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Abstract

Abstract

Transformer models have achieved significant success in natural language process-
ing tasks but encounter challenges when generalizing to sequences longer than those
seen during training, especially in algorithmic tasks. Multi-digit integer addition
is an example of such algorithmic problems, it is easy for humans to perform on
arbitrary digit lengths, yet transformer models fail to learn a general algorithm.
With increasing use of transformers in different domains, length generalization
remains an important open problem even for a simple task like integer addition
despite substantial research literature. This work investigates why transformers
with standard absolute positional encodings struggle with length generalization in
integer addition and what minimal changes can be made to improve the out-of-
distribution performance. The hypothesis that absolute positional encodings limit
the model’s ability to align digits is explored, as well as the impact of different
data formatting techniques and multi-task training on length generalization. The
experiments show that adding random spaces improves length generalization, and
multi-task training allows smaller models to achieve better length generalization.

Zusammenfassung

Transformer-Modelle haben bei der Verarbeitung natiirlicher Sprache beachtliche
Erfolge erzielt, stoflen aber auf Probleme, wenn sie auf Sequenzen verallgemeinert
werden sollen, die langer sind als die beim Training gesehenen, insbesondere bei
algorithmischen Aufgaben. Die mehrstellige ganzzahlige Addition ist ein Beispiel
fiir ein solches algorithmisches Problem. Sie ist fiir den Menschen bei beliebigen
Ziffernlangen leicht durchfiihrbar, doch gelingt es Transformatorenmodellen nicht,
einen allgemeinen Algorithmus zu erlernen. Mit zunehmendem Einsatz von Trans-
formatoren in verschiedenen Bereichen bleibt die Langengeneralisierung trotz um-
fangreicher Forschungsliteratur ein wichtiges offenes Problem, selbst fiir eine ein-
fache Aufgabe wie die ganzzahlige Addition. In dieser Arbeit wird untersucht,
warum Transformatoren mit standardmafligen absoluten Positionskodierungen bei
der Léangenverallgemeinerung in der ganzzahligen Addition Probleme haben und
welche minimalen Anderungen vorgenommen werden konnen, um die Leistung
auflerhalb der Verteilung zu verbessern. Die Hypothese, dass absolute Position-
skodierungen die Fahigkeit des Modells, Ziffern auszurichten, einschranken, wird
ebenso untersucht wie die Auswirkungen verschiedener Datenformatierungstech-
niken und Multi-Task-Training auf die Langengeneralisierung.
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Chapter 1

Introduction

1.1 Motivation

Robust length generalization in sequence modeling tasks remains a significant chal-
lenge in deep learning, particularly for algorithmic problems that require precise
manipulation of sequential data. Integer addition serves as a canonical example
of such a task, where the ability to add numbers of arbitrary length is trivial for
humans but non-trivial for neural networks. The transformer architecture Vaswani
et al. 2017, known for its success in natural language processing, computer vision,
and other domains, often fails to learn generalizable algorithms that also correctly
process sequences longer than those encountered during training. This limitation
highlights a fundamental gap in our understanding of how neural networks learn
and represent algorithmic processes. Understanding the mechanisms underlying
this failure is essential and has broader implications for developing neural net-
works capable of robust algorithmic reasoning in various domains.

Large language models (LLMs) exhibit impressive emergent capabilites and
state-of-the-art performance on many benchmarks, but nonetheless struggle with
algorithmic tasks that require compositional reasoning and precise manipulation
of structured data. Even small transformer models trained from scratch on a spe-
cific task share this failure mode. It is hypothesized that the limitation stems from
models struggling to effectively use position-based addressing to focus on structure
of the sequence, in contrast to their strength in content-based addressing as seen
in natural language processing tasks (Ebrahimi, Panchal, and Memisevic 2024).
In line with this, recent studies have pointed towards positional encoding as a
key factor influencing length generalization in transformers McLeish et al. 2024;
Y. Zhou et al. 2024. Alternative positional encoding methods, such as the Abacus
positional encoding McLeish et al. 2024, have shown improved generalization but
often involve task-specific modifications that may not extend to other algorithmic
problems. This raises questions about the universality and flexibility of currently
used positional encoding schemes and especially their impact on algorithmic task
performance. Furthermore, despite many research efforts directed towards novel
architectures and positional encoding methods, the underlying reasons for the fail-
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ure of standard transformers in algorithmic tasks remain underexplored in the
literature.

1.2 Problem Statement

Despite the widespread success of transformer models in various domains, there
are open questions about their generalization capabilities, namely the systematic
generalization to unseen symbol combinations, and length generalization to longer
sequence lengths. The transformer model can easily solve the systematic general-
ization problem in integer addition: given a tiny fraction of all possible examples
of addition, it achieves perfect accuracy for different combinations, but only when
they have the same digit length. Their ability to perform multi-digit integer ad-
dition with length generalization remains limited. Standard absolute positional
encodings, integral to the transformer architecture, fail to provide the necessary
alignment cues for correctly matching digits by their place value.

The core issue lies in the transformer’s difficulty in aligning digits of different
operands based on their positional significance across different sequence lengths.
In multi-digit addition, each digit must be correctly matched with its correspond-
ing digit in the other operand, and the positional encoding must facilitate this
alignment. Without correct position-based retrieval of the correct digit from the
sequence, the model cannot learn the necessary compositional structure to gener-
alize addition to longer sequences.

This thesis seeks to investigate whether transformers can achieve length gener-
alization in integer addition without resorting to task-specific positional encodings
or architectural modifications. The goal is to understand the limitations of stan-
dard transformer models and identify principles that enable better generalization
by exploring various positional encoding schemes and training datasets, while mini-
mizing the architectural changes to standard unsupervised language modeling with
transformers.

1.3 Research Questions

The primary goal of this thesis is to investigate the reasons behind the failure of
transformer models to generalize integer addition to longer sequences and to un-
derstand how different positional encoding schemes and data formatting strategies
impact this ability. Specifically, the following research questions are addressed:

¢ RQ1: Why do transformer models with standard absolute posi-
tional encodings fail to generalize integer addition to sequences
longer than those seen during training?

Focus is to analyze the limitations of absolute positional encodings in facili-
tating digit alignment and carry propagation over longer sequences. Under-
standing the fundamental reasons for this failure might inform the develop-
ment of more flexible positional encoding schemes.
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e RQ2: How does the inclusion of sub-task data (carry detection,
digit-wise modular addition, reversing, digit alignment) influence
the model’s compositionality and length generalization capabili-
ties?

Incorporating sub-task data may help the model learn the underlying al-
gorithmic components of addition. This work explores whether training on
sub-tasks enables the model to compose these functions and generalize to
longer sequences.

¢ RQ3: How can mechanistic interpretability techniques be applied
to understand the internal representations and failure modes of
transformer models in the context of integer addition?

Mechanistic interpretability methods allow to analyze the learned represen-
tations and identify mechanisms that lead to success or failure in length
generalization.

Through exploring these questions, the goal is to gain insights into the limi-
tations of current transformer architecture and positional encoding methods, and
to identify principles that could boost length generalization in algorithmic tasks.
This thesis focuses on maintaining the standard transformer architecture without
introducing task-specific modifications, seeking solutions that are generalizable and
applicable to a broader range of problems.

1.4 Thesis Structure

The remainder of this thesis is organized as follows:

e Chapter [2| provides background information on transformer model, posi-
tional encoding schemes, and mechanistic interpretability.

e Chapter (3| reviews related work domains of integer addition, length gener-
alization, and reasoning in transformers.

e Chapter [4] describes the experimental approach, including data formatting
strategies and training setups used in this research.

e Chapter [5|summarizes the findings of the thesis, discusses the implications
of the results, and outlines directions for future research.

e Appendices include additional experimental results, technical details, and
supplementary material relevant to the thesis.

The codebase is available at https://github.com/iibrahimli/msc_thesis
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Chapter 2

Background

This chapter provides an overview of the transformer architecture, focusing on
its core components, different variants, positional encoding schemes, training and
inference, as well as interpretability.

Notation

T I NOO T mlE a B

Vocabulary (set) of input tokens.

Length of the input sequence.

Batch size for batched input sequences.

Input sequence of tokens, x € V"

i-th token in the input sequence, x; € V.
Dimensionality of the token embedding space.
d-dimensional embedding vector of token z;, F; € R?,
Embedding matrix, E € RIVIx4,

Matrix of a sequence of embedding vectors, H € R"*?,
i-th vector in the sequence of embeddings, H; € RY.
Output matrix from a transformer layer, O € R"*¢,
Queries matrix, Q € R™*.

Keys matrix, K € R4,

Values matrix, V € R™¥,

Model parameters (weights and biases).

2.1 Transformer

The Transformer architecture, introduced by Vaswani et al. (2017), performs se-
quence modeling by relying entirely on self-attention mechanism, instead of using
convolution or recurrence.

Let V denote the vocabulary of input tokens. While the tokens can represent
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anything, in language modeling tasks they are usually learned subword units. In
this work, however, a simple character tokenization scheme is used that is suitable
for algorithmic tasks, so each token corresponds to a single character (letter, digit or
symbol) in the sequence. An input sequence is represented as x = [x1, Ta, ..., T,
where z; € V and n is the sequence length. Each token z; is mapped to a d-
dimensional embedding vector E; € R? using an embedding matrix F € RVIx4,
Thus, each row of E corresponds to the embedding of a token in the vocabulary.

The input matrix to a transformer layer is a sequence of vector embeddings (also
called the latent or hidden representation for intermediate layer inputs), denoted
H € R where H = [H, ,H, ,...,H]". The output of a transformer layer is
also a sequence of vectors with the same sequence length, denoted O € R™*¢,

In practice, the inputs to the transformer are batched, so the input has an
additional dimension for the batch size, denoted b, with H € R?*™*?_This results in
the first (batch) dimension being added throughout the intermediate representation
and the output, but has no bearing on the description of the transformer model.

2.1.1 Elements

The transformer is composed of several key components to model dependencies in
sequential data: multi-head attention, feed-forward networks, layer normalization,
and residual connections. Informally, the attention mechanism transfers informa-
tion between tokens, while the feed-forward networks process information within
tokens. These components are stacked in each layer of the transformer as shown

in Figure 2.1f (a).

Token Embeddings The discrete input tokens are first converted into contin-
uous embeddings using an embedding matrix £ € RVI*? where |V| is the size
of the vocabulary and d is the embedding dimension. The embedding matrix is
learned during training, and the embeddings are used as input to the transformer.
After applying the transformer layers, the output embeddings are passed through
a linear unembedding layer to get the logits (unnormalized log-probabilities) for
the next token.

Attention Mechanism The attention mechanism (Bahdanau, Cho, and Bengio
2014) allows the model to weigh the relevance of different positions in the input
sequence. For this purpose, it computes queries, keys, and values from the input
embeddings and uses them to calculate attention scores. The output is a weighted
sum of the values, where the weights are determined by the attention scores. The
names “queries”, “keys”, and “values” are derived from the context of information
retrieval, where the queries are the elements being searched for, the keys are the
elements being searched, and the values are the elements being retrieved. In the
context of the transformer, intuitively, the query represents what the current token
is “looking for” in the sequence, the keys represent what the token at a given

6
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position “offers” to the current token, and the values are the actual information
that the current token “receives” from the other tokens.
First, the queries, keys, and values are computed as:

Q=HW®,
K = HWE,
V=HW",

where W@ WE WV € R¥% are the weight matrices, and dj, is the dimension of
the queries, keys, and values. In practice, the convention is to set dp = d, which is
the case for the models in this work. Thus, Q, K,V € R"*¢,

Given queries ), keys K, and values V', the attention output is computed as:

a entrion s s [/ SoItmax .
t \/_ [/

where the softmax function is applied along the last dimension, and is defined as:

Ty

e
z]‘ evi’

Note that the output of the attention mechanism has the same shape as the
input, Oy € R™.

softmax(x); =

Multi-Head Attention Multi-head attention extends the attention mechanism
with multiple independent heads to allow the model to focus on information from
different representation subspaces. So, instead of applying attention to the d-
dimensional queries, keys, and values directly, they are projected into h different
dpeaq-dimensional subspaces, where h is the number of heads. In this work, the
head dimension djeqq is set to d/h, so that the total dimensionality remains d.
The outputs the heads are concatenated and linearly transformed to the original
dimensionality:

MultiHeadAttention(Q, K, V') = Concat(head,, heads,, . .., head,)W?,

where W© € R% is the learned output weight matrix, and each head is computed
as:
head; = Attention(QWZ, KWK vivY),

and W& WK WYV € Rié*dread are the weight matrices for the i-th head.

