UH
_i_i_i_
L2 1 Universitat Hamburg

DER FORSCHUNG | DER LEHRE | DER BILDUNG

Learnability of probabilistic
context-free languages using small
transformer models

Bachelor’s thesis in the course Informatics

Author:
David Rath

Matriculation Number: 7234000

Faculty of Mathematics, Informatics and Natural Sciences
Department of Informatics

First Reviewer & Supervisor: Dr. Michaela Regneri
Second Reviewer: Prof. Dr. Soren Laue

Hamburg, 23.10.2024

Abstract

This thesis investigates the relationship between memorization, generalization, and creativ-
ity in GPT-2 language models trained on artificial languages generated by probabilistic
context-free grammars (PCFGs). Two PCFGs of differing complexities were used to gen-
erate synthetic corpora for training GPT-2 models with varying architectural complexities
and data sizes.

By evaluating the models’ ability to infill missing suffixes in sequences from the training
data, we observed that both overfitting and underfitting can produce outputs that superfi-
cially resemble creative generation. Models often generated novel sequences not present in
the training data; however, we argue that these sequences lacked genuine creativity, as they
resulted from simple recombinations of memorized patterns. Merely verifying the absence of
generated sequences in the training data is insufficient for assessing creativity.

We highlight the necessity of additional metrics to accurately evaluate creativity in lan-
guage models. Analyzing the diversity and distribution of generated sequences—such as
through suffix entropy and n-gram distributions—can be a start. Neither excessively complex
models with vast amounts of data nor overly simplistic models with limited data optimally
foster creativity. Achieving a balance in model complexity and training data is essential for
models to learn underlying grammatical structures without defaulting to memorization or
oversimplification. This study advances our understanding of language model behavior in
regards to memorization and generalization and provides a foundation for developing more

nuanced evaluation methods for memorization, generalization and creativity in Al.

Contents

Background|

2.1 Formal Languages and Grammars|

[2.1.1 Formal Languages| L.

[2.1.2 The Chomsky Hierarchy|

2.1. Pr 1listi ntext-Ir rammars

[2.2 Machine learning| . . .

[2.2.2 Embeddings| . .

2.3 NLP and Language Models|

[2.3.1 Language Models|o oo

[2.3.2 N-gram Models|
[2.3.3 Transformers .

2.4 | rksl

Experiment Setup|

[3.1 Constructing the Grammars| L.
[3.1.1 Simple Grammar|{
[3.1.2 Complex Grammar|

[3.2 Generating the Datasets| oo

[3.3 System Overview|

3.1 Tokenization|

[3.3.2 Model Overview|
[3.3.3 Trigram Models|

w

© J o ot ot Ot

10
11
12
12
12
13
18
18
20

22
22
23
24
25
27
27
27
28

IT

/] v d

[4.2 Sufhx Entropy|.

4. Memoriz

10D . . o e

4.4 neralizationl. L,

[4.5 Perplexity]

5D onl

6 Summary|

30
32
33
34
36
38

40

42

I1I

1 Introduction

1.1 Motivation

Artificial intelligence (AI) has transformed modern technology, and driven innovation across
many industries such as healthcare, finance, and transportation. Specifically two sub fields
of Al have proven themselves capable of a wide variety of tasks: machine learning (ML)
and deep learning (DL). Machine learning, a subset of artificial intelligence, involves the
development of algorithms that enable computers to learn from and make decisions based on
data. Deep learning, a further subset of ML, relates to the usage of neural networks to model
complex patterns in data. Recently, Generative Al (Gen Al), a subset of deep learning, has
gained significant attention for its ability to generate novel content such as text, images, and
music (see Figure [1)).
Unlike "traditional” programs that rely on hard-coded

rules, machine learning algorithms learn from data by iden-

Al
tifying complex patterns which enables them to handle tasks
that are difficult to program explicitly. This process, re- ML
ferred to as training or fitting, involves adjusting the mod- Bl

els internal parameters so that they more accurately repre-
sent the patterns found in the training data. A well-trained
model should then be able to generalize from its data to GenAl
make predictions about new, previously unseen data.

The remarkable effectiveness of machine learning and Figure 1: Al hierarchy
deep learning models in modeling complex data has led to
their widespread use across various fields. In healthcare, Al assists in disease diagnosis by
analyzing medical images and achieves dermatologist-level accuracy in skin cancer classifi-
cation [1]. In fraud detection, machine learning algorithms enhance security by identifying
anomalies indicative of fraudulent transactions [2]. Additionally, Al recommendation algo-
rithms are able to provide personalized content suggestions on platforms like YouTube and
Amazon [3| [4].

Deep learning, a further subset of machine learning, utilizes neural networks to model

complex patterns in data. Neural networks are powerful computational models capable

of approximating any continuous function, as established by the universal approximation

theorem [5]. This ability allows deep learning models to excel in tasks involving large-scale,
complex data, such as image recognition, natural language processing, and autonomous
driving.

Although these technologies demonstrate significant advancements, they are not with-
out downsides. In their current state, generative AI models are prone to hallucinations, a
phenomenon where models generate plausible, but factually incorrect or nonsensical out-
puts. This issue is especially relevant in deep learning due to its complex and often opaque
model structure. Additionally, the performance and behaviour of Al systems can suffer from
biases, should their training data be skewed. As an example, Buolamwini et al. reported
that facial recognition systems from major companies had significantly higher error rates for
darker-skinned and female faces, as their training data was mostly comprised of images of
lighter-skinned and male faces [6].

Natural language processing (NLP) is a field that bridges computer science and linguis-
tics, enabling computers to understand, interpret, and generate human language. Applica-
tions of NLP include machine translation, virtual assistants like Siri and Alexa, sentiment
analysis in social media, and automated summarization of documents. This field has grown
significantly with the advancements in Al, particularly through the development of models
that are able to understand context, nuance, and the subtleties of language. As a result,
we have seen substantial improvements in machine translation, sophisticated chatbots, sen-
timent analysis, and speech recognition technologies.

Large language models (LLMs) have become a cornerstone of NLP due to their ability to
generate human-like text. After being trained on extensive corpora of text data, these models
are able to produce coherent and contextually relevant responses across a wide range of top-
ics. For example, OpenAl’'s GPT-3 model was trained on a dataset containing approximately
570 gigabytes of filtered text, which was comprised of 499 billion tokens sourced from books,
articles, and web texts [7]. LLMs are able to generalize from their training data, which en-
ables them to generate novel and relevant content that extends beyond the specific examples
they have seen. LLMs have been instrumental in advancing research in applications such as
conversational agents, automated content creation, and language translation. Despite their
capabilities, LLMs are often considered "black boxes” because their internal decision-making
processes are not fully understood. This lack of interpretability poses challenges in under-

standing how they generate outputs, particularly when they produce hallucinations. These

challenges are studied within the field of explainable AI (XAI) and Al interpretability (AIX),
which aim to make Al systems more transparent and understandable.

In our work, we aim to study the relationship between memorization, generalization,
and creativity in language models, with a focus on how these aspects manifest in models
trained on artificial languages generated by probabilistic context-free grammars (PCFGs).
By controlling the parameters of these grammars, we can analyze under which conditions

models memorize specific patterns or generalize to produce novel outputs.

1.2 Experiment setup

Given the challenges associated with memorization and generalization in LLMs, we aim to
explore how models transition between these modes and under what conditions creativity
emerges. We design an experiment with the following structure: start with two PCFGs
of low, but slightly differing complexity levels. Using these grammars, we generate large
corpora of random sequences, which are subsequently used to train GPT-2 [8] models with
architectures of varying complexities. We selected the GPT-2 architecture for its widespread
adoption in research to make our findings comparable across various studies. Our experi-
ment condition is chosen in a way as to specifically encourage overfitting, as research has
shown that overfitting increases memorization [9]. Additionally, both a locally and a globally
optimal trigram model are evaluated to serve as baseline comparisons.

After the training process is complete, models are evaluated by infilling the last characters
of sequences from the training data. As sequences are drawn from the training data, models
can produce valid continuations by either generating suffixes verbatim from their training
data, or generate new sequences not before seen. This evaluation method allows models to
either rely either on memorization or generalization to complete the sequences.

Our findings include:

o All GPT-2 models were able to learn the languages and consistently produce valid

sequemnces.

» Both underfitted and overfitted models tended to generate sequences that, while valid
according to the grammar, lacked diversity and originality. Overfitted models memo-

rized frequent patterns and produced repetitive outputs, whereas underfitted models

defaulted to simple, common structures due to their limited capacity. This similarity in

outputs makes it challenging to distinguish genuine creativity from mere memorization.

o Relying solely on whether a generated sequence is absent from the training data is
insufficient to assess creativity. Models can produce novel sequences that are simply
recombinations of memorized n-grams or frequent patterns. We argue that to obtain
a clearer picture of a model’s creativity, it is important to also analyze the diversity of

generated sequences using metrics like suffix entropy or n-gram distribution.

o Our results indicate that neither overly complex models with excessive data (which
may overfit) nor overly simple models with limited data (which may underfit) are
optimal for enabling genuine creativity. An appropriate balance is necessary to allow
models to learn the underlying structures without merely memorizing or defaulting to

simple patterns.

The remainder of this thesis is structured as follows. In Section 2, we provide back-
ground on formal languages, context-free grammars, and language models. Section 3 details
our experimental setup, including the construction of grammars, model training evaluation
procedures. In Section 4, we present the results of our experiments, followed by a discussion
in Section 5. Finally, Section 6 summarizes our findings and suggests directions for future

research.

2 Background

This chapter presents the theoretical background on which the background of our research
is based. We will start with an introduction of formal languages and context-free grammars,
followed by an overview of the methods of natural language processing and language modeling

we utilize.

2.1 Formal Languages and Grammars
2.1.1 Formal Languages

Formal languages are mathematical abstractions used to describe sets of sequences of symbols
of an alphabet. These languages allow for the definition of rules, known as grammars, which
determine whether a given sequence of symbols (called a word) is valid within the language.

The atomic components of formal languages are single arbitrary symbols. A finite,
nonempty set of symbols is called an alphabet, and will here be denoted by the letter X.
Words can be constructed by concatenating a finite number of symbols of some alphabet.
For a given alphabet X, we denote the set of all words that can be constructed from it as »*
(where * denotes the Kleene-star operation) [10].

As an example, let X, = {a,b,..., 2z} be an alphabet whose symbols are the lowercase

*
abe?

Any subset L C ¥* is called a language. Languages are called empty, if they contain no

english alphabetical characters. The word dog is an element of 3%, | whereas 123 is not.
words, finite if they contains a finite number of words or infinite, if they contain an infinite
amount of words.

We denote that a word w is member of a language L as w € L. Deciding whether a word is
a member of some particular language by comparing it to a list of known words is impractical
for large languages and impossible for infinite languages. Instead, formal languages allow us
to define a set of rules or procedures, to decide whether or not a word is contained in the
language. For a word w to belong to a language L, it must both be made up of only symbols
of Ls alphabet ¥ and be well-formed. Well-formed means, that w conforms to the rules of
the language.

As an example, let L be the language of even-length strings over our previously defined
alphabet ... The word "hello” would not be a member of L as it has an odd length, but

"hi” would be a member. Similarly, "1234” would not be a member of the language as it is

made up of symbols outside of ¥ ,..

2.1.2 The Chomsky Hierarchy

Formal languages can be categorized into different classes depending on their complexity
as defined by the Chomsky hierarchy. The Chomsky hierarchy, originally introduced in the

paper Three Models for the Description of Language |11], consists of four classes (See Figure
).

1. Regular languages are the simplest class and can be recognized by finite automata.

These are limited to patterns expressible by regular expressions.

2. Context-free languages are more expressive and can be generated by context-free
grammars (CFGs). They can describe nested structures which makes them suitable

for approximating the syntax of natural language.

