
  Universität Hamburg 
  Department Informatik 
  Vogt-Kölln-Str. 30 
  D-22527 Hamburg 
 
 
 

 

 

 

 

 

 

 

Bericht 294 
 
Proceedings of the 
International Workshop on 
Petri Nets and  
Software Engineering 
PNSE'10 
 
FBI-HH-B-294/10 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

  Herausgeber: 
  Michael Duvigneau 
  Daniel Moldt 
  Universität Hamburg 
  Department Informatik 
   
  In die Reihe der Berichte des Fachbereichs 
  Informatik aufgenommen durch   
  Prof. Dr. M. Jantzen 
  Prof. Dr. W. Lamersdorf 
 
  Juni 2010 



This document is retrievable

• on CD under the ISBN 978-972-8692-55-1
• as printed report (see address on front page)
• as electronical copy of the printed report under the URL

http://epub.sub.uni-hamburg.de/informatik/volltexte/2010/148/

http://epub.sub.uni-hamburg.de/informatik/volltexte/2010/148/


Abstract
This report contains the proceedings of the International Workshop on Petri Nets
and Software Engineering (PNSE’10) that took place in Braga, Portugal on June
22, 2010. For the successful realisation of complex systems of interacting and reac-
tive software and hardware components the use of a precise language at different
stages of the development process is of crucial importance. Petri nets provide a
uniform language supporting the tasks of modelling, validation, and verification
which captures fundamental aspects of causality, concurrency and choice in a
natural and mathematically precise way without compromising readability.

The use of Petri nets (P/T-nets, coloured Petri nets and extensions) in the
formal process of software engineering is presented as well as their application
and tools supporting the disciplines mentioned above.

Zusammenfassung
Dieser Bericht enthält die Proceedings des internationalen Workshops über Petri-
netze und Softwaretechnik (PNSE’10), der am 22. Juni 2010 in Braga, Portugal
stattfand. Zur erfolgreichen Erstellung komplexer Systeme interagierender und
reaktiver Software- und Hardwarekomponenten ist die Verwendung einer präzisen
Sprache während der verschiedenen Entwicklungsstufen von größter Wichtigkeit.
Petrinetze stellen eine einheitlich für die Zwecke der Modellierung, Validierung
und Verifikation verwendbare Sprache dar, welche fundamentale Aspekte von
Kausalität, Nebenläufigkeit und Alternativen auf eine natürliche und mathema-
tisch präzise Weise einfängt, ohne die Lesbarkeit der Modelle zu beeinträchtigen.

Der Workshop präsentiert sowohl die Verwendung von Petrinetzen (S/T-
Netzen, gefärbten Netzen und Erweiterungen) in den formalen Prozessen der Soft-
waretechnik als auch deren Anwendung oder Werkzeuge, welche die genannten
Disziplinen unterstützen.





Editors: Michael Duvigneau and
Daniel Moldt

Proceedings of the
International Workshop on

P etri
N ets and
S oftware
E ngineering
PNSE’10

University of Hamburg
Department of Informatics





Preface

This booklet contains the proceedings of the International Workshop on Petru
Nets and Software Engineering (PNSE’10) in Braga, Portugal, June 22, 2010.
It is a co-located event of Petri Nets 2010, the 31st international conference on
Applications and Theory of Petri Nets and other Models of Concurrency, and
ACSD 2010, the 10th International Conference on Application of Concurrency
to System Design.

More information about the workshop, like online-proceedings, can be
found at

http://www.informatik.uni-hamburg.de/TGI/events/pnse10/

For the successful realisation of complex systems of interacting and reactive
software and hardware components the use of a precise language at different
stages of the development process is of crucial importance. Petri nets are be-
coming increasingly popular in this area, as they provide a uniform language
supporting the tasks of modelling, validation, and verification. Their popular-
ity is due to the fact that Petri nets capture fundamental aspects of causality,
concurrency and choice in a natural and mathematically precise way without
compromising readability.

The use of Petri nets (P/T-nets, coloured Petri nets and extensions) in
the formal process of software engineering, covering modelling, validation,
and verification, is presented as well as their application and tools supporting
the disciplines mentioned above.

The program committee consists of:

Wil van der Aalst (Eindhoven University, The Netherlands)
João Paulo Barros (Instituto Politécnico de Beja, Portugal)
Didier Buchs (University of Geneva, Switzerland)
Piotr Chrzastowski-Wachtel (University of Warsaw, Poland)
Gianfranco Ciardo (University of California at Riverside, USA)
Jose-Manuel Colom (University of Zaragoza, Spain)
Jörg Desel (Catholic University Eichstätt-Ingolstadt, Germany)
Raymond Devillers (Université Libre de Bruxelles, Belgium)
Marlon Dumas (University of Tartu, Estonia)
Michael Duvigneau (University of Hamburg, Germany) (Chair)
Berndt Farwer (University of Durham, UK)
João Fernandes (Universidado de Minho, Portugal)
Jorge C. A. de Figueiredo (Federal University de Campina Grande,
Brasil)
Giuliana Franceschinis (University of Piemonte Orientale / University
of Torino, Italy)
Guy Gallasch (University of South Australia, Australia)



viii PNSE’10 – Petri Nets and Software Engineering

Luís Gomes (Universidade Nova de Lisboa, Portugal)
Nicolas Guelfi (University of Luxembourg, Luxembourg)
Stefan Haar (ENS Cachan, France)
Xudong He (Florida International University, USA)
Thomas Hildebrandt (University of Copenhagen, Denmark)
Vladimir Janousek (University of Brno, Czech Republic)
Gabriel Juhas (Slovak University of Technology Bratislava, Slovakia)
Peter Kemper (College of William and Mary, USA)
Astrid Kiehn (Indraprastha Institute of Information Technology Delhi,
India)
Ekkart Kindler (Technical University of Denmark, Denmark)
Hanna Klaudel (Université d’Evry-Val d’Essonne, France)
Michael Köhler-Bußmeier (University of Hamburg, Germany)
Fabrice Kordon (University P. & M. Curie, LIP 6, France)
Maciej Koutny (Newcastle University, UK)
Lars Kristensen (Bergen University College, Norway)
Robert Lorenz (University Augsburg, Germany)
Daniel Moldt (University of Hamburg, Germany) (Chair)
Chun Ouyang (Queensland University of Technology, Australia)
Wojciech Penczek (University of Podlasie, Poland)
Laure Petrucci (University Paris Nord, France)
Lucia Pomello (Università degli Studi di Milano-Bicocca, Italy)
Oana Prisecaru (University of Iasi, Romania)
Heiko Rölke (DIPF, Germany)
Christophe Sibertin-Blanc (University Toulouse 1, France)
Harald Störrle (Technical University of Denmark, Denmark)
Catherine Tessier (ONERA Toulouse, France)
Ulrich Ultes-Nitsche (University of Fribourg, Switzerland)
Manuel Wimmer (Vienna University of Technology, Austria)
Karsten Wolf (Universität Rostock, Germany)
Mengchu Zhou (New Jersey Institute of Technology, USA)
Christian Zirpins (University of Karlsruhe, Germany)
Wlodek M. Zuberek (Memorial University of Newfoundland, Canada)

We received 16 high-quality contributions. The program committee has ac-
cepted four of them for full presentation. Furthermore the committee accepted



Preface ix

five papers as short presentations. Three contributions were submitted and ac-
cepted as posters.

The international program committee was supported by the valued work of
Michal Knapik, Levi Lucio, Elisabetta Mangioni and Tarek Melliti as addi-
tional reviewers. Their work is highly appreciated.

Furthermore, we would like to thank the organizational teams of the Univer-
sidade do Minho and the Instituto Politécnico de Beja, Portugal, for their
general organizational support.

Without the enormous efforts of authors, reviewers, PC members and the orga-
nizational teams this workshop wouldn’t provide such an interesting booklet.

Thanks!

Michael Duvigneau and Daniel Moldt
Hamburg, June 2010





Contents

Part I Invited Talk

Combining Petri Nets and UML for Model-based Software
Engineering
João Miguel Fernandes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Part II Long Presentations

The Resource Allocation Problem in Software Applications:
A Petri Net Perspective
Juan-Pablo López-Grao and José-Manuel Colom . . . . . . . . . . . . . . . . . . . . . 7

Nets Within Nets Paradigm and Grid Computing
Fabio Farina and Marco Mascheroni . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Verifying Reference Nets By Means of Hypernets: a Plugin
for RENEW
Marco Mascheroni, Thomas Wagner and Lars Wustenberg . . . . . . . . . . . . . 39

Improving a Workflow Management System with an Agent
Flavour
Daniel Moldt, José Quenum, Christine Reese and Thomas Wagner . . . . . 55



xii Contents

Part III Short Presentations

IRS-MT: Tool for Modeling Resource Allocation in Workflow
Petri Nets
Piotr Chrzastowski-Wachtel and Jakub Rauch . . . . . . . . . . . . . . . . . . . . . . . . 73

Detecting and Repairing Unintentional Change on In-use
Data in Concurrent Workflow Management System
Thi Thanh Huyen Phan and Koichiro Ochimizu . . . . . . . . . . . . . . . . . . . . . . 89

Automata and Petri Net Models for Visualizing and
Analyzing Complex Questionnaires - A Case Study
Heiko Rölke . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Deadlock Control Software for Tow Automated Guided
Vehicles using Petri Nets
Carlos Rovetto, Elia Esther Cano Acosta and José Manuel Colom
Piazuelo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Taming the Shrew - Resolving Structural Heterogeneities
with Hierarchical CPN
Manuel Wimmer, Gerti Kappel, Angelika Kusel, Werner Retschitzegger,
Johannes Schoenboeck and Wieland Schwinger . . . . . . . . . . . . . . . . . . . . . . . 141

Part IV Poster Abstracts

MATLAB / Simulink and Program Sketcher for Verification
of Hybrid Petri Nets Implementation into Programmable
Logic Controller
Luděk Chomát . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

Instruction Pipeline Modeling using Petri Nets
Adam Husar, Tomas Hruska, Karel Masarik and Zdenek Prikryl . . . . . . . 163

BDD-based Bounded Model Checking for Elementary Net
Systems
Artur Meski, Wojciech Penczek and Agata Polrola . . . . . . . . . . . . . . . . . . . . 165



Part I

Invited Talk





Combining Petri Nets and UML for
Model-based Software Engineering

João M. Fernandes

Dep. Informática / CCTC
Universidade do Minho

4710-057 Braga
Portugal

EXTENDED ABSTRACT

UML is by far the most widely used modelling language used nowadays in
software engineering, due to its large scope and its wide tool support. This soft-
ware standard offers many diagrams that cover all typical perspectives for de-
scribing and modelling the software systems under consideration. Among those
diagrams, UML includes diagrams (activity diagram, state machine diagram, use
case diagrams, and the interaction diagrams) for describing the behaviour (or
functionality) of a software system. Petri nets constitute a well-proven formal
modelling language, suitable for describing the behaviour of systems with char-
acteristics like concurrency, distribution, resource sharing, and synchronisation.
Thus, one may question why not combining some UML diagrams with Petri
nets for effectively supporting the activities of the software engineer. The usage
of Petri nets for/in Software Engineering was addressed by several well-known
researchers, like, for example, Reisig [6], Pezzè [1], Machado [5], and Kindler [4].

In this invited talk, we discuss some alternatives to introduce Petri nets
into a UML-based software development process. In particular, we describe how
Coloured Petri Net (CPN) models can be used to describe the set of scenarios
associated with a given use case. We describe three different alternatives that
can be adopted to achieve that purpose.

The first approach, initially presented in [7], suggests a set of rules that allow
software engineers to transform the behaviour described by a UML 2.0 sequence
diagram into a CPN model. Sequence diagrams in UML 2.0 are much richer than
those in UML 1.x, namely by allowing several traces to be combined in a unique
diagram, using high-level operators over interactions. The main purpose of the
transformation is to allow the development team to construct animations based
on the CPN model that can be shown to the users or the clients in order to
reproduce the expected scenarios and thus validate them. Thus, non-technical
stakeholders are able to discuss and validate the captured requirements. The
usage of animation is an important topic in this context, since it permits the
user to discuss the system behaviour using the problem domain language.

In the second approach, discussed in [3], we assume that developers specify
the functionality of the system under consideration with use cases, each of which
is described by a set of UML 2.0 sequence diagrams. For each use case, there



should exist at least one sequence diagram that represents and describes its main
scenario. Other sequence diagrams for the same use case are considered to be
variations of the main scenario. The transformation approach allows the devel-
opment team to interactively play or reproduce any possible run of the given
scenarios. In particular, the natural characteristics of the CPN modelling lan-
guage facilitate the representation of the hierarchy and concurrency constructs
of sequence diagrams.

The third alternative, considered in [2], is an improvement with respect to the
previous approach and is targeted to reactive systems. We identify and justify
two key properties that the CPN model must have, namely: (1) controller-and-
environment-partitioned, which means constituting a description of both the
controller and the environment, and distinguishing between these two domains
and between desired and assumed behaviour; (2) use case-based, which means
constructed on the basis of a given use case diagram and reproducing the be-
haviour described in accompanying scenario descriptions. We have demonstrated
how this CPN model is useful for requirements engineering, since it provides a
solid basis for addressing behavioural issues early in the development process,
for example regarding concurrent execution of use cases and handling of failures.

References

1. G. Denaro and M. Pezzè. Petri Nets and Software Engineering. In Lectures on
Concurrency and Petri Nets: Advances in Petri Nets, volume 3098 of Lecture Notes
in Computer Science, pages 439–466. Springer, 2004. DOI 10.1007/b98282.

2. J.M. Fernandes, J.B. Jørgensen, and S. Tjell. Requirements engineering for reactive
systems: Coloured petri nets for an elevator controller. In 14th Asia-Pacific Software
Engineering Conference (APSEC 2007), pages 294–301. IEEE CS Press, December
2007. DOI 10.1109/APSEC.2007.81.

3. J.M. Fernandes, S. Tjell, J.B. Jørgensen, and O. Ribeiro. Designing Tool Support
for Translating Use Cases and UML 2.0 Sequence Diagrams into a Coloured Petri
Net. In 6th Int. Workshop on Scenarios and State Machines (SCESM 2007), within
ICSE 2007. IEEE CS Press, May 2007. DOI 10.1109/SCESM.2007.1.

4. Ekkart Kindler. Model-Based Software Engineering and Process-Aware Information
Systems. Transactions on Petri Nets and Other Models of Concurrency, 5460:27–45,
2009. 10.1007/978-3-642-00899-3_2.

5. R. J. Machado, K. B. Lassen, S. Oliveira, M. Couto, and P. Pinto. Requirements
Validation: Execution of UML Models with CPN Tools. International Journal on
Software Tools for Technology Transfer, 9(3–4):353–369, 2007. DOI 10.1007/s10009-
007-0035-0.

6. W. Reisig. Petri Nets in Software Engineering. In W. Brauer, W. Reisig, and
G. Rozenberg, editors, Advances in Petri Nets, volume 255 of Lecture Notes in
Computer Science, pages 63–96. Springer, 1987. DOI 10.1007/3-540-17906-2_22.

7. O. Ribeiro and João M. Fernandes. Some Rules to Transform Sequence Diagrams
into Coloured Petri Nets. In K. Jensen, editor, 7th Workshop and Tutorial on
Practical Use of Coloured Petri Nets and the CPN Tools (CPN 2006), pages 237–
256, October 2006.

4 PNSE’10 – Petri Nets and Software Engineering



Part II

Long Presentations





The Resource Allocation Problem in Software
Applications: A Petri Net Perspective⋆

Juan-Pablo López-Grao1 and José-Manuel Colom2

1 Dpt. of Computer Science and Systems Engineering (DIIS)
2 Aragonese Engineering Research Institute (I3A)

University of Zaragoza, Spain
Email: {jpablo,jm}@unizar.es

Abstract. Resource Allocation Systems (RAS) have been intensively
studied in the last years in the domain of Flexible Manufacturing Sys-
tems (FMS). The success of this research line has been based on the
identification of particular subclasses of Petri Nets that correspond to a
RAS abstraction of this kind of systems. In this paper we take a parallel
road to that travelled through for FMS, but for the case of software appli-
cations. The considered applications present concurrency and deadlocks
can happen due to the allocation of shared resources. We will evince that
the existing subclasses of Petri Nets used to study this kind of deadlock
problems are insufficient, even for very simple software systems. From
this starting point we propose a new subclass of Petri Nets that gener-
alizes the previously known RAS subclasses and we present a taxonomy
of anomalies that can be found in the context of software systems.

1 Introduction

Among the most recurrent patterns in a wide disparity of engineering disciplines,
the competition for shared resources between concurrent processes takes a promi-
nent position. The reader might think of examples in the context of distributed
systems, operations research, manufacturing plants, etc. The perspective of dis-
crete event systems theory proves appropriate and powerful as a framework in
which provide solutions to the so-called resource allocation problem [1]. Systems
of this kind are often called Resource Allocation Systems (RAS) [2, 3].

RAS are usually conceptualized around two distinct entities, processes and re-
sources, thanks to a prior abstraction process which is inherent in the discipline.
The resource allocation problem refers to satisfying successfully the requests for
resources made by the processes, ensuring that no process ever falls in a dead-
lock. A set of processes is deadlocked when they indefinitely wait for resources
that are already held by other processes of the same set [4].

RAS can be categorized both on the type of processes (sequential, non-
sequential) and resources (serially reusable, consumable) [5]. Hereafter, we will
⋆ This work has been partially supported by the European Community’s Seventh

Framework Programme under Project DISC (Grant Agreement n. INFSO-ICT-
224498) and the project CICYT-FEDER DPI2006-15390.



focus on Sequential RAS with serially reusable resources. This means that a
process can increase or decrease the quantity of free resources during its execu-
tion. However, the process will contervail that operation before terminating, i.e.
resources are used in a conservative way.

Although other models of concurrency have also been considered [6], Petri
nets [7] have arguably taken a leading role among the family of formal models
used for dealing with the resource allocation problem [8, 9]. One of the strengths
of this approach is the smooth mapping between the main entities of RAS and the
basic elements of Petri net models. A resource type can be modelled using a place:
the number of instances of it being modelled with tokens. Meanwhile, sequential
processes are modelled with tokens progressing through state machines. Arcs
from resource places to transitions (from transitions to resource places) represent
the acquisition (return) of some resources by a process. Petri nets thus provide
a natural formal framework for the analysis of RAS, besides benefiting from the
goods of compositionality.

This fact is well notorious in the domain of Flexible Manufacturing Systems
(FMS), where Petri net models for RAS have widely succeeded since the semi-
nal work of Ezpeleta et al. was introduced [8]. This is mostly due to a careful
selection of the subclass of Petri nets used to model these FMS, based upon two
solid pillars. First, the definition of a rich syntax from a physical point of view,
which enables the natural expression of a wide disparity of plant configurations.
And second, the contribution of sound scientific results which let us characterize
deadlocks from the model structure, as well as provide a well-defined methodol-
ogy to automatically correct them in the real system.

Nowadays, there exists a plethora of Petri net models for modelling RAS in
the context of FMS, which often overcome some of the syntactical limitations of
the S3PR class [8]. S4PR net models [10, 11] generalize the earlier, while allowing
multiple simultaneous allocations of resources per process. S∗PR nets [12] extend
the expressive power of the processes to that of state machines: hence internal
cycles in their control flow is allowed. However, deadlocks in S∗PR net models
are not fully comprehended from a structural perspective. Other classes such as
NS-RAP [9], ERCN-merged nets [13] or PNR nets [14] extend the capabilities of
S3PR/S4PR models beyond Sequential RAS by way of lot splitting or merging
operations.

Most analysis and control techniques in the literature are based on the com-
putation of a structural element which univocally characterizes deadlocks in
many RAS models: the so-called bad siphon. A bad siphon is a siphon which is
not the support of a p-semiflow. If bad siphons become (sufficiently) emptied,
their output transitions die since the resource places of the siphon cannot regain
tokens anymore, thus revealing the deadly embrace. Control techniques thus rely
on the insertion of monitor places [15], i.e. controllers in the real system, which
limit the leakage of tokens from the bad siphons.

Although there exist obvious resemblances between the resource allocation
problem in FMS and that of parallel or concurrent software, previous attempts
to bring these well-known RAS techniques into the field of software engineering

8 PNSE’10 – Petri Nets and Software Engineering



have been, to the best of our knowledge, either too limiting or unsuccessful.
Gadara nets [16] constitute the most recent attempt, yet they fall in the over-
restrictive side in the way the resources can be used, as a result of inheriting the
design philosophy applied for FMS. In this work, we will analyze why the net
classes and results introduced in the context of FMS fail when brought to the
field of concurrent programming.

Section 2 presents a motivating example and discusses the elements that
a RAS net model should desirably feature in order to successfully explore the
resource allocation problem within the software enginering discipline. Taking into
account those considerations, section 3 introduces a new Petri net class, called
PC2R. Section 4 relates the new class to those defined in previous works and
establishes useful net transformations which forewarn us about new behavioural
phenomena. Section 5 introduces some of these anomalies which highlight the
fact that previous theoretical results in the context of FMS are insufficient in
the new framework. Finally, section 6 summarizes the results of the paper.

2 The RAS view of a software application

Example 1 presents a humorous variation of Dijkstra’s classic problem of the
dining philosophers. We will adopt and adapt the beautiful writing by Hoare at
[17] for its enunciation.

Example 1. The pragmatic dining philosophers. “Five philosophers spend their
lives thinking and eating. The philosophers share a common dining room where
there is a circular table surrounded by five chairs, each belonging to one philoso-
pher. A microwave oven is also available. In the center of the table there is a
large bowl of spaghetti which is frequently refilled (so it cannot be emptied),
and the table is laid with five forks. On feeling hungry, a philosopher enters the
dining room, sits in his own chair, and picks up the fork on the left of his place.
Then he touches the bowl to feel its temperature. If he feels the spaghetti got too
cold, he will leave his fork and take the bowl to the microwave. Once it is warm
enough, he will come back to the table, sit on his chair and leave the bowl on the
table after recovering his left fork (please bear in mind that the philosopher is
really hungry by now). Unfortunately, the spaghetti is so tangled that he needs
to pick up and use the fork on his right as well. If he can do it before the bowl
gets cold again, he will serve himself and start eating. When he has finished, he
puts down both forks and leaves the room.”

According to the classic RAS nomenclature, each philosopher is a sequential
process, and the five forks plus the bowl are serially reusable resources which are
shared among the five processes. From a software perspective, each philosopher
can be a process or a thread which will be executed concurrently.

Algorithm 1 introduces the code for each philosopher. Notationally, we mod-
elled the acquisition / release of resources by way of the wait() / signal()
operations, respectively. Both of them have been generalized for the acquisition
of multiple resources (separated by commas when invoking the function). Finally,

J.-P. López-Grao and J.-M. Colom: The Resource Allocation Problem 9



the trywait() operation is a non-blocking wait operation. If every resource is
available at the time trywait() is invoked, then it will acquire them and return
TRUE. Otherwise, trywait() will return FALSE without acquiring any resource.
For the sake of simplicity, it is assumed that the conditions with two or more
literals are evaluated atomically.

A4

T3

A2

T4

T1

T8

T5
A1

R_F2

A0

R_S

A3

T6

T7

A5

A6

R_F1

T2

Fig. 1. Philosopher 1.

Algorithm 1 - Code for Philosopher i (where i ∈ {1, 2, 3, 4, 5})

var
fork: array [1..5] of semaphores; // shared resources
bowl: semaphore; // shared resource

begin
do while (1)

THINK;
Enter the room;

(T1) wait(fork[i]);
do while (not(trywait(bowl, fork[i+1 mod 5]))

or the spaghetti is cold)
(T2) if (trywait(bowl)

and the spaghetti is cold) then
(T3) signal(fork[i]);

Go to the microwave;
Heat up spaghetti;
Go back to table;

(T4) wait(fork[i]);
(T5) signal(bowl);

end if;
(T6) loop;

Serve spaghetti;
(T7) signal(bowl);

EAT;
(T8) signal(fork[i], fork[i+1 mod 5]);

Leave the room;
loop;

Figure 1 depicts the net for algorithm 1, with i = 1, after abstracting the
relevant information from a RAS perspective. Figure 2 renders the composition
of the five philosopher nets via fusion of the common shared resources. Note that
if we remove the dashed arcs from figure 2, then we can see five disjoint strongly
connected state machines plus six isolated places.

The five state machines represent the control flow for each philosopher. Every
state machine is composed of seven states (each state being represented by a
place). Tokens in a state machine represent concurrent processes/threads which
share the same control flow. In this case, the unique token in each machine is
located at the so-called idle place. This means that, at the initial state, every
philosopher is thinking (outside the room). In general, the idle place can be seen

10 PNSE’10 – Petri Nets and Software Engineering



as a mechanism which enforces a structural bound: the number of concurrent
active threads (i.e. non-idle) is limited. Here, at most one philosopher of type i
can be inside the room, for each i ∈ {1, 2, 3, 4, 5}.

The six isolated places are called resource places. A resource place represents
a certain resource type, and the number of tokens in it represents the quan-
tity of free instances of that resource type. In this case, every resource place
is monomarked. Thus, at the initial state there is one fork of type i, for every
i ∈ {1, 2, 3, 4, 5}, plus one bowl of spaghetti (modelled by way of the resource
place at the centre of the figure).

Finally, the dashed arcs represent the acquisition or release of resources by the
active threads when they change their execution state. Every time a transition
is fired, the total amount of resources available is altered. Please note, however,
that moving one isolated token of a state machine (by firing its transitions)
until the token reaches back the idle state, leaves the resource places marking
unaltered. Thus, the resource usage is conservative.

Fork 2

Fork 1

Fork 3

Fork 4

Fork 5

Fig. 2. The dining philosophers are thinking. Arcs from/to PR are dashed for clarity.

J.-P. López-Grao and J.-M. Colom: The Resource Allocation Problem 11



At this point, we will discuss some capabilities that (in our humble opinion) a
RAS model should have so as to support the modelling of concurrent programs.

Although acyclic sequential state machines are rather versatile as models
for sequential processes in the context of FMS (as the success of the S3PR and
S4PR classes prove), this is clearly too constraining even for very simple software
systems. Considering Böhm and Jacopini’s theorem [18], however, we can assume
that every non-structured sequential program can be refactored into a structured
one using while-do loops. Meanwhile, calls to procedures and functions can be
substituted by way of inlining techniques. Let us also remind that fork/join
operations can also be unfolded into isolated concurrent sequential processes, as
evidenced in [9]. As a result, we can restrict process models to state machines in
which decisions and iterations (in the form of while-do loops) are supported,
but not necessarily every kind of internal cycle.

Another significant difference between FMS and software systems from a
RAS perspective is that resources in the latter are not necessarily physical (e.g.,
a file) but can also be logical (e.g., a semaphore). This has strong implications
in the degree of freedom allowed for allocating those resources: we will return to
this issue a little later.

In this domain, a resource is an object that is shared among concurrent
processes/threads and must be used in mutual exclusion. Since the number of
resources is limited, the processes will compete for the resource and will use
it in a non-preemptive way. This particular allocation scheme can be imposed
by the resources’ own access primitives, which may be blocking. Otherwise, the
resource can be protected by a binary semaphore/mutex/lock (if there is only one
instance of that resource type) or by a counting semaphore (multiple instances).
Note that this kind of resources can be of assorted nature (e.g., shared memory
locations, storage space, database table rows) but the required synchronization
scheme is inherently similar.

On the other side, it is well-known that semaphores used in that aim can
be also seen as non-preemptive resources which are used in a conservative way.
For instance, a counting semaphore that limits the number of connections to a
database can be interpreted in that way from a RAS point of view. Here processes
will wait for the semaphore when attempting to establish a database connection,
and will release it when they decide to close the aforementioned connection.

However, semaphores also perform a relevant role as an interprocess signaling
facility, which can also be a source of deadlocks. In this work, our goal is the
study of the resource allocation problem, so this functionality is out of scope.
We propose fixing deadlock problems due to resource allocation issues firstly,
and later apply other techniques for amending those due to message passing.

Due to their versatility, semaphore primitives are interesting for studying how
resources can be allocated by a process/thread. For instance, XSI semaphores
(also known as System V semaphores) have a multiple wait primitive (semop with
sem_op<0). An example of multiple resource allocation appears in algorithm 1.
Besides, an XSI semaphore can be decremented atomically in more than one.
Both POSIX semaphores (through sem_trywait) and XSI semaphores (through

12 PNSE’10 – Petri Nets and Software Engineering



semop with sem_op<0 and sem_flag=IPC_NOWAIT) have a non-blocking wait
primitive. Again, algorithm 1 could serve as an example. Finally, XSI semaphores
also feature inhibition mechanisms (through semopwith sem_op=0), i.e. processes
can wait for a zero value of the semaphore.

As we suggested earlier, the fact that resources in software engineering do
not always have a physical counterpart is a very peculiar characteristic with
consequences. In this context, processes do not only consume resources but also
can create them. A process will destroy the newly created resources before its
termination. For instance, a process can create a shared memory variable (or a
service!) which can be allocated to other processes/threads. Hence the resource
allocation scheme is no longer first-acquire-later-release, but it can be the other
way round too. Nevertheless, all the resources will be used in a conservative
way by the processes (either by a create-destroy sequence or by a wait-release
sequence). As a side effect, and perhaps counterintuitively, there may not be free
resources during the system startup (as they still must be created), yet being
the system live.

Summing up, for successfully modelling RAS in the context of software engi-
neering, a Petri net model should have at least the following abstract properties:

1. The control flow of the processes should be represented by state machines
with support for decisions (if-then-else blocks) and nested internal cycles
(while-do blocks).

2. There can be several resource types and multiple instances of each one.
3. State machines can have multiple tokens (representing concurrent threads).
4. Processes/threads use resources in a conservative way
5. Acquisition/release arcs can have non-ordinary weights (e.g., a semaphore

value can be atomically incremented/decremented in more than one unit)
6. Atomic multiple acquisition/release operations must be allowed
7. Processes can have decisions dependent of the allocation state of resources

(due to the non-blocking wait primitives, as in figure 2)
8. Processes can lend resources. As a side effect, there could exist processes that

depend on resources which must be created/lent by other processes (hence
they cannot finish if executed in isolation)

3 PC2R nets

In this section, we will present a new Petri net class, which fulfills the require-
ments advanced in section 2: the class of Processes Competing for Conservative
Resources (PC2R). This class generalizes other subclasses of the SnPR family
while respecting the design philosophy on these. Hence, previous results are still
valid in the new framework. However, PC2R nets can deal with more complex
scenarios which were not yet addressed from the domain of SnPR nets.

Definition 1 presents a subclass of state machines which is used for modelling
the control flow of the processes in isolation. Iterations are allowed, as well as
decisions within internal cycles, in such a way that the control flow of structured

J.-P. López-Grao and J.-M. Colom: The Resource Allocation Problem 13



programs can be fully supported. Non-structured processes can still be refactored
into them as discussed in Section 2.

Definition 1. An iterative state machine N = 〈{p0} ∪ P, T, C〉 is a strongly
connected state machine such that either every cycle contains p0 or P can be
partitioned into two subsets P1, P2, with a place p ∈ P2 such that:

1. The subnet generated by 〈{p} ∪ P1,
•P1 ∪ P1

•〉 is a strongly connected state
machine in which every cycle contains p, and

2. The subnet generated by 〈{p0}∪P2,
•P2 ∪P2

•〉 is an iterative state machine.

In figure 1, if we remove the resource places R_F1, R_F2 and R_S then we
obtain an iterative state machine, with P1 = {A2, A3, A4}, P2 = {A1, A5, A6},
p0 = A0 and p = A1. The definition of iterative state machines is instrumental
for introducing the class of PC2R nets.

PC2R nets are modular models. Two PC2R nets can be composed into a
new PC2R model via fusion of the common shared resources. Please note that
a PC2R net can simply be one process modelled by an iterative state machine
along with the set of resources it uses. Hence the whole net model can be seen
as a composition of the modules for each process. We will formally define the
class in the following:

Definition 2. Let IN be a finite set of indices. A PC2R is a connected gener-
alized pure P/T net N = 〈P, T, C〉 where:

1. P = P0 ∪ PS ∪ PR is a partition such that: (a) [idle places] P0 = {p01 , ...,
p0|IN |}; (b) [process places] PS = P1 ∪ ...∪P|IN |, where ∀i ∈ IN : Pi 6= ∅ and
∀i, j ∈ IN : i 6= j, Pi ∩ Pj = ∅; (c) [resource places] PR = {r1, ..., rn}, n > 0.

2. T = T1 ∪ ...∪ T|IN |, where ∀i ∈ IN , Ti 6= ∅, and ∀i, j ∈ IN , i 6= j, Ti ∩ Tj = ∅.
3. For all i ∈ IN the subnet generated by restricting N to 〈{p0i} ∪Pi, Ti〉 is an

iterative state machine.
4. For each r ∈ PR, there exists a unique minimal p-semiflow associated to r,

Yr ∈ IN|P |, fulfilling: {r} = ‖Yr‖ ∩ PR, (P0 ∪ PS) ∩ ‖Yr‖ 6= ∅, and Yr[r] = 1.
5. PS =

⋃
r∈PR

(‖Yr‖ \ {r}).

Please note that the support of the Yr p-semiflows (point 4 of definition 2)
may include P0: this is new with respect to S4PR nets. Such a resource place r is
called a lender resource place. If r is a lender, then there exists a process which
creates (lends) instances of r. In our model, processes can start their execution
creating resource instances, but before acquiring any other resource. Otherwise,
it could happen that the support of a minimal p-semiflow would contain more
than one resource place (thus infriging condition 4 of definition 2).

The class supports iterative processes, multiple resource acquisitions, non-
blocking wait operations and resource lending. Inhibition mechanisms are not
natively supported (although some cases can still be modelled with PC2R nets).