Feed-Forward Networks Position-wise feed-forward networks (FFN), also called
the Multi-layer Perceptron (MLP), are applied independently to each position in
the sequence:

FFN(HI) = O'(Hiwl + bl)WQ + bg,
where H; € R is the input vector, W, € R4 1}, € R%**9 and ¢ is an activation
function such as Rectified Linear Unit (ReLU). The intermediate dimensionality
dg is usually set to 4d in the original transformer model and in all experiments
presented in this work.
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Layer Normalization Layer normalization (Ba, Kiros, and Hinton 2016) is ap-
plied after each sub-layer over the last (feature) dimension. The LayerNorm func-
tion for a vector v € RY is defined as:

LayerNorm(v) = U%’y + 0,

where the scale v and bias vector § are learned scaling and shifting parameters,
and p and o are the mean and standard deviation of v,computed as follows:

Residual Connections Residual connections (He et al. 2016) are usually ap-
plied to ease gradient flow and enable the training of deeper networks. In trans-
former models, the residual connections are applied after each sub-layer (self-
attention and MLP), followed by a layer normalization. Thus, the output of each
sub-layer is:

SubLayerOutput = LayerNorm(x 4+ SubLayer(x)).

The residual connections-based view of the model also enables the concept
of a residual stream, which is important in mechanistic interpretability. In this
alternative view of the model, the residual connections are the main backbone of
information flow through the model, with the sub-layers processing the hidden
representation tensor H and adding it back to the residual stream.

Block Structure The original transformer introduced in Vaswani et al. 2017
consists of stacked encoder and decoder blocks, each containing multi-head atten-
tion and feed-forward networks, along with residual connections and layer normal-
ization. However, different modified architectures have been proposed, such as the
encoder-only BERT model (Devlin et al. [2019) and the decoder-only GPT model
(Radford et al. 2018).

2.1.2 Encoder and Decoder Architectures

In this section, different transformer architectures are summarized: encoder-decoder,
encoder-only, and decoder-only models. The original transformer (Vaswani et al.
2017) employs an encoder-decoder structure, where the encoder transforms input
sequences into continuous representations, and the decoder generates output se-
quences based on these representations and previously generated tokens. Encoder-
only models like BERT (Devlin et al. [2019) focus solely on encoding input se-
quences into contextual embeddings, making them well-suited for understanding

8
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(a) (b)

Figure 2.1: (a) A single transformer layer, consisting of multi-head self-attention,
feed-forward network (MLP), and layer normalization. (b) A decoder-only trans-
former model. In the decoder, the self-attention mechanism has a causal mask to
prevent attending to future tokens.

tasks such as text classification and question answering. Decoder-only models, like
GPT (Radford et al.|2018)), generate sequences by predicting the next token based
on prior tokens, primarily used for text generation. While both encoder-decoder
and decoder-only architectures can perform autoregressive sequence generation,
decoder-only models are the focus of this work.

Encoder-Decoder The original transformer model introduced by Vaswani et al.
2017 employs an encoder-decoder architecture. In this architecture, the encoder
processes an input sequence x = (x1,s,...,T,) into a sequence of continuous
representations z = (21, 29, . . . , 2, ). The decoder then generates an output sequence
y = (Y1,Y2, .- -, Ym) by predicting the next token y; based on the encoder’s output
and the previously generated tokens.

The encoder consists of a stack of N identical layers, each containing two sub-
layers: a multi-head self-attention mechanism and a position-wise fully connected
feed-forward network. The decoder has a similar structure but includes a third sub-
layer: the cross-attention, also called encoder-decoder attention, where the queries
come from the previous decoder layer, and the keys and values come from the
output of the encoder. Hence, the difference between the self-attention and cross-
attention mechanisms is that self-attention is usually applied to the same sequence,
while cross-attention is applied between two different sequences (e.g. one from the
encoder, and one from the decoder). Moreover, the self-attention mechanism in the

9
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decoder has a causal mask to prevent attending to “future tokens”, ensuring output
is generated autoregressively. The T5 model (Raffel et al. 2020) is an example of a
large encoder-decoder transformer model capable of performing many NLP tasks
such as translation, summarization, and question answering.

Encoder-only Encoder-only models focus exclusively on encoding the input
sequence into a contextual representation without a decoder component. BERT
(Bidirectional Encoder Representations from transformers) Devlin et al. 2019 is
a prominent example of this architecture. BERT utilizes a stack of transformer
encoder layers to produce deep bidirectional representations by jointly condition-
ing on both left and right context. This makes encoder-only models particularly
well-suited for tasks that require a comprehensive understanding of the input, such
as text classification, named entity recognition, and question answering.

These models are typically pre-trained on large unlabeled text corpora using
self-supervised objectives like masked language modeling and next sentence pre-
diction. The pre-trained models can then be fine-tuned on specific downstream
tasks.

Decoder-only Decoder-only models generate sequences based on prior tokens
and are designed primarily for autoregressive language modeling and text gen-
eration tasks. GPT (Generative Pre-trained transformer) Radford et al. 2018 is a
canonical example of a decoder-only architecture. In these models, the transformer
decoder predicts the next token in a sequence by attending to the previous tokens
without an encoder component. The encoder is not needed since in a decoder-only
transformer, the input sequence x is prepended to the decoder input sequence y,
and only passed through the decoder layers to autoregressively generate the output
sequence. Recent research on language modeling has mostly focused decoder-only
models, since they can also be used on other language tasks through prompting,
few-shot learning, and fine-tuning. In particular, majority of the latest state-of-
the-art large language models (LLMs) are decoder-only transformers pre-trained
on large text corpora.

Encoder-Decoder vs. Decoder-Only Both model types are capable of au-
toregressive sequence generation and can be used for a wide range of tasks. The
decoder-only models are favored in recent works due to them being simpler and
having less inductive bias. However, encoder-decoder models are still widely used
in machine translation, robotics, and multi-modal learning tasks. The additional
structure in encoder-decoder models, as compared to using a decoder-only model
with would-be encoder input sequence prepended to the decoder’s input can be
summarized as:

e The input to the encoder passes through more layers (encoder layers) before
reaching the decoder.

10



2.1. Transformer

e [t is assumed that input and output sequences are sufficiently different to
justify using separate parameters for them (encoder and decoder).

With large language models and massive datasets, the difference between the
two architecture becomes less relevant. In summary, the choice of transformer
architecture depends on the specific requirements of the task, though decoder-only
models have been more widely used in recent research and are the focus of this
work.

2.1.3 Recurrent and Looping Architectures

Multiple transformer extensions have been proposed that incorporate iterative ap-
plication of weight-sharing layers, particularly suitable for algorithmic tasks that
require reasoning over sequences. The Universal transformer and Looped trans-
former are two such examples that introduce recurrence into the transformer archi-
tecture. There are other modifications the transformer architecture, a few examples
of which include the Memory transformer (M. S. Burtsev et al. 2021), Recurrent
Memory transformer (Bulatov, Kuratov, and M. Burtsev |2022), and Neural Data
Router (Csordas, Irie, and Schmidhuber 2021), but these architectures are not
widely adopted in pretrained language models, and are not tested in this work.

Universal Transformer The Universal Transformer (Dehghani et al. [2018) in-
troduces recurrence into the transformer architecture by repeatedly applying the
same transformer layers multiple times, in both encoder and decoder parts:

H*Y = TransformerLayer(H®),

where t denotes the iteration step. An adaptive computation time mechanism is
used to dynamically adjust the number of iterations based on the input sequence.
The Universal transformer has been shown to achieve better performance on al-
gorithmic tasks compared to the original transformer. It is also an interesting
extension of the transformer architecture from theoretical point of view, since it
makes the model Turing-complete under certain conditions (Dehghani et al.|2018).

Looped Transformer Similar to the Universal transformer, the Looped trans-
former (Yang et al. 2023) extends the transformer by incorporating iterative ap-
plication of a block of transformer layers. This modification has been shown to
perform better than the original, non-recurrent transformer on algorithmic tasks
(Csordas 2023; Yang et al. [2023). In particular, looped transformer achieves bet-
ter length generalization on the binary addition task as shown by Fan et al. 2024.
The looped decoder-only transformer architecture is illustrated in Figure[2.2] How-
ever, unlike the Universal transformer, the Looped transformer is not necessarily
encoder-decoder, and might not use the adaptive computation time mechanism.
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Figure 2.2: (a) A block of multiple transformer layers used in the looped trans-
former. (b) Looped decoder-only transformer architecture. The input injection
mechanism adds skip connections (arrow around blocks) from the original input
sequence to the input of each block.

2.1.4 Positional Encoding Schemes

Since the transformer lacks inherent sequential order, positional encodings are
added to input embeddings to provide position information. Though, several re-
cent works have shown that the causal attention mechanism in a decoder-only
transformer can also implicitly learn to encode positional information in the ab-
sence of explicit positional encodings (Haviv et al. [2022; Zuo and Guerzhoy 2024;
Y. Zhou et al. 2024). Positional encoding methods are also crucial for algorithmic
tasks, especially multi-digit integer addition (Shen et al. 2023; Kazemnejad et al.
2023; Ruoss et al. 2023)

Absolute Positional Encoding The original transformer (Vaswani et al. 2017)
uses additive vectors of same dimensionality as the embeddings to encode the
absolute positions of the tokens. These vectors could be learned (from a random
initialization), or sinusoidal, where the latter are defined as:

. ?
Pi2k = SIn (W) )

)
Pi2k41 = COS (W) )

for position in the sequence ¢ and dimension k. In Vaswani et al. 2017, the perfor-
mance difference between learned and sinusoidal positional encodings was found
to be insignificant, and the use of sinusoidal encodings is justified by possibility of
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generalization to longer sequences. In practice, however, absolute positional encod-
ings do not generalize well to sequences longer than the ones seen during training
(Press, Smith, and Lewis 2021).

Randomized Positional Encodings Randomized positional encodings Ruoss
et al. 2023 aim to improve length generalization by simulating longer sequences
during training. Similarly to absolute positional encodings, they are added to the
input embeddings, and have separate vectors for each position in the sequence.
However, instead of using sequential positions 1,2,...,n, the positions are ran-
domly sampled (keeping order) from a range [1, nyax], where np.x is the maximum
sequence length. Thus, the model is exposed to a wider range of positional en-
codings during training, which helps improve generalization to longer sequences.
A related method is to randomly insert spaces between tokens in the input se-
quence (e.g. 123 + 456 might become 12 3 + 45 6), which disrupts the model’s
dependence on absolute position information and encourages it to learn more ro-
bust representations (Shen et al. 2023). It is important to distinguish this method
from the one introduced by Shen et al. 2023 named Random Embedding, where a
random Gaussian “tag” is added to a subset of embedding dimensions.

Abacus Encoding The Abacus encoding (McLeish et al. [2024) is a positional
encoding scheme designed to improve digit alignment and improve performance on
arithmetic tasks. Like the absolute positional encoding, it adds a vector to the input
embeddings for each position. However, it differs in the way it encodes numbers,
where the positions in the Abacus encoding are based on the digit position in a
number rather than the absolute token position in the sequence. Thus, all numbers
must be reversed before encoding. For example, the prompt $123+456= would
become $321+654= and the digits 3 and 6 would get index 0, 2 and 5 index 1, and
SO on.

