limiting the maximum distance to the
target.
The criteria for scanning are implemented in RelaxedIK using the swamp loss with pa-
rameters 𝑎1 = 1, 𝑎2 = 0.1, 𝑛 = 8. The wall values are 0.0 and 0.02 for the distance, and
−0.2 to 0.2 for the angles (approximately 11°). The termination criterion for RelaxedIK
is changed to enforce distance, FOV angle, and normal angle values within these walls.
The idea of these cost functions is that solutions will be found quicker and more of them
pass the collision check. In combination with other goals, e. g., the RCMGoal, a broader
cost function could allow more solutions that fulfill these other goals.
Figure 8.25 shows the results of the evaluations. For the Random scenario, the scan goal
is slower than the default goal, which can be explained by the fact that its calculation is
more expensive. This hypothesis is supported by the more similar number of solver itera-
tions. For the HydrogenTank scenario, the performance of the ScanGoal exceeds the other
goals. When no additional goal is used, the ScanGoal is faster in terms of time and itera-
tions than the default goal. The reason for this is probably that it leaves more freedom to
the solver and therefore favors more exploration or makes collision-free solutions possible
that were not possible with the default goal. When it is combined with the RCMGoal, the
evaluations show similar results in terms of time, but a better performance in terms of
solver iterations. This can be explained by the fact that the ScanGoal has a wider range
of poses where it is minimal, leaving more freedom to optimization of the RCMGoal, but
takes more time to calculate. On HydrogenTankSmall (c.f. Appendix A14), the results are
similar to HydrogenTank but with a larger advantage for the ScanGoal.
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Figure 8.25: RelaxedIK with ScanGoal on Random and HydrogenTank

Using the criteria in BioIK without a swamp loss did not result in finding better solutions.
The explanation for this is straightforward: While in theory, some deviations from the
target are possible with a slight increase of cost, this is already the case for the normal cost
function used to reach target poses. The algorithm will still always find a solution that fits
the best, which is at the exactly specified distance and angles. In BioIK, the threshold of
10−10 for the cost function also has to be met, leaving little freedom for possible solutions.
The resulting solution is then checked for collisions and will fail approximately with the
same rate as when target poses are used directly.
In conclusion, the usage of inverse-kinematics solvers for complex cost functions is effec-
tive as long as sensible termination criteria are used. Additional freedoms introduced
by these cost functions can increase solve speed and combinations of different goals can
combine their advantages. The creation of such goals also highlights the advantage of cost-
function-based inverse kinematics solvers that complex goals, constraints, and freedoms
can be modeled and used to find solutions in more general tasks than simple pose goals
can cover.

8.14 BioIK Modes

In these evaluations, some of the existing BioIK modes are compared. This aims to re-
produce the results of [Rup17], where BioIK 2 was developed. The results show that the
jac8 mode, an implementation of the KDL solver using eight threads, finds most solutions
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Figure 8.26: Comparison of different modes of BioIK 2. Top two rows show solve rates
over time and over solution callback calls for Random and Barrel, respec-
tively. The bottom row shows solve rates over time for HydrogenTank, on
the left using rejection sampling, on the right using the line objective.

the fastest for simple scenarios such as Random or Barrel. However, it does not find
all solutions, indicating that it lacks features for global exploration. These observations
match the expectations because Jacobian-based algorithms do not have any means for
exploration while they are very fast. The bio2_memetic mode is the second fastest mode
and finds all solutions. An interesting remark is that bio1 is one of the slowest solvers
but requires the fewest iterations to find the solutions. This indicates that the algorithm
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might be better at exploring the solution space than the other algorithms but is so much
less performant than the other algorithms that it falls behind there.
Surprisingly, both gradient descent modes performed very poorly. Since gradient descent
lacks features for global exploration, these algorithms were not expected to perform
extremely well. Still, more solutions should have been found, especially by the single-
threaded variant. I suspect that these algorithms are not implemented correctly. A com-
parison to PickIK’s local mode, which is in theory a verbatim copy of BioIK’s gradient-
descent mode, shows that the algorithm is capable of solving 48% of the targets within
5ms.
For the HydrogenTank scenario, bio2_memetic is the best solver when the full timeout is
used. The optlib_bfgs mode performs comparably well. When the line objective is used
instead of simple rejection sampling, the bio2_memetic solver is still the fastest solver to
find many solutions, however, it is eventually surpassed by the optlib_bfgs solver.
To conclude, the bio2_memetic solver is a good general-purpose solver. While it can be
surpassed by Jacobian-based solvers on simple problems and optimization-based solvers
on more complex problems, it consistently performs well in all tested areas.