The next definition generalizes the notion of acceptable initial marking intro-
duced for the S4PR class. In software systems all processes/threads are initially

14 PNSE’10 – Petri Nets and Software Engineering



inactive and start from the same point (the begin operation). Hence, all of the
corresponding tokens are in the idle place in the initial marking (the process
places being therefore empty). Note that lender resource places may be empty
for an acceptable initial marking. Figure 2 shows a P2CR net with an acceptable
initial marking which does not belong to the S4PR class.

Definition 3. Let N = 〈P0∪PS ∪PR, T, C〉 be a PC2R. An initial marking m0

is acceptable for N iff ||m0|| = P0 ∪PR and ∀p ∈ PS , r ∈ PR : Y T
r ·m0 ≥ Yr[p].

4 Some transformations and related classes

In [19], we introduced a new class of Petri net models for RAS, called SPQR
(Systems of Processes Quarreling over Resources). SPQR nets feature an appeal-
ing syntactical simplicity and expressive power though they are very challenging
from an analytical point of view. They can be roughly described as RAS nets
in which the process subnets are acyclic and the processes can lend resources
in any possible (conservative) manner. Every PC2R can be transformed into a
Structurally Bounded SPQR net (SB SPQR net).

The transformation rule is based on the idea of converting every while-do
block in an acyclic process which is activated by a lender resource place. This
lender place gets marked once the thread reaches the while-do block. The token
is removed at the exit of the iteration. This transformation must be applied
starting by the most intern loops, proceeding in decreasing nesting order. Figure
3 depicts the transformation rule. The rule preserves the language accepted by
the net (and thus liveness) since it basically consists in the addition of a implicit
place (place P1 in the right hand net of figure 3, since R_P1 can be seen as a
renaming of P1 in the left hand net).

Figure 4 illustrates the transformation of the net of example 1 but restricted
to two philosophers into the corresponding SB SPQR.

Thanks to such transformations, the SB SPQR class can express the widest
range of systems in the Sequential RAS Petri net family. Figure 5 introduces the
inclusion relations between a variety of Petri net classes for Sequential RAS.

R_P1P1

T1 T2

T5 T6

PR

P1

T1 T2

T5 T6

P3

P2

T3

T4 P3

P2

T3

T4

Fig. 3. Transforming PC2Rs into SB SPQRs: From iterative to acyclic processes

J.-P. López-Grao and J.-M. Colom: The Resource Allocation Problem 15



A3

A0 A5

A4

TA7

TA6

TA8

TA1

TA5

TA2

TA3

A1

A6

R_S

A2

R_F2

R_F1

TB8

B5

TB2

TB5

B3

TB6

TB7

A0 B0

TA1

TA8

TA7

TA6

A1

A6

A5

A2 A3 A4TA2 TA3 TA5TA4

R_S

R_A1

R_F2

R_F1

R_B1

B1

TB7

TB6

B6

B5

TB8

TB1

TB2TB3TB4TB5 B2B3B4

B6

B1

TB1

B0

TB3

TB4

TA4

B4

B2

Fig. 4. From PC2R to SB SPQR: Two pragmatic dining philosophers

Gadara

3

S  PR*

PC  R2

S  PR4

L−S  PR3

−
+ −process structure

"contains"

"contains
after

transformation"

Legend:

+(SB) SPQR

r
e
s
o
u
r
c
e
 
u
s
a
g
e

S  PR

Fig. 5. Inclusion relations between Petri net classes for RAS

16 PNSE’10 – Petri Nets and Software Engineering



5 Some bad properties through examples

The bad news about the discussion in sections 2 and 3 is that siphon-based
control techniques for RAS do not work in general for concurrent software, even
ignoring (i.e., not using) the resource lending feature introduced by PC2R nets.

Let us have a look back at example 1 and its related algorithm 1. It is not
difficult to see that, if every philosopher enters the room, sits down and picks
up the fork on the left of himself, the philosophers will be trapped in a livelock.
Every philosopher can eventually take the bowl of spaghetti and heat it up in the
microwave. This pattern can be repeated infinitely, but it is completely useless,
since no philosopher will ever be able to have dinner.

This behaviour is obviously reflected in the corresponding net representation
at figure 2. Let us construct a firing sequence σ containing only the first transition
of each state machine (i.e., the output transition of its idle place). The firing order
of these transitions is irrelevant. Now let us fire such a sequence, and the net falls
in a livelock. The internal cycles are still firable in isolation, but no idle place can
ever be marked again. Unfortunately, the net has several bad siphons, but none
of them is empty or insufficiently marked in the livelock. In other words, for every
reachable marking in the livelock, there exist output transitions of the siphons
which are firable. As a result, the siphon-based non-liveness characterization for
earlier net classes (such as S4PR [10]) is not sufficient in the new framework.

A similar pattern can be observed in the upper net of figure 4. There exist
three bad siphons, which are D1 = {A2, A3, A4, A5, A6, B2, B4, B5, B6, R_F2,
R_S}, D2 = {A2, A4, A5, A6, B2, B3, B4, B5, B6, R_F1, R_S} and D3 = {A2,
A4, A5, A6, B2, B4, B5, B6, R_F1, R_F2, R_S}. Besides, every transition in
the set Ω = {TA2, TA3, TA4, TA5, TB2, TB3, TB4, TB5} is an output tran-
sition of D1, D2 and D3. After firing TA1 and TB1 from the initial marking,
the state A1 + B1 + R_S is reached. This marking belongs to a livelock with
other six markings. The reader can check that, unfortunately, there exists a
firable transition in Ω for every marking in the livelock. A similar phenomenon
can be observed for the SB SPQR net at the bottom of figure 4.

In general, livelocks are not a new phenomenon in the context of Petri net
models for RAS. Even for L − S3PR nets, which are the simplest models in
the family, deadlock freeness does not imply liveness [20]. However, deadlocks
and livelocks always could be related to the existence of a siphon which was
‘dry’. Unfortunately, this no longer holds. Another well-known result for simpler
subclasses was that liveness equalled reversibility for nets with acceptable initial
markings. For PC2R, this is also also untrue, as figure 6 proves.

We believe that the transformation of PC2R nets into SB SPQR can be use-
ful to understand the phenomena from a structural point of view. Intuitively
speaking, the concept of lender resource seems a simple yet powerful instrument
which still remains to be fully explored. Still, SB SPQRs can present very com-
plex behaviour. For instance, acceptably marked SB SPQR nets do not even
hold the directness property [21] (which e.g. was true for S4PR nets). Figure 7
shows a marked net which has no home states in spite of being live. This and

J.-P. López-Grao and J.-M. Colom: The Resource Allocation Problem 17



R1

R2

R3

TB3

TB1

TB2A0 TA2

TA1

TA3

A2

A1 B2

B1

B0

A2,B1,R1,R2 A1,B2,R2,R3

A1, B1, R2

A2, B3, R3 A3, B2, R1

A2,B2,R1,R2,R3

Fig. 6. An acceptably marked PC2R which is live but not reversible

other properties are profoundly discussed (along with their implications) in a
previous work [19].

T1 T2 T3 T4 T5 T6 T7A1 A2 A3 A4 A5 A6

A0

T8 T9 T10 T11 T12 T13 T14B1 B2 B3 B4 B5 B6

B0

R3R2 R4R1 R5

Fig. 7. A marked SB SPQR which is live but has no home states

6 Conclusion and future work

Although there exist a variety of Petri net classes for RAS, many of these def-
inition efforts have been directed to obtain powerful theoretical results for the
analysis and synthesis of this kind of systems. Nevertheless, we believe that the
process of abstraction is a central issue in order to have useful models from a
real-world point of view, and therefore requires careful attention. In this work,

18 PNSE’10 – Petri Nets and Software Engineering



we have followed that path and constructed a requirements list for obtaining
an interesting Petri net subclass of RAS models applied to the software engi-
neering domain. Considering that list, we defined the class of PC2R nets, which
fulfills those requirements while respecting the design philosophy on the RAS
view of systems. We also introduced some useful transformation and class rela-
tions so as to locate the new class among the myriad of previous models. Finally
we observed that the problem of liveness in the new context is non-trivial and
presented some cases of bad behaviour which will be subject of subsequent work.

A Petri Nets: Basic definitions

A place/transition net (P/T net) is a 3-tuple N = 〈P, T,W 〉, where W is a
total function W : (P × T ) ∪ (T × P ) → IN, being P , T non empty, finite and
disjoint sets. Elements belonging to the sets P and T are called respectively
places and transitions, or generally nodes. P/T nets can be represented as a
directed bipartite graph, where places (transitions) are graphically denoted by
circles (rectangles): let p ∈ P , t ∈ T , u = W (p, t), v = W (t, p), there is a directed
arc, labelled u (v), beginning in p (t) and ending in t (p ) iff u 6= 0 (v 6= 0).

The preset (poset) or set of input (output) nodes of a node x ∈ P ∪ T
is denoted by •x (x•), where •x = {y ∈ P ∪ T | W (y, x) 6= 0} (x• = {y ∈
P ∪T | W (x, y) 6= 0}). The preset (poset) of a set of nodes X ⊆ P ∪T is denoted
by •X (X•), where •X = {y | y ∈ •x, x ∈ X} (X• = {y | y ∈ x•, x ∈ X}

An ordinary P/T net is a net with unitary arc weights (i.e., W can be defined
as a total function (P × T ) ∪ (T × P ) → {0, 1}). If the arc weights can be non-
unitary, the P/T net is also called generalized. A state machine is an ordinary
net such that for every transition t ∈ T , |•t| = |t•| = 1. An acyclic state machine
is an ordinary net such that for every transition t ∈ T , |•t|, |t•| ≤ 1, and there is
no circuit in it.

A self-loop place p ∈ P is a place such that p ∈ p••. A pure P/T net (also self-
loop free P/T net) is a net with no self-loop places. In pure P/T nets, the net can
be also defined by the 3-tuple N = 〈P, T, C〉, where C is called the incidence
matrix, C[p, t] = W (p, t) − W (t, p). Nets with self-loop places can be easily
transformed into pure P/T nets without altering most significant behavioural
properties, such as liveness, as shown in figure 8.

T

n

P

T’’T’

P

m
n

m

Fig. 8. Removing self-loop places

J.-P. López-Grao and J.-M. Colom: The Resource Allocation Problem 19



A p-flow is a vector Y ∈ ZZ|P |, Y 6= 0, which is a left annuler of the incidence
matrix, Y · C = 0. The support of a p-flow is denoted ‖Y ‖, and its places are
said to be covered by Y . A p-semiflow is a non-negative p-flow, i.e. a p-flow
such that Y ∈ IN|P |. The P/T net N is conservative iff every place is covered
by a p-semiflow. A minimal p-semiflow is a p-semiflow such that the g.c.d of its
non-null components is one and its support ‖Y ‖ is not an strict superset of the
support of another p-semiflow.

A set of places D ⊆ P is a siphon iff every place p ∈ •D holds p ∈ D•. The
support of a p-semiflow is a siphon but the opposite does not hold in general.

Let N = 〈P, T,W 〉 be a P/T net, and let P ′ ⊆ P and T ′ ⊆ T , where
P ′, T ′ 6= ∅. The P/T net N ′ = 〈P ′, T ′,W ′〉 is the subnet generated by P ′, T ′ iff
W ′(x, y) ⇔ W (x, y), for every pair of nodes x, y ∈ P ′ ∪ T ′.

A marking m of a P/T net N is a vector IN|P |, assigning a finite number
of marks m[p] (called tokens) to every place p ∈ P . Tokens are represented by
black dots within the places. The support of a marking, ‖m‖, is the set of places
which are marked in m, i.e. ‖m‖ = {p ∈ P | m[p] 6= 0}. We define a marked P/T
net (also P/T net system) as the pair 〈N ,m0〉, where N is a P/T net, and m0

is a marking for N , also called initial marking. N is said to be the structure of
the system, while m0 represents the system state.

Let 〈N ,m0〉 be a marked P/T net. A transition t ∈ T is enabled (also firable)
iff ∀p ∈ •t : m0[p] ≥ W (p, t), which is denoted by m0[t〉. The firing of an
enabled transition t ∈ T changes the system state to 〈N ,m1〉, where ∀p ∈
P : m1[p] = m0[p] + C[p, t], and is denoted by m0[t〉m1. A firing sequence σ
from 〈N ,m0〉 is a non-empty sequence of transitions σ = t1 t2 ... tk such that
m0[t1〉m1[t2〉 ...mk−1[tk〉. The firing of σ is denoted by m0[σ〉tk. A marking m is
reachable from 〈N ,m0〉 iff there exists a firing sequence σ such that m0[σ〉m. The
reachability set RS(N ,m0) is the set of reachable markings, i.e. RS(N ,m0) =
{m | ∃ σ : m0[σ〉m}.

A transition t ∈ T is live iff for every reachable marking m ∈ RS(N ,m0),
∃m′ ∈ RS(N ,m) such that m′[t〉. The system 〈N ,m0〉 is live iff every transition
is live. Otherwise, 〈N ,m0〉 is non-live. A transition t ∈ T is dead iff there is
no reachable marking m ∈ RS(N ,m0) such that m[t〉. The system 〈N ,m0〉 is
a total deadlock iff every transition is dead, i.e. no transition is firable. A home
state mk is a marking such that it is reachable from every reachable marking,
i.e. ∀m ∈ RS(N ,m0) : mk ∈ RS(N ,m). The net system 〈N ,m0〉 is reversible
iff m0 is a home state.

References

1. Lautenbach, K., Thiagarajan, P.S.: Analysis of a resource allocation problem using
Petri nets. In Syre, J.C., ed.: Proc. of the 1st European Conf. on Parallel and
Distributed Processing, Toulouse, Cepadues Editions (1979) 260–266

2. Colom, J.M.: The resource allocation problem in flexible manufacturing systems.
In van der Aalst, W-M-P. and Best, E., ed.: Proc. of the 24th Int. Conf. on Appli-
cations and Theory of Petri Nets. Volume 2679 of LNCS., Eindhoven, Netherlands,
Springer–Verlag (June 2003) 23–35

20 PNSE’10 – Petri Nets and Software Engineering



3. Li, Z.W., Zhou, M.C.: Deadlock Resolution in Automated Manufacturing Systems:
A Novel Petri Net Approach. Springer, New York, USA (2009)

4. Coffman, E.G., Elphick, M., Shoshani, A.: System deadlocks. ACM Computing
Surveys 3(2) (1971) 67–78

5. Reveliotis, S.A., Lawley, M.A., Ferreira, P.M.: Polynomial complexity deadlock
avoidance policies for sequential resource allocation systems. IEEE Transactions
on Automatic Control 42(10) (1997) 1344–1357

6. Fanti, M.P., Maione, B., Mascolo, S., Turchiano, B.: Event-based feedback con-
trol for deadlock avoidance in flexible production systems. IEEE Transactions on
Robotics and Automation 13(3) (1997) 347–363

7. Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the
IEEE 77(4) (1989) 541–580

8. Ezpeleta, J., Colom, J.M., Martínez, J.: A Petri net based deadlock prevention
policy for flexible manufacturing systems. IEEE Transactions on Robotics and
Automation 11(2) (April 1995) 173–184

9. Ezpeleta, J., Recalde, L.: A deadlock avoidance approach for non–sequential re-
source allocation systems. IEEE Transactions on Systems, Man and Cybernetics.
Part–A: Systems and Humans 34(1) (January 2004)

10. Tricas, F., García-Valles, F., Colom, J.M., Ezpeleta, J.: A Petri net structure-based
deadlock prevention solution for sequential resource allocation systems. In: Proc.
of the 2005 Int. Conf. on Robotics and Automation (ICRA), Barcelona, Spain,
IEEE (April 2005) 272–278

11. Park, J., Reveliotis, S.A.: Deadlock avoidance in sequential resource allocation sys-
tems with multiple resource acquisitions and flexible routings. IEEE Transactions
on Automatic Control 46(10) (2001) 1572–1583

12. Ezpeleta, J., Tricas, F., García-Vallés, F., Colom, J.M.: A banker’s solution for
deadlock avoidance in FMS with flexible routing and multiresource states. IEEE
Transactions on Robotics and Automation 18(4) (August 2002) 621–625

13. Xie, X., Jeng, M.D.: ERCN-merged nets and their analysis using siphons. IEEE
Transactions on Robotics and Automation 29(4) (1999) 692–703

14. Jeng, M.D., Xie, X.L., Peng, M.Y.: Process nets with resources for manufacturing
modeling and their analysis. IEEE Transactions on Robotics 18(6) (2002) 875–889

15. Hu, H.S., Zhou, M.C., Li, Z.W.: Liveness enforcing supervision of video streaming
systems using non-sequential Petri nets. IEEE Transactions on Multimedia 11(8)
(December 2009) 1446–1456

16. Wang, Y., Liao, H., Reveliotis, S., Kelly, T., Mahlke, S., Lafortune, S.: Gadara nets:
Modeling and analyzing lock allocation for deadlock avoidance in multithreaded
software. In: Proc. of the 49th IEEE Conf. on Decision and Control, Atlanta,
Georgia, USA, IEEE (December 2009) 4971–4976

17. Hoare, C.A.R.: Communicating sequential processes. Communications of the ACM
21(8) (1978) 666–677

18. Harel, D.: On folk theorems. Communications of the ACM 23(7) (1980) 379–389
19. López-Grao, J.P., Colom, J.M.: Lender processes competing for shared resources:

Beyond the S4PR paradigm. In: Proc. of the 2006 Int. Conf. on Systems, Man and
Cybernetics, IEEE (October 2006) 3052–3059

20. García-Vallés, F.: Contributions to the structural and symbolic analysis of
place/transition nets with applications to flexible manufacturing systems and asyn-
chronous circuits. PhD thesis, University of Zaragoza, Zaragoza (April 1999)

21. Best, E., Voss, K.: Free choice systems have home states. Acta Informatica 21
(1984) 89–100

J.-P. López-Grao and J.-M. Colom: The Resource Allocation Problem 21



22 PNSE’10 – Petri Nets and Software Engineering



Nets-Within-Nets Paradigm and Grid Computing

Marco Mascheroni, Fabio Farina

Dipartimento di Informatica, Sistemistica e Comunicazione
Università degli Studi di Milano Bicocca
Viale Sarca, 336, I-20126 Milano (Italy)⋆⋆

Abstract. Grid is one of the most effective new paradigms in large
scale distributed computing. Only recently Petri nets have been adopted
as a formal modeling framework for describing the specific aspects of the
Grid. In this paper we describe a Grid tool for High Energy Physics data
analysis, and we show how modeling its architecture with nets-within-
nets has led us to identify and solve a number of defects affecting the
current implementation.

1 Introduction

In the last decade the Grid computing [10, 9] approach to parallel and distributed
computing has defined a new path to enable high performance and throughput
applications. Grid infrastructures expose computational and storage resources
provided by different computing centers as uniform families of services that can
be coordinated to create large scale e-Science workflows.

Grand-challenge experiments, like those related to High Energy Physics, life-
science, and environmental science adopted the Grid as the tool for implementing
their software. In this paper we will consider a Grid distributed data analysis tool
developed to serve the community of the Compact Muon Solenoid (CMS) [19]
experiment at the CERN Large Hadron Collider (LHC) [20]. A specific software
tool has been developed to analyze physics data over the Grid, so that the users
are protected from the architectural complexities of the distributed infrastruc-
ture itself. This application, called CMS Remote Analysis Builder (CRAB) [7] is
released as open source software and has been adopted by the physics community
since 2005. Even though the code quality is being continuously improved thanks
to code analyzers (e.g., lint), the overall architecture has never been validated
with formal tools like Petri nets.

The aim of this work is to validate some relevant parts of the CRAB tool
using nets-within-nets [23]. In this paradigm the tokens of a Petri net can be
Petri nets themselves. As we will see, the hierarchical structure of the system
components is particularly suited for investigation with this formal framework.
The Renew tool [17] has been chosen as modeling platform, as it is the only
nets-within-nets tool that is mature enough to describe a real system like CRAB.
⋆⋆ Partially supported by MIUR (Italian Ministry of Education, University and Scien-

tific Research)



In particular, the features of Renew used to model the system are such that the
obtained model is very similar to a hypernet [2].This is a class of high level Petri
nets which implements the nets-within-nets paradigm using a dynamic hierarchy,
and a bounded state space [3]. As detailed in Section 4, this approach allowed
us to isolate some problems in the CRAB implementation. Our approach do not
cover analysis yet: modeling and simulation are the two means used to unveil
these problems.

In the literature high level Petri nets have been applied to different contexts
related to Grid computing technologies. Most of the works in this field focus
on the usage of Petri nets as a tool for workflows specification and execution
[1, 13, 11]. A different application of Petri nets to Grid is reported in [5]. Here
the resources exposed by the distributed computing infrastructure are modeled
directly with the aim of validating both properties like the soundness and the
fairness of their sharing for a process mining workflow. As far as we know, high
level Petri nets, and in particular hierarchical nets, have been applied neither to
the Grid infrastructure, nor to the study of a classical Grid application pattern
like the distributed data analysis.

The remainder of the paper is organized as follows: Section 2 introduces
the basic notion of nets-within-nets we refer to, and the Renew tool. Section
3 describes the Grid architecture we are considering, while in Section 4 the
modeling of the system and the bugs found thanks to the formal approach are
presented. A discussion about the modeling choices used in our approach is made
in Section 5. Finally, some conclusions are reported in Section 6.

2 The Nets-Within-Nets Paradigm and Renew

According to the nets-within-nets paradigm, the tokens of a Petri net can be
structured as Petri nets themselves. This idea is due to Valk (see [21]), who
defined and studied the class of Elementary Object Nets (EOS) in [22]. Later on,
properties of EOS were studied in [15], and other classes of high level Petri nets
which uses the nets-within-nets paradigm were defined, like for example [12, 2,
14, 24, 18].

In all these models a system is usually modeled as a collection of nets. One
net is designated as the system net, the top level of the net hierarchy. All other
nets are assigned to an initial place, a place in which they reside initially. This
distribution of nets induces a hierarchy. The system evolves by moving tokens
from place to place through the firing of autonomous transitions, or by synchro-
nizing transitions between nets at different levels. The hierarchical structure of
the model is usually static, but in some models there can be interactions be-
tween nets at different levels in the hierarchy which can dynamically change the
hierarchy itself. For example, in hypernets a net N can be moved from a place
belonging to a net A, to a place belonging to a distinct net B. The interaction
between nets A and B is only possible if they are close in the hierarchy.

The development of the Renew software tool [17], a Java-based high-level
Petri net simulator that provides a flexible modelling approach based on Refer-

24 PNSE’10 – Petri Nets and Software Engineering



ence nets [16], allows the use of this paradigm to model real systems. Renew is
not only a nets-within-nets editor and simulator: it allows the use high level net
concepts like arc inscriptions, transition guards, and coloured tokens. However,
we only use a subset of the features of Renew. In particular, we choose to model
the system with a hypernet-like model [2] (we will discuss in section 5 why the
system is not a proper hypernet). The system is modeled as a collection of net
instances. Tokens are references to net instances. Therefore it is possible that
a net has more than one reference (token) in the system which refer to it. Arc
inscriptions contain single variables. When a transition is fired tokens are bound
to these variablesṪransition inscriptions may contain channel names, used by
two or more nets when they need to synchronize. An uplink is used when a net
wants to synchronize with the net above it in the hierarchy, a downlink is used
when a net wants to synchronize with one of the reference tokens it contains.

From a syntactical point of view the Renew constructs we used in our model
are the following:

– A net instance is created by a transition inscription of the form var : new
netname, which means that the variable var will be assigned a new net
instance of type netname.

– An uplink is specified as a transition inscription :channelname (expr,...).
It provides a name for the channel and an arbitrary number of parameter
expressions

– A downlink has the form netexpr :channelname (expr,...) where netexpr is
an expression that must evaluate to a net reference.

To fire a transition that has a downlink, there must be an input arc labelled
with a proper variable name (netexpr for the previous downlink example), and
this variable must evaluate to a net instance. The referenced net instance must
provide an uplink with the same name and parameter count and it must be
possible to bind the variables suitably so that the channel expressions evaluate
to the same values on both sides. Parameters are bound to variables present in
the input arcs, and then bound to the parameter in the corresponding down(up)-
link. Then the transitions can fire simultaneously.

The exchange of (structured) tokens between nets, typical of hypernets, is
possible by means of parameters. Figure 1 shows an example. The only transition
enabled at the beginning is create (Figure 1(a)), which creates an empty child1
net, and a child2 net (Figure 1(b), and Figure 1(c) respectively). The difference
between using the parenthesis or not using the parenthesis in creating a new net is
that, if you use them, then the transition that is being fired must synchronize on
the channel new() in the child net. Therefore, transition create in the system net
synchronizes with transition create in the child1 net, which creates the ANet net.
Afterwards, transitions exchangeNet, moveANet, receiveANet can fire, moving
ANet to child2.

Let us notice that in our model the exchange of tokens between the two
children nets, child1 and child2, is made under the supervision of the system
net. This means that the system net in some way observes the token exchange
between its children.

F. Farina, M. Mascheroni: Nets Within Nets Paradigm and Grid Computing 25



c2

c1

create
c1 :new child1()
c2 :new child2

[]
exchangeANet
c1:ch(net)
c2:ch(net)

c1

c2

(a) The system net

net :new ANet
create

net net

:ch(net)
moveANet

ANet
(before)

:new()

[]

(b) The child1 net which creates a net
of type ANet and sends it upward

net
receiveANet

:ch(net)

ANet
(after)

[]

(c) The child2 net which
receives a net from above

Fig. 1. A simple example

3 The Application Context: Grid distributed analysis

The CMS experiment at CERN produces about 2 Petabytes of data to be stored
every year, and a comparable amount of simulated data is generated. Data needs
to be accessed for the whole lifetime of the experiment, for reprocessing and anal-
ysis, from a worldwide community: about 3000 collaborators from 183 institutes
spread over 38 countries all around the world.

The CMS computing model uses the infrastructure provided by the World-
wide LHC Computing Grid (WLCG) Project [6] through the supporting projects
EGEE, OSG and Nordugrid. Grid analysis in CMS is data driven. A prerequi-
site is that data is already distributed to some remote computing centers, and
correspondingly published in the CMS data catalogue, so that users can discover
available datasets. Parallelization is provided by splitting the analysis of large
data samples into several jobs. The output data produced by the analyses are
typically copied to the storage of a site and registered in the experiment spe-
cific catalogue. Small output data files are returned to the user. In the CMS
experiment the CRAB tool set has been developed in order to enable physicists
to perform distributed analysis over the Grid. The role of CRAB is to allow
the user to run over distributed datasets the very same analysis she/he ran lo-
cally, and collect the results at the end. CRAB interacts with the distributed
environment and the CMS services, hiding as much of the complexity of the
system as possible. CMS community members use CRAB as a front-end which
provides a thin client, and an Analysis Server which does most of the work in
terms of automation, recovery, etc. with respect to the direct interactions with
the Grid. The Analysis Server enables full workflow automation among differ-

26 PNSE’10 – Petri Nets and Software Engineering



ent Grid middlewares and the CMS data and workload management systems.
Indeed, the main reasons behind the development for the Analysis Server are:

– automating as much as possible the whole analysis workflow;
– reducing the unnecessary human load, moving all possible actions to server

side, keeping a thin and light client as the user interface;
– automating as much as possible the interactions with the Grid, perform-

ing submission, resubmission, error handling, output retrieval, post-mortem
operations;

– allowing better job distribution and management;
– implementing advanced use cases for important analysis workflows

The server architecture adopts a completely modular software approach.
In particular, the Analysis Server is comprised of a set of independent com-
ponents (purely reactive agents) implemented as daemons and communicating
asynchronously through a shared messaging service supporting the “publish &
subscribe” paradigm. Most of the components are themselves implemented as
multi-threaded systems, to allow a multi-user scalable system, and to avoid bot-
tlenecks. The task analyses are completely handled during their lifetime by the
server through different families of components: there are components devoted
to monitoring the Grid status of the single jobs in a task, other groups of agents
coordinate to manage the output retrieval and the recovery of the failed jobs by
scheduling their resubmission automatically. A relevant part of the agents is de-
signed in order to handle the submission chain of user tasks to the Grid. As the
Analysis Server internal architecture is a natural candidate for being analyzed
with the nets-within-nets paradigm, as aforementioned, we decided to model
and study the Grid submission chain. The aim of this study is to check that
the involved agents behave correctly and efficiently with respect to the foreseen
submission workflow. We decided to consider the system at the component-task-
job level, as it represents a good compromise between the effects perceived by
the tool final users and the large number of technical details that a complete
representation of the Grid would require.

4 Modeling the submission use-case

In this Section we describe in detail the process of submitting jobs to the Grid
through the CRAB Analysis Server. For each relevant component of the sys-
tem its net representation is discussed. In addition, the bugs that have been
discovered thanks to the net models are presented with the solutions that the
actual code has adopted in order to solve the issues. The CRAB analysis suite
was modeled using nets in a hierarchical fashion, as shown in Figure 2. A ver-
tical line with multiplicity n, indicates presence of a n nets in the higher one
(e.g.: the CRABClient net contains from 1 to N Task nets); a horizontal dashed
line indicates that the linked nets are references to the same net. In our mod-
eling we consider one client just for the purpose of simplicity. Of course, the
discussed functionalities and use cases still hold when a larger number of clients

F. Farina, M. Mascheroni: Nets Within Nets Paradigm and Grid Computing 27



Overall System

CRABClientCRABServerWorker TaskRegister

11 1

{Job, Job}

1..N

SubmissionWorker

1..N

Job

1

Task

1..N

Task

1..N

Job

1..N

reference

Fig. 2. The Nets hierarchy for the CRAB suite.

is considered, as the client server model assumes no direct interactions among
the clients. In addition, for the use case that will be discussed, the server code
separates properly the session of work for every task.

The OverallSystem net, which is the system net, contains three nets which
respectively model the behavior of the client who is using the CRAB server
(CRABClient net), the TaskRegister component which is a thread running on
the CRAB server (TaskRegister net), and the CRABServerWorker which is also
a thread running on the server (CRABServerWorker net). Tasks are the objects
a client creates, and deals with. They are composed of jobs, the single units of
work that need to be performed. The TaskRegister component is responsible
for registering tasks, i.e. creating some data structures on server disks, check-
ing if each task has all the inputs it needs to be executed, and checking if the
Grid can access the proper security credentials to execute it. The CRABServer-
Worker component continuously receives jobs, schedules them for execution on
the Grid infrastructure, and creates a SubmissionWorker thread which monitors
the lifecycle of each job on the Grid. The clients interact with the server, and
can initiate some operations like: submitting jobs, killing them if needed, and
asking for the results.

4.1 CRABClient, Tasks, and Jobs

The first component we are going to discuss is the CRAB client, which is modeled
with the net in Figure 3. This component is what enables all the action sequences
that the users can do on their Grid analyses.

The first thing a client does is to create a new task on the client machine.
The typical usage pairs a unique task with a CRAB analysis session. For this
reason we assume that the tasksPool can contain a finite number of tokens. After
the task has been locally created on the client machine, the client can perform
a submit operation, which is of course the most important one as it starts the

28 PNSE’10 – Petri Nets and Software Engineering



tasktask

task

task

task

task

crab -resubmit

crab -kill

crab -getoutput
task:getjob(j)

task:getjob(j)

task:getjob(j)

j:cg()

j:crs()

j:ck()

task

crab -clean

crab -submit

task

task:cs(jobs)
:cs(jobs)

task task:ck()
crab -overkill

crab -submit (first)
crab -create
task :new Task()

:csf(task)
tasksPool

submittedTaskPool

Fig. 3. The CRABClient net.

submission chain. The first time a task is submitted to the server, it is also regis-
tered by the TaskRegister component. Subsequent submits are handled directly
by the CRABServerWorker component. In our model the difference between the
two types of submits is modeled as two different transitions. In particular crab
-submit(first) transition has an uplink (:csf(task)), which means that it must be
synchronized with the upper level. As a result the task reference is copied to the
TaskRegister component by the Overall System net. After creation, the main
operations a user can do are submit, resubmit, kill, getoutput, and clean. All
these operations require an interaction with the server, but since we have focused
on the submission use case, these interactions have not been explicitly modeled.
For example the getOutput command is modeled as an interaction between the
client and the job by means of two inscriptions. Handling all the possible inter-
actions between the actors involved in the system would have resulted in a very
big model, making it impossible to describe in this paper.

A task, see Figure 4, is a bag of jobs (the system allows to collect up to 4000
jobs into a singe task) and it is a representation that CRAB uses to perform
collective actions on the Grid processes. Places notRegistered, registering, regis-
tered of the Task net contain information about the state of a task itself. These
places control the enabledness of transitions crab -submitFirst, and taskRegis-
tered, which are respectively called by the CRABClient when a job is submitted,
and by the TaskRegister component when the task has been successfully reg-

F. Farina, M. Mascheroni: Nets Within Nets Paradigm and Grid Computing 29



istered after a submit first operation. The submit transition is called when a
CRABClient performs a submit subsequent action. In our model both taskReg-
istered, and submit transitions send upward two jobs through a synchronous
channel, and make the job move to the submission request state.

The net representing the state of Grid jobs and their allowed actions is re-
ported in Figure 5. This net has been modeled combining the finite state machine
reported in the CRAB official documentation with the information extracted di-
rectly from the portion of code devoted to the Grid job state handling. Several
transitions of this net contain uplinks, and therefore have to be synchronized
with some other net. Transitions with a :crs() uplink (CRAB Resubmit) are
transition enabled only if the job is in a state where a resubmit is possible, and
are synchronized with the crab -resubmit transition of the CRABClient net, or
the resubmit transition of the SubmissionWorker net. In the same way killings
(channel :ck()), failures (channel :f()), submission (channel :s()), and output re-
trieving (channel :cg()), have to be synchronized with a correspondent transition
in another net.

