Verbundprojekt

INKA BB
Innovationsnetzwerk Klimaanpassung
Region Brandenburg Berlin

TP 22: Nachhaltige Managementstrategien
für glaziale Seen Brandenburgs im Klimawandel

Untersuchungen zum Verhalten von Brandenburger Flachseen
bei Klimaänderungen

Prof. Dr. Stefan Kaden und Dr. Michael Schramm

DHI-WASY GmbH
Vollmerstr. 8
12489 Berlin

Berlin, September 2014
Inhaltsverzeichnis

1 Einleitung und Aufgabenstellung ... 5
2 Auswahl der Seen ... 6
3 Meteorologische Daten ... 10
 3.1 Datenaufbereitung .. 10
 3.2 Analyse der Nullgradszenarien ... 10
 3.3 Analyse der Zweigradszenarien ... 12
4 Simulation des natürlichen Wasserdargebots der Seeneinzugsgebiete 15
5 Simulation der Seenbewirtschaftung ... 19
 5.1 Formulierung der Bewirtschaftung ... 19
 5.2 Simulationsprogramm .. 21
6 Diskussion der Ergebnisse der Simulationsrechnungen 22
 6.1 Seddiner See .. 22
 6.2 Die vier Seen im Südosten Berlins .. 24
 6.3 Die drei Seen im Westen Berlins ... 27
 6.4 Die beiden Seen im Nordwesten Berlins .. 29
 6.5 Zusammenfassung der Ergebnisse für die zehn Seen 30
7 Berechnung der Absenkungen für die 12 Seen .. 34
 7.1 Ableitung statistischer Beziehungen ... 34
 7.2 Anwendung der Multiregressionsmodelle .. 36
8 Weiterführende Untersuchungen zum Seddiner See 38
 8.1 Verlängerung der Modellrechnung für den Seddiner See bis 2012 38
 8.2 Anpassung des Modells Seddiner See an veränderte Bedingungen ab 2011 41
 8.3 Grundwasseraspekte ... 42
 8.4 Neue Simulation 2 grd Szenario für den Seddiner See 43
9 Zusammenfassung ... 46
<table>
<thead>
<tr>
<th>Abbildungsverzeichnis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbildung 2-1: Übersicht über das Untersuchungsgebiet</td>
</tr>
<tr>
<td>Abbildung 3-1: Jahressummen von P und PET, EZG Seddiner See, 0 grd-Szenario</td>
</tr>
<tr>
<td>Abbildung 3-2: Differenz P-PET, EZG Seddiner See, 0 grd-Szenario</td>
</tr>
<tr>
<td>Abbildung 3-3: Jahressummen von P und PET, EZG Seddiner See, 2 grd-Szenario</td>
</tr>
<tr>
<td>Abbildung 4-1: Mittlere Zuflüsse zum Seddiner See, 0 grd-Szenario</td>
</tr>
<tr>
<td>Abbildung 4-2: Mittlere Zuflüsse zum Seddiner See, 2 grd-Szenario</td>
</tr>
<tr>
<td>Abbildung 6-1: Absenkungen Seddiner See, 0 grd-Szenario</td>
</tr>
<tr>
<td>Abbildung 6-2: Absenkungen Seddiner See, 2 grd-Szenario</td>
</tr>
<tr>
<td>Abbildung 6-3: Füllungen Seddiner See, 2 grd-Szenario</td>
</tr>
<tr>
<td>Abbildung 6-4: Absenkungen Gr. Leuthener See, 2 grd-Szenario</td>
</tr>
<tr>
<td>Abbildung 6-5: Absenkungen Rangsdorfer See, 2 grd-Szenario</td>
</tr>
<tr>
<td>Abbildung 6-6: Absenkungen Teupitzer See, 2 grd-Szenario</td>
</tr>
<tr>
<td>Abbildung 6-7: Absenkungen Ziestsee, 2 grd-Szenario</td>
</tr>
<tr>
<td>Abbildung 6-8: Absenkungen Plessower See, 2 grd-Szenario</td>
</tr>
<tr>
<td>Abbildung 6-9: Absenkungen Wusterwitzer See, 2 grd-Szenario</td>
</tr>
<tr>
<td>Abbildung 6-10: Absenkungen Gördensee, 2 grd-Szenario</td>
</tr>
<tr>
<td>Abbildung 6-11: Absenkungen Kleßener See, 2 grd-Szenario</td>
</tr>
<tr>
<td>Abbildung 6-12: Absenkungen Bückwitzer See, 2 grd-Szenario</td>
</tr>
<tr>
<td>Abbildung 6-13: Maximale Absenkungen von vier Seen, 2 grd-Szenario</td>
</tr>
<tr>
<td>Abbildung 6-14: Absenkungen mit 10% ÜWk. von vier Seen, 2 grd-Szenario</td>
</tr>
<tr>
<td>Abbildung 6-15: Zur Berechnung der Absenkungszunahmen am Beispiel des Teupitzer Sees</td>
</tr>
<tr>
<td>Abbildung 7-1: Gegenüberstellung „beobachteter“ und berechneter relativer Absenkungsanstiege A10 für die zehn Seen</td>
</tr>
<tr>
<td>Abbildung 8-1: Zufluss Z zum Seddiner See ab 1998</td>
</tr>
<tr>
<td>Abbildung 8-2: Niederschlag P und pot. Verdunstung PET im Einzugsgebiet des Sees</td>
</tr>
<tr>
<td>Abbildung 8-3: Differenz DIF zwischen Niederschlag und Verdunstung</td>
</tr>
<tr>
<td>Abbildung 8-4: Berechnete und beobachtete Seefüllungen VOLber und VOLbeo</td>
</tr>
<tr>
<td>Abbildung 8-5: Gegenüberstellung der Füllungen mit der Differenz DIF</td>
</tr>
<tr>
<td>Abbildung 8-6: Berechnete und beobachtete Wasserstände im Seddiner See, ab 2003 keine GW-Entnahme</td>
</tr>
<tr>
<td>Abbildung 8-7: Grundwasserstand an GWM 37441690 südlich des Seddiner Sees (Daten des LUGV Brandenburg) mit Trendlinie</td>
</tr>
<tr>
<td>Abbildung 8-8: Absenkungen Seddiner See, 2 grd Szenario, Variante 0</td>
</tr>
<tr>
<td>Abbildung 8-9: Absenkungen Seddiner See, 2 grd Szenario, Variante 1</td>
</tr>
<tr>
<td>Abbildung 8-10: Absenkungen Seddiner See, 2 grd Szenario, Variante 2</td>
</tr>
<tr>
<td>Abbildung 8-11: Vergleich der Absenkungen des Seddiner Sees mit 50% ÜWk beim 0 grd Szenario und beim 2 grd Szenario mit verschiedenen GW-Abströmungen (Varianten 0, 1, 2)</td>
</tr>
</tbody>
</table>
Tabellenverzeichnis

Tabelle 2-1: Angaben zu den zehn detailliert untersuchten Seen...7
Tabelle 2-2: Angaben zu den zwölff vereinfacht behandelten Seen..8
Tabelle 3-1: Gegenüberstellung der langjährigen Mittelwerte von beiden Klimagrößen in
den Jahren 1951-2006 und 2004-2053 (Angaben in mm) ..12
Tabelle 3-2: Informationen zu den Trends in den Klimareihen der Zweigradsszenarien
(Angaben in mm)...13
Tabelle 3-3: Entwicklung der mittleren Jahresniederschläge in mm im Zeitraum 2004-
2053 ..14
Tabelle 4-1: Die hydrografischen Parameter von EGMOD für die zehn EZG.........................15
Tabelle 4-2: Die Systemparameter von EGMOD für die zehn Einzugsgebiete.......................16
Tabelle 5-1: Angaben zur Konfiguration der Seen...19
Tabelle 5-2: Festlegung der Kenngrößen der Bewirtschaftung...20
Tabelle 6-1: Absenkungen in den Jahren 2018 und 2053 (Angaben in cm)32
Tabelle 6-2: Zunahme der Absenkungen im Zeitraum 2018-205333
Tabelle 7-1: Einflussgrößen der zehn Seen...34
Tabelle 7-2: Korrelationen zwischen den relativen Zunahmen der Absenkungen und den
Einflussgrößen (A ist die Abkürzung für Absenkung)...35
Tabelle 7-3: Regressionskoeffizienten für die relativen Zunahmen der Absenkungen35
Tabelle 7-4: Zunahme der Absenkungen der 12 Seen im Zeitraum 2018-205337

Anlagenverzeichnis

Anlage 1: Daten der untersuchten Seen
Einleitung und Aufgabenstellung

In der Brandenburger Mittelmark südlich und westlich von Berlin befinden sich zahlreiche Seen, welche durch ihre geringe Tiefe ihre Oberflächenform besonders stark ändern werden, wenn klimatische Schwankungen das natürliche Regime ihrer Zuflüsse verändern. Existieren daher begründete Klimaszenarien für die nahe Zukunft, so ist es wichtig, ihren Einfluss auf die Abflussbildung zu untersuchen, um Angaben über das korrespondierende Füllungsregime der Seen zu erhalten und gegebenenfalls rechtzeitig notwendige Regulierungsmaßnahmen einleiten zu können.

Die Anpassung des Modells an einen See und das zugehörige Einzugsgebiet ist mit einem großen Arbeitsaufwand verbunden, der sich vor allem aus der Bearbeitung der Klimareihen und der statistischen Auswertung seiner Ergebnisse ergibt. Es war deshalb von vornherein klar, dass das Modell im Rahmen der beabsichtigten Untersuchungen nicht an alle vorgegebenen 50 Seen der Brandenburger Mittelmark angepasst werden kann. Mit einiger Sicherheit ist zudem anzunehmen, dass sich die klimatischen Verhältnisse im Untersuchungsgebiet nicht gravierend unterscheiden. Es bot sich daher folgender allgemeiner Lösungsweg an, wenn für möglichst viele Seen die Auswirkungen eines Klimawandels zahlenmäßig angegeben werden können:

- Festlegung der Seen aus der Gesamtheit der 50 Seen, für die Untersuchungen sinnvoll oder überhaupt möglich sind
- Anwendung des erarbeiteten Simulationsmodells auf insgesamt zehn Seen, welche über die Brandenburger Mittelmark gleichmäßig verteilt sind
- Statistische Analyse der detaillierten Ergebnisse dieser Modellrechnungen
- Ableitung allgemeiner Beziehungen, mit deren Hilfe Aussagen auch für nicht untersuchte Seen gemacht werden können.
2 Auswahl der Seen

Für die im Projekt INKA BB genannten 50 Seen wurden vom Institut für Angewandte Gewässerökologie (IfAG) Unterlagen übergeben, die auszugsweise in der Anlage 1 enthalten sind. Nicht alle dieser Seen können oder brauchen auch nicht untersucht zu werden.

Bei sieben Seen fehlen selbst die grundlegendsten Angaben wie Seefläche und Seevolumen, so dass hier keinerlei numerische Rechnungen möglich sind. Zu dieser Gruppe gehören:

- Bohnenländer See
- Bornstedter See
- Buckower See
- Groß Behnitzer See
- Hohennauener See Ost
- Kleiner Kossenblatter See
- Steckelsdorfer See.