8.15 BioIK Cost Functions

In order to evaluate how well different cost function goals work with the BioIK 2 imple-
mentation, it is relevant to see how much overhead cost function execution induces. First
of all, a distinction between two types of cost functions has to be made. The BioIK-internal
cost functions use BioIK’s own implementation of forward kinematics, a bio_ik::Frame.
MoveIt cost functions use a moveit::core::RobotState. On this robot state, MoveIt’s
functions such as collision checking can be executed.
Most cost functions mentioned in the previous sections, such as the line, alignment, and
RCM objectives, were implemented as BioIK-internal cost function. Those that require
collision checking and therefore need MoveIt’s RobotState, are implemented as MoveIt
cost functions.
To execute MoveIt cost functions, BioIK therefore first has to create or update a Ro-
botState object. The time delay this adds was evaluated by providing BioIK with an
IKCostFnGoal that contains a cost function returning a cost of zero. The execution of
this cost function only takes negligible time and does not change the outcome of the
algorithm, therefore all performance changes must come from the overhead induced by
the cost function.
The setup was evaluated on the Random scenario.
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Duration 5ms 10ms 100ms 1000ms Mean

BioIK 100.0% 100.0% 100.0% 100.0% 0.335ms

BioIK (IKCostFn) 0.0% 0.0% 80.8% 100.0% 73.572ms

Iterations 1 2 3 10 Mean

BioIK 74.1% 92.2% 97.2% 100.0% 1.386 its

BioIK (IKCostFn) 74.4% 93.3% 98.0% 100.0% 1.356 its

Table 8.9: Results of BioIK with and without an IKCostFn on Random

Table 8.9 shows that the solver using the IKCostFn is significantly slower than the solver
that is not using it. The iterations counter, however, shows very similar results, indicating
that indeed the execution of the function is expensive, not the solver is performing worse.
This confirms the hypothesis that IK cost functions in BioIK are very expensive, slowing
the solver down so much that a target that was reached in under 5 ms without a cost
function requires more than 20 times as much time with it. The reason is that BioIK has
to create and update a RobotState object every time the cost function is called, which is
several thousand times. The consequence of this result is that MoveIt IK cost functions
are not usable with BioIK if a high solve speed is to be achieved.
The RelaxedIK solver developed in this thesis does not have this problem, as it works
with MoveIt’s RobotState internally (Appendix A13)

8.16 BioIK Parameters

For BioIK parameter optimization, EBIKE is employed, which uses the Optuna library
for parameter optimization. The parameters that were described in Section 7.3 are opti-
mized. Table 8.10 shows the ranges of these parameters used in the optimization.

Parameter Lower Limit Upper Limit Default Value

population_size 1 20 2

child_count 0 100 16

elite_count 0 population_size 1

threads 1 8 4

species_count 1 20 2

memetic_evolution_gens 1 50 8

memetic_opt_gens 1 50 8

Table 8.10: BioIK parameter ranges used for parameter optimization

For the optimization, three different problems are selected. First, the optimization is done
for the Random scenario. This should verify the selection of parameters made during the
implementation of BioIK 2. Second, the TableObjects scenario is optimized. This scenario
represents a medium level of collisions and should evaluate which parameters can be used
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to better treat situations where some exploration is needed to find suitable situations.
Finally, the LineGoal on HydrogenTank was optimized because this goal performed the
best and it would be interesting to see how the parameters could be changed to account
for the function.
The optimization was run for 200 iterations. For ranking the evaluation trials, the mean
of all IK times was calculated, where unreached targets were counted as the timeout of 1s.

score =
1
|𝑇 |
∑
𝑡∈𝑇
(if reached(𝑡) then time(𝑡) else 1)

For all scenarios, the results could be improved using the parameter optimization.

8.16.1 Random

The original parameters gave a score of 0.541ms, after optimization, a score of 0.269ms
could be attained. This is a reduction of 50%.

Score (ms)
child_
count

elite_
count

memetic_
evolution_
gens

memetic_
opt_gens

population_
size

species_
count

threads

0.269 25 1 1 21 1 2 6
0.272 28 1 0 19 1 2 6
0.276 9 1 0 18 1 2 6
0.283 8 1 0 19 1 2 6
0.285 25 1 1 21 1 2 6
0.290 18 1 1 21 1 2 6
0.291 30 1 1 21 1 2 6
0.298 13 1 1 18 1 2 6
0.300 22 1 1 20 1 2 6
0.310 19 1 1 21 1 2 6
0.541 16 1 8 8 2 2 4

Table 8.11: Best ten parameter sets and default parameters for BioIK on Random

Table 8.11 shows the ten best parameter sets from the optimization and the default pa-
rameters at the bottom. All of the best parameter sets are relatively similar. Clearly,
they focus on optimization rather than evolution, which can be seen from the low number
of evolution generations (0-1) compared to the high number of optimization generations
(18-21). The population size was changed to 1, which makes sense as a second individual
is not required when the main focus is on optimization. The relatively high child count
(8-30) is probably used for further exploration, but the range of values indicates that the
role of this parameter is minor. Optuna also ranks parameter importance, the result of
which is that the number of optimization generations is by far the most important para-
meter, followed by child count and population size. It is interesting to note that all of the
best parameter sets use a thread count of six. Apparently, this thread count maximizes
the balance between result improvement and parallelization overhead.
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8.16.2 TableObjects

For the TableObjects scenario, an improvement by 20%, from 6.17ms to 4.98ms could
be achieved.