Relative Position Encoding Relative position representations (Shaw, Uszko-
reit, and Vaswani 2018) encode the relative distances between sequence elements
directly into the attention mechanism. In RPE, a vector a;; € R? is learned for
each pair of positions (i, j), and added to the keys before computing the attention
scores:
Ay = —qi(ki * ag’)T
Vd

where q; and k; are the query and key vectors for positions ¢ and j, respectively.
Relative position encodings have been shown to improve performance on tasks
requiring long-range dependencies (Shaw, Uszkoreit, and Vaswani 2018).

Attention with Linear Biases (ALiBi) ALiBi (Press, Smith, and Lewis2021)
introduces a linear bias to the attention scores based on the relative positions. For
this additive method, the computation of the (pre-softmax) attention logits is
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modified as:
ApLigi(X) = QK" + B,

where the bias matrix B € R™*™ is computed by the position encoding function
b: N? — R, such that the (4, j)-th entry of B is b(4, j). The bias function for the
relative position encoding is defined as:

b(i, j) = —rli = ji|

where the r is a fixed slope pre-computed for each head.

Rotary Position Encoding (RoPE) RoPE Su et al. 2024 encodes positions
using rotations of the query and key vectors with an angle proportional to their
absolute positions before the dot product attention, which results in attention
being a function of the relative distance between the tokens, capturing the relative
positional information. It is a non-additive relative positional encoding. Works such
as Press, Smith, and Lewis |[2021; Kazemnejad et al. 2023 show that RoPE also has
poor length generalization in addition tasks.

2.1.5 Training and Inference

Training Training involves minimizing a loss function, typically the cross-entropy
loss for language tasks, using an optimization algorithm like Stochastic Gradient
Descent (SGD) or AdamW (Loshchilov and Hutter 2018). The model learns the
parameters 6 by backpropagating the loss through the network layers. The cross-
entropy loss is defined as:

b

r— _% Z Z log p(w; |7 <;),

i=1 j=1

where b is the batch size, n is the sequence length, and p(x; ;|z; <;) is the probability
of token z; ; given the previous tokens z; ;.

Answer Loss Masking For tasks like integer addition, the loss is modified to
focus only on the answer tokens, where a binary mask m;; € {0,1} is applied to
denote whether a token at position j in sequence ¢ corresponds to an answer. The
loss becomes:

b n
1
Eanswer—only - _g Z Z mg 4 10gp<xi,j |xi,<j>7

i=1 j=1
where b is the batch size, n is the sequence length, m;; = 1 if token z;; is an
answer token, otherwise m; ; = 0, and p(x; ;|z; <;) is the predicted probability of
token z; ; given the preceding tokens z; ;.

This formulation ensures that the loss is computed only over the answer tokens,
with non-answer tokens effectively ignored (since m;; = 0 for those positions).
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Figure 2.3: Training and inference setup for Transformer models on the arithmetic
task. During training (subfigure a), the padded input batch is passed through the
model, and the loss is computed by comparing the predicted logits with the target
sequence (teacher forcing). Unlike regular unsupervised learning, the loss from non-
answer tokens is masked out in experiments. During inference (subfigure b), the
model generates outputs by greedily sampling tokens one by one until maximum
output length is reached, or the end-of-sequence token $ is generated.

Without answer loss masking, the cross-entropy loss would penalize the model
for incorrectly predicting randomly generated operands as well (which are not
possible to predict in the first place), thus adding noise to the training process
never reaching 0 loss.

Inference During inference, the trained model generates outputs by iteratively
computing the forward pass through the network and adding the sampled tokens
to the prompt sequence each time. In autoregressive models, tokens are generated
one by one, conditioned on previous outputs. The token at each step is selected
using greedy sampling, where:

xj = arg Igléi@(pe(f'?’f’?q)a
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where V is the vocabulary, pyg(z|z.;) are the logits computed by the model, and
softmax is applied to obtain the probabilities from non-normalized logits. The
input sequence for the next step is updated by appending the predicted token to
the previous sequence:

t+1 [

o= [t 1.

The sampling process continues until a predefined stopping criterion is met, such
as reaching a maximum sequence length or generating a special end-of-sequence
token. Greedy sampling is computationally efficient but does not explore alterna-
tive sequences. However, it is sufficient for tasks like integer addition, where the
output is deterministic.

2.2 Transformer Interpretability

Understanding how transformer make decisions is crucial for interpretability and
debugging. Relevant concepts include the attention maps, residual stream and cir-
custs, which provide insights into the model’s internal representations and decision-
making processes.

Attention Maps Attention maps visualize the attention weights between to-
kens in the input sequence, showing how much each token attends to other tokens.
Attention maps can be visualized as heatmaps, where the rows and columns cor-
respond to the sequence (for decoder-only models), and the intensity of the color
represents the attention weight. Attention maps can be used to identify patterns in
the model’s behavior, such as which tokens are important for a given output token,
or which tokens are being copied from the input. For instance, in the context of
multi-digit integer addition, attention maps can reveal how the model aligns the
digits to perform digit-wise sums, resulting in diagonal lines.

Residual Stream The residual stream in a transformer is enabled by the resid-
ual connections around operations (as described in Subsection and serves as
a shared memory, accumulating information across layers via residual connections.
Both attention heads and feedforward layers read from and write to this stream,
which ensures the propagation of information throughout the model. Since each
layer can only read from earlier layers, analyzing this stream is essential for un-
derstanding how information is transformed and stored across layers (Elhage et
al. 2021). The residual stream can be studied by techniques such as activation
patching to trace information flow.

Circuits Circuits in transformer are a set of elements (i.e. attention heads, feed-
forward layers) that are responsible for specific behaviors. Currently, while multiple
methods exist that attempt to discover circuits, there is no structured way to iden-
tify all circuits of interest, nor is it certain that human-interpretable circuits exist
in the first place in any given model (Ferrando et al. 2024). Some works succeeded
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in identifying specific high-level circuits such as ones performing modular addition
(Nanda et al. 2023; Zhong et al. 2023) and indirect object identification (K. R.
Wang et al. [2022). Discovering and explaining circuits is helpful for learning algo-
rithmic tasks and compositionality, like multi-digit integer addition. For instance,
a number of circuits might emerge in the model that perform the sub-tasks for
integer addition (such as digit-wise modular addition, and carry propagation), and
the answer might be generated by composing their outputs.

2.3 Expressivity

In the context of transformer, expressivity refers to whether a given task or be-
havior can be reliably implemented using the model’s learned representations. One
framework for analyzing this is RASP, a restricted-access sequence processing lan-
guage (Weiss, Goldberg, and Yahav|2021) that mimics the operations of transform-
ers in a more interpretable manner. Moreover, Fan et al. 2024 show using RASP
that looped transformers can generalize to longer sequence lengths for binary ad-
dition task, along with other algorithmic tasks.

A key aspect of transformer is their ability to generalize compositionally in
some tasks, as highlighted by Hupkes et al. 2020. This suggests that, under the
right conditions, transformers are capable of learning systematic combinations of
components, enabling them to generalize beyond seen examples in a structured
manner. This compositional behavior is crucial for algorithmic tasks, where the
model must apply learned rules consistently across different sequence lengths. De-
spite the theoretical results, there is no clear applied research about how it can
be proven that a transformer model of specific architecture and size can learn a
particular task, like multi-digit integer addition.

H. Zhou et al. 2023 investigate the expressivity of transformer on algorith-
mic tasks using RASP-L, and demonstrate the implementation of the addition
algorithm within RASP-L but note certain limitations in their approach. Specifi-
cally, their result relies on the inclusion of index hints embedded within the input
sequences to allow induction heads to perform the digit alignment and padding
operands to the same digit length, sidestepping the issue of position-based digit
alignment studied in this work.
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Chapter 3

Related Work

In this chapter, a literature review is presented focusing on the topics of trans-
formers, learning arithmetic tasks, reasoning capabilities, compositional learning,
and generalization to longer sequence lengths. In general, direct comparison of the
results from the literature with the findings of this thesis is challenging due to the
differences in datasets and experimental setups. Due to the simplicity of generating
addition examples, works use custom datasets with varying digit lengths and prob-
lem complexities, and a common benchmark dataset does not exist. Moreover, the
focus of this thesis is on understanding the failure modes of transformers in integer
addition tasks and exploring minimal changes to improve length generalization,
which is not directly addressed in the literature.

3.1 Learning Arithmetics with Transformers

The ability of transformer models (Vaswani et al. |2017) to learn arithmetic op-
erations such as integer addition has been a subject of significant research in-
terest. Evaluations demonstrated that large pre-trained language models such as
GPT-3 (Brown et al. 2020) can exhibit emergent capabilities across general-purpose
tasks, including basic few-digit arithmetic, despite these tasks not being explic-
itly encoded by the unsupervised next-token prediction objective. However, even
largest state-of-the-art models like GPT-4 (Achiam et al. 2023) struggle to robustly
solve multi-digit addition and multiplication, especially when a larger number of
digits are involved.

N. Lee et al. 2024 investigate how even small transformers, trained from random
initialization, can efficiently learn arithmetic operations such as addition and mul-
tiplication. They show that training on chain-of-thought style data that includes
intermediate step results significantly improves accuracy, sample complexity, and
convergence speed, even in the absence of pretraining. This approach aligns with
the experiments presented in this thesis on chain-of-thought training, where models
are trained to output the steps involved in solving addition problems. One limita-
tion of their work is that it limits each task to a fixed number of digits (e.g. 7 and
7 digit operands), using padding to ensure uniform input length. In contrast, this
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thesis extends the task to variable-length addition problems which is more difficult
due to the need for models to learn to position-wise align digits as discussed in
Chapter

Understanding how transformers learn arithmetic tasks is further explored by
Quirke and Barez 2024, who present an in-depth mechanistic analysis of a one-
layer transformer model trained for integer addition. They reveal that the model
processes the problem in a non-intuitive way: it divides the task into parallel,
digit-specific streams and employs distinct algorithms for different digit positions,
merging the results in the MLP layer. This work also restricts the operands to a
fixed length of 5 digits and employs padding, apart from restricting the model to
a single layer.

Length generalization is a critical challenge in training transformers for arith-
metic tasks that comes up in numerous research works. Jelassi et al. [2023 examine
how transformers cope with learning basic integer arithmetic and generalizing to
longer sequences than seen during training. They find that relative position em-
beddings enable length generalization for simple tasks such as addition, allowing
models trained on 5-digit numbers to perform 15-digit sums. However, this method
fails for multiplication, leading them to propose “train set priming” by adding a
few (10 to 50) longer sequences to the training set. The strong results in this work
are not directly comparable with the setup used in this work, since they use an
encoder-only transformer with classifier heads to predict the answer digits. The
priming approach is interesting and could be explored further in context of this
work’s results.

Similarly, Duan and Shi 2023 investigate the capabilities of transformers in
learning arithmetic algorithms and introduce Attention Bias Calibration (ABC),
a calibration stage that enables the model to automatically learn proper attention
biases linked to relative position encoding mechanisms. Using ABC, they achieve
robust length generalization on certain arithmetic tasks. Despite promising results,
this work is limited due to the attention bias intervention being task-specific and
the need for a modified training with 2 stages (first training to perfect interpolation
accuracy to learn the attention biases, then training another model with extracted
attention biases). Conversely, the main research interest in this domain lies in
architectural modifications that apart from boosting algorithmic capabilities, also
preserve or improve performance on other language tasks.

Recent work by McLeish et al. 2024 addresses the poor performance of trans-
formers on arithmetic tasks by adding an embedding to each digit that encodes
its position relative to the start of the number. This modification, along with ar-
chitectural changes like input injection and recurrent layers, significantly improves
performance, achieving up to 99% accuracy on 100-digit addition problems. As of
now, this work represents the state-of-the-art in length generalization on integer
addition, with test sequence lengths up to 6 times longer training sequence lengths
(compared to previous SOTA of 2.5 times by Y. Zhou et al. [2024).

Investigations into the symbolic capabilities of large language models by Dave
et al. 2024 and the arithmetic properties in the space of language model prompts
by Krubinski 2023 further contribute to understanding how transformers process
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arithmetic operations and the challenges involved in symbolic reasoning tasks.
Unlike this work and other studies that use smaller transformer models trained
from scratch, these works focus on large pre-trained models which exhibit emergent
capabilities in arithmetic tasks through large-scale unsupervised training.