Acht weitere Seen werden von relativ zu ihrem Volumen abflussreichen Gewässern durchflossen oder besitzen ein sehr großes eigenes oberirdisches Einzugsgebiet, dass selbst bei erheblichen klimabedingten Abflussreduzierungen keine wesentlichen quantitativen Änderungen im Seeregime zu erwarten sind. Hier müssen zusammen mit ihren Zuflüssen genannt werden:

- Hohennauener See West – Großer Havelländischer Hauptkanal (GHHK)
- Klostersee bei Lehnin – großes Einzugsgebiet (EZG) von 114 km² bei einem Seevolumen von 0,82 hm³
- Krimmnicksee – Dahme (EZG 1340 km², Seevolumen 1,40 hm³)
- Mellensee – Notte (EZG 144 km², Seevolumen 6,67 hm³)
- Netzersee – Emster (EZG 161 km², Seevolumen 2,91 hm³)
- Rietzer See – Emster (EZG 208 km², Seevolumen 3,28 hm³)
- Schampsee – großes EZG von 20 km² und sehr kleines Seevolumen von 0,21 hm³
- Witzker See – GHHK

Bei sechs Seen beziehen sich die vom IfAG angegebenen Einzugsgebietsflächen offenbar nur auf das direkte Seeneinzugsgebiet und erfassen somit nicht das gesamte Zuflussgebiet. Die tatsächlichen Einzugsgrenzen sind unklar. Hierhin gehören:

- Bauernsee bei Dobbrikow
- Gohlitzsee
- Güldensee
- Kolpinsee bei Lehnin
- Schäfersee
- Teufelsee.

Bis auf den Bauernsee besitzen diese Seen weder einen Zufluss noch einen Ausfluss. Ihre Betrachtung würde Untersuchungen der Grundwasserverhältnisse bedingen, die im Rahmen des Projektes zu umfangreich wären.

Bei fünf Seen liegen weitere Seen in ihrem Einzugsgebiet. Da über eine gemeinsame Regulierung der jeweils zusammenhängenden Seen keinerlei Angaben existieren, müssen auch diese Seen aus den Untersuchungen ausscheiden. Die fünf Seen mit ihren Oberliegern sind:

- Gröbener See – Siehtener See
- Kähnsdorfer See – Seddiner See
- Schulzensee – Teupitzer See und Zemminsee
- Todnitzsee – Pätzer Hintersee
- Zemminsee – Teupitzer See.

Die Seen der ersten Gruppe sind mit einigen wichtigen Kenngrößen in Tabelle 2-1 verzeichnet.

Tabelle 2-1: Angaben zu den zehn detailliert untersuchten Seen

<table>
<thead>
<tr>
<th>Name</th>
<th>Typ</th>
<th>Fläche EZG [km²]</th>
<th>See-fläche [km²]</th>
<th>See-Volumen [hm³]</th>
<th>Maximale Tiefe [m]</th>
<th>Mittlere Tiefe [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groß Leuthener See</td>
<td>D</td>
<td>26,2</td>
<td>1,146</td>
<td>2,73</td>
<td>5,92</td>
<td>2,38</td>
</tr>
<tr>
<td>Teupitzer See</td>
<td>D+2Z</td>
<td>32,9</td>
<td>4,756</td>
<td>16,63</td>
<td>8,25</td>
<td>3,50</td>
</tr>
<tr>
<td>Ziestsee</td>
<td>A</td>
<td>1,95</td>
<td>0,565</td>
<td>2,42</td>
<td>9,32</td>
<td>4,28</td>
</tr>
<tr>
<td>Rangsdorfer See</td>
<td>D+Z</td>
<td>54,4</td>
<td>2,038</td>
<td>3,39</td>
<td>6,29</td>
<td>1,66</td>
</tr>
<tr>
<td>Seddiner See</td>
<td>D</td>
<td>26,82</td>
<td>2,220</td>
<td>6,72</td>
<td>7,26</td>
<td>3,04</td>
</tr>
<tr>
<td>Wusterwitzer See</td>
<td>D</td>
<td>27,69</td>
<td>1,713</td>
<td>5,79</td>
<td>9,21</td>
<td>3,38</td>
</tr>
<tr>
<td>Gördensee</td>
<td>A</td>
<td>8,56</td>
<td>0,408</td>
<td>0,53</td>
<td>2,74</td>
<td>1,26</td>
</tr>
<tr>
<td>Plessower See</td>
<td>A</td>
<td>14,4</td>
<td>3,221</td>
<td>20,80</td>
<td>13,37</td>
<td>6,46</td>
</tr>
<tr>
<td>Kleßener See</td>
<td>D</td>
<td>3,90</td>
<td>0,506</td>
<td>1,25</td>
<td>4,26</td>
<td>2,48</td>
</tr>
<tr>
<td>Bückwitzer See</td>
<td>2Z/A</td>
<td>50,8</td>
<td>0,534</td>
<td>1,134</td>
<td>8,36</td>
<td>2,12</td>
</tr>
<tr>
<td>Mittel</td>
<td></td>
<td>24,76</td>
<td>1,711</td>
<td>6,14</td>
<td>7,50</td>
<td>3,06</td>
</tr>
</tbody>
</table>

Anmerkungen:
- D See wird durchflossen
- A See hat einen Ausfluss
- Z See hat mehrere Zuflüsse
- - See ist abflusslos

EZG Einzugsgebiet des Sees ohne Seefläche.

Tabelle 2-2 enthält die gleichen Kenngrößen zur zweiten Seengruppe.
Tabelle 2-2: Angaben zu den zwölf vereinfacht behandelten Seen

<table>
<thead>
<tr>
<th>Name</th>
<th>Typ</th>
<th>Fläche EZG [km²]</th>
<th>Seefläche [km²]</th>
<th>See-Volumen [hm³]</th>
<th>Maximale Tiefe [m]</th>
<th>Mittlere Tiefe [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gr. Kossenblatt. See</td>
<td>D+2Z</td>
<td>22,12</td>
<td>1,681</td>
<td>3,46</td>
<td>3,79</td>
<td>2,06</td>
</tr>
<tr>
<td>Pätzter Hintersee</td>
<td>D</td>
<td>16,04</td>
<td>2,162</td>
<td>3,30</td>
<td>3,50</td>
<td>1,53</td>
</tr>
<tr>
<td>Zeschsee</td>
<td>D</td>
<td>6,28</td>
<td>0,234</td>
<td>0,61</td>
<td>5,60</td>
<td>2,61</td>
</tr>
<tr>
<td>Wolziger See</td>
<td>D+Z</td>
<td>41,90</td>
<td>0,500</td>
<td>0,66</td>
<td>2,40</td>
<td>1,33</td>
</tr>
<tr>
<td>Siethener See</td>
<td>D</td>
<td>11,39</td>
<td>0,708</td>
<td>1,95</td>
<td>4,42</td>
<td>2,75</td>
</tr>
<tr>
<td>Güterfelder Haussee</td>
<td>A</td>
<td>0,84</td>
<td>0,133</td>
<td>0,21</td>
<td>3,26</td>
<td>1,62</td>
</tr>
<tr>
<td>Riebener See</td>
<td>D</td>
<td>5,82</td>
<td>0,377</td>
<td>0,44</td>
<td>2,40</td>
<td>1,18</td>
</tr>
<tr>
<td>Gr. Lienewitzer See</td>
<td>D+A</td>
<td>6,08</td>
<td>0,142</td>
<td>0,48</td>
<td>5,57</td>
<td>3,37</td>
</tr>
<tr>
<td>Heiliger See</td>
<td>A</td>
<td>1,76</td>
<td>0,525</td>
<td>0,76</td>
<td>3,11</td>
<td>1,46</td>
</tr>
<tr>
<td>Pritzzerber See</td>
<td>D</td>
<td>29,62</td>
<td>1,975</td>
<td>3,74</td>
<td>9,70</td>
<td>1,90</td>
</tr>
<tr>
<td>Riewendsee</td>
<td>D+A</td>
<td>71,88</td>
<td>1,018</td>
<td>3,16</td>
<td>6,89</td>
<td>3,11</td>
</tr>
<tr>
<td>Wolzensee</td>
<td>D</td>
<td>18,19</td>
<td>0,508</td>
<td>0,73</td>
<td>3,14</td>
<td>1,44</td>
</tr>
<tr>
<td>Mittel</td>
<td></td>
<td>19,33</td>
<td>0,830</td>
<td>1,62</td>
<td>4,48</td>
<td>2,03</td>
</tr>
</tbody>
</table>

Aus einem Vergleich der Mittel geht hervor, dass die eingehend berechneten Seen im Schnitt größer und tiefer sind und zudem die größeren Einzugsgebiete besitzen. Trotzdem überstreichen in beiden Gruppen die Seen bezüglich der einzelnen Kenngrößen ein breites Spektrum.

In den folgenden vier Abschnitten werden die Arbeiten vorgestellt, die bei der detaillierten Untersuchung der zehn Seen der ersten Gruppe vorgenommen worden sind und welche wesentlichen Ergebnisse dabei erreicht wurden.
Abbildung 2-1: Übersicht über das Untersuchungsgebiet

Legende:
- Pegel / Gewässer
- P: Niederschlagsdauer in mm/a
- PET: Potentielle Verdunstung in mm/a
- Mq: Mittlere simulierter Abflussmenge in l/s∗km²
- Mq: Mittlere berechnete Abflussmenge in l/s∗km²
- Mq: gesetzte Abflussmenge in l/s∗km²
- See (mit ESGU berechnet)
- See (mit Regression berechnet)
3 Meteorologische Daten

3.1 Datenaufbereitung

Da die vorgesehenen Seenberechnungen auf der Basis monatlicher Zuflüsse erfolgen, müssen nachstehende Operationen an den PIK-Reihen für ein bestimmtes EZG vorgenommen werden:

- Zusammenfassung der jeweils 100 Einzeldateien zu einer Gesamtdatei für das EZG
- Berechnung der täglichen Werte von Niederschlag und potentieller Verdunstung unter Berücksichtigung der Lufttemperatur zwecks Bestimmung der Schneeverlagerung, getrennt für alle Hydrotope des EZG
- Zusammenfassung dieser täglichen Hydrotop-Werte unter Beachtung ihrer Anteile am EZG
- Bildung der monatlichen Summen von Niederschlag P und potentieller Verdunstung PET für das EZG.

Nach Abschluss der genannten Arbeiten liegen dann jeweils 100 Reihen monatlicher Werte für den Zeitraum 2004-2053 für jedes der beiden Szenarien vor.

3.2 Analyse der Nullgradszenarien

Abbildung 3-1: Jahressummen von P und PET, EZG Seddiner See, 0 grd-Szenario

Abbildung 3-2: Differenz P-PET, EZG Seddiner See, 0 grd-Szenario

Tabelle 3-1: Gegenüberstellung der langjährigen Mittelwerte von beiden Klimagrößen in den Jahren 1951-2006 und 2004-2053 (Angaben in mm)

<table>
<thead>
<tr>
<th>MTG</th>
<th>Maßgeblich für den See</th>
<th>1951-2006</th>
<th>EZG vom See</th>
<th>2004-2053</th>
<th>Differenz P</th>
<th>Differenz PET</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Gr.Leuth.See</td>
<td>610</td>
<td>Gr.Leuth.See</td>
<td>658</td>
<td>+48</td>
<td>+93</td>
</tr>
<tr>
<td>15</td>
<td>Rangsd.See</td>
<td>615</td>
<td>Rangsd.See</td>
<td>690</td>
<td>+75</td>
<td>+12</td>
</tr>
<tr>
<td>23</td>
<td>Seddiner See</td>
<td>604</td>
<td>Sedd. See</td>
<td>708</td>
<td>+104</td>
<td>+70</td>
</tr>
<tr>
<td>28</td>
<td>Bückw.See</td>
<td>628</td>
<td>Bückw. See</td>
<td>653</td>
<td>+25</td>
<td>-51</td>
</tr>
</tbody>
</table>

Anmerkungen:

P jährliche Niederschlagssumme
PET jährliche potentielle Verdunstungshöhe

Die Ursachen für die eigentlich nicht zu erwartenden erheblichen Differenzen sind unbekannt.

Schließlich sei mit Blick auf Abbildung 2-1 noch darauf hingewiesen, dass bei einem Gang vom Südosten Berlins zum Nordwesten zwar die Niederschläge P keine einheitliche Entwicklung zeigen, dafür aber die potentielle Verdunstung PET im Allgemeinen abnimmt. Die für die Abflussbildung verantwortliche Klimadifferenz P-PET bedingt deshalb auf dem betrachteten Weg die zu beobachtende Zunahme der mittleren Abflussspenden Mq.

