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Abstract

It is commonly known that ensembling two models trained on the same task often
outperforms each model individually, while doubling the inference cost. A novel
stream of resarch on model merging explores whether it is possible to combine
multiple models into one by interpolating their weights, and could serve as a more
efficient alternative to ensembles.

It is already viable to interpolate models fine-tuned from a shared base model
with the same performance increase as when they are ensembled. However, the
interpolation of models that were trained independently or on different datasets
still poses a significant challenge, and results in merged models with a higher loss
and lower accuracy that is only avoidable when the models are prohibitively wide.

In this thesis we postulate that model merging and ensembling represent two
extremes of a spectrum by either enforcing a complete overlap or keeping all para-
meters separate. We evaluate methods that are situated in between, overlapping
and interpolating the parameters of both models just in parts, while keeping the re-
maining parameters unchanged. We demonstrate the ability of such partial model
merging to gracefully eliminate any existing barriers, with loss and accuracy ap-
proaching those of ensembling as the width increase approaches 100%. We observe
this gradual improvement across all architectures and model dimensions, even if
the endpoints were trained on disjoint or biased datasets.

We also show that specific layers of the models have a significantly higher contri-
bution towards the occuring barriers, and that reducing their overlap first allows
us to reduce the barriers quicker. Contrary to previous beliefs these layers cannot
be identified just by looking at the average correlations between units.

Using a simple baseline method inspired by our findings, we are able to achieve
zero-barrier connectivity with respect to both test loss and test accuracy between
two regular-width VGG11s independently trained on CIFAR10 and SVHN with a
parameter increase of just 22% and 24% respectively, and without any additional
training after merging. Similar interpolation-based connectivity on independently
trained VGGs has never been achieved experimentally using full merging, even for
high width multipliers.
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1 Introduction

The history of machine learning is replete with methods aiming to improve the
generalization ability of models. One such method that has stood the test of
time exceptionally well is ensembling. It dates back at least until 1979, when
Dasarathy and Sheela [1] proposed a composite classifier system consisting of two
or more classifiers that partition the feature space in a divide-and-conquer man-
ner. This basic idea of using the predictions of multiple classifiers at once would
become a cornerstone of classical machine learning techniques for the following
decades. This status of ensemble methods was cemented in the 1990s by the suc-
cess of bagging and boosting. While today ensembling is still taught in practically
every undergraduate machine learning course, it is often viewed as old-fashioned
and impractical by the generation of researchers that grew up with large neural
networks being the de-facto standard for learning from ever-growing piles of data.

We argue that this notion could not be further from the truth, and that ensem-
bling remains an indispensable tool even in the age of billion-parameter neural nets.
We want to support this claim by taking a closer look at the recently released Mix-
tral 8x7B model [2]. Mixtral 8x7B is a so-called sparse mixture of experts (SMoE),
which in this case means that a purposefully trained router network chooses two
from a set of eight distinct groups of parameters in each feedforward block [2],
effectively turning the model into an ensemble with two constituent models at in-
ference time. At the time of writing, Mixtral 8x7B represents the best language
model overall regarding cost/performance trade-offs [2], and it is rumored that the
ensembling of experts is also part of the “secret sauce” that powers the unsurpassed
performance of OpenAI’s GPT-4.

While ensembles come with more benefits than just improved accuracy, namely
including robustness [3], protection against membership inference attacks [4] and
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1 Introduction

improved machine unlearning [5], they come with the notable downside of signi-
ficantly higher inference costs. This downside is especially costly if the number of
inference steps is high, as is the case for the transformer-based language models
of today.

The question of whether it is possible to combine the parameters of multiple
models into a single one is adressed by a rapidly growing number of papers on
model merging, also known as model fusion. Originating in theoretical research on
minima, saddle points and permutation symmetries in the loss landscape, model
merging has become an increasingly useful tool. At the time of writing, model mer-
ging is able to improve the accuracy of models fine-tuned on the same objective [6]
and interpolate two models trained on the same objective from different random
seeds without a drop in performance, given that both models are sufficiently wide
[7]. However, despite incremental advancements that improved the resulting per-
formance of the merged model, model merging is yet unable to combine models of
arbitrary size without a drop in accuracy and loss.

This leads to a compelling question that is at the heart of this thesis: If model
merging tends to degrade performance, but ensembling, despite its effectiveness,
is resource-heavy, is there a middle ground?

1.1 Research objective

“If two neural networks had a child, what would be its weights?” [8]

Model merging fuses the parameters of two parend models of an identical archi-
tecture and size into a child model with the exact same depth and width. This
requires each unit of the first parent model to be matched with a unit of the second
parent model, no matter how well they are aligned or whether they learned the
same concept. In contrast, the units of two ensembled models remain separate
even during inference, and are influenced only by the features that they learned
to represent. If some of the features of the parent models correspond well to each
other, but others are wholly incompatible, can me merge only those that match?
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a) b) c)

Figure 1.1: Visualization of a) ensembling, b) partial merging (66% overlap/33%
width increase), and d) conventional merging (100% overlap).

We can achieve this partial merging of units by “pulling apart” the units of both
parent models to some degrees, resulting in the models to overlap just in parts. If
a partial overlap – visualized in Figure 1.1 – enables models to have better unit
alignment and preserve the integrity of dissimilar features in the non-overlapping
parts, can we reap performance benefits approaching those of ensembling for a
significantly cheaper cost? With this thought in mind, we define our research
question as follows:

Research Question

Can partial model merginga provide model performanceb approaching that
of ensemblingc while avoiding the need for expensive width multipliers faced
by existing model merging approaches?
arequiring the merged models to overlap just in parts
bmeasured by test loss and test accuracy
caveraging of prediction vectors
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2 Background

This chapter provides an overview of the concepts and methods related to model
merging and some of its applications. It draws inspiration from two main sources:
First, personal conversations with the authors of some related papers, and second,
a survey paper on Deep Model Fusion [9], which at this point only exists as a
preprint. Historically, model merging has been approached from two perspect-
ives. First, one line of research that was mainly interested in properties of the loss
landscape that connects SGD solutions. This line was not primarily motivated
by practical applications of model merging, but ought to explore it to develop a
deeper understanding of generalization and optimizer behavior. The second line of
research, which includes model soups and federated learning, explored model mer-
ging as a tool to achieve practical goals, e.g. a better generalization performance
or fewer federated communication rounds. This thesis falls somewhere in between
these two lines of research, and tries to bridge the gap between theoretical insights
and practicability.

2.1 Weight averaging

Weight averaging describes the recombination of two or more models of the same
architecture and size by averaging all their parameters – not just the weights. In
its simplest form, a model average of n models is obtained by

n∑
i=1

αiθi, αi =
1

n
, (2.1)

where each constituent model θi has an equal contribution to the average. How-
ever, through modification of each αi, one could also give some models more weight
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2 Background

than others. For the special case of two constituent models we will use the following
definition:

Definition 2.1

An interpolated model θα, determined by an interpolation factor 0 <

α < 1, is defined [10] as the linear combination of the parameters of two
endpoint models θ1 and θ2 such that

θα = (1− α) ∗ θ1 + α ∗ θ2 (2.2)

While other methods of aggregation exist, such as Fisher averaging [11] or Re-
gression Mean (RegMean) [12], this thesis will only consider linear parameter in-
terpolation due to its simplicity and popularity in the model merging literature.

2.1.1 Unpermuted weight averaging

The linear combination of two models is not guaranteed to perform better or even
equally well as the two constituent models [13]. In fact, simple parameter inter-
polation typically results in a drastic performance decrease in the resulting model
[7], [13]. Models only benefit from being averaged when their parameters are,
as Jolicoeur-Martineau et al. put it, “different enough to benefit from combining
them, but similar enough to average well” [14]. But how can the similarity of para-
meters be achieved without permutation (see Section 2.2)? The key is to enforce
model alignment through a shared training history.

The idea of using averaging for stochastic approximation dates back at least until
the 1990s [15]. In the context of modern neural networks, Stochastic Weight
Averaging (SWA) [16] is one of the simplest such methods that averages the
parameters of a single model at different points along its training trajectory. It is
inspired by Snapshot Ensembles (SSE) [17] and Fast Geometric Ensembling (FGE)
[13], which steer a single model towards multiple different optima during training
using a cyclical or constant learning rate. Several refinements of SWA have been
developed since [18]–[20].

SWA and its variants approach optima one after the other. Model Soups [6]
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train a single model until convergence, then fine-tune a large number of model
copies using different hyperparameters in parallel. Using the greedy soup recipe,
models are ordered by their validation accuracy and only included in the final
average if the inclusion increases the validation accuracy. Adaptations of model
soups include Sparse Soups [21], which optimizes the method for pruning, and
Diverse Weight Averaging (DiWA) [22], which is used to optimize performance
under distribution shifts.

Population Parameter Averaging (PAPA) [14] is a method that merges
multiple models not just once at the end of training, but multiple times throughout
the training procedure. A population of models is trained using random data
orderings, augmentations, and regularizations, and the weights of each model are
slowly pushed towards the population average every few SGD steps [14]. In the
end, the models are combined into a model soup.

2.2 Permutation symmetry

Unpermuted models can only be averaged well if they have a shared training his-
tory. Simply training two models on the same random initialization is insufficient
for ensuring that they produce a useful average [23], especially if trained for a large
number of epochs. It is practically impossible if they have been trained separately
on different random initializations [7]. In cases like these, permuting the weights
of the models can restore their ability to be averaged effectively.

2.2.1 Permutation symmetry in MLPs

Most deep neural network architectures are permutation symmetric in sub-spaces
of their weight space. This property originates from the permutation invariance at
the neuron level, which was first noted by Hecht-Nielsen in 1990 [24]. A function f

is permutation invariant if the order of its inputs has no influence on its outputs:
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Definition 2.2

A function f is permutation invariant if

f(x1, x2, . . . , xn) = f(xπ(1), xπ(2), . . . , xπ(n)) (2.3)

for any permutation π of the indices {1, 2, . . . , n}.

This property holds for both the activation function σ, which only takes a scalar
as input, and the weighted sum z in a single neuron

y = σ(z), z =
n∑

i=1

wixi + b (2.4)

when considering the inputs as pairs (wi, xi) that are permuted together. This
can be extended to an L-layer multi-layer perception (MLP)

f(x; Θ) = zL+1, zℓ+1 = σ (W ℓzℓ + bℓ) , z1 = x [7]. (2.5)

Given the parameters Θ and a set of any appropriately sized permutation
matrices {P 1, . . . ,P L}, we can obtain a functionally equivalent MLP with

f(x; Θ) = zL+1, zℓ+1 = σ
(
P ℓW ℓP

⊤
ℓ−1zℓ + P ℓbℓ

)
, z1 = x,

P 0,P L ∈ I,
(2.6)

where I denotes the set of identity matrices. Note the necessity for the zero-th
permutation matrix to be the identity, as the input order is fixed. This also means
that the MLP as a whole is not a permutation invariant function.

For the permutation matrices, consider the following definition:
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Definition 2.3

A square n × n matrix P is a permutation matrix if exactly one entry
in each row and column is equal to 1 and all other entries are 0 [25]. It
represents a permutation π of n elements and is constructed such that its
(i, j)-th entry P ij is given by:

P ij =

1 if π(i) = j

0 otherwise.
(2.7)

To permute the rows of a matrix A with dimensions m × n, the necessary
permutation matrix P needs dimensions m×m:

Pm×mAm×n = A′ m×n (2.8)

To permute the columns of A the permutation matrix needs dimensions n× n:

Am×nP n×n = A′ m×n (2.9)

In the context of Equation 2.6, this implies that if weight matrix W ℓ has shape
m× n, then “appropriately sized” means P ℓ needs shape m×m and P ℓ−1 needs
shape n× n. Each permutation matrix P ℓ thus represents a permutation of the
m neurons in layer ℓ.

Compared to permutation invariance, permutation symmetry is a more general
concept that applies to all MLPs with at least one hidden layer containing more
than one neuron:
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Definition 2.4

A function F (x; Θ) exhibits permutation symmetry if there exists at least
one permutation π acting on Θ such that

F (x; Θ) = F (x; π(Θ)) (2.10)

for any input x and parameters Θ, where π(Θ) = {θπ(1), θπ(2), . . . , θπ(n)}.

While the terms permutation invariance and permutation symmetry are some-
times used interchangeably in the literature, we will stick to the definitions provided
in this section.