3. Context-sensitive languages are more powerful than context-free languages and are
defined by context-sensitive grammars. These languages can be recognized by linear

bounded automata, a type of non-deterministic Turing machine with limited memory.

4. Recursively enumerable languages are the most general class of formal languages.

They can be described by Turing machines and encompass all computable languages.

recursively enumerable

context-sensitive

context-free

Figure 2: Set inclusions of languages as described by the Chomsky hierarchy

The system of rules governing a formal language is referred to as a grammar, and can be
described using different formalisms, each modeling decision procedures in various ways. The
principal methods for defining grammars include state or pushdown automata, production
rules, Turing machines, or other algorithmic decision procedures. The choice of formalism
has a significant impact, as they vary in terms of complexity and the classes of languages
they can recognize. For instance, the language L = {a"b"|n > 0} can be recognized by a
pushdown automaton, but not by finite-state automata.

This work focuses specifically on context-free languages, and so further discussion of other

formal language types falls outside the scope of this analysis.

2.1.3 Probabilistic Context-free Grammars

We continue with an explanation of context-free languages. Context-free languages are
languages, which can be generated by a context-free grammar (CFG). Formally, a context-

free grammar is a 4-tuple G = (V, X, R, S), where:

« V is a set of nonterminal characters
« Y is a set of terminal characters (analogous to the previously defined alphabet)

e R is a set of production rules, relations between nonterminal and terminal characters
of the form V x (V U X)* (usually written as V — (V U X)*)

o S is the start symbol (S € V)

To more easily differentiate between nonterminal and terminal characters, nonterminal
characters are usually written as capitalized letters, and terminal characters as lowercase
letters.

Production rules are defined as pairs of the form (a,f) with a € V,5 € (V U X)*
and specify, how nonterminal characters can be replaced by other nonterminal or terminal
characters. Here, « is called the left hand side variable, and (§ the right hand side variable.
To apply a rule r € R to a word w € (V U X)*, replace an occurence of the left hand side
variable with the right hand side variable(s). Let u,v € (V U X)*. If there exists a rule
r € R, that when applied to u yields v, we write u = v. If v can be produced by a chain of

applications of rules to u, we write u = v. As an example, let w = AbAb and r = (A, ba)

(or in standard notation: A — ba). Applying r to w yields the word babbab. This can also

be written as:

AbbAb = babbbab

A word w is a member of a context-free language L, if S = w, meaning it can be
produced by repeatedly applying production rules to the start symbol S. Alternatively we
will say, that w is valid in L.

Probabilistic context-free grammars (PCFGs) are an extension of context-free grammars
that allow us to assign probabilities to specific production rules. Formally, a PCFG is defined
by the 4-tuple G = (V, X, R, S, P). The difference to CFGs is the element P, which describes
a corresponding set of probabilities on the production rules R, with the constraint that the
sum of probabilities of a single left-hand side nonterminal must add up to 1. A rule («a, 3)
with probability p is written here as a — ([p]. These probabilities enable a new sampling
strategy for generating strings from the grammar: when expanding a nonterminal symbol
during the derivation process, we select which production rule to apply by sampling according
to the assigned probabilities of the rules [12].

Context-Free Grammars have been used in modeling the syntactic structures of natu-
ral languages [11]. While natural languages are not strictly context-free, CFGs and their
probabilistic extensions (PCFGs) provide an approximation for many linguistic constructs.
By incorporating probabilities, PCFGs can model the variability and ambiguity inherent in
natural language.

The following is example of the concepts relating to PCFGs that are important in this
work. Let Gy = (V, 2, R, S, P) be a PCFG with the following parameters (note that we
do not explicitly mention P, but instead denote the probabilities directly at the rules of R):

e V={M,1,U}

o« X ={m,i,u}
M—m 05)
M — MIU [0.5]
. R— I —i [0.8]
I —-UI 10.2]
U—u [0.7]
| U—UU 03

e S=M

We can now produce words that belong to Ly, the language of Gy, by starting
with the nonterminal M, and iteratively expanding a random nonterminal by sampling and

applying one of its production rules until the word consists only of terminal characters from
hI%

M=m
M= MIU = MIu= mlu= mu

M= MIU = mIU = mUIU = mulU = mwlU = muwlUU = muivlU = muiuu

. . * . .
The final derivation sequence can also be expressed as M = muiuu or muiuu € L.

2.2 DMachine learning

Machine learning is a subdiscipline of artificial intelligence that focuses on developing sta-
tistical models that allow machines to learn from data and make predictions without being
explicitly programmed for their tasks. Today, machine learning is already used in a wide
range of tasks, including generating media like text or images, offering optimal recommen-
dations of products to users, or self driving cars.

In this work, we focus on supervised learning, a category of machine learning where
models are trained on labeled datasets. The training data consists of entries of the form
(1, ..., Ty, y), where x = (x1,...,x,) is called the feature vector, and y the label. The goal
is to have the model learn a function f(xy,...,2,) = ¥ that approximates the relationsship
between the input and the labels (assuming that such a relation exists). As an example, z;
could represent the price, x5 the size and x5 the color of a car and y represent whether or not
the user likes the specific car. A properly trained model should be able to predict whether
the user likes a car, based only on these three values.

During training, machine learning models learn by minimizing a loss function, such as
cross-entropy loss for classification tasks or mean squared error for regression tasks. The
loss function quantifies the difference between the predicted output y and the expected label
y, and serves as an objective measure to guide the optimization of the model’s parameters

through algorithms like gradient descent.

2.2.1 Neural Networks

Neural networks are one of the most commonly used architectures in machine learning due
to their ability to approximate any function, as established by the universal approximation
theorem [5].

The architecture of a neural network typically comprises three main components: the
input layer, the hidden layers, and the output layer. The input layer receives the initial
feature vector x, which are then propagated and transformed through the hidden layers and
finally given to the output layer, which yields the prediction . Each hidden layer consists of
neurons interconnected with those in adjacent layers. Neurons receive weighted inputs from
the preceding layer, perform computations on those inputs, and transmit them to subsequent
layers.

Let N be a neuron in hidden layer £ which is connected to the outputs x1,...,2, of
neurons from the preceeding layer & — 1. Also, let o be an unary function (called activation
function) and wy, ..., w,,b € R (called parameters). The computation performed by neuron
N involves summing the weighted inputs from the preceding layer, applying the activation

function, and adding a bias term b:

o(zy - wy + 29wy + ... + Ty - Wy, + D)

The resulting value is then transmitted to neurons in the subsequent layer k£ 4+ 1. The
parameters m; and b are initialized with random values and optimized during the training
process in a way that minimizes the models loss function. During training, the model gener-
ates predictions for data points in the training data and subsequently adjusts its parameters
in such a way that aligns its predictions ¢ closer to the correct label y. This process is im-
plemented by gradient descent and backpropagation, which compute the gradients of the loss
function with respect to the model parameters. After computing the gradients, parameters

are updated according to the following formula:

New Parameter = Old Parameter — Learning Rate - Gradient

The learning rate is a hyperparameter of the model architecture that controls the mag-
nitude of parameter updates during the training process. Essentially, it determines the step

size taken along the gradient direction to minimize the loss function. A higher learning rate

10

leads to larger parameter updates, which can accelerate convergence but may risk overshoot-
ing the optimal solution. A lower learning rate results in smaller updates, which leads to a

more stable but slower convergence process.

2.2.2 Embeddings

An embedding is a mapping from discrete data (such as words, tokens, images, etc.) to
continuous vector representations v € R”, called embeddings, which represents the semantic
information of the token in an abstract format usable by machine learning models |13} |14].
The vector space of all possible embeddings R™ is commonly refered to as the latent space.

Tokens are able to be embedded with regards to different contextual information. In the
context of natural language, embedding is done with respect to the context in which a specific
word or token occurs, so that words that occur in similar contexts should be transformed
into similar vector representations. As an example, the word “King” should be mapped to
a similar vector as “Queen”.

There are various ways to measure the similarity between two embeddings e = (e, ..., €,)
and f = (f1,..., fn) € R", such as cosine similarity, Euclidean distance, and the dot product.
Cosine similarity, for instance, measures the cosine of the angle between two vectors and
provides a normalized similarity score that accounts for differences in vector magnitudes.
However, in the context of this work, we focus on the dot product as it is fundamental to
the attention mechanism.

Exactly how similar two embeddings are can be measured by calculating their dot prod-
uct. This computation sums the pairwise products of corresponding elements in the em-
beddings, which effectively measures their alignment. A large dot product indicates a high
alignment between embeddings, which suggests some kind of similarity in the semantic mean-

ings they represent. The dot product is calculated as follows:

e-f= Zei fi=(eifiteafo+ . Fenfn)
=0

As an example, let e; be the context embedding of “King”, e; of “Queen” and ez of
“Broccoli”. Then we expect the dot product e; - e5 to be comparatively large due to the
semantic similarity between “king” and “queen”, while e; - e3 or es - e3 should be relatively

small.

11

2.3 NLP and Language Models

Natural language processing (NLP) is a field of artificial intelligence which aims to enable
computers to understand and generate human language in a meaningful way. A natural lan-
guage is any language commonly spoken by humans, as for instance english or german. NLP
methods are applied in a broad range of tasks, including but not limited to speech recog-
nition and understanding, dialogue systems, lexical analysis, parsing, question answering,
sentiment analysis, and more.

This field is inherently challenging due to the ambiguity and variability of natural lan-
guages. For example, words can have multiple meanings depending on context (polysemy),
and grammatical structures can vary widely between languages. Recently, the study of

language models has become a significant area within NLP.

2.3.1 Language Models

A language model is a statistical model that, given an input sequence of tokens, generates
a probability distribution over all possible subsequent tokens. A token denotes the smallest
unit of text that the model processes, as defined by the model’s specific tokenizer. For a
given model, the tokenizer determines exactly how text is broken down into tokens, which
remain consistent throughout the model’s operation. Tokens can be individual characters,
whole words, or more commonly, subword units that capture meaningful segments of words,
depending on the model’s design. When using PCFGs in this work, we use their terminal
symbols as tokens because they are the smallest elements of their language.

Because language models predict the likelihood of subsequent tokens of a token sequence,
they can also be used to generate new token sequences by iteratively sampling tokens and
appending them to the input sequence. This is called the decoding strategy, and a common
choice is greedy decoding, which always selects the next best token with the highest predicted
probability.

2.3.2 N-gram Models

N-grams are a concept of statistical language modeling and describe fixed-length sequences
of n tokens, usually extracted from a corpus of text. N-grams are used in various NLP tasks,

including language modeling, text generation, and information retrieval.

12

N-grams can be extracted for texts by counting the occurences of fixed-length sequences
with a sliding window of size n. Often, sequences are padded with special tokens which
allows n-grams to model the beginnings and endings of sequences as well.

N-gram models are language models that build on n-

grams and generate the probability distribution of tokens Trigram | Frequency
given the last n — 1 tokens of the input sequence. The #4ta 1
higher the n, the more context the model can take in and #aa

the more complex it is [15]. As with other language mod- aaa 3

els, different decoding strategies exist for n-gram models aab 1

as well, with the most common one being greedy decod- abb 1

ing. In this work, we will implement two n-gram models: bbb)

one using greedy decoding and another employing an op- bb# 1
timal decoding strategy as a baseline for comparison. b## 1

Table [1] shows an example for the character-level tri-
Table 1: Character-level trigrams

grams extracted from the word “aaaaabbbb” which has of “aaaaabbbb”

been padded with the token “#” [15]. A greedy trigram
model (or 3-gram model) that was trained on the trigram frequencies seen in Table (1] and
asked to predict the continuation of “aa” would pick the token “a” instead of “b”, as the

(133

trigram “aaa’” is more common than “‘aab”.