3.3 Analyse der Zweigradszenarien

Abbildung 3-3: Jahressummen von P und PET, EZG Seddiner See, 2 grd-Szenario

Weiterhin darf man erwarten, dass der Trend in den ersten Jahren etwa in Höhe der langjährigen Mittelwerte von P und PET der korrespondierenden Größen aus den Nullgradszenarien beginnt. Inwieweit das auch gilt und um welche Höhen sich die Größen P und PET in den 50 Jahren ungefähr verändern, darüber gibt die nachstehende Tabelle 3-2 für vier ausgewählte Seen Auskunft.

Tabelle 3-2: Informationen zu den Trends in den Klimareihen der Zweigradszenarien (Angaben in mm)

<table>
<thead>
<tr>
<th>EZG des See</th>
<th>Mittel des Nullgradszenarios</th>
<th>Mittelwerte für 2004-2013</th>
<th>Veränderung bis 2044-2053</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P</td>
<td>PET</td>
<td>P</td>
</tr>
<tr>
<td>Gr.Leuth.See</td>
<td>658</td>
<td>762</td>
<td>651</td>
</tr>
<tr>
<td>Rangsd. See</td>
<td>690</td>
<td>680</td>
<td>684</td>
</tr>
<tr>
<td>Seddin. See</td>
<td>708</td>
<td>734</td>
<td>701</td>
</tr>
<tr>
<td>Bückw. See</td>
<td>653</td>
<td>584</td>
<td>646</td>
</tr>
</tbody>
</table>

Erfreulich ist die Tatsache, dass die Mittelwerte von P und PET aus den Nullgradszenarien sehr gut mit den mittleren Werten zu Beginn des Untersuchungszeitraums übereinstimmen. Die Veränderungen der potentiellen Verdunstung PET verlaufen innerhalb der 50 Jahre weitgehend gleichmäßig. Dagegen setzt die Abnahme des Niederschlags merklich erst nach 2030 ein, wie die Tabelle 3-3 zeigt.
Tabelle 3-3: Entwicklung der mittleren Jahresniederschläge in mm im Zeitraum 2004-2053

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gr. Leuth. See</td>
<td>651</td>
<td>648</td>
<td>644</td>
<td>636</td>
<td>627</td>
</tr>
<tr>
<td>Rangsd. See</td>
<td>684</td>
<td>684</td>
<td>680</td>
<td>674</td>
<td>666</td>
</tr>
<tr>
<td>Seddin. See</td>
<td>701</td>
<td>701</td>
<td>697</td>
<td>686</td>
<td>677</td>
</tr>
<tr>
<td>Bückw. See</td>
<td>646</td>
<td>645</td>
<td>643</td>
<td>634</td>
<td>627</td>
</tr>
</tbody>
</table>
4 Simulation des natürlichen Wasserdargebots der Seeneinzugsgebiete

Das Modell EGMOD arbeitet mit dem Zeitschritt 1 Monat, erwartet damit seine Eingangsgrößen P und PET in derselben Zeiteinheit (vgl. Abschn. 3) und liefert dann monatliche Abflüsse aus den jeweiligen Einzugsgebieten.

Das Modell besitzt fünf hydrografische und zehn Systemparameter, wobei die erstgenannten Parameter aus Kartenwerken relativ genau bestimmt werden können. Für die Bestimmung der Systemparameter müssen aus hydrologisch ähnlichen Gebieten wie das jeweilige Untersuchungsgebiet zumindest kurze Beobachtungsreihen des Abflusses vorliegen. Auf dieser Grundlage können dann die Parameter so festgelegt werden, dass die damit berechneten Abflüsse hinreichend gut mit den beobachteten Werten übereinstimmen. Danach überträgt man diese gefundenen Systemparameter auf das betrachtete Einzugsgebiet.

In der nächsten Tabelle 4-1 stehen die ersten drei hydrografischen Parameter der EZG der zehn Seen, die restlichen jeweils zwei sind Null.

Tabelle 4-1: Die hydrografischen Parameter von EGMOD für die zehn EZG

<table>
<thead>
<tr>
<th>EZG des Sees</th>
<th>AE [km²]</th>
<th>AF [-]</th>
<th>AN [-]</th>
<th>AW [-]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gr. Leuthener See</td>
<td>26,2</td>
<td>0,925</td>
<td>0,050</td>
<td>0,025</td>
</tr>
<tr>
<td>Teupitzer See</td>
<td>32,9</td>
<td>0,831</td>
<td>0,168</td>
<td>0,001</td>
</tr>
<tr>
<td>Ziestsee</td>
<td>1,95</td>
<td>0,980</td>
<td>0,020</td>
<td>0,000</td>
</tr>
<tr>
<td>Rangsdorfer See</td>
<td>54,4</td>
<td>0,763</td>
<td>0,235</td>
<td>0,002</td>
</tr>
<tr>
<td>Seddiner See</td>
<td>26,82</td>
<td>0,9694</td>
<td>0,0154</td>
<td>0,0152</td>
</tr>
<tr>
<td>Wusterwitzer See</td>
<td>27,69</td>
<td>0,663</td>
<td>0,336</td>
<td>0,001</td>
</tr>
<tr>
<td>Gördensee</td>
<td>8,56</td>
<td>0,917</td>
<td>0,083</td>
<td>0,000</td>
</tr>
<tr>
<td>Plessower See</td>
<td>14,4</td>
<td>0,755</td>
<td>0,235</td>
<td>0,010</td>
</tr>
<tr>
<td>Kléssener See</td>
<td>3,90</td>
<td>0,987</td>
<td>0,008</td>
<td>0,005</td>
</tr>
<tr>
<td>Bückwitzer See</td>
<td>50,8</td>
<td>0,870</td>
<td>0,129</td>
<td>0,001</td>
</tr>
</tbody>
</table>

Anmerkungen:
AE Fläche des EZG des Sees ohne die Seefläche
AF Fläche der grundwasserfernen Gebiete, bezogen auf AE
AN Fläche der grundwassernahen Gebiete, bezogen auf AE
Die Systemparameter von EGMOD sind von früher bei DHI-WASY bearbeiteten Einzugsgebieten übernommen worden. Sie wurden in Tabelle 4-2 eingetragen.

Tabelle 4-2: Die Systemparameter von EGMOD für die zehn Einzugsgebiete

<table>
<thead>
<tr>
<th>Seen</th>
<th>Leuth.See</th>
<th>Teup.See</th>
<th>Ziestsee</th>
<th>Seddiner See</th>
<th>Wust.See</th>
<th>Gördens. Kleß. See</th>
<th>Bückwitzer See</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Seen 1</th>
<th>Seen 2</th>
<th>Seen 3</th>
<th>Seen 4</th>
<th>Seen 5</th>
<th>Seen 6</th>
<th>Seen 7</th>
<th>Seen 8</th>
<th>Seen 9</th>
<th>Seen 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFIN [-]</td>
<td>0,450</td>
<td>0,740</td>
<td>0,849</td>
<td>0,950</td>
<td>0,611</td>
<td>0,200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WMAX [mm]</td>
<td>167</td>
<td>220</td>
<td>310</td>
<td>101</td>
<td>102</td>
<td>150</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WNMX [mm]</td>
<td>127</td>
<td>100</td>
<td>67</td>
<td>71</td>
<td>79</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WSC [mm]</td>
<td>100</td>
<td>160</td>
<td>16</td>
<td>19</td>
<td>75</td>
<td>120</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WSGR [mm]</td>
<td>83</td>
<td>220</td>
<td>39</td>
<td>54</td>
<td>63</td>
<td>132</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSF [d]</td>
<td>1</td>
<td>20</td>
<td>12</td>
<td>9</td>
<td>16</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSN [d]</td>
<td>22</td>
<td>40</td>
<td>199</td>
<td>113</td>
<td>112</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CG [d]</td>
<td>3101</td>
<td>1000</td>
<td>3112</td>
<td>908</td>
<td>1160</td>
<td>1160</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAS [-]</td>
<td>2825</td>
<td>5000</td>
<td>3516</td>
<td>2512</td>
<td>4500</td>
<td>4500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COEF [-]</td>
<td>0,103</td>
<td>0,600</td>
<td>0,559</td>
<td>0,612</td>
<td>0,406</td>
<td>0,300</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nach der Festlegung der EGMOD-Parameter konnten die Zuflüsse zu den zehn Seen für die 100 Realisierungen der monatlichen P- und PET-Werte aus Abschnitt 3.1, getrennt für das Null- und das Zweigradszenario, berechnet werden. Sie dienen im Anschluss daran der Simulation der Speicherfüllungen der Seen.

Zwecks Einschätzung der Simulationsgüte wurden aus den Zuflussreihen der Nullgradszenarien die zugehörigen langjährigen Jahreszuflussspenden Mq [l/skm²] gebildet und mit den Spenden umliegender Pegel verglichen. Mit Blick auf Abbildung 2-1 kann man feststellen:

- Die Zuflussspenden vom Groß Leuthener See bzw. vom Teupitzer See in Höhe von 2,63 l/skm² bzw. 2,35 l/skm² liegen im gleichen Bereich wie die benachbarten Pegel Märkisch-Buchholz 2/Dahme, Ressen und Pretschen mit Werten von 2,28-2,46 l/skm².
- Der weiter nördlich gelegene Ziestsee weist zwar eine größere Spende von 3,79 l/skm² auf, die aber gut mit der Spende des Dahmezwischengebiets zwischen den Pegeln Märkisch-Buchholz 2 und Neue Mühle in Höhe von 3,47 l/skm² harmoniert.
- Die Spende im Fall des Rangsdorfer Sees liegt bei 3,03 l/skm² und damit zwischen denen der Pegel Märkisch-Buchholz 2 (2,4 l/skm²) und Woltersdorf I (3,16 l/skm²).
- Die Spende des Zuflusses zum Seddiner Sees ist zwar mit 4,06 l/skm² deutlich größer, kann aber durch seine Lage zu den Pegeln Woltersdorf I (3,16 l/skm²) und Blankensee (4,75 l/skm²) begründet werden.
- Dasselbe trifft auf den Wusterwitzer See mit 3,94 l/km² und den Gerdensee mit 3,70 l/skm² zu.
- Das EZG des Plessower Sees mit einem hohen Anteil grundwassernaher Flächen ähnelt dem des Pegels Woltersdorf II, was sich im Vergleich zu den geraden genannten, westlich gelegenen Seen in einer höheren Spende von 4,59 l/skm² ausdrückt.
- Weiter nördlich nehmen die Spenden zu, was sich in den Spenden der Pegel Freyenstein (5,2 l/skm²), Wusterhausen 12 (5,03 l/skm²) und Garz (4,6 l/skm²) widerspiegelt. In diesen Bereich passen gut die Spenden von 4,69 und von 5,18 l/skm² der EZG vom Kleßener See und vor allem vom Bückwitzer See hinein. Bei letztergenanntem See spielt offenbar die sehr geringe potentielle Verdunstung eine Rolle, die mit 584 mm/a deutlich unter den Werten aller anderen Seen liegt.

Abbildung 4-1: Mittlere Zuflüsse zum Seddiner See, 0 grd-Szenario

Damit zeichnet sich der in Abschnitt 3.3 vermutete durchgehende Anstieg der Spenden ab, wenn man von SO nach NW rund um Berlin geht, ein Vorgang, der sich auch bei den Pegeln vollzieht.
Ein anderes Bild ergibt sich selbstverständlich, wenn das Zweigradszenario betrachtet wird. In Abbildung 4-2 wird das deutlich: bis etwa zum Jahr 2018 ist ein geringer fallender Trend der Zuflüsse zum Seddiner See zu erkennen, der sich danach deutlich verstärkt. Das ist die Folge des oben erwähnten zwar gleichmäßigen Anstiegs der potentiellen Verdunstung PET über dem gesamten Zeitraum, aber der erst später einsetzenden stärkeren Abnahme des Niederschlags P.

