
Ba c h e l o r T h e s i s

Integrating and Evaluating LLM‐Generated Code
Documentation in the IDE

submitted by

Hans‐Alexander Christian Kruse

Faculty: MIN

Department: Informatics

Group: Applied Software Technology (MAST)

Course: Bachelor of Science Informatics

Student ID: 6799993

Supervisor: Prof. Dr. Walid Maalej

Co‐Supervisor: Dr. Steffen Hauf

Mentor: Tim Puhlfürß

Abstract

Context. I developedanextension forVSCode that enables theuser to generatedocumentation
for code snippets, using GPT‐4, with an engineered few‐shot prompt.

Objective. The goal was to find out, if few‐shot prompts do lead to better outputs than human‐
written prompts, when it comes to code comment generation.

Methodology. I conducted a controlled experiment with 50 participants from both academia
and software related industries. In the experiment, the participants were split into a test and
a control group. The test group was given the extension I developed and the control group was
given a benchmark tool, similar to the ChatGPT web‐version. The objective was to rate the
generated documentation for two distinct code snippets among six dimensions.

Results. I find that the test tool outperforms the control tool consistently for the dimensions of
readability and unnecessary information. Additionally, it outperforms the control tool on the
dimensions of helpfulness and usefulness for themore complicated code snippet. I do however
find a significant difference in the ratings given, between the students and the non‐students in
the study.

i

Zusammenfassung

Kontext. Ich habe eine Erweiterung für VS Code entwickelt, die es dem Benutzer ermöglicht,
Dokumentation für Code‐Snippets zu generieren, indemGPT‐4mit einem speziell entwickelten
Few‐Shot Prompt verwendet wird.

Zielsetzung. Das Ziel bestand darin herauszufinden, ob Few‐Shot Prompts zu besseren Ergeb‐
nissen bei der Generierung vonCode‐Kommentaren führen, alsMensch‐geschriebene Prompts.

Methodik. Ich führte ein kontrolliertes Experimentmit 50 Teilnehmern aus der Universität und
der Softwarebranche durch. Bei demExperimentwurdendie Teilnehmer in eine Testgruppeund
eine Kontrollgruppe aufgeteilt. Die Testgruppe erhielt die vonmir entwickelte VS Code Erweite‐
rung, während die Kontrollgruppe ein Vergleichstool erhielt, ähnlich der ChatGPT‐Webversion.
Das Zielwar es, die generierteDokumentation für zwei unterschiedliche Code‐Snippets anhand
von sechs Dimensionen zu bewerten.

Ergebnisse. Ich stelle fest, dass das Testwerkzeug in den Dimensionen Lesbarkeit und unnöti‐
ge Informationen konsistent besser abschneidet als das Kontrollwerkzeug. Zusätzlich übertrifft
es das Kontrollwerkzeug in den Dimensionen der wahrgenommenen Hilfe für das Verständnis
von Code und der Nützlichkeit, für das komplexere Code‐Snippet. Weiterhin finde ich einen si‐
gnifikanten Unterschied in den vergebenen Bewertungen zwischen den Studierenden und den
Nicht‐Studierenden in der Studie.

ii

Contents

List of Figures . v

List of Tables . vi

1 Introduction . 1

2 RelatedWork . 3
2.1 Large Language Models . 3
2.2 GPT‐4 . 4
2.3 Prompt Engineering . 4
2.4 Code Documentation Generation . 5
2.5 Documentation Generation Tools . 6

3 Methodology . 8
3.1 Experimental Design . 8
3.2 Technical Setup . 10

3.2.1 Code Snippet Selection . 10
3.2.2 Model Selection . 11
3.2.3 Prompt Construction . 12
3.2.4 Tool Implementation . 13

3.3 Experiment Execution . 17
3.4 Data Analysis . 18

4 Results . 20
4.1 Prompt Comparison . 20
4.2 Output Comparison . 21
4.3 Function Understanding . 27
4.4 User Experience Evaluation . 28

4.4.1 UEQ . 28

iii

4.4.2 Survey Coding . 30

5 Discussion . 31

6 Threats to Validity . 34
6.1 Internal Validity . 34
6.2 External Validity . 35

7 Conclusion . 36

Appendices
.1 Axios API call to the OpenAI API . 38
.2 Karabo Python Functions . 39

Bibliography . 42

iv

List of Figures

3.1 Python 3 Comment Template . 9
3.2 Karabo Python Functions . 10
3.3 Prompt constructed for the experiment 12
3.4 Few‐Shot 1 . 12
3.5 Few‐Shot 2 . 13
3.6 Few Shot 3 . 14
3.7 Selection of the command for the control tool 15
3.8 Writing of the prompt for the control tool 15
3.9 Generating the output for the control tool 15
3.10 Selection of the command for the test tool 16
3.11 Generating the output for the test tool 17

4.1 User Experience Questionnaire (UEQ) results for the test tool (blue) and
the control tool (red) . 29

v

List of Tables

3.1 Survey Questions . 9
3.2 Participants' occupations in Test / Control groups 17
3.3 Participants perceived Python experience and Visual Studio Code (VS

Code) experience on a scale from 1‐5 . 18

4.1 Frequency of successful prompts in the control group, subdivided by oc‐
cupations . 20

4.2 Mean ratings for six dimensions in test and control groups for snippet 1 22
4.3 Mean ratings for six dimensions in test and control groups for snippet 2 22
4.4 Mean ratings for six dimensions in test and control groups for the stu‐

dents for snippet 1 . 23
4.5 Mean ratings for six dimensions in test and control groups for the stu‐

dents for snippet 2 . 23
4.6 Mean ratings for six dimensions in test and control groups for the non‐

students for snippet 1 . 24
4.7 Mean ratings for six dimensions in test and control groups for the non‐

students for snippet 2 . 24
4.8 Mean ratings for six dimensions in test and control groups for the lower

experience group for snippet 1 . 25
4.9 Mean ratings for six dimensions in test and control groups for the lower

experience group for snippet 2 . 25
4.10 Ratings for six dimensions in test and control groups for the higher ex‐

perience group for snippet 1 . 26
4.11 Ratings for six dimensions in test and control groups for the higher ex‐

perience group for snippet 2 . 26
4.12 Comprehensionof code snippets 1 and2 (S1/2) by test and control groups

(T/C); mean values, standard deviations before using any tool 27
4.13 Percentage of correct answers for the questions (Q1, Q2) for snippet 1 (S1)

and 2 (S2), before (B) and after (A) using a tool 28

vi

4.14 Comparisonofuser experiences: Ratingsof the sixUEQcategories (mean
values and standard deviations) from the test and control groups (T/C),
including the t test's statistical significance indicator (p‐value) 28

vii

viii

1 Introduction

In the past year, large languagemodels (LLMs), such asOpenAI's Generative Pre‐Trained
Transformer (GPT), have gathered significant interest in the software development in‐
dustry. Among the many proposed use‐cases, the generation of code documentation
has become a topic that has garnered a lot of attention in the scientific space [1]. This
is largely due to the fact that the writing of code documentation has long been a task
that is oftenneglected by developers, for various reasons, including perceivedunimpor‐
tance or lower prioritization [2]. Yet, documenting code has been proven to be among
the most important tasks in software engineering, as it enables improved teamwork,
as well as easier onboarding for new developers in projects and less accumulated tech‐
nical debt over time [3–6]. Therefore, automatic code documentation generation with
LLMs is a space that offers great potential improvements in how well code is under‐
stood and maintained in code bases and projects all over the world.
The goal of this thesis is to find out whether the construction of engineered prompts,
based on the latest research in the field, will yield better results than prompts created
by developers and students without expert knowledge in the field of prompt engineer‐
ing. Thus, I aim to answer the following research question:

• RQ: Is there a difference in the quality and utility of code documentation gener‐
ated with human‐written prompts vs. a prepared few‐shot prompt?

I will draw on the work of Ahmed et al., who have already conducted various studies in
the space, using OpenAI's models GPT‐3, GPT‐3.5, and Codex [7, 8]. I expand that work
by examining the newest model in the GPT collection, GPT‐4.
The secondary goal is to examine whether LLM‐assisted documentation generation
tools can offer a significant advantage in the daily workflow of software developers.
To that purpose, I developed an extension for the integrated development environment
(IDE) VS Code that enables developers to automatically generate code documentation
viaGPT‐4. I then examined the performance of the tool in a controlled experimentwith
50 participants, in which its output was compared to that of a "ChatGPT‐like" interface
in the IDE, in the form of one of the most popular ChatGPT VS Code extensions. The

1

CHAPTER 1. INTRODUCTION

generated comments were rated on six dimensions, which have been derived from the
latest research in the space of documentation evaluation by Hu et al. [9].
In the experiment, the participants received two distinct code snippets derived from
the codebase of a real‐world project. The participants were then tasked with gener‐
ating a comment for each snippet, after which they were asked to rate the comments
based on the aforementioned dimensions. Finally, they rated the user experience of
the tools, thus giving feedback on perceived improvements they could provide in their
workflows.
The experiment shows that the test tool generally performs better among two of the
six dimensions and offers a greater user experience than the control tool.
This thesis will first give a concise theoretical overview of LLMs, specifically OpenAI's
GPT‐4, as well as the newly founded research space of prompt engineering. Then, the
creation process of the VS Code Extensionwill be highlighted, before I give an overview
of the methodology of the controlled experiment. Finally, the results of the study will
be evaluated and discussed before I highlight some of the drawbacks of the study, as
well as further research directions.
This study explicitly only used human evaluation, instead of known metrics such as
BLEU, METEOR, etc., to evaluate the generated documentation.
My IDE extension and the experiment results are included in the replication package.

2

2 RelatedWork

2.1 Large Language Models

A LLM is a type of artificial neural network designed to understand, generate, and ma‐
nipulatehuman language [10]. Theyarebasedon the transformerarchitecture for feed‐
forward neural networks, first introduced by Vaswani et al. in 2017 [11]. A transformer
in this context is a model that employs self‐attention mechanisms, which weigh input
features by their relevance, thus enabling it to handle longer dependencies in textual
data [11].
The training of these models is conducted in two phases: the pre‐training phase and
the fine‐tuning phase. In the pre‐training phase, the LLM is trained on large corpora of
text input. Depending on the actual model, training data can, therefore, include entire
sub‐portions of the freely accessible internet. In this phase, the model learns a variety
of relevant abilities needed to achieve human‐like communication, such as grammar,
reasoning abilities, and facts about the world [11].
During the fine‐tuning phase, a smaller and more task‐specific dataset is used to re‐
fine the model for a particular task, such as, for example, code generation in the case
of OpenAI's Codex model. Due to the amount of data consumed in the pre‐training
phase, LLMs are very good at generalizing. Though, in practice, especially for more nu‐
anced models, the second mentioned phase is of equal importance [11].
Despite the potential that LLMs hold to achieve significant productivity improvements
in various domains, there are still a plethora of challenges to be solved in the space.
One of those is themitigation of bias in themodels through their training data [12]. By
learning through datasets that consist of unmoderated parts of the internet, LLMs can
extract patterns that can be more or less in favor of certain opinions, issues, or even
facts, which can be potentially dangerous due to the spread of misinformation or the
flawed decision making by LLMs themselves [10].
The second issue is the proneness to over‐generalization, which essentiallymeans that
an LLMprovides information that is factually incorrect due to its overemphasis onbroader
patterns in the trainingdata, in contrast tomorenuancedpatterns in test data [13]. This

3

CHAPTER 2. RELATEDWORK

can happen due to the large amounts of training data that can promote converting to
an answer that is suitable for usual situations, rather than unusual ones.