2.3.3 Transformers

Transformers are a type of language model based on deep learning architectures that gen-
erate a probability distribution of tokens based on all tokens in their input sequence up to
a maximum context window size. Introduced by Vaswani et al. in 2017 [16], transformers
have become a significant area of research in the field of deep learning, particularly in nat-
ural language processing. By attending to all tokens in the input sequence simultaneously
(within the context window), transformers can capture long-range dependencies and contex-
tual relationships more effectively than previous models. This chapter will discuss the basics
of their architecture, functionality, and how transformers are utilized in this work.

A central component of the transformer architecture is the self-attention mechanism,
which allows the model to weigh the importance of different parts of the input sequence and

compute new representations of each token based on weighted combinations of all tokens

13

in the sequence. By attending to all tokens simultaneously within its context window, the
transformer can capture relationships between tokens regardless of their positions.

First, each token t; is embedded with its base context information and then enriched
with its positional encoding, which yields the vector E; € R? where d is the dimensionality
of the embedding space. Next, the query, key, and value embeddings are computed for each

token by projecting the embeddings F; using learned linear transformations:

Q=FEW® K=EWEK, Vv=EWY

where W, WX and WV are the trainable projection matrices, and Q, K, and V are
matrices containing the query, key, and value vectors for all tokens in the sequence. These
projection matrices are optimized during the training process to most accurately predict the
next tokens in their training sequences. W and W are of size d x d;, and WV of size d x d,,.

The key and query embeddings) and K, which hold the base context information as
well as the positional encoding, can then be used to calculate how much one token ¢; should
relate to another token t;, by calculating the dot product Q; - K;. Next, the result is divided
by sqrt(dy) to prevent the dot products from growing too large in magnitude when dy is
large, which can prevent small gradients during backpropagation. We define the attention

score a;j as:

QK]
"~V

As the dot product does not inherently produce probabilities but instead unbounded

CLij

logits, a softmax function is applied so that the sum of the influence weights across all
tokens for a given token sums to one and can be used as a probability distribution [17].
The softmax function is a function that converts a vector of real numbers into a probability
distribution. As an example, let X = x1,...,x, be a vector of logits. Then the softmax of

z; € X can be calculated as follows:
eri
softmax(z;) =

B ZZ:1 evk

The attention weight f(7,7) by which a token ¢; should be influenced by another token

tj, can be calculated with the following function:

14

- exp (ai;)
f,5) = S oxp (ar)
If f(7,7) is large, we know that token j has a strong relation to token 7. It should be
noted that this formula is not symmetric and does not show any relation from i to j (for
which we would have to calculate f(j,17)).
In practice, the vector of a single embedding is adjusted by all other embeddings in the
sequence at the same time. The following formula shows how an embedding F; is transformed

by the tokens in the sequence:

B =Ei+ Y fi,/)V;
j=1

As an example, let the S be the sentence “The blue dog and red cat are playing”. In
this example, let the words wy, ..., wg of S also be its tokens t, ..., tg. Transforming each w;
into its embedding F; captures only the inherent information of each word, but none of the
important context between them.

To determine how much the token dog (¢3) should be influenced by the token blue (t2),
we compute the attention weight f(3,2):

exp(ass)
f(3, 2) = S
> k=1 €xp(ask)
After calculating the attention weights for all pairs of tokens, we can compute the new

embedding for dog as follows:

8
By =E3+ Y _ f(3,5)V;
j=1

Following this procedure and iteratively adjusting every embedding by every other em-
bedding, should thus encode a deeper semantic context in each embedding.

One iteration of adjusting embeddings after the previously mentioned formula, is called
scaled dot-product attention and encapsulated in a single layer. Multi-Head Attention de-
scribes the process of running multiple independent scaled dot-product attentions in parallel,
called heads. Each head possesses its own projection matrices W, WX and WV, which al-

lows heads to specialize on different parts of the latent space or the input sequence. Figure

15

Scaled Dot-Product Attention Multi-Head Attention

MatMul

L
Scaled Dot-Product J& h
Attention -

fam : Pam : fam
[Lin@[Linear [Lin@

| T]

\ K

Figure 3: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of
several attention layers running in parallel. The Figure is taken from “Attention Is All You
Need” [16]

shows the structure of the scaled dot-product attention and multi-head attention layers.
Ater computing the multi-head attention, the outputs are passed through a fully con-
nected feed-forward network (FFN):

FFN(EZ) = mam(O, E,I/Vl + bl)Wg + b2

where W7, W5 are weight matrices, and by, by are bias vectors. This allows the model to
capture non-linear relationships and further transform the representations. The procedure
of calculating the multi-head attention and passing the outputs through the FFN is repeated
N times (with N typically being 6 or 12).

The full transformer architecture consists of two main components: an encoder and a
decoder, both composed of multiple layers that utilize the attention mechanism. Figure
shows a simplified layer structure of the transfomer model, with the inputs on the bottom
and the output probabilities on the top. In the original Transformer model introduced by
Vaswani et al. [16], the encoder processes the input sequence to generate a set of continuous
representations that capture rich contextual information. The decoder then generates the
output sequence by attending to both the encoder’s output and the previously generated

tokens, which makes it applicable for sequence-to-sequence tasks such as machine translation,

16

where the input and output sequences are different.

Qutput
Probabilities

(" N
Add & Norm

Feed
Forward

™\ | Add & Norm ﬁ

s 1
- Add & Nom] Multi-Head
Feed Attention
Forward I I3 Nx
| —
Nix Add & Norm
r—-{ Add & Norm | Masked
Multi-Head Multi-Head
Attention Attention
t t
— W, \. —)
Positional Positional
Encodin D > i
coding Encoding
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

Figure 4: The Transformer-model architecture. The Figure is taken from “Attention Is All
You Need” [16]

The encoder receives the input token sequence, for instance, a sentence in English. Each
token is transformed into its base context embedding, and a positional encoding is added
to provide the model with sequence order information, since the self-attention mechanism
is inherently order-invariant [16]. Afterwards, the multi head attention is computed, which
yields a sequence of input embeddings E = [Ey, Es, ..., E,] (where E; € RY). Additionally,
the architecture uses residual connections and layer normalization after each attention and
FFN sub-layer. Residual connections facilitate gradient flow and mitigate issues like the
vanishing gradient problem, while layer normalization maintains consistent data distributions

across layers. Together, these techniques help accelerating the training speed and improving

17

its stability.

The output of the encoder is a sequence of embeddings E = (Fy, Es, ..., E,), which now
contain information not only about the individual tokens, but also about their relationsships
to each other within the sequence.

The decoder in the transformer architecture is designed to generate an output sequence
(e.g., a translated sentence in natural language) by attending to both the previously gener-
ated tokens and the output of the encoder. While its structure is similar to the encoder, the
decoder possesses two differences:

Firstly, the decoder employs masked multi-head self-attention. In addition to the regular
self-attention we discussed, this layer masks future tokens during training so that each token
in the output sequence can only attend to earlier tokens. This prevents the model from
"looking ahead” during training, and forces the model to base its generation on only the
previous tokens.

Secondly, the decoder incorporates an encoder-decoder attention layer. This layer al-
lows the decoder to integrate contextual information from the entire input sequence while

generating each output token.

2.3.4 GPT Models

Generative Pre-trained Transformer (GPT) models are a family of transformer language
models based on the transformer architecture, developed by OpenAl [1§]. GPT models
implement the transformer decoder to perform language modeling tasks, and already achieve
impressive results.

GPT-2 in particular is an improved version of the original GPT model with a larger
architecture of 1.5B parameters [§]. talk about the results of it and why we use it

In our experiments, we train GPT-2 models from scratch on sequences generated by
probabilistic context-free grammars (PCFGs). By adjusting the model complexity and the
amount of training data, we investigate how these factors influence the model’s ability to

learn grammatical structures, memorize training data, and generate novel sequences.

2.3.5 Memorization and Generalization in LLMs

As large language models (LLMs) generate text, their behavior can broadly be divided into

two modes: memorization and generalization. In memorization, models repeat sequences

18

that were directly contained in their training data. In generalization, models produce new
sequences based on learned patterns. While generalization allows models to create novel
sequences, it also carries the risk of producing incorrect information, often referred to as
hallucinations. Therefore, sequences produced through generalization can be further cate-
gorized into factual, desired outputs (referred to here as creative sequences) and unfactual,

unwanted hallucinations (see Figure [5)).

Memorization Generalization
R

‘ Creative] ‘ Hallucination ‘

Figure 5: The hierarchy between text produced by memorization and generalization, and
hallucinations

Memorization poses significant privacy risks. If the training data includes sensitive per-
sonal information or copyrighted material, the model may inadvertently leak this data. Re-
cent research has shown that membership inference or training data extraction attacks can
be effective against LLMs, enabling attackers to retrieve specific information about a model’s
training data by strategically querying it |19} |20]. For example, Carlini et al. demonstrated
that attackers could extract verbatim pieces of training data from GPT-2, including person-
ally identifiable information such as names, phone numbers, email addresses, IRC conversa-
tions, code snippets, and even 128-bit UUIDs [9]. Although model extraction and parameter
extraction attacks have received limited research attention, these findings highlight the po-
tential for significant privacy breaches [19].

On the other hand, generalization is not directly constrained by the training data and
can produce a diverse variety of novel sequences. Nevertheless, generalization carries the
inherent risk of generating unwanted hallucinations, controlling which remains a complex
challenge [21]. Since LLMs generate content based on learned statistical patterns rather
than explicit knowledge representations, they may lack the ability to verify the factual ac-
curacy of their outputs. Techniques such as incorporating factual verification mechanisms,

improving training data quality, or using reinforcement learning from human feedback have

19

been explored to address this issue [22)].

2.4 Related Works

The themes of memorization, generalization, and creativity in LLMs have been extensively
explored in recent literature. Understanding how these phenomena interact is crucial for
developing models that can produce innovative and reliable outputs while minimizing risks
such as data leakage and hallucinations.

Similar to our experiment, Carlini et al. analyzed the memorization capabilities of LLMs
by training GPT-2 models on natural language and prompting them with prefixes from the
training data [23]. Their work focuses on data extraction attacks and investigates under what
conditions models generate sequences that were directly contained in their training data.
They found that memorization increases proportionally with model complexity, sequence
repetition in the training data, and the size of the context.

While most experiments relating to memorization are conducted on natural language,
some studies have explored the learning of formal languages by neural networks. Allen-Zhu
and Li trained GPT-2 models on complex context-free grammars (CFGs) and analyzed the
internal parameters to build a model of how transformers approximate and learn the gram-
mar’s rules [24]. They found that the inner workings correlate with dynamic programming
algorithms, which allow the models to learn even complex CFGs. However, their work does
not directly test memorization effects, as the training data is not queryable, and they assume
that generating something identical to the training sequence has a low probability and hence
does not occur.

To be able to generate novel and relevant sequences, models need to be creative. The
notion of creativity in LLMs has been measured with experiments similar to those that
measure creativity in humans, such as divergent association or alternative use tasks. Given
these tasks, Hubert et al. found that LLMs, specifically GPT-4, had no problems with these
tasks and were even significantly more creative to their human counterparts [25]. Chen and
Ding obtained similar results and found that temperature scaling allows models to generate
more creative outputs, but with the tradeoff of reduced stability [26].

To investigate the relationship between memorization and generalization, Hu et al. con-
ducted a study on syntactic generalization in neural language models [27]. They investigated

how these models handle systematic variations in natural language and found that increas-

20

ing the complexity of the model architecture significantly improves the ability to generalize
syntactic structures, more so than simply enlarging the dataset size. This suggests that a
more complex model can capture intricate patterns and rules within a language, but this
increased capacity also raises the potential for memorization of training data, which can lead
to overfitting and reduce the model’s ability to generate truly novel outputs.