2.2.2 Permutation symmetry in CNNs

While the permutations in an MLP act at the neuron level, the permutations in
the feature extractor of a CNN act on the kernel level. We can view the feature
map computation in layer ℓ of a CNN as

f(X; Θ) = OL+1, O1 = X,

Oi,j,k
ℓ+1 = σ

(∑
m,n,k′

Oi+m,j+n,k′

ℓ ·W k,k′,m,n
ℓ + bkℓ

)
,

(2.11)
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2 Background

Oi,j,k
ℓ+1 : the value at the (i, j)-th position of the k-th input

feature map in layer ℓ+ 1,

Oi+m,j+n,k′

ℓ : the value at the (i+m, j + n)-th position of the k′-th

input feature map from layer ℓ,

W k,k′,m,n
ℓ : the value at the (m,n)-th position of the kernel

connecting the k′-th input feature map to the k-th

output feature map in layer ℓ,

bkℓ : the bias term for the k-th output feature map in layer ℓ,

σ : the activation function,

X : the input image.

This definition ignores details such as padding, stride, dilation, or pooling.

Given L such convolutional layers and a set of L appropriately sized permuta-
tion matrices {P 1, . . . ,P L} with matching {π1(·), . . . , πL(·)}, we can construct a
functionally equivalent feature extractor with

f(X; Θ) = ÔL+1, Ô
i,j,k

L+1 = O
i,j,π−1

L (k)

L+1 , O1 = X, P 0 ∈ I,

Oi,j,k
ℓ+1 = σ

(∑
m,n,k′

O
i+m,j+n,π−1

ℓ−1(k
′)

ℓ ·W πℓ(k),π
−1
ℓ−1(k

′),m,n

ℓ + b
πℓ(k)
ℓ

)
,

(2.12)

where π−1
ℓ (·) represents the permutation belonging to P⊤

ℓ that undoes πℓ(·).
When looking just at the parameters Θ, implementing this modification consists
of applying permutation P ℓ to dimension 1 of Wℓ, applying permutation P⊤

ℓ−1 to
dimension 2 of Wℓ, and setting bℓ = P ℓbℓ. In practice, we would not use the
equivalent output ÔL+1, but the permuted OL+1, as the last permutation πL(·)
will be undone in the attached fully-connected classifier that follows the MLP logic
already established in Equation 2.6, where we set PMLP

0 = P CNN
L . As pooling

functions such as max pooling and average pooling are permutation invariant,
they are not influenced by the used kernel permutations.
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2.2.3 Permutation symmetry in ResNets

ReLU

ReLU

3 × 3 conv 

Batch norm

Batch norm

3 × 3 conv 

+

b)

x

ReLU

ReLU

3 × 3 conv 

Batch norm

Batch norm

3 × 3 conv 

+

c)

x

1 × 1 conv 

ReLU

ReLU

3 × 3 conv 

Batch norm

Batch norm

3 × 3 conv 

a)

x

Figure 2.1: a) regular CNN layers b) a ResNet block without downsampling
c) a ResNet block with pointwise convolution for downsampling

Compared to simple CNN architectures like VGG [26], ResNets [27] contain re-
sidual connections (also known as skip connections or shortcut connections) that
make it easier for the model to learn the identity mapping. The residual con-
nections add the feature maps of a previous layer to the newly computed feature
maps in the current layer (see Figure 2.1b compared to 2.1a). This demands that
the dimensionality of feature maps stay the same in each layer, which in return
requires the number of kernels in each layer to be identical. When the depth of the
feature maps is to be increased, the residual connection must include a point-wise
convolution (see Figure 2.1c) to increase the dimensionality correspondingly. This
operation is typically combined with a downsampling of the spatial resolution in
both streams.

Consider a general skip connection1 with

Xℓ+1 = σ(W ℓ σ(Xℓ−1Xℓ−1) +Xℓ−1). (2.13)

1We ignore batch norm layers and bias terms in this notation, which have to be permuted too.
Finding a permutation for them is trivial if the permutation of weights is known.
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Due to the addition, Xℓ+1 and Xℓ−1 must share the same indexing of their
units. Attempting to permute the hidden units in Xℓ−1 without simultaneously
permuting the units in Xℓ+1 would disrupt the identity mapping and thus break
functional equivalence [28].

Figure 2.2: The architecture of a ResNet18 with a first-layer width of 16.

ResNets typically consist of an initial convolutional layer and then several stages,
indicated in Figure 2.2 with the colors purple, green, red, and blue. Each stage
consists of several concatenated residual blocks like in Figure 2.1b, while the first
block in each stage (except in stage one) contains a point-wise convolution in the re-
sidual connection (Figure 2.1c) and performs a downsampling operation. Consider
our ResNet to be defined analogous to Equation 2.11, but including the residual
additions. Our ResNet has L−1 convolutional layers organized in S stages (except
layer 1). We can then obtain a functionally equivalent ResNet using L permutation
matrices {P 1, . . . ,P L} representing the permutations on the regular layers, and
S − 1 permutation matrices {P̂ 2, . . . , P̂ S} representing the permutations on the
point-wise convolutions between stages. The permutations can be applied analog-
ous to Equation 2.12, but must satisfy the following constraints, where s(ℓ) yields
the stage to which layer ℓ belongs, or 0 for layer 1 and S + 1 for layer L:

∀i ∈ {2, . . . , L− 1} : i mod 2 = 0 ∧ ((∃j ∈ {2, . . . , L− 1} : j < i

∧ s(j) = s(i)) ∨ s(i) = 1) ⇒ P i+1 = P⊤
i

“All odd layer permutations must undo the permutation of the immediately
preceding even layer, except when a downsampling operation is used.”

(2.14)
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∀i ∈ {2, . . . , L− 1} : s(i) ̸= s(i− 1) ∧ s(i) > 1 ⇒ P i+1P i = P̂ s(i)

“When a point-wise convolution is used, the product of the permutations of
the two skipped layers must be identical to the permutation of the

point-wise convolution layer.”

(2.15)

The influence of skip connections on permutation symmetry has been explored
by Orhan and Pitkow [29], who argue that skip connections speed up convergence
by breaking specific permutation symmetries and thus eliminating overlap singu-
larities. A first detailed description of which permutations yield a functionally
equivalent ResNet model was given in [28].

2.3 Mode connectivity

The optimization of neural networks is often understood as the approach of a
strictly convex and thus isolated valley of low loss in the network’s loss surface.
This understanding is challenged by research on mode connectivity, which asks
to which extent different optima in a network’s loss surface are connected via paths
of nearly constant loss.

Draxler et al. [30] were the first to conjecture that optima are not distinct valleys,
but rather points on a connected manifold of low loss. They provide a method
to find paths in weight space (polygonal chains with multiple pivot points) that
connect arbitrary optima obtained with different random initializations with nearly
constant loss (see Figure 2.3). Independently, Garipov et al. [13] demonstrated
the existence of much simpler polygonal chains with just one bend and quadratic
Bézier curves that connect the optima.

The baseline against which these paths compete is a straight interpolation path,
which reflects model interpolation as defined in Definition 2.1. Interpolation along
this path usually yields models with worse performance, and thus an increase in
loss, which determines the so-called loss barrier (see Definition 2.5), sometimes
also called energy barrier. The definition typically refers to the test loss.
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Figure 2.3: Left: A polygonal chain with 13 pivot points connecting two optima.
The high-dimensional parameter space has been projected onto two dimensions,

with the heatmap indicating areas of high and low loss. Right: The
corresponding losses along the linear interpolation and the polygonal path. [30]

Definition 2.5

The loss barrier B(θ1, θ2) between a pair of models is defined [31] as the
maximum increase in loss incurred along the linear interpolation path in
parameter space between θ1 and θ2, relative to the corresponding linear
interpolation of the two endpoint losses:

B(θ1, θ2) = sup
α∈[0,1]

[L((1− α)θ1 + αθ2)]− [(1− α)L(θ1) + αL(θ2)] (2.16)

Mode connectivity has been extensively discussed in the literature, but never
precisely defined. For Garipov et al. [13] it suffices that metrics such as train loss
or test error “remain low” along the path, while Tatro et al. [28] demand the loss
stays “nearly constant”, not considering cases in which endpoints have meaningfully
different losses. For the purpose of this thesis, we will utilize Definition 2.6, which
aims to unify the definitions from the literature. Please note that it allows two
models to have a non-zero loss barrier, even if they are linearly mode connected.
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Definition 2.6

Two models θ1, θ2 are mode connected if there exists a path in weight
space connecting θ1 to θ2, along which the loss is never greater than
max(L(θ1),L(θ2)). They are linearly mode connected if this path is
a straight line.

Entezari et al. [31] conjectured that linear mode connectivity can be established
between almost all models θ1, θ2, by applying a function-preserving permutation
π(·) on one of them. Their conjecture, verbatim, is provided here as Conjecture 2.1,
albeit with a slightly different notation.

Conjecture 2.1

Let f(θ) be the function representing a feedforward network with parameters
θ ∈ Rk. Let P be the set of all valid permutations for the network. Let
P : Rk × P → Rk be the function that applies a given permutation to
parameters and returns the permuted version. Let B(·, ·) be the function
that returns [the] barrier value between two solutions as defined in Equation
1 [this thesis: Definition 2.5]. Then, there exists a width h > 0 such that for
any network f(θ) of width at least h the following holds: There exists a set
of solutions S ⊆ Rk and a function Q : S → P such that for any θ1, θ2 ∈ S,
B(P (θ1, Q(θ1)), θ2) ≈ 0 and with high probability over an SGD solution θ,
we have θ ∈ S [31].

Note that their conjecture states that linear mode connectivity only sets in above
some width h. In their experiments, they show that linear mode connectivity is
approached quicker and therefore at smaller widths for simpler tasks like MNIST,
and more slowly for more complex tasks like CIFAR10. Interestingly, they also
demonstrate that even the loss barrier B(θ, π(θ)) between a model θ and a per-
mutation of itself becomes smaller as the width increases, and specifically at the
same rate as the barrier B(θ1, θ2) between two random models.

If their conjecture holds, the obvious question is how to find permutations that
enable linear mode connectivity, a challenge we will discuss in the next section.
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2.4 Neuron alignment

The action of permuting a model θ1 so that it can be usefully interpolated with
a model θ2 is called neuron alignment. The success of a neuron alignment
strategy manifests itself in the establishment of linear mode connectivity – or
the lack thereof. Generally speaking, neuron alignment methods aim to minimize
the test loss barrier B(θ1, θ2), but depending on the task it can also be useful to
measure the utility of the method via the test accuracy of interpolated models θα.

Broadly speaking, most neuron alignment methods consist of two parts: First,
a measure of similarity between permutable units (neurons, kernels), and second,
a procedure for determining the optimal permutation based on this measure.

2.4.1 Activation matching

Li et al. [28] were the first to study whether independently trained networks learn
the same features by measuring the correlation between their activations. This
analysis is based on the notion that neural network units that have learned the
same feature get activated by the same inputs, following the Hebbian mantra2

“neurons that fire together, wire together” [32]. As collecting activations requires
inputs, activation matching requires access to plausible input data distribution,
despite requiring no labels.

While the similarity of activations can be measured by simple matrix multi-
plication, as done in [7], a more commonly used [10], [33] approach is to use the
only minimally more compute-intensive, yet more easily interpretable correlation
coefficient. In any given layer ℓ, we are then looking for a permutation π∗

ℓ of model
θ2 that minimizes the following equation:

π∗
ℓ = arg min

πℓ

(∑
i

corr
(
X

(1)
ℓ,i , X

(2)
ℓ,πℓ(i)

))
, (2.17)

where X
(n)
ℓ,i are the activations of the i-th hidden unit in layer ℓ of model θn [10].

2This analogy was borrowed from [7].
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Finding this permutation is straightforward, as the problem formulation in Equa-
tion 2.17 amounts to a linear assignment problem (LAP; sometimes also called
linear sum assignment problem or LSAP) [10], which can be solved using the
Hungarian algorithm [34] in polynomial time.

2.4.2 Weight matching

The simplest way to determine the similarity between two neurons is to look at
their weights. If their weights are the same, they must calculate the same thing,
and the more different they are, the more different their learned feature. For the
parameters of model θ1 and θ2 this means minimizing their squared distance by
finding the optimal permutation π∗ of model θ2:

π∗ = argmin
π

(
∥vec(θA)− vec(π(θB))∥2

)
(2.18)

However, as any single permutation affects rows and columns in different weight
matrices (see Equation>2.6), this minimization is not straightforward. For this
problem, Ainsworth et al. [7] coin the term sum of a bilinear assignments prob-
lem (SOBLAP) and determine it to be NP-hard. They approximate a solution
through a coordinate descent algorithm called permutation coordinate descent. It
repeatedly solves weight matching for just a single randomly selected layer in the
network (this constitutes a LAP) until convergence [7]. No input data is needed
for weight matching, which makes it well-suited for federated learning use cases.