Mechanistic interpretability of transformers on arithmetic tasks is further ex-
plored by Nanda et al. 2023, who study the phenomenon of grokking in small
transformer models trained on modular addition tasks. They fully reverse-engineer
the learned algorithm and discover that the model implements a discrete Fourier
transform and uses trigonometric identities to convert addition into rotations on
a circle. Similarly, Zhong et al. 2023 investigate the mechanistic explanations of
neural networks on modular addition tasks. They find that neural networks can
discover multiple qualitatively different algorithms when trained on the same task,
including known algorithms like the “Clock” algorithm (same as Nanda et al. 2023)
and a novel “Pizza” algorithm. Unlike the focus of this thesis, which deals with
integer addition where each digit is treated as a separate token, these works are lim-
ited to modular addition tasks where each number is a single token, i.e. 123 token
instead of tokens for 1, 2, and 3. This simplification allows for a detiled mechanistic
understanding of the model but does not address the challenges associated with
variable-length inputs and position-wise alignment of digits in full integer addition.
Moreover, their primary concern is interpretability and understanding training dy-
namics, rather than improving length generalization or exploring failure modes in
more complex arithmetic tasks.

In summary, the literature demonstrates that transformers can learn arithmetic
tasks like integer addition, but challenges remain in achieving robust length gen-
eralization and understanding the underlying mechanisms by which these models
perform arithmetic operations. These findings are directly relevant to the focus
of this thesis, i. e. length generalization on integer addition and failure modes of
transformers, since works either simplify the task to be modular addition (Nanda
et al. 2023, Zhong et al. [2023), fixed digit length (N. Lee et al. 2024, Quirke and
Barez [2024), or propose task-specific architectural modifications to improve per-
formance (McLeish et al. 2024) whose performance on other language tasks is not
explored.

3.2 Reasoning in Transformers

Transformers have shown remarkable abilities in reasoning tasks, particularly when
employing techniques such as including a chain-of-thought (CoT) in the sequence
instead of directly outputting an answer. Z. Li et al. |2024 provide a theoreti-
cal understanding of the power of chain-of-thought for decoder-only transformers,
demonstrating that CoT empowers the model with the ability to perform inherently
serial computation, which is otherwise lacking in transformers, especially for fewer
layers. Intuitively, this is due to the fact that a CoT part in generated sequence
allows the model to write out intermediate results and perform more computation
before arriving at the final answer. This theoretical perspective also supports the
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experiments described in Chapter 4|involving chain-of-thought training to enhance
the reasoning capabilities of models on arithmetic tasks.

X. Wang and D. Zhou [2024 explore the idea that chain-of-thought reasoning
paths can be elicited from pre-trained language models by simply altering the
decoding process, rather than relying on specific prompting techniques. Instead
of decoding by taking the tokens with most activation (greedy decoding), they
propose evaluating multiple possible first tokens, and then continue with greedy
decoding for each of them. This results in multiple decoded sequences instead of a
single answer sequence. They find that paths including a chain-of-thought part al-
ready frequently exist among these alternative sequences and that the presence of a
CoT in the decoding path correlates with higher confidence in the model’s decoded
answer. This work strengthens the argument that chain-of-thought reasoning is a
powerful mechanism for transformers to improve reasoning capabilities.

Another research direction is training the models to output a chain-of-thought
sequence using bootstrapping from existing data and pre-trained models, without
the need for curated CoT data. Zelikman, Wu, et al. [2022 propose the Self-Taught
Reasoner (STaR) method to bootstrap reasoning capabilities using existing models
and answer-only datasets. In STaR, a pre-trained LLM is encouraged to generate
intermediate steps before answer using few-shot prompting, and it is assumed
that if the resulting answer is correct, the generated CoT steps are also correct.
Then, the model is fine-tuned on the generated CoT data. This method is shown
to improve reasoning capabilities on various tasks, including arithmetic. Further
extending the concept of self-generated reasoning, Zelikman, Harik, et al. 2024
introduce Quiet-STaR, where language models learn to generate ‘“rationales” at
each token to explain future text using reinforcement learning, thereby improving
their predictions. This approach generalizes previous work on self-taught reasoning
by Zelikman, Wu, et al. 2022, training the LLM to implicitly reason without explicit
generation of a CoT trace, and can leverage unsupervised text datasets since the
objective is not task-specific.

Goyal et al. 2024 propose training language models with “pause tokens”, al-
lowing the model to perform more computation before outputting the next tokens.
This method improves performance on reasoning tasks, including arithmetic. How-
ever, while it is tempting to think that the pause tokens implicitly perform a form
of chain-of-thought reasoning, the authors do not explicitly analyze the internal
reasoning processes of the model. Moreover, the pause tokens are not directly in-
terpretable as distinct, structured intermediate steps, which is a key feature of
chain-of-thought reasoning.

The limitations of transformers in performing counting tasks are highlighted
by Yehudai et al. 2024, who focus on simple counting tasks involving counting
the number of times a token appears in a string. They show that transformers
can solve this task under certain conditions, such as when the dimension of the
transformer state is linear in the context length. But in general this ability does
not scale beyond this limit, based on the authors’ theoretical arguments for the
observed limitations. While this work does not directly address arithmetic tasks, it
provides insights into the limitations of transformers in handling a related counting

22



3.3. Compositional Learning

task.

Understanding how transformers learn causal structures is investigated by Nichani,
Damian, and J. D. Lee |2024, who introduce an in-context learning task requiring
the learning of latent causal structures. They prove that gradient descent on a
simplified two-layer transformer learns to solve this task by encoding the latent
causal graph in the first attention layer. However, this work is highly theoretical
and does not directly address arithmetic tasks, nor other algorithmic or language
tasks.

Overall, despite some theoretical results proving possibility of certain forms of
reasoning, the literature does not show a robust solution that allows transformers to
learn the generalizable algorithm for performing integer addition on an unbounded
number of digits, which is the main focus of this thesis. Moreover, even if theoretical
possibility was to be established, it would still be of interest to interpret the learned
algorithm in a higher-level, human-understandable form akin to Nanda et al. 2023,

3.3 Compositional Learning

Compositionality refers to the ability of models to understand and generate new
combinations of known components. This is central to generalization, particularly
in tasks that require combining simpler operations to solve more complex prob-
lems, such as multi-digit integer addition. A key aspect of compositionality is
productivity as defined by Hupkes et al. 2020, the ability to generalize beyond
training examples to sequences of unbounded length, which is directly relevant to
the problem of length generalization in addition tasks. In integer addition, this
means models must handle operations on numbers larger than those seen during
training, an open problem in literature. Alongside productivity, other aspects of
compositionality are also introduced in the aforementioned work: systematicity,
substitutivity, localism, and overgeneralisation. Systematicity refers to the model’s
ability to recombine familiar parts and rules to form novel outputs, which is rele-
vant in integer addition, since digits and their positions must be combined correctly
in the learned algorithm to generalize to new lengths. Substitutivity tests whether
models are robust when parts of an input expression are replaced by semantically
similar elements. Localism examines whether models process smaller constituents
before handling larger structures, which in addition tasks translates to correctly
managing digit-wise operations before generating the final answer using their re-
sults. Finally, overgeneralisation assesses whether models apply learned rules even
in cases where exceptions exist. Thus, multiple aspects of compositionality are di-
rectly relevant to the problem explored in this thesis, in particular productivity
and systematicity.

Saxton et al. 2019 introduce a symbolic mathematical dataset to benchmark
models’ ability to correctly compose functions to produce a final answer, and eval-
uate the transformer models on this task. The results show that transformer out-
performs other recurrent models, showing promise for compositional learning.

Dziri et al. 2023 investigate the limits of transformers on compositional tasks,
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such as multi-digit multiplication and logic grid puzzles. They find that trans-
formers tend to solve compositional tasks by reducing multi-step reasoning into
linearized subgraph matching rather than developing systematic problem-solving
skills, suggesting limitations in compositional generalization. Apart from suggest-
ing an interesting description for how multi-step reasoning is realized on trans-
formers, this work does not explore integer addition problems, instead focusing on
< 5 digit multiplication and logic puzzles.

Press, Zhang, et al.|2023 measure the compositionality gap in language models
by evaluating how often models can correctly answer all sub-problems but fail to
generate the overall solution. They find that as model size increases, single-hop
question answering performance improves faster than multi-hop performance, in-
dicating that while larger models have better factual recall, they do not necessarily
improve in their ability to perform compositional reasoning. They propose meth-
ods like chain-of-thought and self-ask prompting to narrow the compositionality
gap.

H. Zhou et al. 2023 propose the RASP-Generalization Conjecture, suggesting
that transformers tend to length generalize on a task if it can be solved by a short
program (in RASP, which is a domain-specific language describing the transformer
architecture introduced by Weiss, Goldberg, and Yahav 2021) that works for all
input lengths. They use this framework to understand when and how transformers
exhibit strong length generalization on algorithmic tasks, which is closely related
to compositional learning.

In summary, while transformers have demonstrated some ability to perform
compositional tasks, significant challenges remain in achieving systematic com-
positional generalization. These findings inform this thesis’ focus on multi-task
learning and understanding how models can be trained to perform compositional
operations like digit alignment and modular sum, before correctly combining re-
sults from these sub-tasks into a final answer.

3.4 Length Generalization

Generalization to longer sequence lengths is a critical challenge in training trans-
formers for tasks like integer addition. Positional encoding plays a significant role
in length generalization. Kazemnejad et al. 2023 conduct a systematic empirical
study comparing different positional encoding approaches, including Absolute Po-
sition Embedding (APE) (Vaswani et al. 2017), Relative position encoding (Shaw,
Uszkoreit, and Vaswani 2018), ALiBi (Press, Smith, and Lewis 2021), Rotary os-
ition encoding (RoPE) (Su et al. 2024), and transformers without positional en-
coding (NoPE). Interestingly, they find that explicit position embeddings are not
essential for decoder-only transformers to generalize to longer sequences and that
models without positional encoding outperform others in length generalization.
The results of experiments conducted in this thesis are not consistent with these
findings, observing much steeper performance drops on longer sequences when us-
ing NoPE, RoPE or APE.
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Multiple works explore the impact of position-based addressing (and therefore
positional encodings) in algorithmic tasks. Multiple recent studies discover that
the models struggle to precisely select relevant tokens based on position in longer
sequence lengths than during training (Ebrahimi, Panchal, and Memisevic 2024;
Shen et al. |2023; Zhao et al. 2024; H. Zhou et al. |2023; Yehudai et al. 2024).
The experiments in this thesis also confirm that the source of failure in length
generalization is the inability of the model to align digits correctly across varying
lengths without explicit digit-wise positional cues.

The ideas proposed and evaluated in this work, namely the inclusion of ran-
dom spaces in the input sequence, have also been explored in the literature. The
work of Shen et al. 2023 also train models with inclusion of random spaces, how-
ever, that work was discovered by me after already independently conducting the
experiments. Nonetheless, there are differences in methodologies: in the aforemen-
tioned work the scratchpad format with intermediate digit-wise sums and carries
is used as the base formatting, but this work evaluates random spaces both with
and without the scratchpad format. The basic format employed in this work is the
simplest, task-agnostic notation as would be used in just writing down an example
in arithmetics.

Ruoss et al. 2023 introduce randomized positional encodings to boost length
generalization of transformers. They demonstrate that their method allows trans-
formers to generalize to sequences of unseen length by simulating the positions
of longer sequences and randomly selecting an ordered subset from this longer
sequence. Experiments in this thesis also confirm that randomized positional en-
codings can improve length generalization on integer addition tasks. Moreover, ex-
periments show that even without architectural changes, simply randomly adding
spaces to the input sequence can simulate randomized positions and boost out-of-
distribution accuracy for task lengths marginally longer than those encountered
during training. The latter claim is also supported by work of Shen et al. 2023,
where random spaces allow the model trained on 2-10 digit examples to generalize
to 11 digits.