2.2 GPT‐4

In late 2022, OpenAI's GPTmodel series gained international attention through the in‐
troduction of itsWeb Tool ChatGPT [14]. It allowed users to directly communicate with
themodels GPT‐3 and later GPT‐3.5 by creating an account and entering prompts in the
browser [14].
In March 2023, OpenAI introduced the next and, as of the writing of this thesis, most
nuanced model in its series, GPT‐4. It outperforms GPT‐3.5 in tasks of medical exami‐
nation, as well as legal applications, due to its larger number of parameters and its im‐
provedarchitecture [14]. Additionally, itwas trainedonaneven larger corpusof training
data and has knowledge of more recent world events. With this iteration, OpenAI also
added the ability for GPT to take images as input and interpret their contents, which
enhanced its usability for a wide range of domains.
Theseenhancements comeat the cost ofhigher computational requirementsandhigher
deployment costs of the model, which is why as of November 2023, the API for GPT‐4
and theWeb Version are only accessible through a paid plan.
In terms of software engineering‐related tasks, GPT‐4 has been shown to be proficient
at generating code from instructions, executing given code snippets, and offering ex‐
planations of their results, among a plethora of other things [10, 15].

2.3 Prompt Engineering

The output of LLMs, such as GPT‐4, is controlled via natural language input prompts
written by the user. The scientific space of prompt engineering refers to the optimiza‐
tion of the construction of those prompts to achieve more precise outputs [1, 16, 17].
This is particularly important to mitigate the risk of over‐generalization, as a carefully
constructed prompt can nudge the LLM in the direction of more nuanced parts of its
knowledge corpus [16]. Therefore, engineeredpromptsareproposed tohelpwithachiev‐
ing better results with LLMs in various subtasks by assisting the models in their align‐
ment with given specific requirements [17].
Recent research has brought up several techniques and patterns in the subspace, such
as few‐shot prompting, flipped interaction, and persona [7, 17]. For this study, I have
focused on applying the few‐shot paradigm. In its core, few‐shot prompting proposes

4

CHAPTER 2. RELATEDWORK

the addition of desired example outputs to the human‐written prompt [18]. It was first
proposed by the authors of the original OpenAI GPT‐3 paper by Brown et al. [19] and
has since been researched in various domains.
In the context of this study, the most notable prior work has been done by Khan et al.
[20] and more recently Ahmed et al. [7, 8]. In their 2022 paper, they outline the poten‐
tial that few‐shot prompting holds in the subtask of code summarization [7]. Most no‐
tably, they discuss the advantage of utilizing this method when dealing with "project‐
specific linguistic phenomena" [7], meaning that each software project holds its own
specialized and often unique terminology.
They propose that few‐shot prompting a LLM, such as OpenAI's Codex in their context,
offers a workaround to the data‐intensive task of training traditional deep‐learning
models, such as CodeBERT, on a project‐specific codebase [7]. In their work, they test
thishypothesis byobservingandevaluating code summarizationoutput for cross‐project
as well as same‐project datasets.
The results show that in both scenarios, prompting Codexwith the few‐shot paradigm
in place outperforms traditional fine‐tuned foundationmodels. At the same time, they
find that zero‐shot and one‐shot prompts do not offer improvements [7].
This is also supported bymore recentwork fromGeng et al. [21], whofind that few‐shot
prompting an LLM achieves results that outperform state‐of‐the‐art approaches in the
supervised learning space, while zero‐shot and one‐shot prompting do not achieve su‐
perior results.

2.4 Code Documentation Generation

The space of code documentation generation has gained significant attention in the
past decade, with several methods being used and evaluated [22]. Among those are
manually crafted templates, information retrieval techniques, as well as more recently
deep learning methods [9].
Template‐based approacheswere among the first developed in the space [23, 24]. They
generally focus on the use of SoftwareWord UsageModels (SWUMs) to extract impor‐
tant parts of themethod corpus anduse it tofill in predefined templates. This approach
has beenfine‐tuned further over the years to take the context of functions into account
[24]. While theyachieved respectable ratingsbyhumanevaluators, theirmain issue lies
within the dependency on the variable names within the method body and the usage
of human‐written natural language templates [22].
Information retrieval techniques focus on extracting important keywords from code
snippets and support documents [25]. They require less generation time compared to

5

CHAPTER 2. RELATEDWORK

template‐based approaches; however, they often only represent partial information
[22].
Finally, deep learning‐based approaches have gathered more attention in the research
space in the last few years [26–30]. Most of them are based on encoder‐decoder mod‐
els that are trained on large datasets and utilize various concepts fromAbstract Syntax
Trees (ASTs) to plain word representations to gain information from code [22]. More re‐
cently, the work has been extended to incorporate transformer‐based approaches, as
well as hybrid approaches [31].
When it comes to the evaluation of generated documentation, recent research gener‐
ally distinguishes between automated evaluation metrics and human judgment met‐
rics, with the former being the focus of more recent work in the space [9]. In their
2022 paper, Hu et al. compare the results between automated metrics, such as BLEU,
METEOR, ROUGE‐L, CIDEr, and SPICE, to results from human evaluation along six dis‐
tinct dimensions of code comment quality [9]. They split those dimensions into three
groups.
The first group consists of language‐relatedmetrics, which include naturalness and ex‐
pressiveness. Naturalness assesses the grammatical correctness and the fluency of the
documentation,while expressiveness concerns the readability and theunderstandabil‐
ity [9].
The second group consists of content‐related metrics, which include the adequacy of
the content and the conciseness. The former measures the extent to which important
information from the source code is reflected in the documentation, while the latter
assesses the presence of unnecessary information in the documentation [9].
The final group consists of effectiveness‐related metrics, which include the usefulness
of the documentation for developers, as well as the understandability improvement
the comment provides for the function [9].
In their study, they find that the results of the automated evaluation metrics do not
correlate with those of the human evaluation metrics, which is why my study focuses
specifically on the human evaluation metrics to complement the existing research,
which predominantly focuses on the automated evaluation metrics [29, 32–35].

2.5 Documentation Generation Tools

There currently is a shortage of scientifically examined tools for documentation gen‐
eration. In their 2022 work, Durelli et al. [36] tested a Visual Studio Code extension
that is based on the encoder‐decoder pre‐trained model CodeTrans. The extension of‐
fers short summaries of code snippets in Python, Java, and CSharp [36]. To the best of

6

CHAPTER 2. RELATEDWORK

our knowledge, there is no other IDE extension available that has been developed in a
scientific context.
However, there is a growing number of tools available in the public space, with Github
Copilot being the most popular one [37]. The tool offers real‐time auto‐complete fea‐
tureswhenwriting comments and also full suggestions for documentation. It does not
solely focus on comment generation but instead offers a large number of functionali‐
ties to improve workflows for software developers. Additionally, it does not allow the
user to adjust the prompt and offer examples for comment styles.
Apart from that, there are many IDE extensions available in the market today that uti‐
lize LLMs to help with the process of writing and documenting code. Among those is
the tool I used as a benchmark for this study [38].

7

3 Methodology

3.1 Experimental Design

The Questionnaire for the controlled experiment was split into three parts. For the
introductory part, I asked the participants questions about their occupation, their ex‐
periencewith Python, and their experiencewith the IDE VS Code. The purpose of these
questions was to assess the participants' capability of understanding complex code
functions, as well as to gain insight into how fast they can navigate VS Code to use
the extension optimally. Information such as the person's age was also considered for
the survey; however, I opted against that, as its effects on the expressiveness of the
study were deemed as non‐significant.
The second part of the questionnaire consisted of two sub‐parts, each concerning one
of two code snippets selected from the European XFEL (EuXFEL) Karabo codebase [39].
For each snippet, the participants got approximately 2‐3 minutes to review it and try
to understand the code to the best of their abilities. I chose this time limit to ensure
that participantswould not have a chance to understand every last detail of the shown
functions, as that would most likely impair their rating for the improvement in under‐
standability.
After the timer ran out, theywere asked to rate their understanding of each snippet on
a scale of 1 to 5. Additionally, they were given two true/false statements about each
snippet to further examine their understanding. For each of these statements, partic‐
ipants also had the option to declare that they had insufficient information to answer
the question. Finally, they were asked to write the explanatory part of a function com‐
ment for each function by filling out a template I provided them, which can be seen in
Figure 3.1. For that template, I adhered to the recommended guidelines for Docstrings
in Python 3 [40]. It is also the same template that was used in the few‐shots I provided
in the prompt.
After this, they were asked to use the provided tool to generate a function comment
for themethod and study it briefly. Subsequently, they were asked to answer the same
two true/false questions as before to assess whether or not the generated comment

8

CHAPTER 3. METHODOLOGY

1 '''
2 Brief description of the function.
3

4 :param name: Description.
5 :type name: type
6

7 :returns: Descritpion.
8 :rtype: type
9 '''

Figure 3.1: Python 3 Comment Template

Dimension Question
1 Ignoring the content, how would you rate the grammatical correctness of the generated comment?
2 Ignoring the content, how would you rate the readability of the generated documentation?
3 Howmuch relevant information regarding the code snippet do you feel is missing in the generated comment?
4 Howmuch unnecessary information do you feel is present in the generated comment?
5 How useful do you feel the generated comment is for developers?
6 How helpful would you say the generated comment is, to improve the understanding of the code snippet?

Table 3.1: Survey Questions

provided themwith enough additional information to improve their answers. The par‐
ticipants were then asked to rate the generated comment based on the six dimensions
of code comment quality assessment by Hu et al. [9], which I explained in Section 2.4. I
made slight adjustments to the naming of the dimensions to improve the understand‐
ability for theparticipants andavoid longer questions aboutwhat they incorporatedur‐
ing the study (Table 3.1).
For the first two dimensions, naturalness and expressiveness, I opted to go for gram‐
matical correctness and readability instead, as those two are mentioned in the paper
too and are more expressive for non‐native English speakers.
For the second two dimensions, instead of asking the participants to rate the adequacy
and the conciseness, I formulated twoquestions about the amount ofmissing informa‐
tion and the amount of unnecessary information.
Only the final two dimensions, usefulness and understandability, were not renamed,
as they were easy enough to understand.
For eachof the dimensions,weprovided afive‐point answer scalewith the lowest point
of each scale representing the negative pole, like a very low readability and the highest
point representing the positive pole, like a very low amount of unnecessary information.
The final part of the questionnaire consisted of questions regarding the usability of the
provided tool. For that, I opted for the standardized UEQ thatmeasures 26 dimensions
of usability in a ranking between 1‐7 [41]. Additionally, the participants then had two
open text fields to add comments about aspects of the tool theywould improve, aswell

9

CHAPTER 3. METHODOLOGY

as aspects they found to be particularly useful.

3.2 Technical Setup

3.2.1 Code Snippet Selection

For the code snippets used in the survey, I utilized the connection to the EuXFEL project
and selected two distinctmethods out of the Python codebase for the Supervisory Con‐
trol and Data Acquisition (SCADA) framework Karabo [39]. I opted to primarily select
utility functions, as they would be able to be understood without much knowledge
of the rest of the codebase. Python was chosen as the programming language for the
snippets, as large portions of the codebase arewritten in Python, and it is awidely used
language that all of the participants had at least some knowledge of. Another reason
is the fact that recent research has shown Python to be the language that GPT models
are most proficient in [1].
After a thorough screening process of all the available functions, I limited the options
down to the six functions included in the appendix. From those options, I sorted the
functions into the categories easy, medium, and hard together with mymentor, to get
a more objective assessment of their perceived difficulty. Based on the categorization,
I ended up choosing functions 2, 4 and 6 for the study. However, after conducting a
dry‐run of the study with select participants, I removed function 6 from the study, as
the participants had a hard time understanding it and therefore took a much larger
amount of time to complete the survey. That was deemed to be negative, as a longer
expected time for the survey completion could deter people fromparticipating. I there‐
fore concentrated on just functions 2 and 4 (Figure 3.2).