Abbildung 4-2: Mittlere Zuflüsse zum Seddiner See, 2 grd-Szenario

Für die anderen Seen zeigen sich völlig analoge Verhältnisse, was nach den Angaben in den Tabellen auch erwartet werden konnte.
5 Simulation der Seenbewirtschaftung

5.1 Formulierung der Bewirtschaftung

Zur Lösung dieser Aufgabe müssen Angaben zur Konfiguration der Seen und zu ihrer Regulierung existieren, was leider in der Regel nur teilweise oder gar nicht der Fall ist. Die meisten Angaben zur Konfiguration konnten der Datei entnommen werden, die vom IfAG (vgl. Anlage 1) bereitgestellt worden war. Die daraus verwendeten Daten sind in der folgenden Tabelle 5-1 verzeichnet.

Tabelle 5-1: Angaben zur Konfiguration der Seen

<table>
<thead>
<tr>
<th>Größe</th>
<th>max. Länge Lmax</th>
<th>max. Breite Bmax</th>
<th>Seefläche Asee</th>
<th>Seevolum. Vsee</th>
<th>mittl. Tiefe Tmit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maßeinheit</td>
<td>km</td>
<td>km</td>
<td>km²</td>
<td>hm³</td>
<td>m</td>
</tr>
<tr>
<td>Name des Sees</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gr. Leuthener See</td>
<td>1,93</td>
<td>1,31</td>
<td>1,146</td>
<td>2,73</td>
<td>2,38</td>
</tr>
<tr>
<td>Teupitzer See</td>
<td>3,38</td>
<td>1,79</td>
<td>4,756</td>
<td>16,63</td>
<td>3,50</td>
</tr>
<tr>
<td>Ziestsee</td>
<td>1,16</td>
<td>0,68</td>
<td>0,565</td>
<td>2,42</td>
<td>4,28</td>
</tr>
<tr>
<td>Rangsdorfer See</td>
<td>2,24</td>
<td>1,64</td>
<td>2,038</td>
<td>3,39</td>
<td>1,66</td>
</tr>
<tr>
<td>Schediner See</td>
<td>3,90</td>
<td>1,07</td>
<td>2,220</td>
<td>6,72</td>
<td>3,04</td>
</tr>
<tr>
<td>Wusterwitzer See</td>
<td>2,06</td>
<td>1,67</td>
<td>1,713</td>
<td>5,79</td>
<td>3,38</td>
</tr>
<tr>
<td>Gördensee</td>
<td>1,29</td>
<td>0,55</td>
<td>0,408</td>
<td>0,53</td>
<td>1,26</td>
</tr>
<tr>
<td>Plessower See</td>
<td>5,11</td>
<td>1,60</td>
<td>3,221</td>
<td>20,80</td>
<td>6,46</td>
</tr>
<tr>
<td>Kleßener See</td>
<td>1,48</td>
<td>0,55</td>
<td>0,506</td>
<td>1,25</td>
<td>2,48</td>
</tr>
<tr>
<td>Bückwitzer See</td>
<td>1,07</td>
<td>0,48</td>
<td>0,534</td>
<td>1,13</td>
<td>2,12</td>
</tr>
</tbody>
</table>

Da weitere Angaben zur Gestalt der Seen wie beispielsweise eine Flächen-Volumen-Kurve meist fehlen, wurden weitere Annahmen zu einer vereinheitlichten und vereinfachten Seenbewirtschaftung getroffen:

- Der Seekörper wird als eine auf der Spitze stehende rechteckige Pyramide angesehen.
- Deren Kantenlängen L und B werden so bestimmt, dass die bekannte Seefläche Asee bewahrt wird.
- Die Höhe h der Pyramide wird so bestimmt, dass das Seevolumen Vsee erhalten bleibt.

Damit gilt:

\[
L = x \times L_{\text{max}}, \quad B = x \times B_{\text{max}} \quad \text{mit} \quad x = \left(\frac{A_{\text{see}}}{(L_{\text{max}} \times B_{\text{max}})} \right)^{0.5}
\]
Wenn die Absenkung \(t \) von der oben liegenden Grundfläche der Pyramide aus gezählt wird, dann gilt für das (gefüllte) Volumen \(V_t \):
\[
V_t = \frac{1}{2} \cdot L \cdot B \cdot (h-t)^3 / h^2, \quad 0 \leq t \leq h.
\]

Da für die bisher untersuchten Seen keinerlei Angaben zu einer Bewirtschaftung vorlagen, wurden auch dazu Annahmen gemacht:

- Es wird eine obere Lamelle \(LAM \) [m] festgelegt und eine planmäßige Abgabe \(QL \) vorgesehen, wenn sich die aktuelle Füllung in dieser Lamelle befindet. Das Volumen der Lamelle wird mit \(VOL_{bew} \) bezeichnet, weil nur in diesem Füllungsbereich eine Bewirtschaftung möglich ist. Bei kleineren Füllungen wirkt sich nur die Differenz \(P-PET \) auf die aktuelle Seefläche aus, die somit zu Füllungen < \(VOL_{bew} \) führen kann.
- Es kann eine Grundwasserabströmung \(GW\text{_abstr} \) berücksichtigt werden, die unabhängig vom Füllungsstand des Sees erfolgt. Beim Seddiner See wurden 25 l/s ange- setzt.

Die konkrete Festlegung der genannten Größen orientierte sich am Seddiner See, weil nur dort eine Zeitreihe für die Füllungen existierte. Tabelle 5-2 enthält die Werte für die zehn Seen.

Tabelle 5-2: Festlegung der Kenngrößen der Bewirtschaftung

<table>
<thead>
<tr>
<th>Größe</th>
<th>LAM</th>
<th>LAM/Tmit</th>
<th>QL</th>
<th>QL/MQ</th>
<th>VOLbew</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maßeinheit</td>
<td>m</td>
<td>-</td>
<td>l/s</td>
<td>-</td>
<td>hm³</td>
</tr>
<tr>
<td>Name des Sees</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gr. Leuthener See</td>
<td>0,70</td>
<td>0,294</td>
<td>15</td>
<td>0,217</td>
<td>2,004</td>
</tr>
<tr>
<td>Teupitzer See</td>
<td>1,00</td>
<td>0,286</td>
<td>16</td>
<td>0,207</td>
<td>12,313</td>
</tr>
<tr>
<td>Ziestsee</td>
<td>1,00</td>
<td>0,234</td>
<td>1,5</td>
<td>0,203</td>
<td>1,898</td>
</tr>
<tr>
<td>Rangsdorfer See</td>
<td>0,50</td>
<td>0,301</td>
<td>40</td>
<td>0,242</td>
<td>2,470</td>
</tr>
<tr>
<td>Seddiner See</td>
<td>0,90</td>
<td>0,296</td>
<td>20</td>
<td>0,184</td>
<td>4,913</td>
</tr>
<tr>
<td>Wusterwitzer See</td>
<td>1,00</td>
<td>0,296</td>
<td>22</td>
<td>0,202</td>
<td>4,240</td>
</tr>
<tr>
<td>Gördensee</td>
<td>0,35</td>
<td>0,278</td>
<td>7</td>
<td>0,221</td>
<td>0,400</td>
</tr>
<tr>
<td>Plessower See</td>
<td>1,50</td>
<td>0,232</td>
<td>15</td>
<td>0,227</td>
<td>16,330</td>
</tr>
<tr>
<td>Kleßener See</td>
<td>0,70</td>
<td>0,282</td>
<td>4</td>
<td>0,219</td>
<td>0,930</td>
</tr>
<tr>
<td>Bückwitzer See</td>
<td>0,60</td>
<td>0,283</td>
<td>50</td>
<td>0,190</td>
<td>0,843</td>
</tr>
</tbody>
</table>

Die Lamelle LAM beim Seddiner See ergab sich annähernd aus der Zeitreihe der Füllungen, bei den anderen Seen ist LAM so festgelegt worden, dass der Quotient LAM/Tmit ungefähr dem Seddiner Wert entspricht. Die planmäßige Abgabe QL aus dem Seddiner See ist ebenfalls aus früheren Rechnungen übernommen worden. Die Werte für die anderen Seen wurden entsprechend den mittleren Zuflüssen variiert. Es besteht weiter die Möglichkeit, die NN-Höhe des Sees zu berücksichtigen.
Die monatliche Seeregulierung wurde für die durchzuführenden Rechnungen wie folgt definiert:

- In jedem Monat ist die Menge \(V = \text{VOLanf} + \text{Zufluss} + (P-PET) \times \text{aktuelle Seefläche} \) verfügbar (VOLanf: Anfangsfüllung)
- Bei \(V < \text{VOLbew} \) wird nichts abgegeben.
- Ist \(V > \text{VOLbew} \), wird die Menge \(\min (QL, V-\text{VOLbew}) \) abgelassen.
- Ist trotz der Abgabe die sich ergebende Füllung > Vsee, so wird die Abgabe um den Überlauf aufgehöht, der See ist am Monatsende voll.

5.2 Simulationsprogramm

Um die formulierte Seeregulierung sowohl unter den Bedingungen eines unveränderten Klimas (Nullgradszenario) als auch bei Klimaänderungen (Zweigradszenario) nachbilden zu können, wurde ein FORTRAN-Programm aufgestellt, das die Simulation bei gleichzeitiger Registrierung interessierender Ereignisse ermöglicht (Anwendung der Monte-Carlo-Technik). Neben einer monatsweisen Abspeicherung solcher Größen wie Zufluss oder Seefüllung werden weitere Größen berechnet und am Ende der Simulation statistisch ausgewertet:

- Mittlere Summen des Niederschlags, der potentiellen Verdunstung und ihrer Differenz bzgl. des Jahres, des Sommers und des Winters
- Mittlere Zuflüsse im Jahr, im Sommer und im Winter
- Seefüllungen für verschiedene Unterschreitungswahrscheinlichkeiten
- Seeabsenkungen für verschiedene Überschreitungswahrscheinlichkeiten.

Das Programm wurde für jeden See zweimal angewendet: einmal lief es über die 100 Realisierungen des Nullgradszenarios, zum anderen über die 100 Realisierungen des Zweigradszenarios. Durch einen Vergleich der Ergebnisse können die Auswirkungen der Klimaänderungen eingeschätzt werden.
6 Diskussion der Ergebnisse der Simulationsrechnungen

In diesem Abschnitt wird versucht, die Auswirkungen des jeweils angenommenen Klimaregimes zu charakterisieren. Zunächst erfolgt eine Beschreibung der Ergebnisse für jeden der zehn Seen, bevor daraus allgemeingültige Beziehungen für die zwölf weiteren Seen abgeleitet werden.

Die Beschreibung konzentriert sich auf die Darstellung der Entwicklung der Seeabsenkungen im Untersuchungszeitraum. Dafür wurde im o.g. Simulationsprogramm in jedem Kalenderjahr einer der 100 Realisierungen die tiefste Absenkung registriert. Nach dem Ende einer Simulationsrechnung für einen See lagen damit für jedes Jahr des Zeitraums 2004-2053 insgesamt 100 tiefste Absenkungen zahlenmäßig vor. Werden diese 100 Werte der Größe nach geordnet, können danach

- die maximale Absenkung angegeben werden, die überhaupt in einem bestimmten Kalenderjahr aufgetreten ist sowie
- die tiefsten Absenkungen berechnet werden, welche mit 10, 20, 50 und 90% Überschreitungswahrscheinlichkeit (ÜWk.) zu erwarten sind.

Dasselbe kann selbstverständlich auch mit den registrierten Seefüllungen gemacht werden, wobei sich hier das Interesse auf die kleinsten Füllungen konzentriert. Wegen des großen Umfangs wird die entsprechende Darstellung im vorliegenden Bericht nur für den Seddiner See (Abbildung 6-3) gegeben.