Our approach differs from prior work by focusing on small languages and small datasets
to deliberately induce overfitting, and examining under what conditions models switch from
memorization to generalization. This contrasts with previous studies that often use large
models and datasets, making it difficult to assess memorization effects directly. By adjusting
the complexity of both the models and the languages, we can investigate how these factors
influence the balance between memorization and creativity, and contribute to a deeper un-

derstanding of the underlying mechanisms in LLMs.

21

3 Experiment Setup

This section will serve as an overview of the experimental setup of this work. We start
by constructing two PCFG grammars of different complexity (Chapter , from which we
generate two corpus of sampled sequences (Chapter . Afterwards, these corpus ared used
as training data for GPT-2 models, one with the default amount of parameters and one with
reduced amount, as well as trigram models to be used for baseline comparison (Chapter .

Figure [6] shows the data pipeline of this experiment.

Generate Training
Sequences Language Data Language
PCFG
Corpus Models
Regenerate the last ¢ characters
First 10.000 Sequences »> Evaluation
v ‘

Remove last ¢ Remove

characters Duplicates

Figure 6: The Data Pipeline of the experiment

3.1 Constructing the Grammars

This subsection will explain and characterize the two PCFGs we use to generate our training
data. the PCFGs and the languages they generate are chosen in such a way as to model
the characteristics of natural language, and as such our generated corpora possess a long
tail distribution of sequences and allow duplicates. Table [2[shows the number of terminals,

nonterminals and production rules of each grammar.

Parameter Simple Grammar | Complex Grammar
Terminals 5} 7
Nonterminals 6 11
Production Rules 11 20

Table 2: Statistics of the grammars

22

3.1.1 Simple Grammar

The simple PCFG is designed to maintain low com-
plexity while remaining sufficiently complex to gen-
erate a non-regular language. The complexity arises
from the loop between the production rules of nonter-
minals A and E, which are both able to generate the
other. This loop also allows generating sequences of
infinite length, which makes the generated language
an infinite one. Due to the fact that A can both be
transformed into C'E as well as EC, sequences are
able to expand in both the left and right direction,
with expansion to the left being more likely due to
the higher probability assigned to that direction. The
terminals B, C' and D can also be expanded into a di-
verse set of terminal characters b, c,d and e. Table
shows the 10 most common generated words of the
simple grammars corpus and their occurences, Figure

the production rules of the simple grammar.

Sequence | Count
acdcedc 34,023
cdeedce 21,559
acdccdb 14,776
abdccdc 14,701
acdcbdc 14,543
acdbcdce 14,496
bdcedce 9,248
cdcbde 9,209
cdcedb 9,185
cdbedce 9,072

Table 3: The 10 most common words of the simple

gramimar corpus

Simple Grammar:

« S— AJLQ]
« A —’a’[0.4]

A — CEJ0.1]

A — E C0.5]

B — C D [1.0]

C = b [0.3]

C — ¢’ [0.7]

D — d’ [0.8]

D — e’ [0.2]

E — A B[0.8]

E — CD0.2]

Figure 7: The production
rules of the simple gram-
mar

23

3.1.2 Complex Grammar

The complex grammar contains more terminals, nonter-
minals and production rules than the simple grammar.
It contains additional connections between nontermi-
nals which create loops that increase the complexity of
the generated language. For example, the nonterminal
A now has multiple production paths originating from
B, E, and H, which adds to the complexity of poten-
tial sequence structures. The loops ensure that the lan-
guage generated by the complex grammar is infinite. A
comparison between the generated corpora also shows
how the increased complexity of the grammar is trans-
lated into a more diverse set of generated sequences.
Table 4] shows the 10 most common generated words
of the complex grammars corpus and their occurences,

Figure [8| the production rules of the simple grammar.

Sequence | Count
aiehh 121,967
iaiiehh 31,113
aifech 21,928
faiehc 21,879
faiehh 19,864
aifehh 19,472
ehaiehh 11,750
ftfec 10,980
ftfeh 9,724
iiaiiiehh 8,047

Table 4: The 10 most common words of the complex
grammar corpus

Complex Grammar:

S — A [1.0]

A — BGI0.§]

A= FJ[02]
« B— e [0.6]

B — D B[0.2]

B —TAI[02]

C — i [0.8]

C—AEI02]

D — e’ [0.2]

D — 'f [0.8]

E— BAI0.2]

E — H C [0.8]

F — D B [1.0]

G — 'h’ [1.0]
« H—’a’ [0.4]

H— AHI0.2]

H— CI1[0.4]

I - HC [1.0]

J ¢ [0.9]

J =g [0.1]

Figure 8: The production
rules of the complex gram-
mar

24

3.2 Generating the Datasets

As training data for our language models, we generate datasets of 1,000,000 sequences from
each grammar. Sequences are randomly sampled as described in chapter 2.1.3

Problems arised during generation and evaluation both for very short, and very long
sequences. Allowing short sequences lead to the training data being very uniform, being
made up of mostly a small number of sequences. As an example, for the simple grammar
40% of all generated sequences were just the letter 'b’. To allow more complexity and variety,
we implemented a minimum sequence length requirement of five characters.

Additionally, checking whether a long sequence belongs to the language of a PCFG is
computationally expensive, so we limited the sequence length to 50 characters to avoid
intractability.

The difference in complexity between the two grammars becomes visible when compar-
ing the corpora they generated. One way to measure this complexity is through entropy,
which quantifies the unpredictability or randomness of the sequences in the corpus. High
entropy indicates a greater diversity of sequences, while low entropy suggests more uniform
or predictable patterns. Following Bentz et al. [28], we calculated the entropy H(C') of a

corpus C' as follows:
s

H(C)=- Zp(wt) log, p(w)

t=1
Here, S is the number of unique sequences and p(w;) the relative frequency of a single
sequence w; € C.
For the simple grammar, the distribution of sequences tended to be more uniform, which
resulted in a lower entropy. The complex grammar exhibited a higher degree of variability
in the distribution of generated sequences, which was reflected in a higher entropy. Table

shows key properties of both corpora.

Metric Simple Grammar | Complex Grammar
Total Tokens 9,385,058 13,953,443
Unique Sequences 120,211 (12.02%) 326,764 (32.68%)
Avg. Sequence length 9.39 13.95
Sequence level Entropy 11.40 12.36

Table 5: Properties of the generated corpora

25

A statistical evaluation of the datasets shows that the word frequency distributions in
both corpora adhere to Zipf’s law. Zipf’s law describes a phenomenon in certain distributions
where the rank of a word is inverse to its frequency (i.e. the most frequent word occurs twice
as often as the second most frequent, three times as often as the third, and so on). This
pattern is commonly observed in natural languages and reflects a long-tail distribution, where
a few words are very frequent while many others occur rarely. Formally, Zipf’s law can be
expressed as f(n) o< 1/n®, where f(n) is the frequency of the n-th most common word, and s
controls the steepness of the distribution [29]. In natural language texts, s is typically close
to 1, which indicates a heavy-tailed distribution.

By using linear regression and filtering out words with fewer than 10 occurrences, the
derived optimal values for s are 0.74 for the simple grammar corpus and 1.02 for the complex
grammar corpus (rounded to two decimal places). Figures |§| and |10| plot the distributions of

word frequencies against their ranks.

+ Word Frequency + Word Frequency
& —— Zipfs Law (5=0.74)
&

—— Zipfs Law (5=1.02)

103 4

102 4

e
b3

Frequency
Frequency

o
<

10! 4

10° 4 100 4
: T

T T T
10° 10t 102 10° 10!
Frequency Rank Frequency Rank

Figure 9: Word frequency distribution on Figure 10: Word frequency distribution on
the simple grammar corpus (s = 0.74) the complex grammar corpus (s = 1.02)

The alignment of the distributions with Zipf’s law suggests that the constructed corpora
mirror statistical properties of natural language. Specifically, the complex grammar corpus
closely mirrors natural language distributions with s near 1.0, which we argue reinforces the

applicability of using these datasets as models for natural language in our experiments.

26

3.3 System Overview

This section provides an overview of the system, the tokenization process and the models
used. We begin with a description of our custom tokenizer, followed by an outline of the

different models we trained and evaluated.

3.3.1 Tokenization

A custom tokenizer was created for the purposes of this project. The vocabulary of the
tokenizer consists of a grammars terminals, as well as the special control tokens <B0OS> (used
to mark the beginning of a sequence), <E0S> (used to mark the end of a sequence) and <PAD>
(used to pad sequences in a batch to equal length).

A sequence w in a batch B is encoded as follows:
1. Prepend a <B0S> token to the start of the sequence
2. Append an <EQ0S> token to the end of the sequence

3. Let w,,q.. be the longest sequence in batch B. Pad the sequence with as many <PAD>

tokens, so that it has exactly |wyqe.| + 2 tokens.

Rule three also guarantees, that all sequences in B have the same length before being
used for training. As an example, let w = baabb and |w,q.| = 7. Then w has the following

form when encoded:

<BOS>baabb<EOS><PAD><PAD>

3.3.2 Model Overview

1. GPT2-DEF (FULL): This model is configured with the default settings of the
GPT-2 architecture and trained on the entirety of the training data (n_embd=768,
n_layer=12, n_head=12).

2. GPT2-DEF (HALF): This model is configured with the default settings of the GPT-
2 architecture, but trained on only half of the training data to examine the impact of

reduced training data (n_embd=768, n_layer=12, n_head=12).

27

3. GPT2-MIN (FULL): To investigate the effects of model simplification, we trained a
GPT-2 instance with reduced complexity on the complete training dataset (n_embd=192,
n_layer=3, n_head=3).

4. GPT2-MIN (HALF): This model combines reduced model complexity and reduction
of training data size (n_embd=192, n_layer=3, n_head=3).

5. TRI-OPT: We implemented our own version of an optimal trigram model. This
model chooses the continuation token sequence of the overall highest probability and

can additionally recognize the end of sequences.

6. TRI-GRE: A simple trigram model that given a bigram, greedily predicts the next
token by choosing the one with the highest relative frequency.

Each architecture was trained on both the simple grammar and complex grammar corpora
for three epochs, resulting in a total of 10 trained and evaluated models. We specifically
combined simple grammars with a high amount of training data as to artificially induce
overfitting.

For the GPT-2 models, we used GPT2LMHeadModels from the huggingface transformer
library. Each model was trained for 3 epochs with a batch size of 8. We set context window
size for all models to the length of the longest word in the corpus + 2, which results in 51
tokens for the models trained on the simple grammars corpus, and 50 tokens for the complex

grammars corpus. We add two, as each sequence is padded with at least two control tokens.

3.3.3 Trigram Models

To have a comparable baseline to our GPT-2 models, we implement two trigram models - one
that selects subsequent tokens greedily, and one that selects them optimally. As previously
mentioned, n-gram language models generate a probability distribution of subsequent tokens
based on the previous n — 1 tokens as context. Let ¥ be a vocabulary and f(z,y, z) with
x,y, 2 € 3 be the relative frequency of the trigram xyz. Given a bigram zy, a trigram model

predicts the next token in the sequence z € ¥ based on its implementation.

28

Greedy Trigram Model

The greedy trigram model makes greedy choices at each step. Given a bigram zy, the
model returns the token z that maximizes the function f(z,y, 2).

While this greedy approach is computationally efficient and often produces reasonable
results, it may not always yield the most coherent or contextually appropriate sequences.
By focusing only on the immediate next token, its possible that the model might miss out
on better overall sequence structures that could be achieved by considering longer-term
dependencies.

For that reason we present an alternative, non-greedy trigram model. This model extends
the standard approach by evaluating the entire chain of trigrams to find the sequence with

the highest overall probability.