10 2. def string_from_vector_bool(data):
11 return ",".join(str(int(i)) for i in data)

12 4. def _parse_date(date):
13 if date is None:
14 date = Timestamp()
15 if isinstance(date, Timestamp):
16 date = date.toLocal()
17 d = dateutil.parser.parse(date)
18 if d.tzinfo is None:
19 d = d.replace(tzinfo=dateutil.tz.tzlocal())
20 return d.astimezone(dateutil.tz.tzutc())
21 .replace(tzinfo=None).isoformat()

Figure 3.2: Karabo Python Functions

10

CHAPTER 3. METHODOLOGY

Thepurposeof function2 is the conversion fromabooleanvector intoa comma‐separated
string. To that purpose, a for loop runs through the boolean vector and firstly converts
each of the true/false elements into the corresponding integer value of 1/0 and then
turns the integers into strings. The extracted values are then joined together, with a
comma being chosen as the separating character.
Function 4 is a date parsing function, which has the purpose of converting a given date
into a Python datetime object in ISO format. To that purpose, the function first checks
if the argument given into it is None. If that is the case, it assigns it an instance of the
Timestamp class. Herein lies the first difficulty of function 4 in contrast to function 2,
as I provide no information about what the Timestamp class includes. Therefore, the
participants, as well as GPT‐4, have to make assumptions based on the name and the
context of the usage of it. Instances of the class hold indeed information about the cur‐
rent time in attoseconds since the epoch [39]. After the first if statement, the function
checks if the given date is an instance of the Timestamp class. If that is true, it trans‐
forms the date to local time using the .toLocal() function. Next, it parses the date
into a Python datetime object and saves it in the variable d, before checking whether
or not there is already some timezone info available in the created object. If that is
not the case, the function adds local timezone information to it. Finally, the datetime
object d is converted to UTC timezone using astimezone(dateutil.tz.tzutc()) and
then the timezone information is stripped off using .replace(tzinfo=None). The re‐
sulting datetime object is then converted to an ISO format string using .isoformat()
and returned [39].

3.2.2 Model Selection

Over the course of the past year a plethora of LLMs have been introduced to the pub‐
lic. Therefore a key part of this thesis is the selection of a model. For this study I de‐
cided onOpenAI's GPT‐4 as the examinedmodel. This decisionwasmade based on the
popularity of the model, as well as the prevalence on recent research in the comment
generation space using GPT‐3, 3.5 and Codex [13]. Even though the research on GPT‐4s
prevalence is still relatively new, it was deemed as interesting to see, how the model
performs in comparison, especially to GPT‐3.5 [10]. Additionally, when comparing it
to other LLMs that were released in the timeframe of the writing of this thesis, GPT‐4
proved generally superior, to other candidates such as PaLM and LLaMA [14].
OpenAI also hosts theGPTmodels and provides an easy‐to‐use application programing
interface (API) for my downstream application.
Finally, consideringGPT's popularity and rapidevolution, I anticipated that futuremodel

11

CHAPTER 3. METHODOLOGY

22 """
23 For the following prompt take into account these 3 input/output pairs,
24 for functions and appropriate comments for them: {FEW_SHOTS}
25

26 Generate a comment for the following function:{FUNCTION_CONTENT}.
27

28 Adhere to the appropriate comment syntax for multiline comments.
29 Fill out this given template: {TEMPLATE}
30 """

Figure 3.3: Prompt constructed for the experiment

31 def elapsed_tid(cls, reference , new):
32 """
33 Calculate the elapsed trainId between reference and newest

timestamp
34

35 :param reference: the reference timestamp
36 :param new: the new timestamp
37

38 :type reference: Timestamp
39 :type new: Timestamp
40

41 :returns: elapsed trainId's between reference and new timestamp
42 """
43 time_difference = new.toTimestamp() - reference.toTimestamp()
44 return np.int64(time_difference * 1.0e6 // cls._period)

Figure 3.4: Few‐Shot 1

versions would further improve in code documentation generation and, consequently,
benefit documentation‐oriented tools.
In fact, subsequent to this thesis, OpenAI released a GPT‐4 version with an expanded
context window size, potentially allowing the generation of more context‐sensitive
code comments.

3.2.3 Prompt Construction

I constructed a structured prompt to communicate with GPT‐4. The prompt was
written following the prompt pattern catalogues in recently published research, aswell
as the recommended guidelines published by OpenAI [17, 35, 42]. One of the most
prominent forms of prompting is few‐shot prompting, where the user gives the LLM
a couple of example input/output pairs to fine‐tune it on expected answers [17]. Due
to the limit of GPT‐4's API at the time of the study, I opted for 3‐shots, meaning that I
handed GPT‐4 three distinct functions, along with comments as examples, alongside

12

CHAPTER 3. METHODOLOGY

45 def get_array_data(data, path=None, squeeze=True):
46 """
47 Method to extract an ``ndarray`` from a raw Hash
48

49 :param data: A hash containing the data hash
50 :param path: The path of the NDArray. If `None` (default) the

input Hash is taken.
51 :param squeeze: If the array should be squeezed if the latest

dimension is 1. Default is `True`.
52

53 :returns: A numpy array containing the extracted data
54 """
55 text = "Expected a Hash, but got type %s instead!" % type(data)
56 assert isinstance(data, Hash), text
57 array = _build_ndarray(data, path=path, squeeze=squeeze)
58 return array

Figure 3.5: Few‐Shot 2

the rest of the prompt.
The selection of those functions was based on criteria for code comment quality de‐
rived from the recent study by Rani et al. [43]. Among metrics such as conciseness,
completeness, and usefulness, they find that oftentimes code comments arewritten in
differing styles, depending on preferences of the project team [43]. Therefore, I opted
to choose three code and comment pairs from the same project codebase as the two
snippets that the participants were supposed to evaluate [39]. During the screening
process of possible pairs, I adhered to the metrics derived from the literature. After
careful consideration, I decided on the three code and comment pairs shown in Fig‐
ures 3.4, 3.5, and 3.6. They each follow the same template that is used throughout the
project and offer examples for GPT‐4 as to the desired length and format of the output.
The rest of the prompt was constructed as straightforward as possible. I ask GPT‐4 to
write a comment for the given function and pass the snippet along. I then urge it to
adhere to the multiline syntax for Python comments and Docstrings, and I provide it a
template to make sure that the returned comment is in a desired format (Figure 3.3).
Through a secondary functionality of the tool, the user would later be able to change
the prompt, butmost importantly the template for the comment to adhere to different
kinds of preferred comment formats.

3.2.4 Tool Implementation

To examine the documentation generation capabilities of LLMs such as GPT‐4, I created
an extension for the IDE VS Code. The IDE was chosen based on its popularity and its

13

CHAPTER 3. METHODOLOGY

59 async def getSchema(device, onlyCurrentState=False):
60 """
61 Get a schema from a target device
62

63 :param device: deviceId or proxy
64 :param onlyCurrentState: Boolean for the state dependent schema.

The default is `False `.
65

66 :returns: Full Schema object
67 """
68 if isinstance(device, ProxyBase):
69 if not onlyCurrentState:
70 return Schema(name=device.classId, hash=device._schema_hash

)
71 else:
72 device = device._deviceId
73

74 schema, _ = await get_instance().call(device, "slotGetSchema",
75 onlyCurrentState)
76 return schema

Figure 3.6: Few Shot 3

prevalence in many software engineering‐related fields. Furthermore, VS Code offers
support for a large portion of popular programming languages, and most importantly,
for the context of this thesis, for Python3. Additionally, VS Code already offers a num‐
ber of user‐written extensions that incorporate LLMs such as GPT‐4, which allowed us
to freely choose a tool whose output I could use as the benchmark.
The main criterion for the selection of the benchmark tool was that it should be rel‐
atively similar to the ChatGPT Web interface, to enable the users to write their own
prompts and to compare the potential improvement to the usability by automatically
adding the comments above the function in comparison to the process of copying and
pasting them from GPT's output window. After extensive testing of available exten‐
sions, I decided on comparing my tool to the ChatGPT extension, written by Zhang
Renyang [38]. The extension satisfies the requirement of offering a ChatGPT‐like chat
window that opens beside the code editor, and it is also among the most popular GPT
extensions available in the store. Additionally, it allows the use of GPT‐4 through pro‐
viding an API key, which in turn allowed me to compare the outputs from participant‐
written prompts to the outputs from the prompt I wrote. The general workflow for
writing a comment with the extension can be seen in Figures 3.7‐3.9.
For the creation of my extension, the documentation for the generation of VS Code

extensions was followed thoroughly [44]. To that purpose, the necessary libraries yeo‐
man and generator‐codewere installed locally using theNode PackageManager (npm).

14

CHAPTER 3. METHODOLOGY

Figure 3.7: Selection of the command for the control tool

Figure 3.8: Writing of the prompt for the control tool

Figure 3.9: Generating the output for the control tool

15

CHAPTER 3. METHODOLOGY

Figure 3.10: Selection of the command for the test tool

As a programming language for the extension, I used TypeScript rather than JavaScript,
as the type safety that it offers was deemed to be important.
The aforementioned libraries offer boilerplate code for the project, which will not be
further discussed in this thesis, as its workings are covered extensively on the Visual
Studio CodeWebsite [44].
For the selection of the function or class the user would like to generate a comment
for, I opted for a simple selection of the needed space, as it offered the most precision
in contrast to taking the entire file as context for the documentation. I then added the
ability to generate the comment either by entering the command "GenerateComment"
and then choosing the appropriate comment type or by simply using the contextmenu
and selecting the option there. The idea behind that was to enable inexperienced VS
Code users to use the extension through a known path, while giving experienced users
the ability to use the command palette, thus integrating the extension's ability into
their usual workflow.
To make the API call to the OpenAI API, I used a simple axios request, as the use of
dedicated libraries, such as Langchain, was not possible in a VS Code Extension envi‐
ronment at the time of the development. Additionally, the usage did not offer any
further functionality in this use‐case. GPT‐4 then replies with a dedicated comment,
which is automatically inserted below the head of the selected function. Figures 3.10
and 3.11 show the general workflow.

16

CHAPTER 3. METHODOLOGY

Figure 3.11: Generating the output for the test tool

3.3 Experiment Execution

The survey was conducted in a two‐month timeframe, between October and Novem‐
ber 2023. I used GPT‐4 version gpt‐4‐0613 in both tools, with VS Code Version 1.85 and
ChatGPT Extension version 1.6.62. 50 people participated in the study. 30 of those
were students, studying subjects from computer science, to business informatics and
software systems engineering. The other 20 participants, were people working in soft‐
ware development and related fields, such as finance or software research. All of them
had at least some experiencewith software development, in various programming lan‐
guages, which was the only requirement for participating in the experiment. Table 3.3
shows the responses of the participants for the questions regarding their prior experi‐
ence with Python and VS Code.
Most of the interviewswere conducted via the online video platform Zoom, while 17 of
themwere conducted on‐site at EuXFEL's complex in Schenefeld, Germany.
In addition to the questionnaire, the interviewer urged the participants to utilize a
Thinking Aloud approach [45]. This was deemed as especially important for the part
of the survey, in which the participants had to rate the comments because, as I ob‐
served in the dry‐run of the study, I was able to gain valuable insights into what the
participants thought was especially important in the generated comments.
Another important aspect for the interviewer during the study was the prompts writ‐
ten by the people in the control group. They were noted during the interviews for fur‐
ther comparison in the results section of this thesis and can be found in the replication

Table 3.2: Participants' occupations in Test / Control groups

Students Software
Engineers

Data
Scientists

Others

T / C 15 / 15 6 / 6 2 / 2 2 / 2

17

CHAPTER 3. METHODOLOGY

Table 3.3: Participants perceived Python experience and VS Code experience on a scale
from 1‐5

Experience 1 2 3 4 5
Python 5 13 10 14 8
VS Code 5 10 12 20 3

package.
On average, the participants in the test group completed the experiment in 19minutes
and 57.6 seconds, while the participants in the control group needed 23 minutes and
52.8 seconds. This slightly higher time can be explained by the additional work of writ‐
ing prompts that the control group had.

3.4 Data Analysis

The evaluation of the collected data included quantitative as well as qualitative as‐
pects.
For the quantitative part, I aimed to utilize either a parametricWelch's t‐test or a non‐
parametricMann‐Whitney U (MWU) test to test for significant differences between the
ratings for the six dimensions among the test and control groups [46, 47]. I comple‐
mented the results with average means for all the dimensions among the groups. Ad‐
ditionally, I split the participants into groups twice. Firstly, for students/non‐students,
to test if their general experience writing code had an influence on the ratings. And
secondly, for low/high experience with the programming language Python, to test if
this had an influence on the ratings. I further complemented the quantitative insights
gained from the tests with qualitative insights gained during the Thinking Aloud phase
of the experiment. To measure the improvement to function understanding, I tested
howmany people in both groups answered the true/false statements in the survey cor‐
rectly and if the tool influenced their decisions. All calculations utilized functions from
the SciPy Statistical Functionsmodule [48].
For the prompts written by the control group participants, I compared them to each
other as well as to the prompt used for the test tool and highlighted important differ‐
ences and some similarities.
Finally, I utilized the Excel tool provided by the UEQ Team [41] to analyze the UEQ data
[49]. The tool offered descriptive (mean values and standard deviations) and inferen‐
tial statistics (t‐test) to compare user experience ratings for the two IDE extensions.