The integration of the documentation and the code with the formalism of
the nets has allowed us to identify a bug in the way job states are modified.
In particular, the net allows some transitions that are not actually activated by
any event observed by the system (bug 1, b1). For example let us consider the
unlabeled transition between the sub.success and the cleaned places in Figure
5: the latter denotes that a job has been abandoned because the user security
credentials are expired and the Grid will not manage processes whose owner
cannot be recognized. A malicious code interacting with the clients in place of
the proper server could move jobs arbitrarily to this terminal state. The fix for
this bug consisted in a review of the code managing the job state automata in
accordance with what is stated by the presented Job net. Also the pre-conditions
that allow a client to perform a kill request over the jobs are not granted properly
(b2). This means, for example that a user could run into a condition where a
failed job cannot be resubmitted as the system requires to kill it. That means
the job is in a deadlock, as a failed job cannot be killed on the Grid.

4.2 TaskRegister

The TaskRegister component, shown on the left of Figure 7, duplicates the task
and jobs structures that have been created at the client side and alters all the ob-
ject attributes in order to localize them with respect to the running environment
of the server, taking care also of security issues (like user credentials delegation)
and files movement (check the existence of input). We modeled this cloning by
means of the reference semantics: the TaskRegister component receives from the
client a copy of the reference which points to the Task. The component is able
to handle more tasks simultaneously thanks to a pool of threads implementing
the net of Figure 7. The first transition that is fired is submission, which is
synchronized with the transition in the system net that receives the task refer-
ence from the CRABClient. Then four operations which can fail are executed
on the task. These include local modification of the task with respect to the

30 PNSE’10 – Petri Nets and Software Engineering



:getjob(j)

x y z

x:new job
y:new job
z:new job

crab -create
v:new job

v

j

j1 j2

j1 j2

crab -submitFirst
j1:cs()

submit

j2:cs()
:cs(j1,j2)

:csf()

killSubmitted

createdJobs

killCreated

firstSubmittedJobs

registered

notRegistered

registering

taskRegistered

submitted

j2

:registered(j1,j2)
j1:cs()
j2:cs()

prematureKill
:ck()

killFirstSubmitted

j

j

j

overkilling

:new()

j2j1

j2j1

j1

j1 j2

Fig. 4. The Task net. Only four jobs are considered in order to exemplify the
relation with the job net.

server environment, the user’s credential retrieval (also known as delegation),
the setting of the server behavior according to what the credentials allow to
do and, finally, the checking that the needed input files are accessible from the
Grid. If the registration fails the only possible operation available is archive-
Task which deletes the reference to the task from the task register component.
If the user has the privileges to execute the jobs in the task, and if the inputs
needed by the task are available, then a range of jobs is selected from the task
and passed to the CRABServerWorker by firing the toCSW transition (again
under the supervision of the system net). The modeling and the simulation of

F. Farina, M. Mascheroni: Nets Within Nets Paradigm and Grid Computing 31



sub.success

cleared

output retrieval

resubmission

submission fail

cleaned

sub.failed
killsuccess

killrequest

killdone

:crs()

:crs()

:ck()

killrequest

:cs()

created
[]

aborted

:cg()

:s()

:f()

killfailed

sub.request

submission

tsk/pr expire

job finished

terminated resubmit resubmit

:crs()

submission successful

fastKill

:ck()

resubmit
:crs()

gridabort

Fig. 5. The Job net.

the TaskRegister net has highlighted some relevant defects and bugs. In case of
failure the TaskRegister component was not able to set properly the status of
the jobs in a task to fail. This macroscopic lack in the system design implied
different side effects. The server was not able to discriminate whether to retry
automatically the registration process or to give up and notify the user about
the impossibility to proceed (b3). In addition, the system could not tell if the
registration has been attempted previously. This implies that the client trans-
fers the input data every time a registration failure appears, with a waste of
network resources (b4). This defect has been solved by introducing the proper
synchronization between the fail transition in the component with submission
failed in the job net. A second bug has been identified thanks to the study of the
synchronization among the transitions for the client, the jobs and the TaskReg-

32 PNSE’10 – Petri Nets and Software Engineering



ister nets. In detail, the handling of the kill commands presents some issues. If
a user requires to kill some jobs while the task is being registered, the system
cannot distinguish properly which jobs have to be killed and therefore it applies
an over-killing strategy by halting the whole task (b5). This happens because
the code performs some sort of synchronization with the Task net instead of
having rendezvous with the related transitions into the lists of killing jobs.

4.3 CRABServerWorker, and SubmissionWorkers

In our model the result of a submit operation is that the CRABServerWorker
component, showed in Figure 6, receives a structured token in the place ac-
cepted. If the submit was the first, transition newTaskRegistered is fired after the
task has been registered by the TaskRegister component by means of transition
toCSW, which is synchronized with transition newTaskRegistered through the
overall system. If the submit is not the first, the task has been already registered,
therefore transition subsequentSubmission is fired. After receiving the range of
jobs, the CRABServerWorker component schedules these jobs for the execution
on the Grid infrastructure. The practical effect of this component is to break
the task into lists of jobs in order to improve the performance thanks to bulk
interactions with the Grid middleware. The Submission Worker thread spawned
by the component monitors the actual submission process of the jobs. We have
modeled this fact by creating a Submission Worker net for each one of the jobs in
the list. Indeed, transition triggerSubmissionWorker creates a new Submission
Worker assigned to the variable sw and synchronizes it with a transition labeled
init. The thread is responsible both for tracking the submission to the Grid in-

schedule
j j

sw

:acceptTR(j1,j2)
newTaskRegistered

acceppted

triggerSubmissionWorker

:clean()
clean

subsequentSubmission
:subsequentSubmission(j1,j2)

j

sw: init(j)
sw: new SubmissionWorker

j1 j2

j2j1

Fig. 6. The CRABServerWorker Net

frastructure, and for resubmitting jobs when a failure occurs. Failures can occur
for different reasons: network communication glitches, unavailable compatible
resources, etc. Some types of failures are recoverable and in those cases the Sub-
mission Worker automatically tries to resubmit the job a three times. This value
can be configured but in the model we report the default case set in the code.

F. Farina, M. Mascheroni: Nets Within Nets Paradigm and Grid Computing 33



fail

x

fail

task

task

fail

fail

task

task

task

task

task

task

task

task

task:csf()
:csf(task)

archive task

local action

delegate

local action

check input

submission

task

task:registered(j1,j2)
:mcsw(j1,j2)

toCSW

task

task

task

task

task

task

task

task

j

j:f()

j

j

j

j

j

j

j

j

j:f()
fail

j

21 3

[] [] []

:init(j)

j

j

j

j

j

j

j

submit

j

j

j:crs()
resubmit

j

j:f()

j:f()
fail

fail

fail

fail

j:s()

fail
j:f()

clean
:clean()

evaluateOutcome

listMatch

loadGridData

preSubmCheck

Fig. 7. TaskRegister and SubmissionWorker nets respectively

If the failure persists the job is permanently marked as failed. The net shown
on the right in Figure 7 is our model of the submission worker component. The
study of the synchronization between the job and the Submission Worker nets
allowed us to identify another bug in the code. The submission success transition
in the job net synchronizes with the submit Submission Worker’s transition. This
means that the CRAB Server marks the submission as successful just after the
interaction with the Grid. Actually the network latencies could delay the prop-
agation of the job failure message (b6) and, therefore, the correct rendezvous
should be enacted between submission success and evaluateOutcome.

It is relevant to observe that the approach followed for the modeling of the
CRAB Server submission chain is a particular case for a quite general class
of Grid systems. All the Grid middlewares rely on jobs that are represented by
finite state automata and that are concurrently managed by the different services
involved in the Grid. In addition, the intermediate action of a broker like the
CRAB Server is becoming a common pattern with the diffusion of scientific

34 PNSE’10 – Petri Nets and Software Engineering



gateways: programmatic portals that abstract the user applications from the
complexities of the distributed infrastructures acting as back end.

The adoption of the nets-within-nets paradigm has provided a natural and
effective way to model subtle interactions among the different net levels. It would
have required a significantly greater effort to discover the same problems with
a flat net approach. In the following subsection details about the process of
deriving the models from the documentation and the code are given.

4.4 Details on the model derivation process

The model was derived from the code by analyzing both the official documenta-
tion and the source code of the system. The Job net is directly built from the doc-
umentation. A finite state automata which describes the Job is reported explic-
itly. After that, simply by using pattern matching we analyzed the source code
relevant for the submission use case by searching for interaction with jobs. Each
source module is modeled as a net (e.g.: CRABClient, TaskRegister, CRAB-
ServerWorker etc), and the interactions with the Job nets are modeled using the
Renew uplink/downlink mechanism. A modification of the status of a job in
the code is modeled as a pair of synchronized transitions in the model itself: one
in the job net and one in the net that models the component changing the job
status.

To ensure that the model is an accurate representation of the software, we
made several task submissions with the CRAB tool and monitored the status
of the jobs during the evolution. The request parameters were set up so that
different behaviours of the system are tested. For example, jobs lacking of input
files, job submitted by users with expired credentials, and jobs killed before the
completion of task registration process are test cases that have been considered.
After that, we simulated each submission on the model, taking care that the
simulation of the status of the job net was consistent with the actual job status
in the system. These simulations were also useful for highlighting some bugs in
the code, as discussed in the previous Section.

5 Discussion

In the study we have just presented, a formal approach was used to validate
a system that has already been implemented. Simulating the behavior of the
system by means of a computer aided tool was what allowed us to find problems
in the implementation of the CRAB server. However, another great advantage
of modeling a system with formal methods is the possibility to apply automatic
analysis techniques to extract information about the system, like invariant anal-
ysis, and model checking.

In order to apply some of these techniques, the formal model must respect
specific prerequisites. For example, most algorithms for model checking a con-
current system require a bounded state space. Nets-within-nets models which
satisfy this last requirement are hypernets [2] and their generalization [4], which

F. Farina, M. Mascheroni: Nets Within Nets Paradigm and Grid Computing 35



can both be expanded to 1-safe Petri nets [3, 18]. This expansion guarantees the
possibility of applying all the analysis techniques of this well known class of Petri
nets to hypernets.

The first idea was to use such a class of nets to model the CRAB server,
but because of the absence of modeling limitations and verification features in
Renew, and because of the high complexity of the system, we preferred to
use a slighty more powerful version of hypernets. To come back to the class
of hypernets, having therefore the certainty that the state space is limited, the
following fixes are necessary:

– Transitions which create or delete tokens must be deleted in some way. For
example, transition crab -create of the CrabClient net cannot create an un-
bounded number of tasks anymore, but an input place which contains as
many tokens as the maximum number of allowed tasks must be added.
This is not a big problem. As a matter of fact the computers disks space is
limited, and consequently so are the number of tasks which can be created
by a user.

– Hypernets use a value semantics, which means that a net cannot have two
references to it. Nevertheless, in our model some transitions duplicate the
references to a net. Duplication of references is somehow dangerous if the
intention is to keep the state space bounded. Loosely speaking, the risk is
of an uncontrolled grow of the references of a net without a corresponding
deletion of these references. In our model the use of the value semantics can
be achieved by deleting these duplications of references, and using simple
tokens to communicate the intention to modify the referenced net.

Even though analysis of properties is not available with the current version
of the model because of the issues just discussed, the more practicality of the
reference semantics from a modeling point of view helped us finding several
design defects in the implementation of the CRAB server. In the future we plan
to restrict the model to a hypernet in order to be able to verify properties like
invariants, or to do model checking 1. In our opinion, as a first step it was
important to use a powerful formalism to avoid getting lost in the details of the
model, even though that meant sacrificing the analysis capabilities.

6 Conclusions

In this paper, we discuss a large scale Grid application used to perform dis-
tributed data analysis in High Energy Physics experiments. Because of the
complexity of the architecture, the software tool has been modeled using the
nets-within-nets paradigm in order to validate the correctness of its behavior.
In particular we considered the fundamental use case of the submission of user
data analysis to the Grid. Every component of the CRABServer involved in this
1 Restricting the model to hypernet is not the only way to have a limited state space,

but using hypernet you have a formal proof thank’s to the 1-safe expansion

36 PNSE’10 – Petri Nets and Software Engineering



use case has been modeled in the hierarchy of the nets and compared to the
behavior expected by its users.

From the analysis and simulation of the model a number of bugs and design
defects emerged. This has led the developers to improve the overall quality of
system implementation in the subsequent releases that the users now adopt. Two
groups of bugs have been identified: bugs related to wrong coding of the expected
behaviors and bugs where the specific adoption of nets-within-nets formalism has
highlighted synchronization problems among the entities .

In addition, the approach followed to model the CRAB tool set has shown
its generality in order to model most of the Grid applications in which an or-
chestration entity drives the nets representing both the finite state machines of
the jobs running on the distributed infrastructure and the services exposing the
resources themselves.

The class of nets used to model this system is a more powerful version of
hypernets, using the reference semantics instead of the value semantics, and
allowing creation/deletion of tokens. As discussed in Section 5, it is possible
to restrict the model to a proper hypernet by sacrificing its readability (some
places and transitions must be added). Then, by means of hypernets and their
expansion to 1-safe nets, it will be possible to use all the techniques defined for
the class of 1-safe nets for analyzing the system.

A plugin of Renew that allows to draw and to analyze a hypernet is being
developed. We plan to use this plugin to make automatic verification of properties
of the system.

References

1. Martin Alt, Andreas Hoheisel, Hans Werner Pohl, and Sergei Gorlatch. A Grid
Workflow Language Using High-Level Petri Nets. In Procs of the 6th Int. Conf.
on Parallel Processing and Applied Mathematics: PPAM05, pages 715–722, 2005.

2. Marek A. Bednarczyk, Luca Bernardinello, Wiesław Pawłowski, and Lucia
Pomello. Modelling mobility with Petri Hypernets. In Recent Trends in Alge-
braic Development Techniques, volume 3423/2005 of Lecture Notes in Computer
Science, pages 28–44. Springer Berlin / Heidelberg, 2005.

3. Marek A. Bednarczyk, Luca Bernardinello, Wiesław Pawłowski, and Lucia
Pomello. From Petri hypernets to 1-safe nets. In Proceedings of the Fourth Inter-
national Workshop on Modelling of Objects, Components and Agents, MOCA’06,
Bericht 272, FBI-HH-B-272/06, 2006, pages 23–43, June 2006.

4. Luca Bernardinello, Nicola Bonzanni, Marco Mascheroni, and Lucia Pomello. Mod-
eling symport/antiport p systems with a class of hierarchical Petri nets. In Mem-
brane Computing, volume Volume 4860/2007 of Lecture Notes in Computer Sci-
ence, pages 124–137. Springer Berlin / Heidelberg, 2007.

5. Carmen Bratosin, Wil van der Aalst, and Natalia Sidorova. Modeling Grid work-
flows with Coloured Petri nets. In Procs. of the 8th Workshop on Practical Use of
Coloured Petri Nets and CPN Tools: CPN 2007, pages 67–86, 2007.

6. CERN. Worldwide LHC Computing Grid. http://lcg.web.cern.ch/lcg/public/.
Accessed May, 2010.

F. Farina, M. Mascheroni: Nets Within Nets Paradigm and Grid Computing 37



7. Giuseppe Codispoti, Mattia Cinquilli, Alessandra Fanfani, Federica Fanzago, Fabio
Farina, Carlos Kavka, Stefano Lacaprara, Vincenzo Miccio, Daniele Spiga, and
Eric Vaandering. CRAB: a CMS Application for Distributed Analysis. IEEE
Transactions on Nuclear Science, 56(5):2850–2858, 2009.

8. Jordi Cortadella and Wolfgang Reisig, editors. Applications and Theory of Petri
Nets 2004, 25th International Conference, ICATPN 2004, Bologna, Italy, June 21-
25, 2004, Proceedings, volume 3099 of Lecture Notes in Computer Science. Springer,
2004.

9. Ian Foster and Carl Kesselman. The Grid 2: Blueprint for a New Computing
Infrastructure. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2003.

10. Ian Foster, Carl Kesselman, Jeffrey M. Nick, and Steven Tuecke. Grid services for
distributed system integration. Computer, 35:37–46, 2002.

11. Zhijie Guan, Francisco Hernandez, Purushotham Bangalore, Jeff Gray, Anthony
Skjellum, Vijay Velusamy, and Yin Liu. Grid-Flow: a Grid-enabled scientific work-
flow system with a Petri-net-based interface: Research Articles. Concurr. Comput.
: Pract. Exper., 18:1115–1140.

12. Kathrin Hoffmann, Hartmut Ehrig, and Till Mossakowski. High-level nets with
nets and rules as tokens. In Gianfranco Ciardo and Philippe Darondeau, edi-
tors, ICATPN, volume 3536 of Lecture Notes in Computer Science, pages 268–288.
Springer, 2005.

13. Andreas Hoheisel and Uwe Der. Dynamic Workflows for Grid Applications. In
Procs. of the Cracow Grid Workshop 03, page 8, 2003.

14. Michael Köhler and Berndt Farwer. Object nets for mobility. In Jetty Kleijn and
Alexandre Yakovlev, editors, ICATPN, volume 4546 of Lecture Notes in Computer
Science, pages 244–262. Springer, 2007.

15. Michael Köhler and Heiko Rölke. Properties of object Petri nets. In Cortadella
and Reisig [8], pages 278–297.

16. Olaf Kummer. Referenznetze. Logos-Verlag, 2002.
17. Olaf Kummer, Frank Wienberg, Michael Duvigneau, Jörn Schumacher, Michael

Köhler, Daniel Moldt, Heiko Rölke, and Rüdiger Valk. An extensible editor and
simulation engine for Petri nets: Renew. In Cortadella and Reisig [8], pages 484–
493.

18. Marco Mascheroni. Generalized hypernets and their semantics. In Proceedings of
the Fith International Workshop on Modelling of Objects, Components and Agents,
MOCA’09, Bericht 290, 2009, pages 87–106, September 2009.

19. The CMS Collaboration. The CMS Experiment at CERN LHC. J. Inst., 3:S08004,
2008.

20. The TLS Group. The Large Hadron Collider Conceptual Design. Technical report,
CERN, 1995. Preprint hep-ph/0601012.

21. Rüdiger Valk. Nets in computer organization. In Petri Nets: Applications and
Relationships to Other Models of Concurrency, volume Volume 255/1987 of Lecture
Notes in Computer Science, pages 218–233. Springer Berlin / Heidelberg, 1987.

22. Rüdiger Valk. Petri nets as token objects: An introduction to elementary object
nets. In Jörg Desel and Manuel Silva, editors, ICATPN, volume 1420 of Lecture
Notes in Computer Science, pages 1–25. Springer, 1998.

23. Rüdiger Valk. Object Petri nets: Using the nets-within-nets paradigm. In Lectures
on Concurrency and Petri Nets, volume 3098/2004 of Lecture Notes in Computer
Science, pages 819–848. Springer Berlin / Heidelberg, 2004.

24. Kees M. van Hee, Irina A. Lomazova, Olivia Oanea, Alexander Serebrenik, Natalia
Sidorova, and Marc Voorhoeve. Nested nets for adaptive systems. In ICATPN,
pages 241–260, 2006.

38 PNSE’10 – Petri Nets and Software Engineering



Verifying Reference Nets By Means of Hypernets:
a Plugin for Renew

Marco Mascheroni1, Thomas Wagner2, and Lars Wüstenberg2

1 Dipartimento di Informatica, Sistemistica e Comunicazione
Università degli Studi di Milano Bicocca
Viale Sarca, 336, I-20126 Milano (Italy)⋆⋆

mascheroni@disco.unimib.it
2 University of Hamburg,

Faculty of Mathematics, Informatics and Natural Sciences,
Department of Informatics

http://www.informatik.uni-hamburg.de/TGI/

Abstract. In this paper we examine ways to verify reference nets, a
class of high level Petri nets supported by the Renew tool. We choose
to restrict reference nets to hypernets, another nets-within-nets model
more suitable for verification purposes thanks to an expansion toward
1-safe Petri nets. The contribution of the paper is the implementation
of such analysis techniques by means of a Renew plugin. With this
plugin it is now possible to draw, and to analyze a hypernet. The work
is demonstrated by means of a simple example.

Keywords: Verification, High-level Petri nets, Reference nets, Hyper-
nets

1 Introduction

The verification of properties of a software system has become an important
part of software engineering. Especially specifications critical to the correct ex-
ecution of a software system need to be verified in order to guarantee them
after deployment. The problem of verification is its complexity and the effort
required for it. Without proper methods the verification itself is difficult, costly
and time-consuming.

In this paper we approach the general problem of verification with the help
of Petri nets. The formalism is deeply rooted within established theoretical and
formal methodologies, as well as being supported by a multitude of tools and
analysers. Petri nets have been studied in detail and contain properties, for which
established verification techniques exist. Using Petri nets the general approach
is to map and translate specific software issues and properties to these Petri
⋆⋆ Partially supported by MIUR, and DAAD



net properties. These properties can then be verified using the known Petri
net techniques. Assertions made for these can then be translated back for the
software behind it.

High level nets, Petri net models enriched with additional abstraction con-
structs, are well suited to represent complex systems due to their high abstrac-
tion constructs. One of their problems is that verification of their properties
is difficult. Properties which are computable with low-level formalisms become
undecidable, and thus cannot be verified anymore in some high-level models.
However, high-level formalisms can be restricted in some way so that they can
be translated into low-level formalisms, which in turn can be verified again. In
particular, the interest of this paper is on high level nets which use the nets-
within-nets paradigm, formalisms in which the tokens of a Petri nets can be
structured themselves as Petri net. The two formalisms analyzed are reference
nets, the formalism used as a basis for the Renew tool, and hypernets, another
nets-within-nets formalism with particular restrictions that allow the expansion
toward an equivalent 1-safe Petri nets. In this paper we will show how to trans-
late a subset of the high-level reference net formalism into hypernets, which in
turn can be easily translated into 1-safe nets. These can then be analysed by
existing toolsets. The main result of our work is the implementation of a Re-
new hypernet plugin which incorporates features for computing S-invariants,
and features for model checking a hypernet. As far as we know, this is the first
time that analysis techniques typical of Petri nets has been implemented in a
tool which support the nets-within-nets paradigm, and it is mature enough to
be used in a real application context. In the rest of the paper when we will talk
about invariants we are always referring to S-invariants.

The paper is structured into the following sections. Following this introduc-
tion the theoretical and technical background is shortly discussed in section 2.
This section will focus on the reference net and hypernet formalisms. In section 3
we will show how to translate reference nets into hypernets and determine the
prerequisites for analysis. Section 4 describes the Hypernet plugin created for
Renew. Section 5 gives a short example how these different tools are incorpo-
rated and used to analyse a given net. The conclusion of the paper is found in
section 6.

2 Background and related work

In this section we will introduce by means of examples the basic theoretical
formalisms used in this paper, as well as motivate why we have chosen them as
our means of verification and modelling. The interested reader can find them
in the cited references. In general Petri nets offer a simple way of modelling
concurrent behaviour of a system. Higher level nets often introduce abstractions
from the simple net models, which offer structures and methods not available to
or difficult to model in low-level Petri nets. One major such abstraction is the idea
of nets within nets, introduced in [11] for Object Petri nets. This paradigm allows
for arbitrary nets to be the tokens of other nets. In this way it is possible to model

40 PNSE’10 – Petri Nets and Software Engineering



the behaviour and interaction of different entities within a complex system, all
modelled with Petri nets. Using these formalisms to model and even implement
software systems is quite natural. Of course high-level Petri nets and especially
formalisms following the nets-within-nets idea are far more complex then the
relatively simple low-level Petri nets. This increases the effort and complexity
of verifying properties within these nets, which is the main motivation of this
paper.

In the following subsections we will describe the reference and hypernet for-
malisms.

2.1 Reference Nets and Renew

The reference net formalism serves as the starting point of our examinations. It
was described in [7]. It is a high level Petri net formalism based on the nets-
within-nets paradigm. In this formalism it is possible for tokens within a net to
be almost arbitrary objects and especially other Petri nets. Nets can then be used
like tokens within their respective so-called system net, but it is also possible
to let nets of different layers communicate with one another. The reference net
formalism uses reference semantics. This means that tokens within a net do not
exclusively correspond to their object/net (value semantics), but only reference
their object/net. As a result of this multiple tokens can refer to the same object.
This makes it possible to express complex systems in a natural way.

Communication between different net instances within the reference net for-
malism is handled via synchronous channels, based on the concepts proposed
in [5]. Synchronous channels connect two transitions during firing. Transitions
inscribed with a synchronous channel can only fire synchronously, meaning that
both transitions involved have to be activated before firing can happen. Dur-
ing firing arbitrary objects can be transmitted bidirectionally over the channel.
While the exchange of data is bidirectional there is a difference in the handling
of the two transitions. The transition, or more accurately the inscription of the
transition, initiating the firing is called the downlink. The downlink must know
the name of the net in which the other transition, the so-called uplink, is located.
The inscription of the downlink has the form netname:channelname(parameters),
in which the parameters are the objects being send and received during firing.
If the downlink calls an uplink located in the same net the net name is simply
replaced by the keyword this. The uplink’s inscription is similar, but looses the
net name, so that it has the form :channelname(parameters). Uplinks are not
exclusive to one downlink and can be called from multiple downlinks, so that
this construct can be used in a flexible way. It is also possible to synchronise
transitions over different abstraction levels. While during firing one downlink is
always linked to just one uplink, it is possible to inscribe one transition with
multiple downlinks, so that more than two transitions can fire simultaneously.

Figure 1 shows a simple example of a reference net system. The example
was modelled using the Renew tool, which will be described later. It models
a producer/consumer system, which holds an arbitrary number of producers
and consumers. The system consists of three kinds of nets: the system net, the

M. Mascheroni et al.: Verifying Reference Nets By Means of Hypernets 41



Fig. 1. Reference net example

producer nets and the consumer nets. The producer and consumer nets both
possess the same basic structure, but use different channels. The system net
serves as a kind of container for the other nets. The transitions labeled manual
initiate the creation of new producers and consumers by creating new tokens
when a user manually fires them during simulation3. The transitions labeled
C and P actually create new producer or consumer nets when firing. These
new nets are put onto the places below the transitions. The transition labeled
I synchronises the firing of a transition in one consumer and one producer each
(labeled I1 and I2 in the other nets). In this way it is possible to simulate
the behaviour in such a way, that whenever a producer produces a product an
arbitrary consumer consumes it. It is of course possible to enhance this model
by, for example, adding an intermediary storage, which can store items from
arbitrary producers until consumers need them. Another way of making the
model more realistic is to explicitly model the products as nets as well. That
way they would not just be simple tokens but actual objects being exchanged
via the synchronous channels between the producers and consumers. In this case
the parameters of the channels would be the nets, which would be transmitted
from within the producer nets into the consumer nets.

The Petri net editor and simulator Renew (The REference NEt Workshop)
was developed alongside the reference net formalism, and is also described in [7]
as well as in [8]. It features all the necessary tools needed to create, modify, simu-

3 This is a special function of the Renew tool, which was used for this example.

42 PNSE’10 – Petri Nets and Software Engineering



late and examine Petri nets of different formalisms. It is predominantly used for
reference nets, but can be enhanced and extended to support other formalisms.
It is fully plugin based, meaning that all functionality is provided by a num-
ber plugins that can be chosen, depending on the specific needs. Plugins can
encapsulate tools, like a file navigator or certain predefined net components, or
extensions to the standard reference net formalism, like hypernets or workflow
nets. Renew is freely available online and is being further developed and main-
tained by the Theoretical Foundations Group of the Department for Informatics
of the University of Hamburg. Since the tool supports the idea of nets within
nets and is flexible enough to support multiple formalisms, it was chosen as the
basic environment for the examinations of this paper.

2.2 Hypernets

As we will discuss later in section 3, we introduce hypernets in this paper be-
cause they have been used as a restriction of the reference nets formalism to
allow property verification in Renew. Hypernets are a nets-within-nets formal-
ism introduced to model systems of mobile agents [2]. After their introduction
several studies has been conducted on hypernets. In [3] it has been shown that
it is possible to expand a hypernet in a 1-safe Petri net in such a way that the
(hyper) reachability graph of the hypernet is equivalent to the reachability graph
of the 1-safe net. In [1] a class of transition system, called agent aware transition
systems, has been introduced to describe the behaviour of hypernets. In order to
model a class of membrane systems, a generalisation of the hypernet formalism
which relaxes some constraints of the basic formalism was introduced under the
name of generalised hypernet in [4], and a theorem proving the existence of an
expansion towards 1-safe nets for generalised hypernets was proved in [9].

Due to technical limitations in the Renew tool only the basic version of
the formalismi [3] has been implemented. Now we will informally discuss how
hypernets work by means of an example. From a structural point of view a hy-
pernet is a collection of (possibly empty) agents N = {A1, A2, ..., An}, which are
modelled as particular Petri nets. A state of a hypernet is obtained associating
to each one of the Ai agents (nets), but one, a place p belonging to one of the
other agents. That place will be the place which contains the agent Ai. This
containment relation induces a hierarchical structure which by definition must
be a tree. The root of the tree is the only agent which is not associated to any
place (this agent is the system net).

The system evolves moving agents from place to place. A peculiar character-
istic of hypernets is that the hierarchical structure is not static, but an agent
can be moved from a place p belonging to an agent Ai, to a place q belonging
to a distinct agent Aj . Another characteristic of hypernets is that agents cannot
be created or destroyed. To ensure this ”law of conservation of tokens” each net
representing an agent is structured as a set of modules which have the structure
of synchronised state machines, enriched with some communication places that
allow the exchange of tokens between two agents close in the hierarchy. Agents

M. Mascheroni et al.: Verifying Reference Nets By Means of Hypernets 43



and modules have a sort, and an agent can only travel along modules of the
same sort.

In Figure 2, and Figure 3 the hypernet modelling a slightly modified version
of the one seater plane case of study is drawn. This case of study has been
introduced in [3], and models an airport in which planes can do basic things like
landing, deplaning/boarding passenger, refuelling, and taking off. The changes
we made in regards to the number of travellers in the example, the simplification
of the safety refuel check and the part of the hypernet which makes sure a plain
is empty when it is being refuelled.

To keep the example simple we considered a version with a plane which has
only one seat. We choose to illustrate this example to show in an informal way
how hypernets works. Moreover, in Section 5 we will show how it is possible
to prove some properties of this simple example using the Renew plugin we
developed.

Fig. 2. Airport agent

The agent in Figure 2 models the behaviour of the airport. It has three mod-
ules, one for handling passengers, one for handling planes and one for synchroni-

44 PNSE’10 – Petri Nets and Software Engineering



sation purposes. Transition board belongs to both module passenger and module
plane, and can only be executed synchronously. The same applies for transitions
deplane and to_rf. Communication places are the dashed half circles. They can
either be up-communication places, used for communicating with the net at the
level immediately above in the hierarchy (such as the two communicating places
of the module plane in the airport agent), or down-communication places, used
to communicate with an agent located in another module of the current net
(such as the communication places in the synch, and passenger modules of the
airport). In the latter case, a name of a module is provided. In this module there
must be an agent ready to provide the traveling token which will be moved in
the hierarchy, otherwise the transition is not enabled.

For example, transition deplane of the passenger module in Figure 2 has an
input communication place which indicates that a token is expected. Since this
communication place is marked with the plane annotation, the traveling token
which is being moved to place l must be provided by a plane agent. This plane
agent must be located in the input place of transition deplane in module plane
of the airport, namely lg. In the example the only agent which can provide a
token is P1. The traveling token, which must be a passenger, is then selected

Fig. 3. The P1 plane agent shown in Figure 2

and taken from the seat place of the plane agent (Figure 3), and moved to l.
Transition to_rf is another example of use of communication places. From

the airport perspective it is only required that an agent located in the plane
module has a module synch containing with a transition to_rf preceeded and

M. Mascheroni et al.: Verifying Reference Nets By Means of Hypernets 45



followed by two up-communication places. This requirement is fulfilled by agent
P1, but from the P1 perspective it is also required the enabledness of the syn-
chronized to_rf transition in the module check-passenger. Therefore this con-
figuration to_rf is not enabled because freePlaces is not marked.

Hypernet being a high level net model means that the execution of a transi-
tion, like deplane, has several firing-modes [10]. Each firing-mode in a hypernet
is a called consortium, and is obtained by selecting a transition, a set of agents
that contain the transition, and a set of passive agents that will be moved as
shown in the previous example when the consortium fires. For example, one en-
abled consortium is the one we just discussed which moves the agent T 1 from
place seat of the plane, to place rf of the airport agent that we just discussed.
Another consortium is corresponding to agent T 2, which in the configuration
shown in the example is not enabled since T 2 is not located in place seat.

One of the most important features of hypernets is that they have a straight-
forward expansion towards a behaviourally equivalent 1-safe nets. This expansion
not only gives hypernets a precise semantics in terms of a well known Petri nets
basic model, but also guarantees the possibility to reinterpret on hypernet all
the analysis techniques developed for the basic model. The 1-safe net is built in
the following way:

– For each agent A, and for each place p in the hypernet a place named 〈A, p〉
is added in the corresponding 1-safe net. A token in this place means that
A is located in p,

– For each consortium Γ in the hypernet a transition named tΓ is added in
the 1-safe net,

– An arc is added from a place 〈A, p〉, to a transition tΓ if A is a passive agent
in Γ , and p is the input place from which the agent A comes.

– An arc is added from a transition tΓ , to a place 〈A, p〉 if A is a passive agent
in Γ , and p is the output place where the agent A is going to.

Finally, a place 〈A, p〉 of the 1-safe net is marked if in the initial configuration
of the hypernet agent A is located in place p.