S. Li et al. 2024 propose a novel functional relative position encoding with
progressive interpolation (FIRE) to improve transformer generalization to longer
contexts. They theoretically show that FIRE can learn to represent other relative
position encodings and demonstrate empirically that FIRE positional encoding
enables models to better generalize to longer contexts on long text benchmarks.

The success of length generalization is also linked to data format and position
encoding type. Y. Zhou et al. 2024 test the transformer’s ability to generalize using
the two integer addition task. They show that transformers can achieve limited
length generalization, but find that the performance depends on random weight
initialization as well. Their approach uses FIRE positional encoding and index
hints (e.g. “1234+456=579" is encoded as “alb2c3+adbbc6=abb7c¢9”), achieving
2.5x length generalization ratio (maximum length of successfully predicted test
sequences to training sequences). This work is related to the experiments conducted
in this thesis, which also explore the impact of different positional encodings and
data formatting on length generalization in integer addition tasks. Before this work,
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the state-of-the-art length generalization ratio was 1.5x (H. Zhou et al. 2023), and
before that, 1.125x (Kazemnejad et al. 2023) and 1.1x (Shen et al. 2023).

As mentioned in Section McLeish et al. 2024 address length generalization
by adding an embedding to each digit that encodes its position relative to the
start of the number. This fix, along with architectural modifications such as input
injection and recurrent application of layers, allows transformers to generalize to
larger and more complex arithmetic problems. Abacus embeddings generalize to
120-digit problems when trained on up to 20-digit problems, achieving state-of-
the-art performance of 6x length generalization ratio on integer addition tasks.

Nogueira, Jiang, and J. Lin 2021 empirically show that transformer models
struggle to learn addition rules that are independent of training sequence lengths.
Moreover, they find that instead of using character tokenization or digit grouping
as done in other works, adding position tokens (such as “3 10el 2” instead of “32”)
allows models to learn the addition operation. Their work uses the much larger pre-
trained TH (Raffel et al. 2020) model or smaller encoder-decoder models trained
from scratch. Interestingly, evaluation of failure modes shows a similar one to the
one observed in this thesis when testing on longer sequences: instead of terminating
the output earlier, the model shortens the sequence by omitting tokens from the
middle.

In the experiments presented in this thesis, different positional encodings and
multi-task training are explored to improve length generalization in integer addi-
tion tasks. The literature suggests that carefully designed positional encodings and
data formatting can significantly impact the ability of transformers to generalize
to longer sequences. Moreover, this work isolates the causes of failure in length
generalization on integer addition, and proposes minimally invasive modifications
to improve performance on longer sequences.
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Approach

4.1 Overview

This chapter outlines the experimental methodologies and analyses conducted to
investigate the challenges of length generalization in integer addition task. The
primary focus is on understanding the limitations of absolute positional encod-
ings and exploring methods to enhance the models’ ability to generalize to longer
sequences.

The initial experiments examine models trained with both absolute positional
encodings and positional encodings focused on digit alignment, such as the Abacus
encoding. Attention maps are analyzed to compare how these models process in-
put sequences and to identify differences in digit alignment capabilities. Subsequent
sections explore various data formatting techniques, including zero padding, revers-
ing the answer, introducing random spaces, and employing a scratchpad approach.
The impact of these techniques on length generalization is evaluated to determine
if they can improve performance without altering the model architecture.

Further analysis investigates the effect of incorporating sub-task data—such as
carry detection, digit-wise modular addition, reversing, and digit alignment—on
the models’ compositionality and length generalization capabilities. Experiments
are conducted across different model dimensions and dataset sizes, comparing
addition-only training with mixed-task training.

The chapter concludes with an examination of sub-task difficulty and learn-
ing order, highlighting how smaller models benefit more from sub-task learning.
Mechanistic interpretability techniques are applied throughout to understand the
internal mechanisms and failure modes of the models, providing insights into how
positional encoding schemes affect generalization to longer sequences.

4.2 Experimental Setup

This section details the experimental setup used to investigate the hypotheses out-
lined in Section [1.3] including data formatting techniques, model configuration,
training procedures, and evaluation metrics employed in the experiments. The ex-
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periments cover analysis of the effects of positional encodings, data formatting, and
inclusion of sub-task data on the length generalization capabilities of transformer
models in the multi-digit integer addition task.

4.2.1 Data Formatting

Various data formatting techniques are employed and their effects on model gen-
eralization is exampined. All experiments use character-level tokenization; every
character (digit, letter, symbol such as “+”, “=" or space) is treated as an individ-
ual token. The vocabulary consists of 100 printable ASCII characters, ensuring that
each token is represented uniquely. While character tokenization as such is a sim-
ple and flexible method, it is worth noting that current state-of-the-art LLMs use
other subword tokenization schemes such as Byte-Pair Encoding (BPE) (Sennrich,
Haddow, and Birch 2016; Brown et al. 2020). Table summarizes the different
data formatting techniques with examples. Adding random spaces is particularly
interesting as it applies a very simple and general idea to the integer addition
problem and shows promise in improving length generalization.

Standard Format In the standard format, input sequences are represented as
“$a+b=c$”, where a and b are the operands, and ¢ is the sum. The dollar signs
“$” denote the start and end of the sequence; the final “$” also serves as the end-
of-sequence token during autoregressive generation, stopping the process once it
is generated. The plus “+” and equals “=" symbols separate the operands and the
answer, respectively. For example, adding 123 and 456 is formatted as:

$123+456=579%

This format serves as the baseline, with other formatting methods building upon
it.

Zero Padding Zero padding involves aligning the digits by prepending operands
and answers with leading zeros to match a fixed length Np.q. For instance, if
Npag = 5, the addition of 123 and 456 becomes:

$00123+00456=00579%

This method ensures that corresponding digits in different numbers always occupy
the same absolute positions in the sequence, simplifying the learning of positional
relationships. However, it does not actually solve the problem, since it requires
prior knowledge of the maximum sequence length and can’t be applied to sequences
longer than Npag.

Reversing Reversing the digits of operands and/or the answer switches the digit
ordering to start with least significant digits, which follows the flow of operations
like carry propogation. For example, reversing the operands yields:
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$321+654=579%
Reversing both operands and the answer gives:
$321+654=975%

Reversing the operands alone, in principle, should not significantly impact perfor-
mance, as the model can learn appropriate attention patterns to handle reversed
sequences. However, reversing the answer theoretically simplifies the task by local-
izing carry propagation - since the model generates the output from left to right
and can compute each digit independently instead of being forced to implicitly
perform the carry propagation through the complete answer before generating the
first answer digit.

Random Spaces Random spaces are inserted between symbols in the input
sequence to disrupt fixed positional patterns and encourage the model to learn
position-invariant representations. The number of spaces inserted is controlled by
a parameter p, representing the maximum ratio of random spaces to non-space
tokens in the operands. The maximum number of random spaces is calculated as
Nmax = p X L, where L is the length of the sequence (excluding the start token $).
The actual number of spaces n is sampled uniformly from the set {0,..., npax}-
For example, if p = 0.5 and L = 10, then ny., = 5, and n is randomly chosen from
{0,1,2,3,4,5}. The spaces are inserted at random positions within the operands.
In all presented experiments, p = 0.5 when random spaces are enabled. An example
of an input sequence with random spaces is:

$1 23 +4 5 6=579%

Scratchpad A scratchpad, or chain-of-thought, includes intermediate computa-
tional steps before the final answer, promoting step-by-step reasoning. This format
also allows for the evaluation of intermediate results and aids in understanding the
model’s reasoning process. However, it requires task-specific data and therefore is
not a general method. The scratchpad consists of reversed operands (reversing),
modular addition with carry notation separated by semicolons (partials), and the
final answer separated by a vertical bar. An example with comments describing
the parts is given below (the line breaks are included for convenience and not part
of the actual sequence):

$567+789=7 6 5 + 9 8 7; Input equation and reversed operands

c=0,7+0+0=7,c=0; Sum of units digit, no carry initially
6+9+0=5,c=1; Sum of tens digit, carry generated

5+8+1=4,c=1; Sum of hundreds digit and carry, carry generated
0+7+1=8,c=0 Sum of thousands digit and previous carry

| 84573 Final result
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Table 4.1: Examples of Data Formatting Techniques

Format Example
Plain $123+456=579%
Zero Padding (to length 5) $00123+00456=00579%
Reversed Operands $321+654=579%
Reversed Answer $123+456=975%
Reversed Operands and Answer $321+654=975%
Random Spaces $12 3 +45 6=579%
Scratchpad $567+789=7 6 5 + 9 8 7;
c=0,7+0+0=7,c=0;
6+9+0=5,c=1;
5+8+1=4,c=1,;
0+7+1=8,c=0
|8457$

Subtask Prefix (placeholder XXX) xxx$123+456=321+654$

This sequence represents the addition of 567 and 789 with detailed computation
steps, where ¢ denotes the carry variable.

4.2.2 Data Generation

The training and test datasets for the experiments are systematically generated
to evaluate the length generalization capabilities of transformer models on integer
addition tasks. Each dataset consists of addition problems where both operands a
and b are positive integers of equal number of digits, denoted as the digit length.
An addition problem involving operands of n digits is referred to as an n-digit or
n x n addition problem. For instance, a “4-digit” or “4x4” addition refers to both
operands having exactly four digits.

Multiple datasets are created, each encompassing a specific range of in-distribution
(ID) digit lengths for training and corresponding out-of-distribution (OOD) digit
lengths for testing. The datasets are designed to assess the models’ ability to gen-
eralize to sequence lengths beyond those seen during training. In each case, the
datasets are split into training, validation, and test sets. The training set contains
a specified number of ID digit length samples, while separate validation and test
datasets are generated for ID and OOD digit lengths. To prevent data contamina-
tion, all samples in the validation and test sets are unique and not present in the
training set.

The operand values are randomly sampled to ensure uniform coverage of pos-
sible combinations within the specified digit lengths. Numbers are generated such

1See Section for details on subtasks and corresponding prefixes.
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that they have exactly the specified number of digits (i.e., they do not start with
zero). Unless specified otherwise, no attempt is made to balance the digit distri-
bution nor the number of carries required in the addition operations across the
samples.

Following the methodology of N. Lee et al. 2024, for 1-digit operands (1x1
addition), all possible 100 combinations (operands ranging from 0 to 9) are included
in the training dataset and therefore excluded from the test sets to avoid overlap.
For 2-digit operands, 900 samples are randomly selected, and for 3-digit operands,
9000 samples are used. For digit lengths of 4 and above, an equal number of samples
per digit length are randomly generated to fill the remaining training set size.

Out-of-distribution test sets are constructed by including digit lengths not
present in the training data. Each OOD test set contains 1000 unique samples
for each OOD digit length to evaluate the model’s length generalization perfor-
mance.

Sub-Task Data To enhance the compositional learning abilities of the models
and investigate their impact on length generalization, various sub-task data was
incorporated into some datasets. The sub-tasks include reversing, carry detection,
digit-wise modular addition, and digit alignment. Each sub-task focuses on a spe-
cific aspect of the addition process, aiming to help the model learn underlying
algorithmic components that could facilitate better generalization.

In contrast to the scratchpad approach, where intermediate computations are
appended sequentially (leading to potential compounding errors), the sub-task
training treats each sub-task as an independent auxiliary task. This method allows
the model to learn each sub-task simultaneously without relying on the outputs of
other tasks. Conversely, sub-task training implicitly involves composing multiple
algorithmic parts due to pressure from the complete addition problem included
alongside sub-tasks, instead of enforcing composition in each sequence.

To allow the model to differentiate between the sub-tasks each example includes
a 3-letter task prefix, resulting in the format xxx$a+b=c$, where xxx denotes the
sub-task identifier, and c represents the sub-task-specific output.

The sub-tasks, their prefixes, and their formats are as follows:

e Digit Alignment (ali): Focuses on aligning the digits of the two operands
for position-wise operations. The model learns to output the corresponding
digit pairs from each operand.

Example: a11$1234+4567=1+4,2+5,3+6,4+7$
e Reversing (rev): Involves reversing the digits of each operand. This sub-

task helps the model understand the reversal operation, which inverts the
propagation order from least significant digit to most.