Optimal Trigram Model

To provide an additional baseline comparison for the evaluation, we implemented a non-
greedy trigram model. Unlike the greedy approach, our model continues sequences by choos-
ing the fixed length chain of trigrams with the highest overall probability. Formally, let
w = wyws . .. W, be a sequence in a language L with alphabet Y. To generate a continuation
of m tokens ki, ..., k, € X we iterate through all possible continuations and choose the one

which maximizes the following function:

P(wla- .. 7wnakla . 7km) = f(wn—bwn)kl) . f(wnaklakQ) e
'f(kmfZ: kmfla km) : f(kmfb kma #) : f(km: #7 #)
Additionally, we add the frequencies of the trigrams f(ky,_1, km, #) and f(kn,, #, #) to

the product, which allows the model to recognize and adapt to the end of sequences. This
implementation allows the model to generate the overall most likely continuation, rather
than making locally optimal choices at each step.

It should be noted, that this method is computationally heavy and intractable for larger
values of n. The computational complexity required to make a prediction follows O(nl*!),

which scales exponentially with the size of the vocabulary |3|.

29

Simple Language Complex Language
Models
cdcedcedbedce bbbdbcecdced fiaiffechaiiehc iehaiiaifechh
GPT2-DEF (FULL) cdcedeedeede bbbdbcecdced fiaiffechaiiehc iehaiiaiehhha
GPT2-DEF (HALF) cdeedeedeede bbbdbcecdced fiaiffechaiiehc iehaiiaiiiieh
GPT2-MIN (FULL) cdeedeedeede bbbdbececdced fiaiffechaiiehh iehaiiaiiiich
GPT2-MIN (HALF) cdeedecdeede bbbdbcecdced fiaiffechaiiehh iehaiiaiiiehh
TRI-OPT cdeedeedeede bbbdbcecdced fiaiffechaiiieh iehaiiaiiiiieh
TRI-GRE cdeedeedeede bbbdbcecedee fiaiffechaiiiii iehaiiaiiiiii

Exact Matches

Novel Valid Sequences

Invalid Sequences

Table 6: Selected text examples of each model for ¢ = 5. Underlined are the suffixes

regenerated by the model.

4 Evaluation and Results

This chapter presents the results of our evaluation. We start with an explanation of our
methodology and collected metrics, followed by a general interpretation of the behavior of
the models with regard to the complexity of the corpus they were trained on. Afterwards,
we analyze and discuss the results.

Our experiment design is modeled after the k-extractability approach defined by Carlini
et al. In their work, the authors denote the suffix s of a sequence as k-extractable, if there
exists a (length-k) prefix p, such that the concatenation [pl|s| is contained in the training
data for a model f, and f produces s when prompted with p using greedy decoding [23].
Their methodology specifically fixes the length of the prefix p to k characters and allows the
length of the suffix s to be variable.

In our approach, we modify the experimental setup by restricting the suffix s to a fixed
length c. This change addresses a practical issue observed in preliminary tests, where models
tended to generate suffixes of infinite length when left unrestricted.

Our experiment tests each models performance in regenerating a fixed number of removed

30

characters from the end of sequences taken from their training data. Each evaluation cycle
tests a model on 10,000 unique sequences for a fixed parameter ¢ € N ranging from 1
to 10, which controls how many characters are removed from the end of a sequence and
regenerated by the model. Given a sequence w = wyiws...w,, we refer to the first n — ¢
characters (wjws ... w,_.) as the prefir and the last ¢ characters (w,_ci1Wy—ci2...wy,) as
the suffiz of the sequence. Additonally, we call the concatenation of a prefix and a suffix
generated by a model a generated sequence (even though the prefix remains unchanged).

As an example, let w = "hello world" and ¢ = 3. Then "hello wo" would be the
prefix and "rld" the suffix of w. In the experiment, models would be tasked to generate a
continuation of ¢ = 3 characters, given the input sequence "hello wo".

Removing trailing characters from unique sequences can result in identical sequences
(i.e. removing two characters from "aaaaa" and "aaabb" both result in prefix "aaa", a
duplicate). Because the behaviour of models is deterministic, this would lead to duplicate
results. For that reason, we skip duplicate prefixes. While this limits the total number of
evaluated sequences, especially for higher values of ¢, we still believe that the findings remain
robust and representative.

By limiting suffixes to a fixed length ¢, we ensure that each prefix has at least one
corresponding suffix present in the training data (specifically the original suffix). This allows
the model to regenerate the original sequence through memorization. Conversely, if the model
generalizes beyond memorization, it is able to produce valid suffixes that were not explicitly
present in the training data.

We classify a generated sequence w into one of three categories (where C' is the corpus
generated by grammar G with starting nonterminal S). See Table [] for selected examples

of generated sequences and their classifications. The categories are defined as follows:

o Exact Matches: The generated sequence w is identical to a sequence in the training

data (w € C).

e« Novel Valid Sequences: The generated sequence w is not in the training data

(w ¢ C) but is contained in the grammars language (S =).

« Invalid Sequences: The generated sequence w is not in the training data (w ¢ C)

and is not contained in the grammars language (S % w).

31

We are specifically interested in the relationship between exact matches and memoriza-
tion, as well as the relationship between novel valid sequences and generalization and creativ-
ity. We hypothesize that a high rate of exact matches is indicative of memorization, while
the generation of novel valid sequences indicates the model’s ability to generalize beyond its
training data.

While measuring the accuracy of the models is not directly feasible, we instead offer
two proxy metrics: validity, which measures how many generated sequences are able to
be produced by the underlying PCFG (see Figure Add. Table [7)) and perplexity,
which measures a models ”confidence” in its generation (see Figure , Add. Table .
Additionally, we measure the entropy of the suffixes as an indicator of the variance of a
models generated sequences (see Figure Add. Table . In the following sections, we will

examine the values of these metrics collected during the evaluation and discuss them.

4.1 Validity

The first metric discussed here is the wvalidity of the generated sequences (see Figure ,
Add. Table . Validity is indicative of a model’s effectiveness in producing linguistically
and syntactically coherent outputs, and is also important for evaluating generalization, as
generalization involves producing sequences that are both valid and novel. Note that se-
quences classified as exact matches will always be classified as valid.

As a baseline we consider the probability that a randomly generated sequence would be
valid. This probability is proportional by the number of terminals of the PCFG |X| and

the length of the suffix c¢. Specifically, for any given prefix, the minimal probability that

1

52, Where 3¢ represents all possible suffixes that could

a sequence adheres to the PCFG is
follow the prefix.

Models trained on the simple grammar are able to generate valid suffixes for almost any
given prefix. While these values are mostly homogeneous, it is worth noting that the GPT2-
MIN model trained on half of the data shows a marginally higher performance compared
to the model trained on the full data. However, given that the difference is negligible (a
difference of at most 0.04%), it is likely a result of statistical noise rather than a meaningful
trend.

The results of the complex grammar display a more varied distribution and we find that

here, the validity of the generated sequences is proportional to the training data size and

32

— GPT2-DEF (FULL) ---- GPT2-DEF (HALF) — GPT2-MIN (FULL) — GPT2-DEF (FULL) ---- GPT2-DEF (HALF) — GPT2-MIN (FULL)
GPT2-MIN (HALF) — TRI-OPT ---- TRI-GRE GPT2-MIN (HALF) — TRI-OPT ---- TRI-GRE

S
S
S

bl WP B

1 2 3 4 5 6 7 8 9 10

Erstellt mit Datawrapper Erstellt mit Datawrapper

Simple Language Complex Language

Figure 11: The percentage of generated valid sequences

model capacity. While the trigram models perform comparably to the GPT-2 models on the
simple grammar, their performance declines when confronted with the complex grammar.
As trigram models have a context size of 2 tokens, they can accurately predict suffixes up to
a suffix length of 2, but incur a sharp drop in validity when tasked to generate longer suffixes.
This suggests that the trigram models are underfitting and have problems to capture the
more complex patterns of the grammar, likely due to their limited model capacity.
Compared to the trigram models, the GPT-2 models trained on the complex language
demonstrate a noticeable improvement in generating valid sequences. While the performance
declined for larger values of ¢, the GPT-2 models consistently outperformed the trigram mod-
els, particularly for longer sequences that required a deeper understanding of the underlying

structure.

4.2 Suffix Entropy

The analysis of suffix entropy provides insights into the variability of the suffixes generated
by the models compared to the training data. We calculate the suffix entropy of a corpus or
model by averaging the entropy H(s) across all suffixes s.

A model that captures the complexity of the language should generate suffixes with an

entropy distribution similar to that of the training data, as this would indicate that the

33

model is producing a wide range of valid suffixes rather than over-relying on a limited set of
patterns. Therefore, we expect the suffix entropy of the generated sequences to be correlated

with that of the training data (see Figure Add. Table .

— GPT2-DEF (FULL) ---- GPT2-DEF (HALF) — GPT2-MIN (FULL) — GPT2-DEF (FULL) ---- GPT2-DEF (HALF) — GPT2-MIN (FULL)
GPT2-MIN (HALF) — TRI-OPT ---- TRI-GRE GPT2-MIN (HALF) — TRI-OPT ---- TRI-GRE

_ - Training
~ Data _ -~ Training
Data

-
--"

Erstellt mit Datawrapper Erstellt mit Datawrapper

Simple Language Complex Language

Figure 12: The entropy of the generated suffixes

Analysis shows, that only the GPT-2 model trained on the complex language effectively
modeled the variability of their training data. These models display a suffix entropy that
increases proportional to the suffix length, while the values of the other models are distributed
between 0 and 2. These models do not fully match the entropy levels of their training data.
However, even these models do not fully match the entropy levels of the training data. This
suggests that the models may be reaching an upper bound in their ability to replicate the
diversity of the language, likely due to overfitting.

In contrast, the models trained on the simple language are not capturing the full com-
plexity of the language, but instead generating a regular subset (in the formal linguistic
sense) of suffixes. As these suffixes are more homogenous compared to the ones generated

by the GPT-2 models, the suffix entropy is comparatively lower.

4.3 Memorization

This section evaluates the proportion of generated sequences with exact matches in the
training data of each model (see Figure , Add. Table E[) A high rate of exact matches

34

is expected to provide evidence of memorization, as it suggests the model is reproducing
sequences it has encountered during training.

As with validity, the proportion of exact matches is affected by the suffix length and
the number of terminals. As the number of possible suffixes increases exponentially with c,
shorter suffixes have a higher likelihood of matching sequences from the training data. The
amount of exact matches is additionally affected by the size of the training data. Models with
smaller training data size have an increased chance of generating sequences not contained
in their training data. However, this potential increase may be offset by the comparative
weaker performance of models trained on datasets of smaller size.

This behavior aligns with the bias-variance tradeoff observed in machine learning models.
Models trained on smaller datasets tend to generalize more (lower variance), which results
in fewer exact matches. Conversely, models trained on larger datasets are more likely to

memorize training data (lower bias), which leads to an increase in exact matches.

— GPT2-DEF (FULL) ---- GPT2-DEF (HALF) — GPT2-MIN (FULL) — GPT2-DEF (FULL) ---- GPT2-DEF (HALF) — GPT2-MIN (FULL)
GPT2-MIN (HALF) — TRI-OPT ---- TRI-GRE GPT2-MIN (HALF) — TRI-OPT ---- TRI-GRE

Erstellt mit Datawrapper Erstellt mit Datawrapper

Simple Language Complex Language

Figure 13: Percentage of generated sequences with exact matches in the training data

On average, models that were trained on the simple language possess a higher exact
match rate compared to those trained on the complex language. For a suffix length of
up to three, exact match rates are similar (excluding the trigram models of the complex
language), however for longer sequence lengths the rates decline more steeply for models
trained on the complex language. Additionally, the exact match rate is affected by both

the model complexity and the training data size for the complex language, but only by the

35

training data size for the simple language.