Score (ms)
child_
count

elite_
count

memetic_
evolution_
gens

memetic_
opt_gens

population_
size

species_
count

threads

4.98 2 1 3 15 3 2 7
5.24 2 1 1 15 4 2 8
5.25 38 1 1 15 4 2 8
5.26 46 1 1 19 4 2 8
5.29 2 1 3 16 3 2 6
5.32 44 1 2 17 4 2 8
5.35 43 1 1 17 4 2 8
5.48 2 1 1 17 3 2 7
5.51 46 1 2 20 4 2 8
5.56 45 1 1 21 4 2 8
6.17 16 1 8 8 2 2 4

Table 8.12: Best ten parameter sets and default parameters for BioIK on TableObjects

For this experiment, the results differ from the results for Random in several ways. First,
the trade-off between optimization and evolution is slightly different, still focusing on
optimization but allowing for more evolution. This can be seen from the higher number
of evolutionary generations and lower number of optimization generations, as well as the
higher population size (3-4). The number of threads has often been increased to seven or
eight, once again highlighting the exploration that can be done when multiple species are
run in parallel. The child count still has a high range, indicating that it does not highly
influence the results. According to Optuna, the most important parameter by far was the
number of optimization generations. However, in total, the improvement compared to the
original parameters is not substantial.

8.16.3 HydrogenTank

In the HydrogenTank scenario, parameter optimization could improve the time from
71.9ms to 51.8ms, a reduction by 28%.
In the HydrogenTank optimization procedure, the trade-off between evolution and opti-
mization has been shifted even more. While more optimization generations are still fa-
vorable, there are now around the double of the evolution generations. Most notable, the
number of elites, which was consistently 1 in the previous optimizations, has risen to
mostly 2, with some larger exceptions. The population count was increased again, to 3-6
individuals, and the child count was drastically increased to approximately 80 children.
Only the species count is consistently at 2 in all evaluations. According to the hyperpa-
rameter importance ranking, the child count is the most important parameter, followed
by the species count and the number of evolution generations.
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Score (ms)
child_
count

elite_
count

memetic_
evolution_
gens

memetic_
opt_gens

population_
size

species_
count

threads

51.8 75 2 9 21 4 2 7
51.9 81 2 9 21 5 2 7
54.0 89 2 8 13 5 2 7
54.2 84 2 8 11 3 2 7
54.2 68 10 5 29 6 2 5
54.8 77 3 8 21 4 2 7
54.9 87 2 9 11 4 2 8
54.9 83 2 9 17 4 2 7
55.0 8 2 8 14 4 2 7
55.0 81 2 9 21 6 2 7
71.9 16 1 8 8 2 2 4

Table 8.13: Best ten parameter sets and default parameters for BioIK with LineGoal on
HydrogenTank

The results of BioIK parameter optimization show that while no enormous performance
increase is possible, the parameter selection has an influence on the performance of the
IK solver. Throughout all experiments, the optimal number of optimization generations
is higher than the number of evolution generation. This change can probably be taken as
a default. Additionally, the population size and child count can be increased.
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8.17 Results

Table 8.14 lists the results of all experiments. It can be seen that, depending on the error
metric, different approaches perform better. The best approaches are kinematic decou-
pling and using the target seed. Other approaches that work very well are using a remote
center of motion (RCMGoal multiple links, Collision point distance), the AlignmentGoal,
the LineGoal, and the LookAtGoal. Figure 8.27 compares the best approaches that are
based on geometric considerations. The same table and figure for HydrogenTankSmall can
be found in Appendix A15. There, the kinematic decoupling and target seed approaches
have a much lower success rate. Additionally, the AlignmentGoal does not work at all
and the LookAtGoal outperforms the LineGoal.

Timeout Iterations
Approach

10ms 100ms 1000ms 1 10

Baseline (KDL) 0.9% 18.9% 56.8% 0.0% 7.2%

RelaxedIK 1.1% 14.1% 48.4% 0.6% 5.1%

Rejection Sampling (BioIK) 1.3% 17.3% 68.9% 0.0% 6.4%

Collision Distance (RelaxedIK) 0.0% 0.0% 1.1% 0.6%25 4.1%25

Penetration Depth (RelaxedIK) 0.0% 3.6% 25.3% 2.9%25 22.0%25

RCMGoal single link
(RelaxedIK)

43.1% 94.3% 96.1% 51.6% 95.7%

RCMGoal multiple links
(RelaxedIK)

16.6% 74.6% 99.7% 20.8% 74.5%

Collision point distance
(RelaxedIK)

34.7% 94.5% 97.5% 54.9% 97.3%

LineGoal (BioIK) 17.9% 96.1% 97.9% 27.0% 92.6%

AlignmentGoal (BioIK) 5.7% 92.4% 96.7% 10.9% 87.8%

LookAtGoal (BioIK) 6.2% 76.7% 93.8% 61.9% 93.6%

Kinematic Decoupling 23.2% 100.0% 100.0% 100.0% 100.0%

Straight Seed (KDL) 0.6% 16.6% 56.8% 0.0% 7.0%

Target Seed (KDL) 48.4% 60.0% 81.2% 48.2% 53.0%

Table 8.14: Overview of the results on HydrogenTank. Light colors are better, the best
values are printed in bold. If an approach was tested with multiple solvers,
only the best solver is listed.