For example, the one seater plane case of study we just discussed is translated
in the 1-safe net shown in Figure 4. Plane P1 can be in places lg, rf, bg in the
hypernet, thus the 1-safe net contains places 〈P1, lg〉, 〈P1, lg〉,〈P1, lg〉. The same
must be done for traveler agents, and for the CHK check agent. Since transition
deplane in the hypernet has two firing-modes, in the 1-safe net two transitions
which models each of the firing modes of deplane are added (for simplicity both
called deplane). The same has been done for transition board. The firing of a
transition in the 1-safe net exactly models what happens when a consortium
fires in the hypernet.

As already mentioned, it can be demonstrated that this net is 1-safe, and
has a reachability graph isomorphic to the one of the corresponding hypernet.
Details, formal definitions, and proofs discussed can be found here for hypernets
in [3], and in [9] for the generalization version.

46 PNSE’10 – Petri Nets and Software Engineering



<T1,seat>

<P1,rf>

<T2,l>

[]
to_rf to_bg

deplane board

[]

<T2,seat>

<P1,bg><P1,lg>

boarddeplane

<CHK,passenger>

<T1,l>
[]

<CHK,freeplaces>

[]

Fig. 4. The expansion toward 1-safe net of the hypernet in Figure 2 and Figure 3

3 Restricting Reference Nets to Hypernet

The main motivation for using high level nets is that, given a system, it is
possible to obtain a model of the system with an high level net which is smaller
compared to the model obtained using basic Petri nets. However, if you are not
careful, the increase of the modelling power decreases the decision power of the
model. For example, in [6] it was shown that, even considering a simple subclass
of reference nets with one system net, and several references to an object net,
the reachability problem becomes undecidable.

It is in this perspective that the implementation of the hypernet formalism as
a plugin of the Renew tool has been made. Restricting reference net is probably
the most intuitive way to use verification techniques in Renew. In particular,
the use of a nets-within-nets formalism like hypernets as a restriction permits
the use of the nets-within-nets paradigm, which is probably the most intresting
feature in Renew. The original contribute of the paper is to show how this
plugin allows the use of verification techniques, like invariants and CTL model
checking, to check properties of systems which are suitable to be modeled with
the the nets-within-nets paradigm.

M. Mascheroni et al.: Verifying Reference Nets By Means of Hypernets 47



4 The Hypernet Plugin

From a technical point of view the implementation of a new formalism in Renew
is done using a plugin mechanism. The most important method contained in the
classes implementing the plugin is a compile method which takes as input a
shadow net, a set of Java objects containing all the information about the net
the user has drawn in the graphical editor of Renew, and transform it in a set
of Java objects used by the simulator engine to simulate the net. This compile
method is responsible for checking that the net drawn by the user is an actual
hypernet in our case. In particular, in order to be able to use Renew as a
hypernet simulator, the arc and transition inscriptions used in the modeling
process must be restricted in such a way that the drawn net is a hypernet.
Therefore the restrictions applied in the plugin are the following:

– Inscriptions (tokens) inside places can only be in the following forms: iden-
tifier or identifier:netType. In the first case the identifier represent the name
of an empty net, and will be treated by the simulator engine as an black
token; in the second case a new instance of the net netType will be created
and placed inside the place.

– Inscriptions on arcs are restricted to single variables only. Each arc must
contain exactly one variable inscription.

– The inscriptions of input (output) arcs must not be duplicated. In this way it
is possible to preserve the identity of nets: duplication of tokens is forbidden.

– Balancing of transition has to be checked, i.e.: the set of variable names used
to inscribe input arcs must coincide with the set of variable names used to
inscribe output arcs.

– Communication places are deleted, and are simulated by means of syn-
chronous channels. These channels are counted when checking transition
balance.

For example, the airport agent shown in Figure 2 can be drawn as a hypernet
in Renew using the net shown in Figure 5. The traveler empty tokens are place
inscriptions T 1 and T 2, and the plane net instance is created by the P1 : place
inscription. Each transition is balanced. For example transition deplane in the
airport has a bidirectional arc labelled pl, and an output arc labelled pa for which
there is a correspondant downling, namely pl : deplane(pa). Each communication
place is deleted, and it is replaced with a synchronous channel. Land and takeoff
transitions are equipped with two uplink because they were connected to two
up-communication places. Deplane and board transitions contain two downlinks
because they were connected to down-communicating places. The module name
used to label communicating places is used to retrieve the variable name used
in the downlink.

The P1 agent of Figure 3 is drawn in the hypernet plugin of Renew with
the net in Figure 6. Again, up-communication places are replaced by channels,
and transition to_rf must synchronise with the corresponding transition in the
airport agent.

48 PNSE’10 – Petri Nets and Software Engineering



pl
:land(pl) :takeoff(pl)

plplplplpl

pa pa

pl

lg bg

l

rf

T2

pl:to_rf()

to_bg takeoffland to_rf

deplane board

pl

pl:board(pa)pl:deplane(pa)

P1:plane

Fig. 5. The airport agent drawn with the hypernet plugin of Renew

chk

pa:board(pa) :deplane(pa) :to_rf()

to_rfdeplaneboard

chk

pa

chk

chk

seat
T1

chk

CK

freeplaces

numPass

Fig. 6. The plane agent drawn with the hypernet plugin of Renew

As we already mentioned, thanks to the expansion to 1-safe nets it is possible
to use verification techniques defined for this class of net to analyse system
modelled with a hypernet. Two of the most useful techniques are invariants
analysis, and model checking. We explored two possibilities of using them in
the plugin we implemented: internal implementation in Renew, or exporting
the 1-safe net in a format understandable by other tools. Since implementing
these analysis techniques in an efficient way is a difficult task (some tools are
very elaborated, and have been implemented over several years), and since very
efficient open source tools are available for free, we decided to use external tools
to implement invariant analysis, and model checking of a hypernet.

In the following sections we will show how the extensions and incorporation
can be used in a practical example.

5 Example

The invariant analysis, and the model checking extensions we implemented
in Renew can be used to prove properties of a system. We have chosen the
external tools LoLA (see http://www2.informatik.hu-berlin.de/top/lola/
lola.html) and INA (see http://www2.informatik.hu-berlin.de/~starke/

M. Mascheroni et al.: Verifying Reference Nets By Means of Hypernets 49



ina.html) for analysing purposes. Starting from the hypernet example of Sec-
tion 2.2, we will prove using invariants that there is never more than one passen-
ger on the plane, and we will prove using the model checker that a plane never
refuels if there are a passenger on board.

By running the invariant analysis we get the following invariants:

T2@l T2@seat CHK@pass P1@lg P1@rf P1@bg CHK@freepl T1@seat T1@l
0 0 0 1 1 1 0 0 0
1 1 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 0 1 1
1 0 1 0 0 0 0 0 1
0 1 0 0 0 0 1 1 0

The first four invariants are those which guarantee the truth of “law of con-
servation of agents”, achieved thanks to the state machine decomposition in the
formalism. For each agent there is a corresponding invariant indicating the places
in which that agent can be located. Since the places of each invariant contains
only one token in the initial marking, it is mathematically proved that each agent
can be only in certain places: the places which are of the same sort of the agent
itself. Moreover, these four invariants can also be used to prove that the net is
1-safe: they cover all places of the net, and contain only one token in the initial
marking.

The fifth invariant is {〈T 2, l〉, 〈CHK,numPass〉, 〈T 1, l〉} and contains two
tokens in the initial marking. Together with the second and the fourth invariants
it can be used to prove that if the place 〈CHK,numPass〉 is marked then one
of the two passenger is seated on the plane. The place is not marked only if both
passenger are in the airport.

The sixth invariant is the counterpart of the fifth, and states that only one of
the following places can be marked: {〈T 2, seat〉, 〈CHK, freeplaces〉, 〈T 1, seat〉}.
The information is clear: only one passenger can be in the seat place of the plane.
If none of them is in the plane 〈CHK, freeplaces〉 is marked.

In Figure 7 a screenshot of Renew after the computation of invariants is
shown.

While invariants analysis can be launched, and the computed invariants can
be analysed to extract information about the system, in order to analyze the
system using model checking a formula specified in a temporal logic is needed.
Since we choose LoLA, which is a CTL model checker, we need to specify the
property we want to verify using this logic. For example, checking the property
“if the plane is located in the place representing the refueling station then no
passenger is on board” can be done by entering as input of the Renew plugin
we implemented the following CTL formula:

ALLPATH ALWAY S

NOT ((T 1.seat = 1 AND P1.rf = 1) OR (T 2.seat = 1 AND P1.rf = 1))

50 PNSE’10 – Petri Nets and Software Engineering



Fig. 7. A screenshot of the invariants computed inside Renew

The formula checks that in every reachable state (ALLPATH ALWAY S) the
situation in which both placed 〈T 1, seat〉 and 〈P1, rf〉 are marked never occurs
(and the same for places 〈T 2, seat〉 and 〈P1, rf〉). The analysis performed con-
firms that the truth value of the formula is true, which is enough to guarantee
that the property is true for the system.

As it can be seen in this simple example, the advantage of using model check-
ing is that it is possible to express, and consequently to verify, more properties
compared to invariant analysis. In our example, the information that a plane
never refuels if a passenger is on board is not present in the computed invari-
ants, but can be verified using the model checking. However, the drawback is
that it is necessary to explore the whole state space of the system in order to ver-
ify a property. Invariants are computed on the static structure of the net, which
is usually exponentially smaller compared to the state space of the system. In
general, in real huge application both the techniques are useful: invariants give a
quick overview of some properties of the system, model checking take more time
and it can be used to verify specific properties of the system.

6 Conclusion

In this paper we discussed the verification of high-level Petri nets which use the
nets within nets paradigm, with particular attention to the reference nets and
the hypernets formalisms. We examined them, and we showed how to transform
a subset of reference nets into hypernets, which in turn can be transformed
into 1-safe nets. We then proceeded to describe the hypernet plugin created for
Renew in the course of our work. With the help of this plugin and external tools
we can analyse the transformed low-level nets, and in this way verify properties
of the high-level net.

The contributions, and the results of this paper are the implementation of a
plugin for Renew with which it is possible to draw of a hypernet, to compute

M. Mascheroni et al.: Verifying Reference Nets By Means of Hypernets 51



its invariants, and to model check it. With this approach it is now possible to
verify properties of systems modelled with net within nets oriented formalisms,
such as reference nets and hypernets.

The results of this paper will make it possible to automatically analyse a hy-
pernet, instead of first transforming it by hand, and then analysing the equiva-
lent low-level nets. This will make the verification simpler and more user-friendly,
which in turn will make it easier for software engineers to use these techniques
in practical use cases. We plan to use these approaches to verify the model of
an actually adopted Grid tool for High Energy Physics data analysis, and in the
context of the HEROLD project. Future work will also focus on extending the
possibilities of the verification, automating the process as far as possible and
extending the toolset to other high-level Petri nets formalisms. The flexibility
and adaptability of the Renew tool will be a large asset in this endeavour.
Finally, the definitions of analysis techniques directly on the high level model,
without the need of converting it to a low-level one, is a subject for future in-
vestigations, because it will avoid the conversion to low-level nets, which is an
expensive operations in term of computational resources.

References

1. M Bednarczyk, L Bernardinello, W Pawłowski, and L Pomello. Modelling and
analysing systems of agents by agent-aware transition systems. In F. Fogelman-
Soulie, editor, Mining Massive Data Sets for Security: Advances in Data Mining,
Search, Social Networks and Text Mining, and their Applications to Security, vol-
ume 19, pages 103–112. IOS Press, 2008.

2. Marek A. Bednarczyk, Luca Bernardinello, Wiesław Pawłowski, and Lucia
Pomello. Modelling mobility with Petri Hypernets. In Recent Trends in Alge-
braic Development Techniques, volume 3423/2005 of Lecture Notes in Computer
Science, pages 28–44. Springer Berlin / Heidelberg, 2005.

3. Marek A. Bednarczyk, Luca Bernardinello, Wiesław Pawłowski, and Lucia
Pomello. From Petri hypernets to 1-safe nets. In Proceedings of the Fourth Inter-
national Workshop on Modelling of Objects, Components and Agents, MOCA’06,
Bericht 272, FBI-HH-B-272/06, 2006, pages 23–43, June 2006.

4. Luca Bernardinello, Nicola Bonzanni, Marco Mascheroni, and Lucia Pomello. Mod-
eling symport/antiport p systems with a class of hierarchical Petri nets. In Mem-
brane Computing, volume Volume 4860/2007 of Lecture Notes in Computer Sci-
ence, pages 124–137. Springer Berlin / Heidelberg, 2007.

5. Soren Christensen and Niels Damgaard Hansen. Coloured petri nets extended with
channels for synchronous communication. Lecture Notes in Computer Science,
815/1994:159–178, 1994. Application and Theory of Petri Nets 1994.

6. Michael Köhler and Heiko Rölke. Properties of object Petri nets. In Jordi Cor-
tadella and Wolfgang Reisig, editors, ICATPN, volume 3099 of Lecture Notes in
Computer Science, pages 278–297. Springer, 2004.

7. Olaf Kummer. Referenznetze. Logos Verlag, Berlin, 2002.
8. Olaf Kummer, Frank Wienberg, Michael Duvigneau, Jörn Schumacher, Michael

Köhler, Daniel Moldt, Heiko Rölke, and Rüdiger Valk. An extensible editor and
simulation engine for Petri nets: Renew. In J. Cortadella and W. Reisig, editors,

52 PNSE’10 – Petri Nets and Software Engineering



International Conference on Application and Theory of Petri Nets 2004, volume
3099 of Lecture Notes in Computer Science, pages 484 – 493. Springer-Verlag, 2004.

9. Marco Mascheroni. Generalized hypernets and their semantics. In Proceedings of
the Fith International Workshop on Modelling of Objects, Components and Agents,
MOCA’09, Bericht 290, 2009, pages 87–106, September 2009.

10. Einar Smith. Principles of high-level net theory. In Lectures on Petri Nets I: Basic
Models, volume Volume 1491/1998 of Lecture Notes in Computer Science, pages
174–210. Springer Berlin / Heidelberg, 1998.

11. Rüdiger Valk. Object Petri nets: Using the nets-within-nets paradigm. In Jörg
Desel, Wolfgang Reisig, and Grzegorz Rozenberg, editors, Advanced Course on
Petri Nets 2003, volume 3098 of Lecture Notes in Computer Science, pages 819–
848. Springer-Verlag, 2003.

M. Mascheroni et al.: Verifying Reference Nets By Means of Hypernets 53



54 PNSE’10 – Petri Nets and Software Engineering



Improving a Workflow Management System with
an Agent Flavour

Daniel Moldt, José Quenum, Christine Reese, and Thomas Wagner

University of Hamburg, Faculty of Mathematics, Informatics and Natural Sciences,
Department of Informatics

http://www.informatik.uni-hamburg.de/TGI/

Abstract. This paper discusses an application of software agents to
improve workflow management systems, with a practical emphasis on
Petri net-based systems. The properties of agent technology will be used
to gain advantages within the workflow management systems on both
a conceptual and practical level. In this paper we discuss the theoreti-
cal background of our work, the conceptual idea and approach and one
possible practical implementation. As a central practical means we use
reference nets, a high-level Petri net formalism. These nets are used to
model both agents and workflows, which results in a clean and natural
integration of both technologies.

Keywords: High-level Petri nets, workflow management systems,
multi-agent systems, software architecture.

1 Introduction

Workflows and Workflow management systems (WFMS) have been very attrac-
tive research topics in the last decades [13, 18, 16]. They provide means to further
understand, unambiguously specify and analyse business processes within organ-
isations. According to the state of the art, several heterogeneous WFMS can be
combined to perform a specific complex task that cuts across various organisa-
tions. While such a combination is currently possible in an ad hoc manner, a
more systematic approach demands greater care both from the modelling and
implementation perspectives. In this research, we set out to address this limita-
tion. This paper discusses the conceptual approach to achieve the overall goal.

Among the rising software paradigms, the concept of agent is a preeminent
one. In the last decade, agents have been touted as a most appropriate paradigm
to support the design and implementation of decentralised and distributed appli-
cations/systems, which yield intelligent behaviour and require a great deal of in-
teroperability. A decentralised application implies an application which consists
of autonomous entities. Clearly, these are among the properties one seeks while
developing an approach for interorganizational workflows. Therefore, agents can



contribute a great deal in our quest for a systematic approach for interorganiza-
tional workflows.

Using agents to design and implement distributed applications across a net-
work is not new in itself. However, the autonomy of the various subparts is
not well captured in the overall collaboration. As such, approaches of this kind
cannot be generalised for the design and implementation of collaborative appli-
cations across various organisations. Concepts such as workflows, which render
a clear view of business processes within organisations need to come into play.

Introducing agents in WFMS is not counterintuitive. By virtue of being au-
tonomous, sociable and intelligent, human agents and artificial ones share many
similarities. Moreover, human agents’ operational mode can be viewed as a set
of independent yet interoperable entities. From that angle, a human agent can
be viewed as an agent system. Finally, since human agents have to coordinate
the various tasks they are involved in at a certain point in time, they can be
regarded as a WFMS. We take this human analogy, especially its duality, to
show that both, agents and workflows, can be joined in a complex system.

As discussed in the foregoing, WFMS can benefit from agents in various
regards. In this paper, we discuss seven points where agents help enhance the
level of management in interorganizational workflows. These include distribu-
tion, autonomy, interoperability and intelligence. In order to make the resulting
approach appealing to new technologies, we structure our assumptions and ideas
into a reference architecture, which we believe lays the foundation for more spe-
cific and advanced architectures to support collaboration within and between
organisations. We do not claim that our current implementation is as powerful
as the existing commercial tools. However, thanks to the Petri nets formalism,
our implementation holds the potential to properly handle concurrency, robust-
ness and resilience in the future.

The contributions discussed in this paper are a clearer articulation of ideas
and intuitions presented in [20–22]. More than all these papers, we elaborate on
the underpinnings of the conceptual role agents can play in the new approach.
Finally, we discuss the implementations.

The remainder of the paper comes as follows. Section 2 describes the technical
and theoretical background of our work. Section 3 gives an overview of our
overall architecture. Section 4 examines the conceptual view of our approach,
while Section 5 discusses one implementation of our approach. Finally, Section 6
draws conclusions and directions for the future.

2 Frameworks & Formalisms

In this research, MASs are designed following Mulan’s (MULti-Agent Nets)
structure [11, 23]. Mulan has been extended with Capa (Concurrent Agent
Platform Architecture) in order to comply with Fipa’s (Foundation for
Intelligent and Physical Agent (see http://fipa.org)) (communication) standards
to support concurrent execution [4]. Mulan and Capa describe the various com-
ponents of a MAS using reference nets, which can be executed using the Re-

56 PNSE’10 – Petri Nets and Software Engineering



new (REference NEts Workshop (see http://www.renew.de)) tool. The reader
should thus note that not only do we offer a formal ground to reason about the
behaviours of agents, but we also provide an execution environment for MAS.

Inspired from the nets within nets concept introduced by Valk [25], Mulan’s
structure is a four-layer architecture used to describe a MAS. These layers re-
spectively describe the overall MAS, the agent platforms, the agents and their
behaviour, the protocols. Every layer within Mulan’s reference architecture is
modelled using reference nets, a high level Petri net formalism which will be
discussed later.

In order to adhere to Fipa’s standards, and especially the communication
mechanisms, Mulan has been extended with Capa. In so doing, Capa agents
can easily interact with any type of Fipa compliant agents.

Each of the key concepts in this paper, agent and MAS on the one hand and
workflows on the other hand, is represented using a Petri net formalism. Agents
and MAS are represented using reference nets, while workflows and WFMSs
are represented using workflow nets implemented as a special kind of reference
nets. Reference nets have been introduced in [15]. They follow the philosophy of
nets within nets. Reference nets use Java as an inscription language, manipulate
various types of data structures, and like many other types of high-level Petri net
formalisms, offer several types of arcs. Finally they use synchronous channels to
synchronise with other nets or Java objects. The treatment of Java objects and
net instances is transparent, so that both kinds of artefacts can be exchanged
arbitrarily. The workflow nets used in our systems are based on principles of
workflow nets introduced in [26]. They are implemented as reference nets and
make use of a special task transition introduced in [9]. Moreover, in the Petri net
community, tool support is a general trend. Therefore, the Renew tool has been
developed to support quick prototyping of systems or parts of systems using the
reference net formalism. Renew provides an editor to specify and draw the nets
as well as a simulation engine to test and validate them.

3 Overall architecture

The results we present in this paper are part of a larger ongoing effort. The
systems described in the next sections can be classified within the overall archi-
tecture described in [19]. The goal of this architecture is to integrate agent and
workflow technologies. The architecture consists of five tiers, built on top of each
other. Each tier itself is a layered architecture, which combines various aspects
of both technologies. Starting from either a pure workflow or agent system, the
architecture gradually evolves into a novel integrated unit system, which equally
benefits from both original concepts. The main motivation in building this ar-
chitecture lies in the shortcomings of each individual concept as is discussed in
detail in [19] and [28]. In short, agent technology struggles with offering a clear
behavioural view of large distributed systems, but can describe the structure
of such a system in a natural way. Workflow technology can easily describe the
behavioural view of a complex system, but struggles with the structural view.

Moldt et al.: Improving a WfMS with an Agent Flavour 57



Fig. 1. Architecture of the first tier of the overall architecture, modified from [19]

In combining both technologies we can integrate the views offered by both into
one new system which supports both a clean structural and behavioural view. It
should be explained that the notion of tiers in this architecture denotes a kind
of step-by-step refinement/enhancement on the way to the overall goal of inte-
gration. The tiers can be viewed as the layers of the overall abstract architecture
but they do not correspond to layers within a concrete architecture. Each tier
modifies the structure of its own layered architecture compared to the previous
tier and in doing so enables new or improved aspects to be used. We will now
shortly discuss the five tiers of the architecture.

First Tier The first tier is our starting solution to address the limitations of both
technologies. It involves either a pure agent management system (AgMS) or a
WFMS. Such systems exclusively use workflow or agent technology to provide
their functionality. This means that there is almost no integration between the
two. Because of this, the architectural view of this tier (see Figure 1) offers only
two layers. The bottom depicts the adopted management system (either agent or
workflow), on top of which an application lies. Examples of systems, which can
be classified into this tier, are Mulan and Capa on the agent side and WFMS
like ADEPT (see [3]) or WIFAi (see [24]) on the workflow side.

Second Tier In the second tier, one of the paradigms is used to realise the other.
In other words, we use agents to design a WFMS, and vice versa. Because of this,
there are two variants of the second tier (agents in the background or workflows
in the background). The architectural view of this tier (see Figure 2) offers three
layers. The topmost layer still represents an application but between the bottom
management system and the application an intermediate layer has been added.
This layer implements a management system for the alternative concept using
the functionality of the bottom layer. For example, if the bottom layer is an
AgMS, then the intermediate layer is a WFMS based on agents. The application
layer of this tier uses only the concept provided by the intermediate layer.

Building on the first tier the second tier can be achieved by designing the
application within the first tier to be the required management system. On top
of that management system another application can then be built, turning the
application layer of the first tier into the intermediate layer of the second tier.

58 PNSE’10 – Petri Nets and Software Engineering



Fig. 2. Architecture of the second tier of the overall architecture, modified from [19]

Compared to the first tier, the advantage is that one can perceive an inte-
gration of the concepts. However, the available constructs only affect the back-
ground instead of being directly available in the application layer. For example,
distribution, interoperability, etc. are facilitated in WFMS using agents.

In the remainder of this paper, the higher level tiers will only be based on
the variation using agents in the background, i.e. the one including an AgMS,
an agent-based WMFS (AgWFMS) and an application. Examples for these kind
of systems are detailed in [6], [7] and [10].

Third Tier The third tier greatly enhances the application development by em-
ploying both agents and workflows. This results in an arbitrary degree of inte-
gration between agents and workflows. In addition to the interface between the
application and intermediate layer, this tier allows direct access from the ap-
plication layer to the bottom management system. In practice, the application
can thus use both the interfaces offered by the core AgMS and the AgWFMS.
Consequently, the key functionality of the AgMS is then combined with that
of the AgWFMS. The architectural view of this tier (see Figure 3) only adds a
direct connection between the application and the bottom layer, compared to
the second tier. While this additional connection is a clear advantage over the
previous tier by expanding potential and flexibility, it suffers from a major lim-
itation. The resulting system is completely unstructured, i.e., the relation and
integration between agent and workflow needs to be potentially re-invented for
each application. Consequently it becomes very difficult to harness the power of
this tier, especially the efficient design of complex systems. In order to reach a
structured integration of both concepts within the architecture, we need to take
one step back and limit the immense possibilities offered by this tier.

Fourth Tier The fourth tier adds an integration layer to the architecture, which is
responsible for restricting the possibilities of the third tier in order to provide an
explicit structure for the application developed on it (see Figure 4). Through this
integration both technologies are used in the background and the relationship
between agents and workflows is pre-defined. However, only one perspective is

Moldt et al.: Improving a WfMS with an Agent Flavour 59



Fig. 3. Architecture of the third tier of the overall architecture, modified from [19]

supported when modelling on the application layer. In this way it provides an
abstraction and thus a higher level of modelling.

In order to achieve the desired explicit structure, this tier basically reduces
the functionality offered to the application layer compared to the third tier. It
refocuses on either agents or workflows as the exclusive main abstraction for
application development. There are once again two distinct variations of this
tier, one offering agents to the application (called workflowagents ; left hand side
of Figure 4), the other one offering workflows (called agentworkflows ; right hand
side of Figure 4). The integration layer provides exclusively WFMS or AgMS
functionality, but uses both technologies in the background. This means that an
agent application possesses parts and aspects of workflows and vice versa (in the
other variation). In this way the possibilities of this tier are, opposed to the third
tier, restricted, because we refocus on just one technology. But by doing this,
we gain a much more powerful means of supporting one of the two technologies.
The integration of both variations will take place in the fifth tier. For now we
need both variations in order to create the desired structure within the relation
between agents and workflows in both directions separately.

It is worth noting that, even though we are looking at either workflows or
agents at the top layer again, the main difference between this tier and the
second tier is that we no longer have one concept realising the other. Rather,
we obtain a successful combination of both, i.e., agents and workflows working
side by side and benefiting from each other. The agentworkflow variation of this
tier is the main focus of this paper and will be discussed in detail in the main
sections.

Fifth Tier This tier introduces the concept of unit, an abstraction to any entity
involved in the design of the system. Units offer both the facets of agents and
workflows. In order to achieve this, the AgMS and WFMS have to be integrated
and combined. This results in a novel type of management system, a unit man-
agement system (UMS). The architecture of this tier can be seen in Figure 5. The
integration layer of the fourth tier has been split into two parts, of which UMS
represents the upper part. Since one can no longer clearly differentiate between

60 PNSE’10 – Petri Nets and Software Engineering



Fig. 4. Architecture of the fourth tier of the overall architecture, modified from [19]

Fig. 5. Architecture of the fifth tier of the overall architecture, modified from [19]

agents and workflows, the application layer is simply called unit application, also
referred to as agent/workflow applications in [19]. In merging both agent and
workflow concepts into a single unit concept, both the structural view (from the
MAS) and the behavioural one (from the workflows) are available. Note that
both these views are available during runtime and design time.

4 Conceptual View

In this section we will discuss our conceptual approach to improving workflow
management with agent technology. As stated before our goal is to use aspects of
software agents to benefit the execution and management of workflow instances.
Because we use agents to improve workflows we generally refer to this approach
as agentworkflows. We reason that common properties of agents, like mobility,

Moldt et al.: Improving a WfMS with an Agent Flavour 61



autonomy and proactivity, and especially the encapsulation of workflow instances
through agents can greatly benefit workflow execution. Having agents in general
handle aspects of workflow management can also help distribute the execution
in order to spare less powerful resources.

As mentioned before this particular work is just part of a larger effort to
integrate workflow and agent technologies in order to achieve a novel approach
that combines the advantages of both technologies. The work presented in this
paper focuses on the fourth tier of the overall architecture (see Section 3). We
discuss the variation of the fourth tier, in which the integration layer offers a
WFMS to the application layer. This WFMS strongly relies on the functionality
of the AgMS in the background in order to provide its own functionality. This
means that the workflows offered to the application possess some properties
gained from the agents. How this can be achieved will be discussed in this section,
as well as the advantages and disadvantages of this approach,.

One of the core ideas behind our approach is to encapsulate workflow in-
stances through autonomous software agents. With this it is possible to transfer
properties of that software agent directly to the workflow instance. In other
words the clear separation between agent and workflow begins to diminish. This
is a key concept of the overall architecture and is important for the fifth tier.
Another important aspect of our approach is to also consider other entities of the
workflow management system as agents. Having the general functionality of the
WFMS be provided by agents is already part of an AgWFMS of the second tier.
In our approach agents can be used to realise any of the elements (e.g., tasks,
users, resources, etc.) of the workflow as well. In [17] for example, we used agents
to realise activities. Thanks to the agent technology, the resulting WFMS does
not only focus on the behaviour of the system, as was the case in the previous
tiers of the overall architecture, it also emphasises the structure of the system.
This paper focusses on the aspect of encapsulating workflow instances through
agents. Other aspects are considered but will not be discussed in great detail.

We will now examine some of the principal and conceptual areas and aspects
in which workflows can benefit from agents. The following points will directly
cover some agent properties and their particular benefits but will also include
some general observations.

Encapsulation In general the encapsulation of one or more workflow instances
through agents can be seen as a prerequisite to opening up many of the
possibilities offered by the agent-oriented paradigm. Without this concept
it would be hard or impossible to transfer other agent properties over to
the workflows. Nonetheless the encapsulation also benefits the workflows in
more ways than that. For example the encapsulation provides the workflows
with an even clearer identity within the overall system since they can now
be identified in the same way as the other elements (agents) of the system.
This makes it easier to monitor, observe and analyse the system, which in
turn makes maintenance and improvement more efficient. A disadvantage of
the encapsulation is that the number of agents active is possibly, drastically
increased, depending on how the encapsulation is handled. This may pose

62 PNSE’10 – Petri Nets and Software Engineering



problems on less powerful systems, which simply cannot handle this number
of agents or the communication between them. However, since agent archi-
tectures are generally built to efficiently handle communication, this should
not pose a real problem in practical use.

Mobility By allowing workflows to gain agent mobility they benefit in a vari-
ety of possibilities. In the context of software agents mobility describes the
capability of a software agent to discontinue its execution within one exe-
cution environment (agent platform), migrate to another environment and
continue the execution there starting off from its previous state. For agent-
workflows this means that the execution of a workflow can be discontinued
on one instance of an executing WFMS and continued on another WFMS.
Practically this can be used if certain resources needed for the execution of
a workflow are not available on every platform. This can include particular
(groups of) users or certain, possibly critical data. Another use case for this
property is to have a workflow instance migrate not because certain resources
are needed, but because its home platform is beginning shutdown or because
another platform carries less of a load then the home platform. This use of
mobility can lead to improved flexibility, efficiency and fault tolerance.

Autonomy One of the key concepts of the agent paradigm is that agents are
autonomous entities. This means that, to a certain degree, they are indepen-
dent of their environment and can choose for themselves whether to execute
an action or not. In the context of agentworkflows this property can be used
in a number of ways. It can for example be used as a kind of access control
to critical data for which an agent is responsible. This can be a workflow in-
stance but also other entities like activities or the handling of users. Another
use of this becomes relevant if combined with mobility. An agent migrating
to another platform to access certain data or perform certain actions can do
this relatively independent from the other agents and software constructs of
that platform, if, of course, it has all the necessary permissions.

Intelligence Intelligence in software agents can be used to describe a multitude
of aspects. One major aspect is the ability of certain agents to proactively
decide by themselves which actions to take. In the context of workflow man-
agement this can be used to predetermine which users should be offered cer-
tain tasks, taking variables like workload into consideration. At this point
reactivity of agents also comes into play. Software agents can react to events
in their environment and adapt according to the situation. For example if
there is an error during the execution of a task the agent could observe this
and retry the action with changed parameters. Another very interesting as-
pect where intelligence, proactivity, reactivity and adaptiveness can be used
is the adaptivity of workflow instances. Changing workflow instances and
even entire workflow definitions according to changed circumstances (cur-
rent or permanent) improves the flexibility and versatility of a WFMS and
can be handled in a natural way using agent intelligence.

Distribution The agent oriented paradigm naturally supports the design of dis-
tributed software systems. The main reasons for this are the asynchronous
message communication and the autonomy of the individual agents. By re-

Moldt et al.: Improving a WfMS with an Agent Flavour 63



lying on agents as the main building blocks of a WFMS it is easy to use
these predispositions for the distribution of the system. The communica-
tion of different parts of the system can be handled through asynchronous
messages, which are flexible and versatile. Extending on this idea opens up
even more possibilities of using distribution to the advantage of workflows.
Interorganizational workflows can benefit from a distributed WFMS, so that
their critical information is not stored in some centralised location.

Interoperability The Fipa communication standards are accepted by many
widely-used agent frameworks. Adhering to these standards guarantees in-
teroperability between the different involved software systems, independent
of agent architecture or framework. This can be translated into workflow
management based on agents as well. In this case different WFMS of dif-
ferent providers can work together, as long as they can process the data
structures that are exchanged. This aspect is especially important in the
context of interorganizational workflows since it allows some freedom for the
choice of the different WFMS in the different companies. But also in general
use cases interoperability can be used to an advantage. A Fipa-compliant
WFMS can request data from any other Fipa-compliant system, which im-
proves the possibilities of the WFMS. Another aspect which is related to
this and distribution, is the openness of the system. Through interoperability
and distribution it is possible to create flexible and dynamic open systems
to which different WFMS can connect to, complete some tasks, and then
disconnect again. Open systems can provide users with functionality that is
otherwise difficult to obtain without specialised software solutions.