The GPT-2 models’ ability to produce valid sequences in the simple language suggests
that the differences in exact match rates are primarily due to variations in training data
size, rather than model behavior. A smaller dataset reduces the probability of generating
sequences that are already present in the training data, thereby decreasing the exact match
rate. For suffix lengths up to 4, the majority of generated valid sequences have exact matches,
while for suffix lengths greater than 5, most are novel valid sequences.

In the context of the complex language, both model complexity and training data size
have an impact on the rate of exact matches. Here, the majority of generated sequences

have exact matches for suffix lengths up to 7, after which most are novel valid sequences.

4.4 Generalization

This section will discuss the proportion of generated novel valid sequences and interpret the
results. We classify a sequence as novel and valid if it is not contained in the training data
of its model and if it adheres to some set of rules, which here means that the sequence is
contained in the language of its PCFG (See Figure , Add. Table . A higher proportion
of novel valid sequences is expected to indicate the model’s ability to generalize, as these
sequences demonstrate the model’s capacity to generate valid outputs beyond those explicitly

present in the training data.

— GPT2-DEF (FULL) ---- GPT2-DEF (HALF) — GPT2-MIN (FULL) — GPT2-DEF (FULL) ----GPT2-DEF (HALF) — GPT2-MIN (FULL)
GPT2-MIN (HALF) — TRI-OPT ---- TRI-GRE GPT2-MIN (HALF) — TRI-OPT ---- TRI-GRE

Erstellt mit Datawrapper Erstellt mit Datawrapper

Simple Language Complex Language

Figure 14: Percentage of generated novel valid sequences

36

As mentioned previously, models trained on less data have a larger chance of generating
sequences not contained in their training data. As such, models with less training data and
higher validity scores will display a higher proportion of novel valid sequences.

Trigram models consistently generated a lower proportion of novel valid sequences com-
pared to GPT-2 models, largely due to their reduced ability to produce valid sequences in
general. We can conclude that models with smaller context sizes and lower capacity tend
to generate fewer novel valid sequences compared to models with larger capacity and more
complex architectures.

Models trained on the simple language generate a higher amount of novel valid sequences
compared to those trained on the complex language. While for smaller suffixes, models have
a good chance of generating sequences already contained in the trainined data, long suffixes
lead to higher proportions of novel valid sequences.

The models trained on the complex grammars corpus show an overall lower probability
of generating novel valid sequences, which is in part caused by an overall lower probability
of generating valid sequences in the first place. While the creativity scores of the simple
language seem to increase, the scores of the complex language plateau at ¢ = 2 and decline
afterwards. This phenomenon is likely to stem from overall lowered validity scores as well.
To migitate this bias, we present another evaluation of novel valid sequences in which we
restrict the analysis to a population of only valid sequences (excluding invalid sequences).
The results of this evaluation are shown in Figure [15] (see also Add. Table [11]).

Noticable is that now the proportions of novel valid sequences between the models are
more similar and proportional to the suffix length. Again, scores seem to be influenced more
by training data size than by model complexity. As expected, models trained on smaller
datasets display a slightly higher proportion of novel valid sequences. However, beyond
training data size, we did not observe any discernible patterns in the relationship between
model architecture and the rate of novel valid sequences.

The large fluctuations in values for the trigram models trained on the complex grammar
are a consequence of the limited number of valid sequences they generate. Because there
are so few valid sequences, even minor changes in the number of novel valid sequences cause
significant fluctuations in their percentage among the total valid sequences, leading to the
observed large jumps in the graph.

Our results indicate that novel valid sequences are not the exception, but the norm, even

37

— GPT2-DEF (FULL) ---- GPT2-DEF (HALF) — GPT2-MIN (FULL) — GPT2-DEF (FULL) ---- GPT2-DEF (HALF) — GPT2-MIN (FULL)
GPT2-MIN (HALF) — TRI-OPT ---- TRI-GRE GPT2-MIN (HALF) — TRI-OPT ---- TRI-GRE

Erstellt mit Datawrapper Erstellt mit Datawrapper

Simple Language Complex Language

Figure 15: Percentage of generated novel valid sequences, ignoring invalid sequences

for low complexity architectures like the trigram models. As such, valid sequences appear
to be consistently produced as a result of the model’s generalization capabilities, especially

when tasked with generating longer suffixes.

4.5 Perplexity

The final metric discussed is the perplexity, which measures a model’s "uncertainty” in
predicting the next token. Lower perplexity indicates that the model is more confident
and assigns higher probabilities to likely next tokens, while higher perplexity suggests more
uncertainty, with probabilities spread more evenly across possible tokens (See Figure ,
Add. Table . While lower perplexity scores are associated with better language modeling
in general, perplexity can also be influenced by other factors like the model’s temperature.
Perplexity is mathematically defined as the exponential of the entropy of the distribution
of the next-token predictions. For a sequence of tokens X = (xy,...,x,) and a model’s prob-

ability distribution P over the next possible tokens, we calculate the perplexity as follows:

Perplexity = e = ¢= Zaex p(@)log(p())

Here, H(P) represents the entropy of the probability distribution of the next-token pre-
dictions and p(x) the probability assigned to each token x. The overall perplexity of a model

is determined by averaging the perplexity values of each generated sequence.

38

— GPT2-DEF (FULL) ---- GPT2-DEF (HALF) — GPT2-MIN (FULL) — GPT2-DEF (FULL) ---- GPT2-DEF (HALF) — GPT2-MIN (FULL)
GPT2-MIN (HALF) — TRI-OPT ---- TRI-GRE GPT2-MIN (HALF) — TRI-OPT ---- TRI-GRE

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

Erstellt mit Datawrapper Erstellt mit Datawrapper

Simple Language Complex Language

Figure 16: The average perplexity of each model over all sequences

Again, the perplexity values for the GPT-2 models trained on the simple language are
very similar across configurations, which suggests that model capacity and training data size
have little effect on the perplexity in this case. This consistency indicates that the simple
language is relatively easy for the models to recreate, and even smaller models or less training
data yield confident predictions.

The models trained on the complex language display more variation in their perplexity
outcomes. Here, both increased model complexity and larger training datasets contribute
to reduced perplexity, which results in improved confidence in the predictions. Additionally,
the plateau observed in the perplexity values beyond a certain suffix length suggests that the

models reach a point where additional sequence length does not affect their performance.

39

5 Discussion

In this chapter, we will summarize our key findings and discuss their implications regarding
the relationship between memorization, generalization, and creativity in language models.
Our results indicate that all GPT-2 models were able to learn the languages and consistently
produce valid sequences. For the simple grammar, both underfitted (trigram models) and
overfitted models (GPT-2 models) generated sequences that lacked diversity and originality.
Specifically, overfitted models memorized frequent patterns which lead to them producing
repetitive outputs, while underfitted models relied on simple, common structures due to
their limited capacity. This similarity in outputs makes it challenging to distinguish genuine
creativity from mere memorization. As such, evaluating creativity only by checking if valid
generated sequences are included in the training data is insufficient, and further metrics are
required to effectively judge the creativity of outputs.

In our experiments with models trained on the simple grammar, we observed a low rate
of exact matches despite evidence suggesting that the models are overfitting. Specifically,
these models predominantly generate sequences using the trigrams ’'cdc’, 'ced’, or ’'dec’,
which results in homogeneous structures. Although these trigrams are valid according to
the grammar, they are overrepresented in the generated outputs. In the original dataset,
the trigram ’cdc¢’ and its variations made up about 35% of the suffixes. However, in the
sequences generated by all models, these trigrams accounted for at least 95% of the suffixes,
with the greedy trigram model producing them exclusively. Instead of solving the problem of
completing sequences within the non-regular language, the models rely on regular language
patterns to produce valid sequences. These regular structures were rare in the training data
and thus often classified as novel. Given these findings, we argue that this behavior does not
constitute actual creativity, as the models are not generating novel sequences through genuine
understanding or generalization of the language structure. Instead, they are repeatedly
applying simple, memorized patterns, which indicates a reliance on memorization rather
than creative generation.

As we increased the task complexity with the complex language, the differences between
the models became more noticeable. The GPT-2 models showed a higher degree of diversity
in their outputs, as indicated by increased suffix entropy. The parameters of the GPT-2
models also had an effect on their behaviour, as models with a more complex architecture

or larger training data size achieve higher evaluation scores. In contrast, the trigram models

40

struggled with the complex language, and their performance declined significantly for longer
suffixes. The results suggest that these trigram models were displaying underfitting, similar
to the trigram models trained on the simple grammars language.

Our findings corroborate two observations previously reported by Carlini et al. [23].
First, larger models tend to memorize more; that is, models with more complex architectures
and trained on larger datasets exhibited higher exact match rates in our experiment, which
indicates a greater tendency for memorizing training data. Secondly, repeated strings are
memorized more; in our experiments with the simple language, the trigram ’cdc’ and its
variations were particularly frequent in the training data and were consequently generated
more often by the models.

Our findings indicate that evaluating creativity solely by checking if valid generated
sequences are included in the training data is insufficient. Models suffering either from
overfitting or underfitting are able to produce outputs that are technically new, yet lack true
originality or meaningful variation, as seen with the simple language.

This suggests that additional factors are necessary in assessing the creativity of language
models effectively. The diversity of generated sequences can be helpful in recognizing the
behaviour of models in terms of their reliance on memorization versus their capacity for
genuine creative generalization. By examining the variety and uniqueness of the outputs,
we can better determine whether a model is producing novel content or merely reproducing
learned patterns.

Additionally, it is more effective to measure memorization not on a macro level (i.e.,
whole sequences), but instead on smaller chunks of generated sequences. This approach can
help to better distinguish between outputs resulting from memorization of frequent patterns

and those generated through genuine creative processes.

41

6 Summary

In this work, we trained different language models on languages generated by probabilistic
context-free grammars of different complexities and evaluated them based on their ability to
fill in suffixes of variable length of sequences from the training data. Our primary goal was
to explore the memorization and generalization effects in these models, particularly under
conditions that induce overfitting. We trained GPT-2 models and trigram models on both
simple and complex artificial languages to understand how model architecture and language
complexity influence the emergence of creativity and the tendency to memorize.

We found that evaluating creativity solely on whether a full sequence is contained in
the training data is insufficient. Models affected by overfitting or underfitting can produce
outputs that seem novel but lack true originality or meaningful variation. Assessing creativity
effectively requires considering additional factors, such as the diversity of generated sequences
and analyzing shorter subsequences or n-grams, since full sequences are rarely repeated
verbatim. By focusing on these finer-grained elements, we can better distinguish between
true creative generalization and mere memorization of frequent patterns.

While our experiments provide initial insights, expanding the scope of experiments—espe-
cially by including natural language datasets and larger models—could offer greater insights
into how models handle memorization and creativity in more realistic settings. Currently, it
is not well understood how neural language models generalize over a grammar or the extent
to which the grammar is reflected in the model’s parameters. Gaining insights into these

aspects could support the development of more efficient and reliable language models.

42

Limitations

While our experiment is a first step into exploring the mechanisms behind memorization
and generalization in language models, it only covers a limited setup that requires further
exploration. We offer further avenues for future research that could help understand the
mechanisms behind memorization and generalization.

Experimenting with different model architectures could provide a better perspective on
how various models handle memorization and creativity. Models such as Long Short-Term
Memory networks (LSTMs), newer transformer variants, or state-space models might show
different behaviors than the GPT-2 and trigram models used in this study. Investigating
how these models perform with the same tasks could reveal architecture-specific tendencies
towards overfitting, generalization and memorization.