6.1 Seddiner See

Unter der Bedingung eines stationären Klimas ist ein trendfreier Verlauf der Absenkungen zu erwarten. In Abbildung 6-1 lässt sich dagegen ein leichter Anstieg der Absenkungen bei kleinen Überschreitungswahrscheinlichkeiten in den letzten 15 Jahren erkennen, der sich nur schwer aus dem entsprechenden Gang der mittleren Zuflüsse erklären lässt. Da diese Erscheinung bei allen zehn Seen in ähnlicher Form auftritt, wird auf das Nullgradszenario bei
Der Absenkungen beim Zweigradszenario beginnen ungefähr ab dem Jahr 2018 langsam anzusteigen und nehmen ab dem Jahr 2033 beträchtliche Ausmaße an: so steigen die maximalen Absenkungen von 0,7 m in den ersten Jahren bis auf fast 3 m an, wodurch sich die Seefläche um ungefähr ein Drittel reduziert! Selbst bei einer Überschreitungswahrscheinlichkeit von 10% verdoppeln sich noch die Absenkungen im Laufe der 50 Jahre. Bei den größeren Überschreitungswahrscheinlichkeiten verkleinern sich die Auswirkungen der angenom-
menen Klimaänderung naturgemäß, bleiben aber immer noch klar sichtbar. Der Gang der Absenkungen widerspiegelt sich noch deutlicher im Gang der Füllungen des Seddiner Sees (Abbildung 6-3), hier gehen die minimalen Füllungen von ca. 5,2 hm³ in den ersten Jahren fast bis auf 2 hm³ zurück.

Abbildung 6-3: Füllungen Seddiner See, 2 grd-Szenario

6.2 Die vier Seen im Südosten Berlins

Hierhin gehören der Groß Leuthener See, der Rangsdorfer See, der Teupitzer See und der Ziestsee. Die beiden erstgenannten Seen sind dabei die eindeutig flacheren Seen, der Teupitzer See ist der klar größte von ihnen.

Ein zum Seddiner See völlig analoges Bild ergibt sich für den Groß Leuthener See. So bleiben die kräftigen Entleerungen bei Klimaänderungen, wenn auch etwas abgeschwächt, erhalten: die maximalen Absenkungen verdoppeln sich fast wieder bis zum Ende des Untersuchungszeitraums, was ungefähr eine Verkleinerung der Seefläche um 10% bedeutet (Abbildung 6-4).
Abbildung 6-4: Absenkungen Gr. Leuthener See, 2 grd-Szenario

Mit Blick auf Abbildung 6-5 gilt das eben Gesagte ebenfalls für den Rangsdorfer See.

Abbildung 6-5: Absenkungen Rangsdorfer See, 2 grd-Szenario

Bei dem viel größeren Teupitzer See verläuft die Entwicklung der Absenkungen wesentlich ausgeprägter (Abbildung 6-6): die maximalen Absenkungen von 0,5 m zu Beginn des Untersuchungszeitraums vergrößern sich bis zu dessen Ende auf über 4,2 m, was einer Verkleinerung der Seefläche um ca. 36 % entspricht! Selbst die Absenkungen mit 10% ÜWk. erhöhen sich von 0,4 m auf 2,4 m.
Abbildung 6-6: Absenkungen Teupitzer See, 2 grd-Szenario

Vergleichbare Verhältnisse zeigen sich beim Ziestsee, der zwar viel kleiner als der Teupitzer See ist, aber dessen maximale Tiefe sogar noch größer ausfällt. Hier steigen die maximalen Absenkungen wieder von etwa 0,5 m auf 4,2 m, was jetzt einer um 45 % verringerten Seefläche gegenüber der Vollfüllung entspricht. Aber auch bei Überschreitungswahrscheinlichkeiten von 10 bzw. 20% verflügeln bzw. vervierfachen sich die Absenkungen im Laufe der 50 Jahre (Abbildung 6-7).

Abbildung 6-7: Absenkungen Ziestsee, 2 grd-Szenario
6.3 Die drei Seen im Westen Berlins

Im Westen Berlins liegen der Plessower See, der Wusterwitzer See und der Gördensee. In dieser Reihenfolge nehmen auch ihre Größen deutlich ab. Sie zeichnen sich gegenüber den bisher betrachteten Seen durch eine geringere Auswirkung der Klimaänderungen auf ihr Füllungsregime aus.

Das trifft schon auf den Plessower See als größtem der drei Seen zu (Abbildung 6-8). Zwar wachsen noch die maximalen Absenkungen von 0,5 m auf rd. 2 m an, doch die Entwicklung der Absenkungen mit 10 bzw. 20% ÜWk. verlaufen sehr flach: es erfolgt nur ein Anstieg von ca. 0,4 m auf 0,75 bzw. 0,6 m.

Abbildung 6-8: Absenkungen Plessower See, 2 grd-Szenario

Eine sehr ähnliche Entwicklung zeigen die Absenkungen des Wusterwitzer Sees. Bemerkenswert ist hier nur der unstete Verlauf der maximalen Absenkungen (Abbildung 6-9)
Abbildung 6-9: Absenkungen Wusterwitzer See, 2 grd-Szenario

Noch geringere Klimaauswirkungen zeigt das Abbildung 6-10 für den Gördensee. Bis auf die maximalen Absenkungen liegen die Anstiege der Absenkungen verschiedener ÜWk. bei nur 10 cm über dem Zeitraum von 50 Jahren. Oft einschränkend wirkt bei der Seeregelung die Größe der bewirtschaftbaren Lamelle in Höhe von 35 cm.

Abbildung 6-10: Absenkungen Gördensee, 2 grd-Szenario
6.4 Die beiden Seen im Nordwesten Berlins

Am nördlichsten von den zehn ausführlich untersuchten Seen liegen der Kleßener See und der Bückwitzer See. Von ihrer Konfiguration her sind sie sich sehr ähnlich (Tabelle 5-1), lediglich der mittlere Zufluss ist zum Bückwitzer See wesentlich größer.

Mit Blick auf Abbildung 6-11 setzt der Kleßener See den Trend zu geringeren Klimaauswirkungen fort, wenn man die Seen in Ost-West-Richtung betrachtet. Abgesehen von den maximalen Absenkungen, die allerdings erst in den letzten Jahren des Zeitraums 2004-2053 größere Werte bis 1,2 m annehmen, wachsen die Absenkungen mit ÜWk. ab 10% aufwärts nur noch im Bereich bis zu 10 cm.

Abbildung 6-11: Absenkungen Kleßener See, 2 grd-Szenario

Ein ungewohntes Bild bietet der Bückwitzer See, der im Vergleich zu seinem kleinen Stauraum (Abbildung 2-1, Tabelle 5-1 und Tabelle 5-2) einen hohen Zufluss besitzt. Das führt gemäß Abbildung 6-12 dazu, dass die maximalen Absenkungen bei dem Zweigradszenario erst in den letzten zehn Jahren den Wert von 0,6 m und damit die bewirtschaftbare Lamelle überschreiten. Die Absenkungen mit einer Überschreitungswahrscheinlichkeit von 10% oder 20% werden sogar nie größer als 0,6 m. Schließlich werden die 90 %-Absenkungen überhaupt erst in den letzten Jahren mal größer als Null.
Abbildung 6-12: Absenkungen Bückwitzer See, 2 grd-Szenario

6.5 Zusammenfassung der Ergebnisse für die zehn Seen

Bei einer zusammenfassenden Betrachtung der für die zehn Seen erhaltenen Ergebnisse zeigt sich ein breites Spektrum der klimabedingten Absenkungen. Abbildung 6-13 und Abbildung 6-14 bestätigen auf eindringliche Weise diese Behauptung.
Abbildung 6-14: Absenkungen mit 10% ÜWk. von vier Seen, 2 grd-Szenario

Trotz der quantitativen Unterschiede sind bei allen zehn Seen bis etwa 2018 keine nennenswerten Veränderungen des Absenkungsverhaltens zu erkennen, erst danach beginnen in wachsendem Maße die Absenkungen zuzunehmen. Anders ausgedrückt, bis zu diesem Jahr herrschen beim Zweigradszenario noch stationäre Zustände, eine Feststellung, die sich bis zur Gegenwart mit der Realität verträgt.

Ursachen für die quantitativen Unterschiede sind vor allem
- verschiedene Entwicklungen des Niederschlags und der potentiellen Verdunstung im Untersuchungszeitraum und damit auch des Zuflusses zu den Seen
- unterschiedliche Verhältnisse zwischen dem Zufluss und dem Seevolumen, ausdrückbar im Ausbaugrad β, der in der Speicherwirtschaft oft benutzten Kenngröße für die Speicherfähigkeit.

Die wesentlichen Ergebnisse werden in zwei Tabellen zusammengefasst:
- Tabelle 6-1 enthält die maximalen Absenkungen sowie die Absenkungen mit 10, 20 und 50% Überschreitungswahrscheinlichkeit (ÜWk.) in den Jahren 2018 und 2053.
- Tabelle 6-2 wurden die absoluten Anstiege der Absenkungen zwischen 2018 und 2053 sowie die zugehörigen relativen, auf die mittlere Seetiefe T_{mit} bezogenen Werte eingetragen. Diese Zunahmen der Absenkungen sind bei der anschließenden vereinfachten Berechnung der zweiten Gruppe von 12 Seen benutzt worden. In Tabelle 6-2 ist auf den Eintrag von 50% ÜWk. verzichtet worden, weil diese Absenkungen nicht weiter verwendet wurden.

Abbildung 6-15: Zur Berechnung der Absenkungszunahmen am Beispiel des Teupitzer Sees

Tabelle 6-1: Absenkungen in den Jahren 2018 und 2053 (Angaben in cm)

<table>
<thead>
<tr>
<th>See</th>
<th>maximale Absenkungen</th>
<th>Absenkungen 10% ÜWk.</th>
<th>Absenkungen 20% ÜWk.</th>
<th>Absenkungen 50% ÜWk.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2018</td>
<td>2053</td>
<td>2018</td>
<td>2053</td>
</tr>
<tr>
<td>Leuth. See</td>
<td>68</td>
<td>124</td>
<td>55</td>
<td>82</td>
</tr>
<tr>
<td>Teup. See</td>
<td>156</td>
<td>420</td>
<td>70</td>
<td>206</td>
</tr>
<tr>
<td>Ziestsee</td>
<td>120</td>
<td>370</td>
<td>84</td>
<td>234</td>
</tr>
<tr>
<td>Rangsd. S.</td>
<td>35</td>
<td>72</td>
<td>24</td>
<td>44</td>
</tr>
<tr>
<td>Sedd. See</td>
<td>98</td>
<td>272</td>
<td>56</td>
<td>105</td>
</tr>
<tr>
<td>Wusterw.S.</td>
<td>33</td>
<td>66</td>
<td>23</td>
<td>36</td>
</tr>
<tr>
<td>Gördensee</td>
<td>37</td>
<td>62</td>
<td>32</td>
<td>38</td>
</tr>
<tr>
<td>Pless. See</td>
<td>61</td>
<td>208</td>
<td>46</td>
<td>75</td>
</tr>
<tr>
<td>Kließ. See</td>
<td>36</td>
<td>103</td>
<td>26</td>
<td>42</td>
</tr>
<tr>
<td>Bückw. S.</td>
<td>60</td>
<td>80</td>
<td>54</td>
<td>60</td>
</tr>
</tbody>
</table>
Aus Tabelle 6-1 und Tabelle 6-2 können für die zehn Seen die zu erwartenden Absenkungen entnommen werden bei andauernder Gültigkeit der vorausgesetzten Erhöhung der Lufttemperatur um 2 grd K bis zum Jahr 2053 und der darauf basierenden Veränderung des Zuflussregimes zu den Seen, der festgesetzten Seenkonfiguration (Tabelle 5-1) und der ebenso festgelegten Seenbewirtschaftung (Tabelle 5-2).

Es darf hier eingefügt werden, dass Änderungen der bewirtschafteten Lamelle LAM und der planmäßigen Abgabe QL um 10-20% keine gravierenden Folgen auf die Tabelle 6-1 und Tabelle 6-2 aufgeführten Werte hat. Die auf die Absenkungen wirkenden, dominierenden Einflüsse sind offensichtlich die sich ändernnden Klimagrößen.