Example: rev$1234+4567=4321+7654%

e Carry Detection (car): Requires the model to identify positions where a
carry operation would occur during addition. This sub-task is essentially a

31



Chapter 4. Approach

lookup operation from 2 digits to a binary value. The output is a string of

[1P%)]

¢”’s and dashes, indicating positions with and without carries respectively.
Example: car$1234+4567=---c$

e Digit-wise Modular Addition (mad): The model performs addition mod-
ulo 10 on each pair of corresponding digits without considering carries. This
sub-task is also in principle a lookup operation, from 2 digits to another digit.

Example: mad$1234+4567=5791$

e Addition (add): The standard addition task, where the model computes
the sum of the two operands. This serves as the main task and is included
alongside sub-tasks in the dataset to facilitate composition of their output.

Example: add$1234+4567=5801$

Datasets Several datasets were generated to support different experiments, each
tailored to investigate specific aspects of length generalization and compositional
learning. The datasets are described below:

e 1-3 digit:

— Training Set: Contains 10,000 samples of addition problems where the
operands have 1 and 3 digits. The dataset follows the methodology of
N. Lee et al. |2024 and is used to replicate their baseline results.

— Test Sets: Separate test sets are created for each digit length from 1
to 4 digits, including OOD lengths of 2- and 4-digit addition problems
not seen during training.

o 1-7 digit:
— Training Set: Includes addition problems with operands ranging from

1 to 7 digits.

— Test Sets: Comprises test samples for digit lengths 1 to 8, with 8-digit
addition serving as the OOD evaluation.

— Purpose: Replicates the extended baseline from N. Lee et al. 2024,
examining generalization to slightly longer sequences.

e generalize_ to_longer:

— Training Set: Consists of 1 million samples with digit lengths from 1
to 17 and 19 digits, intentionally excluding 18-digit problems to create
an interpolation gap.

— Test Sets: Includes OOD test sets for 18-digit (interpolation) and 20-
digit (extrapolation) addition problems.

— Purpose: Evaluates the model’s ability to generalize to unseen lengths
within (interpolation) and beyond (extrapolation) the training range.
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generalize to_longer mini:

— Training Set: Contains addition problems with digit lengths of 1 to 7
digits and 9 digits, deliberately omitting 8-digit problems.

— Test Sets: OOD test sets for 8-, 10-, and 11-digit addition problems.

— Scales: Training data is generated at multiple scales, with datasets of

10K, 100K, 1M, and 10M examples to study the impact of dataset size,
where “K” denotes thousands and “M” denotes millions.

— Purpose: Investigates length generalization across different data scales
and the effect of missing intermediate digit lengths.

generalize to_longer mini multitask:

— Composition: Similar to generalize to_longer mini, but includes
all five sub-tasks (addition, reversing, carry detection, digit-wise modu-
lar addition, digit alignment) in the training data. Contains 2 variants
for each scale: addition-only and multi-task training (including sub-
tasks).

— Scales: Generated at the same data scales as above.

— Purpose: Examines the effect of sub-task training on compositionality
and length generalization as compared to addition-only training.

4.2.3 Model Configuration

Transformer decoder models are used as described in the Background chapter (Sec-
tion . Unless specified otherwise, a standard transformer decoder architecture
is employed. The models are varied along several dimensions to assess their impact
on performance:

Number of layers (depth): The number of decoder layers.

Model dimension (width): The dimensionality of the model embeddings
and hidden representations.

Number of attention heads: The number of attention heads h is chosen
such that d is divisible by h, commonly set to powers of 2.

Feed-forward layer dimension: The hidden dimension of the feed-forward
layers is set to dg = 4 X d.

Context length: The maximum input sequence length, denoted as Ly,
is set based on the task requirements and is only relevant for models with
absolute positional encodings.

Unless otherwise noted, models use absolute positional encodings. For experi-
ments involving different positional encoding schemes, the specific configurations
are detailed in the respective sections.
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4.2.4 Training and Evaluation

Training Setup Overall, the training parameters from the NanoGPT (Karpathy
2022) are used with modified number of steps, learning rates, and batch sizes. All
models are trained using the AdamW optimizer with hyperparameters as shown
in Table [4.2]

A learning rate scheduler with linear warm-up and cosine decay is used; for
the first T, = 100 iterations, the learning rate increases linearly from 0 to the
chosen learning rate. After warm-up, the learning rate at the current iteration n(t)
is cosine-annealed to a minimum learning rate of 7y, = 0.1 X 1 over the course of
training until maximum number of iteartions T},., according to the formula:

t
max X 7775 ift < T
n T. i
U(t) ) Mmin + 5( max — nmin) |:1 + cos (Wm)} s i Ty, <t <Thax
Thmin, if ¢ > Tmax

where ¢ is the current iteration.

The batch size is selected based on the task, the model size and the sequence
length to maximize GPU utilization while avoiding memory constraints. For large
models or long sequences, gradient accumulation over multiple steps is employed to
achieve an effective batch size. The number of training epochs is not set explicitly,
rather the number of optimizer steps (iterations) is used. Answer loss masking (as
described in Section 2.1.5) is applied during training unless specified otherwise.
This means that the loss is computed only over the tokens corresponding to the
answer part of the sequence, excluding any start tokens or padding tokens.

Table 4.2: Optimizer Hyperparameters

Hyperparameter Value
Optimizer AdamW
Learning rate 3x 1071
Betas (0.9,0.999)
Epsilon 1x10°8
Weight decay 0.1

Inference Procedure During inference, top-k sampling with £ = 1 is used,
which corresponds to greedy decoding by selecting the token with the highest
probability at each timestep. Although beam search was implemented and tested,
it did not yield significant improvements due to the sharpness of the output dis-
tribution; the model’s predictions are typically highly confident, with the softmax
probabilities concentrated on a single token.
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Evaluation Metrics For all experiments, the models are evaluated using two
primary metrics:

e Cross-Entropy Loss: Calculated over the answer tokens only, providing a
measure of the model’s average log-likelihood of the correct answer tokens.
Lower loss values indicate better performance. The loss is also related to the
perplexity of the model, which is the exponential of the loss and is often
used as a metric in language modeling tasks. The perplexity represents the
average number of choices the model has for the next token, with lower values
indicating better performance.

e Accuracy: Defined as the proportion of samples where all answer tokens
are predicted correctly, also known as full match accuracy. A single incorrect
digit in the answer results in the sample being marked as incorrect. To com-
pute the accuracy, autoregressive inference (as described in Section m is
used to generate the full answer sequence one token at a time until the end-
of-sequence token is predicted or the maximum sequence length is reached.
Higher accuracy values indicate better performance. The cross-entropy loss
can be used to compare model performance when the accuracy is the same,
e.g. when models have been trained short of full convergence and task accu-
racy is 0.

During training, both training and validation losses are recorded to monitor
the learning dynamics. Models are evaluated on validation sets corresponding to
both in-distribution (ID) and out-of-distribution (OOD) digit lengths to assess
their generalization capabilities.

4.3 Limitations of Absolute Positional Encoding

The limitations of absolute positional encoding become evident when evaluating
length generalization in integer addition tasks. Models using absolute positional
encodings are unable to generalize even to slightly longer sequences than those seen
during training, failing to interpolate or extrapolate to unseen lengths. This fail-
ure appears to stem from the inability to extend learned attention patterns beyond
the training lengths. Evidence from the analysis of the attention scores presented
in Section [4.3.2 indicates that models with absolute positional encodings lack the
sharp and well-formed attention patterns observed in models using positional en-
codings like the Abacus encoding. The absolute positional encoding struggles to
precisely select the correct digits based on their positions, leading to misalignment
in longer sequences. Introducing random spaces into the input sequences slightly
smoothens the attention maps, which helps the model generalize in a limited way.

Furthermore, analysis of the next-token prediction uncertainty in Section [4.3.1
reveals that models exhibit high confidence in their predictions for in-distribution
lengths but become increasingly uncertain for out-of-distribution lengths, espe-
cially for longer sequences. While for in-distribution digit positions the distribution

35



Chapter 4. Approach

over possible next tokens is usually collapsed, with all probability mass concen-
trated on the correct token. With OOD positions, on the other hand, next token
distribution becomes more uniform and the probability of predicting the correct
next token decreases towards zero. This suggests that extending the position ad-
dressing patterns to OOD lengths is the main issue, consistent with the literature
indicating that vanilla transformers struggle with index-based addressing opera-
tions.

By addressing the digit alignment problem, for example through the use of
specialized positional encodings like the Abacus encoding (McLeish et al. 2024),
models can generalize well to longer sequences without any other modifications.
However, the challenge remains to enhance the generalization capabilities of models
using standard absolute positional encodings without task-specific modifications.
Introducing random spaces into the sequences is a potential strategy to encourage
generalization, allowing models to interpolate and extrapolate to slightly longer se-
quences. The effects of different data formatting strategies, including the addition
of random spaces, on length generalization are explored in the subsequent section.
First, the baselines for length generalization are established demonstrating com-
plete failure to generalize to any unseen lengths. Then, experiments are described
that investigate the hypotheses that digit alignment is the root cause of failure
and adding random spaces is a solution that partially address it while requiring no
changes to the architecture.

1-3 digits 1-7 digits 1-19 digits

1.0 1 I =
9 — 1-17,19
(0]
S 0.5 . 4| =— 18
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< _ 17 — 20

— 8
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Ok 5k 10k 0k 5k 10k 0k 100k 200k

Figure 4.1: Baseline performance of transformer decoder with absolute positional
encodings over training. The model is a NanoGPT with 6 layers, 768 embedding
dimension, and 4 attention heads. (Left) Model trained on 1 and 3-digit sequences
fail to generalize to 2 and 4-digit sequences. (Middle) Same failure to generalize
happens when trained on 1-7 digits and additionally tested on 8 digits. (Right)
Model trained on 1-17 and 19-digit sequences fail to generalize to 18 and 20-digit
sequences.

4.3.1 Length Generalization Baseline

To establish a baseline for length generalization, models with absolute positional
encodings were trained on integer addition tasks with operands of certain digit
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Figure 4.2: Baseline performance of Universal transformer with absolute positional
encodings over training. The model has embedding dimension of 384, 6 attention
heads, and 3 recurrent steps (in encoder and decoder each). Similar failure to
generalize is observed as in decoder-only model in Figure [4.1]

lengths and tested on both seen and longer unseen digit lengths. Specifically, mod-
els were trained on sequences with operands of 1 and 3 digits and evaluated on
sequences with operands of 2 and 4 digits. The models failed to generalize to the
unseen lengths, demonstrating poor performance on both interpolation (lengths
between those seen during training) and extrapolation (lengths beyond those seen
during training). This inability to generalize supports the hypothesis that absolute
positional encodings limit the model’s capacity to handle sequences longer than
those encountered during training.

In another experiment, models were trained on sequences of 1-7 digits and
tested on sequences of 8 digits. The models again failed to generalize to the un-
seen lengths, further confirming the limitations of absolute positional encodings in
facilitating length generalization for integer addition tasks.

Longer Training Sequences To investigate whether training on longer se-
quences could alleviate this issue, models were trained on sequences with operands
of 1-17 and 19 digits and tested on sequences with operands of 18 and 20 digits.
Despite the increased training sequence lengths, the models still failed to general-
ize to the unseen lengths in the vanilla setup with absolute positional encodings.
This suggests that merely extending the training sequence lengths does not enable
models with absolute positional encodings to generalize to longer sequences.
Figure illustrates the performance of models trained under these configu-
rations, showing that absolute positional encodings inherently limit the model’s
ability to generalize to unseen sequence lengths. Moreover, just making architec-
tural changes such as using Universal Transformer (UT) does not solve the issue,
as shown in Figure The UT model also fails to generalize to unseen lengths,
indicating that the problem is not specific to the decoder-only architecture.