Next, adjusting model parameters and training strategies may influence the emergence
of creativity. For instance, experimenting with different decoding strategies—such as beam
search, top-k sampling, or nucleus sampling—could affect the diversity and originality of the
generated sequences. Additionally, further varying the amount of training data, employing
regularization techniques, or using different learning rates might impact the models’ ability
to generalize without overfitting.

Our study explored only two grammars, which limits the breadth of our analysis. Inves-
tigating a wider range of grammars could provide additional insights into the memorization
and generalization tendencies of models trained on PCFGs. Specifically, testing both ambigu-
ous and non-ambiguous grammars might reveal how grammatical ambiguity affects model
performance and their ability to generalize. Expanding the experiments to include languages
from different levels of the Chomsky hierarchy (such as regular or recursively enumerable
languages) would allow us to assess whether the observed behaviors are consistent across
various grammatical complexities.

Understanding how models store memorized sequences within their parameters remains
an open question. By examining the internal representations of these models, we may gain
insights into the mechanisms behind memorization. Techniques such as probing individual
neurons, attention heads, or layers could reveal where and how memorization occurs within
the model’s architecture.

An additional limitation of our study is that, by focusing exclusively on probabilistic

context-free grammars (PCFGs), we are confined to examining memorization and general-

43

ization phenomena. The artificial languages generated by PCFGs lack semantic richness and
context found in natural languages, which are necessary for assessing true creativity. It is
also worth noting that there remains potential for future research exploration regarding the
absence of minimum or maximum sequence length constraints. Consequently, natural lan-
guage might be better suited for exploring the emergence of creativity in language models.
Future research should consider expanding experiments to include natural language datasets
and larger models to determine whether the behaviors we observed persist in a more complex

and realistic setting.

44

References

[1] Andre Esteva et al. “Dermatologist-level classification of skin cancer with deep neural
networks”. In: Nature 542.7639 (Feb. 2017). Erratum in Nature. 2017 Jun 28;546(7660):686.
doi:10.1038 /nature22985, pp. 115-118. DOI: [10.1038/nature21056.

[2] E.W.T. Ngai et al. “The application of data mining techniques in financial fraud de-
tection: A classification framework and an academic review of literature”. In: Decision
Support Systems 50.3 (2011), pp. 559-569. DOI: https://doi.org/10.1016/j.dss.
2010.08.006. URL: https://www.sciencedirect.com/science/article/pii/
SO167923610001307.

[3] Paul Covington, Jay Adams, and Emre Sargin. “Deep Neural Networks for YouTube
Recommendations”™ In: Proceedings of the 10th ACM Conference on Recommender
Systems. New York, NY, USA: Association for Computing Machinery, 2016, pp. 191—
198. DOI: [10.1145/2959100.2959190. URL: https://doi.org/10.1145/2959100.
2959190,

[4] Brent Smith and Greg Linden. “Two Decades of Recommender Systems at Ama-
zon.com”. In: IEEE Internet Computing 21.3 (2017), pp. 12-18. por: 10.1109/MIC.
201712,

[5] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. “Multilayer feedforward net-
works are universal approximators”. In: Neural Networks 2.5 (1989), pp. 359-366. 1SSN:
0893-6080.

[6] Joy Buolamwini and Timnit Gebru. “Gender Shades: Intersectional Accuracy Dispar-
ities in Commercial Gender Classification”. In: Proceedings of the 1st Conference on
Fairness, Accountability and Transparency. Ed. by Sorelle A. Friedler and Christo
Wilson. Vol. 81. Proceedings of Machine Learning Research. PMLR, 23-24 Feb 2018,
pp. 77-91. URL: https://proceedings.mlr.press/v81/buolamwinil8a.html.

[7] Tom B. Brown et al. Language Models are Few-Shot Learners. 2020. arXiv: 2005.14165
Lcs.CL]. URL: https://arxiv.org/abs/2005.14165.

[8] Alec Radford et al. “Language Models are Unsupervised Multitask Learners”. In: 2019.
URL: https://api.semanticscholar.org/CorpusID:160025533,

45

https://doi.org/10.1038/nature21056
https://doi.org/https://doi.org/10.1016/j.dss.2010.08.006
https://doi.org/https://doi.org/10.1016/j.dss.2010.08.006
https://www.sciencedirect.com/science/article/pii/S0167923610001302
https://www.sciencedirect.com/science/article/pii/S0167923610001302
https://doi.org/10.1145/2959100.2959190
https://doi.org/10.1145/2959100.2959190
https://doi.org/10.1145/2959100.2959190
https://doi.org/10.1109/MIC.2017.72
https://doi.org/10.1109/MIC.2017.72
https://proceedings.mlr.press/v81/buolamwini18a.html
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://api.semanticscholar.org/CorpusID:160025533

[17]

[18]

[19]

Nicholas Carlini et al. Extracting Training Data from Large Language Models. 2021.
arXiv: 2012.07805 [cs.CR]. URL: https://arxiv.org/abs/2012.07805.

John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. “Introduction to Automata
Theory, Languages, and Computation”. In: 2nd. Addison-Wesley, 2001, pp. 28-31.

Noam Chomsky. “Three models for the description of language”. In: IRE Transactions
on Information Theory 2.3 (1956), pp. 113-124. DOI: 10.1109/TIT.1956.1056813.

Christopher D. Manning and Hinrich Schiitze. “Foundations of Statistical Natural
Language Processing”. In: Cambridge, MA: MIT Press, 1999, pp. 381-387.

Yoshua Bengio et al. “A neural probabilistic language model”. In: Journal of Machine
Learning Research 3 (2003), pp. 1137-1155. 1sSN: 1532-4435.

Tomas Mikolov et al. Efficient Estimation of Word Representations in Vector Space.
2013. arXiv: 1301.3781 [cs.CL]. URL: https://arxiv.org/abs/1301.3781.

Li Deng and Yang Liu. “A Joint Introduction to Natural Language Processing and
to Deep Learning” In: Deep Learning in Natural Language Processing. Singapore:
Springer Singapore, 2018, pp. 1-22. DOI: 10.1007/978-981-10-5209-5 1. URL:
https://doi.org/10.1007/978-981-10-5209-5 1.

Ashish Vaswani et al. “Attention is All You Need”. In: Proceedings of the 31st In-
ternational Conference on Neural Information Processing Systems. NIPS'17. Curran
Associates Inc., 2017, pp. 6000-6010.

lan Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. Adaptive Com-
putation and Machine Learning series. MIT Press, 2016. 1SBN: 9780262035613. URL:
https://books.google.de/books?id=Np9SDQAAQBAJ.

Alec Radford and Karthik Narasimhan. “Improving Language Understanding by Gen-
erative Pre-Training”. In: 2018. URL: https://api.semanticscholar.org/CorpusID:
49313248,

Yifan Yao et al. “A survey on large language model (LLM) security and privacy: The
Good, The Bad, and The Ugly”. In: High-Confidence Computing 4.2 (2024), p. 100211.
ISSN: 2667-2952. DOI: https://doi.org/10.1016/j.hcc.2024.100211. URL:
https://www.sciencedirect.com/science/article/pii/S266729522400014X.

46

https://arxiv.org/abs/2012.07805
https://arxiv.org/abs/2012.07805
https://doi.org/10.1109/TIT.1956.1056813
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781
https://doi.org/10.1007/978-981-10-5209-5_1
https://doi.org/10.1007/978-981-10-5209-5_1
https://books.google.de/books?id=Np9SDQAAQBAJ
https://api.semanticscholar.org/CorpusID:49313245
https://api.semanticscholar.org/CorpusID:49313245
https://doi.org/https://doi.org/10.1016/j.hcc.2024.100211
https://www.sciencedirect.com/science/article/pii/S266729522400014X

[20]

[21]

[22]

[23]

[24]

[25]

[26]

27]

28]

[29]

Jean-Baptiste Truong et al. Data-Free Model FExtraction. 2021. arXiv: 2011 . 14779
Lcs.LGJ. URL: https://arxiv.org/abs/2011.14779.

Lei Huang et al. A Survey on Hallucination in Large Language Models: Principles,
Taxonomy, Challenges, and Open Questions. 2023. arXiv: 2311.05232 [cs.CL].

Ziwei Ji et al. “Survey of Hallucination in Natural Language Generation”. In: ACM
Computing Surveys 55.12 (2023), pp. 1-38. 1SSN: 1557-7341. DOI: |10.1145/3571730.
URL: http://dx.doi.org/10.1145/3571730.

Nicholas Carlini et al. Quantifying Memorization Across Neural Language Models.
2023. arXiv: [2202.07646 [cs.LG]. URL: https://arxiv.org/abs/2202.07646.

Zeyuan Allen-Zhu and Yuanzhi Li. Physics of Language Models: Part 1, Context-Free
Grammar. 2023. arXiv: 2305.13673 [cs.CL].

Kent F. Hubert, Kim N. Awa, and Darya L. Zabelina. “The current state of artificial
intelligence generative language models is more creative than humans on divergent
thinking tasks”. In: Scientific Reports 14.1 (2024), p. 3440. DOI: |10.1038/s41598~
024-53303-w. URL: https://doi.org/10.1038/s41598-024-53303-w.

Honghua Chen and Nai Ding. “Probing the “Creativity” of Large Language Models:
Can models produce divergent semantic association?” In: Proceedings of EMNLP. 2023.
URL: https://aclanthology.org/2023.findings-emnlp.858.

Jennifer Hu et al. “A Systematic Assessment of Syntactic Generalization in Neural
Language Models”. In: Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics. Association for Computational Linguistics, 2020, pp. 1725—
1744. por: 10.18653/v1/2020.acl-main. 158. URL: https://aclanthology.org/
2020 .acl-main.158.

Christian Bentz et al. “The Entropy of Words—Learnability and Expressivity across
More than 1000 Languages”. In: Entropy 19.6 (2017). 1SSN: 1099-4300. pOI: 10.3390/
e19060275. URL: https://www.mdpi.com/1099-4300/19/6/275.

George K. Zipf. Human Behaviour and the Principle of Least Effort. Addison-Wesley,
1949.

47

https://arxiv.org/abs/2011.14779
https://arxiv.org/abs/2011.14779
https://arxiv.org/abs/2011.14779
https://arxiv.org/abs/2311.05232
https://doi.org/10.1145/3571730
http://dx.doi.org/10.1145/3571730
https://arxiv.org/abs/2202.07646
https://arxiv.org/abs/2202.07646
https://arxiv.org/abs/2305.13673
https://doi.org/10.1038/s41598-024-53303-w
https://doi.org/10.1038/s41598-024-53303-w
https://doi.org/10.1038/s41598-024-53303-w
https://aclanthology.org/2023.findings-emnlp.858
https://doi.org/10.18653/v1/2020.acl-main.158
https://aclanthology.org/2020.acl-main.158
https://aclanthology.org/2020.acl-main.158
https://doi.org/10.3390/e19060275
https://doi.org/10.3390/e19060275
https://www.mdpi.com/1099-4300/19/6/275