2.4.3 Other matching techniques

Git Re-Basin [7] proposes a third method for obtaining a permutation using a
straight-through estimator. They determine the permutation by training a sur-
rogate model θ̃b which is projected onto θb. Due to the necessary training, the
straight-through estimator method requires not just input data, but also labels.
Singh and Jaggi [8] propose a method that aligns neurons using optimal transport
and Wasserstein barycenters. Guerrero Peña et al. [35] propose a differentiable
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based method on the Sinkhorn algorithm that learns soft permutation matrices
which are then discretized for the final permutation.

2.5 Variance collapse

Especially for deeper models, model merging produces a phenomenon called vari-
ance collapse [10]. To understand variance collapse, let’s look at the following
toy example: Imagine two six-sided dice D1 and D2, each yielding random vari-
ables d1 and d2. The distribution of d1 and d2 is uniform over {1, 2, 3, 4, 5, 6},
with a mean of µ1 = µ2 = 3.5 and a standard deviation σ1 = σ2 ≈ 1.7. Ima-
gine we have a magical knob with which we can make the two dice dependent.
The knob represents the correlation coefficient ρ between d1 and d2 and ranges
from 0 (the dice are independent, like normal dice) to 1 (d1 and d2 are perfectly
correlated and always take on a random but identical value). If both dice are
perfectly correlated, the distribution of their average d1+d2

2
remains the same as

each dice individually. However, as the correlation coefficient shrinks, the mean
of the average will stay the same while the standard deviation will get smaller.
Finally, when both dice are completely uncorrelated, the standard deviation takes
on σavg = σ1+σ2√

2
≈ 1.2. Generally, and depending on ρ, the standard deviation of

the average will be σavg =
σ2
1+σ2

2+2ρσ1σ2

2
and lie in between.

In the context of model merging, imagine D1 and D2 as two units in our models
θ1 and θ2 that produce activations d1 and d2. In order to function well, each of
the units in the next layer expects a specific learned distribution (µn, σn) from
each of their inputs. If the activations of D1 and D2 are not perfectly correlated
but their weights are averaged nonetheless, the new activations of Davg will have a
smaller standard deviation than before. This decrease in variance compounds with
model depth, as the input activations for any layer ℓ+1 now already have a lower
variance, which further diminishes with each additional interpolation. Finally,
the activations in the output layer become nearly constant and are not able to
distinguish between inputs anymore [10].

While the phenomenon that merged model performance decreases with an in-
crease in model depth has been described earlier [7], [13] Jordan et al. [10] were
the first to point out variance collapse as the underlying reason and proposed
REPAIR as a solution. Given two endpoint models θ1, θ2 and an interpolated
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Figure 2.4: The ratio between average endpoint model variance and interpolated
model variance per layer in a 35-layer MLP, using naive interpolation, permuted

interpolation, and permuted interpolation with REPAIR; taken from [30].

model θα, REPAIR modifies the weights and biases of θα in such a way that for
each unit Xα in θα µα = (1 − α)µ1 + αµ2 and σα = (1 − α)σ1 + ασ2. They
propose two variants of adjusting the weights: First, a data-free one that simply
approximates the necessary rescaling parameters using the correlation coefficient
ρ between X1 and X2. This method is only able to approximate the true vari-
ance collapse beyond the first layer. Second, a data-driven method that records
the true parameters µ, σ for each unit X1 and X2 in the endpoint models, sets
these values as desired affine weights in temporarily added batch normalization
layers and trains the batch normalization statistics using a plausible input data
distribution. The learned running mean and running variance are then fused into
the preceding weights and biases using batch normalization layer fusion [36]. The
resulting activation patterns can be seen in Figure 2.4, demonstrating a full re-
covery of activation variance even in the final layers. While applying REPAIR is
usually not able to establish linear mode connectivity that was not there before,
it dramatically reduces the loss barrier of interpolated models, typically between
70 and 90 percent [10].

2.6 Federated learning

Given the previous background on model merging techniques, we will now take
a closer look at its application in federated learning. Please note that federated
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learning is just one of many possible applications of model merging, and as such has
been selected only as an example. It is, however, especially suited as such due to its
approximately parallel development with the afforementioned merging techniques.
Additionally, it is a use case in which the use of ensembling is prohibitive, and
that would therefore benefit substantially from better merging methods.

The term federated learning first appeared in 2016 [37] and describes meth-
ods that allow a model to be trained across multiple decentralized clients, each
processing a different subset of training data. It is useful in scenarios where train-
ing data cannot be pooled in a centralized location (e.g. for privacy reasons) and
allows for more efficient training on large datasets by parallelizing the computa-
tional effort across multiple devices. The first method introduced alongside the
term federated learning is called Federated Averaging (FedAvg) [37] and con-
sists of repeatedly training a model on one or more batches of data by each client,
collecting the weights of each client, averaging the weights into a central model,
and broadcasting the new set of weights to each client. Alternatively, instead
of averaging the weights, the gradients of each client can also be averaged and
applied to the central model, yielding an equivalent result. If clients train for a
higher number of epochs before exchanging their updates, the necessary commu-
nication bandwidth becomes lower, but the found optima for each subset of data
may drift wider apart, making it more difficult to average the models without a
loss in performance.

Probabilistic Federated Neural Matching (PFNM) [38] modified FedAvg
by identifying subsets of neurons in each client model that match with neurons
in other models. The neurons are then combined into a potentially larger central
model using maximum a-posteriori estimation of a generative Beta-Bernoulli pro-
cess model. One of the evaluated settings was a single-communication scenario, in
which “legacy” models are matched and averaged only once, without any further
training, which is similar to the model merging settings outside of the federated
learning domain3. In this setting, PFNM performed better than FedAvg (unper-

3In fact, the paper was rejected at ICLR 2019 in part because of this, as the conditions under
which the method was evaluated were considered unrealistic in a federated learning scenario
and the results were considered not strong enough.
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muted averaging), but worse than ensembling, except in one case4. The authors
of PFNM are the first to take the permutation symmetry of neural networks into
account in the context of federated learning. However, their method only works
for fully connected feed-forward DNNs.

Matching neurons based on their weights in deep architectures is an NP-hard op-
timization problem [7], [39], which the authors of PFNM don’t explicitly mention,
yet solve by greedily and consecutively matching the neurons once in each layer.
They are doing this using not the incoming, but the outgoing weights, starting
from the last layer going forward. This is much more simplistic than the per-
mutation coordinate descent algorithm presented in Git Re-Basin [7], in which all
layers are matched multiple times until convergence. However, as PFNM executes
this procedure once in each communication round, the same effect is achieved over
time. We hypothesize that the convergence of PFNM could be sped up signi-
ficantly by using permutation coordinate descent [7] or activation matching, the
latter of which is more challenging in a federated setting.

Federated Learning with Matched Averaging (FedMA) [39] adapted
PFNM to simple CNNs and LSTMs. They measure the similarity between neurons
with the squared Euclidian distance of the weights and allow neurons in each layer
to overlap just partially. To determine the overlap, they are using a threshold ϵ:
If the cost of merging (i.e. the weight distance) is higher than ϵ, a new neuron
is created in the central model instead. This procedure is used in each commu-
nication round. To ensure that the model does not become prohibitively large
during training, the threshold ϵ increases over time depending on the current layer
size. When evaluating CNNs of different complexity, they find that LeNet [40]
(4 layers) performs much better than VGG-9 [26] (9 layers), foreshadowing the
“deep-is-bad” phenomenon described in [7] and addressed in [10]. As FedMA only
works for CNNs without residual connections, it is not applicable to more modern
architectures such as ResNets [27], U-Nets [41], or ConvNeXts [42].

Concurrent to the creation of this thesis, a refinement of FedMA called Fed-
erated Generalized Matched Averaging (FedGMA) [43] was published in
August 2023, which adapts FedMA to architectures with residual connections and

4These results align approximately with the split data training experiment in the Git Re-Basin
paper [7].
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drastically limits the otherwise quickly and perpetually increasing model size that
comes with using FedMA by preferably just reordering neurons instead of adding
new ones.

Efficient strategies for neuron alignment and averaging are integral to the success
of the mentioned federated learning methods. Unfortunately, model merging in a
federated setting and a non-federated setting seem to be two independent research
bubbles that are largely unaware of their mutual existence, despite trying to solve
the same problem. For example, the authors of FedGMA falsely claim that their
method “is the first to tackle neuron matching issues on complex network structures
such as ResNet-18” [43], a problem that has been solved prior in [29], [28], and
[7]. Methods such as REPAIR [10] have also not yet been applied in the federated
setting, despite their high effectiveness.
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3 A method for partial merging

In this section, we will describe where full model merging falls short, motivate
the need for partial merging, and describe a novel alignment method for partial
merging.

3.1 Good and bad matches

Any neuron alignment method, not matter whether it uses the Hungarian al-
gorithm or another match selection strategy, will have to make compromises when
deciding on an optimal permutation for merging. The narrower the model, the
lower the likelihood to find a good match for any given neuron in the other end-
point model. If no good match can be found (or the only good match is already
assigned to be matched with a different, even better matching sibling neuron),
the neuron must be merged nonetheless. This “sacrificial” match does not only
influence the neuron itself, but also the unlucky partner neuron from the other
endpoint model. Because of this, the goal of the alignment process should not
not only be viewed as matching the best candidates when permuting but also as
causing the least harm when permuting.

To aid the understanding of this phenomenon, we can look at RGB visualizations
of first-layer kernels in a VGG11 in Figure 3.1. The kernels of endpoint model B
have been permuted with activation matching and the Hungarian algorithm. As
the inputs to the first layer are always the same for both endpoint models, the same
result would have been achieved with a single bottom-up weight matching pass
instead of activation matching. An example for a good match can be seen in green,
and an example for a bad, “sacrificial” match in red. While the linear interpolation
of the green kernel will be visually indistinguishable from either endpoint kernel,
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Figure 3.1: Aligned first-layer kernels of two VGG11 models trained on CIFAR10.
In green: a good match. In red: a bad match. Kernel saturation increased for

better visibility.

the interpolation of the red kernel will resemble neither of the endpoint kernels
well and thus exhibit a different activation behavior.

When we are interested in combining the knowledge embedded into neural net-
works, there seem to be two promising avenues: First, executing models in parallel,
as done with ensembling, which keeps all kernels as they are, or second, merging
kernels from finetuned models that are sufficiently similar, as done with model
soups [6]. Both methods typically yield a performance that is better than either
endpoint model on its own. However, when the constituent endpoint models are
trained independently instead of from the same finetuned base model, there is no
sufficient similarity across all kernels. This distinction is very important - it’s not
that the models would have incompatible kernels altogether, but that only some
of the kernels are similar, while others are incompatible.

This motivates the question whether we can use model merging specifically for
those kernels that are compatible, while using an ensembling-like method for the
incompatible kernels. This motivation is the same in principle as the one for
FedMA (see Section 2.6). However, the alignment method of FedMA is subop-
timal, and FedMA does also not use REPAIR to boost performance after merging.
Instead, it relies on the client-side re-training to mitigate the variance collapse.
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3.2 Relaxing the linear assignment problem

Figure 3.2: The LAP solution for a normal correlation matrix (full merging).

In order to understand how our proposed partial alignment and merging method
is different from current methods we will look at a toy example. Consider two
models A and B, where the layer we are currently aligning has 5 neurons in each
model. Using activation matching or weight matching we will arrive at a matrix
representing the pairwise similarities of the neurons in each model. We can then
use the Hungarian algorithm to solve the linear assignment problem, as is typically
done. As higher correlation coefficients are better, we let the LAP solver maximize
the assignment sum instead of minimizing it1. The result of this can be seen in
Figure 3.2. Note that while the total sum of correlations is optimal, individual
neurons have been matched suboptimally for the greater good. What FedMA
would do now is take the worst matches below a threshold ϵ (for example n2/1 and
n3/5 for ϵ = 0.7) and split them up. This is however not optimal, as the removal
of these neurons from the LAP frees up better candidates for the already existing
matches.

Instead, we propose to allow the LAP solver to take the planned expansion
already into account. This is done by adding virtual buffer neurons to the endpoint
models by increasing the size of the correlation matrix by an expansion factor
γ ∈ [0, 1], where γ = 0 means adding no buffer at all (thus performing full merging),

1In practice, this means multiplying our correlation matrix with -1 to get a proper cost matrix,
then using the Hungarian algorithm. The used scipy.optimize.linear_sum_assignment
function provides this functionality via an argument.
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3 A method for partial merging

and γ = 1 means adding as many buffer neurons as there are neurons in the original
layer. For any value in between, the resulting merged layer will have n + ⌈γn⌉
instead of n units (rounded to the next integer value).