Structure This point is related to the motivation behind our overall architec-
ture. As described, we reason that workflow systems have trouble adequately
describing the structure of the system they are modelling, while focussing
on the behaviour. Agent systems on the other hand possess a strong focus
on this structure. By joining the two in the ways described in this paper
we begin to combine this structural view given by the agents with the be-
havioural view of the workflows. This is mostly related to the encapsulation
aspect discussed above, but contains a more abstract view. By relying on
agents one can easily describe the current state of an entity including its
current location (in regards to distribution), knowledge and behaviour. By
adapting this for workflow instances it can already help provide the struc-
tural view needed within a distributed system. If the agentworkflow idea is
taken even further and every aspect of the system modelled through agents
the structural view becomes even more useful. The location (in regards to
distribution) of every resource, user and workflow can be determined and
displayed in a way that helps monitoring and maintaining the system.

It should be noted that all these properties only unfold their full poten-
tial if used in combination. Every one of these properties and aspects possesses
some benefits but together with the others new and improved possibilities can be
achieved. For example using mobile agents in a distributed environment of many
interoperable agent platforms is more advantageous then forcing the same agent

64 PNSE’10 – Petri Nets and Software Engineering



system onto all involved partners. Equally an autonomous, intelligent agent can
decide for itself if a migration is reasonable or not and initiate the action accord-
ingly. Using these properties together also strongly improves interorganizational
workflow management and execution. While interoperability and distribution
already favour this field, the other properties are also useful, especially in col-
laboration. For example mobility allows for the transmission of data in a natural
way, while encapsulation allows for the clear separation of critical data.

The main disadvantage of our approach is that the realisation and handling
of these improved workflows are more complex than handling regular workflows.
The reason for this is mainly that the new and improved possibilities will be
difficult to harness. It can, if used in the wrong way, affect execution in a negative
way or even, in the worst case, prohibit correct execution at all. However, if
used correctly and efficiently, they offer clear, distinct advantages to workflow
execution in general. They offer novel ways of modelling many parts of workflows
and can increase efficiency in use.

After discussing the conceptual view in this section we have shown that our
approach offers many advantages, but is difficult to realise and handle. For the
realisation part we have chosen technologies based on Petri nets. One problem of
the conceptual approach is that different kinds of entities (agents and workflows)
have to be combined. By choosing Petri nets as a common basis we can partially
circumvent this problem, since it is easier to combine the two kinds of entities
when they possess the same basis at the lowest level. On the other hand this
choice has the problem of not being widely spread and available. However, certain
aspects, like concurrency and displaying behaviour, are very easy to model using
Petri nets. In the next section we will discuss one prototypical implementation
of our conceptual approach using Petri nets, which already covers some of the
properties described in this section.

5 Implementation

In this section we will discuss a prototypical implementation of our agentwork-
flow approach. As mentioned before we use Petri net based technologies to
achieve a common basis for the integration and combination of workflow and
agent technologies. In particular we use Mulan and Capa for our agents and
workflow nets for our workflow functionality (see Section 2). The starting point
of the practical work is an AgWFMS of the second tier of the overall architec-
ture. This AgWFMS has been described in detail in [27]. It relies solely on agents
to provide the functionality but does not mix the agent and workflow concepts
enough to be considered an agentworkflow system.

Before going into the details of the implementation we will shortly discuss
how the different properties observed in the conceptual section can be mapped
onto Petri nets. Since discussing these aspects in a reasonable extent would go
beyond the scope of this paper and since extensive work on this has already been
performed and published we will limit this to referring to other contributions.
The mobility aspect has been extensively studied, especially in the context of

Moldt et al.: Improving a WfMS with an Agent Flavour 65



Fig. 6. Principle approach of the S-AgWf

nets within nets, for example in [2] and [12]. The autonomy and intelligence
of Petri net agents have been discussed in the context of Mulan in [23]. The
encapsulation aspect has been examined for object-oriented nets in [1]. Interop-
erability and openness have been explored in [14]. The final aspect, the structural
view of combining agents and workflows, was discussed in [19].

The practical approach, called structure-agentworkflow (S-AgWf), extends
the regular AgWFMS (now called AgWFMS*) to allow for the definition and
execution of distributed workflow instances. More precisely, the workflow in-
stances are now hierarchical workflows with nested subprocesses as defined by
the WfMC (see [8]).As a consequence the entire system consists of a number of
Capa platforms, which all execute instances of the extended AgWFMS* and are
working together. The different AgWFMS* instances are known to one another
and messages can be exchanged between them. A more detailed description of
the S-AgWf approach can be found in [28].

The basic principle of the S-AgWf can be seen in Figure 6. One agent encap-
sulates one workflow instance. This agent, called structure-agent, possesses an
internal workflow, the structure-workflow. When the structure-agent for a new
workflow instance is started, it receives the definition of the structure-workflow
from the database agents of the AgWFMS* and instantiates the workflow net.
When this initialisation is finished, the execution of the structure-workflow
automatically begins. The tasks of the structure-workflow correspond to sub-
workflows. Sub-workflows can only be executed on certain AgWFMS* instances

66 PNSE’10 – Petri Nets and Software Engineering



within the overall system. The information about which AgWFMS* instance
is suitable is stored within the data of the task and can be extracted by the
structure-agent. Whenever a task becomes active, the structure-agent assigns it-
self as the executor of that task. Once this is done the structure-agent queries a
special agent of his own platform for a list of all the known AgWFMS* instances
currently active. It then compares this list to the information extracted from
the task and chooses a suitable AgWFMS* instance. The interface-agent of the
chosen instance is then contacted by the structure-agent. The structure-agent
asks the interface-agent to instantiate the subworkflow locally and transmits all
relevant parameters, like input data etc. The subworkflow is then executed like
any other workflow in the regular AgWFMS. Once it has reached the end of its
execution the responsible structure-agent is informed and any (optional) results
are sent back. The results are transmitted into the structure-workflow net and
the structure-agent completes the task, so that the execution can continue. The
execution of tasks and subsequent instantiation and execution of sub-workflows
is continued, until the end of the structure-workflow is reached. The initiator of
the overall workflow is then informed and the structure-agent can terminate.

In the example in Figure 6 two sub-workflows are currently executed on
the two different AgWFMS* platforms. The structure-agent responsible for the
structure-workflow is communicating with the agents of the two AgWFMS*
platforms in order to initiate the execution and receive results. When both
sub-workflows are finished the structure-agent will start a final sub-workflow
(SubWF C ), before it can conclude the execution of the structure-workflow.

This realisation of the agentworkflow concept offers distinct and practical ad-
vantages, but also still suffers from some limitations. The possibility to distribute
the execution of workflows is a huge advantage for the otherwise centralised Ag-
WFMS. The support of nested subprocesses allows for interorganizational work-
flows to be defined and executed. Since the details of the local workflows are
not needed globally, the sub-workflows and any critical data they may contain
are only known to the local parties. This satisfies the need of interorganizational
workflows to secure and conceal confidential and valuable information.

The main limitation of this particular, specialised implementation of the
agentworkflow concept is its still centralised nature. If the platform of the
structure-agent is disconnected or fails, the entire workflow fails. This could
partially be rectified by adding mobility to the structure-agent. It can then eas-
ily migrate to another platform, if it discovers any changes in its home platform
that might hinder its execution.

The pre-defined relationship between agents and workflows within this sys-
tem combines the structural aspect of agents with the behavioural aspect of
workflows as is the goal in the fourth tier of the overall architecture. The
two concepts agent and workflow begin to merge together, since in this sys-
tem a workflow is an agent and partly vice versa. The practical advantages
this particular system gains from this merge mostly consist in a groundwork for
further enhancements. Agent autonomy may for example be used to give the
structure-agent more control over the workflow instance (e.g. choice over where

Moldt et al.: Improving a WfMS with an Agent Flavour 67



sub-workflows are executed), which could result in added flexibility. However the
instances within the S-AgWF system already possess certain degrees of distri-
bution (structure-agents communicate with other AgWFMS* platforms in order
to execute their structure-workflow), interoperability (the structure-agents ex-
change FIPA-compliant messages so it is possible to exchange the AgWFMS*
platforms with other WFMS if they adhere to the interface) and encapsulation
(the structure-workflow is clearly encapsulated by the structure-agent).

6 Conclusion

In this paper, we made a strong case for a systematic introduction of the agent
concept to enhance the management of workflows. We pointed out key aspects
in which agents improve workflows and their management.

In our quest to develop a systematic approach to support workflow manage-
ment, we proposed a reference architecture, which builds on an integration of
agents and WFMS. The architecture consists of five distinct tiers. These dif-
ferent tiers gradually show how the agent concept first integrates into WFMS
and then enhances them on the various aspects we discussed above. This effort
culminates in the fifth tier, where both concepts exist alongside each other. As
stated in the foregoing, our overall goal in this research is to achieve a seamless
integration of agents and WFMS. In this paper, we presented an approach which
builds on the agent technology to address WFMS. However, the other variant
of the fourth tier, the workflowagents, needs to be considered as well. In it, the
main abstraction of the application layer are agents, which strongly rely on the
functionality of the WFMS in the background to address the inherent limita-
tions to an agent-based system. Clearly, following that perspective, a WMFS
could for example bring its systematic and proof-driven approach to complex
task execution. In the future, we wish to explore that perspective as well.

From the lessons learned from both approaches, we expect to collect the
amount of information that enables us to design a full-fledged conceptual ap-
proach which offers the best of both agent and workflow technologies in one
single system, i.e. the fifth tier. Such an approach will balance out the weak-
nesses of each technology. With the support of high-level Petri nets as a foun-
dational formalism, we are guaranteed of combining structure and behaviour in
one representation.

References

1. Ulrich Becker and Daniel Moldt. Objekt-orientierte Konzepte für gefärbte
Petrinetze. In Gert Scheschonk and Wolfgang Reisig, editors, Petri-Netze im Ein-
satz für Entwurf und Entwicklung von Informationssystemen, Informatik Aktuell,
pages 140–151, Berlin Heidelberg New York, 1993. Gesellschaft für Informatik,
Springer-Verlag.

2. Lawrence Cabac, Daniel Moldt, Matthias Wester-Ebbinghaus, and Eva Müller.
Visual Representation of Mobile Agents – Modeling Mobility within the Prototype
MAPA. In Duvigneau and Moldt [5], pages 7–28.

68 PNSE’10 – Petri Nets and Software Engineering



3. Peter Dadam, Manfred Reichert, Stefanie Rinderle-Ma, Kevin Göser, Ulrich Kre-
her, and Martin Jurisch. Von ADEPT zur AristaFlow BPM Suite - Eine Vision
wird Realität: "Correctness by Construction" und flexible, robuste Ausführung von
Unternehmensprozessen. EMISA Forum, 29(1):9–28, 2009.

4. Michael Duvigneau. Bereitstellung einer Agentenplattform für petrinetzbasierte
Agenten. Diploma thesis, University of Hamburg, Department of Computer Sci-
ence, Vogt-Kölln Str. 30, D-22527 Hamburg, December 2002.

5. Michael Duvigneau and Daniel Moldt, editors. Proceedings of the Fifth Inter-
national Workshop on Modeling of Objects, Components and Agents, MOCA’09,
Hamburg, number FBI-HH-B-290/09 in Bericht. University of Hamburg, Septem-
ber 2009.

6. Lars Ehrler, Martin Fleurke, Maryam Purvis, and Bastin Tony Roy Savarimuthu.
Agent-based workflow management systems (WfMSs) - JBees: a distributed and
adaptive WfMS with monitoring and controlling capabilities. Information Systems
and E-Business Management, 4, Number 1 / January, 2006:5–23, 2005.

7. Andrea Freßmann, Rainer Maximini, and Thomas Sauer. Towards Collabora-
tive Agent-Based Knowledge Support for Time-Critical and Business-Critical Pro-
cesses. In Professional Knowledge Management, volume 3782, pages 420–430,
Berlin Heidelberg New York, 2005. Springer-Verlag.

8. David Hollingsworth. The Workflow Reference Model. Workflow Management
Coalition. Verfügbar auf http://www.wfmc.org/reference-model.html.

9. Thomas Jacob. Implementierung einer sicheren und rollenbasierten
Workflowmanagement-Komponente für ein Petrinetzwerkzeug. Diploma the-
sis, University of Hamburg, Department of Computer Science, Vogt-Kölln Str. 30,
D-22527 Hamburg, 2002.

10. N. R. Jennings, T.J. Norman, and P. Faratin. ADEPT: An Agent-Based Approach
to Business Process Management. ACM SIGMOD Record, 27:32–39, 1998.

11. Michael Köhler, Daniel Moldt, and Heiko Rölke. Modelling the Structure and
Behaviour of Petri Net Agents. In J.M. Colom and M. Koutny, editors, Proceedings
of the 22nd Conference on Application and Theory of Petri Nets 2001, volume 2075
of Lecture Notes in Computer Science, pages 224–241. Springer-Verlag, 2001.

12. Michael Köhler, Daniel Moldt, and Heiko Rölke. Modelling mobility and mobile
agents using nets within nets. In Wil van der Aalst and Eike Best, editors, Pro-
ceedings of the 24th International Conference on Application and Theory of Petri
Nets 2003 (ICATPN 2003), volume 2679 of Lecture Notes in Computer Science,
pages 121–139. Springer-Verlag, 2003.

13. Michael Köhler-Bußmeier. Hornets: Nets within Nets combined with Net Algebra.
In Karsten Wolf and Giuliana Franceschinis, editors, International Conference on
Application and Theory of Petri Nets (ICATPN’2009), volume 5606 of Lecture
Notes in Computer Science, pages 243–262. Springer-Verlag, 2009.

14. Michael Köhler-Bußmeier. SONAR: Eine sozialtheoretisch fundierte Multiagen-
tensystemarchitektur. In Rolf v. Lüde, Daniel Moldt, and Rüdiger Valk, editors,
Selbstorganisation und Governance in künstlichen und sozialen Systemen, volume 5
of Reihe: Wirtschaft – Arbeit – Technik, chapter 8–12. Lit-Verlag, Münster - Ham-
burg - London, 2009.

15. Olaf Kummer. Referenznetze. Logos Verlag, Berlin, 2002.
16. Kolja Markwardt, Daniel Moldt, and Christine Reese. Support of Distributed

Software Development by an Agent-based Process Infrastructure. In MSVVEIS
2008, 2008.

Moldt et al.: Improving a WfMS with an Agent Flavour 69



17. Kolja Markwardt, Daniel Moldt, and Thomas Wagner. Net Agents for Activity
Handling in a WFMS. In Thomas Freytag and Andreas Eckleder, editors, 16th
German Workshop on Algorithms and Tools for Petri Nets, AWPN 2009, Karl-
sruhe, Germany, Proceedings, CEUR Workshop Proceedings, 2009.

18. Daniel Moldt. Höhere Petrinetze als Grundlage für Systemspezifikationen. Disser-
tation, University of Hamburg, Department of Computer Science, Vogt-Kölln Str.
30, D-22527 Hamburg, August 1996.

19. Christine Reese. Prozess-Infrastruktur für Agentenanwendungen. Dis-
sertation, University of Hamburg, Department of Informatics, Vogt-
Kölln Str. 30, D-22527 Hamburg, 2009. Pdf: http://www.sub.uni-
hamburg.de/opus/volltexte/2010/4497/.

20. Christine Reese, Jan Ortmann, Daniel Moldt, Sven Offermann, Kolja Lehmann,
and Timo Carl. Architecture for Distributed Agent-Based Workflows. In Brian
Henderson-Sellers and Michael Winikoff, editors, Proceedings of the Seventh Inter-
national Bi-Conference Workshop on Agent-Oriented Information Systems (AOIS-
2005), Utrecht, Niederlande, as part of AAMAS 2005 (Autonomous Agents and
Multi Agent Systems), July 2005, pages 42–49, 2005.

21. Christine Reese, Matthias Wester-Ebbinghaus, Till Dörges, Lawrence Cabac, and
Daniel Moldt. A Process Infrastructure for Agent Systems. In Mehdi Dastani,
Amal El Fallah, Joao Leite, and Paolo Torroni, editors, MALLOW’007 Proceedings.
Workshop LADS’007 Languages, Methodologies and Development Tools for Multi-
Agent Systems (LADS), pages 97–111, 2007.

22. Christine Reese, Matthias Wester-Ebbinghaus, Till Dörges, Lawrence Cabac, and
Daniel Moldt. Introducing a Process Infrastructure for Agent Systems. In Mehdi
Dastani, Amal El Fallah, João Leite, and Paolo Torroni, editors, LADS’007 Lan-
guages, Methodologies and Development Tools for Multi-Agent Systems, volume
5118 of Lecture Notes in Artificial Intelligence, pages 225–242, 2008. Revised Se-
lected and Invited Papers.

23. Heiko Rölke. Modellierung von Agenten und Multiagentensystemen – Grundlagen
und Anwendungen, volume 2 of Agent Technology – Theory and Applications. Logos
Verlag, Berlin, 2004.

24. Michael Tarullo, Daniela Rosca, Jiacun Wang, and William Tepfenhart. WIFAi -
A Tool Suite for the Modeling and Enactment of Inter-organizational Workflows.
In SOLI ’09. IEEE/INFORMS International Conference on Service Operations,
Logistics and Informatics 2009, pages 764–769. IEEE, 2009.

25. Rüdiger Valk. Concurrency in Communicating Object Petri Nets. In Advances
in Petri Nets: Concurrent Object-Oriented Programming and Petri Nets, volume
2001 of Lecture Notes in Computer Science, pages 164–195. Springer-Verlag, Berlin
Heidelberg New York, 2001.

26. Wil M.P. van der Aalst. Verification of Workflow Nets. In ICATPN ’97: Proceed-
ings of the 18th International Conference on Application and Theory of Petri Nets,
volume 1248, pages 407–426, Berlin Heidelberg New York, 1997. Springer-Verlag.

27. Thomas Wagner. A Centralized Petri Net- and Agent-based Workflow Management
System. In Duvigneau and Moldt [5], pages 29–44.

28. Thomas Wagner. Prototypische Realisierung einer Integration von Agenten und
Workflows. Diploma thesis, University of Hamburg, Department of Informatics,
Vogt-Kölln Str. 30, D-22527 Hamburg, 2009.

70 PNSE’10 – Petri Nets and Software Engineering



Part III

Short Presentations





IRS-MT: Tool for Intelligent Resource
Allocation.

Piotr Chrza̧stowski-Wachtel1,2 and Jakub Rauch1

1 Institute of Informatics, Warsaw University,
Banacha 2, PL 02-097 Warszawa, Poland

2 Warsaw School of Social Sciences and Humanities,
Chodakowska 18/31, PL 03-815 Warszawa, Poland

pch@mimuw.edu.pl, jakub.rauch@gmail.com

Abstract. A tool for optimizing cost and time of a workflow execution
with respect to allocation of multi-purpose resources is presented. The
optimization is done as a result of simulations, which take into account
the cost and time associated with each of the resources, when allocated
to transitions in Petri nets representing a workflow. These attributes can
be collected and updated based on the logs of the finished instances. The
program suggests the best allocation procedures, giving the estimates of
the performance of the whole run for all possible decisions.

1 Introduction

Modeling processes as workflows has become quite popular and proved its use-
fulness in practice. One of the problems associated with running a workflow is
the resource management. By resources we mean all components required to run
an activity. In our case, their necessity is described by certain requirements (e.g.
skills or functions) associated with activities (transitions). With each resource
we associate a bunch of skills, so we can choose, which of the resources are to
be attached to certain activity at the workflow simulation run-time. The Petri
net approach requires collecting all the resources necessary for a given transition
before triggering an acitivity to run. One cannot reserve a resource, and keep it
busy, while waiting for other resources necessary to run an activity. Only when
all resources are available we can make a decision to run (fire) an activity.

It often happens that a resource is requested by different activities. A resource
conflict occurs, when a single resource is shared by two enabled transitions. We
must make a decision, which activity will use the resource first. We assume here
that the resources are re-usable, and that after finshing a transition the resource
can be used by another activity.

When we make a decision about the resource allocation, we should take
into account several aspects. Usually we try to optimize some quality function,
like time or cost of the workflow run. We assume here that during a workflow
run we can perform several actions concurrently. Since some of them will be
competing for resources, a proper allocation can improve the quality of workflow



run. Engaging proper resources can diminish for instance the delays caused by
lack of the only resource requested by a concurrent action and hence waiting for
this resource to be released.

As described in [BPS09], there are many essential aspects of resources, which
should be taken under consideration during workflow simulation. One of them is
already mentioned: the multifunctionality of resources. Resources have attributes
describing their skills. In other words these are the abilities to perform certain
actions. Each resource is associated with the set of activities, in which it can
be used. Other attributes taken under consideration are performance and cost
associated with engaging the resource. So we know how fast a resource can do
an activity and how much it costs to use it. By expense of a resource we mean
here a value per time unit associated with involvement of the resource. A chief
accountant probably has a driving license, but using him to drive the documents
somewhere can be a waste of his time and precious skills. His cost per hour is
much higher than that of a professional driver.

Since workflows can be quite complex, the authors do not see any analitycal
approach, which would be effective in the optimization of runs. It is hard to
predict all the possible outcomes of the allocations decisions, when resources
are in many conflicts. Instead, we propose an experimental approach, which
involves the simulation of many runs, taking into account different allocations
and estimating the desired measures as a result of allocation decisions. In our
prototype IRS-MT (Intelligent Resource Sharing-Modelling Tool) the manager
can edit a structured workflow net and set the number of experiments. The
program makes random allocations reporting times and costs of the runs. Based
on this knowledge the manager can use the suggestions of the program and get
a picture of possible outcomes of the decisions taken. The decisions can be made
incrementally. After each decision the workflow run advances its state, and when
we come to the next decision, a separate simulation will be made, basing on the
actual state of the system.

2 Basic definitions

In our tool we consider resources (S), roles (R), requirements (Q) and activities
(A). Resources and roles are finite and defined a priori (by designer). For each
resource we define a set of skills (roles), which it can use. This is denoted by
FSR : S → P (R) function. Additionally, for each role in a resource, its efficiency
may differ. For every resource s ∈ S, we define the efficiency function Es :
FSR(s) → R+. This function describes how fast a resource performs each of
its roles. The lower this value is, the higher is the efficiency (one is the base
value). Additionaly, for every resource we define its use cost per time unit as a
function C : S → N. On the other hand, for each activity in a workflow, a set of
requirements needed to fire it, should be determined. Every requirement Q ∈ Q
is a subset of roles. We define a function FAQ(a) which is a bag of requirements
associated with the activity. It is important, that every activity has an expected
duration time defined and its standard deviation value. Later, in the generation

74 PNSE’10 – Petri Nets and Software Engineering



and simulation phase, only the available resources fulfilling these requirements
will be considered for taking part in such activity. And so, s ∈ S is fulfilling
q = 〈Rq〉, iff Rq ⊆ FSR(s). It is important, that if a resource is involved in some
activity, it cannot be used by any other activity (there is one exception, which
will be covered later in this section).

Initially all the resources are free, available in a pool of idle resources. We
assume, that all the resources are reusable, so at the beginning of activity exe-
cution the needed resources are collected and at the end all the freed resources
will be returned to the pool of idle resources and will be available for further
use. The graphical representation of relations between the introduced notions is
depicted on Fig 1.

Fig. 1. Model

Our workflows are Petri nets created using five basic refinement patterns,
proposed in [PCh03]: sequential-split of a place or transition, parallel-split of
a place, choice-split of a transition and loop-split which attaches the spawned
transition with a self-loop to a place. The additional rule for attaching a resource
place is dual to the loop-split. It just glues a freshly created (resource) place to a
transition by a self-loop. From the Petri net perspective we assume here that such
place will contain initially a token for each physical resource available. We call
the places created by such splits resource places or activity places. One cannot
refine resource places. Even if the transition is refined, the resource will be allo-
cated at the beginning of its execution and released, when it is done. Moreover,
every resource place will carry the set of requirements defined for corresponding

P. Chrzastowski-Wachtel, J. Rauch: IRS-MT: Modeling Resource Allocation 75



activity. If we match the resource places with activities accordingly, we will see,
that the requirement assignments are defining the FAQ function.

When we use activity refinement on a transition, which is inside some other
activity, we will create a nested activity. By its ancestor activity we call every
other activity, in which this one is nested. Such nested activities do not differ
from any other activities, except for the fact, that these can use resources from
its ancestors, as long, as the resource will not have one of its roles assigned to
requirements in two different activities.

3 Tool overview

The main goal of this work is to provide a a tool, which can be helpful in
improving the resource management. We concentrate on optimization of the
workflow execution by providing the user with relevant statistical information
and letting him make decisions on resource-to-activity assignments. To achieve
this, a Petri net defining a workflow with activities and resources, will be created.
For this purpose we introduce a Workflow Designer. It is the editor for building
workflows using refinement patterns. In the editor we create activities, declare
the set of requirements and approximate execution duration. On the other hand,
we have Resources Editor. We use it for defining a pool of resources, assigning
roles to them, and determining their effectiveness in each role. The set of defined
roles can be modified by an always-visible editor Roles Viewer. All these three
editors form the static part of the tool. Its more detailed description is presented
in section 3.1.

After defining the model in the static part, we can proceed to the dynamic
part of the tool. We will use Generator, to create sufficent number of random
runs. When this is done, the Simulator, the Report Viewer and the Bucket Editor
shows up. The first one displays a copy of our workflow, where resource places
contain both the requirements and lists of currently available resources, fulfilling
given requirements. Here, the tool provides us with information about expected
time and cost of workflow completion for each of resource-to-requirement assign-
ment we see. Basing on this knowledge we can decide, which resource should be
assigned for current requirement. Every choice causes the expected values to be
recalculated, so that we can run the workflow deciding, how resources should
be used in the activities. The Report View presents detailed information about
expected time and cost of workflow completion. It is synchronized with cur-
rent simulator state, so all the values are always up-to-date. The Bucket Editor
is a tool for storing, and presenting details of the runs, which were manually
performed by user in the Simulator.

For example, let us consider the following, simple case. There is a package,
which must be delivered to the destination within an hour. We know, that stan-
dard travel time by a scooter in current traffic would take around fifty minutes.
We have two available scooter drivers: Evan and Gregory. Both of them can do
the delivery, but Gregory has got his license for much longer time than Evan,
and he shortens the expected delivery time by around 20 percent. Evan, on the

76 PNSE’10 – Petri Nets and Software Engineering



other hand, is still afraid of driving fast and using tricky shortcuts, so his deliv-
eries often take 20 percent longer than normal. However, Gregory’s earnings are
twice the earnings of Evan. This is the classic case, where no optimal resolution
to the problem exists. It must be up to user’s decision, whether time or cost is
more important, and it is up to our tool to provide the user with information
about expected cost and time consequences of each decision. We achieve it by
simulating many thousands of runs and preparing the estimates with all aspects
of the workflow taken into consideration, i.e.: activities order and dependencies,
resources usage conflicts, possible time/cost variations.

3.1 Static Part

To present the tool in more details, we introduce other, more complex example.
Let us suppose, that we have two rooms: A and B. We need to plaster and paint
both of them. Additionaly, room A needs to be decorated. Here we assume, that
a room cannot be painted, unless it is plastered and it cannot be decorated,
unless it is painted. Expected time units, required to complete these tasks for
each room are following:

– Room A — plastering: 20, painting: 10, decorating: 20;
– Room B — plastering: 10, painting: 20.

This process is presented on Fig. 2. We also need two resources, applicable for
the work: Steven and Tom. Steven is an experienced painter, with a skill of
plastering. Tom, on the other hand, is a decorator, who also can paint, but it
takes him some more time that it does for Steven.

The purpose of the static part of the tool is to model this situation, so that
it can be then simulated and later analysed in the dynamic part. We will now
explain, how it can be achieved using available functionalities.

Resources Editor Defining resources consists of identifying the available set
of people, machines and tools. For each of them, we can define a set of attributes
like: use cost per time unit, collection of applicable roles (skills) and the effec-
tiveness in each role. Every resource may have many skills, and many resources
can have the same role. As it turns out, we often miss such knowledge during
resources allocation planning and we do not take all the benefits from what a
resource is capable of doing. Because of that, we can also miss the optimal reso-
lution for given situation. Therefore we need to integrate all these aspects in the
analysed context, so that we can consider consequences of particular situations
with respect to most important factors. It is worth noticing, that in most popu-
lar Human Workflow management tools like Tibco [BS07] or Corel iGraphix, as
well as in some academical tools like Yasper [YA06], during the workflow design
and simulation phase, the roles are treated as resources. No resource, can have
two skills. This, for modelling purposes, is a major limitation. It means, that
one resource will never be requested for two activities with different required
roles, which tightly limits analysed possibilities. In our tool there are no such
boundaries.

P. Chrzastowski-Wachtel, J. Rauch: IRS-MT: Modeling Resource Allocation 77



Fig. 2. Sample net

78 PNSE’10 – Petri Nets and Software Engineering



Fig. 3. Resources edition

Fig. 3 presents the pair of our resources: Steven and Tom. The interface is
straightforward and it uses drag and drop features across almost every view. At
the depicted state of modeling Steven lacks the plastering skill yet. In order to
add it, we type plasterer in Roles View, press Add role button, drag the newly
created role from this view and drop it over the Steven entry. New skill would get
all of the necessary attributes initialized to default values. At the bottom of the
window, we can see the Properties tab, which, as a context panel, allows us to
modify attributes of currently selected object. The information about Steven’s
efficiency as a painter (Time Cost row) is displayed here. To be consistent with
the descritpion, we should change this value from 1.0 to 0.8. This indicates that
activity performed by Steven in a role of painter could take 20 percent shorter
than normal. We repeat similar scenario for Tom, associating with him the role
of painter and decorator and setting the efficiency coefficients for each of these
roles. Expenses for each person should be defined also here.

Workflow Designer In the presented tool we can model sound workflows using
refinement patterns presented in [PCh03]. To make this process easier it is pos-
sible to apply these patterns to any node the refinement tree, including the inner
ones. Each node can also have its subtree truncated. The structural approach
has been chosen to simplify both the design process and the inner application
processing engine. In this tool we introduced the basic set of six refinements.

P. Chrzastowski-Wachtel, J. Rauch: IRS-MT: Modeling Resource Allocation 79



These might be extended in future by other patterns like communication or
synchronization patterns described in [PCh03].

Editor offers additional operations for collapsing and expanding nodes, ac-
cording to the information held in the refinement tree, so we can view our net at
desired level of detail. The application displays all the nodes automatically in the
viewer, but we can also move them around manually. The process from the exam-
ple, has been created using refinement patterns, as shown on Fig. 4. Currently the
B:[[plasterer]] resource place is selected, so that we can see, which requirements
are defined for this requirement place in the bottom right tab Requirements (in
our case all resource places will be labelled 〈room name〉:[[〈required role〉]]). As
it was mentioned earlier, resource places are created by the ACTIVITY pattern,
and cannot be further refined. Each resource place is associated with exactly one
activity, so it is the right place to hold all the needed requirements for activity.

The whole net has been built using only the SEQUENCE, CONCURRENCY
and ACTIVITY patterns. On the Fig. 5, all possible refinement operations are
presented both for each standard place (not resource place) and each transition.

Every transition has got a special property, a measure, which describes its
desire to be executed. We can modify this value to indicate transitions, which
should have higher/lower probability of being executed, when in conflict with
some other ones. This value is used only when at least two transitions are in
conflict. By default this value is set to 1, but if we wish to make some transition
to be executed more often, this value should be set accordingly. For instance
if we have two active transitions, one with this value set to 3, and the second
one to 1, then the first of them will be fired with 75% chance. This way we can
declare, which actions are more probable or what kind of situations occur more
often.

3.2 Dynamic Part

Statistics Generation Generator is a tool for preparing a list of complete
runs with respect to guidelines defined in a workflow project and resources set.
For this purpose, a special, extended copy of the designed workflow is created.
Apart from copies of all the elements created by the designer, there are additional
resource places for automatic resource availability management. It is guaranteed,
that before each run, the whole net will be reset. Allocation decisions taken
between two different runs are then mutually independent. It can happen that
two identical runs could be generated by chance. Each run is executed and
recorded using the following algorithm.

Initially, the in place of a workflow, is marked by a token, as well as there
are tokens in the resource places. In a loop, a complete set of active transitions
(activities) is constructed. If the set is empty, and the workflow is finished (a
token is present on out place of the workflow), then the run is stored, the token
from out place is moved to back in place. If there are at least two enabled tran-
sitions, one of them is randomly chosen (according to its desire to be executed).
The selected enabled transition is fired and the loop is repeated. Note, that some

80 PNSE’10 – Petri Nets and Software Engineering



Fig. 4. Designer

of these transitions will indicate the begin or end of some activity. In such case
an additional resource acquistion or return will be performed.

When the generator attempts to start an activity, all the requirements are
being covered by skills owned by resources assigned to it. When we start one ac-
tivity, some other can also start or end, so the tool can model various concurrent
situations. When an activity ends, assigned resources are freed, the generator
updates the workflow timer, the amount of time and cost counters for later anal-
ysis. A series of runs allows us to consider usefulness of certain choices in the
context of further possible events.

The working time of the generator is dependent mostly on the number of
allocations and releases of resources, which corresponds to one run. The com-
putation power is also very important. In our case the generation of 10000 (ten
thousand) runs on a standard computer takes no more than a few seconds.

P. Chrzastowski-Wachtel, J. Rauch: IRS-MT: Modeling Resource Allocation 81



Fig. 5. Refinement patterns

Simulator Taking into account possible allocation decisions, we analyse time
and cost of a workflow run. A few similar simulation tools have been reviewed
in [BPM05]. On that basis some of the functionalities have been adapted to this
tool, and a few flaws have been evaded. As a result, the application provides the
simulator of the given net, and gives us a browser of performed runs.