25Timeout of 10s was used
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Figure 8.27: Comparison of the best geometry-based goals for HydrogenTank
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Chapter 9

Conclusion

In this thesis, two research questions were analyzed. The first question was how inverse
kinematics solvers could be evaluated through automated methods. To answer this ques-
tion, the EBIKE library was created and published. The library makes it possible to
evaluate different IK solvers that are available as MoveIt plugins. The evaluations can be
done on randomly sampled joint values or on objects that provide collision-rich environ-
ments. A dataset was developed that makes solver comparisons in various scenarios with
different levels of collisions possible. The results of the evaluations on existing solvers
highlighted a potential for improvement when collisions are present. Especially endoscopic
scenarios, such as hydrogen tanks, proved to be an enormous problem for existing solvers,
with as little as 40% solve rate when a timeout of 500ms is used (the default timeout
in MoveIt).
The second research question was which approaches could be used to improve these re-
sults. For this, the thesis focused on two solvers: BioIK, an evolutionary solver, and Re-
laxedIK, an optimization-based solver. Since RelaxedIK was only available in Rust, an
implementation in C++ usable with MoveIt was developed in this thesis. This implemen-
tation was able to outperform all existing solvers available for MoveIt.
Then, several improvements were implemented for both of these solvers. First, rejection-
based sampling was implemented, improving the solve rates for the BioIK, TracIK, and
PickIK solvers by up to 25.9 percentage points when avoiding self-collisions and by up
to 99.7 percentage points avoiding environment collisions. The performance increase that
was obtained with this simple improvement highlights that the area of collision checking
was neglected by the MoveIt kinematics community. To incorporate collision detection
into solvers, two approaches, one based on distance to collisions and one based on pen-
etration depth, were implemented. The evaluations showed that the penetration depth
approach was more promising, but both collision operations were too slow to be usable,
with more than 98% and 90% of the solver time spent on the distance and depth calcu-
lations, respectively. Another approach, based on insights from robot-assisted minimally
invasive surgery, uses a remote center of motion, a point through which the robot must
always pass before its target is reached. This approach significantly improved the query
results for both RelaxedIK and BioIK, reaching more than 90% of the targets for the
hydrogen tanks with the small and the large opening within 100ms. Three alternative
constraints on dimensions of a link’s position (“LineGoal”) and orientation (“Alignment-
Goal”, “LookAtGoal”) were proposed. While these approaches also worked well, they
were all outperformed by the RCMGoal on one of the tanks. An alternative IK solution
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strategy of endoscopic robots, kinematic decoupling, was proposed and achieved excellent
results on the larger hydrogen tank (100% solve rate within 100ms).
Evaluating the use of MoveIt’s IKCostFn to specify custom goals showed that it led to
significant overhead on BioIK but not on RelaxedIK. Final analyses of BioIK parameters
and RelaxedIK optimization solvers showed that the current parameters were already
well-selected and did not allow for large general improvement. The evaluation of seed
configurations highlighted the potential of a well-selected seed that can instantly boost
solver performance.
The evaluations also determined that the evolutionary solver calls its objective function
much more often than the optimization-based solver, making objective function perfor-
mance optimization more critical. Current collision checking approaches are too slow to
be usable in objective functions, but if a speedup of approximately one order of magni-
tude is reached, usage in RelaxedIK would be possible, while BioIK would require even
more speedup. Solutions that add logical constraints, such as a target toward which an
end effector should be oriented or a point through which it passes, provide the clearest
benefits because they are fast to calculate and avoid most collisions.

9.1 Future Work

As future work, it would be very interesting to include GPU-based collision detection in
MoveIt. In the evaluation, it was shown that using penetration depth queries inside a cost
function performed well in terms of solver iterations but not in terms of time. Integrating
existing GPU-based solutions like [PM12] with 0.002ms per collision check would make
these solver techniques feasible.
The next step in incorporating the results into a larger context is to integrate them into
a complete planning pipeline. This introduces new challenges such as generating smooth,
collision-free trajectories. NVidia’s CuRobo framework could provide a solution for that
when GPUs are available.
A clean implementation of BioIK 2 would also help to bring forward MoveIt’s inverse
kinematics solvers. As shown in this thesis, cost functions can improve IK performance
in a variety of ways. The PickIK project could be used as a starting point to provide
an implementation of BioIK that is more extensible, adaptable, and future-proof. Other
solvers could also benefit from the speedup achieved by BioIK 2′s forward kinematics
approach.
An approach similar to TracIK is also possible for combining KDL and BioIK. This way,
complex constraints and goals can be used, but in situations where they either do not
apply or converge slower than KDL, for example on the outside of a container or in other
regions of low collisions, the simplicity of KDL is leveraged. Alternatively, the more com-
plex solver could generate a seed to be used by KDL for a range of targets in proximity
of this solution. Especially in the area of trajectory planning, where multiple poses that
are close to each other have to be covered, this could improve the solve rates.
Parameter tuning remains an important part of IK cost functions. Especially the weights
of the goals that were investigated could be tuned to potentially achieve better results.
The influence of, e. g., the shape of the groove loss function is also not fully investigated.
The foundations for this work have been laid with the EBIKE library.
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Appendix A

Additional Results

This chapter contains some additional results that were not included into the main part
of the thesis either because they did not deviate from the selected results or for keeping
the thesis more structured.