We then have two options on how to fill these newly created spaces in our
correlation matrix. Option one, wich we name forced buffer assignment, sets
the correlation between a buffer neuron and another buffer neuron to the worst
possible value (-1), and the correlation between a buffer neuron and a regular
neuron to the best possible value (+1). This ensures that buffer neurons are never
matched with each other, and always matched with a regular neuron. Formally,
given an original cost matrix Cn×n and an expansion factor γ, the drop-in cost
matrix Ĉ

n+⌈γn⌉×n+⌈γn⌉
is constructed as:

Ĉij =


Cij if i ≤ n, j ≤ n,

−1 if i > n, j > n

1 otherwise.

where Cij denotes the value at position i, j and n is the size of the original
correlation matrix.

The alternative option, which we will name adaptive buffer assignment, sets
the correlation of matching a buffer neuron with any other neuron to a threshold ϵ.
The effect of this is that regular neurons and buffer neurons will only be matched
if the correlation would otherwise be worse than ϵ. Otherwise, buffer neurons are
matched amongst each other. This means that the relative width increase of the
layer after merging is determined adaptively, but limited to a maximum of γ. In
this case, the construction of Ĉ

n+⌈γn⌉×n+⌈γn⌉
is defined as:

Ĉij =

Cij if i ≤ n, j ≤ n,

ϵ otherwise.

The resulting LAP solutions for modifying the correlation matrix from Figure
3.2 for forced and adaptive buffer assignment can be seen in Figure 3.3 a) and
b). Note that not only are the worst matches separated, but also the previously
best matches have been further improved through the relaxation of the problem
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statement. When adaptive buffer assignment does not use up all available buffer
neurons, i.e. buffer neurons are matched among themselves, like the case in the
Figure 3.3 b), the superfluous buffer neurons can simply be discarded.

Figure 3.3: a) The modified correlation matrix and LAP solution with forced
buffer assignment. b) The modified correlation matrix and LAP solution with

adaptive buffer assignment (threshold ϵ = 0.6). Both examples use an expansion
factor of γ = 0.45, which, after rounding down, adds up to two buffer neurons to

the layer.

3.3 Constructing the merged model

Given the two original endpoint models and the LAP solution with model and
buffer assignments, we construct the new, partially merged model as follows. Con-
sider two weight matrices W

(1)
ℓ and W

(2)
ℓ from layer ℓ in endpoint models θ1 and

θ2. Both weight matrices have shape n×m, where n represents the current layer
size and m the number of inputs, determined by the size of the previous layer. Per
convention, we will let n be the number of rows and m be the number of columns.
We then construct two functionally equivalent weight matrices W

′ (1)
ℓ and W

′ (2)
ℓ

of shape n+ ⌈γn⌉ ×m+ ⌈γm⌉:
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W ′
ℓ,ij =

W ℓ,ij if i ≤ n, j ≤ m,

0 otherwise.

Next, we construct our permutation matrices P ℓ from the LAP solutions such
that

P ′
ℓ,ij =

1 if combination ⟨i, j⟩ is part of the LAP solution,

0 otherwise.

Next, weight matrix W
′ (2)
ℓ is permuted for optimal alignment in accordance

with Equation 2.6, i.e.

Ŵ
′ (2)
ℓ = P ℓW

′ (2)
ℓ P⊤

ℓ−1

The interpolation of both models in non-trivial. Specifically, as only parts of the
model shall be merged, we need to keep track of which parts are real units, and
which ones are buffers. The final interpolated weight matrix W α

ℓ is constructed
such that:

W
(α)
ℓ =

(1− α)W
′ (1)
ℓ,ij + αŴ

′ (2)
ℓ,ij if mask(i, j),

W
′ (1)
ℓ,ij + Ŵ

′ (2)
ℓ,ij otherwise.

where mask(i, j) = i ≤ m ∧ j ≤ n ∧ π−1
ℓ (i) ≤ n ∧ π−1

ℓ−1(j) ≤ m is true if both
values originate from W

(1)
ℓ and W

(2)
ℓ and false if at least one value originates from

a buffer unit (thus turning at least one operand of the addition into a 0).

The entire process of extending, permuting and (partially) merging the weight
matrices in an MLP can be seen in Figure 3.4. The permutation of CNN kernels,
bias and batch norm parameters follows the same logic, using the appropriate
dimensions and permutation matrices established in Section 2.2 on permutation
symmetry.
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Figure 3.4: a), b) The extended weight matrices W
′ (1)
ℓ and W

′ (2)
ℓ c) The

permutation matrix derived from the LAP solution in Figure 3.3 a) d) The
permutation matrix from the previous layer. e) The permuted weight matrix

Ŵ
′ (2)
ℓ f) The weight matrix of the merged model W ′ (α)

ℓ for α = 0.5.
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This section documents the experiments conducted in this thesis. In it, we will
establish baselines to compare against, evaluate our proposed method in a simple
setting, and finally conduct more detailed experiments for specific training regimes
such as split data training or layer-wise expansions.

4.1 Baselines

As a first step, we will try to reproduce the existing results of Ainsworth et al. [7]
and Jordan et al. [10] on regular or “full” model merging. Only after that are we
going to test our method that allows for partial merging.

Following [7] and [10] we are evaluating three different architectures: MLPs,
VGGs, and ResNets. We construct models of varying depth and width, yielding a
total of 56 MLP, 8 VGG, and 4 ResNet architectures. Each architecture is trained
two times on each dataset – once for each interpolation endpoint – which yields
a total of 160 distinct models. The used datasets are MNIST [44] for the MLPs
and CIFAR10 [45] and SVHN [46] for the convolutional models. The training hy-
perparameters for each model type can be seen in Table 4.1, with supplementary
information on data augmentations in Table 4.2. Note that not all possible com-
binations are evaluated due to computational constraints. Additionally, we use
CIFAR100 [45] in combination with a ResNet20 for the split data experiment.

For each model, we will report the test accuracy and loss of each endpoint
model individually. Additionally, we perform ensembling of both endpoint models
at logit-level (pre-softmax) and model merging using activation matching (see
Subsection 2.4.1) for 21 interpolation steps α ∈ {0.0, 0.05, . . . , 0.95, 1.0}. The
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Hyper-parameter MLP{3..10} VGG{11,13,16,19} ResNet{18,20}
First layer width 512 64 16
Trained widths 0.125, 0.25, 0.5,

1, 2, 4, 8
0.25, 0.5, 1, 2, 4 1, 2, 4, 8

Normalization Batch norm Batch norm Batch norm
Batch size 1000 500 500
Epochs 100 100 200
Learning rate Cosine 0.2 Cosine 0.08 Cosine 0.4
Weight decay 0.0 0.0005 0.0001
Datasets MNIST CIFAR10, SVHN CIFAR10, SVHN

Table 4.1: Training hyperparameters

Dataset RandomTranslate/
RandomAffine

RandomHorizontalFlip

MNIST [44] ✔ ✗

CIFAR10 [45] ✔ ✔

CIFAR100 [45] ✔ ✔

SVHN [46] ✔ ✗

Table 4.2: Dataset training augmentations

choice of activation matching as alignment method follows [10] and is motivated by
the need to collect activations for applying REPAIR anyway. As we will compare
the performance of partial merging relatively to the performance of full merging
the actual choice of alignment method should have no major effect – even if the
absolute performance is slightly better or worse by a few percentage points. If
anything, as activation matching performed slightly worse in [7] in terms of test
loss, it is reasonable to assume that the performance metrics obtained in this
thesis represent a lower bound in absolute terms and could be further improved by
adapting a more sophisticated alignment method such as Sinkhorn-Rebasin [35] to
work for partial merging.

For reference, we report the average test accuracy and test loss of each model
in Table A.1, A.2, and A.3 in Appendix A.

31



4 Experiments

For our evaluation, we will also report an accuracy barrier and loss barrier, which
differ from the logic in the original Definition 2.5. First, as partial merging and
REPAIR do not represent a strict interpolation along a linear path, we will look at
combinations of the models of any kind, guided by a factor α. This also includes
ensembling, where α denotes the weighting factor for each models logits. Second,
we will only look at the difference in accuracy or loss at α = 0.5, as this position
not only represents the highest barrier in most cases, but also allows for our metric
to become negative, representing an improvement instead of a degradation. The
barrier metrics used for the remainder of this thesis are given in Definition 4.1.

Definition 4.1

The loss barrier BL(θ1, θ2) between a pair of models is defined as the
increase in loss of the combination C(θ1, θ2, α) of both models, guided by a
factor α = 0.5, relative to the average of the two endpoint losses:

BL(θ1, θ2) = L (C (θ1, θ2, 0.5))− 0.5 (L(θ1) + L(θ2)) (4.1)

The accuracy barrier BA(θ1, θ2) between a pair of models is defined as the
decrease in accuracy of the combination C(θ1, θ2, α) of both models, guided
by a factor α = 0.5, relative to the average of the two endpoint accuracies:

BA(θ1, θ2) = 0.5 (acc(θ1) + acc(θ2))− acc (C (θ1, θ2, 0.5)) (4.2)

We report the accuracy and loss barriers of each model combination using full
merging in Table 4.3, 4.4, and 4.5. Each table also includes the resulting barrier
decreases by adding REPAIR, as well as by using ensembling instead. The barrier
reductions of ensembling are greater than 100% if they not only remove the barrier
but also improve the combined performance beyond the average of both endpoints.
Note that the reductions are relative to the original barrier, and not to the endpoint
average. Thus, an accuracy barrier decrease by 105% means that the magnitude
of the performance bump from ensembling is 5% of the original barrier size.

The results of our baselines follow the observations in the original publications.
First, the absolute barrier sizes decrease with width and increase with depth.
Second, applying REPAIR decreases the barriers drastically and approximately
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equalizes the barriers regardless of depth (still, wider models have a smaller bar-
rier). Third, ensembling improves loss and accuracy across almost all models.

MNIST
MLP3 MLP4 MLP5 MLP6 MLP7 MLP8 MLP9 MLP10

0.125×

3.3%p

0.101

1.2%p (-64.9%)

0.044 (-56.2%)

-0.2%p (-107.5%)

-0.01 (-109.7%)

7.4%p

0.229

1.2%p (-84.0%)

0.052 (-77.3%)

-0.2%p (-102.5%)

-0.012 (-105.3%)

5.3%p

0.169

2.1%p (-60.3%)

0.087 (-48.4%)

-0.3%p (-105.2%)

-0.011 (-106.8%)

7.5%p

0.243

1.8%p (-75.7%)

0.102 (-58.1%)

-0.2%p (-103.3%)

-0.013 (-105.5%)

11.2%p

0.335

2.1%p (-80.9%)

0.111 (-66.8%)

-0.4%p (-103.6%)

-0.015 (-104.5%)

8.9%p

0.287

2.7%p (-69.4%)

0.139 (-51.6%)

-0.3%p (-103.0%)

-0.014 (-104.9%)

6.1%p

0.186

2.1%p (-65.2%)

0.109 (-41.3%)

-0.2%p (-104.0%)

-0.015 (-108.1%)

13.6%p

0.43

2.0%p (-85.2%)

0.118 (-72.5%)

-0.3%p (-102.1%)

-0.015 (-103.5%)

0.25×

1.1%p

0.04

0.6%p (-46.4%)

0.03 (-24.3%)

-0.2%p (-121.3%)

-0.007 (-118.4%)

2.9%p

0.097

0.8%p (-72.0%)

0.038 (-60.5%)

-0.2%p (-105.8%)

-0.008 (-108.1%)

6.0%p

0.223

1.1%p (-82.4%)

0.062 (-72.3%)

-0.2%p (-103.2%)

-0.008 (-103.5%)

7.6%p

0.267

0.9%p (-88.0%)

0.06 (-77.7%)

-0.2%p (-102.6%)

-0.01 (-103.6%)

6.0%p

0.213

1.3%p (-78.9%)

0.069 (-67.6%)

-0.2%p (-103.7%)

-0.009 (-104.0%)

8.0%p

0.352

1.0%p (-87.7%)

0.056 (-84.1%)

-0.1%p (-101.6%)

-0.009 (-102.6%)

9.1%p

0.342

1.7%p (-81.3%)

0.108 (-68.6%)

-0.2%p (-102.1%)

-0.01 (-103.0%)

5.6%p

0.19

1.3%p (-76.9%)

0.073 (-61.4%)

-0.1%p (-102.3%)