In the report viewer (described later), we can browse all the runs created
during generation. All these runs have been performed automatically, so using
sorting capabilities of the report viever, we can easily find the optimal runs.
Sometimes the differences in evaluation are very small, and the user may wish
to examine the non-optimal allocation. For such purposes the simulator allows
us to perform a step by step manual run of the designed net. An estimated time
and cost of the run completion for every resource-to-requirement assignment at
currently chosen state is presented. Thanks to this we know, which consequences
are a result of our decision. The simulator remembers all the choices (resource
assignments, order of activities start and end times) that a user makes during
a simulation. It uses this knowledge to find all the statistical runs that are
applicable to this situation, and then provides us with the estimates. Note, that
in neither of Tibco, iGraphix nor Yasper, such manual interference in resource
assignments is possible, because all resources in these simulators can have only
one role. Moreover, up to the authors knowledge, there is no other tool, which
supports simulation of resources with multiple roles, giving the user a chance to
take part in a simulation at such informative level.

Let us suppose that a simulation has come up to a situation shown on the
Fig. 6. The tokens presence on places Room A and Room B means that the
Initialization phase has already ended. As we can see, enabled transitions have
double-lined border. At the moment both A:Plaster and B:Plaster transitions
require the same skills (in our case: plasterer), which have been defined in the
corresponding places: A:[[plasterer]] and B:[[plasterer]]. Both places contain no
tokens, which means, that no resources have been assigned to these activities
yet. Currently selected place A:[[plasterer]] shows in the Properties View all the
possible resource assignments for the plasterer skill. As it turns out, only Steven
is suitable. Next to his name there is some information indicating the estimated
cost and time of the run completion, with him taking part in this activity. In
our example, Steven’s Cost : [1038 − 42.14] 970|1034|1050|1050|1084 Time :
[63− 9.44] 50|56|70|70|72 means:

82 PNSE’10 – Petri Nets and Software Engineering



Fig. 6. Simulator

– average cost of completion is 1038 units with standard deviation of 42,14;

– average costs of completion in five successive quantiles are: 970, 1034, 1050,
1050, 1084;

– average time of completion is 63 units with standard deviation of 9.44;

– average times of completion in five successive quantiles are: 50, 56, 70, 70,
72.

When we select the B:[[plasterer]] place, the estimates for Steven’s change to
Cost : [1004− 44.44] 950|988|1000|1011|1075 Time : [65− 8.73] 60|60|60|69|80.
So, starting work in room A will cost us more, but it will shorten the total
execution time. Knowing this at such an early stage lets us undertake proper
decisions from the very beginning. On that basis we may tend to choose room A
first, if we want to save time. On the other hand, when cost is being considered
crucial, we should choose beginning work from room B.

P. Chrzastowski-Wachtel, J. Rauch: IRS-MT: Modeling Resource Allocation 83



When all requirements are met, the corresponding activity becomes active.
We can fire such enabled transition, and move to the next activity, where we
will have more decisions to make. Note, that at every time, we make a decision
or fire a transition, the estimates are being recalculated, to show the current
situation in the net. This rule also applies to the Report Viewer.

Report Viewer Much more information about current situation in the simu-
lated net can be seen on additional report view. The sample screenshot on Fig. 7
presents the state of report viewer, when Steven has been assigned to A:Plaster
activity in the simulator. Thanks to synchronization between these two tabs, we
can always take a look at all the computed details and expected values. Diagrams
on the 7 present:

– Total cost distribution — average, cumulative cost of run performance in
current simulator situation in 10 successive quantiles;

– Resources cost distribution — as above, but for each of the resource;
– Total time distribution — average time of run performance in current

simulator situation in 10 successive quantiles;
– Resources time distribution — as above, but for each of the resource.

Diagrams of total cost and time provide us with information about differ-
ences between optimistic and pessimistic run executions. When viewing costs
of resources, we can see, which of them have major influence on the growth in
pessimistic cases. In the example shown above it is a fact that, when considering
cost, in the optimistic case (on the left side of the diagram), Steven involvement
is minimal, and the cost of Steven’s work even goes below the cost of Tom’s
work. On that basis we can conclude that the main way to cut the cost will
be to maximize Tom’s involvement and minimize Steven’s. It can be seen that
bigger involvement of Steven means smaller involvement of Tom and vice versa.
So if time does not matter we will prefer the cheaper resource.

The distribution of resource involvement time gives us somewhat different
conclusions. It cannot be explicitly determined whether one of the resources
should be favoured to improve the process duration. It may seem at a first glance,
that in order to optimize the run we should always choose the fastest resource.
But it is not the case, since it can slow down other parts of the workflow. The
faster one can be the only one who can perform another action which should not
be delayed.

Two additional tables at the bottom of this view present:

– list of runs, which are up to date with current situation in the simulator
(including time and cost of them as well as pointing out the three most busy
resources);

– list of successive concurrent events for the run selected in the first table.

84 PNSE’10 – Petri Nets and Software Engineering



Fig. 7. Report viewer

P. Chrzastowski-Wachtel, J. Rauch: IRS-MT: Modeling Resource Allocation 85



Bucket Editor To ease the efforts, and allow the user to store the most inter-
esting runs for further analysis, a simple Bucket Editor has been created. After
the simulation comes to an end, the user can store the run he has just performed
manually. This run will be available for later view. The bucket presents informa-
tion similar to the report viewer, but because it contains information for several,
manually chosen runs (not thousands like report viewer), those can be presented
in a slightly different form.

Fig. 8. Bucket viewer

Fig. 8 shows a screenshot of the bucket with two stored runs. As we can see
it is organized similarly to the report viever, and the visible diagrams present
the same information as those from report viewer:

– Total cost — total cost of execution each of the stored runs separately;
– Resources cost distribution — as above, but for each of resources;

86 PNSE’10 – Petri Nets and Software Engineering



– Total time distribution — total time required to complete each of the
stored runs separately;

– Resources time distribution — as above, but for each of resources.

The bottom tables represent information about stored runs, showing exactly
the same attributes and properties, as the report viewer does.

First of them (displayed on the left hand side of every diagram) has been
performed with the goal to minimize the time. Second, though, was made to run
the process as cheap as possible, ignoring the time at all. As we can see, the
cost reduction requires extra time in workflow execution. Of course, increasing
the execution speed increases the cost. Major differences can also be seen in the
resource usage distribution in both of these cases. Cost reduction has led to a
significant decrease of Steven’s involvement. In this case, Tom takes some of his
responsibilities. When the time was the goal, the proportions has significantly
changed. Steven became more desired, because Tom seemed cause the most
delays.

4 Conclusions and future work

The provided example shows, how largely the work organization can differ, de-
pending on goals that we want to achieve. In many cases minor changes in the
resource allocation can have large influence on the overall result and, conversely,
sometimes major allocation changes result in very similar outcomes. Very often
humans do not take under consideration all the aspects, which the presented
tool does. Its role is to simplify this whole process and make it easier, to find a
suitable organization plan that will fit our needs and fulfill the criteria. While
the simplification of resource allocation planning is one point, the other one is
the possibility to point out uncommon executions, which can lead to increased
effectiveness and so increase our profits. Combining user’s knowledge and com-
puter’s computation power could therefore lead to major design corrections,
which would be a basis for further business improvements.

The presented tool is still a prototype, and there are some practical and
theoretical issues that need to be addressed. On the theoretical side additional
extensions to resource and workflow definition language should be introduced.
This includes further conformance to the form of resources described in [BPS09],
because only a few resource attributes have already been implemented in this
tool. There is also a big potential of the currently used workflow language, which
can be further extended. In the context of statistical data tooling, some addi-
tional information could be presented (e.g. the Student’s t-distribution, 3− σ).
Finally, no measure of reliability have yet been introduced and, in the sense of
realism of modelled cases, this is one of the major flaws of the presented tool.

On the more practical side, the integration with existing systems and methods
should be made. First of all the statistical runs of the net could generate logs
from the run to make them readable by other applications in the same way as the
YAWL does [WS09]. The conformance with CPN seems attractive, because of its
formal basis and constant development. Secondly, the integration with currently

P. Chrzastowski-Wachtel, J. Rauch: IRS-MT: Modeling Resource Allocation 87



used common tools is to be made as well. The LDAP for instance is a main source
for human resource information. The reporting tools like Microsoft Dynamics AX
(Microsoft Business Solutions – Axapta) can be a source of information about
resource experience and effectivness of each of such resource. Any other form
of gathering of knowledge about past and predictable future resource usefulness
can become important in such case. Therefore more integration of this tool will
be examinated and developed in the future.

Acknowledgment

The authors would like to thank the reviewers of this work for the effort they
put into improving the paper by the constructive reviews, which resulted in a
thorough revision of the paper.

Tool description

The tool is written in Java and can be run on any machine
with Java (JRE 6.0) installed. It can be downloaded from the
http://duch.mimuw.edu.pl/˜pch/IRSMT/irsmt.zip. The zip file contains a
full version of the tool and a README file, which explains how to install and
use the application.

References

[PCh03] Piotr Chrza̧stowski-Wachtel, Boualem Benatallah, Rachid Hamadi, Milton
O’Dell, Adi Susanto, Top-down Petri Net Based Approach to Dynamic Workflow
Modelling, Lecture Note in Computer Science. v2678. 336-353., 2003.

[BPM05] M. Laugna, J. Marklund. Business Process Modeling, Simulation, and De-
sign. Prentice Hall, Upper Saddle River, New Jersey, 2005.

[YA06] Kees van Hee, Olivia Oanea, Reinier Post, Lou Somers, Jan Martijn van der
Werf, Yasper: a tool for workflow modeling and analysis, Application of Concurrency
to System Design, International Conference on, pp. 279-282, Sixth International
Conference on Application of Concurrency to System Design (ACSD’06), 2006.

[BS07] Bruce Silver, Bruce Silver Associates, The BPMS Report: TIBCO iProcess Suite
10.6, BPMS Watch www.brsilver.com/wordpress, 2007.

[BPS09] W.M.P. van der Aalst, J. Nakatumba, A. Rozinat, and N. Russell. Business
Process Simulation: How to get it right? In J. vom Brocke and M. Rosemann, editors,
International Handbook on Business Process Management, Springer-Verlag, Berlin,
2009.

[WS09] A. Rozinat, M. Wynn, W.M.P. van der Aalst, A.H.M. ter Hofstede, and C.
Fidge., Workflow Simulation for Operational Decision Support., Data and Knowl-
edge Engineering, 68(9):834-850, 2009.

88 PNSE’10 – Petri Nets and Software Engineering



Detecting and Repairing Unintentional Change in In-use 
Data in Concurrent Workflow Management System

Phan Thi Thanh Huyen and Koichiro Ochimizu

School of Information Science, Japan Advanced Institute of Science and Technology
 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan     {huyenttp, ochimizu}@jaist.ac.jp

Abstract. Workflow  verification  has  attracted  a  lot  of  attention,  especially 
control  flow  aspect.  However,  little  research  has  been  carried  out  on  data 
verification in workflow literature  although data is one of the most important 
aspects  of  workflow.  This  paper  proposes  an  approach  for  detecting  and 
repairing  Unintentional  Change  in  In-use  Data (UCID)  in  a  Concurrent 
Workflow Management System at build time. We define UCID as a situation in 
which  some data values are  lost  or  some data  elements  are assigned  values  
different  from the intentions of workflow designers due to non-deterministic 
access to shared data by different activities. Differently from previous studies, 
we consider  UCID in two  different  ways: between concurrent activities  in a 
single  workflow (intra-UCID) and between activities  in  different  concurrent 
workflows (inter-UCID). In this paper, we first investigate UCID situations in a 
workflow management system, and then we define a Time Data Workflow, an 
extension  of  the  WF-Nets with  time  and  data  factors,  with  many attributes 
supporting  UCID  detection  and  correction.  Based  on  these  definitions,  we 
develop an algorithm which helps to detect potential  intra/inter-UCID at build 
time, along with algorithm evaluation and UCID resolution methods. Finally, 
we introduce a concrete project on building a change support environment for 
cooperative software development using UCID theory. 

Keywords: Unintentional Change in In-use Data, Time Data Workflow, 
concurrent workflows, algorithm, Workflow Nets

 1 Introduction

Correctness of a workflow model is very important, because any errors in workflow 
can  lead  to  execution  failure  of  the  corresponding  process.  Therefore,  workflow 
should be verified carefully before execution to reduce risks to the target  process. 
Workflow verification has received a lot of attention since the birth of the workflow 
concept. However, researchers have only focused on structure verification, temporal 
verification  and  resource  verification  [2]  [4]  [7]  [9].  Most  verification  techniques 
ignore data aspect and there is little support for data flow verification. Previous works 
on the data flow aspect have concentrated on detecting common data flow errors such 
as missing data, redundant data, inconsistent data, garbage data, etc. Among them, 
Unintentional Change in In-use Data (UCID) is perhaps one of the most dangerous 



and common problems. We define UCID as a situation in which some data values are  
lost  or  some  data  elements  are  assigned  values  different  from  the  intentions  of 
workflow  designers  due  to  non-deterministic  access  to  shared  data  by  different 
activities. Assuming that workflow is free of control errors, and activities in workflow 
can be scheduled within temporal constraint, we aim to support data verification in 
the workflow model by concentrating on UCID detection and correction. 

Existing  approaches  have  addressed  this  problem by  detecting  potential  UCID 
patterns,  limited  to  concurrent  activities  of  a  single  workflow.  Unfortunately,  this 
error  can  cross  a  single  workflow boundary.  In  a Workflow Management  System 
(WFMS), in fact, there exist many workflows executing at the same time, which we 
call Concurrent Workflows, and they may be correlated if two activities from different 
workflows use shared data. Even if the data flow of each workflow is correct,  we 
cannot  ensure correctness  of  the whole system because  of  the mutual  interactions 
among workflows. The problem is how to detect non-deterministic access to shared 
data  of  activities  belonging  to  not  only  the  same  workflow  but  also  different 
workflows and how to repair this kind of data abnormality. 

Reference [19] is our first efforts in handling the UCID problem. Potential UCID 
situations,  Time Data  Workflow (TDW) concepts,  along with  two algorithms  for 
detecting intra-UCID and inter-UCID have been introduced in [19]. This paper is a 
refined  and  extended version  of  the  [19].  In  this  paper,  we  redefine  TDW as  an 
extension of Workflow Nets (WF-Nets) [8] instead of Petri Nets as before. Based on 
these definitions and two algorithms for detecting intra/inter-UCID in [19], a revised 
version of UCID detection algorithm is built. Compared with the previous ones, this 
revised  algorithm  is  more  accurate  and  useful.  Furthermore,  some  heuristics  for 
making  the  algorithm more  flexible  and effective  are  discussed. UCID resolution 
methods are also proposed in this paper. Then, we illustrate this theory in practice by 
using  it  in  designing  workflows  which  represent  change  activities  in  a  software 
change process.

Our approach in UCID detection is to observe behaviors of concurrent activities 
having data relation. In the case of activities in the same workflow, their total orders 
can be decided based on control flow. However, control flow does not help in the case 
of activities in different workflows. Therefore, we must use activities’ execution time 
attribute to identify their total orders. Regarding UCID resolution, we take advantage 
of  composition  features  of  the  Petri  Nets  to  create  new  workflows  with  UCIDs 
removed. 

The rest of this paper is organized as follows. Section 2 discusses the motivation of 
our research. Section 3 defines the Time Data Workflow (TDW), an extension of the 
Workflow Net  with  time  and  data  factors.  Section  4  introduces  UCID  situations 
caused by concurrent activities in the same workflow (intra-UCID) or activities in 
different  concurrent  workflows  (inter-UCID)  [19].  An  algorithm  for  detecting 
potential UCID in both cases of intra/inter-UCID at build time, along with algorithm 
evaluation,  is  given  in  Section  5.  Section  6  presents  UCID  resolution  methods. 
Section  7  introduces  our  project  on  building  a  change  support  environment  for 
cooperative software development. Theory about UCID problem is employed in this 
project  to  detect  and repair  data  abnormalities  among concurrent  Change Support 

90 PNSE’10 – Petri Nets and Software Engineering



Workflows. Section 8 reports on related work and finally,  Section 9 concludes the 
paper and discusses points to future work. 

 2 Motivation 

Let’s take an example. We have two workflows W1 and W2, which are being executed 
independently. Workflow activities are modeled by rectangles, and data modified by 
an activity are written inside the corresponding rectangle. A small arrow is attached to 
a rectangle to denote an activity which is being executed.  Data of the system are  
stored in a central repository. W1 has five activities which modify A, X, B, C and D 
respectively. B and D are modified based on the value of X created by A12. W2 also 
has five activities which modify E, X, F, G and H respectively. Both A12 and A22 will 
modify X, but designers of W1 and W2, who don’t have a comprehensive view of the 
whole system, may not recognize this problem. This is a common problem, especially 
in a big system with many workflows.

W1

W2

X
B = 
f(X) C  A

GFXE

D = 
g(X)

H

X B = 
f(X1)

C   A

GFXE

D = 
g(X) 

H

X
B = 
f(X1)

C  A

GFXE

D = 
g(X2)

H

X = 
X1

X = 
X1

X = 
X2

X
B = 
f(X1)

C  A

GFXE

D = 
g(X)

H

X = 
X2

W1

W2

W1

W2

W1

W2

Time

Snapshot 1

Snapshot 2

Snapshot 3

Snapshot 4

A11 A12 A13 A14 A15

A11 A12 A13 A14 A15

A11 A12 A13 A14 A15

A11 A12 A13 A14 A15

A21 A22 A23 A24 A25

A21 A22 A23 A24
A25

A21 A22 A23 A24 A25

A21 A22 A23 A24 A25

Fig. 1. Motivating example

Figure 1 describes some snapshots of the system at different time. For simplicity,  
we concentrate on describing the change in value of data elements relating to shared 

T. Huyen Phan and K. Ochimizu: 91



data X. In snapshot 1, A12 changes value of X to X1. In snapshot 2, A13 changes value 
of B based on the value of X, X1.  In the next snapshot, A22 changes value of X from 
X1 to X2. In the last snapshot, A15 changes value of D based on the current value of X 
which is X2. If X1 is different from X2, there are two problems in this scenario: X1 is 
lost and D is assigned an unexpected value because D is modified based on the value 
X2 instead of the value created by activity A12, X1. This is different from the intentions 
of the designers of the workflow W1 and may cause an inconsistency between B and 
D. Regarding our definition of UCID, these errors are categorized into inter-UCID 
errors. 

The first problem is similar to the lost update problem in database theory.  Lost 
update problem occurs when two transactions that access the same database items 
have their operations interleaved in a way that makes the value of some database item 
incorrect [20].  In this case, version control systems (VCSs) can be used if data of the 
system are individual artifacts like documents, source codes, etc. Version control is 
the management of changes to documents, programs, and other information stored as 
computer files. Changes are usually identified by a number or letter code, termed the 
"revision  number".  Each  revision  is  associated  with  a  timestamp  and  the  person 
making the change.  Revisions can be compared,  restored, and with some types of 
files, merged.

 Unfortunately, VCS cannot help to avoid the second problem. In this situation, if 
data of the system are stored in a central database, the database management system 
(DBMS) can provide some concurrency control techniques, which are used to ensure 
the noninterference or isolation property of concurrently executing transactions such 
as  locking  techniques,  timestamp  ordering  based  techniques,  etc.  A  database 
transaction is a transaction which satisfies the ACID (atomicity, consistency, isolation 
and durability)  properties. These properties should be enforced by the concurrency 
control and recovery methods of the DBMS [20]. However, in this method, we must 
specify the boundary of each transaction. This requirement is difficult to implement 
because there are many people involved in a workflow and people in a workflow may 
know nothing about other workflows. If the whole workflow is considered as a unique 
database  transaction,  it  is  impractical  because  a  workflow  may  use  many  data 
elements and may happen for a long time.

If  this  type  of  errors  is  discovered  at  runtime,  a  recovery  mechanism must  be 
performed to ensure the correctness  of  the whole system.  However,  recovery is a 
rather  expensive  work,  especially  in  a  cooperative  environment  with  many 
concurrently  executing  workflows.  Therefore,  detecting  these  errors  as  soon  as 
possible is necessary to reduce risk to the target process.

This paper examines UCID situations in a general basic system without concerning 
which type of workflow data is stored in the central repository of the system and the  
implementation of the central repository as well. 

Regarding  inter-UCID,  our  problem  domain  is  workflows  whose  data  and 
estimated execution time can be decided at the design phase, for example workflows 
in the software evolution process. In these cases, an early UCID detection will help 
workflow designers to have a more comprehensive view of the system, and make 
timely adjustments to the original workflows to avoid error at runtime. We assume 

92 PNSE’10 – Petri Nets and Software Engineering



that  the  following  steps  are  conducted  before  workflow  execution:  identifying 
workflow activities and their orders, assigning activity properties (data, time…), and 
checking error using UCID detection and correction theory. If some potential UCID 
errors  are  detected,  the  first  and  second  steps  should  be  re-executed,  based  on 
suggested solutions given by UCID detection system.  

With reference to workflows in which estimated execution time is not available at 
design time, UCID patterns and detection method will be used to detect UCID errors  
from workflow execution histories. However, this is out of the scope of this paper. 

 3 Time Data Workflow (TDW)

There are many ways to model a workflow, such as directed graphs, UML activity 
diagram, PERT, etc. In this paper, we chose the WF-Nets based approach to model 
workflow process, because it has many useful features needed in the area of business 
process  modeling  besides the  mathematical  nature  of  the  underlying  Petri  Nets 
formalism [17]. 

WF-Nets is a subclass of Petri Nets dedicated for process/workflow modeling and 
analysis.  Petri Nets is a popular  graphical  and mathematical modeling  language in 
describing and  analyzing systems  which are  characterized  as  concurrent, 
asynchronous, distributed, parallel, nondeterministic and/or stochastic [17]. Formally, 
Petri Nets is a tuple PN = (P, T, F) where P is a finite set of places, T is a finite set of 
transitions (P ∩ T = ∅) and F ⊆ (P x T) ∪ (T x P) is a set of arcs (flow relation) [8]. A 
Petri Nets PN = <P, T, F> is a WF-Nets  if and only if  there is one source place i  ∈ P, 
one sink place o  P∈  such that •i = ∅, o• = ∅, and every node x  ∈ P  ∪ T is on a path 
from i to o [8].  　

Our Time Data Workflow (TDW) is an extension of WF-Nets with time and data 
factors. Time and data are represented as attributes of transitions in a TDW. In this 
paper, we consider two types of relationships between an activity and a data element.  
First,  an activity may  read a particular data element as its input data.  Second, an 
activity may  write a particular data element as its output data. This means that this 
data element is assigned a new value. Inside an activity, read always happens before 
write.  Assuming  that  durations  of  activities  can  be  estimated  at  build  time,  we 
augment  each activity A with two time values  min(A),  max(A) which describe the 
minimum and  maximum execution  durations  of  A  respectively.  The  time  unit  is 
selected depending on specific workflow applications. Based on reference point P, 
which is the start time of its corresponding workflow, we can infer the Earliest Start  
Time, EST(A), and the Latest Finish Time, LFT(A), of A at run time. If S(A), F(A) are 
the  Start  Time and  Finish  Time of  this  activity  at  run  time respectively,  we can 
conclude that the  Active Interval of A,  [S(A), F(A)], is within its  Estimated Active  
Interval, [EST(A), LFT(A)], that is, [S(A), F(A)] ⊆[EST(A), LFT(A)] [19].

In  a  TDW,  activities  are  modeled  by  transitions,  and  causal  dependencies  are 
modeled by places and arcs, as shown in Figure 2 [19]. Building blocks such as the  
AND-split, AND-join, OR-split, OR-join are used to model sequential, conditional, 
parallel  and  iterative  control  structures  of  workflows.  AND-split  and  OR-split 
transition correspond to transitions with two or more output places, while AND-join 

T. Huyen Phan and K. Ochimizu: 93



and  OR-join  transition  correspond  to  transitions  with  multiple  incoming  arcs. 
Different symbols are attached to original rectangles to distinguish normal transitions 
from  transitions  containing  branching  conditions.  Figure  2a  illustrates  a  typical 
transition in a TDW, with execution duration ranging from d1 to d2; data elements a, 
b are inputs and c,  d,  e are outputs. The other parts of Figure 2 show how basic  
constructions of a workflow are represented by TDW’s notations [19]. For the sake of 
simplicity, each activity is represented by a transition. Therefore, the terms ‘activity’  
and ‘transition’ are interchangeably used in this paper.

 

Activity i 

Activity j 

Activity k 

(b) 

(c) 

Activity i 

Pj Pk 

 Activity i Activity j Activity k 

tj 

 

Pj 

 

1 Pk 

 

Activity i 

Activity j 

Activity k 

Sequential Structure 

AND-split Transition 

ti 

 

Pk1 

1 

Pk2 Activity k 

AND-join Transition 

Activity i 

Pk1 

1 

Pk2 

 

Activity k 
Activity j 

OR-join Transition 

ti 

 

Pj 

1 

Pk 

 Activity i Activity j Activity k 

Iterative Structure 

 ti 

 

tk 

 

 

tk 

 

 

 tj 

 

tj 

 

tj 

 

tk tj ti 

(d) 

(f) 

(g) tk 

 

Pj 

1 

Pk 

Activity j OR-split Transition  ti 

 

tj 

 

tk 

 

(e) 

ti 

 

tk 

 

{d1, d2} 

(a) 
Pi

1 

Pj 

Transition 

t 

r: a, b 

w: c, d, e 

Pi 

1 

Pl

1 

Pi 

1 Pl

1 

Pm

1 

Pl

1 

Pi 

1 

Pi 

1 

Pi 

1 

Pi 

1 

Pj 

 

1 Pi 

1 

Pm

1 

Pl

1 

Pl

1 

Pl

1 

A typical transition  

Fig. 2. Workflow primitives specified by TDW

As an extension of WF-Nets,  TDW specifies  the time and data properties  of a 
single  case  in  isolation,  assuming that  different  cases  are  completely  independent 
from each other. Therefore, UCIDs are caused by activities in a single TDW instance 
or activities belonging to workflow instances of different TDWs. Without the loss of 
generality, we assume that each TDW has one instance only.

94 PNSE’10 – Petri Nets and Software Engineering



Definition 1 (Time Data Workflow – TDW) A TDW, w, is a tuple <P, T, F, id, 
D, R, DE, TI > where:

<P, T, F> is a WF-Nets with places P, transitions T and arcs F

id is the workflow identifier.

D is a set of data elements.

R = {r, w, u} is a set of possible access rights to data elements (r: read, w: write, u: 
use (either read or write)).

DE: T x R→ 2D is a function that returns a set of data elements associated with a 
transition and an access right.

TI:  T  → R+ x  (R+ x  ∞)  is  a  time interval  function that  returns  minimum and 
maximum execution durations of a transition.  

Definition 2 (Concurrent  Time Data  Workflow Model)  A Concurrent  TDW 
Model cwm = (W, Twm) is a collection of TDWs which have overlapping execution 
times (concurrent TDWs):

W = {w1, w2… wn} is a set of concurrent TDWs, where wi = < P, T, F, id, D, R, 
DE, TI >.

Tcwm = T(w1) T(w∪ 2)  … T(w∪ ∪ n) is the  set of all transitions (activities) in cwm.

Given a TDW w as in Definition 1, we have the following definitions [19]:

Definition 3 (Path) A Path is a sequence of consecutive arcs.
A sequence p = (xo, x1, …, xk) is  a Path  iff i, 0 < i < k∀  – 1: (xi, xi+1) ∈F 

Definition 4 (Transition Path)  A sequence p = (t0, p1, t1,… , tk) is a Transition 
Path iff it is a path and  t0, tk  ∈ T.

Definition 5 (Transition Reachability)  Transition ti is reachable from tj  if there 
exists a transition path (ti,... , tj) on wm.
Reachable (ti, tj) = true iff transition path p = (t∃ i,... , tj)

Definition 6 (Transition Distance) Given two transitions ti, tj where Reachable (ti, 
tj) = true or where Reachable (tj, ti) = true, the Transition Distance between ti, tj is the 
length of the shortest path between them.

Definition 7 (Nearest  Common Transition)  Given two transitions  ti,  tj where 
Reachable (ti, tj) = false and where Reachable (tj, ti) = false, their Nearest Common 
Transition is the common transition which has the shortest distances to both of them, 
denoted as tnct.

Definition 8 (Closest Data Relation Transition) Given two transitions ti, tj, where 
their nearest common transition is not an OR-split transition, tj is called the Closest 
Data Relation Transition of ti on data element d if tj just precedes ti in terms of time, 
and both tj and ti use (read/write) d, denoted as tcdrt.

 4 UCIDs in a Concurrent TDW Management System

A Concurrent TDW Management System is a workflow management system which is 
responsible for TDW construction and management.  A module of UCID detection 

T. Huyen Phan and K. Ochimizu: 95



and correction is also integrated into this system.
Data flow can be implemented explicitly as a part of the workflow model by using a 
separate channel to pass data from one activity to another. Otherwise, it can also be 
implemented implicitly through a control flow or process data store [3]. The process 
data store is basically a central repository where all workflows’ activities can access 
or update their data. We choose implicit data flow through the process data store as a 
basis for our approach. In this implementation model, UCID may occur, particularly 
in cases involving concurrent execution paths. 

Given a Concurrent TDW Model cwm as in Definition 2, we have the following 
definitions:

Definition 9 (Data Relation) Two activities ai, aj (i ≠ j) have data relation if DE(ai, 
u) ∩ DE(aj, u) ≠ ∅ [19].

Definition  10  (Concurrent  activities)  Two  activities  are  called  concurrent 
activities iff they belong to two parallel branches of a TDW or they are in different 
TDWs and have overlapping Active Intervals. 

Definition 11 (Unintentional Change in In-use Data) A situation in which some 
data values  are  lost  or some data elements  are  assigned values different  from the 
intentions of workflow designers due to non-deterministic access to shared data by 
different activities [19]. 

Here we distinguish two kinds of UCID: intra-UCID and inter-UCID. The former 
considers  UCID situations concerning concurrent  activities  in  the same workflow, 
while the latter is related to concurrent activities in different workflows. Definition 
12, 13 are based on definitions of read-write conflict and write-write conflict in [1].

Definition 12 (RW Intra-UCID) A situation in which an activity A tries to read 
data from a shared variable x and an activity B tries to write data to the same shared 
variable x and vice versa, where A, B are concurrent activities in the same workflow. 

Definition 13 (WW Intra-UCID) A situation in which two concurrent activities in 
the same workflow, A and B, try to write data to the same shared variable.

 

TDW 

wn 

F(ank) F(D) S(C) S(D) S(B) S(amj) S(ank) S(ami) S(A

) 

Activity ank 

Time 

TDW wm 

Activity ami Activity amj 

u: t u:t 

w: t 

Activity A 

r: x 

Activity B 

w: x 

Activity D 

w: y 

Activity C 

w: y 

F(C) F(amj) F(B) F(A) F(ami) 

Fig. 3. Inter-UCIDs

Definition 14 (RW Inter-UCID) A situation in which an activity A tries to read 
data from a shared variable x and an activity B tries to write data to the same shared 
variable x and vice versa, where A, B are in different concurrent workflows and have 
overlapping Active Interval ([S(A), F(A)] ∩  [S(B), F(B)] ≠ ∅).

Definition 15 (WW Inter-UCID) A situation in which two activities A and B try 
to  write data to the same shared variable,  where A, B are in different  concurrent  

96 PNSE’10 – Petri Nets and Software Engineering



workflows and have overlapping Active Interval ([S(A), F(A)] ∩  [S(B), F(B)] ≠ ∅).
Definition 16 (UWU Inter-UCID) A situation  in  which  there  are  inconsistent 

views of shared data by two activities in the same workflow, because their shared data 
are written externally by an activity in a different concurrent workflow. 

As depicted in Figure 3, two activities ami, amj of TDW wm use (read or write) data 
element t, where amj is the closest to ami in terms of time and F(amj) < S(ami), which 
means tcdrt(ami, t) = amj. A UWU Inter-UCID happens because activity ank of a different 
workflow wn writes to t within the time interval [F(amj), S(ami)]. RW Inter-UCID and 
WW  Inter-UCID  also  happen  between  activity  A  and  activity  B,  activity  C  and 
activity D respectively.

 5 Detection of Potential UCID in a Concurrent TDW 
Management System

Regarding  UCID  definitions,  inter-UCIDs  are  identified  based  on  the  Active 
Interval of activities having data relation. However, Active Interval of an activity can 
only be determined at runtime when it has finished its execution, and hence Estimated 
Active Interval is used instead of Active Interval to find potential UCID at build time, 
before a new TDW is put into the Concurrent TDW Management System to start.

 5.1 Calculation of Estimated Active Interval [19]

Designating the start  time of a TDW w as a reference point, Pw,  we can infer the 
Estimated  Active  Interval  of  an  activity  A  [EST(A),  LFT(A)]  with  respect  to  its 
minimum and maximum executing durations {min(A),  max(A)} and basic control 
structures. 