18

CHAPTER 3. METHODOLOGY

Additionally, Imanually analyzedparticipants' free‐text answers to thequestions “What
did you like most about the tool?” and “What would you change about the tool?” at
the end of the questionnaire.
Mymentor and I independently conducted Open Coding for all answers and compared
their codes to achieve consensus in reporting [50].

19

4 Results

4.1 Prompt Comparison

When it comes to the prompts entered by the participants in the control group, there
were significant differences, to the prompt used in the test tool. Most of the prompts
followed one of three wordings that can be seen in Table 4.1 (a detailed version is in
the replication package). Among the 50 prompts entered by the participants through‐
out the study, there were only three that were too specialized to be assigned to one
of the most frequent groups, and just one prompt was longer than one sentence. No
participant thought of enhancing their prompt with example input/output pairs or a
comment template. This might, in part, be due to the small input field the control tool
provided, which nudged the users to write a shorter prompt, and, in part, due to the
missing experience when it comes to writing prompts. Another factor could be the
slight language barrier. Most of the participants were not native English speakers, but
they were asked to prompt in English to make the output more comparable to the test
tool.
Generally, the prompts written were rather short, with 60 percent of them being 6‐8
words long.
Among the prompts listed, I only included those that actually led to comments as out‐
put. About half of the participants had to re‐enter a different prompt to get an output
resembling a comment, which led to an impaired user experience, as I will discuss later.

Table 4.1: Frequency of successful prompts in the control group, subdivided by occupa‐
tions

Prompt pattern Students Professionals
Write a function comment 13 8
Write a comment 12 2
Prepare a Docstring 3 9
Other 2 1

20

CHAPTER 4. RESULTS

Among the prompts that did not lead to a comment as the output were wordings such
as "explain the function" and "describewhat this function does," which are expected to
give suboptimal results. Surprisingly, though, some of the prompts from Table 4.1 also
led to an undesired output in a few cases.
I found that there are a couple of keywords that proved to be especially important in
regards to evengetting a comment as output. Thosewere, aswouldbe expected, "func‐
tion comment" and "Docstring." In all cases where participants asked specifically for a
"function comment" or a "Docstring," the LLM provided them with, at the very least,
the desired output format.

4.2 Output Comparison

Next, I compare the different ratings among the six dimensions for the quality of the
generated comments.
First, I conducted a Shapiro‐Wilk test to test if the data for each scale in each group
follows a normal distribution [51]. I found that none of our scales satisfy that require‐
ment, most likely due to the small sample size. Next, I conducted a Levene's test to test
the homogeneity between the variances in the groups. I find that only for snippet 2,
dimensions 1‐4, the variances are not equal.
As a result of those insights, I decided against conducting aWelch's t‐test and opted for
the MWU test instead, as the test is recommended for scenarios in which there is no
notable normal distribution among the dimensions [47].
Among the six dimensions derived from the paper by Hu et al. [9], I obtained the fol‐
lowing results on a 0.05 significance level for the first and the second code snippet,
respectively.
For snippet 1, I found that dimensions 2 and 4 had a significant difference in rating
among the two groups. Dimension 2, the readability of the generated documentation,
had an average rating of 4.72 in the test group and 4.12 in the control group. For dimen‐
sion 4, the test group scored the amount of unnecessary information on the lower side,
with 4.32 on average, and the control group scored the amount to be in the middle of
the scale with 3.28. This coincides with the observationsmade during the study, where
the biggest difference between the documentation generated by the test tool and the
documentation generated by the control tool was the length. This, of course, led to
subpar readability when it came to the control tool output, as the comment did not
follow a particular template. Additionally, the length of the output, of course, led to a
lot of unnecessary content, especially for the smaller of the two code snippets, which
explains the results.

21

CHAPTER 4. RESULTS

Table 4.2: Mean ratings for six dimensions in test and control groups for snippet 1

Dimension Grammatical
Correctness

Readability Missing
Information

Unnecessary
Information

Usefulness Helpfulness

Test Group
Mean (Std)

4.88 (0.33) 4.72 (0.54) 4.36 (1.11) 4.32 (1.25) 4.44 (1.04) 4.32 (1.07)

Control Group
Mean (Std)

4.88 (0.33) 4.12 (0.88) 4.64 (0.76) 3.28 (1.21) 4.12 (0.83) 4.52 (0.59)

MWU‐test
p‐value

1.0 0.005 0.348 0.0009 0.084 0.912

Table 4.3: Mean ratings for six dimensions in test and control groups for snippet 2

Dimension Grammatical
Correctness

Readability Missing
Information

Unnecessary
Information

Usefulness Helpfulness

Test Group
Mean (Std)

4.76 (0.66) 4.68 (0.48) 4.16 (0.85) 4.68 (0.85) 4.6 (0.76) 4.6 (0.82)

Control Group
Mean (Std)

4.48 (0.92) 3.52 (1.39) 3.92 (1.29) 2.84 (1.60) 3.52 (1.39) 4.00 (1.08)

MWU‐test
p‐value

0.119 0.0004 0.781 0.00002 0.002 0.016

For snippet 2, I found that four of the six dimensions had a significant difference in rat‐
ing, with the test group consistently scoring higher than the control group. For dimen‐
sion 2, the readability of the generated documentation, the test group had an average
rating of 4.68, while the control group rated it with 3.52. This further drives the point
made previously about the missing template, as well as the extensive length. Dimen‐
sion 4, the amount of unnecessary information, was rated with 4.68 by the test group
and 2.84 by the control group, once again coinciding with the observations made for
snippet 1. The fifth dimension, the usefulness, was rated with 4.6 by the test group,
while the control group rated it with 3.52. This canmost likely also be attributed to the
excessive length of the control tool output. During the Thinking Aloud part of the sur‐
vey, a large portion of the participants voiced the concern that larger comments could
hinder theworkflow for developers, as they take up toomuch time to read for too little
additional necessary information. Finally, the sixth dimension, the helpfulness to im‐
prove the understanding of the snippet, was ratedwith 4.6 by the test group and 4.0 by
the control group. While this could also be attributed to the bloatedness of the control
tool output, according to the participants, the provided explanations were most likely
simply too complicated to understand.
Next, I split the participants from both groups into subgroups of students and peo‐
ple working in software engineering‐related fields and performed a MWU test for the
subgroups to test the results for experienced developers and students separately. I ob‐
tained the following results on a 0.05 significance level for the first and the second code

22

CHAPTER 4. RESULTS

Table 4.4: Mean ratings for six dimensions in test and control groups for the students
for snippet 1

Dimension Grammatical
Correctness

Readability Missing
Information

Unnecessary
Information

Usefulness Helpfulness

Test Group
Mean (Std)

4.93 (0.26) 4.66 (0.62) 4.6 (0.83) 4.86 (0.35) 4.6 (0.63) 4.6 (0.63)

Control Group
Mean (Std)

4.86 (0.35) 4.0 (1.0) 4.6 (0.63) 3.33 (1.35) 3.93 (0.88) 4.46 (0.64)

MWU‐test
p‐value

0.577 0.032 0.757 0.0002 0.026 0.517

Table 4.5: Mean ratings for six dimensions in test and control groups for the students
for snippet 2

Dimension Grammatical
Correctness

Readability Missing
Information

Unnecessary
Information

Usefulness Helpfulness

Test Group
Mean (Std)

4.73 (0.80) 4.6 (0.51) 4.06 (0.96) 4.86 (0.35) 4.73 (0.46) 4.6 (0.74)

Control Group
Mean (Std)

4.4 (1.06) 3.2 (1.47) 3.86 (1.30) 2.66 (1.68) 3.13 (1.41) 3.66 (1.23)

MWU‐test
p‐value

0.133 0.002 0.843 0.0002 0.0008 0.022

snippet, respectively, in the subgroups of students.
In contrast to the entire participant test, for snippet 1, the students in the test and

control groups scored dimensions 2, 4, and 5 significantly differently from each other.
Test group students rated the readability of the generated comment as 4.66 on aver‐
age, while the control group rated it as 4.00. For dimension 4, the students in the test
group scored it as 4.86, in contrast to the control group students with 3.33. For dimen‐
sion 5, the test group students had an average rating of 4.6, while the control group
students had an average rating of 3.93. Thus, we can already see a slight difference
in the general results when it comes to the ratings of the students for snippet 1. This
could be attributed to the lower experience level of students when it comes to writing
documentation.
The rating of snippet 2 reflects the general results, with dimensions 2, 4, 5, and 6 being
significantly better rated in the test group. Dimension 2 scores an average of 4.6 for the
test group, with the control group having an average rating of 3.2 when it comes to the
readability of the generated documentation. For dimension 4, the students in the test
group rated it with 4.86 on average, while the control group rated it with 2.66. This is
in line with the results for the general study, where the dimension of unnecessary con‐
tent in the comment is the biggest difference between the outputs generated in the
test and control group. The average rating for dimension 5, the usefulness, is 4.73 in

23

CHAPTER 4. RESULTS

Table 4.6: Mean ratings for six dimensions in test and control groups for the non‐
students for snippet 1

Dimension Grammatical
Correctness

Readability Missing
Information

Unnecessary
Information

Usefulness Helpfulness

Test Group
Mean (Std)

4.8 (0.42) 4.8 (0.42) 4.0 (1.41) 3.5 (1.65) 4.1 (1.45) 3.9 (1.45)

Control Group
Mean (Std)

4.9 (0.32) 4.3 (0.67) 4.7 (0.95) 3.2 (1.03) 4.4 (0.70) 4.6 (0.52)

MWU‐test
p‐value

0.583 0.072 0.084 0.511 0.966 0.377

Table 4.7: Mean ratings for six dimensions in test and control groups for the non‐
students for snippet 2

Dimension Grammatical
Correctness

Readability Missing
Information

Unnecessary
Information

Usefulness Helpfulness

Test Group
Mean (Std)

4.8 (0.42) 4.8 (0.42) 4.3 (0.67) 4.4 (1.26) 4.4 (1.07) 4.6 (0.97)

Control Group
Mean (Std)

4.6 (0.70) 4.0 (1.15) 4.0 (1.33) 3.1 (1.52) 4.1 (1.20) 4.5 (0.53)

MWU‐test
p‐value

0.582 0.062 0.903 0.067 0.465 0.278

the test group, while it remains at 3.13 for the control group. Finally, dimension 6, the
helpfulness to improve the understanding, is ratedwith 4.6 on average by the students
in the test group, while it achieves an average rating of 3.66 by the students in the con‐
trol group. In general, the average ratings by the students in the control group were
consistently lower than the average ratings by thewhole control group, indicating that
the subgroup of people working in software development‐related fields scored the di‐
mensions higher for snippet 2. In line with the general results, the students had the
most issues with problems resulting from the length and the complexity of the gener‐
ated documentation.
For the non‐student subgroup, I obtained the following results.
For theMWU test in the subgroup of peopleworking in software development‐related
fields, I find not a single dimension to yield significantly better ratings in the control
group or the test group, for neither snippet 1 nor snippet 2, which presents a contrast
to the general group results. It is important to note, however, that for snippet 2, di‐
mension 4 does have a rather large difference in the means for the ratings, with the
test group scoring it 4.4, while the control group scores it 3.1. This is not supported by
the p‐value of 0.067, though, so the result is not generalizable. This might be in part
due to the smaller sample size of the non‐student subgroup, which consists only of 20
people, in contrast to the 30 people in the student subgroup. Another interesting ob‐

24

CHAPTER 4. RESULTS

Table 4.8: Mean ratings for six dimensions in test and control groups for the lower ex‐
perience group for snippet 1

Dimension Grammatical
Correctness

Readability Missing
Information

Unnecessary
Information

Usefulness Helpfulness

Test Group
Mean (Std)