-0.011 (-105.6%)

0.5×

1.0%p

0.031

0.3%p (-66.7%)

0.015 (-51.9%)

-0.1%p (-110.1%)

-0.004 (-113.3%)

1.8%p

0.064

0.4%p (-77.5%)

0.022 (-65.6%)

-0.1%p (-103.8%)

-0.005 (-107.6%)

5.6%p

0.197

0.6%p (-89.2%)

0.035 (-82.5%)

-0.0%p (-100.9%)

-0.005 (-102.3%)

3.3%p

0.118

0.6%p (-81.6%)

0.04 (-66.2%)

-0.1%p (-104.0%)

-0.007 (-105.6%)

5.1%p

0.174

0.8%p (-83.8%)

0.049 (-72.1%)

-0.1%p (-101.3%)

-0.006 (-103.4%)

6.1%p

0.221

0.8%p (-86.7%)

0.043 (-80.6%)

-0.1%p (-101.6%)

-0.007 (-103.0%)

6.2%p

0.211

0.9%p (-85.6%)

0.056 (-73.3%)

-0.1%p (-101.3%)

-0.006 (-102.8%)

5.9%p

0.217

0.6%p (-89.8%)

0.051 (-76.5%)

-0.1%p (-101.5%)

-0.009 (-104.1%)

1×

0.7%p

0.022

0.3%p (-55.0%)

0.011 (-49.3%)

-0.1%p (-107.4%)

-0.002 (-110.9%)

1.4%p

0.05

0.3%p (-78.7%)

0.017 (-65.2%)

-0.1%p (-104.7%)

-0.003 (-105.4%)

2.6%p

0.091

0.5%p (-80.7%)

0.026 (-71.5%)

-0.1%p (-103.3%)

-0.004 (-104.1%)

4.1%p

0.134

0.4%p (-89.4%)

0.027 (-80.1%)

-0.1%p (-101.2%)

-0.004 (-102.9%)

3.4%p

0.131

0.7%p (-79.9%)

0.037 (-71.3%)

-0.1%p (-102.5%)

-0.004 (-102.8%)

6.0%p

0.254

0.7%p (-88.4%)

0.045 (-82.4%)

-0.1%p (-101.2%)

-0.004 (-101.8%)

8.0%p

0.322

0.6%p (-92.2%)

0.046 (-85.6%)

-0.1%p (-100.9%)

-0.005 (-101.5%)

5.7%p

0.209

0.8%p (-86.4%)

0.055 (-73.6%)

-0.0%p (-100.3%)

-0.006 (-102.9%)

2×

0.6%p

0.017

0.1%p (-80.0%)

0.007 (-57.7%)

0.0%p (-99.2%)

-0.001 (-109.0%)

1.5%p

0.051

0.3%p (-82.1%)

0.015 (-71.3%)

0.0%p (-100.0%)

-0.002 (-103.4%)

2.3%p

0.072

0.3%p (-84.9%)

0.018 (-75.0%)

-0.1%p (-103.1%)

-0.003 (-103.7%)

3.3%p

0.113

0.6%p (-81.8%)

0.032 (-71.4%)

-0.0%p (-101.5%)

-0.004 (-103.5%)

4.3%p

0.157

0.6%p (-86.4%)

0.038 (-75.7%)

-0.0%p (-100.5%)

-0.003 (-101.8%)

4.0%p

0.148

0.6%p (-85.5%)

0.038 (-74.7%)

-0.0%p (-101.1%)

-0.003 (-102.3%)

4.7%p

0.175

0.6%p (-86.2%)

0.049 (-71.9%)

-0.1%p (-101.6%)

-0.003 (-102.0%)

6.2%p

0.26

0.6%p (-90.9%)

0.048 (-81.4%)

-0.1%p (-101.5%)

-0.004 (-101.6%)

4×

0.4%p

0.014

0.1%p (-74.4%)

0.007 (-47.6%)

0.0%p (-94.9%)

-0.001 (-109.7%)

1.6%p

0.045

0.3%p (-83.5%)

0.013 (-71.3%)

0.0%p (-100.0%)

-0.002 (-103.7%)

2.6%p

0.085

0.3%p (-88.6%)

0.018 (-78.9%)

-0.0%p (-100.8%)

-0.002 (-102.3%)

3.2%p

0.108

0.5%p (-84.3%)

0.029 (-73.3%)

-0.1%p (-102.5%)

-0.003 (-102.5%)

4.6%p

0.167

0.6%p (-87.5%)

0.034 (-79.8%)

-0.1%p (-101.8%)

-0.003 (-101.9%)

4.5%p

0.173

0.5%p (-89.4%)

0.038 (-78.2%)

-0.1%p (-101.1%)

-0.003 (-101.9%)

5.3%p

0.201

0.5%p (-89.9%)

0.041 (-79.7%)

0.0%p (-99.9%)

-0.004 (-102.1%)

5.3%p

0.202

0.6%p (-88.3%)

0.046 (-77.5%)

-0.1%p (-101.8%)

-0.005 (-102.3%)

8×

0.4%p

0.011

0.1%p (-71.4%)

0.008 (-26.9%)

-0.0%p (-100.0%)

-0.001 (-112.6%)

1.3%p

0.039

0.4%p (-72.5%)

0.014 (-63.3%)

-0.0%p (-101.5%)

-0.002 (-103.9%)

2.6%p

0.08

0.3%p (-86.9%)

0.021 (-73.3%)

-0.1%p (-102.3%)

-0.002 (-102.6%)

2.9%p

0.097

0.3%p (-89.0%)

0.026 (-72.7%)

0.0%p (-100.0%)

-0.003 (-102.9%)

4.3%p

0.155

0.5%p (-89.3%)

0.031 (-80.2%)

-0.1%p (-101.9%)

-0.003 (-101.8%)

4.2%p

0.16

0.5%p (-87.6%)

0.035 (-77.9%)

-0.0%p (-100.5%)

-0.003 (-102.1%)

5.4%p

0.214

0.6%p (-89.3%)

0.043 (-80.0%)

-0.1%p (-101.0%)

-0.003 (-101.4%)

5.0%p

0.202

0.5%p (-89.3%)

0.041 (-79.6%)

-0.0%p (-100.6%)

-0.005 (-102.5%)

Table 4.3: Black: Absolute test accuracy barrier (top) and test loss barrier
(bottom) of fully merged MLP models trained on MNIST for different depths
and widths. Purple: The respective absolute barrier (and relative reduction to

full merging) after additionally applying REPAIR. Grey: The respective absolute
barrier (and relative reduction to full merging) when using ensembling instead.
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CIFAR10
VGG11 VGG13 VGG16 VGG19

0.25×

48.3%p
1.596

11.9%p (-75.4%)
0.495 (-69.0%)

-1.9%p (-103.9%)
-0.099 (-106.2%)

– – –

0.5×

61.4%p
1.81

5.7%p (-90.7%)
0.232 (-87.2%)

-1.4%p (-102.3%)
-0.078 (-104.3%)

– – –

1×

34.8%p
0.938

3.9%p (-88.9%)
0.164 (-82.5%)

-0.9%p (-102.6%)
-0.054 (-105.7%)

57.2%p
1.861

3.8%p (-93.3%)
0.149 (-92.0%)

-0.9%p (-101.5%)
-0.047 (-102.5%)

78.6%p
2.176

4.2%p (-94.6%)
0.176 (-91.9%)

-1.1%p (-101.4%)
-0.064 (-102.9%)

80.5%p
2.2

4.9%p (-93.9%)
0.214 (-90.3%)

-1.1%p (-101.4%)
-0.077 (-103.5%)

2×

26.6%p
0.753

2.2%p (-91.6%)
0.096 (-87.2%)

-0.6%p (-102.1%)
-0.037 (-105.0%)

– – –

4×

21.1%p
0.612

1.4%p (-93.5%)
0.066 (-89.2%)

-0.4%p (-101.9%)
-0.026 (-104.2%)

– – –

Table 4.4: Black: Absolute test accuracy barrier (top) and test loss barrier
(bottom) of fully merged VGG models trained on CIFAR10 for different depths
and widths. Purple: The respective absolute barrier (and relative reduction to

full merging) after additionally applying REPAIR. Grey: The respective absolute
barrier (and relative reduction to full merging) when using ensembling instead.
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CIFAR10 SVHN
ResNet18 ResNet18

1×

81.9%p

4.446

22.2%p (-72.9%)

1.293 (-70.9%)

-1.2%p (-101.5%)

-0.087 (-102.0%)

74.9%p

2.512

6.4%p (-91.4%)

0.24 (-90.5%)

-0.5%p (-100.6%)

-0.03 (-101.2%)

2×

80.4%p

3.398

8.1%p (-89.9%)

0.361 (-89.4%)

-0.7%p (-100.9%)

-0.055 (-101.6%)

53.3%p

1.523

2.2%p (-95.9%)

0.071 (-95.3%)

-0.4%p (-100.7%)

-0.021 (-101.4%)

4×

84.8%p

3.911

4.5%p (-94.7%)

0.171 (-95.6%)

-0.4%p (-100.5%)

-0.041 (-101.1%)

67.7%p

1.623

1.0%p (-98.5%)

0.018 (-98.9%)

-0.3%p (-100.5%)

-0.017 (-101.1%)

8×

85.1%p

3.326

2.4%p (-97.1%)

0.087 (-97.4%)

-0.5%p (-100.5%)

-0.033 (-101.0%)

63.8%p

1.624

0.7%p (-99.0%)

0.014 (-99.2%)

-0.3%p (-100.4%)

-0.013 (-100.8%)

Table 4.5: Black: Absolute test accuracy barrier (top) and test loss barrier
(bottom) of fully merged ResNet models trained on CIFAR10 and SVHN for

different depths and widths. Purple: The respective absolute barrier (and
relative reduction to full merging) after additionally applying REPAIR.

Grey: The respective absolute barrier (and relative reduction to full merging)
when using ensembling instead.
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4.2 Partial merging with forced buffer assignment

We will now evaluate whether the forced buffer assignment partial merging method
proposed in Chapter 3 is able to beat full merging, and to which extent in can reach
the performance boost that ensembling yields when we increase the expansion
factor γ.

For this, we partially merge the just evaluated models using values of γ ∈
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}, yielding an expansion of the layer widths
by γ across all layers. We additionally report results after applying REPAIR to
only the merged section of the model – the weights pointing to buffer neurons and
their associated batch norm target values remain the same.

The resulting test accuracies and losses (depending on the interpolation factor
α) for a VGG11 trained on CIFAR10 can be seen in Figure 4.1 and the results for
a ResNet18 trained on SVHN in Figure 4.2. The plots for an MLP are included as
Appendix Figure A.1. The pattern of gradually improving accuracy and loss with
increasing γ is present across all architectures, widths, and depths, the Figures
therefore shall just serve as representative examples. The red lines for γ = 1.0

are exactly on top of the black lines of ensembling, as an expansion of 100% (no
overlap at all) is functionally equivalent to executing both models in parallel.

Another observation is that the added layer width and the resulting performance
increase have a non-linear relationship. For example, using REPAIR and increasing
the final width through addition of just 20% buffer neurons (γ = 0.2) yields,
on average, an additional accuracy barrier reduction of 53.6% in VGGs when
comparing to full merging with REPAIR. The resulting additional decreases for
γ = 0.2 across all widths and depths are reported in Table 4.6 (MLPs), Table 4.7
(VGGs) and Table 4.8 (ResNets). This non-linear relationship is further explored
in Figures 4.3 to 4.6, where the resulting accuracy or loss at α = 0.5 is plotted
against γ. A complete elimination of the accuracy and loss barriers is typically
seen between γ = 0.5 and γ = 0.8 when additionally using REPAIR.

A graphic example of first layer kernel alignment after +50% buffer neuron
expansion can be seen in appendix Figure A.2, and serves as a counterpart to
Figure 3.1 that shows partial merging.
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Figure 4.1: Test accuracies and losses with and without REPAIR for a
regular-width VGG11. An improvement in accuracy and loss compared to the
endpoint model average (green area) is achieved beyond an addition of 80%

buffer neurons to the original layer width and beyond 70% when using REPAIR.
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Figure 4.2: Test accuracies and losses with and without REPAIR for a
regular-width ResNet18. An improvement in accuracy and loss compared to the

endpoint model average (green area) is achieved beyond an addition of 90%
buffer neurons to the original layer width and beyond 80% when using REPAIR.
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Figure 4.3: Added layer width through
buffer neurons vs. accuracy barrier

reduction, for different depth VGGs.

Figure 4.4: Added layer width
through buffer neurons vs. accuracy
barrier reduction, for different width

VGG11s.