Next-Token Uncertainty Analysis of the next-token prediction uncertainties
provides further insights into the limitations of absolute positional encodings. For
in-distribution lengths, models exhibit high confidence in their predictions, with
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low entropy in the next-token distributions. However, for OOD lengths, the models
become increasingly uncertain, entropy of the next-token distributions increases,
and the probability of the correct token decreases towards zero. Moreover, the anal-
ysis suggests that models often omit digits from different positions in the answer
and thus attempt to end the sequence prematurely. This is in line with findings
from Newman et al. 2020 that the EOS token is output prematurely. Even if EOS
token probability is suppressed to let the model output more digits in the an-
swer, the digits are also often incorrect. Figure [4.3| shows the average entropy and
probabilities of the correct and end-of-sequence (EOS) tokens over the generated
answer sequences for models trained on 1-17 and 19-digit lengths, demonstrating
the contrast between in-distribution and OOD lengths; in distribution the model is
confident and correct, and increasingly uncertain and incorrect for OOD lengths.
This also shows that there is no attempt to extend the algorithm to OOD lengths,
since instead of continuing to be confident (low entropy) but incorrect, the proba-
bilities of next token actually degenerate into more diffuse distributions.

Entropy, EOS probability, and correct token probability over sequence

19-digit operands

1.0
> 0.2 4 —®— Mean entropy _%‘
£ —8— Mean correct token prob -0.5 E
(0 —8— Mean EOS prob 09_
0.0
A 6 6 4 4 4 4 4 4 4 4 b 4 4 & _1.0
£
0.5 R
0
o
a
0.0

1 6 11 16 21 26
Token position in generated sequence

Figure 4.3: Next-token entropy analysis for a model trained on 1-17 and 19 digit
lengths with random spaces. The blue, red, and green correspond to the mean
entropy, mean probability of EOS token, and mean probability of the ground-
truth answer token respectively, with shaded area showing the standard deviation
over 100 different prompts. Top graph shows that for in-distribution lengths of up
to 19, the entropy (uncertainty) of the next token is very low, and correct tokens
are predicted. In the bottom graph, for 25 digit operands the absolute positions of
the answer tokens after position 16 are already OOD, with more uncertainty and
incorrect EOS prediction showing reliance on absolute positions. This is evidence
that the learned algorithm is confident in distribution, but completely breaks down
for out of distribution lengths.
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4.8. Limitations of Absolute Positional Encoding

4.3.2 Positional Encodings Focused on Digit Alignment Im-
prove Generalization

The inability of models with absolute positional encodings to generalize to longer
sequences suggests that digit alignment is the root issue. To investigate this hypoth-
esis, models were trained using both absolute positional encodings and positional
encodings focused on digit alignment, such as the Abacus encoding, under the same
setup. Specifically, models were trained on 100,000 samples with operand lengths
of 1-7 digits and tested on OOD lengths of 8 and 10 digits.

Attention maps from these models reveal significant differences in how they
process input sequences. Models with absolute positional encodings exhibit unclear
and diffuse attention patterns that do not extend coherently to longer sequences.
In contrast, models using the Abacus positional encoding display clearer attention
maps, selecting the correct digits based on their positions, even for sequences longer
than those seen during training.

Figure illustrates the attention maps for the different models. The attention
patterns in the Abacus model suggest that aligning digits effectively is crucial for
generalizing integer addition to longer sequences. This supports the hypothesis
that positional encodings focused on digit alignment enhance the model’s capacity
to generalize by facilitating correct digit alignment.

Furthermore, evaluation results, as shown in Figure 4.5 demonstrate that mod-
els with positional encodings focused on digit alignment significantly outperform
those with absolute positional encodings on OOD lengths. This underscores the
importance of digit alignment in achieving length generalization in integer addition
tasks.

4.3.3 Breaking Positional Patterns in Absolute Positional
Encodings Allows Weak Generalization

To attempt to improve length generalization without altering the model archi-
tecture or introducing task-specific modifications, the impact of randomly adding
spaces into input sequences was investigated. The hypothesis is that random spaces
disrupt fixed positional patterns that the model might overfit to, encouraging it to
learn more robust representations that are less dependent on absolute positions.

Experiments were conducted where random spaces were added to the input
sequences during training according to the method described in Section [4.2.1. The
models trained with this data formatting strategy exhibited marginal improve-
ments in length generalization, successfully interpolating to lengths within the
training distribution and extrapolating to sequences that are one digit longer than
those seen during training.

Attention maps of these models, as shown in Figure[4.4] indicate that introduc-
ing random spaces smoothens the attention patterns, helping the model to gener-
alize slightly better. The models become less reliant on fixed positional patterns
and more capable of handling variations in the input sequences.
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Figure 4.4: Comparison of attention maps (maximum over the 4 heads, after soft-
max) for models with (top) absolute positional encoding, (middle) absolute po-
sitional encoding with random spaces, and (bottom) Abacus positional encod-
ing (McLeish et al. [2024). The y and x axes are the target and source sequence,
which are the same for the decoder-only model, color intensity shows how much a
given target token “attends” to a source token. It is desirable to see orderly lines,
since operations are done digit-wise and can be applied to longer sequences. The
model with absolute positional encodings shows unclear attention patterns with
some randomness, while the Abacus model is significantly less noisy. While random
spaces do not fix the issue completely, the attention patterns are significantly more

aligned. The differences are especially evident in Layer 2.
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Length Generalization of Different PEs and Data Formats
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Figure 4.5: Performance comparison of models with different positional encodings
and data formatting methods on in-distribution (1-7 digits) and out-of-distribution
(8, 10, 11, and 12 digits) lengths. Regular absolute positional encoding (APE) fails
on all OOD lengths. Reversing the answer and scratchpad do not improve OOD
accuracy. Zero-padding numbers to 13 digits improves interpolation (8-digit OOD
length) but does not help extrapolation, while adding random spaces helps to
partially extrapolate by one digit. Abacus encoding solves the underlying position
alignment issue and generalizes to OOD lengths.

Evaluation results in Figure [4.5| compare the performance of models with ab-
solute positional encodings, with and without random spaces, highlighting the
modest gains in generalization achieved through this data formatting strategy.

4.4 Impact of Other Data Formats on Length
Generalization

Different data formatting strategies can influence the model’s ability to generalize
to longer sequences. This section investigates the effects of various data formatting
techniques, including zero padding, reversing the answer or operands, introduc-
ing random spaces, and using a scratchpad approach, on length generalization in
integer addition tasks.

4.4.1 Zero Padding

Zero padding involves padding the operands to a fixed maximum length by adding
leading zeros, effectively aligning the digits of the operands. This technique directly
addresses the digit alignment issue by ensuring that digits in the same positional
place are aligned across all sequences.

Experiments were conducted where models were trained on zero-padded se-
quences up to a fixed maximum length. The results showed that zero padding sig-
nificantly improved performance on sequences up to the maximum padded length,
as the model could effectively learn to align and process the digits.
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However, zero padding has inherent limitations. It requires prior knowledge of
the maximum sequence length, which may not be practical in scenarios where the
sequence lengths are unbounded or variable. Additionally, zero padding does not
enable the model to generalize to sequences longer than the maximum padded
length, as the model has not learned to handle sequences of greater length.

As shown in Figure [4.5] zero padding improves performance on sequences up
to the maximum padded length but does not help the model generalize to longer
sequences beyond that length.

4.4.2 Reversing the Answer

Reversing the answer involves reversing the order of the digits in the output se-
quence. Theoretically, reversing the answer can simplify the addition task for the
model by reducing the need for carry propagation through the entire answer be-
fore outputting the first digit. This is because the least significant digit, which
is computed first in the addition process, becomes the first digit in the output
sequence.

Experiments were conducted to assess the impact of reversing the answer on
model generalization. Models were trained with and without reversed answers using
absolute positional encodings. Contrary to expectations, reversing the answer did
not lead to significant improvements in generalization performance. As shown in
Figure [4.5] the performance of models with reversed answers was comparable to
those without reversal, even though reversing the answer conceptually simplifies
the task.

Interestingly, during training, models with both reversed and non-reversed an-
swers exhibited similar learning patterns. Initially, the models correctly predicted
the most significant digits, gradually improving their predictions for the less sig-
nificant digits as training progressed, up to the maximum in-distribution length.
This phenomenon is shown in Appendix [B.

4.4.3 Scratchpad

The scratchpad approach involves including intermediate computation steps in the
training data, similar to a chain-of-thought, where the model outputs not only the
final answer but also the intermediate results leading to it. This method aims to
make the underlying computation process explicit, potentially aiding the model in
learning the algorithmic steps required for addition.

Experiments were conducted to evaluate the effectiveness of the scratchpad ap-
proach in improving length generalization. The results indicated that the scratch-
pad approach did not significantly enhance generalization to longer sequences.
Models trained with scratchpad data exhibited similar performance on OOD lengths
compared to models trained without it.

However, the scratchpad approach proved useful for mistake analysis. By exam-
ining the model’s intermediate outputs, it was possible to identify specific points
of failure in the computation process. This provided insights into which parts of
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the addition algorithm the model struggled with, such as carry propagation or
digit-wise addition.

The limited effectiveness of the scratchpad approach in improving generaliza-
tion contrasts with findings in the literature, where scratchpad has been shown to
aid in generalization (N. Lee et al.|[2024). One possible explanation is that smaller
models, as used in these experiments, may not have sufficient capacity to leverage
the additional information provided by the scratchpad like in the aforementioned
paper. Figure 4.6| presents the evaluation results for the scratchpad approach, with
violin plots of accuracy and edit distance by intermediate computation steps, show-
ing which intermediate steps are most error-prone.

Scratchpad Intermediate Steps Evaluation (1000 samples)

Total accuracy Total edit distance Reversing operands
(scratchpad and answer) (Levenshtein) edit distance
1.0
200 A
0.5 1 T 25 ~
0-0 T 1 0 L T l T O T I
Partial results Answer accuracy
edit distance wrt scratchpad Answer accuracy
= 1.0 1.0
100 - 0.5 1 0.5 1
0 +r—F—r—*+ ﬁ 0.0 = 0.0 .
17 18 19 20 21 17 18 19 20 21 17 18 19 20 21

Number of Digits Number of Digits Number of Digits

Figure 4.6: Evaluation results for a model trained with scratchpad on 1-17 and
19 digits. The parts of the scratchpad format are described in Section [4.2.1. The
violin plots depict the distribution of accuracies and edit distances by intermediate
steps. Most notably, for 18 and 20 digits OOD lengths, the accuracy of the answer
with respect to scratchpad is very high (center bottom), and thus the main source
of mistakes is performing the intermediate calculations and not “reading off” the
answer, further hinting at the problem of digit alignment.

Overall, while the scratchpad approach did not enhance length generalization,
it provided insights into the model’s internal computations and error patterns.
The practicality of the scratchpad method is limited for tasks where intermediate
computations are not readily available or known in practice.

4.5 Sub-task Learning for Compositionality

Incorporating sub-task data into the training process aims to enhance the model’s
compositionality and length generalization capabilities by explicitly teaching the
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underlying algorithmic components of integer addition. This section explores the
hypothesis that training on sub-tasks, such as carry detection, digit-wise modular
addition, reversing, and digit alignment, can improve the model’s ability to com-
pose these functions and generalize to sequences longer than those seen during
training.

Experimental Setup A comprehensive analysis was conducted across various
model dimensions, ranging from 64 to 1536, and training dataset sizes of 10,000,
100,000, 1 million, and 10 million examples. Models were trained under two set-
tings: addition-only and multi-task training, where the latter involved mixing ad-
dition tasks with sub-task data while matching the total number of samples. In all
cases, the model is a decoder-only transformer with 6 layers and 8 attention heads,
with absolute positional encodings and random spaces in the input sequences (ratio
of random spaces to prompt length p = 0.5), optimizer and learning rate scheduler
as described in Section [4.2.4.