<table>
<thead>
<tr>
<th>See</th>
<th>maximale Absenkung</th>
<th>Absenkung 10% ÜWk</th>
<th>Absenkung 20% ÜWk</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>absolut [cm]</td>
<td>relativ zu Tmit</td>
<td>absolut [cm]</td>
</tr>
<tr>
<td>Leuth. See</td>
<td>56</td>
<td>0,235</td>
<td>27</td>
</tr>
<tr>
<td>Teup. See</td>
<td>250</td>
<td>0,714</td>
<td>150</td>
</tr>
<tr>
<td>Ziestsee</td>
<td>264</td>
<td>0,617</td>
<td>136</td>
</tr>
<tr>
<td>Rangsd. S.</td>
<td>37</td>
<td>0,223</td>
<td>20</td>
</tr>
<tr>
<td>Sedd. See</td>
<td>174</td>
<td>0,572</td>
<td>49</td>
</tr>
<tr>
<td>Wusterw. S.</td>
<td>33</td>
<td>0,098</td>
<td>13</td>
</tr>
<tr>
<td>Gördensee</td>
<td>25</td>
<td>0,198</td>
<td>6</td>
</tr>
<tr>
<td>Pless. See</td>
<td>147</td>
<td>0,228</td>
<td>29</td>
</tr>
<tr>
<td>Kleß. See</td>
<td>67</td>
<td>0,270</td>
<td>16</td>
</tr>
<tr>
<td>Bückw. S.</td>
<td>20</td>
<td>0,094</td>
<td>6</td>
</tr>
<tr>
<td>Mittel</td>
<td>0,325</td>
<td>0,136</td>
<td>0,117</td>
</tr>
</tbody>
</table>
7 Berechnung der Absenkungen für die 12 Seen

7.1 Ableitung statistischer Beziehungen

In Übereinstimmung mit dem in den Abschnitten 1 und 2 formulierten Lösungsweg sollen in einem zweiten Schritt für 12 weitere Seen ohne detaillierte Berechnungen Angaben zu ihrem Verhalten bei den vorgegebenen Klimaänderungen gemacht werden. Dazu bieten sich in erster Linie statistische Modelle in Form von Multiregressionsmodellen auf der Basis der Tabelle 6-2 an. Hieran schließt sich die Frage an, welche Größen beeinflussen die zu bestimmenden Anstiege der Absenkungen im Zeitraum 2018-2053. Die wichtigsten Einflussgrößen sind mit Sicherheit der Niederschlag P und die potentielle Verdunstung PET mit ihren Veränderungen im genannten Zeitfenster. Zu ihrer Bestimmung müssten jedoch die umfangreichen Arbeiten ausgeführt werden, die in Abschnitt 3.1 beschrieben wurden, die aber gerade für diese 12 Seen mit Hilfe der Multiregressionsmodelle vermieden werden sollten. Im vorliegenden Projekt ist darauf verzichtet worden, so dass folgende Einflussgrößen verbleiben:

- die Fläche \(AE \) des EZG des Sees
- die (mittelere) Abflussspende \(MQ \) oder der zugehörige (mittlere) Abfluss \(MQ \) aus dem EZG (berechnet aus dem Nullgradszenario)
- die mittlere Seetiefe \(T_{mit} \)
- die Seefläche \(A_{see} \) bei Vollfüllung des Sees
- das Seevolumen \(V_{see} \) bei Vollfüllung
- das bewirtschaftete Seevolumen \(V_{OLbew} \) der Lamelle LAM
- der Ausbaugrad \(\beta \), gebildet aus

\[
\beta = \frac{V_{OLbew}}{MS} \\
\text{mit MS als mittlerem jährlichen Zuflussvolumen (MS= MQ * 31,536*10^6 s)}.
\]

Die folgende Tabelle 7-1 enthält die Werte der genannten Einflussgrößen der zehn Seen.

Tabelle 7-1: Einflussgrößen der zehn Seen

<table>
<thead>
<tr>
<th>See</th>
<th>(AE) [(\text{km}^2)]</th>
<th>(MQ) [(\text{m}^3/\text{s})]</th>
<th>(T_{mit}) [(\text{m})]</th>
<th>(A_{see}) [(\text{km}^2)]</th>
<th>(V_{see}) [(\text{hm}^3)]</th>
<th>(V_{OLbew}) [(\text{hm}^3)]</th>
<th>(\beta) [-]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leuth. See</td>
<td>26,2</td>
<td>0,069</td>
<td>2,38</td>
<td>1,146</td>
<td>2,73</td>
<td>2,004</td>
<td>0,92</td>
</tr>
<tr>
<td>Teup. See</td>
<td>32,9</td>
<td>0,0773</td>
<td>3,50</td>
<td>4,756</td>
<td>16,63</td>
<td>12,313</td>
<td>5,05</td>
</tr>
<tr>
<td>Ziestsee</td>
<td>1,95</td>
<td>0,0074</td>
<td>4,28</td>
<td>0,565</td>
<td>2,42</td>
<td>1,898</td>
<td>8,13</td>
</tr>
<tr>
<td>Rangsd. S.</td>
<td>54,4</td>
<td>0,165</td>
<td>1,66</td>
<td>2,038</td>
<td>3,39</td>
<td>2,47</td>
<td>0,47</td>
</tr>
<tr>
<td>Sedd.See</td>
<td>26,82</td>
<td>0,109</td>
<td>3,04</td>
<td>2,220</td>
<td>6,72</td>
<td>4,913</td>
<td>1,43</td>
</tr>
<tr>
<td>Wusterw.S.</td>
<td>27,69</td>
<td>0,1091</td>
<td>3,38</td>
<td>1,713</td>
<td>5,79</td>
<td>4,24</td>
<td>1,23</td>
</tr>
<tr>
<td>Gördensee</td>
<td>8,56</td>
<td>0,0317</td>
<td>1,26</td>
<td>0,408</td>
<td>0,53</td>
<td>0,40</td>
<td>0,40</td>
</tr>
<tr>
<td>Pless. See</td>
<td>14,4</td>
<td>0,0661</td>
<td>6,46</td>
<td>3,221</td>
<td>20,80</td>
<td>16,33</td>
<td>7,83</td>
</tr>
<tr>
<td>Kleß. See</td>
<td>3,9</td>
<td>0,0183</td>
<td>2,48</td>
<td>0,506</td>
<td>1,25</td>
<td>0,93</td>
<td>1,61</td>
</tr>
<tr>
<td>Bückw. S.</td>
<td>50,8</td>
<td>0,263</td>
<td>2,12</td>
<td>0,534</td>
<td>1,13</td>
<td>0,843</td>
<td>0,10</td>
</tr>
</tbody>
</table>
Die statistischen Zusammenhänge zwischen den relativen Zunahmen der Absenkungen aus Tabelle 6-2 (zusätzlich noch diejenigen mit 50% ÜWk.) und diesen Einflussgrößen ergaben sich aus einer Korrelationsanalyse, deren Ergebnisse in Tabelle 7-2 zusammengestellt worden sind.

Tabelle 7-2: Korrelationen zwischen den relativen Zunahmen der Absenkungen und den Einflussgrößen (A ist die Abkürzung für Absenkung)

<table>
<thead>
<tr>
<th>AE</th>
<th>MQ</th>
<th>Tmit</th>
<th>Asee</th>
<th>Vsee</th>
<th>VOlbew</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amax</td>
<td>-0,24</td>
<td>-0,39</td>
<td>0,27</td>
<td>0,47</td>
<td>0,32</td>
<td>0,30</td>
</tr>
<tr>
<td>A10</td>
<td>-0,07</td>
<td>-0,29</td>
<td>0,19</td>
<td>0,52</td>
<td>0,31</td>
<td>0,29</td>
</tr>
<tr>
<td>A20</td>
<td>-0,07</td>
<td>-0,27</td>
<td>0,13</td>
<td>0,44</td>
<td>0,24</td>
<td>0,22</td>
</tr>
<tr>
<td>A50</td>
<td>0,24</td>
<td>0,22</td>
<td>-0,22</td>
<td>0,10</td>
<td>-0,08</td>
<td>-0,10</td>
</tr>
</tbody>
</table>

Für die Zunahmen der relativen Absenkungen Amax, A10 und A20 ergeben sich zu berücksichtigende Korrelationen zu den Einflussgrößen MQ, Asee, Vsee und β. Sie lassen sich erklären:

- Je größer der Zufluss MQ zu einem See, desto kleiner werden die Zunahmen der Absenkungen ausfallen: die Korrelation wird negativ.
- Je größer ein See ist, also je größer Asee und Vsee sind, desto mehr führen Abnahmen der Klimadifferenz P-PET zu größeren Absenkungen: die Korrelation ist positiv.
- Je größer der Ausbaugrad β ist, können größere Absenkungen in einem bestimmten Jahr auch in das Folgejahr übertragen werden und dort erneut zu höheren Absenkungen führen: die Korrelation ist positiv.

Die Korrelationen zu VOLbew sind deutlich geringer als zu β und sollen, weil VOLbew die Größe von β beeinflusst, nicht beachtet werden.

Die Absenkungen A50 besitzen offenbar so geringe Bindungen an die Einflussgrößen, dass die Korrelationen nicht nur viel kleiner ausfallen, sondern sogar das Vorzeichen ändern und damit das eben Gesagte negieren. Aus diesem Grunde wurden auch keine Multiregressionsmodelle für A50 erstellt. Für die drei anderen Absenkungen sind solche Modelle mit den o.g. vier Einflussgrößen aufgestellt worden, die Regressionskoeffizienten sind in Tabelle 7-3 eingetragen worden.

Tabelle 7-3: Regressionskoeffizienten für die relativen Zunahmen der Absenkungen

<table>
<thead>
<tr>
<th>rel. Zunahme Absenkung</th>
<th>Mkk</th>
<th>Einflussgröße</th>
<th>Konstante</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MQ</td>
<td>Asee</td>
</tr>
<tr>
<td>Amax</td>
<td>0,87</td>
<td>-0,5774</td>
<td>0,2517</td>
</tr>
<tr>
<td>A10</td>
<td>0,96</td>
<td>-0,1187</td>
<td>0,1814</td>
</tr>
<tr>
<td>A20</td>
<td>0,92</td>
<td>-0,0333</td>
<td>0,1368</td>
</tr>
</tbody>
</table>

Die multiplen Korrelationskoeffizienten Mkk zeigen eine hohe Bindung zwischen den relativen Zunahmen der Absenkungen und der Gesamtheit der Einflussgrößen an, was auch grafisch in Abbildung 7-1 zu sehen ist. Hier wurden die „beobachteten“ Absenkungsanstiege A10 der Tabelle 6-2 für die zehn Seen den mit Hilfe der Regressionsbeziehungen berechneten Werten A10 gegenübergestellt. Trotz der hohen Mkk kommt es dabei zu nicht akzeptierbaren negativen Werten, was zu Problemen bei ihrer Anwendung auf die 12 Seen führen kann (Abschnitt 7.2).
Abbildung 7-1: Gegenüberstellung „beobachteter“ und berechneter relativer Absenkungsanstiege A10 für die zehn Seen

7.2 Anwendung der Multiregressionsmodelle

Vor der Anwendung der Multiregressionsmodelle auf die 12 Seen sind die zugehörigen Einflussgrößen MQ, Asee, Vsee und β bereitzustellen oder zu berechnen. Dazu können die vom IfAG übergegebenen Daten genutzt werden, die teilweise in der Anlage 1 enthalten sind. Die Größen Asee und Vsee lassen sich daraus direkt entnehmen, die beiden anderen Größen müssen nach Möglichkeit aus anderen Daten ermittelt werden.

Der noch fehlende Ausbaugrad β wurde wie in Abschnitt 5.1 aus den Größen Lmax, Bmax, Asee, Vsee (Anlage 1) sowie aus den gesetzten MQ ermittelt.