Figure 4.5: Added layer width
through buffer neurons vs. accuracy
barrier reduction, for different width

ResNets.

Figure 4.6: Added layer width
through buffer neurons vs. loss barrier
reduction, for different width ResNets.
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MNIST
MLP3 MLP4 MLP5 MLP6 MLP7 MLP8 MLP9 MLP10

0.125×
-56.4%
-52.6%

-29.5%
-44.2%

-40.6%
-31.5%

-57.9%
-58.7%

-51.3%
-50.0%

-49.3%
-48.6%

-50.4%
-56.4%

-39.2%
-34.1%

0.25×
-46.0%
-38.6%

-70.7%
-66.9%

-48.8%
-41.6%

-47.3%
-48.9%

-38.9%
-43.3%

-24.4%
-15.6%

-55.9%
-44.3%

-45.0%
-40.3%

0.5×
-75.8%
-64.0%

-12.2%
-28.1%

-28.3%
-41.5%

-39.0%
-45.7%

-32.7%
-31.1%

-29.6%
-30.3%

-46.1%
-28.5%

-41.7%
-28.5%

1×
-74.6%
-38.7%

-37.3%
-33.8%

-23.8%
-40.9%

-18.2%
-23.4%

-40.9%
-37.8%

-31.4%
-30.6%

-32.0%
-43.7%

-35.9%
-33.9%

2×
-40.0%
-52.2%

-25.9%
-40.3%

-52.9%
-45.1%

-43.3%
-44.6%

-37.3%
-45.2%

-46.2%
-33.0%

-43.4%
-37.1%

-24.8%
-35.3%

4×
-70.0%
-33.8%

-34.6%
-36.1%

-46.7%
-26.8%

-42.0%
-35.5%

-43.5%
-38.6%

-31.3%
-36.4%

-37.4%
-33.2%

-44.8%
-40.2%

Table 4.6: Relative test accuracy barrier reduction (top value) and test loss
barrier reduction (bottom value) reduction of a partially merged MLP with

α = 0.5 and γ = 0.2 (+20% width), after REPAIR, compared to the same value
for γ = 0 (full merging).
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CIFAR10 SVHN
VGG11 VGG13 VGG16 VGG19 VGG11 VGG13 VGG16 VGG19

0.25×
-50.9%
-52.9%

–
–

–
–

–
–

-51.6%
-49.1%

–
–

–
–

–
–

0.5×
-35.8%
-32.7%

–
–

–
–

–
–

-58.4%
-47.6%

–
–

–
–

–
–

1×
-49.0%
-43.8%

-43.2%
-41.8%

-42.3%
-49.8%

-48.6%
-41.4%

-53.6%
-51.2%

-55.0%
-65.9%

-71.0%
-59.3%

-56.4%
-67.4%

2×
-42.2%
-47.0%

–
–

–
–

–
–

-49.0%
-61.0%

–
–

–
–

–
–

4×
-51.1%
-49.5%

–
–

–
–

–
–

-100.6%
-102.1%

–
–

–
–

–
–

Table 4.7: Relative test accuracy barrier reduction (top value) and test loss
barrier reduction (bottom value) reduction of a partially merged VGG with

α = 0.5 and γ = 0.2 (+20% width), after REPAIR, compared to the same value
for γ = 0 (full merging). The 20% width increase was sufficient to surpass

complete barrier elimination in a 4× width VGG11 on SVHN.

CIFAR10 SVHN
ResNet18 ResNet18

1×
-43.7%
-47.4%

-56.7%
-59.3%

2×
-38.8%
-38.9%

-49.4%
-46.5%

4×
-45.9%
-43.5%

-50.7%
-51.3%

8×
-36.0%
-40.2%

-41.4%
-57.3%

Table 4.8: Relative test accuracy barrier reduction (top value) and test loss
barrier reduction (bottom value) of a partially merged ResNets with α = 0.5 and
γ = 0.2 (+20% width), after REPAIR, compared to the same value for γ = 0

(full merging).
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4.3 Does the choice of units even matter?

As we could see in the previous Section, having a partial overlap between two
models results in a performance that lies between full merging and ensembling.
But does the choice of which units to merge and which to keep separate even
matter? In other words, is the increase in performance that we observe simply
a result of a more diverse set of units in general (through the added width), or
does our problem formulation as relaxed linear assignment problem provide an
additional benefit by allowing for better correlated matches in the merged part?

In order to test this, we construct a simple baseline method that works as follows.
First, we do align the units of our models as we would for full merging. Then,
we randomly select ⌈γn⌉ of the n units in each layer and split them apart. Some
of the split-apart units will have had high correlation coefficients, others will have
had low ones. However, the resulting width increase is exactly the same as if doing
forced buffer assignment with the reformulated LAP.

As visible in Figure 4.7 to 4.10, the LAP-based buffer assignment tends to out-
perform the random unit splitting, both before and after REPAIR. Only sporad-
ically, the accuracy of the random method is equivalent to or better than the
LAP-based assignment – after all, a random selection may pull apart a majority
of bad matches too. However, even the random splitting of neurons results in a
better-than-linear decrease of the accuracy barrier with respect to width in most
cases, especially after applying REPAIR.

The large similarity between both curves suggests that the increased diversity
of units that we have when going in the direction of ensembling plays a significant
role in the improved performance we observe. Alternatively, it is possible that
even the better matches in our merged model are still so bad that they would be
better off remaining separate. Nonetheless, using the LAP formulation focusing on
maximixing correlations in each layer almost always performs better, and should
therefore be preferred.
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Figure 4.7: Randomly splitting apart
neurons vs using the forced buffer

assignment method, on two VGG11s
trained on CIFAR10.

Figure 4.8: andomly splitting apart
neurons vs using the forced buffer

assignment method, on two VGG11s
trained on SVHN.

Figure 4.9: Randomly splitting apart
neurons vs using the forced buffer

assignment method, on two Resnet18s
trained on CIFAR10.

Figure 4.10: Randomly splitting apart
neurons vs using the forced buffer

assignment method, on two Resnet18s
trained on SVHN.
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Figure 4.11: The relationship between width increase through added buffer
neurons and parameter increase is not linear.

4.4 Parameter efficiency

The non-linear relationship between added width and barrier elimination described
in section 4.2 is slightly misleading when it comes to the cost of layer widening.
Specifically, not only is the relationship between added width and performance
improvement non-linear, but so is the relationship between added width and model
parameter increase. As an example, the first 10 percent of width increase from
γ = 0 to γ = 0.1 are much more costly in terms of added parameters than the
last 10 percent from γ = 0.9 to γ = 1.0. This phenomenon is grounded in the fact
that the overlapping area of both weight matrices shrinks simultaneously in both
dimensions, and as such approximately quadratically. We plot the relationship
between γ and the added non-zero parameters in Figure 4.11.

Given this context, is the barrier decrease from partial merging still better than
linear when comparing to added non-zero parameters instead of added layer width?
We report the equivalent of Figure 4.3 to 4.6 with the non-zero parameter increase
instead of the added width can be seen in Figure 4.12 to 4.15. While the relation-
ship tends more towards linearity than before, and is sometimes even worse than
linear (e.g. the VGG19 at γ = 0.1), the “S-shape” of the curves is only present
without REPAIR (if at all), and in most cases the addition of x percent parameters
still decreases the barrier by more than x percent.
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Figure 4.12: Added non-zero
parameter count vs. accuracy barrier
reduction, for different depth VGGs.

Figure 4.13: Added non-zero
parameter count vs. accuracy barrier

reduction, for different width
VGG11s.

Figure 4.14: Added non-zero
parameter count vs. accuracy barrier
reduction, for different width ResNets.

Figure 4.15: Added non-zero
parameter count vs. loss barrier

reduction, for different width ResNets.
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4.5 Partial merging with adaptive buffer

assignment

In addition to the previous experiments where the expansion of layers was hard-
coded and uniform across all layers, we will now evaluate adaptive buffer assign-
ment with different threshold values ϵ. We evaluate values of {0.1, 0.15, 0.2, 0.25,
0.3, 0.35, 0.4, 0.5, 0.6, 0.8}, which are not uniformly spaced, but have a higher res-
olution between 0.1 and 0.4, where the bulk of the correlations in the correlation
matrices are located that are selected by the LAP solver, with wider models having
a slightly higher average correlation.

When comparing adaptive buffer assignment to forced buffer assignment we can-
not simply look at the total model width, as adaptive buffer assignment results in
different widths per layer, purely dependent on the correlation coefficient makeup
in that layer. We will report the used portion of buffer neurons per layer in our
results (as an analogue to γ), but mainly look at the resulting parameter increase
for the different values of ϵ. The maximum width increase that we allow in each
layer is always set to γ = 1.0 in our experiments.

As an example for the distribution of correlation coefficients in different lay-
ers, we plot the correlations selcted by the LAP solver with full merging for the
VGG11s trained on CIFAR10 in Figure 4.16. Additional correlation plots for more
models can be found in Figures A.3, A.4, and A.5 in the Appendix. The average
selected correlations in the first and last layers are generally higher (µcorr > 0.5)
and tend to be lower in the middle layers (0.5 > µcorr > 0)1. Please note that the
adaptive buffer assignment strategy does not necessarily pull apart all matches
that previously had a correlation below ϵ; instead ϵ represents a hard lower bound
for correlations in the LAP solution. It is possible that satisfying this lower bound
is also possible without pulling apart all matches that previously violated it, spe-
cifically if better matches are “freed up” in the process. This does, however, happen
rarely, and as such the adaptive assignment strategy is similar to the method used
in FedAvg [37].

1This pattern is present as well when looking at the candidate correlation coefficients, i.e. not
just the selected ones, but with significantly lower averages.
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Figure 4.16: The activation correlations choosen by the LAP solver when fully
merging two VGG11s trained on CIFAR10, per convolutional layer.

Figure 4.17: The resulting width expansion per layer for different values of ϵ for
adaptive buffer assignment in two VGG11s trained on CIFAR10.

In addition to the correlations per layer we provide the resulting width increases
per layer, depending on the values of ϵ, in Figure 4.17. They correspond well to
the correlations recorded in the full merging setting, with the worst correlations –
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and thus the quickest layer expansion – in layer 5. While the pattern for ResNets
is different, the general shape of correlation histogram and layer widths resulting
from adaptive buffer assignment remains approximately aligned. However, the fact
that some layers can only be expanded together, namely the residually connected
layers groups {1, 3, 5}, {7, 9}, {11, 13}, and {15, 17}, results in some artefacts
visible in Figure 4.18.

The most striking such anomaly is the low expansion of layer 15, despite its
relatively moderate correlation coefficients. The reason behind this is that the
permutation of each same-width residual layer group is commonly determined
purely by the correlation coefficients of its last layer. In this case, the permutation
(and expansion, depending on ϵ) of layer 15 was determined by layer 17, which has
much better correlation coefficients. It could be worth it to collect the correlations
in an earlier layer, or average the correlations across multiple layers inside each
group, to get a more reliable measure.

The barrier decreases resulting from the adaptive buffer assignment strategy
can be seen in Figure 4.19 to 4.22, where they are compared to forced buffer
assignment. Which strategy outperforms which is inconsistent, with the adaptive
strategy beating the forced assignment in the MLPs and VGG11s on CIFAR10,
both strategies being approximately equivalent in the VGG11s on SVHN, and the
forced assignment beating the adaptive assignment on the ResNet18s on SVHN
(and CIFAR10, which is not plotted). When looking just at the performance
after REPAIR, the adaptive assignment strategy seems to cross the 100%-barrier-
reduction threshold slightly sooner than the forced assignment strategy, but the
differences are small and not significant.
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Figure 4.18: The resulting width expansion per layer for different values of ϵ for
adaptive buffer assignment in two ResNet18s trained on SVHN.
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Figure 4.19: Added non-zero
parameter count vs. accuracy barrier

reduction, for forced and adaptive
buffer assignment on two 6-layer

MLPs trained on MNIST.

Figure 4.20: Added non-zero
parameter count vs. accuracy barrier

reduction, for forced and adaptive
buffer assignment on two VGG11s

trained on CIFAR10.

Figure 4.21: Added non-zero
parameter count vs. accuracy barrier

reduction, for forced and adaptive
buffer assignment on two VGG11s

trained on SVHN.