Let us say that As is the Start activity of a TDW w, then we have EST(As) = Pw and 
LFT(As) = Pw + max(As). For executing activity A, EST(A) = S(A) and LFT(A) = 
F(A) if A has been completed.
Sequential Connection (Figure 2b)
EST(Aj) = EST(Ai) + min(Ai); LFT(Aj) = LFT(Ai) + max(Aj)
AND-Split Connection (Figure 2c)
EST(Aj) = EST(Ai) + min(Ai); LFT(Aj) = LFT(Ai) + max(Aj)
EST(Ak) = EST(Ai) + min(Ai); LFT(Ak) = LFT(Ai) + max(Ak)
AND-joint Connection (Figure 2d)
EST(Ak) = MAX{EST(Ai) + min(Ai); EST(Aj) + min(Aj)}
LFT(Ak) = MAX{ LFT(Ai), LFT(Aj)} + max(Ak)
OR-Split Connection (Figure 2e)
EST(Aj) = EST(Ai) + min(Ai); LFT(Aj) = LFT(Ai) + max(Aj)
EST(Ak) = EST(Ai) + min(Ai); LFT(Ak) = LFT(Ai) + max(Ak)
OR-joint Connection (Figure 2f)
EST(Ak) = MIN{EST(Ai) + min(Ai); EST(Aj) + min(Aj)}
LFT(Ak) = MAX{ LFT(Ai), LFT(Aj)} + max(Ak)

T. Huyen Phan and K. Ochimizu: 97



 5.2 Potential UCID Detection Algorithm 

Given a Concurrent TDW Model cwm = (W, Tcwm), where W = {w1, w2, …, wk} and 
Tcwm = T(w1) T(w∪ 2)  … T(w∪ ∪ k), w = <P, T, F, id, D, R, DE, TI>. The main idea of 
this algorithm is to select one activity and compare it with the other activities. If two  
activities have data relation, we will check if there is a potential UCID. In the case of  
concurrent  activities in the same workflow, potential  intra-UCIDs can be detected 
with  respect  to  Definitions  12,  13.  If  two  compared  activities  are  in  different 
workflows and have overlapping Estimated Time Intervals, there is a possibility of an 
RW/WW inter-UCID occurrence (Definitions 14, 15). If only the data relation exists 
and  one  activity  occurs  before  the other,  we will  compare  this  situation with the 
definition 16 and the pattern in Figure 3 to find out a potential UWU inter-UCID.
Step 1: Initialization:
1.1 Let S be a set of unchecked activities. S is initialized with all unfinished activities 
of Tcwm;
1.2 Calculate Estimated Active Interval for all activities in S;
1.3 flag = TRUE is a Boolean variable;
Step 2: For every pairwise of activities (ami, ank) in S, execute the following steps:
2.1 Check their Data Relation
Let Umnik be the set of shared data between ami and ank: Umnik = DE(ami, u) ∩ DE(ank,u);

2.1.1 If Umnik =  ∅, ami  and ank do not have data relation. Therefore UCID cannot 
happen between ami and ank; 
2.1.2 If Umnik≠ ∅, ami and ank have data relation. Take the next step.

2.2 If  ami  and ank in  the same workflow,  check intra-UCID possibility.  Otherwise, 
check inter-UCID possibility;
2.2 Check intra-UCID possibility

2.2.1 If  ami  and ank belong to two parallel branches of a workflow, this means that 
their  Nearest  Common  Transition,  denoted  as  tnct (ami,  ank),  is  an  AND-split 
transition, they are concurrent activities. Take the next step;
2.2.2 For every data element, denoted as dmnikl, in Umnik, check the access right to 
dmnikl of ami and ank:

2.2.2.1 If  both  of  them  have  write access  right  to  dmnikl,  this  means  that 
dmnikl∈DE(ami,  w) and dmnikl∈DE(ank,  w),  then flag  =  FALSE.  There  is  a 
potential WW Intra-UCID between ami, ank on dmnikl;
2.2.2.2 If one activity has  write access right to dmnikl and the other has  read 
access right to dmnikl, this means that  (dmnikl∈DE(ami, w) and dmnikl∈DE(ank, r)) or 
(dmnikl∈DE(ami,  r) and dmnikl∈DE(ank,  w)),  then flag  =  FALSE.  There  is  a 
potential RW Intra-UCID between ami, ank on dmnikl;

2.3 Check inter-UCID possibility /* Figure 3*/
2.3.1  If  ami  and ank have overlapping  Estimated Active Interval,  this  means that 
[EST(ami),  LFT(ami)]  ∩  [EST(ank),  LFT(ank)]  ≠ ∅,  they are potential  concurrent 
activities: check RW/WW inter-UCID possibility.  Otherwise,  check UWU inter-
UCID possibility;
2.3.2 Check potential RW/WW inter-UCID 
For every data element, denoted as dmnikl, in Umnik, check the access right to dmnikl of 

98 PNSE’10 – Petri Nets and Software Engineering



ami and ank:
2.3.2.1 If  both  of  them  have  write access  right  to  dmnikl,  this  means  that 
dmnikl∈DE(ami,  w) and dmnikl∈DE(ank,  w),  then flag  =  FALSE.  There  is  a 
potential WW Inter-UCID between ami, ank on dmnikl;
2.3.2.2 If one activity has  write access right to dmnikl and the other has  read 
access right to dmnikl, this means that  (dmnikl∈DE(ami, w) and dmnikl∈DE(ank, r)) or 
(dmnikl∈DE(ami,  r) and dmnikl∈DE(ank,  w)),  then flag  =  FALSE.  There  is  a 
potential RW Inter-UCID between ami, ank on dmnikl;

2.3.3 Check potential UWU inter-UCID 
Assume that LFT(ank) < EST(ami). For each data element, denoted as dmnikl, in Umnik 

where ank has write access right to dmnikl: dmnikl DE∈ (ank, w), perform the following 
steps:

2.3.3.1 Find out the Closest Data Relation Transition of ami on dmnikl, denoted 
as amj: amj = tcdrt(ami, dmnikl). If amj = ∅, UWU inter-UCID may not happen;
2.3.3.2  If  [EST(ank),  LFT(ank)]  [LFT(a⊂ mj),  EST(ami)],  then  flag  =  FALSE. 
There is a potential UWU Inter-UCID among ami, amj, ank on dmnikl;

Step 3: Return flag.

 5.3 Algorithm Evaluation

Let’s say n is the number of unfinished activities in a Concurrent TDW Model cwm. 
In general, we must inspect  n2 combinations of any two unfinished activities to find 
out some potential UCIDs. This approach allows us to detect not only potential UCID 
at build time of pre-executed TDWs, but also potential UCID at run time of running 
TDWs by recalculating the Estimated Active Intervals of their unfinished activities 
more  accurately  based  on  the  Active  Interval  of  finished  activities.  However, 
depending  on  applications,  we  can  reduce  the  number  of  checking  steps  by 
considering some of the following heuristics:

A two dimensional table can be used to record the access right on data elements of  
activities in a Concurrent TDW Model  cwm. Figure 4 describes an example of data 
flow matrix of a Concurrent TDW Model with three TDWs W1, W2  and W3. {D1,…, 
D10} is the data set of the Concurrent TDW Model. Parallelization can be applied here 
to reduce execution time. For each element in the data set of  cwm, there is a thread 
being responsible for checking potential UCID caused by activities  using this data 
element. 

After designing a new TDW, UCID check is conducted to find potential UCIDs 
before this TDW is put into the Concurrent TDW Management System for execution. 
Let’s say m,  k,  l are the number of unfinished activities in the being considered pre-
executed TDW, other pre-executed TDWs, running TDWs respectively, we have n = 
m + k + l.  Because the other pre-executed TDWs have been checked in previous 
examinations, we can skip combinations of two activities in these TDWs to reduce the 
number of inspected combination to n2 – k2. If we just want to detect UCIDs caused 
by activities in the being considered TDW, we will verify m x n activity combinations 
only.  A parallel  solution  in  this  case  is  to  create  m threads.  Each  thread  will  be 

T. Huyen Phan and K. Ochimizu: 99



responsible  for  one  activity  in  this  TDW  and  will  verify  potential  UCIDs  on 
combinations created by this activity with the others in different TDWs.

Because potential  UCIDs just  occur in activities that  have shared data,  we will 
verify activities having shared data only. Each data element will store identifications 
of unfinished activities using it. Therefore, the set of checked activities can be limited 
to unfinished activities having data relation in the Concurrent TDW Model. If  the 
number  of  data  elements  is  small,  we  can  start  from data  elements  of  the  being 
considered  pre-executed  TDW to  pick  out  unfinished  activities  in  the  Concurrent 
TDW Model having data relations and use UCID patterns to find out potential errors.

33

A11 A21 A12 A13 A31 A22 A32 A14 A23 A33
D1 W R R
D2 R
D3 W R
D4 W R R R
D5 W R
D6 W R
D7 W R W R R
D8 W R
D9 W R
D10 W

W1 W2 W3

 
Fig. 4. Data flow matrix example 

 6  Potential UCID Resolution

In general, if potential UCIDs happen, there may be some abnormalities in data 
flows or control flows of the concerned workflows. A review on the workflow design 
should be conducted to make sure that this situation is not made on purpose. 

Our given solutions in which some of them will change the workflow structure are 
simply reference models. The final decision will depend on workflow designers to 
perform modifications that actually lead to a resolved model. 

 6.1 Potential Intra-UCID Resolution

Potential Intra-UCID may be caused by a mistake of workflow designers in designing 
parallel branches of a workflow. Therefore, our solution for Intra-UCID is to change 
the workflow structure by sequentializing or combining error-related activities. Two 
activities causing potential WW Intra-UCID are merged into one by place/transition 
fusion (Figure 5a). For RW Intra-UCID, sequentialization is applied to the related 

100 PNSE’10 – Petri Nets and Software Engineering



activities. One option is that read activity happens before write activity and the other 
is that write activity happens before read activity (Figure 5b). Resolution order will 
begin from WW Intra-UCID cases to RW Intra-UCID cases. With regard to potential 
UCIDs belonging to the same group, the priority is the happening order.

r: x ...

w: x ...

Activity A Activity B

Activity C Activity D

...

r: x ...

...

Activity A Activity B

Activity C Activity D

... ...

...

...

Activity A Activity B

Activity C Activity D

... ...

w: x

r: x

w: x

w: y ...

w: y ...

Activity E Activity F

Activity G Activity H

... ...

...

...

Activity F

Activity H

... ...w: y

Activity EG

...

(b) RW Intra-UCID Resolution by sequentialization

(a) WW Intra-UCID Resolution by place / transition fusion

Fig. 5. Potential Intra-UCID resolution

 6.2 Potential Inter-UCID Resolution

Resolving potential inter-UCID is more complex because workflows are designed 
for different purposes by different designers and a designer may know nothing about 
the work of the others. To resolve inter-UCID, the cooperation of different designers 
is  necessary  and  the  result  will  highly depend on the  willingness  of  designers  to 
communicate with each other. 

A method which does not affect the workflow structures is to adjust the workflow 
schedule by modifying the workflow start time, maximum and minimum execution 
durations of activities in workflows so that inter-UCID patterns do not occur. Another 
solution is to change the workflow structure. 

First, we will combine related TDWs into one workflow. In order to preserve the 
structure of the original TDWs, in the new TDW, the Start place connects to an AND-
Split  transition  and  the  End  place  is  connected  to  an  AND-join  transition.  Each 
merged  TDW corresponds  to  a  subnet  starting from the AND-split  transition and 
ending at the AND-join transition. Because the merged TDWs are started at different 
times, we insert a Time Start transition between the Start place of each merged TDW 
and the AND-split transition, a Time End transition between the End place of each 
merged TDW and the END-join transition. Time activities are just null activities with 
some duration  and  they  help  to  merge  TDWs without  modifying  the  workflow’s 
schedule  seriously.  The  AND-split  transitions,  AND-join  transitions,  Time  Start 
transitions, Time End transition, places  and arcs  connecting the related workflows 
together represent the dependency relationships between different workflows which 
play an important role in the recovery process in the case of workflow failure. They 

T. Huyen Phan and K. Ochimizu: 101



will not be used to identify the total order of activities in detecting potential intra-
UCID in the synthesis TDW. In the case of a running TDW, we can create a new 
TDW from the original workflow by removing its finished activities, and this new 
TDW will be combined with other TDWs in a normal way. Another simpler way is to 
combine the pre-executed TDWs only. After that, workflow designers can adjust the 
Estimated Active Interval of activities in the new TDW by modifying workflow start  
time, maximum and minimum execution duration of its activities so that UCID related 
activities happen after related activities of the running TDW. 

Next, we will deal with activities causing potential Inter-UCID. The mechanism to 
handle  potential  WW/RW  Intra-UCID  is  applied  to  WW/RW  Inter-UCID  cases 
(Figure 6a, 6b). Regarding UWU potential UCID, three activities related to this error 
are connected as shown in Figure 6c. If there are many potential Inter-UCIDs between 
the same two TDWs, the priority is  Inter-UCID types (WW > RW > UWU) and 
occurring time of activities respectively. 

As mentioned  earlier,  inter-UCID resolution  is  very  complex,  especially  UWU 
inter-UCID. Currently,  our proposed solution is just a reference model which helps 
workflow managers to have a more comprehensive view of data related workflows. 
We will try to improve them in the future work.

 7 Application

In this section, we present a project on building a change support environment for 
cooperative  software  development.  UCID  theory  is  used  in  this  project  to  detect 
potential UCID between concurrent workflows. 

Software  systems  must  be  changed  under  various  circumstances  during 
development  and  after  delivery,  such  as  for  new  requirement,  error  correction, 
performance  improvement,  etc.  However,  software  change  is  not  an  easy  task, 
especially in a cooperative environment where software artifacts with very complex 
dependency  relationships  are  created  based  on  the  cooperation  of  many  people. 
Besides, other problems such as concurrency of works, synchronization of changes on 
shared artifacts, etc. also make this task more difficult. Therefore, a change support 
environment is strongly demanded.

102 PNSE’10 – Petri Nets and Software Engineering



wm Start wm End 

wn Start wn End

EndStart

TDW wm

TDW wn

And-Split Start And-Join End 

wm Time Start 

wm Start 

wn Start

wm End

wm Time End 

wn Endwn Time Start wn Time End 

r: y ...

w: y ...

Activity E Activity F

Activity G Activity HPg Ph

Pe Pf

r: y ...

...

Activity E

Activity F

Activity G Activity H

w: y

Pf

Pg Ph

EndStart

And-Split Start And-Join End 

wm Time Start 

wm Start 

wn Start

wm End

wm Time End 

wn Endwn Time Start wn Time End 

...

...

Activity E

Activity F

Activity G Activity H

Pf

Pg Ph

w: y

r: y

Pe

Pe

wm Start wm End 

wn Start wn End

TDW wm 

TDW wn 

u: d u: d

w: d

Activity I Activity J

Activity KPk Ph

Pi PjPt

EndStart

And-Split Start And-Join End 

wm Time Start 

wm Start 

wn Start

wm End

wm Time End 

wn Endwn Time Start wn Time End 

Activity I

Activity JPi PjPt

Pk Ph

u: d

w: d

u: d

(b) RW Inter-UCID Resolution by sequentialization

(c) UWU Inter-UCID Resolution by sequentialization

w: x ...

w: x ...

Activity A Activity B

Activity C Activity D

wm Start wm End 

wn Start wn End

...

...

Activity B

Activity D

w: x

Activity AC

EndStart

TDW wm  

TDW wn

And-Split Start And-Join End 

Pa Pb

Pc Pd

wm Time Start 

wm Start 

wn Start

wm End

wm Time End 

wn End

Pb

Pdwn Time Start wn Time End 

(a) WW Inter-UCID Resolution by place / transition fusion

Pa

Pc

Fig. 6. Potential Inter-UCID resolution

In order to help change workers to perform change activities safety and efficiently 
in  a  cooperative  environment,  we  use  workflow to  represent  activities  needed  to 
implement  a  change  request.  We  define  Change  Support  Workflow (CSW)  as  a 
sequence  of  activities  required  to  implement  a  change.  Activities  in  CSW  are 

T. Huyen Phan and K. Ochimizu: 103



responsible for creating new software artifacts or modifying exiting ones. This means 
that data elements of CSW are software artifacts which need to be read, modified or 
created in the change implementation process. 

In the first phase of the project, a method for automatically generating dependency 
relationships among UML elements was given [22]. Change impact analysis which 
identifies potential consequences of a change can be realized by tracing the generated 
dependency relationships. Result of this process will be used to generate CSW. 

In large and cooperative system, there may be hundreds of CSWs executed at the 
same time to react to change requirements quickly. However, when there are many 
CSWs running on the same system, that UML artifacts are shared by different CSWs 
is  unavoidable.  If  CSWs  having  shared  artifacts  are  executed  at  the  same  time, 
inconsistencies  among  their  data  (UML  artifacts)  can  happen.  A  version  control 
system is used in our change support environment to deal with data loss; however this 
system does not help in this situation. Therefore, UCID theory is employed in this 
project to deal with this problem. Potential UCID can be detected automatically at  
build  time  to  help  workflow  designers  make  timely  adjustments  to  original 
workflows.

Fig. 7. Example of Relationships between UML Artifacts created during a software 
development process

Our  project  supports  constructing  CSW  based  on  the  relationships  between 
impacted  UML  model  elements  which  are  extracted  from  the  result  of  impact 
analysis.  CSW is modeled by TDW as follows. Each transition corresponds to an 
activity  which  creates  or  modifies  at  least  one  UML artifact.  Total  order  of  two 
transitions  is  identified  by  examining  the  dependency  relationships  between  the 
artifacts modified by these transactions. Access role write is assigned to the artifacts 
which need to be modified or created; the artifacts for reference only are labeled with 
read access role. This draft of CSW will help workflow designers in developing the 
schedule of the change process. The other steps in developing change schedule such 

104 PNSE’10 – Petri Nets and Software Engineering



as estimating activity resources and activity durations will be performed by workflow 
designers. From Activity Duration Estimates in the schedule, minimum and maximum 
execution durations of transitions in this CSW can be inferred. To reduce risks at  
runtime, UCID check on this CSW will be conducted. If some potential UCIDs are 
reported, data and control structure of this CSW should be adjusted in responding to 
suggested solutions of the change support system. 

Because  CSW is  constructed based  on relationships  between software  artifacts,  
potential Intra-UCIDs seldom happen. Besides, if potential UCIDs are reported, the 
possibility of control flow errors is low too. In this case, workflow designers should 
review data flow and pay attention to shared data elements among concurrent CSWs. 
With reference to potential inter-UCID, Estimated Active Intervals of activities play a 
very important role; therefore a change on project schedule may help overcome this 
error. 
Let’s have an example. Figure 7 describes an example of relationships between UML 
artifacts created in different phases of a software development process. If we change 
UML  Artifact  1,  we  need  to  change  UML  Artifacts  4,  5,  8,  9  because  of  the 
relationships  between  them. Similarly,  if  we change  UML Artifact  2,  we need to 
change UML Artifacts 5, 6, 9, 10, 11. By tracing the relationships starting from UML 
Artifact  1  and  UML Artifact  2,  we  can  create  two  CSWs to  respond  to  change 
requirements on UML Artifact 1 and UML Artifact 2 respectively (Figure 8). Based 
on the generated workflows, project manager can conduct other steps in project time 
management such as estimating activity resources, estimating activity durations, etc. 
Information about activity duration is used to detect potential UCIDs.  

r: d1
w: d1

r: d1,d4
w: d4

Activity 1 Activity 2

r: d4,d8
w: d8

r: d5,d9
w: d9

Activity 4

Activity 5

End
r: d2,d4,d5
w: d5

AND-joint activityStart Activity 3

Start

r: d2,d4,d5
w: d5

r: d2,d6
w: d6

Activity B

Activity C

r: d2
w: d2

Activity A

r: d5,d9
w: d9

r: d6,d10
w: d10

Activity D

Activity E

r: d6,d10,d11
w: d11

Activity F

End

AND-joint activity

Fig. 8. Example of CSWs created based on the relationships between UML Artifacts 

In Table 1, the minimum and maximum execution durations of each activity in CSWs 
described in Figure 8 are calculated from the Activity Duration Estimate, quantitative 
assessment of the likely number of work periods that will be required to complete an 
activity [18], of the corresponding activity in the project time management. Based on 
these values and the start time of the corresponding workflow, we can calculate the 
Estimated Active Intervals according to the formulas given in Section 5.1. After using 
the  Inter-UCID  detection  algorithms,  the  following  potential  Inter-UCIDs  are 

T. Huyen Phan and K. Ochimizu: 105



reported: WW Inter-UCID between activity 3 and activity B on artifact 5, WW Inter-
UCID  between  activity  5  and  activity  D  on  artifact  9,  RW  Inter-UCID  between 
activity 3 and activity A on artifact 2, RW Inter-UCID between activity 5 and activity 
B on artifact  5. By applying the second Inter-UCID resolution method, modifying 
workflow structure, we get the synthesis CSW as described in Figure 9.

Because detecting potential UCIDs at build time is limited to workflows in which 
Estimated Active Intervals  can be given before  execution, solving this problem at 
runtime will be our next step. The model versioning system AMOR [21] offers some 
methods  to  resolve  collaborative  conflict  in  model  versioning.  Regarding  this 
approach,  all  people  who  performed  the  changes  are  involved  in  eliminating  the 
conflicts  to  obtain  one  consistent  model  version.  We will  consider  applying  this 
approach in our environment to increase the flexibility of the system.

Table 1. Time aspect of activities in CSWs described in Figure 7

CS
W 
ID

Start 
time Pw

Activity Name Activity 
Duration 
Estimates 
(days)

Minimum 
and 
Maximum 
execution 
duration

Estimated 
Active 
Interval

W1 5 Activity 1 7.5 ± 0.5 {7,8} [5,13]
Activity 2 5.5 ± 0.5 {5,6} [12,19]
Activity 3 11 ± 1 {10,12} [17,31]
Activity 4 6 ± 1 {5,7} [27,38]
Activity 5 7 ± 1 {6,8} [27,39]
AND-joint 0 {0,0} [33,39]

W2 15 Activity A 6 ± 1 {5,7} [15,22]
Activity B 5 ± 1 {4,6} [20,28]
Activity C 5 ± 1 {4,6} [20,28]
Activity D 10 ± 1 {9,11} [24,39]
Activity E 5.5 ± 0.5 {5,6} [24,34]
Activity F 6 ± 1 {5,7} [29,41]
AND-joint 0 {0,0} [34,41]

106 PNSE’10 – Petri Nets and Software Engineering



r: d1
w: d1

r: d1,d4
w: d4

Activity 1

Activity 2

r: d4,d8
w: d8

Activity 4

Activity 5-D

AND-joint activity

Activity 3-B

r: d2,d6
w: d6

r: d2
w: d2

Activity A

r: d6,d10
w: d10

r: d6,d10,d11
w: d11

AND-joint activity

r: d5,d9
w: d9

r: d2,d4,d5
w: d5

Start
And-Split Start 

Time Start 2 

Time Start 1 

End
And-Joint End 

Time End 1 

Time End 2 

Activity C

Activity E

Activity F

Fig. 9. Modified CSW with potential UCID corrected

 8 Related Work

Workflow verification has attracted a lot of attention, especially control flow aspect. 
However,  little research has been carried out on data verification in the workflow 
literature. 

Reference [3] was one of the first studies to mention the importance of data-flow 
verification,  and  identified  possible  errors  in  the  data-flow,  like  missing  data, 
redundant data, conflict data, etc. Some general discussions on data flow modeling, 
specifications and verifications have been given, but without any detailed solution. 
The authors in [12] used data flow matrix and UML activity diagram to specify data 
flow. Based on this specification, an algorithm for detection of some data anomalies, 
such as missing data, redundant data, and potential data conflicts, was given [3]. In 
[11], a new workflow model, named Dual Workflow Nets, was defined to explicitly 
describe both control flow and data flow. A graph traversal approach was used in [10] 
to build an algorithm for detecting lost data, missing data and redundant data. More 
data flow errors were recognized and conceptualized as data flow anti-patterns and 
expressed in terms of temporal logic CTL* [5, 6]. By using temporal logic, available 
model checking techniques can be applied to discover these anti-patterns.

Nevertheless, all of these studies consider data flow errors in a single workflow 
only and no error removal method is given at all. In contrast to previous work, we 
address not only the interactions of concurrent activities inside a single workflow, but 
also the mutual influences between concurrent workflows, which are the sources of 

T. Huyen Phan and K. Ochimizu: 107



data flow errors. In [19], we focused on identifying UCID situations and defining a 
new workflow model as an extension of Petri  Nets.  Two algorithms for  detecting 
intra-UCID and inter-UCID were also given in this work. However,  there are still 
many unsolved problems in [19] and this paper is its refined and extended version. In 
this paper, TDW is defined as an extension of Workflow Nets (WF-Nets) instead of 
Petri Nets. Because the two algorithms in [19] had many common steps, if we use  
them separately,  execution cost would be high. Therefore, these two algorithms are 
combined  to  reduce  the  cost  and  to  form a  more  accurate  and  useful  algorithm. 
Algorithm evaluation is also included in this version. Besides,  some heuristics are 
provided to make the algorithm more flexible and effective. After that, some UCID 
resolution methods are  proposed to help remove UCID errors.  Finally,  building a 
change support environment for cooperative software development is introduced as an 
application domain for our work.

Concerning  the  mutual  influences  of  the  concurrent  workflows  approach,  the 
research  closest  to  us  is  [7].  However  [7]  addressed  the  verification  of  workflow 
resource constraints, and in this work, by nature, handling the resource problem is 
simpler  than  the  data  problem. A Time Constraint  Workflow Net  was defined  to 
model workflow. Then, they identified the problem of resource constraints in WFMS 
and  proposed  a  pseudocode  algorithm  which  checked  the  resource  dependency 
between  every  two  activities.  Reference  [4]  used  hybrid  automata  to  model  the 
influences between concurrent workflows, and adopted a model checking technique to 
detect resource conflict problems.

 9 Conclusion and Future Work

In  this  paper,  we  have  presented  Unintentional  Change  in  In-use  Data (UCID) 
concept and classified types of UCID which can occur, between activities in a single 
workflow or in different concurrent workflows. We have also proposed a Time Data 
Workflow based on the WF-Nets with many attributes supporting UCID estimation. 
An  algorithm  which  helps  detect  intra/inter-UCIDs  in  a  Concurrent  TDW 
Management System has been developed too. After that, algorithms evaluation and 
some solutions to resolve UCID problem are given. Finally,  we have introduced a 
concrete project  supporting software change development process in a cooperative 
software environment as an application using UCID theory to verify change processes 
at build time.  

As future work, we will implement a prototype of Concurrent TDW Management 
System  and  evaluate  the  effectiveness  of  UCID  detection  algorithm  by  runtime 
analysis.  Then,  we  will  improve  inter-UCID  resolutions  and  refine  the  generated 
TDW after applying UCID resolution methods in the Concurrent TDW Management 
System. Detecting and correcting UCID at runtime are our next targets. We also plan 
to investigate formal verification methods to verify the correctness of our model and 
method.  Finally,  we will  integrate  our system into the  open source  WoPeD [17]. 
Another direction of our research is to extend the TDW and improve UCID detection 
algorithms to address errors in resource and access control constraints.

108 PNSE’10 – Petri Nets and Software Engineering



References

1. Lee, M., Han, D., Shim, J.:  Set-based access conflicts analysis of concurrent workflow 
definition. In:  Proceedings of Third International Symposium on Cooperative Database 
Systems and Applications, pp. 189--196. Beijing, China (2001) 

2. Li,  H.,  Yang,  Y.,  and Chen,  T.  Y.: Resource  constraints  analysis  of  workflow 
specifications. J. Syst. Softw. 73, 2, pp. 271--285 (2004) 

3. Sadiq, S., M. Orlowska, W. Sadiq and C. Foulger.: Data flow and validation in workflow 
modeling. In:   Proceedings of 15th Australasian Database Conference.  LI, H. pp.  207--
214 (2004) 

4. Kikuchi  S.,  Tsuchiya  S.,  Adachi  M.,  and  Katsuyama  T.: Constraint  Verification  for 
Concurrent System Management Workflows Sharing Resources. In: Third International 
Conference on Autonomic and Autonomous Systems (2007)

5. Trčka N., van der Aalst W.M.P., and Sidorova N.: Analyzing Control-Flow 
and Data-Flow in Workfow Processes in a Unified Way. Technical Report 
CS 08/31, Eindhoven University of Technology (2008)

6. Trčka N., van der Aalst W.M.P., and Sidorova N.: Data-Flow Anti- Patterns: 
Discovering  Data-Flow  Errors  in  Workflows.  In: 21st  International  Conference  on 
Advanced Information Systems (CAiSE’09).  LNCS, vol. 5565, pp.  425--439. Springer-
Verlag Berlin Heidelberg (2009)

7. Zhong, J. and Song, B.: Verification of resource constraints for concurrent workflows. In: 
Proceedings  of  the  Seventh  International  Symposium  on  Symbolic  and  Numeric 
Algorithms for Scientific Computing, pp. 253--261 (2005)

8. Wil van der Aalst, Kees Max van Hee:  Workflow Management:  Models,  Methods, and 
Systems. MIT press, Cambridge, MA (2004)

9. Zeng,  Q.,  Wang,  H.  and  Xu,  D:  Conflict  detection  and  resolution  for  workflows 
constrained by resources and non-determined duration. Journal of Systems and Software 
81(9), pp 1491--1504 (2008)

10. Sundari M.H., Sen A.K., and Bagchi A.: Detecting Data Flow Errors in Work-flows: A 
Systematic Graph Traversal Approach. In: 17th Workshop on Information Technology & 
Systems (WITS-2007). Montreal (2007)

11. Fan  S.,  Dou  W.C.,  and  Chen  J.: Dual  Workflow  Nets:  Mixed  Control/Data-Flow 
Representation  for  Workflow  Modeling  and  Verification.  In:  Advances  in  Web  and 
Network Technologies, and Information Management (APWeb/WAIM 2007Workshops), 
LNCS, vol. 4537, pp 433--444. Springer-Verlag, Berlin (2007)

12. Sun S.X., Zhao J.L., Nunamaker J.F., and Liu Sheng O.R.: Formulating the Data Flow 
Perspective for Business Process Management. Information Systems Research, 17(4), pp 
374--391 (2006)

13. Heinlein,  C.:  Workflow and process  synchronization  with  interaction expressions and 
graphs. In: Proceedings of the 17th International Conference on Data Engineering (ICDE 
’01), pp. 243–252 (2001)

14. Workflow Patterns, http://www.workflowpatterns.com
15. Russell N., van der Aalst W.M.P., and ter Hofstede A.H.M.: Designing a Workflow 

System Using Coloured Petri Nets. Transactions on Petri Nets and Other 
Models of Concurrency (ToPNoC) III, 5800, pp 1--24 (2009)

16. Awad, A., Decker, G. and Lohmann, N.: Diagnosing and Repairing Data Anomalies in 
Process Models. In: 5th International Workshop on Business Process Design. LNBIP, pp 

T. Huyen Phan and K. Ochimizu: 109



1--24. Springer, Heidelberg (2009)
17. Workflow Petri Net Designer, http://193.196.7.195:8080/woped
18. PMBOK Guide Fourth Edition. Project Management Institute (2008)
19. Phan Thi Thanh Huyen and  Koichiro Ochimizu: Detection of Unintentional Change on 

In-use  Data  for  Concurrent  Workflows.  In:  Proceedings  of  the  2010  International 
Conference  on  Software  Engineering  Research  and  Practice  (SERP  10).  Las  Vegas, 
Nevada, USA (2010)

20. Elmasri, R. and Navathe, S. B.: Fundamentals of database systems, Benjamin-Cummings  
Publishing Co., Inc., Redwood City, CA (1989)

21. Adaptable Model Versioning, http://modelversioning.org/
22. Masayuki  Kotani  and  Koichiro  Ochimizu:  Automatic  Generation  of  Dependency 

Relationships  between  UML  Elements  for  Change  Impact  Analysis.  Journal  of 
Information Processing Society of Japan, vol. 49, no.7, pp 2265—2291 (2008)

110 PNSE’10 – Petri Nets and Software Engineering



Automata and Petri Net Models
for Visualizing and Analyzing Complex

Questionnaires
– A Case Study –

Heiko Rölke

Deutsches Institut für Internationale Pädagogische Forschung
(German Institute for International Educational Research)

Solmsstraße 75, 60486 Frankfurt, Germany
roelke@dipf.de

Abstract. Questionnaires for complex studies can grow to considerable
sizes. Several hundred questions are not uncommon. In addition, routings
are used to distinguish between question paths for different respondents.
This leads to the question of how to ensure validity and other important
properties.

We examine this question for a case with even more demanding side
conditions: An important part of the OECD study ”PIAAC”(Programme
for the International Assessment of Adult Competencies) is a background
questionnaire (BQ) containing more than 400 questions. This BQ has to
be adapted by all participating countries. Nevertheless, integrity of the
overall system has to be ensured.

Keywords: automata, Petri nets, questionnaires, analysis

1 Motivation and Overview

Large scale studies in psychology, sociology, and for many other purposes try to
find out characteristics of complete populations or at least of big parts of a pop-
ulation. International studies often aim at comparing the complete population
of one country to that of another country. The well-known PISA study of the
OECD, as an example, aims at comparing all students of age 15 worldwide. This
is done by examining representative samples in each country that participates
in PISA.

To be able to compare one first has to find out some background information
about the people that are compared. This is mainly done by asking those people
questions. Larger chunks of questions grouped together in order to find about
the background of the surveyed people are called background questionnaires, or
BQ in short.



The author of this paper was involved in the definition, implementation,
national adaptation, and deployment of the BQ for the OECD PIAAC study.1

The OECD is the ”Organization for Economic Co-Operation and Development”,
see [5] for details. Among many other activities, the OECD is well-known for
organizing world-wide comparability studies, like the PISA study. PISA [6] is the
abbreviation of ”Programme for International Student Assessment”. The PIAAC
study, ”Programme for the International Assessment of Adult Competencies”can
be seen as an extension of the PISA study for adults. It aims at finding out about
skills needed by adults in order to be successful in everyday work life. See [7]
for details about the PIAAC study. PIAAC is carried out by 24 countries all
over the world (participating countries are located in North and South America,
Europe, Asia and Oceania).

1.1 Background Questionnaire Properties

There is no exact definition of what a BQ is. It is therefore not possible to exactly
determine properties that have to be valid for each and every BQ. Naively, it is
just a bunch of questions that an interviewer has to present to an interviewee. In
practice, in discussions with psychologists, sociologists, or other questionnaire
practitioners, certain universally agreed principles and best practices become
clear. From this starting point, desirable properties can be derived. Neverthe-
less, it is not possible in the moment to definitely define and answer all related
questions. We strive for more general validity, though.