A1 Baseline

The baseline results for Barrel, SmallTable, and TableObjects were not shown. They match
the presented results where KDL performs best, BioIK and TracIK quickly stop solving
and PickIK has a slow performance.

Figure A1: Cumulative solve rates for other scenarios, view cropped to 100ms timeout
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Additional Results Baseline

A2 RelaxedIK Baseline

Figure A2: Comparison of RelaxedIK to existing solvers on additional scenarios. It is
better than KDL on Barrel, has a similar performance on TableObjects and
SmallTable, and performs slightly worse on HydrogenTankSmall.
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Additional Results RelaxedIK Baseline

A3 Quantitative Baseline Results

Duration 5ms 10ms 100ms 1000ms Mean

KDL 31.1% 50.5% 97.8% 99.9% 19.966ms

TracIK 12.1% 12.1% 12.1% 12.1% 0.915ms

PickIK 0.9% 5.7% 54.7% 63.3% 53.356ms

BioIK 17.4% 17.4% 17.4% 17.4% 1.039ms

RelaxedIK 35.3% 57.9% 98.4% 99.8% 16.149ms

Iterations 1 2 3 5 10 100 Mean

KDL 11.6% 18.0% 23.2% 34.5% 52.4% 97.6% 19.753

TracIK 12.1% 12.1% 12.1% 12.1% 12.1% 12.1% 1.000

PickIK 8.2% 15.5% 22.1% 32.9% 50.5% 63.3% 6.340

BioIK 17.4% 17.4% 17.4% 17.4% 17.4% 17.4% 1.000

RelaxedIK 9.6% 18.1% 25.5% 36.8% 57.1% 98.1% 17.487

Table A1: Baseline on Barrel

Duration 5ms 10ms 100ms 1000ms Mean

KDL 63.0% 78.0% 99.9% 100.0% 7.448ms

TracIK 53.9% 53.9% 53.9% 53.9% 1.776ms

PickIK 0.7% 19.8% 83.9% 87.8% 33.997ms

BioIK 61.8% 61.8% 61.8% 61.8% 1.719ms

RelaxedIK 61.1% 76.9% 99.8% 100.0% 7.582ms

Iterations 1 2 3 5 10 100 Mean

KDL 54.7% 64.4% 71.6% 81.8% 92.6% 100.0% 3.476

TracIK 53.9% 53.9% 53.9% 53.9% 53.9% 53.9% 1.000

PickIK 26.3% 41.9% 52.0% 65.8% 79.9% 87.8% 4.144

BioIK 61.8% 61.8% 61.8% 61.8% 61.8% 61.8% 1.000

RelaxedIK 50.1% 61.5% 69.1% 80.4% 92.6% 100.0% 3.720

Table A2: Baseline on Shelf
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Additional Results Quantitative Baseline Results

Duration 5ms 10ms 100ms 1000ms Mean

KDL 6.6% 22.1% 87.4% 100.0% 46.987ms

TracIK 0.7% 0.7% 0.7% 0.7% 2.773ms

PickIK 0.0% 3.8% 40.7% 53.9% 65.505ms

BioIK 0.3% 0.3% 0.3% 0.3% 2.821ms

RelaxedIK 10.9% 25.1% 91.3% 100.0% 39.486ms

Iterations 1 2 3 5 10 100 Mean

KDL 0.2% 9.6% 18.4% 31.9% 52.7% 98.7% 17.252

TracIK 0.7% 0.7% 0.7% 0.7% 0.7% 0.7% 1.000

PickIK 8.3% 15.4% 22.0% 31.9% 47.7% 53.9% 5.325

BioIK 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 1.000

RelaxedIK 6.0% 15.4% 23.3% 35.7% 57.1% 99.3% 14.782

Table A3: Baseline on Table

Duration 5ms 10ms 100ms 1000ms Mean

KDL 81.9% 89.3% 100.0% 100.0% 4.544ms

TracIK 80.5% 80.5% 80.5% 80.5% 1.854ms

PickIK 0.0% 26.3% 80.3% 95.6% 53.567ms

BioIK 85.1% 85.1% 85.1% 85.1% 1.970ms

RelaxedIK 92.0% 96.2% 100.0% 100.0% 2.877ms

Iterations 1 2 3 5 10 100 Mean

KDL 76.6% 82.1% 86.0% 91.3% 96.7% 100.0% 2.178

TracIK 80.5% 80.5% 80.5% 80.5% 80.5% 80.5% 1.000

PickIK 45.7% 65.1% 76.0% 87.7% 95.3% 95.6% 2.347

BioIK 85.1% 85.1% 85.1% 85.1% 85.1% 85.1% 1.000

RelaxedIK 89.1% 91.8% 93.9% 96.4% 98.8% 100.0% 1.465

Table A4: Baseline on SmallTable
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Additional Results Quantitative Baseline Results