Figure 4.22: Added non-zero
parameter count vs. accuracy barrier

reduction, for forced and adaptive
buffer assignment on two ResNet18s

trained on SVHN.
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4.6 Split data training

Following the split data training experiment from [7], we construct two disjoint
subsets of CIFAR100 [45], CIFAR100-A and CIFAR100-B. Subset A contains 400
samples each of classes 0 to 49, and 100 samples each for classes 50 to 99, repres-
enting a 80%/20% split, with the exact opposite for subset B. While the original
experiment uses two ResNet20s with 32×width, this is computationally infeasible
for us. Instead, we will evaluate two ResNets with 16×width2, which should not
yield significantly different results.. When calculating the batch norm statistics
for REPAIR, we will use the entire unbiased CIFAR100 dataset3.

Figure 4.23: The resulting test losses from the interpolation of the biased
endpoint models.

2Even this required access to an A100 40GB GPU. A 16×width ResNet20 has 256 times as
many parameters as a single-width one.

3The authors of [10] did not specify which data they used for REPAIR, hence this is just our
best guess.
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The resulting test losses can be seen in Figure 4.23. A complete elimination
of the loss barrier can be achieved beyond γ = 0.7 and beyond γ = 0.2 when
using REPAIR. The REPAIRed endpoints have a slightly higher loss than before
due to the different distribution of our unbiased REPAIR data. However, for the
interpolation at α = 0.5 this is not harmful. The results for test accuracy can
be seen in Appendix Figure A.6. The elimination of the accuracy barrier occurs
roughly at the same values of γ. These results are are relevant for federated learning
cases in which the data distribution for each client has a different makeup.

In addition to the just reproduced experiment, we also construct two unbiased
disjoint subsets of CIFAR10, CIFAR10-A and CIFAR10-B, both of which contain
exactly half of the samples per class, and train a single-width ResNet18 on each
subset. We do the same with single-width VGG11s. We then evaluate forced buffer
assignment in this split data setting that is supposed to approximate federated
learning with a balanced data distribution across clients. The resulting accuracies
and losses for the ResNet18s can be seen in Figure 4.24, with the same plots for
the VGGs in Appendix Figure A.7.

The overall pattern of gradual improvement through partial merging persists
even in the split data setting, albeit with an understandably lower test accuracy of
the endpoints, the ensemble, the fully merged model and all partial merging steps
in between.

52



4 Experiments

Figure 4.24: Test accuracies and losses with and without REPAIR for two
regular-width ResNet18s trained on unbiased disjoint subsets of CIFAR10.
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4.7 Finetuned models

Model merging can be beneficial for the test accuracy of the interpolated model
when the endpoint models were finetuned from a shared base model, a property
exploited by model soups [6]. To determine whether partial merging provides any
additional benefit in this regime, we prepare a simple two-model-soup following
the uniform soup recipe from [6].

Starting from a fully trained CIFAR10 VGG11 endpoint model from the previous
experiments, we create two copies of the model and further train each copy for 50
epochs using a cosine learning rate of 0.04 and the regular CIFAR10 dataset. The
finetuning procedure for both models differs only in the training sample order and
data augmentations, which are both sampled at random.

The resulting accuracies and losses for different values of γ and α can be seen
in Figure 4.25. Both finetuned endpoints reached a slightly different final accur-
acy and loss after 50 finetuning epochs. REPAIR and partial merging are both
successfull in improving the loss of the combined models, with the REPAIR loss
being significantly lower than without REPAIR. Both ensembling and merging
also result in a accuracy increase that peaks at approximately α = 0.3. However,
despite the benefits in loss, partial merging results in no additional benefit in terms
of accuracy, full merging already surpasses the accuracy of ensembling. REPAIR
made the accuracy of models worse across all values of γ.
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Figure 4.25: The test accuracies and losses from two single-width VGG11 models
finetuned on the same base model. The ensembling line is hidden behind the

partial merging (+100% buffer) line.
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4.8 Partially merging single layers

The observation that the individual layers of the models can have vastly different
correlations and are merged at different rates when using an adaptive strategy
raises the question whether specific layers are responsible for different portions
of the barriers incurred from merging. This question is especially relevant when
individual layers have different widths, as is the case in convolutional architectures,
and thus are responsible for a different portion of the parameter increase in the
model when being partially merged. More specifically, are those layers that have
the lowest correlation coefficients also the layers that yield the biggest benefit when
being only partially merged? And, secondly, can we achieve a better parameter
increase vs. barrier reduction tradeoff when we first partially merge layers that
add only few parameters when being pulled apart?

We answer this question by manually defining γ as 0 for all layers except one,
where we evaluate different values of γ from 0.1 to 1.0. This means fully merging
the entire model, except one layer, which will have a width increase between 10%
and 100%4. We repeat this for every layer of the model and record the resulting
accuracy and loss barrier decreases and non-zero parameter increases, both before
and after applying REPAIR. We do this for single-width VGG11s and ResNet18s
trained on CIFAR10 and SVHN.

As an example, we plot the resulting de- and increases for the VGG11s trained
on CIFAR10, evaluated before applying REPAIR, in Figure 4.26. The same values
after applying REPAIR can be seen in Figure A.9, the values for VGG11s trained
on SVHN in Figure A.8, and the results for the ResNet18s trained on CIFAR10,
evaluated after REPAIR, in Figure A.10, all to be found in the Appendix.

The results are highly surprising, as they contradict the established notion that
the correlation coefficients are a good predictor for the resulting barrier decrease.
For example, while the correlation coefficients selected by the LAP solver in the
VGG11s trained on CIFAR10 are the lowest in convolutional layer 5 (see Figure
4.16), an expansion of layer 5 does not yield the biggest barrier decrease (neither
in test accuracy nor loss). In fact, even expanding layer 2 provides a bigger barrier

4What we do is effectively forced buffer assignment, but restricted to one layer.
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Figure 4.26: The accuracy and loss barrier reductions and (non-zero) parameter
increases when only one layer is partially merged on a regular-width VGG11

trained on CIFAR10.

decrease than expanding layer 5, despite having much better correlation coefficients
and being four times less wide (i.e. having 128 instead of 512 kernels). Not only
does it provide a bigger barrier decrease, but it also costs us just nearly 10 times
less to expand layer 2 in terms of added non-zero parameters5. This disparity
becomes more pronounced when looking at the barrier decreases after REPAIR
(see Figure A.9), where pulling apart earlier layers becomes even more favorable.
In ResNets, the expansion of even layers is most beneficial in the earlier layers, and
the expansion of the residually connected odd layer groups is most beneficial in
the beginning and end of the model. Unsurprisingly, the expansion of layer groups
also tends to be more parameter-expensive than the expansion of individual layers.

We can use the just collected statistics to construct a partial merging strategy
that is not informed by correlation coefficients, but empirical observations about

5It should be noted that the added non-zero parameters are interdependent between layers
when expanding more than one layer. For example, if layer ℓ has already been expanded,
additionally expanding layer ℓ− 1 or ℓ+1 is cheaper than expanding any other layer, even if
they have the exact same width. Similarly, and as the only potential exception to this rule,
it is especially cheap to expand the first or last layer, as the shape of the inputs and output
classes remains constant, and thus limits the shifting of weight matrices to one dimension.
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the barrier reductions resulting from specific layers. For each layer, we calculate a
benefit factor, which is nothing more than the accuracy barrier reduction at γ =

1.0, divided by the parameter increase at γ = 1.0, for each layer. We calculate this
benefit factor both from the barrier decreases recorded before and after applying
REPAIR to determine which of them are better suited as guiding metric. Starting
from a value of γ = 0 for each layer, we consecutively assign γ = 1.0 to one layer
after another, ordered by their benefit factor. We must stress that this strategy is
incredibly simplistic, and assumes that the benefit and parameter increase of each
layer is independent of other layers. Both of these assumptions are wrong, and as
such the strategy can only serve as a proof-of-concept.

The resulting accuracy barrier reductions, plotted against their parameter in-
crease, are shown in Figure 4.27 to 4.30. Equivalent plots for the loss barrier
reductions can be seen in Figure A.11 to A.14 in the Appendix.

Our empirically grounded proof-of-concept baseline outperforms the forced buf-
fer assignment (and adaptive buffer assignment) significantly. For example, an
addition of between 22% and 24% non-zero parameters is able to eliminate the
accuracy and loss barrier between the two VGG11s trained on CIFAR10 or SVHN
completely when combined with REPAIR. An addition of 7% and 9% of non-zero
parameters is sufficient to half the remaining accuracy barrier after REPAIR in the
ResNets trained on CIFAR10 and SVHN. Unfortunately, a full barrier elimination
can still only be achieved for large parameter increases on the ResNets using our
proof-of-concept strategy.
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Figure 4.27: Parallel expansion
compared to the strategies using the

pre-REPAIR and post-REPAIR
benefit factors w.r.t. accuracy, on

VGG11s trained on CIFAR10.

Figure 4.28: Parallel expansion
compared to the strategies using the

pre-REPAIR and post-REPAIR
benefit factors w.r.t. accuracy, on

VGG11s trained on SVHN.

Figure 4.29: Parallel expansion
compared to the strategies using the

pre-REPAIR and post-REPAIR
benefit factors w.r.t. accuracy, on
ResNet18 trained on CIFAR10.

Figure 4.30: Parallel expansion
compared to the strategies using the

pre-REPAIR and post-REPAIR
benefit factors w.r.t. accuracy, on

ResNet18s trained on SVHN.
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The insights that we can gain from the conducted experiments are manifold. First
and foremost, partial merging always allows us to gradually bridge the performance
gap between full merging and ensembling, except when no such gap exists (as is
the case for the finetuned models). There was no instance in which allowing a
partial overlap was detrimental to either test accuracy or test loss. Additionally,
the benefits we can reap through even a small expansion (e.g. +20% width) are
major, often reducing the remaining post-REPAIR barrier by half or more.

In typical ensembling use-cases, any performance drop is undesirable. It would
be much wiser to simply use the best individual model, for no extra cost. However,
specifically in those cases where ensembling is impossible, e.g. when doing feder-
ated learning, even the slightest barrier reduction could already be useful. If the
performance drop that we get from (partially) merging the models from two cli-
ents is only half as big, unneccessary communication rounds can be avoided. Our
partial merging method can easily be adapted to work for the strict data-agnostic
federated learning regime by using weight matching instead of activation matching
and using the data-free (yet slightly less performant) variant of REPAIR that ap-
proximates the necessary adjustments against variance collapse from the existing
batch norm statistics alone [10]. If even the smallest resulting width increase is
problematic, a possible solution could be to train the client models narrower than
the desired final width in the first few rounds, then partially merge and repair
them, and fall back to regular FedAvg training afterwards.

Another interesting property that we discovered but did not include in our ex-
perimental section is that narrower models can be merged into wider models with
much greater ease than narrower models with each other, and even better than
wider models with each other. This could enable federated learning secenarios in
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which the number of clients changes late in training, and a new narrow model from
the additional client could be more easily integrated into a much wider existing
model, potentially requiring no additional width expansion at all. As we did not
evaluate partial merging of more than two models, we leave these questions for
future research.

Likely the most relevant finding of our experiments is the independence of LAP-
selected correlation coefficients and resulting barrier decrease. This finding has
implications for all strategies that use these measures of similarity as decision cri-
teria for which units to split up and which to keep together, such as PFNM and
FedMA. While our benefit-factor-based method was just a proof-of-concept, it dra-
matically outperforms uniformly expanding across all layers or expanding layers
with bad correlations more. We can think of immediately obvious improvements
to out method. The first improvement would be to re-calculate the cost of expan-
sion, that is the increase in parameters, after each expansion step. As the non-zero
parameter increase depends on the shifting of the weight matrices in the direction
of rows and columns, the shape of which is in return determined by preceding or
following layers, the recalculation could make low-cost expansions more obvious.
For example, when ResNet18 layer group {15, 17} is already expanded by γ = 1.0,
the expansion of layer 16 is practically free1. This could improve the performance
of our method considerably, especially for ResNets. As the re-calculation of para-
meter increases does not require any data, it will also not slow down our method
significantly.

The second improvement to our proof-of-concept method is slightly more compute-
intensive. Instead of expanding each layer completely from γ = 0 to γ = 1, we
can use gradual expansions as intermediary steps. For example, it is visible in
Figure 4.26 that the accuracy barrier decrease when expanding layer 3 by 50% is
already 67% of the barrier decrease we get when expanding it by 100%, echoing
the non-linear relationship observed in our forced buffer assignment experiments
in single layers. It could thus be useful to expand each layer step-wise, re-evaluate
the benefits, and then potentially choose a different layer to expand a bit more.
The implementation of this improvement could be done using a greedy flood-fill

1The expansion only results in a doubling of bias and batch norm parameters, but no changes
to the number of non-zero weights in layer 16.
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algorithm without much changes to the existing code. However, the repated recal-
culation of barrier decreases for each additional expansion is quite compute-heavy,
as previous barrier decrease values cannot be reused.