4.875 (0.35) 4.625 (0.74) 4.75 (0.46) 4.875 (0.35) 4.375 (0.74) 4.875 (0.35)

Control Group
Mean (Std)

4.8 (0.42) 4.1 (0.88) 4.8 (0.63) 3.8 (1.23) 4.3 (0.82) 4.6 (0.70)

MWU‐test
p‐value

0.731 0.128 0.538 0.018 0.923 0.391

Table 4.9: Mean ratings for six dimensions in test and control groups for the lower ex‐
perience group for snippet 2

Dimension Grammatical
Correctness

Readability Missing
Information

Unnecessary
Information

Usefulness Helpfulness

Test Group
Mean (Std)

4.5 (1.07) 4.75 (0.46) 4.5 (0.53) 4.875 (0.35) 4.875 (0.35) 4.75 (0.71)

Control Group
Mean (Std)

4.4 (1.26) 2.8 (1.48) 3.9 (1.20) 2.5 (1.78) 2.9 (1.37) 3.7 (1.16)

MWU‐test
p‐value

0.866 0.003 0.361 0.005 0.004 0.031

servation is the higher scoring for snippet 1, dimension 3 by the control group. This is
in contrast to all the other observations made. A possible explanation for this is that
the test tool output did not alwaysmention how the operations utilized in the snippet
worked in detail. The control tool was much more precise and longer in its explana‐
tions, which could have led to some information missing in the test tool.
Finally, I split the participants into two other subgroups based on their given answers
to the question about their prior experience with using Python to find out whether or
not experience with the programming language had any influence on the perceived
ratings for the generated documentation. I opted for a split that puts the people that
rated their experience with 1 or 2 into one group and the people that rated their expe‐
rience with 3, 4, or 5 into another. In the following, I will refer to the first group as the
lower experience group and the second group as the higher experience group. I once
again performed aMWU test and obtained the following results on a 0.05 significance
level for the lower experience group.
For snippet 1, I can see a similar result to that of the student subgroup, as well as the
general participant group, with dimension 4 showing the only significantly different
rating. The lower experienced participants in the test group rated the amount of un‐
necessary content in the generated comment on the lower side with 4.875, while the
low‐experienced participants in the control group rated it with 3.8 on average.

25

CHAPTER 4. RESULTS

Table 4.10: Ratings for six dimensions in test and control groups for the higher experi‐
ence group for snippet 1

Dimension Grammatical
Correctness

Readability Missing
Information

Unnecessary
Information

Usefulness Helpfulness

Test Group
Mean (Std)

4.88 (0.33) 4.76 (0.44) 4.18 (1.29) 4.06 (1.43) 4.41 (1.18) 4.05 (1.20)

Control Group
Mean (Std)

4.93 (0.26) 4.13 (0.92) 4.53 (0.83) 2.93 (1.10) 4.00 (0.85) 4.46 (0.52)

MWU‐test
p‐value

0.654 0.024 0.539 0.011 0.041 0.534

Table 4.11: Ratings for six dimensions in test and control groups for the higher experi‐
ence group for snippet 2

Dimension Grammatical
Correctness

Readability Missing
Information

Unnecessary
Information

Usefulness Helpfulness

Test Group
Mean (Std)

4.88 (0.33) 4.65 (0.49) 4.00 (0.94) 4.59 (1.00) 4.47 (0.87) 4.53 (0.87)

Control Group
Mean (Std)

4.53 (0.64) 4.00 (1.13) 3.93 (1.39) 3.06 (1.49) 3.93 (1.28) 4.20 (1.01)

MWU‐test
p‐value

0.067 0.054 0.750 0.003 0.169 0.228

The findings for snippet 2 also fall in line with those of the general study, in which di‐
mensions 2, 4, 5, and 6 show significant differences in rating, with dimension 2 being
rated with a 4.75 on average by the lower experienced people in the test group and a
2.8 by the people in the control group. Dimension 4 and 5 each got an average rating
of 4.875 in the test group, versus the 2.5 and 2.9 ratings, respectively, by the control
group, while dimension 6 was rated with a 4.75 on average in the test group and a 3.7
on average in the control group. Especially the fifth dimension, the perceived useful‐
ness for developers, shows a significantly lower average rating in this subgroup than in
the general study.
For the high experience subgroup, for snippet 1, I find that, in line with the general

results, dimensions 2 and 4 yield significantly better results in the test group than in
the control group. For dimension 2, the test group had an average rating of 4.76, while
the control group had an average rating of 4.13. Dimension 4 had an even clearer dif‐
ference in means, with the test group scoring the amount of unnecessary information
in the comment with 4.06, while the control group scored it with 2.93. In contrast to
the general results, dimension 5 also proves to be significantly different in both groups,
with the test group scoring it 4.41 and the control group scoring it 4.00 on average. An‐
other interesting observation can be made in dimension 6, where the control group
had a higher average rating than the test group. This could be attributed to the fact

26

CHAPTER 4. RESULTS

that most participants who had some experience working with Python already had a
very good understanding of snippet 1 without the tool. Therefore, to rate the improve‐
ment to their understanding, they requiredmuchmore detailed information about the
snippet, which only the control tool provided.
For snippet 2, I find a significantly different outcome than for the general results, with
only dimension 4 showing a significant difference in rating, with the test group scoring
an average of 4.59 versus the average rating of 3.06 in the control group. In contrast to
the ratings for snippet 1, the higher experienced participants scored the improvement
to their understanding higher for the test tool. This is most likely the case because
even for highly experienced developers, the function proved to be quite difficult to un‐
derstand without proper context. Therefore, they reverted to their standards for code
documentation and did not gain any additional insights through themore detailed ex‐
planations of the control tool.

4.3 Function Understanding

First, I check the function understanding before the participants were given a tool to
generate a comment (Table 4.12). In general,most of theparticipants hadamuchbetter
understanding of snippet 1 in comparison to snippet 2, which is in line with the expec‐
tations, as the first snippet is less complex.
Through the true/false questions in the questionnaire, I was able to get a further

overview of the participants' understanding of the given code snippets. To that pur‐
pose, I calculated the number of participants who answered the questions correctly
before and after using each of the tools and obtained the following results (Table 4.13).
Before using the tool, most of the participants in both groups answered the questions
for snippet 1 correctly. This was expected, as snippet 1 was generally relatively short
and easy to understand.
I observe a relatively counterintuitive result for the rate of correctly answeredquestions
after using both tools, as almost all the percentages go down. Taking the observations
into account, a relatively large number of participants actually got confused by the out‐

Rating TS1 CS1 TS2 CS2
Mean (Std) 3.84 (1.11) 2.92 (0.81) 3.6 (0.96) 2.4 (0.96)

Table 4.12: Comprehension of code snippets 1 and 2 (S1/2) by test and control groups
(T/C); mean values, standard deviations before using any tool

27

CHAPTER 4. RESULTS

Group S1 Q1 B S1 Q2 B S1 Q1 A S1 Q2 A S2 Q1 B S2 Q2 B S2 Q1 A S2 Q2 A
Test Group 92.0% 96.0% 96.0% 80.0% 56.0% 52.0% 72.0% 84.0%
Control Group 76.0% 92.0% 88.0% 84.0% 40.0% 60.0% 88.0% 84.0%

Table 4.13: Percentage of correct answers for the questions (Q1, Q2) for snippet 1 (S1)
and 2 (S2), before (B) and after (A) using a tool

put of both tools. This could be explained by the fact that the question asked if the
input to the function is an Iterable. Both outputs generally used less general terms for
the input, which most likely confused the participants with less experience in Python.
For snippet 2, the percentages are much lower, which was expected, as the function
was more complicated and required a degree of additional knowledge to be under‐
stood entirely. I can see a rather large general improvement for both groups in both
questions. The control tool actually achieved the largest jump for question 1. This is
most likely a positive factor of the longer and more detailed comments the control
tool generated. While they may not be ideal for developers working on the code, they
certainly outperform the test tool for conveying more details about the snippet. This
seems counterintuitive to the slightly better ratings the test tool received in the cate‐
gory of understandability, which leads to the conclusion that understandability in itself
can be split into two different forms: the general understanding of what the function
does and the understanding of smaller details, such as those asked for in the true/false
questions.

4.4 User Experience Evaluation

4.4.1 UEQ

Finally, I evaluated the user experience through the standardized UEQ [41]. Figure 4.1
shows that the test tool proves to be superior on five of the six measured dimensions

Table 4.14: Comparison of user experiences: Ratings of the six UEQ categories (mean
values and standard deviations) from the test and control groups (T/C), including the t
test's statistical significance indicator (p‐value)

Dimension Attractiveness Perspicuity Efficiency Dependability Stimulation Novelty
Test Group
Mean (Std)

1.99 (0.63) 1.87 (0.47) 1.98 (0.67) 1.84 (0.79) 1.62 (0.83) 0.95 (0.77)

Control Group
Mean (Std)

1.01 (1.14) 1.25 (0.68) 0.70 (1.19) 1.05 (1.05) 0.82 (1.13) 1.10 (1.15)

t‐test p‐value 0.0006 0.0005 0.0000 0.0043 0.0065 0.5909

28

CHAPTER 4. RESULTS

Figure 4.1: UEQ results for the test tool (blue) and the control tool (red)

of the test. When it comes to the attractiveness of the usage, the test tool scores an
average of 1.99, while the control tool achieves almost a whole scaling point less, with
just 1.01. Thus, the general satisfaction with the test tool proves to be higher.
For the perspicuity, the difference is less apparent, with the test tool achieving an av‐
erage rating of 1.87 versus the 1.25 of the control tool. This falls in line with the obser‐
vations made during the study, as both tools were generally easy to understand after
a short explanation by the researcher.
The largest difference between the ratings of the tools is in the perceived efficiency,
in which the test tool has an average rating of 1.98 and the control tool one of just
0.70. This was to be expected, as entering the prompt by themselves did significantly
raise the time consumed to achieve results with the tool. Another factor could be the
re‐entering for prompts that was mentioned earlier, where in some cases the partici‐
pants had to try two or more times to get a suitable output.
The dependability was rated with 1.84 on average for the test tool and 1.05 for the con‐
trol tool. The biggest influence on this scoremost likely comes from the question about
the predictability of the tool. As I mentioned earlier, there were a lot of cases where
participants had to re‐enter a different prompt after their original one did not yield a
comment as output. Therefore, most of those participants rated the predictability to
be on the lower side of the scale, which led to the difference in scores for the depend‐
ability dimension.
For the stimulation, the test group achieved an average result of 1.62 versus an average
result of 0.82 for the control group. This could also be explained by the remark made
for the dependability, as the longer workflow for the control tool most likely led to an
impaired user experience in terms of stimulation.
The only dimension among the six that sees the control tool achieving a better result

29

CHAPTER 4. RESULTS

than the test group is the dimension of novelty. This measures how innovative the
tool felt for the participants. This result can most likely be explained by the simplicity
of the test tool. The usage is relatively straightforward, and most of the heavy lifting,
with the prompt and the generation of the comment, happens in the backgroundwith‐
out visual feedback for the user. The control tool, on the other hand, allows the user to
experiment and offers functionalities beyond those of comment generation that are
visible during the selection of the preferred use case. Therefore, one can derive that
the control tool feels like it offers more and therefore achieved greater results in this
category.

4.4.2 Survey Coding

Next, I coded the answers givenbyboth groups to the text fields, asking about improve‐
ments and things that they enjoyed about each tool.
For the test tool, the main positive point mentioned by the participants was the eas‐
iness of the usage. Additionally, a lot of participants mentioned that the tool takes
tedious work away from them in their daily workflows and is therefore very helpful. In
terms of the output, most people rated the uniform comment structure positively and
also mentioned the conciseness of the generated comments.
For the control group, some people mentioned the same points, with the ease of use
and the helpfulness being the most mentioned aspects. Additionally, one participant
mentioned that the tool helps take away personal biaswhenwriting comments, which
is something that can be said for both tools.
In termsofnegative commentsandchange requests for the test tool, participantsmainly
mentioned the slowgeneration time for the comments. Apart fromsomeminor changes
requested, such as a progress indicator, some participants asked for more options for
comment types and a better adjustment in terms of explanation depth for longer func‐
tions. Thiswasmost likelymentionedbecause the test tool kept the comments for both
code snippets at about the same length, even though the second snippet required a
more detailed documentation in the eyes of some participants. One personmentioned
a perceived security risk from using the tool for internal company code, as it uses a non
open‐source LLM.
For the control tool, the negative feedback mainly mentioned the additional output
generated, besides the comment. In combination with having to copy and paste the
comments into the code files, this led to an impaired user experience, as mentioned
earlier. Additionally, participants did not enjoy writing the prompts themselves, due
to the longer time it took to get the output.