Addendum

Evaluation Values

Model ¢
1 2 3 4 5 6 7 8 9 10
. Baseline 20.00% 4.00% 0.80% 0.16% 0.03% 0.01% 0.00% 0.00% 0.00% 0.00%
% | GPT2-DEF (FULL) | 99.78% 99.73% 91.93% 68.93% 56.74% 46.95% 37.76% 29.36% 22.60% 21.10%
%D GPT2-DEF (HALF) | 99.77% 99.72% 90.80% 67.09% 55.03% 45.35% 36.47% 28.22% 21.69% 20.03%
— | GPT2-MIN (FULL) | 99.03% 98.94% 84.09% 56.24% 44.11% 35.92% 28.39% 21.77% 15.91% 14.41%
2 | GPT2-MIN (HALF) | 98.25% 98.16% 82.06% 54.11% 41.78% 33.98% 26.63% 20.22% 14.38% 12.65%
é TRI-OPT 100.00% 100.00% 50.86% 12.21% 1.07% 0.00% 0.00% 0.00% 0.00% 0.00%
TRI-GRE 100.00% 100.00% 54.94% 17.33% 3.57% 0.56% 0.11% 0.02% 0.00% 0.00%
Baseline 14.20% 2.04% 0.29% 0.04% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00%
% | GPT2-DEF (FULL) | 100.00% 100.00% 99.99% 99.98% 99.98% 99.98% 99.98% 99.97% 99.86% 99.71%
% | GPT2-DEF (HALF) | 100.00% 100.00% 99.99% 99.98% 99.98% 99.98% 99.98% 99.97% 99.86% 99.66%
S | GPT2-MIN (FULL) | 100.00% 100.00% 99.99% 99.98% 99.96% 99.96% 99.95% 99.94% 99.82% 99.62%
2 | GPT2-MIN (HALF) | 100.00% 100.00% 99.99% 99.98% 99.98% 99.98% 99.98% 99.97% 99.86% 99.66%
ks TRI-OPT 100.00% 100.00% 99.21% 99.11% 98.95% 96.90% 96.70% 96.54% 93.87% 93.59%
TRI-GRE 96.27% 95.94% 95.58% 89.39% 88.69% 88.53% 82.56% SL.77% 82.32% 76.71%
Table 7: The percentage of generated valid sequences
Model €

1 2 3 4 5 6 7 8 9 10

° Training Data 0.86 191 2.76 3.72 4.75 598 6.96 7.89 871 9.46

%O GPT2-DEF (FULL) | 0.64 1.55 3.17 3.89 4.59 544 6.22 6.71 7.01 7.22

%D GPT2-DEF (HALF) | 0.60 1.51 3.20 3.92 4.61 546 6.24 6.76 7.08 7.34

j GPT2-MIN (FULL) | 0.50 1.38 3.21 3.95 4.60 543 6.22 6.79 7.17 7.48

% GPT2-MIN (HALF) | 0.52 1.36 3.24 3.96 4.60 542 6.20 6.80 7.23 7.57

é TRI-OPT 0.00 0.00 1.58 1.49 1.29 1.51 1.72 1.80 1.83 1.83

TRI-GRE 0.00 0.00 1.61 1.38 1.14 1.35 1.50 1.54 1.58 1.59

Training Data 1.50 225 3.24 461 541 658 847 888 9.48 10.31

% GPT2-DEF (FULL) | 0.73 094 1.13 1.01 1.07 140 1.18 1.18 1.55 1.33

g” GPT2-DEF (HALF) | 0.73 0.94 1.13 1.01 1.07 140 1.18 1.19 155 1.33

3 GPT2-MIN (FULL) | 0.73 0.94 1.13 1.01 1.07 140 1.18 1.19 1.55 1.32

—é GPT2-MIN (HALF) | 0.73 0.94 1.13 1.01 1.08 1.40 1.19 1.20 1.56 1.34

n TRI-OPT 0.73 094 110 1.14 130 1.31 126 1.38 1.39 1.31

TRI-GRE 0.65 1.12 1.10 1.24 135 1.31 139 145 139 145

Table 8: Suffix Entropy

48

Model
1 2 3 4 5 6 7 8 9 10
$ | GPT2-DEF (FULL) | 84.30% 71.56% 63.27% 47.24% 39.62% 31.38% 22.63% 13.67% 7.93% 5.19%
Eo GPT2-DEF (HALF) | 83.47% 70.02% 60.87% 44.75% 37.42% 29.51% 21.33% 12.78% 7.15% 4.39%
5 | GPT2-MIN (FULL) | 83.79% 70.97% 56.74% 37.63% 30.29% 24.19% 17.22% 10.55% 6.29% 4.38%
E: GPT2-MIN (HALF) | 82.20% 68.92% 53.48% 34.82% 27.65% 21.87% 15.61% 9.38% 5.22% 3.24%
g TRI-OPT 84.13% 70.27% 28.83% 5.86% 0.43% 0.00% 0.00% 0.00% 0.00% 0.00%
o TRI-GRE 84.13% 70.27% 29.95% 7.53% 0.94% 0.05% 0.03% 0.00% 0.00% 0.00%
2 GPT2-DEF (FULL) | 86.35% 72.88% 64.55% 57.27% 48.45% 42.73% 36.34% 30.56% 25.91% 21.66%
§o GPT2-DEF (HALF) | 83.91% 68.43% 58.82% 50.33% 41.32% 34.97% 29.29% 23.90% 19.47% 15.84%
E GPT2-MIN (FULL) | 86.35% 72.88% 64.55% 57.27% 48.45% 42.73% 36.34% 30.56% 25.91% 21.66%
© | GPT2-MIN (HALF) | 83.91% 68.43% 58.82% 50.33% 41.32% 34.97% 29.29% 23.90% 19.47% 15.84%
é‘ TRI-OPT 86.35% 72.88% 64.16% 56.77% 47.84% 41.62% 35.40% 29.60% 25.35% 21.66%
i TRI-GRE 83.13% 70.07% 61.78% 53.01% 44.31% 38.77% 32.35% 26.95% 23.35% 19.98%
Table 9: The percentage of exact matches
Model
1 2 3 4 5 6 7 8 9 10
% GPT2-DEF (FULL) | 15.47% 28.17% 28.66% 21.69% 17.12% 15.58% 15.13% 15.69% 14.67% 15.92%
go GPT2-DEF (HALF) | 16.30% 29.70% 29.93% 22.34% 17.61% 15.84% 15.14% 15.43% 14.54% 15.64%
= | GPT2-MIN (FULL) | 15.24% 27.98% 27.35% 18.61% 13.82% 11.72% 11.17% 11.22% 9.63% 10.03%
£ | GPT2-MIN (HALF) | 16.05% 29.24% 28.58% 19.29% 14.12% 12.12% 11.02% 10.85% 9.16% 9.42%
g TRI-OPT 15.87% 29.73% 22.04% 6.35% 0.64% 0.00% 0.00% 0.00% 0.00% 0.00%
o TRI-GRE 15.87% 29.73% 24.98% 9.80% 2.63% 0.50% 0.08% 0.02% 0.00% 0.00%
¢ | GPT2-DEF (FULL) | 13.65% 27.12% 35.44% 42.71% 51.53% 57.25% 63.64% 69.41% 73.95% T78.05%
%i) GPT2-DEF (HALF) | 16.09% 31.57% 41.16% 49.65% 58.66% 65.01% 70.68% 76.07% 80.39% 83.83%
E GPT2-MIN (FULL) | 13.65% 27.12% 35.44% 42.71% 51.51% 57.23% 63.61% 69.38% 73.91% 77.96%
© | GPT2-MIN (HALF) | 16.09% 31.57% 41.16% 49.65% 58.66% 65.01% 70.68% 76.07% 80.39% 83.83%
g TRI-OPT 13.65% 27.12% 35.05% 42.34% 51.11% 55.28% 61.30% 66.94% 68.52% 71.93%
” TRI-GRE 13.14% 25.87% 33.80% 36.38% 44.38% 49.76% 50.21% 54.82% 58.96% 56.72%

Table 10: The percentage of novel valid sequences

49

Model ¢

1 2 3 4 5 6 7 8 9 10
%} GPT2-DEF (FULL) | 15.51% 28.25% 31.18% 31.46% 30.18% 33.17% 40.06% 53.44% 64.90% 75.42%
§o GPT2-DEF (HALF) | 16.34% 29.79% 32.96% 33.30% 32.00% 34.93% 41.52% 54.70% 67.05% 78.08%
5 | GPT2-MIN (FULL) | 15.39% 28.27% 32.52% 33.10% 31.32% 32.64% 39.34% 51.53% 60.49% 69.61%
iﬁ GPT2-MIN (HALF) | 16.34% 29.79% 34.83% 35.65% 33.81% 35.66% 41.40% 53.64% 63.72% 74.42%
§ TRI-OPT 15.87% 29.73% 43.33% 51.98% 59.41% N.A. N.A. N.A. N.A. N.A.
© TRI-GRE 15.87% 29.73% 45.48% 56.56% 73.59% 90.38% 70.00% 100.00% N.A. N.A.
=) GPT2-DEF (FULL) | 13.65% 27.12% 35.45% 42.72% 51.54% 57.26% 63.65% 69.43% 74.05% 78.28%
§0 GPT2-DEF (HALF) | 16.09% 31.57% 41.17% 49.66% 58.67% 65.03% 70.70% 76.09% 80.50% 84.11%
Ev GPT2-MIN (FULL) | 13.65% 27.12% 35.45% 42.72% 51.53% 57.25% 63.64% 69.42% 74.04% 78.26%
© | GPT2-MIN (HALF) | 16.09% 31.57% 41.17% 49.66% 58.67% 65.03% 70.70% 76.09% 80.50% 84.11%
.g TRI-OPT 13.65% 27.12% 35.33% 42.72% 51.66% 57.05% 63.39% 69.34% 73.00% 76.86%
” TRI-GRE 13.65% 26.96% 35.36% 40.70% 50.04% 56.20% 60.82% 67.04% 71.63% 73.95%

Table 11: The percentage of novel

valid sequences, ignoring invalid sequences

Model ¢
1 2 3 4 5 6 7 8 9 10
_| GPT2DEF (FULL) | 2.26 221 232 236 234 236 237 238 238 237
© | GPT2-DEF (HALF) | 2.30 224 235 239 2.37 239 240 241 241 241
% | GPT2MIN (FULL) | 260 244 253 250 256 257 258 259 259 250
©| GPT2-MIN (HALF) | 274 253 261 266 264 265 2.66 267 268 2.68
TRI-GRE 110 110 114 117 117 115 114 113 113 1.14
| GPT2.-DEF (FULL) | 1.86 202 1.97 196 207 204 203 210 208 207
" | GPT2.DEF (HALF) | 1.86 202 197 196 207 204 203 211 208 207
I | GPT2MIN (FULL) | 1.85 201 196 195 206 203 202 209 2.07 206
2| GPT2-MIN (HALF) | 1.85 2.01 196 1.95 2.06 2.03 202 2.09 2.07 2.06
TRI-GRE 126 120 122 124 123 124 124 124 124 1.25

Table 12: The average perplexity of each model over all sequences

50

Code

We provide our code and sample data under https://anonymous.4open.science/r/PCFGS_

Generalisation-FB3B/. The repository contains the following:

documents: The training data, as outlined in chapter [3.2]
e evaluation: The evaluation results for each model.

o generated: The sequences produced by each model.

o grammars: The production rules of each grammar.

o ngrams: The n-gram frequencies of the corpora.

e src: The code used to build the grammars, generate the documents and train and

evaluate the models.

o schedules: JSON dictionaries that specify training/evaluation parameters.

Use of Generative Al

Generative Al has been used in this work for grammar and syntax correction. No original

content was produced by generative Al.

ol

https://anonymous.4open.science/r/PCFGS_Generalisation-FB3B/
https://anonymous.4open.science/r/PCFGS_Generalisation-FB3B/

Ich bin damit einverstanden, dass meine Arbeit in den Bestand der Bibliothek eingestellt

wird.

Ort, Datum Unterschrift

Eidesstattliche Versicherung

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit im Bachelorstudien-
gang Informatik selbststiandig verfasst und keine anderen als die angegebenen Hilfsmittel

insbesondere keine im Quellenverzeichnis nicht benannten Internet-Quellen — benutzt habe.
Alle Stellen, die wortlich oder sinngeméafl aus Verdffentlichungen entnommen wurden, sind
als solche kenntlich gemacht. Ich versichere weiterhin, dass ich die Arbeit vorher nicht in

einem anderen Prufungsverfahren eingereicht habe

Ort, Datum Unterschrift