Finally, one of the properties of CNNs not considered by our proof-of-concept
method is the fact that kernels in earlier layers are applied more often than kernels
in the later layers, due to the different x, y dimensions of the feature maps. Each
max pooling layer reduces the number of expected kernel applications. However,
this would only change our parameter increase to a weighted parameter increase,
modifying our benefit factors, but change little about the overall distribution of
costs and benefits. This adjustment to account for expected forward-pass FLOPs
instead of parameters would optimize for the metric we actually care about, infer-
ence time, and give less weight to the absolute number of parameters.

As the method still need a good amount of parameters (approximately a quarter)
to reach zero-barrier connectivity between the endpoint models, it only becomes
usefull compared to individual endpoints after that. However, often a performance
almost as good as ensembling can be achieved with less than 100% parameter
increase, for example in the VGG11s and ResNet18s trained on SVHN, for which
the accuracy barrier reduction is more or less flat after γ = 0.5. If we are also okay
with 80% of the performance increase we get from ensembling, we can thus save a
large number of parameters compared to executing both models in parallel.

As stated in the original REPAIR paper, “any improvements towards reducing
the obstacles to interpolation between trained models has the potential to lead
to empirical progress” [10] in areas where the combination of multiple models
parameters is of relevance. Our results are an incremental contribution to making
the interpolation of models more efficient, and can represent a viable alternative
to ensembling in some cases.

Further avenues for future research include pruning the models before partially
merging them, which could result in a final partially merged model of the same
with as the originally unpruned endpoint models. Furthermore, the combination
of more advanced alignment methods such as Sinkhorn-Rebasin [35] for partial
merging could boost the barrier decrease even further, just like it did for full
merging.

62



6 Conclusion

In this thesis we explored several methods for merging models just in parts. Forced
buffer assignment, which expands all layers equally, and adaptive buffer assign-
ment, which expands each layer by a different factor depending on the measured
correlation coefficients, performed approximately equally well. Both were able to
gracefully bridge any occuring loss and accuracy barriers and converged to the per-
formance of ensembling as γ approches 1.0. Often a width increase by a factor of x
results in a barrier reduction larger than x, which is especially true after applying
REPAIR.

We were able to demonstrate that those layers that have lower correlation coef-
ficients are not neccessarily the layers that benefit the most from being expanded.
Instead, the contribution of each layers expansion towards the reduction of the
accuracy and loss barriers should be measured empirically. Doing this allows for
selecting expansion orders which reach zero-barrier connectivity between endpoints
earlier while at the same time incurring a smaller parameter increase in the par-
tially merged model.

We hope that our results can be used as a starting point for constructing even
more efficient merging methods, and move model merging further towards the
performance-boosting regime that ensembling resides in.
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MNIST
MLP3 MLP4 MLP5 MLP6 MLP7 MLP8 MLP9 MLP10

0.125×
98.9%
0.040

98.7%
0.047

98.8%
0.047

98.7%
0.048

98.7%
0.047

98.7%
0.051

98.7%
0.053

98.7%
0.053

0.25×
99.0%
0.036

99.0%
0.039

98.9%
0.041

98.9%
0.045

99.0%
0.043

99.0%
0.043

98.9%
0.046

99.0%
0.047

0.5×
99.0%
0.032

99.1%
0.032

99.2%
0.033

99.1%
0.037

99.2%
0.036

99.2%
0.038

99.1%
0.046

99.1%
0.045

1×
99.1%
0.029

99.2%
0.028

99.2%
0.030

99.2%
0.035

99.2%
0.035

99.1%
0.039

99.2%
0.037

99.1%
0.044

2×
99.2%
0.028

99.2%
0.028

99.2%
0.030

99.3%
0.034

99.2%
0.034

99.2%
0.037

99.2%
0.039

99.2%
0.039

4×
99.2%
0.028

99.3%
0.029

99.3%
0.031

99.2%
0.036

99.3%
0.035

99.2%
0.040

99.2%
0.039

99.2%
0.040

8×
99.2%
0.029

99.3%
0.030

99.3%
0.034

99.2%
0.038

99.2%
0.042

99.2%
0.042

99.2%
0.041

99.3%
0.040

Table A.1: Average test accuracy and test loss of both MLP endpoint models
trained on MNIST for different depths and widths.
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CIFAR10 SVHN
VGG11 VGG13 VGG16 VGG19 VGG11 VGG13 VGG16 VGG19

0.25×
87.1%
0.460

–
–

–
–

–
–

95.6%
0.196

–
–

–
–

–
–

0.5×
90.1%
0.408

–
–

–
–

–
–

96.1%
0.175

–
–

–
–

–
–

1×
91.5%
0.336

93.3%
0.277

93.3%
0.305

92.9%
0.347

96.6%
0.146

96.8%
0.144

96.6%
0.167

96.7%
0.181

2×
92.5%
0.299

–
–

–
–

–
–

96.7%
0.141

–
–

–
–

–
–

4×
92.6%
0.280

–
–

–
–

–
–

96.5%
0.141

–
–

–
–

–
–

Table A.2: Average test accuracy and test loss of both VGG endpoint models
trained on CIFAR10 and SVHN for different depths and widths.

CIFAR10 SVHN
ResNet18 ResNet18

1×
92.0%
0.397

96.7%
0.188

2×
93.6%
0.294

96.9%
0.158

4×
94.8%
0.235

97.0%
0.145

8×
95.3%
0.209

97.0%
0.141

Table A.3: Average test accuracy and test loss of both ResNet18 endpoint models
trained on CIFAR10 and SVHN for different widths.
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SVHN
VGG11 VGG13 VGG16 VGG19

0.25×

17.6%p
0.577

3.1%p (-82.7%)
0.111 (-80.7%)

-0.7%p (-104.1%)
-0.037 (-106.5%)

– – –

0.5×

9.5%p
0.406

1.2%p (-87.6%)
0.043 (-89.3%)

-0.5%p (-104.9%)
-0.024 (-105.9%)

– – –

1×

4.3%p
0.236

0.8%p (-81.0%)
0.023 (-90.1%)

-0.3%p (-107.5%)
-0.015 (-106.5%)

7.0%p
0.292

0.7%p (-90.6%)
0.017 (-94.0%)

-0.3%p (-104.7%)
-0.016 (-105.6%)

24.8%p
0.828

0.6%p (-97.5%)
0.018 (-97.8%)

-0.4%p (-101.8%)
-0.026 (-103.1%)

17.7%p
0.655

0.6%p (-96.4%)
0.016 (-97.6%)

-0.5%p (-102.6%)
-0.034 (-105.2%)

2×

3.6%p
0.165

0.6%p (-84.5%)
0.014 (-91.7%)

-0.2%p (-106.7%)
-0.011 (-107.0%)

– – –

4×

1.6%p
0.098

0.1%p (-93.0%)
0.001 (-99.9%)

-0.3%p (-118.8%)
-0.009 (-109.1%)

– – –

Table A.4: Black: Absolute test accuracy barrier (top) and test loss barrier
(bottom) of fully merged VGG models trained on SVHN for different depths and

widths. Purple: The respective absolute barrier (and relative reduction to full
merging) after additionally applying REPAIR. Grey: The respective absolute

barrier (and relative reduction to full merging) when using ensembling instead.
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Figure A.1: Test accuracies and losses with and without REPAIR for a
regular-width MLP with 6 layers. An improvement in accuracy and loss

compared to the endpoint model average (green area) is achieved beyond an
addition of 90% buffer neurons to the original layer width and beyond 70% when

using REPAIR.
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Figure A.2: Aligned first-layer kernels of two VGG11 models trained on
CIFAR10, identical to Figure 3.1. In green: a good match. In red: a (previously)
bad match that is now separated and will not be interpolated. Kernels shaded in

red indicate buffer kernels whose parameters are all zero. Kernel saturation
increased for better visibility.

Figure A.3: The activation correlations choosen by the LAP solver when fully
merging two VGG11s trained on SVHN, per convolutional layer.
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Figure A.6: The resulting test accuracies from the interpolation of the biased
endpoint models.
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Figure A.7: Test accuracies and losses with and without REPAIR for two
regular-width VGG11s trained on unbiased disjoint subsets of CIFAR10.
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Figure A.8: The test accuracy, test loss, and (non-zero) parameter increase when
only one layer is partially merged on a regular-width VGG11 trained on SVHN.

Figure A.9: The test accuracy, test loss, and (non-zero) parameter increase when
only one layer is partially merged on a regular-width VGG11 trained on

CIFAR10, recorded after applying REPAIR.
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Figure A.10: The test accuracy, test loss, and (non-zero) parameter increase
when only one layer is partially merged on a regular-width ResNet18 trained on

CIFAR10, recorded after applying REPAIR.
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Figure A.11: Parallel expansion
compared to the strategies using the

pre-REPAIR and post-REPAIR
benefit factors w.r.t. loss, on VGG11s

trained on CIFAR10.

Figure A.12: Parallel expansion
compared to the strategies using the

pre-REPAIR and post-REPAIR
benefit factors w.r.t. loss, on VGG11s

trained on SVHN.

Figure A.13: Parallel expansion
compared to the strategies using the

pre-REPAIR and post-REPAIR
benefit factors w.r.t. loss, on

ResNet18s trained on CIFAR10.

Figure A.14: Parallel expansion
compared to the strategies using the

pre-REPAIR and post-REPAIR
benefit factors w.r.t. loss, on
ResNet18 trained on SVHN.
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As seen in Figure 3.4, the partial merging of originally dense weight matrices
introduces sparsity in the output weight matrix, ranging from 0% (full merging)
to 50% (100% width increase) sparsity or zero-weights1. However, whenever we
talk about induced parameter increase in this thesis, we are speaking of the increase
of non-zero parameters only, and ignore the added zeros. Is this a fair approach?
In this appendix we show why the added zero parameters are harmless, both
in terms of model storage size and floating-point operations (FLOPs) per kernel
multiplication, and can be ignored.

If no addidional steps are undertaken and the resulting sparse weight matrices
are kept as-is, partial model merging results in a unneccesaryly high storage
cost and computation effort. While efficient implementations for multiplying
sparse matrices for popular tensor frameworks like PyTorch are currently being
developed2, we can also manually modify our model architecture in such a way
that the introduced zero parameters do not result in any additional overhead. We
achieve this through subsequent permutation of the final merged model in such a
way that all interpolated input and output units are clustered together3. Next,
the weight matrix is partitioned into three dense blocks (visible in Figure B.1),
and the zero parameters are discarded.

The partitioning of the weight matrices necessitates an adapted forward pass
procedure, which takes the shapes of the weight matrix blocks into account. When
before, we had a weight matrix W

(α)
ℓ of shape n + ⌈γn⌉ × m + ⌈γm⌉, with the

1This sparsity occurs exclusively in the weight matrices, and not in bias or batch norm para-
meters, which are simple vectors.

2See https://pytorch.org/docs/stable/sparse.html.
3Note that the bias and batch norm parameters must be permuted appropriately using the

same permutation or its transpose.
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B Weight matrix partitioning

Figure B.1: The sparse weight matrix from Figure 3.4, permuted and partitioned
into three smaller dense weight matrix blocks outlined in blue.

following forward pass:

zℓ+1 = σ
(
W

(α)
ℓ zℓ + bℓ

)
(B.1)

we now have the following forward pass using our partitioned matrices:

zℓ+1 = σ

(
:⌈γn⌉,:m
W

(α)

ℓ

:m
z ℓ +

:m

b ℓ ⊕
⌈γn⌉:n,:
W

(α)

ℓ zℓ + bℓ ⊕
n:,⌈γm⌉:
W

(α)

ℓ

⌈γm⌉:
z ℓ +

⌈γm⌉:
b ℓ⊕

)
(B.2)

where superscripts of type a : b, c : d denote partitions from row a (excluding)
to row b (including) and from column c (excluding) to column d (including), su-
perscripts of type a : b denote the equivalent logic for vectors, partitions from
the beginning or to the end are expressed as ellipses (e.g. : m), and ⊕ denotes
concatenation. Note that for ease of notation, we assume that W

(α)
ℓ , zℓ, and bℓ

have already been permuted as described in the previous paragraph and visible in
Figure B.1.

The partitioning procedure eliminates the need for storing the zero parameters
and limits the FLOPs to only those operations absolutely necessary, i.e. those
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involving non-zero parameters. Please note that it is not a novel contribution,
but directly inspired by the optimization done in [47], where different parts of a
network can be switched “on” or “off”, depending on the currently executed task.
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