30

5 Discussion

Deep vs. general understanding of functions. The results of this study highlight many
interestingpoints. First, I find thatprompts constructed following the few‐shotparadigm
do, in fact, yield significantly better results in the space of code comment generation
than human‐written prompts. This is most notable in the categories of readability and
unnecessary information. For longer, more complicated code snippets, they addition‐
ally offer better results in the categories of usefulness and helpfulness. Based on the
survey data and the observations made during the experiment, I can most likely at‐
tribute the better ratings to the length of the generated documentation.
Without any examples, or at the very least, a template to follow, GPT‐4 is not able to
assess the preferred length for the output. Therefore, it gives results that are generally
too long to be considered as useful in a development context. It is, however, important
to note that in certain scenarios, these longer comments might actually be helpful to
improve the understanding of complicated functions, as mentioned by a few partici‐
pants. This brings the question: which part of the term "understanding" is most im‐
portant when it comes to comments for code snippets? Should they provide a quick
overview of how a function works to allow people to continue working with them, or
should they offer a deeper understanding? Depending on the answer to that question,
the tool should probably offer various options of comment depth.
Difference in ratings. Next, I find that students and people with working experience
in software development‐related fields have quite a differing perception of the ratings
of the comments. This could be attributed to a few factors, such as the fact that the
sample size for the non‐student group was smaller and that most of the interviews
with developers were done in an on‐site setting, versus the online interviews for the
students. Still, the differences are quite large and potentially open up an interesting
research direction.
Issues with LLMs. I find that the biggest weakness of the extension developed in this
study is the amount of timeneeded for the comment to be generated. In a quick experi‐
ment after the studywas over, I tracked the time needed for the output to be generated
and returned to the user and found that on average, the process took about 4 seconds,

31

CHAPTER 5. DISCUSSION

which seemed too long for people. This is an issue that, of course, lies in the nature
of LLMs, as they take time to produce their output. Another issue arises through the
inherent randomness of the output. Therewere only a handful of cases inwhich either
tool offered the exact same output for the same prompt. No amount of structuring in
the engineered prompt could prevent that issue. Further research could thus explore
an approach in whichmultiple outputs are generated, and the developer then chooses
a preferred one. Though thiswould lead to a longer time for the generation of the com‐
ments, as well as the entire workflow, as people now have to additionally spend time
choosing a Docstring.
FutureWork. Next, futurework could investigate further options to perfect thewritten
prompt to GPT‐4 and othermodels. There are recent studies that recommendmore ex‐
ample input/output pairs to get better results for generated documentation [21]. While
the ratings by the participants in our study suggest that in the context of GPT‐4, three
examplesare enough, itwouldbe interesting to seehowthemodel performswithmore
input or even an entirely different approach to writing the prompt.
Apart from that, I propose that utilizing one of the many new open‐source LLMs to
run the tool locally would be the most interesting new research direction. This also
follows an interesting remarkmade by one of the participants concerning potential se‐
curity risks that come with the use of tools based on closed models, such as GPT‐4. In
a future iteration of the tool, I plan to offer participants the opportunity to adjust the
prompt by sending few‐shots of their own, though this opens the tool up to potential
prompt injection attacks [52]. Additionally, developers should generally be cautious
when sending entire functions of their code to closed models, as they cannot be sure
what happenswith the code [52]. Therefore, the future of productivity‐enhancing tools
for coding most likely lies in open‐source LLMs, even though fine‐tuning them comes
with a plethora of new challenges in itself [53].
What remains for the developer. The more general question that remains following
the study is what work will be left to the developers in terms of documenting code
after using our tool and future iterations of it. The results of this study indicate that
neither developers nor students are necessarily experts in the field of prompt engineer‐
ing. Therefore, we can assume that the task of prompting LLMs should most likely be
done by the vendors of tools, offering just slight adjustments as options for the users.
Still, in its current state, it is clear that cross‐checking the output is of utmost impor‐
tance, nomatter howwell one prompts the LLM.Without knowledge of an entire code‐
base, the model can only assume what certain classes and other mentioned functions
do, based on the naming. Improving the tool to be able to run it with entire files of
functions that have dependencies between each other seems like a potential solution

32

CHAPTER 5. DISCUSSION

to that problem. But even then, one would not be able to guarantee correctness, as
it would need the knowledge of an entire codebase. And even if LLMs someday in the
future get to a point where one can assume that the output is definitely correct, select‐
ing the right examples for the prompt or even just a template remains as an integral
task. This is mostly due to the fact that every software project brings its own unique
challenges, depending on the domain, the people working on the project, and even the
timeline [7]. The comments generated for functions by my tool should, therefore, al‐
ways follow a style that fits the preferences of each individual developer team. Hence,
nudging an LLM into the right direction will most likely remain as a task for the team
members.

33

6 Threats to Validity

6.1 Internal Validity

There are several internal threats of the study that need to be mentioned.
Firstly, it is important to note that generally, the writing of code documentation is a
task that is done on code that has been written by the developers themselves. In the
context of the controlled experiment, I was not able to create such an environment
without significant impact on the rating dimensions proposed by Hu et al. [9]. There‐
fore, it is highly likely that the dimensions concerning the amount of unnecessary and
missing information would be better measured in a field study, where the tools would
be used on code written in a professional context. The trade‐offwas accepted because
the dimensions of helpfulness and especially usefulness were deemed to be lost com‐
pletely in the context of a field study, as it is most likely more difficult for developers to
examine their own comments in terms of usefulness for other people. Nevertheless, I
propose that a field study should be conducted in the future to gain robustness on the
other mentioned dimensions.
Secondly, the standardized UEQ consists of 26 opposing adjective dimensions. During
the creation of the survey for this study, the second dimension of the questionnaire,
which is "understandable/not understandable," was not put in, due to an oversight
error made by the interviewer. Therefore the UEQ results might be compromised in
their full expressiveness. It is, however, important to note that after evaluating the
UEQ, once with the middle value of the scale put in for the dimension, among all re‐
sults for both groups, and once with omitting the dimension entirely, I did not find any
significant difference to the end results. This is in line with the observations by the in‐
terviewer, as the majority of participants in both groups did not have any significant
trouble with understanding how either tool worked.
Next, I note that all of the casual inferences made in this study are, of course, limited
by the number of functions I used in the experiment. With only two functions being
checked, it could very well be the case that the results of the survey would change to
an unknown degree when giving participants more functions to test the tools on. This

34

CHAPTER 6. THREATS TO VALIDITY

is due to the fact that every software function is unique and might be understood to a
different degree by every participant [7]. The control tool might perform better on cer‐
tain, more complicated functions, as they require longer andmore detailed comments
to be understood perfectly.
Finally, it is important tonote that the split for students andpeopleworking in software
development‐related fields diminished the group sizes. Therefore the results regarding
the ratings of the snippets, in particular those by the 20 software developers, are less
expressive. I would recommend at this point to conduct the study again, with more
software developers and fewer students, or at least a more balanced group.

6.2 External Validity

In terms of potential external threats, it is important to note that LLMs in general gen‐
erate at least slight variations of the answers for the same prompt, nomatter howwell
it has been constructed, due to their inherent randomness [1]. Therefore, the conclu‐
sions that I have drawn from the results of the studymight not be generalizable, as the
outputs given byGPT‐4might not have been optimal. In a rather small scale study, with
50 participants, it was not possible to mitigate this risk adequately. Additionally, it is
important to mention that I only tested one specific LLM in the context of this study.
Secondly, the entire study was conducted on one single project codebase. The three
functions I used as the few‐shots for the prompt were taken from the EuXFEL code‐
base. While I took into account the quality requirements for code comments, I cannot
exclude the possibility that the few‐shots were not optimal. Therefore, the output of
the test tool could probably be improved further. This falls in line with the general risk
of using only functions from the same codebase. The tool might give out radically dif‐
ferent results for different projects.
17 out of the 20 recruited professionals were employed by EuXFEL. Due to their profi‐
ciency in Python, they were deemed well‐qualified for the study. I acknowledge that
the employer influences participants' skills.
In contrast tomost other studies conductedon the spaceof documentationgeneration,
I opted to only use human evaluation techniques, instead ofmetrics such as BLEU,ME‐
TEOR, etc. While this was a design choice, I cannot rule out that the aforementioned
metrics might yield more robust results than human evaluation.

35

7 Conclusion

The purpose of this thesis was to examine whether engineered prompts for the LLM
GPT‐4 yield better results than human‐written ad‐hoc prompts in the subspace of code
comment generation. To that end, I conducted a controlled experiment with 50 partic‐
ipants from various software‐related backgrounds and had them rate generated com‐
ments for two functions from the EuXFEL codebase.
I find that the test tool yielded significantly better results for the dimensions of read‐
ability and unnecessary information for both code snippets. It generally provided com‐
ments that followed the provided examples and the template in length and detail,
while the control tool was too broad and unstructured in its output. This led to worse
readability and a plethora of unnecessary additional information in the comment.
For the more complicated of the two functions, I find that participants also perceived
the comment generated by our tool to bemore useful for developers andmore helpful
in improving their understanding of the code snippet. Though it should be noted that
participants in the control group actually outscored the participants in the test group
in the questions answered correctly for the snippet after the usage of the tool. Thus,
it is possible that the perceived improvement in understanding and the actual under‐
standing were significantly different for the people in the control group.
Still, with this study, I add to the existing research for various other LLMs [7, 8] by con‐
cluding that prompt engineering does indeed enhance the quality of the output. It is
important to note, though, that therewas a clear distinction between the ratings given
by the students and the non‐students in our study, potentially indicating that working
developers might not see the same benefits as students. This should be explored in
future research that might go beyond the space of code documentation generation, as
it could indicate different priorities for each group when it comes to writing and inter‐
preting software in general.
Finally, I find that LLMbased tools for software‐related tasks seemtooffer a greater user
experience when the users do not have to write the prompts themselves, suggesting
that industry practitioners prefer assistance with constructing ideal prompts. While
writing prompts seems to give users a greater sense of innovation during the usage, it

36

also decreases the reliability and efficiency of the output.
I propose that the next step in the research of this topic should be the usage of an open‐
source LLM that runs locally, thus not only adding potentially faster response times but
also an extra security layer, as well asmore fine‐tuned answers. It would be interesting
to see if a model like that would outperform our tool on the task of comment genera‐
tion, with orwithout fine‐tuning, and also if prompt engineering itself is still important
for locally run models.
Finally, I hope that mywork inspires others to replicate this study in other settings and
examine potential aspects to advance Artificial Intelligence (AI)‐powered tool support
for developers in various software‐related domains.