Nach Berechnung der jeweils vier Einflussgrößen für die 12 Seen konnten die relativen Absenkungszunahmen Amax, A10 und A20 mit Hilfe der Regressionsbeziehungen aus Tabelle 14 bestimmt werden. Die Ergebnisse sind in Tabelle 7-4 eingetragen worden.
Tabelle 7-4: Zunahme der Absenkungen der 12 Seen im Zeitraum 2018-2053

<table>
<thead>
<tr>
<th>See</th>
<th>Tmit</th>
<th>maximale Absenkung</th>
<th>Absenkung 10% ÜWk.</th>
<th>Absenkung 20% ÜWk.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[cm]</td>
<td>relativ absolut</td>
<td>relativ absolut</td>
<td>relativ absolut</td>
</tr>
<tr>
<td></td>
<td>[cm]</td>
<td>[cm]</td>
<td>[cm]</td>
<td>[cm]</td>
</tr>
<tr>
<td>Gr. Kossenbl. See</td>
<td>206</td>
<td>0,381, 78</td>
<td>0,173, 36</td>
<td>0,143, 29</td>
</tr>
<tr>
<td>Pätzer Hintersee</td>
<td>153</td>
<td>0,544, 83</td>
<td>0,285, 44</td>
<td>0,228, 35</td>
</tr>
<tr>
<td>Zeschsee</td>
<td>261</td>
<td>0,176, 46</td>
<td>0,013, 3</td>
<td>0,024, 6</td>
</tr>
<tr>
<td>Wolziger See</td>
<td>133</td>
<td>0,130, 17</td>
<td>0,013, 2</td>
<td>0,028, 4</td>
</tr>
<tr>
<td>Siethener See</td>
<td>275</td>
<td>0,226, 62</td>
<td>0,054, 15</td>
<td>0,055, 15</td>
</tr>
<tr>
<td>Güterfeld. Haussee</td>
<td>162</td>
<td>0,227, 37</td>
<td>0,046, 7</td>
<td>0,050, 8</td>
</tr>
<tr>
<td>Riebener See</td>
<td>118</td>
<td>0,193, 23</td>
<td>0,027, 3</td>
<td>0,034, 4</td>
</tr>
<tr>
<td>Gr. Lieneewitz. See</td>
<td>337</td>
<td>0,126, 42</td>
<td>-0,020, 0</td>
<td>-0,002, 0</td>
</tr>
<tr>
<td>Heiliger See</td>
<td>146</td>
<td>0,348, 51</td>
<td>0,133, 19</td>
<td>0,118, 17</td>
</tr>
<tr>
<td>Pritzerber See</td>
<td>190</td>
<td>0,389, 74</td>
<td>0,191, 36</td>
<td>0,158, 30</td>
</tr>
<tr>
<td>Riewendsee</td>
<td>311</td>
<td>0,043, 13</td>
<td>-0,004, 0</td>
<td>0,020, 6</td>
</tr>
<tr>
<td>Wolzensee</td>
<td>144</td>
<td>0,164, 24</td>
<td>0,022, 3</td>
<td>0,032, 5</td>
</tr>
</tbody>
</table>

Anmerkung: Die kursiv gedruckten Nullwerte entstanden durch eine willkürliche Aufhöhung.

Die extrem hohen und niedrigen Absenkungsanstiege können nach Abschnitt 7.1 eine Folge der Unzulänglichkeiten der Regressionsbeziehungen sein. Sind sie bei einem bestimmten See als unrealistisch einzuschätzen, sollten sie ggf. durch die in Tabelle 6-2 eingetragenen Mittelwerte der relativen Absenkungsanstiege ersetzt werden.

Zur praktischen Verwendung dieser Absenkungszunahmen ist anzumerken:

- Sind bei einem dieser Seen aus der Vergangenheit maximale Absenkungen oder größere Absenkungen in den letzten zehn oder fünf Jahren bekannt, so können die in der Tabelle aufgeführten absoluten Zunahmen der Absenkungen hierzu addiert werden.
- Im entgegengesetzten Fall oder wenn der See nie nennenswert abgesenkt war, dürfen die angegebenen absoluten Absenkungsanstiege näherungsweise als die zu erwartenden Absenkungen angenommen werden.

Im Abschnitt 2 sind mehrere Seen genannt worden, welche wegen des Fehlens selbst grundlegender Daten wie Fläche, Volumen oder Tiefe aus den weiteren Untersuchungen ausgesondert werden mussten. Lassen sich derartige Daten künftig beschaffen, können für diese Seen die Regressionsbeziehungen aus Tabelle 7-3 selbstverständlich auch verwendet werden.
8 Weiterführende Untersuchungen zum Seddiner See

8.1 Verlängerung der Modellrechnung für den Seddiner See bis 2012

Abbildung 8-1: Zufluss Z zum Seddiner See ab 1998

Abbildung 8-2: Niederschlag P und pot. Verdunstung PET im Einzugsgebiet des Sees

Abbildung 8-3: Differenz DIF zwischen Niederschlag und Verdunstung
Abbildung 8-4: Berechnete und beobachtete Seefüllungen VOLber und VOLbeo

Abbildung 8-5: Gegenüberstellung der Füllungen mit der Differenz DIF

<table>
<thead>
<tr>
<th>Größe</th>
<th>Maßeinheit</th>
<th>2004-2010</th>
<th>2011-2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Niederschlag P</td>
<td>mm/Mon.</td>
<td>57,7</td>
<td>55,0</td>
</tr>
<tr>
<td>Pot. Verdunstung PET</td>
<td>mm/Mon.</td>
<td>58,9</td>
<td>59,8</td>
</tr>
<tr>
<td>Differenz DIF= P-PET</td>
<td>mm/Mon.</td>
<td>-1,3</td>
<td>-4,8</td>
</tr>
<tr>
<td>Zufluss</td>
<td>m³/s</td>
<td>0,081</td>
<td>0,073</td>
</tr>
<tr>
<td>berechnete Füllung VOLber</td>
<td>hm³</td>
<td>5,97</td>
<td>6,24</td>
</tr>
<tr>
<td>beobachtete Füllung VOLbeo</td>
<td>hm³</td>
<td>6,18</td>
<td>6,93</td>
</tr>
</tbody>
</table>

Hieraus ergibt sich, dass alle Größen keine nennenswerten Unterschiede aufweisen mit Ausnahme der beobachteten Füllungen, die sich 2011-2012 stark erhöht haben. Da sich die natürlichen Einflüsse kaum ändern und eher leicht abnehmen (siehe DIF und Zufluss), müssen die Ursachen für die erhöhten Seefüllungen in einer veränderten Bewirtschaftung oder anderen externen Einflussgrößen zu suchen sein.

- Sich die Einflüsse geändert haben, z.B. durch Veränderung von GW-Entnahmen
- jetzt auch deutlich höhere Füllungen als 6,5 hm³ wieder zugelassen sind, wie es in den Jahren 1995-1997 zu beobachten war

8.2 Anpassung des Modells Seddiner See an veränderte Bedingungen ab 2011

Wie oben gezeigt, lässt sich der Anstieg des Seewasserspiegels ab 2011 nicht durch klimatische Veränderungen erklären.

Das Modell wurde zunächst durch Veränderung der Bewirtschaftung (für die kaum Daten verfügbar sind) modifiziert. Das Stauziel wurde für die Jahre 2011 und 2012 von 6,5 hm³ auf 6,8 bzw. 7,3 hm³ angehoben.

Die Grundwasserentnahmen (bisher 0,0256 m³/s in den Monaten April – Juni) wurden ab 2003 auf null gesetzt. Dies basiert auf der Annahme, dass eventuelle Entnahmen aus einem tieferen Grundwasserleiter erfolgen – mit geringer Rückwirkung auf den See. Auch hier standen kaum Daten zur Verfügung.

Die nachfolgende Abbildung 8-6 zeigte die Modellergebnisse im Vergleich zu den beobachteten Werten für den Seewasserspiegel. Die Modellanpassung ist ohne Zweifel gut.
Abbildung 8-6: Berechnete und beobachtete Wasserstände im Seddiner See, ab 2003 keine GW-Entnahme

8.3 Grundwasserspekte

Beim Landesamt für Umwelt, Gesundheit und Verbraucherschutz wurden Daten von Grundwassermessstellen im Umfeld des Sees angefordert. Nur eine Messstelle (GWM 37441690) lag im weiteren Abstrom des Sees (ca. 5 km). In der folgenden Abbildung sind Messdaten ab 2002 dargestellt.

Abbildung 8-7: Grundwasserstand an GWM 37441690 südlich des Seddiner Sees (Daten des LUGV Brandenburg) mit Trendlinie

8.4 Neue Simulation 2 grd Szenario für den Seddiner See

Ausgehend von obigen Befunden erfolgte eine erneute Simulation des Seddiner Sees für das Klimaszenario 2 grd in Varianten. Für diese Simulationen wurden folgende Annahmen getroffen:

- Stauziel bei 38,8 mNN
- Mindestabgabe aus dem Seddiner See von 0,02 m³/s
- Variante 0: Annahme einer minimalen Grundwasserabströmung ganzjährig von 0,005 m³/s
- Variante 1: Annahme einer Grundwasserabströmung von ganzjährig 0,05 m³/s
- Variante 2: Annahme einer um 0,05 m³/s erhöhten Grundwasserabströmung in den Monaten Juni bis September, wenn der Niederschlag in diesen Monaten kleiner 50 mm ausfällt (erhöhter Wasserbedarf für Spargelanbau).

Simuliert wurde jeweils der Projekitionszeitraum bis 2053.

Die Ergebnisse sind für die Wasserstandsentscheid im Seddiner See in den folgenden Abbildungen dargestellt.
Abbildung 8-8: Absenkungen Seddiner See, 2 grd Szenario, Variante 0

Abbildung 8-9: Absenkungen Seddiner See, 2 grd Szenario, Variante 1
Abbildung 8-10: Absenkungen Seddiner See, 2 grd Szenario, Variante 2

In der folgenden Abbildung 8-11 sind die Ergebnisse der Varianten V0 bis V2 denen der Varianten 0 (0 grd. Szenario) und 2 (2 grd Szenario) des bisherigen Modells gegenübergestellt.

Abbildung 8-11: Vergleich der Absenkungen des Seddiner Sees mit 50% ÜWk beim 0 grd Szenario und beim 2 grd Szenario mit verschiedenen GW-Abströmungen (Varianten 0, 1, 2)
9 Zusammenfassung

Die Untersuchungen an den insgesamt zehn Flachseen ergaben allgemeingültige Aussagen hinsichtlich des Verhaltens der Seen unter den Bedingungen des Zweigradszenarios im Zeitraum 2004-2053:

- **Bis zum Jahr 2018 kann von einer Stationarität des Füllungsregimes gesprochen werden**, erst danach sind größere und mit der Zeit wachsende Absenkungen zu verzeichnen.

- **Die klimabedingten Vergrößerungen der Absenkungen sind teilweise erheblich**: die maximalen Absenkungen steigen im extremen Fall von 0,5 m im Jahr 2018 bis auf 4,2 m im Jahr 2053 an, diejenigen mit 10% ÜWk. von 0,4 m bis auf 2,4 m. Die wasserfreien Seeflächen betragen maximal über 40% der Fläche bei Vollfüllung.

- **Diese Klimafolgen sind am größten in den Seen im Südosten Berlins und nehmen zum Nordwesten ab**.

- **Die Zunahme der Absenkungen ist am stärksten für Seen, welche im Vergleich zum Zufluss ein großes Volumen besitzen**.

Die Ergebnisse für die 10 Seen bildeten die Basis bei der Aufstellung von Multiregressionsmodellen, mit deren Hilfe das Verhalten von weiteren 12 Seen untersucht wurde. Die berechneten Zunahmen der Absenkungen von 2018 bis 2053 sind hier weniger zuverlässig.

Für eine sehr einfache Einschätzung der Entwicklung der Absenkungen in den Seen, welche nicht von großen Gewässern durchflossen werden, können die durchschnittlichen, auf die mittlere Seetiefe bezogenen Anstiege der Absenkungen dienen. Sie betragen rd. 32, 14 bzw. 12% der mittleren Seetiefe für die maximalen Absenkungen bzw. für die Absenkungen mit 10 oder 20% Überschreitungswahrscheinlichkeit.