Duration 5ms 10ms 100ms 1000ms Mean

KDL 80.4% 91.3% 100.0% 100.0% 3.963ms

TracIK 74.4% 74.4% 74.4% 74.4% 1.966ms

PickIK 0.0% 29.0% 97.4% 99.2% 25.411ms

BioIK 79.2% 79.2% 79.2% 79.2% 1.928ms

RelaxedIK 69.5% 88.0% 100.0% 100.0% 4.919ms

Iterations 1 2 3 5 10 100 Mean

KDL 72.7% 82.2% 88.4% 94.6% 99.6% 100.0% 1.790

TracIK 74.4% 74.4% 74.4% 74.4% 74.4% 74.4% 1.000

PickIK 40.5% 62.7% 76.5% 88.8% 97.0% 99.2% 2.726

BioIK 79.2% 79.2% 79.2% 79.2% 79.2% 79.2% 1.000

RelaxedIK 53.0% 70.0% 81.6% 92.6% 99.4% 100.0% 2.271

Table A5: Baseline on TableObjects

Duration 5ms 10ms 100ms 1000ms Mean

KDL 0.1% 0.9% 18.9% 56.8% 290.570ms

TracIK 0.0% 0.0% 0.0% 0.0% 0.000ms

PickIK 0.0% 0.0% 0.4% 0.5% 72.124ms

BioIK 0.0% 0.0% 0.0% 0.0% 0.788ms

RelaxedIK 0.6% 1.1% 14.1% 48.4% 311.911ms

Iterations 1 2 3 5 10 100 Mean

KDL 0.0% 0.7% 1.2% 3.2% 7.2% 37.4% 86.743

TracIK 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.000

PickIK 0.0% 0.1% 0.2% 0.3% 0.5% 0.5% 5.722

BioIK 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.333

RelaxedIK 0.6% 1.0% 1.6% 2.6% 5.1% 29.3% 100.581

Table A6: Baseline on HydrogenTank
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Additional Results Quantitative Baseline Results

Duration 5ms 10ms 100ms 1000ms Mean

KDL 0.0% 0.0% 1.6% 14.5% 476.454ms

TracIK 0.0% 0.0% 0.0% 0.0% 0.000ms

PickIK 0.0% 0.0% 0.1% 0.1% 15.055ms

BioIK 0.0% 0.0% 0.0% 0.0% 0.000ms

RelaxedIK 0.0% 0.0% 0.8% 9.8% 451.231ms

Iterations 1 2 3 5 10 100 Mean

KDL 0.0% 0.1% 0.2% 0.5% 1.0% 7.5% 101.495

TracIK 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.000

PickIK 0.0% 0.0% 0.0% 0.1% 0.1% 0.1% 1.167

BioIK 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.000

RelaxedIK 0.0% 0.0% 0.0% 0.1% 0.4% 5.3% 99.984

Table A7: Baseline on HydrogenTankSmall
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Additional Results Quantitative Baseline Results

A4 Rejection Sampling

The results after adding rejection sampling are shown here for HydrogenTank and Hydro-
genTankSmall to give context for the tables in the following sections.

Duration 5ms 10ms 100ms 1000ms Mean

KDL 0.1% 0.9% 18.9% 56.8% 290.570ms

BioIK 0.1% 1.3% 17.3% 68.9% 328.166ms

RelaxedIK 0.6% 1.1% 14.1% 48.4% 311.911ms

Iterations 1 2 3 10 Mean

KDL 0.0% 0.7% 1.2% 7.2% 86.743 its

BioIK 0.0% 1.1% 1.7% 6.4% 110.758 its

RelaxedIK 0.6% 1.0% 1.6% 5.1% 100.581 its

Table A8: Base results on HydrogenTank, all solvers use rejection sampling

Duration 5ms 10ms 100ms 1000ms Mean

KDL 0.0% 0.0% 1.6% 14.5% 476.454ms

BioIK 0.0% 0.0% 1.4% 13.8% 472.623ms

RelaxedIK 0.0% 0.0% 0.8% 9.8% 451.231ms

Iterations 1 2 3 10 Mean

KDL 0.0% 0.1% 0.2% 1.0% 101.495 its

BioIK 0.0% 0.1% 0.2% 0.4% 104.775 its

RelaxedIK 0.0% 0.0% 0.0% 0.4% 99.984 its

Table A9: Base results on HydrogenTankSmall, all solvers use rejection sampling
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Additional Results Rejection Sampling

A5 Penetration Depth

Figure A3: Results of penetration depth goal on TableObjects. As for the fuel tank sce-
narios, the solvers perform worse in terms of time but better in terms of
solver iterations.
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Additional Results Penetration Depth

A6 Trials with High Timeout

Long runs (10s timeout) for collision distance and penetration depth were also performed
for the Shelf and TableObjects scenarios.