The performance was evaluated over a range of different model widths due
to the confounding phenomenon of deep double descent, where increasing model
capacity or training duration can initially lead to worse generalization before ulti-
mately improving it. This was initially believed to challenge the traditional bias-
variance tradeoff, where increasing model complexity was believed to always result
in overfitting (Belkin et al.|[2019; Nakkiran et al.|[2021). Deep double descent arises
when models, especially overparameterized ones, first memorize the training data,
but later discover more generalizable features, leading to improved performance
on the test set and zero training loss. This phenomenon is still relevant in integer
addition tasks, since the interpolation threshold — the point where the model tran-
sitions from memorization to generalization might change with respect to model
and dataset size.

The main finding is that mixed-task training sometimes improves OOD loss,
with the effect being particularly pronounced for smaller models and smaller dataset
sizes. Moreover, in mixed-task settings smaller models exhibit a Pareto improve-
ment in OOD loss without an increase in in-distribution loss, suggesting that sub-
task learning can help the model learn more generalizable representations and
algorithms. Interestingly, the double descent phenomenon is not observed in the
experiments, as the loss does not visibly drop with larger models, indicating that
either the covered size range is not sufficient to see the full effect, or the scaling
behavior is fundamentally different for this algorithmic task.

4.5.1 Sub-Tasks Marginally Improve Length Generaliza-
tion

To evaluate the impact of sub-task learning on length generalization, models were

trained under two settings: addition-only and mixed-task training. The mixed-task

training involved combining the main addition task with various sub-tasks, such as
carry detection, digit-wise modular addition, reversing, and digit alignment. The
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Table 4.3: Comparison of OOD accuracy (in percentage) for models trained with
addition-only and sub-task training across dataset sizes. Smaller datasets show
greater improvement with mixed-task training. Despite weak absolute performance,
sub-task training can marginally improve length generalization.

8 Digits 10 Digits
Dataset Acc (Add)  Acc (Mix) Acc (Add) Acc (Mix)
10K 7.0 £ 227 354+ 39.6 0£0 24 £ 84
100K 21.5 £ 29.7 41.8 £ 36.5 0+£0 1.0 £5.2
1M 16.1 £ 24.8 39.5 £+ 36.3 0+£0 1.5£7.6
10M 18.6 £33.1 37.3 £ 37.2 0+0 3.1 £10.1
Improvement +22.7 +2.0

experiments spanned a range of model dimensions (from 64 to 1536) and dataset
sizes (10,000 to 10 million examples).

The results indicate that incorporating sub-task data marginally improves length
generalization, particularly for smaller models and smaller dataset sizes. As shown
in Figure smaller models (e.g., with a dimension of 64 and 8 attention heads)
benefit more from mixed-task training compared to larger models. The smaller
models exhibit lower OOD validation losses when trained with sub-tasks, suggest-
ing that they are better able to leverage the compositional learning provided by
the sub-tasks.

One possible explanation for this observation that smaller models improve
more from subtask data is that larger models have sufficient capacity to mem-
orize the training data, including the sub-tasks, without necessarily learning the
underlying algorithms that facilitate generalization. In contrast, smaller models
are constrained by their limited capacity and are thus compelled to learn more
generalizable representations and algorithms, with the sub-tasks aiding in this pro-
cess. Table summarizes the performance differences between addition-only and
mixed-task training across different model dimensions and dataset sizes. The dif-
ference is positive in all cases with larger improvements observed in smaller models
and datasets. Figure illustrates the validation loss versus model dimension for
both in-distribution and OOD lengths, highlighting how mixed-task training can
improve out-of-distribution performance, especially for smaller models.

Additionally, analyzing the in-distribution versus out-of-distribution losses re-
veals that in some cases, sub-task learning helps mitigate overfitting. As depicted
in Figure , smaller models (embedding dimension 64) achieve a Pareto improve-
ment in OOD loss without an increase in in-distribution loss when trained with
sub-tasks.
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Figure 4.7: Validation loss versus model dimension for addition-only (red) and
multi-task training (green). The x axis corresponds to different model widths (em-
bedding dimension). The effect of multi-task training is more pronounced in smaller
models and diminishes as model size increases.

4.5.2 Smaller Models Benefit More from Sub-Tasks

The experiments demonstrate that smaller models benefit more significantly from
sub-task learning compared to larger models. Specifically, models with smaller
dimensions exhibit greater reductions in OOD validation loss when trained with
mixed tasks.

For the smallest model configuration (64 dimensions), the incorporation of sub-
task data leads to a notable improvement in length generalization. In contrast,
larger models (e.g., with 1536 dimensions) show minimal differences in performance
between addition-only and mixed-task training. This suggests that larger models
may already have sufficient capacity to memorize the training data, including the
addition task, without relying on compositional learning provided by the sub-tasks.

The observed trend indicates that sub-task learning is particularly advanta-
geous for models with limited capacity, as it encourages the learning of generaliz-
able algorithms rather than memorization. This aligns with the idea of competing
circuits for memorization and generalization in deep learning models as proposed
by Varma et al. 2023, where smaller models have less capacity for memorization
and are thus more likely to learn generalizable features especially when trained
with sub-tasks.
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In-distribution vs OOD 10-digit Test Loss

/
/
1 /

H
3

/

T

@

© 1 1

g 10 @) .AA PY Train Size
& @) /

2 @ A\ / . 10K
2 B 100K
8 A

= o AT A ) Y

g 1003 4 10M
|_

S /

o A /

B

e)

S

10-7 107 107° 107* 107* 1072 10°' 10°  10*
In-distribution Test Loss (log scale)

Figure 4.8: Comparison of in-distribution test loss and 10-digit out-of-distribution
(OOD) test loss across different training sizes for models trained on addition
only (circles) and sub-tasks (triangles). Colors represent the training dataset size
(10K, 100K, 1M, and 10M), and the dashed line indicates the diagonal where in-
distribution and OOD losses match. Models trained with sub-tasks can achieve a
lower OOD loss by an order of magnitude compared to addition-only training.

4.5.3 Sub-Task Difficulty

An analysis of the sub-tasks reveals variations in their relative difficulty and the
order in which they are learned during training. Some sub-tasks, such as reversing
and carry detection, are learned relatively quickly and consistently across differ-
ent training runs. Other sub-tasks, like modular adition, exhibit instability, with
models achieving either high or low accuracy after the same number of training
iterations, depending on the random seed. Figure [4.9| presents plots of sub-task
test accuracies and losses across different model sizes, highlighting the variability
in sub-task difficulty.
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Figure 4.9: Sub-task difficulty analysis. The bar plots show the mean and standard
deviation of test loss (top row) and accuracy (bottom row) across in-distribution
(ID) and out-of-distribution (OOD) datasets (8, 10, and 11 digits) and sub-tasks.
Loss values across tasks are not directly comparable but can show ID-vs-OOD
length deterioration in performance within a task. Based on the accuracy, modular
addition and digit alignment are the most difficult sub-tasks, and their performance
has the most variability across model sizes as well.
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Conclusion

This thesis investigated the challenges of length generalization in integer addi-
tion tasks using small transformer models trained from scratch. The focus was on
understanding why models with standard absolute positional encodings fail to gen-
eralize to sequences longer than those seen during training and exploring methods
to improve generalization without altering the model architecture or introducing
task-specific modifications.

It was confirmed that transformer models with absolute positional encodings
struggle with digit alignment for longer sequences. The inability to effectively align
digits beyond training lengths arises from the rigid nature of absolute positional en-
codings, which do not extrapolate to unseen sequence lengths. Experiments demon-
strated that models with positional encodings focused on digit alignment, such as
the Abacus encoding, significantly improve length generalization. This finding sug-
gests that proper digit alignment is crucial for generalizing integer addition tasks.

Exploring data formatting techniques revealed that adding random spaces to
input sequences marginally improves length generalization. The random spaces
disrupt fixed positional patterns, encouraging the model to learn more robust rep-
resentations less dependent on absolute positions. While this approach did not
fully solve the generalization problem, it allowed models to interpolate within the
training distribution and extrapolate to sequences slightly longer than those seen
during training.

The inclusion of sub-task data—such as carry detection, digit-wise modular
addition, reversing, and digit alignment—was investigated to enhance the model’s
compositionality. A comprehensive analysis across various model dimensions and
dataset sizes revealed that incorporating sub-task data marginally improves length
generalization, particularly for smaller models and smaller dataset sizes. Smaller
models benefited more from mixed-task training, suggesting that limited capacity
compels them to learn more generalizable algorithms with the aid of sub-tasks.

Mechanistic interpretability techniques were applied to understand the internal
representations and failure modes of the models. Attention map analyses revealed
that models with positional encodings for digit alignment exhibit crisp attention
patterns that align with the correct addition algorithm, even for longer sequences.
In contrast, models with absolute positional encodings showed diffuse and unclear
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attention patterns, indicating difficulties in digit alignment and carry propagation.

Overall, the findings isolate position-based indexing and digit alignment as the
root cause of failure for length generalization. While methods like the Abacus
encoding effectively address this issue, they involve task-specific modifications.
The exploration of data formatting techniques and sub-task learning offers insights
into potential approaches for improving generalization without altering the model
architecture.

5.1 Limitations

This work focuses on small, specialized models trained from scratch, limiting the
connection to large language models (LLMs) and pre-trained transformers. Conse-
quently, it remains unclear how the findings translate to LLMs and what practical
suggestions can be made to improve their performance on similar tasks. Addition-
ally, other popular positional encodings beyond those mentioned were not explored,
which could offer alternative solutions to the digit alignment problem.

The sub-task experiments, while hinting at interesting phenomena, are con-
founded by the number of training steps. Due to computational constraints, all
models were trained for the same number of steps and may be under-trained.
The results might change with extended training, potentially revealing different
dynamics in sub-task learning and generalization.

Mechanistic interpretability methods to causally trace the origins of failure
at the circuit level were not attempted. While it is not much explored in the
literature how techniques like activation patching may be applied in algorithmic
tasks, exploring other methods could provide understanding of the models’ internal
mechanisms.

5.2 Future Work

Future research can focus on developing and applying mechanistic interpretabil-
ity methods specifically tailored for algorithmic tasks. Understanding the failure
modes of transformers at a circuit level could inform the design of models that
generalize better to longer sequences.

Exploring the application of these insights to data curation for fine-tuning pre-
trained LLMs is another promising direction. Investigating how sub-task training or
other architectural adjustments affect LLM performance on algorithmic tasks could
bridge the gap between small specialized models and large pre-trained models.

Further studies on sub-task learning could involve experimenting with larger
data scales and varying the amount of addition data while adding sub-tasks on
top, rather than keeping the total dataset size constant. This approach could help
determine if models can overfit or if sub-tasks assist in learning generalizable al-
gorithms when models reach capacity.

Additionally, connections to active learning and curriculum learning could be
explored. Implementing strategies where the model selects samples to learn from
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based on uncertainty or diversity might enhance learning efficiency. Incorporating
curriculum learning with varying sub-task difficulty or digit lengths could improve
generalization while avoiding catastrophic forgetting (Parisi et al. 2019).

Finally, it would be interesting to explore the order with which sub-tasks are
introduced during training and how it affects the model’s learning dynamics, using
methods similar to J. H. Lee et al. 2022
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Appendix A

Nomenclature

Symbol Description

SOTA
MLP
SGD
FFN
RNN
GPT
BERT
T5
LLM
CoT
OOD
MHA
PE
APE

State-of-the-art

Multi-layer perceptron

Stochastic gradient descent
Feed-forward network

Recurrent neural network
Generative pre-trained transformer
Bidirectional encoder representations from transformers
Text-to-text transfer transformer
Large language model
Chain-of-thought
Out-of-distribution

Multi-head attention

Positional encoding

Absolute positional encoding

Table A.1: Table of nomenclature
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Appendix B

Additional Results

B.1 Models Learn Most Significant Digits First

Interestingly, over the duration of training, first model gets the digit in most sig-
nificant position right, and then gets more and more digits right towards the least
significant. This is also seen in loss, which drops in steps. This is not because in
sampling, the most significant digit is output first (left-to-right), since the effect
also happens (in reverse) when the answer is reversed!

Training history for NanoGPT on 7x7 digit addition
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Figure B.1: Loss drops in NanoGPT decoder-only model with absolute position
encoding training that correspond to the model learning the digit positions one by
one.
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