37

Appendix

.1 Axios API call to the OpenAI API

77 async function generateComment(selectedText: string, prompt?: string):
Promise<string> {

78 try {
79 const client = axios.create({
80 headers: {
81 Authorization: 'Bearer <AUTH-TOKEN>',
82 },
83 });
84

85 const params = {
86 model: 'gpt-4',
87 messages: [
88 {
89 role: 'system',
90 content: 'You are a programmer.'
91 },
92 {
93 role: 'user',
94 content: FEW_SHOTS + (prompt || DEFAULT_PROMPT).

replace('{FUNCTION_CONTENT}', selectedText),
95 },
96],
97 };
98

99 const response = await client.post(
100 'https://api.openai.com/v1/chat/completions',
101 params
102);
103

104 return response.data.choices[0].message.content.trim();
105 } catch (error) {
106 console.error('OpenAI API request error:', error);

38

107 throw error;
108 }
109 }

.2 Karabo Python Functions

110 1. def all_equal(iterable):
111 iterator = iter(iterable)
112 try:
113 first = next(iterator)
114 except StopIteration:
115 return True
116 return all(first == x for x in iterator)

117 2. def string_from_vector_bool(data):
118 return ",".join(str(int(i)) for i in data)

119 3. def _is_nonintegral_number(value):
120 is_floating = isinstance(value, (numbers.Complex, np.inexact))
121 is_integer = isinstance(value, numbers.Integral)
122 return is_floating and not is_integer

123 4. def _parse_date(date):
124 if date is None:
125 date = Timestamp()
126 if isinstance(date, Timestamp):
127 date = date.toLocal()
128 d = dateutil.parser.parse(date)
129 if d.tzinfo is None:
130 d = d.replace(tzinfo=dateutil.tz.tzlocal())
131 return d.astimezone(dateutil.tz.tzutc())
132 .replace(tzinfo=None).isoformat()

39

133 5. def dictToHash(d):
134 h = Hash()
135 for k, v in d.items():
136 if isinstance(v, dict):
137 h[k] = dictToHash(v)
138 elif isinstance(v, (list, tuple)):
139 if len(v) > 0 and isinstance(v[0], dict):
140 h[k] = HashList(dictToHash(vv) for vv in v)
141 else:
142 h[k] = v
143 else:
144 h[k] = v
145 return h

146 6. def hashToDict(h):
147 d = dict()
148 for k, v in h.items():
149 if isinstance(v, Hash):
150 d[k] = hashToDict(v)
151 elif isinstance(v, (list, tuple)):
152 if len(v) > 0 and isinstance(v[0], Hash):
153 d[k] = [hashToDict(vv) for vv in v]
154 else:
155 d[k] = v
156 else:
157 d[k] = v
158 return d

40

41

Bibliography

[1] H. Tian,W. Lu, T. O. Li, X. Tang, S.‐C. Cheung, J. Klein, and T. F. Bissyandé, Is chatgpt
the ultimate programming assistant ‐‐ how far is it?, 2023. doi: 10.48550/arXiv.
2304.11938.

[2] E. Aghajani, C.Nagy,O. L. Vega‐Márquez,M. Linares‐Vásquez, L.Moreno,G. Bavota,
and M. Lanza, “Software documentation issues unveiled”, in 2019 IEEE/ACM 41st
International Conference on Software Engineering (ICSE), NewYork, NY, USA: IEEE,
2019, pp. 1199–1210. doi: 10.1109/ICSE.2019.00122.

[3] I. Steinmacher, T. U. Conte, C. Treude, andM. A. Gerosa, “Overcoming open source
project entry barriers with a portal for newcomers”, in Proceedings of the 38th
International Conference on Software Engineering, 2016, pp. 273–284.doi: https:
//doi.org/10.1145/2884781.2884806.

[4] I. Steinmacher, C. Treude, and M. A. Gerosa, “Let me in: Guidelines for the suc‐
cessful onboarding of newcomers to open source projects”, IEEE Software, vol. 36,
no. 4, pp. 41–49, 2019. doi: 10.1109/MS.2018.110162131.

[5] N. J. Kipyegen andW. P. Korir, “Importance of software documentation”, Interna‐
tional Journal of Computer Science Issues (IJCSI), vol. 10, no. 5, p. 223, 2013.

[6] P.W.McBurney, S. Jiang,M. Kessentini, N. A. Kraft, A. Armaly, M.W.Mkaouer, and
C. McMillan, “Towards prioritizing documentation effort”, IEEE Transactions on
Software Engineering, vol. 44, no. 9, pp. 897–913, 2017. doi: https://doi.org/
10.1109/TSE.2017.2716950.

[7] T. AhmedandP.Devanbu, “Few‐shot training llms forproject‐specific code‐summarization”,
in Proceedings of the 37th IEEE/ACM International Conference on Automated Soft‐
ware Engineering, ser. ASE '22, Rochester, MI, USA: Association for Computing
Machinery, 2023, isbn: 9781450394758. doi: 10.1145/3551349.3559555. [On‐
line]. Available: https://doi.org/10.1145/3551349.3559555.

[8] T. Ahmed, K. S. Pai, P. Devanbu, and E. T. Barr, Improving few‐shot prompts with
relevant static analysis products, 2023. doi: 10.48550/arXiv.2304.06815.

42

https://doi.org/10.48550/arXiv.2304.11938
https://doi.org/10.48550/arXiv.2304.11938
https://doi.org/10.1109/ICSE.2019.00122
https://doi.org/https://doi.org/10.1145/2884781.2884806
https://doi.org/https://doi.org/10.1145/2884781.2884806
https://doi.org/10.1109/MS.2018.110162131
https://doi.org/https://doi.org/10.1109/TSE.2017.2716950
https://doi.org/https://doi.org/10.1109/TSE.2017.2716950
https://doi.org/10.1145/3551349.3559555
https://doi.org/10.1145/3551349.3559555
https://doi.org/10.48550/arXiv.2304.06815

[9] X. Hu, Q. Chen, H. Wang, X. Xia, D. Lo, and T. Zimmermann, “Correlating auto‐
mated and human evaluation of code documentation generation quality”, ACM
Trans. Softw. Eng. Methodol., vol. 31, no. 4, Jul. 2022, issn: 1049‐331X. doi: 10 .
1145/3502853. [Online]. Available: https://doi.org/10.1145/3502853.

[10] S. Bubeck, V. Chandrasekaran, R. Eldan, J. Gehrke, E. Horvitz, E. Kamar, P. Lee, Y. T.
Lee, Y. Li, S. Lundberg, H. Nori, H. Palangi, M. T. Ribeiro, and Y. Zhang, Sparks of
artificial general intelligence: Early experiments with gpt‐4, 2023. doi: 10.48550/
arXiv.2303.12712.

[11] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin, “Attention is all you need”, Advances in neural information process‐
ing systems, vol. 30, 2017.

[12] J. Kocoń, I. Cichecki, O. Kaszyca, M. Kochanek, D. Szydło, J. Baran, J. Bielaniewicz,
M. Gruza, A. Janz, K. Kanclerz, et al., “Chatgpt: Jack of all trades, master of none”,
Information Fusion, p. 101 861, 2023. doi: https://doi.org/10.1016/j.inffus.
2023.101861.

[13] X. Hou, Y. Zhao, Y. Liu, Z. Yang, K. Wang, L. Li, X. Luo, D. Lo, J. Grundy, and H.Wang,
Large language models for software engineering: A systematic literature review,
2023. doi: 10.48550/arXiv.2308.10620.

[14] R. OpenAI, Openai (2023), 2023. doi: https://doi.org/10.48550/arXiv.2303.
08774.

[15] C. Ebert and P. Louridas, “Generative ai for software practitioners”, IEEE Software,
vol. 40, no. 4, pp. 30–38, 2023. doi: 10.1109/MS.2023.3265877.

[16] P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, and G. Neubig, “Pre‐train, prompt, and
predict: A systematic survey of promptingmethods in natural language process‐
ing”, ACM Computing Surveys, vol. 55, no. 9, Jan. 2023, issn: 0360‐0300. doi: 10.
1145/3560815. [Online]. Available: https://doi.org/10.1145/3560815.

[17] J. White, Q. Fu, S. Hays, M. Sandborn, C. Olea, H. Gilbert, A. Elnashar, J. Spencer‐
Smith, and D. C. Schmidt, A prompt pattern catalog to enhance prompt engineer‐
ing with chatgpt, 2023. doi: 10.48550/arXiv.2302.11382.

[18] R. L. L. IV, I. Balažević, E.Wallace, F. Petroni, S. Singh, and S. Riedel,Cutting downon
prompts and parameters: Simple few‐shot learning with language models, 2021.
doi: 10.48550/arXiv.2106.13353.

43

https://doi.org/10.1145/3502853
https://doi.org/10.1145/3502853
https://doi.org/10.1145/3502853
https://doi.org/10.48550/arXiv.2303.12712
https://doi.org/10.48550/arXiv.2303.12712
https://doi.org/https://doi.org/10.1016/j.inffus.2023.101861
https://doi.org/https://doi.org/10.1016/j.inffus.2023.101861
https://doi.org/10.48550/arXiv.2308.10620
https://doi.org/https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.1109/MS.2023.3265877
https://doi.org/10.1145/3560815
https://doi.org/10.1145/3560815
https://doi.org/10.1145/3560815
https://doi.org/10.48550/arXiv.2302.11382
https://doi.org/10.48550/arXiv.2106.13353

[19] T. Brown, B.Mann, N. Ryder,M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert‐Voss, G. Krueger, T. Henighan,
R. Child, A. Ramesh, D. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M.
Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever,
and D. Amodei, “Language models are few‐shot learners”, vol. 33, H. Larochelle,
M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, Eds., pp. 1877–1901, 2020. [Online].
Available: https://proceedings.neurips.cc/paper_files/paper/2020/
file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

[20] J. Y. Khan and G. Uddin, “Automatic code documentation generation using gpt‐
3”, in Proceedings of the 37th IEEE/ACM International Conference on Automated
Software Engineering, 2022, pp. 1–6. doi: https://doi.org/10.1145/3551349.
3559548.

[21] M. Geng, S. Wang, D. Dong, H. Wang, G. Li, Z. Jin, X. Mao, and X. Liao, “Large lan‐
guage models are few‐shot summarizers: Multi‐intent comment generation via
in‐context learning”, 2024.

[22] S. Rai, R. C. Belwal, and A. Gupta, “A review on source code documentation”, ACM
Transactions on Intelligent Systems and Technology, vol. 13, no. 5, Jun. 2022, issn:
2157‐6904. doi: 10.1145/3519312. [Online]. Available: https://doi.org/10.
1145/3519312.

[23] G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and K. Vijay‐Shanker, “Towards au‐
tomatically generating summary comments for java methods”, in Proceedings
of the 25th IEEE/ACM International Conference on Automated Software Engineer‐
ing, ser. ASE '10, Antwerp, Belgium: Association for Computing Machinery, 2010,
pp. 43–52, isbn: 9781450301169. doi: 10.1145/1858996.1859006. [Online]. Avail‐
able: https://doi.org/10.1145/1858996.1859006.

[24] P.W.McBurneyandC.McMillan, “Automatic documentationgenerationvia source
code summarizationofmethod context”, inProceedings of the 22nd International
Conference on Program Comprehension, ser. ICPC 2014, Hyderabad, India: Asso‐
ciation for Computing Machinery, 2014, pp. 279–290, isbn: 9781450328791. doi:
10.1145/2597008.2597149. [Online]. Available: https://doi.org/10.1145/
2597008.2597149.

[25] S. Haiduc, J. Aponte, and A. Marcus, “Supporting program comprehension with
source code summarization”, in Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering ‐ Volume 2, ser. ICSE '10, Cape Town, South
Africa:Association forComputingMachinery, 2010, pp. 223–226, isbn: 9781605587196.

44

https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/https://doi.org/10.1145/3551349.3559548
https://doi.org/https://doi.org/10.1145/3551349.3559548
https://doi.org/10.1145/3519312
https://doi.org/10.1145/3519312
https://doi.org/10.1145/3519312
https://doi.org/10.1145/1858996.1859006
https://doi.org/10.1145/1858996.1859006
https://doi.org/10.1145/2597008.2597149
https://doi.org/10.1145/2597008.2597149
https://doi.org/10.1145/2597008.2597149

doi: 10.1145/1810295.1810335. [Online]. Available: https://doi.org/10.
1145/1810295.1810335.

[26] X. Hu, G. Li, X. Xia, D. Lo, and Z. Jin, “Deep code comment generation”, in Proceed‐
ings of the 26th Conference on Program Comprehension, ser. ICPC '18, Gothen‐
burg, Sweden: Association for Computing Machinery, 2018, pp. 200–210, isbn:
9781450357142. doi: 10 . 1145 / 3196321 . 3196334. [Online]. Available: https :
//doi.org/10.1145/3196321.3196334.

[27] U. Alon, O. Levy, and E. Yahav, “Code2seq: Generating sequences from structured
representations of code”, 2019. [Online]. Available: https://openreview.net/
forum?id=H1gKYo09tX.