Figure A4: Results of trials with 10s timeout for penetration depth and collision distance
approaches on Shelf and TableObjects. As for HydrogenTank and Hydrogen-
TankSmall, the performance of the penetration depth objective is good in
terms of solver iterations, the performance of the collision distance objective
is bad.
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A7 RCM Objective

Duration 5ms 10ms 100ms 1000ms

BioIK 0.0% 0.0% 1.4% 13.8%

BioIK (RCMGoal multiple links) 0.0% 0.0% 33.4% 97.7%

BioIK (RCMGoal single link) 0.0% 7.2% 95.0% 100.0%

RelaxedIK 0.0% 0.0% 0.8% 9.8%

RelaxedIK (RCMGoal multiple links) 0.0% 4.5% 43.8% 91.8%

RelaxedIK (RCMGoal single link) 0.0% 16.9% 91.1% 92.7%

Figure A5: Comparison of different RCMGoals on HydrogenTankSmall

A8 Collision Point Distance

Duration 5ms 10ms 100ms 1000ms Mean

HydrogenTank 3.0% 34.7% 94.5% 97.5% 31.485ms

HydrogenTankSmall 0.0% 3.9% 68.3% 89.6% 79.082ms

Iterations 1 2 3 10 Mean

HydrogenTank 54.9% 73.5% 83.7% 97.3% 2.054 its

HydrogenTankSmall 15.3% 27.3% 38.0% 73.7% 6.369 its

Table A10: Results of collision point distance (RelaxedIK) on HydrogenTank and Hydro-
genTankSmall
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Additional Results Collision Point Distance

A9 Line Objective

Duration 5ms 10ms 100ms 1000ms Mean

BioIK (LineGoal) 6.7% 17.9% 96.1% 97.9% 26.66ms

RelaxedIK (LineGoal) 2.2% 19.2% 95.3% 97.3% 31.93ms

Iterations 1 2 3 10 Mean

BioIK (LineGoal) 27.0% 46.9% 62.1% 92.6% 4.015 its

RelaxedIK (LineGoal) 37.9% 50.0% 60.6% 90.2% 3.959 its

Table A11: Results of the line objective on HydrogenTank

Duration 5ms 10ms 100ms 1000ms Mean

BioIK (LineGoal) 0.0% 5.3% 71.8% 79.1% 45.26ms

RelaxedIK (LineGoal) 0.0% 2.8% 56.7% 80.2% 98.46ms

Iterations 1 2 3 10 Mean

BioIK (LineGoal) 18.0% 33.8% 43.2% 70.9% 5.075 its

RelaxedIK (LineGoal) 18.5% 28.6% 36.7% 64.6% 7.330 its

Table A12: Results of the line objective on HydrogenTankSmall

A10 Alignment Objective

Duration 5ms 10ms 100ms 1000ms Mean

BioIK (AlignmentGoal) 3.1% 5.7% 92.4% 96.7% 39.79ms

RelaxedIK (AlignmentGoal) 5.4% 8.1% 81.5% 96.6% 57.95ms

Iterations 1 2 3 10 Mean

BioIK (AlignmentGoal) 10.9% 31.6% 46.6% 87.8% 5.114 its

RelaxedIK (AlignmentGoal) 24.9% 32.9% 40.6% 73.4% 7.596 its

Table A13: Results on the alignment objective on HydrogenTank
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Additional Results Alignment Objective

Duration 5ms 10ms 100ms 1000ms Mean

BioIK (AlignmentGoal) 0.0% 0.0% 0.0% 0.0% –

RelaxedIK (AlignmentGoal) 0.0% 0.0% 0.3% 1.4% 515.6ms

Iterations 1 2 3 10 Mean

BioIK (AlignmentGoal) 0.0% 0.0% 0.0% 0.0% –

RelaxedIK (AlignmentGoal) 0.0% 0.0% 0.0% 0.3% 53.92 its

Table A14: Results on the alignment objective on HydrogenTankSmall

A11 Look At Objective

Duration 5ms 10ms 100ms 1000ms Mean

HydrogenTank 0.0% 6.2% 76.7% 93.8% 79.60ms

HydrogenTankSmall 0.0% 0.9% 79.2% 96.5% 77.59ms

Iterations 1 2 3 10 Mean

HydrogenTank 61.9% 79.0% 86.8% 93.6% 1.668 its

HydrogenTankSmall 64.9% 82.5% 89.4% 96.3% 1.636 its

Table A15: Quantitative results for look at objective (BioIK) on HydrogenTank and Hy-
drogenTankSmall

A12 Kinematic Decoupling

Using kinematic decoupling, only a single call to the solution callback (solver iteration) is
used. Therefore, the final solve rate is reached relatively quick (80ms for HydrogenTank,
20ms for HydrogenTankSmall). The table shows the results after 5ms, 10ms, and 100ms
for better comparability with other solvers.

Duration 5ms 10ms 100ms

HydrogenTank 18.1% 23.2% 100.0%

HydrogenTankSmall 0.0% 6.6% 54.0%

Table A16: Results of kinematic decoupling, only a single call to the solution callback
is used.
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Additional Results Kinematic Decoupling

A13 RelaxedIK Cost Functions

On RelaxedIK, the overhead of using a MoveIt IKCostFn is negligible.