Anlage 1: Daten der untersuchten Seen

<table>
<thead>
<tr>
<th>See</th>
<th>mittlere Tiefe [m]</th>
<th>See-fläche [km²]</th>
<th>See-volumen [hm³]</th>
<th>Art der Gewässeranbindung</th>
<th>Ackeranteil [%]</th>
<th>Graslandanteil [%]</th>
<th>Waldanteil [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bauernsee b. Dobbrikow</td>
<td>1,65</td>
<td>0,101</td>
<td>0,17</td>
<td>D</td>
<td>16,9</td>
<td>13,4</td>
<td>63,5</td>
</tr>
<tr>
<td>Bohnenländer See nw Brandenburg</td>
<td>0,169</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>22,8</td>
<td>13,3</td>
<td>53,4</td>
</tr>
<tr>
<td>Bornstedter See</td>
<td>0,033</td>
<td>-</td>
<td>-</td>
<td>A</td>
<td>6,6</td>
<td>25,7</td>
<td>25,9</td>
</tr>
<tr>
<td>Buckower See b. Buckow</td>
<td>0,144</td>
<td>-</td>
<td>-</td>
<td>D</td>
<td>6,1</td>
<td>17,9</td>
<td>66,9</td>
</tr>
<tr>
<td>Bückwitzer See</td>
<td>2,12</td>
<td>0,534</td>
<td>1,13</td>
<td>2Z/A</td>
<td>58,8</td>
<td>17,3</td>
<td>1,3</td>
</tr>
<tr>
<td>Gohlitzsee b. Lehnin</td>
<td>2,15</td>
<td>0,377</td>
<td>0,81</td>
<td>-</td>
<td>15,9</td>
<td>11,3</td>
<td>58,2</td>
</tr>
<tr>
<td>Gördensee b. Brandenburg</td>
<td>1,26</td>
<td>0,421</td>
<td>0,53</td>
<td>A</td>
<td>0,2</td>
<td>10,5</td>
<td>69,3</td>
</tr>
<tr>
<td>Gröbener See</td>
<td>1,52</td>
<td>0,405</td>
<td>0,61</td>
<td>D+A</td>
<td>14,6</td>
<td>10,4</td>
<td>28,1</td>
</tr>
<tr>
<td>Groß Behnitzer See</td>
<td>0,204</td>
<td>-</td>
<td>-</td>
<td>D</td>
<td>56,2</td>
<td>1,6</td>
<td>31,3</td>
</tr>
<tr>
<td>Groß Leuthener See</td>
<td>2,38</td>
<td>1,146</td>
<td>2,73</td>
<td>D</td>
<td>15,3</td>
<td>9,1</td>
<td>27,2</td>
</tr>
<tr>
<td>Güldensee</td>
<td>1,40</td>
<td>0,221</td>
<td>0,31</td>
<td>-</td>
<td>10,7</td>
<td>-</td>
<td>65,4</td>
</tr>
<tr>
<td>Güterfelder Haussee</td>
<td>1,62</td>
<td>0,133</td>
<td>0,21</td>
<td>A</td>
<td>14,6</td>
<td>20,6</td>
<td>35,0</td>
</tr>
<tr>
<td>Heiliger See b. Kirchmöser</td>
<td>1,46</td>
<td>0,525</td>
<td>0,76</td>
<td>A</td>
<td>11,8</td>
<td>15,1</td>
<td>-</td>
</tr>
<tr>
<td>Hohennauener See, Ost</td>
<td>3,43</td>
<td>3,622</td>
<td>12,44</td>
<td>5Z/A</td>
<td>17,3</td>
<td>6,0</td>
<td>41,7</td>
</tr>
<tr>
<td>Hohennauener See, West</td>
<td>3,43</td>
<td>3,622</td>
<td>12,44</td>
<td>D</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Kähnsdorfer See</td>
<td>1,04</td>
<td>0,260</td>
<td>0,27</td>
<td>D</td>
<td>34,1</td>
<td>11,5</td>
<td>40,7</td>
</tr>
<tr>
<td>Kleßener See</td>
<td>2,48</td>
<td>0,506</td>
<td>1,25</td>
<td>D</td>
<td>35,6</td>
<td>1,3</td>
<td>33,3</td>
</tr>
<tr>
<td>Klostersee b. Lehnin</td>
<td>1,67</td>
<td>0,489</td>
<td>0,82</td>
<td>D</td>
<td>6,2</td>
<td>4,1</td>
<td>57,4</td>
</tr>
<tr>
<td>Kolpinsee b. Lehnin</td>
<td>4,31</td>
<td>0,306</td>
<td>1,32</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Kossenblatter See, Gr.</td>
<td>2,06</td>
<td>1,681</td>
<td>3,46</td>
<td>D+2Z</td>
<td>31,2</td>
<td>7,8</td>
<td>26,6</td>
</tr>
<tr>
<td>Kossenblatter See, Kl.</td>
<td>3,89</td>
<td>-</td>
<td>-</td>
<td>D</td>
<td>17,8</td>
<td>10,3</td>
<td>55,2</td>
</tr>
<tr>
<td>Krimnicksee; Dahme</td>
<td>2,72</td>
<td>0,515</td>
<td>1,40</td>
<td>D</td>
<td>4,1</td>
<td>14,2</td>
<td>35,6</td>
</tr>
<tr>
<td>Lienewitzsee, Gr.</td>
<td>3,37</td>
<td>0,142</td>
<td>0,48</td>
<td>D+A</td>
<td>0,1</td>
<td>1,5</td>
<td>90,1</td>
</tr>
<tr>
<td>Mellensee b. Mellensee</td>
<td>2,99</td>
<td>2,23</td>
<td>6,67</td>
<td>D+3Z</td>
<td>9,3</td>
<td>6,1</td>
<td>13,1</td>
</tr>
<tr>
<td>Netzener See</td>
<td>2,97</td>
<td>0,979</td>
<td>2,91</td>
<td>D+2Z</td>
<td>7,3</td>
<td>8,0</td>
<td>28,3</td>
</tr>
<tr>
<td>Pätzer Hintersee</td>
<td>2,162</td>
<td>-</td>
<td>-</td>
<td>D</td>
<td>0,6</td>
<td>10,6</td>
<td>64,0</td>
</tr>
<tr>
<td>Plessower See, Gr.</td>
<td>6,46</td>
<td>3,221</td>
<td>20,80</td>
<td>A</td>
<td>10,6</td>
<td>18,5</td>
<td>12,5</td>
</tr>
<tr>
<td>Plessower See, Kl.</td>
<td>0,95</td>
<td>0,148</td>
<td>0,14</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pritzerber See</td>
<td>1,90</td>
<td>1,975</td>
<td>3,74</td>
<td>D</td>
<td>38,2</td>
<td>24,0</td>
<td>12,1</td>
</tr>
<tr>
<td>See</td>
<td>Flachsehöhe</td>
<td>Oberfläche</td>
<td>Tiefe</td>
<td>E1</td>
<td>E2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>-------------</td>
<td>------------</td>
<td>-------</td>
<td>----</td>
<td>----</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rangsdorfer See</td>
<td>1,66</td>
<td>2,038</td>
<td>3,39</td>
<td>D+A</td>
<td>9,0</td>
<td>1,6</td>
<td>22,8</td>
</tr>
<tr>
<td>Riebener See</td>
<td>1,18</td>
<td>0,377</td>
<td>0,44</td>
<td>D</td>
<td>9,1</td>
<td>28,4</td>
<td>17,9</td>
</tr>
<tr>
<td>Rietzer See b. Netzen</td>
<td>1,06</td>
<td>3,083</td>
<td>3,28</td>
<td>D+Z</td>
<td>24,0</td>
<td>12,8</td>
<td>17,5</td>
</tr>
<tr>
<td>Riewendsee</td>
<td>3,11</td>
<td>1,018</td>
<td>3,16</td>
<td>D+A</td>
<td>31,4</td>
<td>11,5</td>
<td>44,0</td>
</tr>
<tr>
<td>Schäfersee nw Freidorf</td>
<td>1,82</td>
<td>0,068</td>
<td>0,12</td>
<td>-</td>
<td>7,3</td>
<td>24,3</td>
<td>32,6</td>
</tr>
<tr>
<td>Schampsee</td>
<td>2,84</td>
<td>0,074</td>
<td>0,21</td>
<td>D</td>
<td>9,7</td>
<td>6,6</td>
<td>54,4</td>
</tr>
<tr>
<td>Schulzensee b. Groß Köris</td>
<td>1,48</td>
<td>0,121</td>
<td>0,18</td>
<td>D</td>
<td>0,5</td>
<td>21,3</td>
<td>33,8</td>
</tr>
<tr>
<td>Seddiner See, Gr.</td>
<td>3,04</td>
<td>2,176</td>
<td>6,62</td>
<td>D</td>
<td>20,7</td>
<td>3,0</td>
<td>48,9</td>
</tr>
<tr>
<td>Seddiner See, Kl.</td>
<td>2,18</td>
<td>0,044</td>
<td>0,10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Siethener See</td>
<td>2,75</td>
<td>0,708</td>
<td>1,95</td>
<td>D</td>
<td>33,1</td>
<td>2,5</td>
<td>32,3</td>
</tr>
<tr>
<td>Steckelsdorfer See</td>
<td>0,219</td>
<td></td>
<td></td>
<td>D</td>
<td>12,1</td>
<td>10,8</td>
<td>61,1</td>
</tr>
<tr>
<td>Teufelssee b. Seddin</td>
<td>2,08</td>
<td>0,044</td>
<td>0,09</td>
<td>-</td>
<td>7,1</td>
<td>26,6</td>
<td>53,0</td>
</tr>
<tr>
<td>Teupitzer See</td>
<td>3,50</td>
<td>4,756</td>
<td>16,63</td>
<td>D+Z</td>
<td>0,1</td>
<td>11,0</td>
<td>33,0</td>
</tr>
<tr>
<td>Todnitzsee</td>
<td>2,34</td>
<td>0,375</td>
<td>0,88</td>
<td>D</td>
<td>6,6</td>
<td>26,3</td>
<td>31,6</td>
</tr>
<tr>
<td>Witzker See</td>
<td>1,62</td>
<td>0,612</td>
<td>0,99</td>
<td>Z/2A</td>
<td>0,8</td>
<td>23,6</td>
<td>42,7</td>
</tr>
<tr>
<td>Wolzensee</td>
<td>1,44</td>
<td>0,508</td>
<td>0,73</td>
<td>D</td>
<td>15,9</td>
<td>7,9</td>
<td>64,0</td>
</tr>
<tr>
<td>Wolziger See b. Wünsdorf</td>
<td>1,33</td>
<td>0,500</td>
<td>0,66</td>
<td>D+Z</td>
<td>1,4</td>
<td>13,2</td>
<td>67,4</td>
</tr>
<tr>
<td>Wusterwitzer See, Gr.; Havel</td>
<td>3,38</td>
<td>1,713</td>
<td>5,79</td>
<td>D</td>
<td>20,6</td>
<td>21,4</td>
<td>18,0</td>
</tr>
<tr>
<td>Zemminsee</td>
<td>1,36</td>
<td>0,448</td>
<td>0,61</td>
<td>D+Z</td>
<td>3,2</td>
<td>44,2</td>
<td></td>
</tr>
<tr>
<td>Zeschsee, Kl.</td>
<td>2,61</td>
<td>0,234</td>
<td>0,61</td>
<td>D</td>
<td>27,1</td>
<td>13,8</td>
<td>44,9</td>
</tr>
<tr>
<td>Ziestsee b. Bindow</td>
<td>4,28</td>
<td>0,565</td>
<td>2,42</td>
<td>A</td>
<td>7,8</td>
<td>3,0</td>
<td>55,5</td>
</tr>
</tbody>
</table>