[28] A. LeClair, S. Haque, L. Wu, and C. McMillan, “Improved code summarization via
a graph neural network”, in Proceedings of the 28th International Conference on
Program Comprehension, ser. ICPC '20, Seoul, Republic of Korea: Association for
Computing Machinery, 2020, pp. 184–195, isbn: 9781450379588. doi: 10.1145/
3387904.3389268. [Online]. Available: https://doi.org/10.1145/3387904.
3389268.

[29] S. Gao, C. Gao, Y. He, J. Zeng, L. Nie, X. Xia, and M. Lyu, “Code structure–guided
transformer for source code summarization”, ACM Trans. Softw. Eng. Methodol.,
vol. 32, no. 1, Feb. 2023, issn: 1049‐331X. doi: 10.1145/3522674. [Online]. Avail‐
able: https://doi.org/10.1145/3522674.

[30] Y. Wan, Z. Zhao, M. Yang, G. Xu, H. Ying, J. Wu, and P. S. Yu, “Improving auto‐
matic source code summarization via deep reinforcement learning”, in Proceed‐
ings of the 33rd ACM/IEEE International Conference on Automated Software Engi‐
neering, ser. ASE '18, Montpellier, France: Association for Computing Machinery,
2018, pp. 397–407, isbn: 9781450359375. doi: 10.1145/3238147.3238206. [On‐
line]. Available: https://doi.org/10.1145/3238147.3238206.

[31] W. Wang, Y. Zhang, Z. Zeng, and G. Xu, “Trans3̂: A transformer‐based framework
for unifying code summarization and code search”, 2020. doi: 10.48550/arXiv.
2003.03238.

[32] S. Aljumah and L. Berriche, “Bi‐lstm‐based neural source code summarization”,
Applied Sciences, vol. 12, no. 24, 2022, issn: 2076‐3417.doi:10.3390/app122412587.
[Online]. Available: https://doi.org/10.3390/app122412587.

[33] S. Birari and S. Bhingarkar, “Using artificial intelligence in source code summa‐
rization: A review”, Recent Trends in Intensive Computing, vol. 39, pp. 256–262,
2021. doi: 10.3233/APC210203.

45

https://doi.org/10.1145/1810295.1810335
https://doi.org/10.1145/1810295.1810335
https://doi.org/10.1145/1810295.1810335
https://doi.org/10.1145/3196321.3196334
https://doi.org/10.1145/3196321.3196334
https://doi.org/10.1145/3196321.3196334
https://openreview.net/forum?id=H1gKYo09tX
https://openreview.net/forum?id=H1gKYo09tX
https://doi.org/10.1145/3387904.3389268
https://doi.org/10.1145/3387904.3389268
https://doi.org/10.1145/3387904.3389268
https://doi.org/10.1145/3387904.3389268
https://doi.org/10.1145/3522674
https://doi.org/10.1145/3522674
https://doi.org/10.1145/3238147.3238206
https://doi.org/10.1145/3238147.3238206
https://doi.org/10.48550/arXiv.2003.03238
https://doi.org/10.48550/arXiv.2003.03238
https://doi.org/10.3390/app122412587
https://doi.org/10.3390/app122412587
https://doi.org/10.3233/APC210203

[34] Y.GaoandC. Lyu, “M2ts:Multi‐scalemulti‐modal approachbasedon transformer
for source code summarization”, in Proceedings of the 30th IEEE/ACM Interna‐
tional Conference on Program Comprehension, ser. ICPC '22, Online: Association
for Computing Machinery, 2022, pp. 24–35, isbn: 9781450392983. doi: 10.1145/
3524610.3527907. [Online]. Available: https://doi.org/10.1145/3524610.
3527907.

[35] W. Sun, C. Fang, Y. You, Y. Miao, Y. Liu, Y. Li, G. Deng, S. Huang, Y. Chen, Q. Zhang,
H. Qian, Y. Liu, and Z. Chen, Automatic code summarization via chatgpt: How far
are we?, 2023. doi: 10.48550/arXiv.2305.12865.

[36] R. Durelli, V. Durelli, R. Bettio, D. Dias, and A. Goldman, “Divinator: A visual stu‐
dio code extension to source code summarization”, in Anais do X Workshop de
Visualização, Evolução eManutenção de Software, Online: SBC, 2022, pp. 1–5.doi:
10.5753/vem.2022.226187. [Online]. Available: https://sol.sbc.org.br/
index.php/vem/article/view/22320.

[37] Github. (2023). “Copilot”. [Online; retrieved on 28.12.2023], [Online]. Available: h
ttps://github.com/features/copilot.

[38] Zhang Renyang. (2023). “ChatGPTExtension”. [Online; retrieved on 31.10.2023],
[Online]. Available: https://marketplace.visualstudio.com/items?item
Name=zhang-renyang.chat-gpt.

[39] European‐XFEL. (2023). “Karabo”. [Online; retrievedon24.08.2023], [Online]. Avail‐
able: https://github.com/European-XFEL/Karabo/.

[40] S. Kapil, Clean Python. Berkeley, CA, USA: Apress, 2019. doi: 10.1007/978- 1-
4842-4878-2. [Online]. Available: https://doi.org/10.1007/978-1-4842-
4878-2.

[41] Team UEQ. (2023). “UEQ”. [Online; retrieved on 24.08.2023], [Online]. Available:
https://www.ueq-online.org.

[42] OpenAI. (2023). “OpenAIPromptGuide”. [Online; retrievedon22.12.2023], [Online].
Available: https://platform.openai.com/docs/guides/prompt-engineerin
g/six-strategies-for-getting-better-results.

[43] P. Rani, A. Blasi, N. Stulova, S. Panichella, A. Gorla, and O. Nierstrasz, “A decade
of code comment quality assessment: A systematic literature review”, Journal of
Systems and Software, vol. 195, p. 111 515, 2023, issn: 0164‐1212. doi: 10.1016/j.
jss.2022.111515. [Online]. Available: https://doi.org/10.1016/j.jss.
2022.111515.

46

https://doi.org/10.1145/3524610.3527907
https://doi.org/10.1145/3524610.3527907
https://doi.org/10.1145/3524610.3527907
https://doi.org/10.1145/3524610.3527907
https://doi.org/10.48550/arXiv.2305.12865
https://doi.org/10.5753/vem.2022.226187
https://sol.sbc.org.br/index.php/vem/article/view/22320
https://sol.sbc.org.br/index.php/vem/article/view/22320
https://github.com/features/copilot
https://github.com/features/copilot
https://marketplace.visualstudio.com/items?itemName=zhang-renyang.chat-gpt
https://marketplace.visualstudio.com/items?itemName=zhang-renyang.chat-gpt
https://github.com/European-XFEL/Karabo/
https://doi.org/10.1007/978-1-4842-4878-2
https://doi.org/10.1007/978-1-4842-4878-2
https://doi.org/10.1007/978-1-4842-4878-2
https://doi.org/10.1007/978-1-4842-4878-2
https://www.ueq-online.org
https://platform.openai.com/docs/guides/prompt-engineering/six-strategies-for-getting-better-results
https://platform.openai.com/docs/guides/prompt-engineering/six-strategies-for-getting-better-results
https://doi.org/10.1016/j.jss.2022.111515
https://doi.org/10.1016/j.jss.2022.111515
https://doi.org/10.1016/j.jss.2022.111515
https://doi.org/10.1016/j.jss.2022.111515

[44] Microsoft. (2023). “Visual Studio Code”. [Online; retrieved on 24.08.2023], [On‐
line]. Available: https://code.visualstudio.com/api/get-started/your-
first-extension.

[45] O. Alhadreti and P. Mayhew, “Rethinking thinking aloud: A comparison of three
think‐aloud protocols”, in Proceedings of the 2018 CHI Conference on Human Fac‐
tors in Computing Systems, ser. CHI '18, Montreal, Canada: Association for Com‐
puting Machinery, 2018, pp. 1–12, isbn: 9781450356206. doi: 10.1145/3173574.
3173618. [Online]. Available: https://doi.org/10.1145/3173574.3173618.

[46] B. Derrick, D. Toher, and P. White, “Why welch's test is type i error robust”, The
QuantitativeMethods for Psychology, vol. 12, no. 1, pp. 30–38, 2016.doi:10.20982/
tqmp.12.1.p030. [Online]. Available: https://doi.org/10.20982/tqmp.12.1.
p030.

[47] N. Nachar, “Themann‐whitney u: A test for assessing whether two independent
samples come from the same distribution”, Tutorials in QuantitativeMethods for
Psychology, vol. 4, no. 1, pp. 13–20, 2008. doi: 10.20982/tqmp.04.1.p013. [On‐
line]. Available: https://doi.org/10.20982/tqmp.04.1.p013.

[48] T. S. community. (2024). “Statistical function”, The SciPy community, [Online].
Available: https://docs.scipy.org/doc/scipy/reference/stats.html
(visited on 01/04/2024).

[49] B. Laugwitz, T. Held, and M. Schrepp, “Construction and evaluation of a user ex‐
periencequestionnaire”, inHCIandUsability for EducationandWork, A.Holzinger,
Ed., Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 63–76, isbn: 978‐3‐
540‐89350‐9. doi: 10.1007/978-3-540-89350-9_6. [Online]. Available: https:
//doi.org/10.1007/978-3-540-89350-9_6.

[50] M. A. Cascio, E. Lee, N. Vaudrin, and D. A. Freedman, “A team‐based approach to
open coding: Considerations for creating intercoder consensus”, Field Methods,
vol. 31, no. 2, pp. 116–130, 2019. doi: 10.1177/1525822X19838237. [Online]. Avail‐
able: https://doi.org/10.1177/1525822X19838237.

[51] N. Mohd Razali and B. Yap, “Power comparisons of shapiro‐wilk, kolmogorov‐
smirnov, lilliefors andanderson‐darling tests”, Journal of StatisticalModeling and
Analytics, vol. 2, no. 1, pp. 21–33, 2011.

[52] S. Abdelnabi, K. Greshake, S. Mishra, C. Endres, T. Holz, and M. Fritz, “Not what
you've signed up for: Compromising real‐world llm‐integrated applications with
indirect prompt injection”, in Proceedings of the 16th ACMWorkshop on Artificial
Intelligence and Security, ser. AISec '23, Copenhagen, Denmark: Association for

47

https://code.visualstudio.com/api/get-started/your-first-extension
https://code.visualstudio.com/api/get-started/your-first-extension
https://doi.org/10.1145/3173574.3173618
https://doi.org/10.1145/3173574.3173618
https://doi.org/10.1145/3173574.3173618
https://doi.org/10.20982/tqmp.12.1.p030
https://doi.org/10.20982/tqmp.12.1.p030
https://doi.org/10.20982/tqmp.12.1.p030
https://doi.org/10.20982/tqmp.12.1.p030
https://doi.org/10.20982/tqmp.04.1.p013
https://doi.org/10.20982/tqmp.04.1.p013
https://docs.scipy.org/doc/scipy/reference/stats.html
https://doi.org/10.1007/978-3-540-89350-9_6
https://doi.org/10.1007/978-3-540-89350-9_6
https://doi.org/10.1007/978-3-540-89350-9_6
https://doi.org/10.1177/1525822X19838237
https://doi.org/10.1177/1525822X19838237

Computing Machinery, 2023, pp. 79–90, isbn: 9798400702600. doi: 10.1145/
3605764.3623985. [Online]. Available: https://doi.org/10.1145/3605764.
3623985.

[53] J. Kaddour, J. Harris,M.Mozes, H. Bradley, R. Raileanu, andR.McHardy,Challenges
and applications of large language models, 2023. doi: 10.48550/arXiv.2307.
10169. [Online]. Available: https://doi.org/10.48550/arXiv.2307.10169.

48

https://doi.org/10.1145/3605764.3623985
https://doi.org/10.1145/3605764.3623985
https://doi.org/10.1145/3605764.3623985
https://doi.org/10.1145/3605764.3623985
https://doi.org/10.48550/arXiv.2307.10169
https://doi.org/10.48550/arXiv.2307.10169
https://doi.org/10.48550/arXiv.2307.10169