Duration 5ms 10ms 100ms 1000ms Mean

RelaxedIK 100.0% 100.0% 100.0% 100.0% 0.436ms

RelaxedIK (Empty CostFn) 99.9% 100.0% 100.0% 100.0% 0.448ms

Solver 1 2 3 10 Mean

RelaxedIK 86.0% 95.4% 98.2% 100.0% 1.216 its

RelaxedIK (Empty CostFn) 86.5% 95.3% 97.9% 99.9% 1.235 its

Table A17: Results of RelaxedIK with and without an IKCostFn on Random

A14 Surface Inspection

The results for the ScanGoal on HydrogenTankSmall show that the ScanGoal performs
better than on HydrogenTank, independent of whether is is combined with the RCMGoal
or not.

Figure A6: ScanGoal on HydrogenTankSmall
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A15 Final Results on HydrogenTankSmall

Timeout Iterations
Approach

10ms 100ms 1000ms 1 10

Baseline (KDL) 0.0% 1.6% 14.5% 0.0% 1.0%

RelaxedIK 0.0% 0.8% 9.8% 0.0% 0.4%

Rejection Sampling (BioIK) 0.0% 1.4% 13.8% 0.0% 0.4%

Collision Distance (RelaxedIK) 0.0% 0.0% 0.0% 0.0%26 0.5%26

Penetration Depth (RelaxedIK) 0.0% 0.4% 3.3% 0.2%26 2.5%26

RCMGoal single link (RelaxedIK) 16.9% 91.1% 92.7% 49.5% 92.3%

RCMGoal multiple links
(RelaxedIK)

4.5% 43.8% 91.8% 9.3% 49.1%

Collision point distance (RelaxedIK) 3.9% 68.3% 89.6% 15.3% 73.7%

LineGoal (BioIK) 5.3% 71.8% 79.1% 18.0% 70.9%

AlignmentGoal (BioIK) 0.0% 0.0% 0.0% 0.0% 0.0%

LookAtGoal (BioIK) 0.9% 79.2% 96.5% 64.9% 96.3%

Kinematic Decoupling 0.0% 6.6% 54.0% 54.0% 54.0%

Straight Seed (KDL) 0.0% 1.9% 16.1% 0.0% 0.9%

Target Seed (KDL) 26.3% 27.6% 39.1% 26.4% 27.0%

Table A18: Overview of the results on HydrogenTankSmall. Light colors are better, the
best values are printed in bold. If an approach was tested with multiple
solvers, only the best solver is listed.

26Timeout of 10s was used
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Additional Results Final Results on HydrogenTankSmall

Figure A7: Comparison of the best geometry-based goals for HydrogenTankSmall
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Appendix B

Open Source Contributions

This table lists all repositories, pull requests, and issues opened as part of the work on
this thesis.

Project Description Link

Repositories

EBIKE
Enhancement and
Benchmarking of Inverse
Kinematics in Environments

https://github.com/DLR-
MO/ebike

RelaxedIK C++
C++ implementation of
RelaxedIK for ROS 2 and
MoveIt

https://github.com/
timonegk/relaxed_ik_cpp

Collision Benchmarking

REACH plugin, EBIKE
scenarios, and IK
configurations for collision
benchmarking

https://github.com/
timonegk/collision_
benchmarking

Issues

PickIK
Highlight differences to
BioIK

https://github.com/PickNik
Robotics/pick_ik/issues/
67#issuecomment-
2283706482

PickIK
Wipeout should not remove
the best individual

https://github.com/PickNik
Robotics/pick_ik/issues/72

REACH
Segmentation fault when
using a plugin

https://github.com/ros-
industrial/reach/issues/70

MoveIt
Make collision environment
available to kinematics
solvers

https://github.com/moveit/
moveit2/issues/2856
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Open Source Contributions

Pull Requests

TracIK Add rejection sampling
https://bitbucket.org/traclabs/
trac_ik/pull-requests/38

BioIK Add rejection sampling
https://github.com/PickNikRob
otics/bio_ik/pull/21

BioIK Fix cppoptlib solvers
https://github.com/PickNikRob
otics/bio_ik/pull/22

BioIK Make parameters configurable
https://github.com/PickNikRob
otics/bio_ik/pull/23

PickIK Fix rejection sampling
https://github.com/PickNikRob
otics/pick_ik/pull/73

REACH Keep plugin factories in scope
https://github.com/ros-
industrial/reach/pull/74

REACH
Replace deprecated usages of
boost

https://github.com/ros-
industrial/reach/pull/72

REACH Add ik_time to ReachRecord
https://github.com/ros-
industrial/reach/pull/75

REACH
Fix CMake error about missing
target MPI::MPI_C

https://github.com/ros-
industrial/reach/pull/82

REACH ROS 2
Fix deprecated header for
tf2_eigen

https://github.com/ros-
industrial/reach_ros2/pull/35

REACH ROS 2
Change durability policy of
mesh display to transient_local

https://github.com/ros-
industrial/reach_ros2/pull/36
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