A BQ usually has one single entry or starting point, the first item or ques-
tion. In practice, this is often a hidden item, where predefined data is imported.
An example: One often knows the name of the interviewee in advance. Within
the BQ, there may be many different paths through the question pool, often
depending on previously entered data or chosen randomly. An item that is in-
tended to be the last question of a BQ is called an end item. Again, this may be
a visible item (a question) or a hidden item not visible to the interviewer. While
there often only is one end item, for example thanking the interviewee for time
and patience or, more technically, exporting the assembled data, this is not a
standard requirement of a BQ.

Due to practical considerations, there often is the possibility to pause an
interview or to break it off. While pausing has no implications for the structure,
a break-off means that any item can be an end item or has a connection to an
end item.

The normal flow through a BQ should not result in a dead end. A dead end
is an item that was not considered to be an end item. Other requirements are
more on the semantic side. Each possible question sequence has to make sense
semantically. On the other hand, each desired or planned sequence has to be
possible, e.g. by entering appropriate answers.

1 The work was done in the international consortium responsible for implementing,
deploying, and analyzing the study, led by ETS [3] in Princeton, USA. Most of
the implementation work on the BQ was done by the CRP Henry Tudor [2] in
Luxembourg.

112 PNSE’10 – Petri Nets and Software Engineering



1.2 Overview

The rest of the paper is structured as follows: In Section 2 we give an overview
on the BQ of the PIAAC study. We also give examples of the format in that
the BQ is defined. Following up on that we develop first simple models for the
PIAAC BQ in Section 3. The models are put into practice in Section 4. They
are used to gain quite some insight and find errors, but are not sufficiently
powerful to represent all important aspects of our application. So we carry on in
Section 5 with more powerful Petri net models that allow for more sophisticated
analysis. We conclude in Section 6 with an outlook on further work and possible
generalizations.

2 The PIAAC Background Questionnaire

The PIAAC study mainly consists of two important parts: a background ques-
tionnaire (BQ) and cognitive tests (cognitive items, CI). Both parts are embed-
ded into an overall workflow that controls all parts of the survey. This workflow
is implemented in the same way as the BQ.

The PIAAC BQ starts with general questions about the interviewee to find
out whether he is suited to take part in the survey or not. Afterwards questions
in different categories are asked, grouped together in blocks. Examples for such
blocks are questions about the educational background, skills needed in everyday
work, and questions about private life related to work skills. In order to shorten
the overall interview time, parts of the blocks are arranged in a rotated design
so that not all interviewees are asked the same questions. Another example of
inter-block routing is that certain blocks are not administered if the requirements
for asking these questions are not fulfilled, e.g. questions about current work in
case of an unemployed interviewee.

In addition to the inter-block routing, complex routing is used within blocks
to administer the right questions. A good example for such a routing are ques-
tions about the education of an interviewee: If an interviewee has never been to
an university it is useless to ask questions about academic degrees. Respective
questions should be skipped. Another typical situation includes loops: One might
be interested in the degree of skills related to foreign languages. To accommodate
speakers fluent in multiple languages, some kind of cycle or loop is needed.

The code example in Figure 1 shows an example of a questionnaire item with
a free text entry. The XML syntax is not important here.2 The item group that is
defined in the code snipped defines a single item, i.e. one question is administered.
The item has a unique identifier (ID), instruction text and answering possibilities.
In this case a free text entry of length 12.

The second code example in Figure 2 shows a routing with two possible tar-
gets. This is a hidden item, i.e. an item that is not displayed but used internally.

2 The XML syntax of the PIAAC BQ has been specially designed for this purpose.
At the time of writing of this paper only limited support like editors or visualizers
is available.

H. Rölke: Visualizing and Analyzing Complex Questionnaires 113



<itemGroup id="CI_PERSID" responseCondition="ALL" layout="list">

<item id="CI_PERSID">

<instruction>Please enter the sampled person ID</instruction>

<responses layout="radioButton">

<response code="00" freeTextEntry="true"

freeTextEntrySize="12" > Sampled Person ID:[FTE]</response>

</responses>

</item>

</itemGroup>

Fig. 1. BQ code example: free text entry

<itemGroup id="CI_skip-C-200Rule" layout="list"

responseCondition="ALL" hidden="true">

<item id="CI_skip-C-200Rule"/>

<routing>

<condition>

<operator type="equal">

<variable name="CI200Rule"/>

<constant>NI</constant>

</operator>

</condition>

<then>

<goto itemGroup="CI200Rule"/>

</then>

<else>

<goto itemGroup="CI_start"/>

</else>

</routing>

</itemGroup>

Fig. 2. BQ code example - conditional routing

114 PNSE’10 – Petri Nets and Software Engineering



The routing is conditional. It is based on the value of the variable CI200Rule.
Based on this variable, the BQ jumps to item CI200Rule or CI_start.

Each variable can only be written once. There is a one-to-one relationship
between an item and a variable. The variable has the same name as the item
where it is initialized and written. Afterwards the variable can only be read, not
changed or deleted. There is a notable exception to this rule: It is possible to go
back in the questionnaire, for example in case of an error noticed later on. If this
is done, the variables connected to the items eventually asked again can also be
written again.

The PIAAC BQ together with the overall survey workflow contains more than
600 items. It has one single start item and one single end item. It is possible to
break-off the interview at many items, but not all. Break-off leads to a special
item that asks for the reason for the break-off.

3 BQ Modeling

A basic modeling strategy for background questionnaires is relatively straight-
forward. Items (and/or item groups) can be modeled for example as states of
a finite automata. Going from one question to the other is a matter of transi-
tion from one state the the next. Routing can be modeled as conflicting state
transitions. We will now have a closer look at this idea and discuss whether it is
sufficient below.

3.1 Automata models

CI200Rule

CI_start

CI_skip-C-200Rule

VAR CI200Rule not set

VAR CI200Rule set

Fig. 3. Finite automata for code in Fig. 2

Figure 3 illustrates the idea of an automata model for the BQ. The automata
implements the BQ code example of Figure 2. State CI_skip-C-200Rule is con-
nected to the states CI200Rule and CI_start. The actual transition depends
on the variable CI200Rule as described above. This data dependency causes
problems with this basic model. We will come back to this problem later on.

The benefit even of such a simple formal model is twofold: Once a ques-
tionnaire is transformed to a finite automaton, automatic as well as manual

H. Rölke: Visualizing and Analyzing Complex Questionnaires 115



inspection is possible. Automatic inspection can check important properties like
connectedness and reachability of the final state(s). Manual inspection is enabled
by using a graphical tool that displays the complete BQ. This allows for a much
more convenient way of getting an overview of the BQ. It is nearly impossible to
follow all routings in the sequential XML format, even if this is supported by an
appropriate style sheet (XSLT, see [19]) using links and an overview frame. See
Figure 8 to get an idea of the complexity of the BQ. Note that this figure only
shows a small part of the overall questionnaire. The model shown in the figure
is implemented as a Petri net, not an automaton.

s1 s2 s3

s4

s5

store v1

v1 = 1

v1 = 2

Fig. 4. Data dependent routing

Figure 4 illustrates a general problem with the simple modeling approach.
In state s1 the variable v1 is written. Afterwards another state (s2) is reached
and then s3. Only in this state the value of v1 is read again to determine which
state (s4 or s5) should be reached next. This means that the variable is used
non-locally. While such a situation is common in questionnaires, it is not possible
to model a non-local usage of a variable in an ordinary finite automata.3

3.2 Petri net models

To overcome the problem of non-local variable usage illustrated above, we re-
model the very same BQ part as a Petri net.4 This can be seen in Figure 5.

As we can see in the figure, the problem can easily be overcome. Items,
previously modeled as states in the automaton, are now modeled as places of
the Petri net. Transitions have been introduced between the states/places. The
places can be seen as the static part, e.g. question or instruction. The transitions
are the dynamic part, e.g. the answer given to the respective question and/or the
stored variable. Depending on the values stored and retrieved in the variables,
the resulting net can be a Place-/Transition net or a colored Petri net.

Place-/Transition nets are possible for variables with restricted (=finite) do-
mains. Luckily, this type is most commonly used in BQs. The vast majority of

3 This is not completely true, because for variables with finite domains it would be
possible to enumerate all reachable states for all values of all variables. Nevertheless,
such a model would be hard to read and not very useful.

4 Petri nets are not an arbitrary choice. They offer various advantages: graphical rep-
resentation, formal analysis, tool support.

116 PNSE’10 – Petri Nets and Software Engineering



s1 s2 s3

s4

s5

v1 2

1

v1

s1s2 s2s3

s3s5

s3s4

Fig. 5. Data dependent routing of Fig. 4 as PN model

s3

s4

s5

s2s3

s3s5

s3s4

v1

s1 s2

s1s2
01

02

Fig. 6. Refinement of Fig. 4 as PT net

H. Rölke: Visualizing and Analyzing Complex Questionnaires 117



questions is of a single or multiple-choice type. Such a question is illustrated in
Figure 6. The first question in this example is about the gender of the inter-
viewee. Only two answers are possible. This can be modeled by a refinement of
the net of Figure 5, as shown above. The resulting net is a P/T-net and can be
analyzed using the respective tools.

For free text variables or numbers such a modeling would not be possible.
Instead, we can use colored nets that support high-level data structures for places
and variables directly. While such models are more difficult to analyze they offer
other advantages. We will stick to P/T-nets for the moment and come back to
the advanced net models later on in Section 5.

4 Modeling and Analysis for PIAAC

The definition, implementation, national adaptation, and deployment of the
PIAAC BQ was driven by a high time pressure. Pre-existing questionnaire parts
had to be combined and extended. A compromise had to be found that was (a)
not too long, (b) implementable world-wide - both a cultural and a political
challenge, and (c) able to gather enough data to give answers to the ground-
ing questions of PIAAC. Therefore the work on the BQ started using a semi-
structured approach (printable and human-readable Excel sheets), to be able to
quickly disseminate all intermediate versions and get feedback. Only late in the
process, this was transformed to a well-defined XML format. Therefore also the
work on the formal analysis of the BQ started late and is not completely done
yet.

The first attempt to get some insight into the BQ structure handled the BQ as
a graph. Only an internal model was built, without any graphical representation.
Variables were neglected, only the control flow was mapped. From this simple
model some important insights were possible: We found dangling routings (jumps
to undefined items, e.g. due to spelling mistakes), duplicate item names and
isolated nodes - items that could never be reached. On the other hand, it turned
out to be quite tedious to verify and analyze the error reports of the first analyzer
because of the lack of a graphical representation.

Therefore we implemented another approach targeting on Petri nets. This
formalism was chosen to be able to benefit from the advanced set of tools avail-
able, allowing to visually inspect a net and formally analyse it at the same time.
Our work greatly benefited from the existence and widespread support of the
PNML standard - see [8] for an overview or the web site [16] for more informa-
tion. The usage of PNML allowed to implement the modeling process – modeling
a Petri net that represents a specific BQ – as an XSLT transformation.

The first attempt to do so replicated the graph analyzer mentioned above.
Variables were neglected, all routing possibilities were handled equally without
interpreting the routing conditions. This resulted in a PNML net definition file
only containing places, transitions, and arcs. An example can be found in Fig-
ure 7. Note that [...] means the omitting of plenty of PNML code.

118 PNSE’10 – Petri Nets and Software Engineering



<?xml version="1.0" encoding="UTF-8"?>

<pnml>

<net id="piaac-BQ-DE-001" type="piaac-analyse">

[...]

<place id="B_C02b1DE2b">

<name>

<text>B_C02b1DE2b</text>

</name>

</place>

[...]

<transition id="t_B_C02b1DE2b_B_Q02b2DE2_32">

<name>

<text>t_B_C02b1DE2b_B_Q02b2DE2_32</text>

</name>

</transition>

[...]

<arc id="B_C02b1DE2b_t_B_C02b1DE2b" source="B_C02b1DE2b"

target="t_B_C02b1DE2b">

<inscription>

<text>1</text>

</inscription>

</arc>

[...]

</net>

</pnml>

Fig. 7. Example PNML Code

H. Rölke: Visualizing and Analyzing Complex Questionnaires 119



Our modeling approach does not generate any graphical information. There-
fore a tool had to be found that is able to import PNML files, construct a
graphical representation automatically, and analyse the P/T-net. We chose the
ProM tool for this purpose. For more information on ProM, see [18] and [17].
ProM especially well supports the handling of large nets and arranges the net
elements in a way that is very well readable for the human eye.

Fig. 8. BQ part as a P/T-net

In Figure 8 a small part of the complete BQ net is shown. As said before this
is a simple model in the sense that the variables have been omitted. The figure
is presented here just for illustration purposes. It serves to get an impression of
the complexity of the overall BQ model. The complete model is way too big to
be presented here. The layout of the example net has been done automatically
by ProM.

Once available as a P/T-net in ProM, the build-in analysis means can be
used. The PIAAC BQ has a single start item and a single end item. All items
should be reachable and there may not be a dead end. The resulting BQ net
therefore has to be a net with workflow properties. This is easily analyzable in
ProM and gives good insight into the BQ definition. Doing so, we were able to
find all the error types mentioned above with the big advantage of directly seeing
the problems in the net graph. It now is way simpler to find fixes for the errors.

5 Advanced Net Models

In this section, we discuss experimental models that have not been used so far
for the complete BQ. Nevertheless, as this is ongoing work, this will change soon.

To get deeper insight into the formal properties of a BQ, factoring in the
variables and (routing) conditions is necessary. However, this may lead to way
more complicated models, as we can see from a simple example. For this, we
extend the example of Figure 6 to four possible answer categories on item s1,
two answer categories on item s2 and three conditional routings after s3 relying
on the variables v1 and v2:

120 PNSE’10 – Petri Nets and Software Engineering



– s4, if v1 = 1 and v2 = 1

– s5, if v1 = 2

– s6, if v1 > 2 or v2 = 2

s4

s5
s3s5

s3s4

s2

s1s2

1

2
s1

3

4

s3

s6

v1

1

2

3

4

v2
1

2
s2s3

1

2
s3s6-1

s3s6-2

s3s6-3

Fig. 9. Additional net elements for variables and conditions

Even this mild extension leads to a more complicated net model. Especially
the last routing condition (leading to s6) is interesting, as it has to be unfolded
to three transitions: two for the ”greater-than”and and extra for the ”or”-part. In
real settings, this can easily grow to huge amounts of transition. As an example,
in the German BQ there are routing conditions combining 5 variables, each
enclosing up to 16 possible values, to route to more than 10 targets.

Another possibility is to model colored Petri nets instead of P/T-nets. Col-
ored Petri nets directly support high-level data structures and variables. Never-
theless, they still allow for analysis, the necessary unfolding process is done inside
the tool, for example the CPN Tools [4,10]. This option is under investigation.

In the moment, the PIAAC BQ is defined by means of writing XML code.
This is tedious and error-prone work. The direct syntax can be checked relatively
easily, but syntactical errors like missing routing targets are harder to detect.
Semantic errors like dead ends even harder. Parts of these problems could be
overcome by using a high-level Petri net formalism like Workflow Nets [9,15]
as a means for rapid prototyping and/or adding small changes and corrections.
Workflow Nets are directly executable, so that changes can be tried out eas-
ily. The graphical modeling permits typical errors mentioned above and gives a
good overview on what one is doing. To support large BQ models, means for
abstraction and rapid modeling are necessary. Workflow Nets offer such means.

H. Rölke: Visualizing and Analyzing Complex Questionnaires 121



Abstraction is possible in form of object tokens of the underlying reference net
formalism [12,13,14] and by dynamic transition refinement [11]. Rapid modeling
is facilitated by workflow patterns, a special form of net components - see [1] for
an overview.

6 Conclusions and Outlook

We found a way of making use of well-known and well-understood formalisms
and tools for a new domain. While some good results have already been achieved,
several ways of extending the work are possible:

– The BQ analysis should be integrated into the normal BQ definition and
release process. In the moment, it still requires manual work. It has been
done completely only for the German version of the BQ.

– While the single steps of the analysis approach are rather straightforward,
the combination still requires some manual work. This should be simplified
to allow non-expert users to do the analysis on their own.

– The advanced models of Section 5 can be used directly for analysis of the
BQ. This is still in an experimental state. We try to partition the BQ net
into independent sub-nets to circumvent the net size explosion.

– In the moment, the BQ definition and especially the national adaptation
process has long turn-around times. Countries request changes without the
possibility to try them out beforehand. Using the rapid prototyping idea of
Section 5 they could first try out the changes themselves and only request
approval afterwards, once the changes are stable and working on the national
level.

The examples and the analysis shown in this paper could partly be modeled
using a sequential modeling formalism. However, Petri nets offer big advantages
when it comes to non-local dependencies. For example, in the PIAAC BQ, some
of the questions should only be asked a limited number of times in a country. This
is straightforward to model in PN but maybe more difficult in other modeling
formalisms.

The analysis of background questionnaires could benefit a lot from a sound
formalization of what a BQ is. As mentioned early in the paper, no such definition
exists so far. This question needs further research. Especially the similarity of
BQs and workflows should be analyzed more deeply.

References

1. Lawrence Cabac. Net components: Concepts, tool, praxis. In Daniel Moldt, editor,
Petri Nets and Software Engineering, International Workshop, PNSE’09. Proceed-
ings, Technical Reports Université Paris 13, pages 17–33, 99, avenue Jean-Baptiste
Clément, 93 430 Villetaneuse, June 2009. Université Paris 13.

2. Centre Research Public Henri Tudor (CRP-HT). http://www.tudor.lu. WWW.
3. Educational Testing Service (ETS). http://www.ets.org. WWW.

122 PNSE’10 – Petri Nets and Software Engineering



4. Computer Tool for Coloured Petri Nets (CPN Tools).
http://wiki.daimi.au.dk/cpntools/cpntools.wiki. WWW.

5. Organization for Economic Co-Operation and Development (OECD).
http://www.oecd.org. WWW.

6. Programme for International Student Assessment (PISA).
http://www.pisa.oecd.org. WWW.

7. Programme for the International Assessment of Adult Competencies (PIAAC).
www.oecd.org/els/employment/piaac. WWW.

8. L.M. Hillah, E. Kindler, F. Kordon, L. Petrucci, and N. Trèves. A primer on the
petri net markup language and iso/iec 15909-2. Petri Net Newsletter, 2010.

9. Thomas Jacob, Olaf Kummer, Daniel Moldt, and Ulrich Ultes-Nitsche. Implemen-
tation of workflow systems using reference nets – security and operability aspects.
In Kurt Jensen, editor, Fourth Workshop and Tutorial on Practical Use of Coloured
Petri Nets and the CPN Tools, Ny Munkegade, Bldg. 540, DK-8000 Aarhus C,
Denmark, August 2002. University of Aarhus, Department of Computer Science.
DAIMI PB: Aarhus, Denmark, August 28–30, number 560.

10. Kurt Jensen, Lars Michael Kristensen, and Lisa Wells. Coloured petri nets and cpn
tools for modelling and validation of concurrent systems. International Journal on
Software Tools for Technology Transfer (STTT), Volume 9(3):213–254, 2007.

11. Michael Köhler and Heiko Rölke. Dynamic transition refinement. Electronic Notes
in Theoretical Computer Science, 175:119–134, June 2007.

12. Olaf Kummer. Referenznetze. Logos Verlag, Berlin, 2002.
13. Olaf Kummer, Frank Wienberg, Michael Duvigneau, and Lawrence Cabac. Renew

– the Reference Net Workshop. Available at: http://www.renew.de/, August 2009.
Release 2.2.

14. Olaf Kummer, Frank Wienberg, Michael Duvigneau, and Lawrence Cabac. Re-
new – User Guide. University of Hamburg, Faculty of Informatics, Theoretical
Foundations Group, Hamburg, release 2.2 edition, August 2009. Available at:
http://www.renew.de/.

15. Daniel Moldt and Heiko Rölke. Pattern based workflow design using reference nets.
In Wil van der Aalst, Arthur ter Hofstede, and Mathias Weske, editors, Proceedings
of International Conference on Business Process Management, Eindhoven, NL,
volume 2678, pages 246–260, 2003.

16. Petri Net Markup Language (PNML). http://www.pnml.org/. WWW.
17. Process Mining Toolkit (ProM). http://prom.win.tue.nl/tools/prom/. WWW.
18. W.M.P. van der Aalst, B.F. van Dongen, C. Günther, A. Rozinat, H. M. W. Ver-

beek, and A. J. M. M. Weijters. Prom: The process mining toolkit. In Proceedings
of the BPM 2009 Demonstration Track, Volume 489 of CEUR-WS.org, Ulm, Ger-
many, 2009.

19. XSL Transformations (XSLT). http://www.w3.org/tr/xslt. WWW.

H. Rölke: Visualizing and Analyzing Complex Questionnaires 123



124 PNSE’10 – Petri Nets and Software Engineering



Deadlock Control Software for Tow Automated
Guided Vehicles using Petri Nets

Carlos Rovetto1, Elia Cano1 and José-Manuel Colom2

1 Dpt. of Computer Science and Systems Engineering (DIIS)
2 Aragón Institute of Engineering Research (I3A)

University of Zaragoza, Spain
{carlos.rovetto,elia.cano}@utp.ac.pa, jm@unizar.es

Abstract. Factoring and warehouse distribution centers face numerous
and interrelated challenges in their efforts to move products and materi-
als through their facilities. New technologies in navigation and guidance
allow true autonomy with more flexibility and resource efficiency. In this
paper we investigate a complete design approach to obtain deadlock-free
minimal adaptive routing algorithms for these systems. The approach is
based in an abstract view of the system as a Resource Allocation System.
The interconnection network and the routing algorithm elaborated by the
designer, are the initial information used to obtain in an automatic way
a Petri Net model. For this kind of routing algorithms, we prove that the
obtained Petri Net belongs to the well-known class of S4PR net systems,
and therefore the rich set of analysis and synthesis results can be applied
to enforce the liveness property of the routing algorithm.

Key words: AGVs, Control Software, Resource Allocation Systems (RAS),
Modular Models, Structural Analysis.

1 Introduction

Nowadays, many factories and warehouse and distribution centers use Auto-
matic Guided Vehicles (AGV s) for item transportation among workstations.
The wheeled trailers are the most productive form of AGV for tugging and tow-
ing because they haul more conveyor-loads per trip than other AGV types. In
this paper we consider a warehouse distribution center as a programmable sys-
tem for conveyor-loads movement among workstations using tugger AGV . The
problem to be investigated concerns the design of Deadlock-Free minimal adap-
tive routing algorithms for the guidance system of tuggers AGV s, travelling into
an warehouse distribution center. We say that the routing algorithm is minimal
because only routes of minimal length between two workstations are taken into
account. Moreover, the routing algorithms we are considering are adaptive in
the sense that the route of a conveyor-load is constructed segment by segment.
The assignment of a segment to the route of a conveyor-load is done in a work-
station when the first trailer try to leave the workstation towards its destination
workstation.



From the methodological point of view, the design of deadlock-free minimal
adaptive routing algorithms is a complex task, where the designer experience
is required because deadlock states can appear. There exist several approaches
to cope with this problem [1–5]. They consider more general routing algorithms
than those considered in this paper (including, for example, non-minimal routes).
Because this generality, very few powerful analysis and synthesis results are
available.

Our approach gives a full design cycle for minimal adaptive routing algorithms
using Petri Nets as formal model that allows structural analysis of the liveness
property of the model. Afterwards, if it is necessary, the initial routing algorithm
is changed. From the point of view of software engineering, in the context of the
control software for AGV s systems, this paper intends to make contributions in
the following directions: (a) The formalization of an abstraction process of the
system to retain only the relevant characteristics in the study of deadlock prob-
lems in the routing software of AGV s. This abstraction is constructed around a
minimal set of concepts – processes and resources. (b) The demonstration that
for AGVs with minimal adaptive routing algorithms, the proposed abstraction
process gives rise to models belonging to a well known class of Petri Nets named
S4PR, and so, we have many available results to cope with these systems. (c)
A modular methodology to construct the models based on the specification of
processes with resources that form the modules. The modules are composed by
the fusion of common shared resources (segments) by different modules. This
paper is organized as follows. In Section 2 an illustrative example is presented.
In section 3 the proposed methodology is presented in detail. Section 4 presents
the first step of the methodology consisting of the abstraction of the warehouse
distribution center and the routing algorithm to retain only those aspects related
to the appearing of deadlocks. Section 5 is devoted to the Petri Net model rep-
resenting the Resource Allocation view of the system. This section also proves
that the Petri Nets obtained for these routing algorithms belong to the class
of the S4PR nets. Section 6 presents the analysis and synthesis phases of the
methodology that profit the theoretical results known for the class of S4PR.
Finally, section 7 presents some conclusions.

2 An Example

In this section, a simple example of a warehouse distribution center, will be pre-
sented. The specification of this example illustrates the typical situation in the
transportation system of items. We start with a layout of the shipping areas
defined by a set of workstations WS and a set of segments SG interconnecting
the workstations. The connection pattern among workstations will be called the
framework of the warehouse distribution center. The example that we are con-
sidering is an unidirectional ring in clockwise fashion as underlying framework.
There are four workstations WS={w0, w1, w2, w3} and they are interconnected
by a set of segments SG={sa0, sa1, sa2, sl1, sl2, sl3}. This warehouse distribution
center is depicted in schematic way in Fig. 1.a. Observe that if a workstation

126 PNSE’10 – Petri Nets and Software Engineering



Fig. 1. a) Framework skeleton and its, b) Warehouse Graph.

has two output segments, a train can follow any of them. This decision is taken
by the local minimal adaptive routing algorithm of the workstation. The other
defining element of the warehouse distribution center is the behavior of the
conveyors because a train can tow single or multiple trailers hence the length
of the conveyors is variable. As the conveyors flow in pipeline fashion through
the framework, these can have simultaneously allocated several segments of the
framework. The first trailer of the AV G train is the head of the conveyors and
reserve the segments to transit; the last trailer is the tail and release them. Tra-
ditionally, each segment supports only one conveyor at time to avoid collisions.
In our example, each workstation executes, an instance of the following minimal
adaptive routing algorithm parameterized by the identity of the workstation.

ALGORITHM 1 Minimal Adaptive Routing Algorithm for workstation i.
Input: The head trailer cl from the conveyor-load queue.
Local: Si ⊆ SG, output segments for workstation i

F ⊆ Si, set of non-assigned output segments
Output: The next segment to be used for cl
begin
if (destination(cl) = i) then store the conveyor-load cl in workstation i
else

if ( sai ∈ F ) then use sai ; F :=F\{sai}
else

if ((destination(cl) < i) ∧ (sli ∈ F )) then
use sli ; F :=F\{sli}

else enqueue cl
end if

end if
end if

end

That means the workstation knows its non-assigned output segments and the
algorithm assigns, if it is possible, the output segment that the first trailer must
follows in order to reach its destination. In other words, to reach a destination
workstation, wd, different to the current workstation wi, the algorithm tries to
assign the output segment sai if it is an output free segment of wi. Otherwise,
sli is assigned if this segment is an output free segment of wi and the index d
of the workstation wd is less than the index i of wi. This reservation is done by

C. Rovetto et al.: Deadlock Control Software for TAGV using Petri Nets 127



the head trailers. The intermediate trailers follow through the reserved segments
and the tail trailer release the segments that they will be added to the set of free
segments F . The design of minimal adaptive routing algorithms can lead to so-
lutions where deadlock states can be reached. A deadlock state, in a warehouse
distribution center, arise when a set of conveyor-loads are in transit to their
respective destination workstations but all of them are stopped forever in inter-
mediate workstations. They are waiting for the availability of output segments of
these intermediate workstations that have been previously assigned to conveyor-
loads belonging to this set. Therefore, none of the implied conveyor-loads will
reach their destination workstations. The minimal adaptive routing algorithm
of our example presents this anomaly that we illustrate by means of the fol-
lowing deadlock state. We have four conveyor-loads, {cl1, cl2, cl3, cl4}, each one
composed by more than one trailer. It is easy to verify that the state described
in table 1, for the four conveyor-loads in transit, is reachable, where H and T
represent the current workstations of the head and tail trailers, respectively. The
rest of the columns in the table 1 represent: Allocated segments− segments as-
signed to the conveyor-load; Destination workstation− represents the destination
workstation of the conveyor-load; Next segment− segment to be assigned to the
head trailer according to the minimal adaptive routing algorithm. Observe that

Conveyor Trailers Allocated Destination Next
-loads H T Segments Workstation segment
cl1 w0 w3 sl3 w1 sa0

cl2 w1 w0 sa0 w2 sa1

cl3 w2 w1 sa1 w3 sa2

cl4 w3 w2 sa2 w1 sl3

Table 1. Deadlock state reached in the example concerning four conveyor-loads.

all conveyor-loads are in intermediate workstations and in order to advance in
the warehouse distribution center, all conveyor-loads need segments (those given
by the minimal adaptive routing algorithm) that they are allocated by other
conveyor-loads in the same set (compare the two columns "Allocated Segments"
and "Next segment" in the table 1). On the other hand, none of the tail trailers
can release segments because if some tail trailer moves ahead, it will be in the
same workstation that the head trailer and this is not possible. Therefore, we
have reached a deadlock state where the four classical necessary conditions for
the existence of a deadlock are fulfilled. Finally, you can observe that although
we are in a deadlock state, there exist two segments, sl1 and sl2, that they are
free, and the minimal adaptive routing algorithm cannot assign these segments
to the four conveyor-loads of our scenario.

128 PNSE’10 – Petri Nets and Software Engineering



3 The proposed methodology

In this paper we advocate for a methodology where, after an analysis phase
of the model obtained from the framework (the interconnection network) and
the minimal adaptive routing algorithm, a synthesis procedure transform the
original routing algorithm to make it deadlock-free. In order to implement this
methodology we will make use of Petri Net models. Therefore, the first task will
be the construction of the Petri Net model that retains only those aspects related
to the appearing of the deadlock states. Deadlocks appear as a consequence of
the allocation of the segments by the conveyor-loads in transit in the warehouse
distribution center. Therefore, we will adopt a Resource Allocation perspective
to abstract the system (RAS view of the warehouse distribution center) where
segments will be considered as resources, that they are used in a conservative
way (they are not created nor destroyed) by the user processes that they are
the conveyor-load moving from a source workstation to a destination worksta-
tion. In next section, from the framework and the routing algorithm we will
obtain a Routing Graph for each destination workstation. One of these Routing
Graphs represents a transition graph where we present the reachable states of a
conveyor-load, composed by more than one trailer, from a source workstation of
the warehouse distribution center to the destination workstation corresponding
to the Routing Graph. From these Routing Graph and the segments consid-
ered as resources, in section 5 we obtain a Petri Net that, in the case of minimal
adaptive routing algorithms, belongs to the well known class of S4PR nets. Now,
using the known analysis results for this class of nets we can characterize the
existence of deadlocks using a structural reasoning. The synthesis procedure is
based on the methods for liveness enforcing developed by different authors [6]
[7] [8]. The Fig. 2 presents in graphical form the methodology we propose for the
design of deadlock-free minimal adaptive routing algorithms. In this methodol-
ogy, the Petri Nets play a central role, because they are used to model the RAS
view of the warehouse distribution center, and this is the reason of this paper:
to present how to obtain these Petri Nets and to prove that they belong to a
previously known class of Petri Nets (S4PR), and so well studied.

4 Construction of the Routing Graph

The goal of this section is to represent, step by step, the construction of the so
called Routing Graph from the information about the framework of the ware-
house distribution center and the minimal adaptive routing algorithm. This
Routing Graph will represent the sequence of states that a conveyor-load must
follow to reach a given destination workstation, wi. The definition of the state
concerns the set of segments that the conveyor-load is using each time. Therefore,
RG give us the so called Resource Allocation (RAS) view of the warehouse distri-
bution center. First, the framework is formalized through the Warehouse Graph
(WG). The WG is a labeled graph WG=(W,S), where W is a set of vertices
and S is a set of edges. The set W is equal to WS and S⊆W×2SG×W , where

C. Rovetto et al.: Deadlock Control Software for TAGV using Petri Nets 129



Framework Minimal Adaptive

Routing Algorithm

Minimal Path Graph

Petri Net of the class S4PR

Liveness Analysis in S4PR

Live

Synthesis procedure
for liveness

enforcing in the
warehouse net model

Backward propagation
of the constrains on

the model to the
minimal adaptive
routing algorithm

S
p

e
cifica

tio
n

YesNo

Routing Graph

Start

Warehouse Graph

Designer

Specification
A

b
stra

ctio
n

Segments

State space

of a given

conveyor-load

with destination

workstation wsi

Resources Processes

Formal ModelRAS view

F
o

rm
a

l
M

o
d

e
l

A
n

a
ly

sis

The designer

specification

is accepted

The modified

specification

is accepted

S
y

n
th

e
sis

P
h

a
se

Conveyor Behaviour Graph

Fig. 2. Design Flow Methodology.

WS is the set of vertices and SG the set of segments. An edge (w1, s, w2)∈S
means that there exists a set of segments s⊆SG from the workstation w1 to the
workstation w2, as it is shown in the Fig. 1.b. We are considering the class of
minimal adaptive routing algorithms. Therefore we will represent for each desti-
nation workstation wi all the paths of minimal length from a workstation wj to
the destination workstation wi. This information is captured into the Minimal
Path Graph (MPGi) with destination workstation wi. Each one of these graphs
is a subgraph of the WG = (W,S) and it will be an acyclic directed labeled
graph, MPGi=(V,E), where V =W , and E⊆S, verifying that:

1. All output arcs of wi in WG do not belong to E.
2. The function Li:V→IN is well defined: Li(wi)=0 and ∀wj 6=wi, Li(wj)=k,

where k is the length of the minimal path from wj to wi in the WG.
3. All arcs (w1, s, w2) ∈ S in WG, such that Li(wi)+1 6=Li(w2), do not belong

to E.

The graphs MGPi for the example of Fig. 1 are depicted in the Fig. 3. Observe
that we will have four of these graphs, one for each possible destination worksta-
tion. Each MPGi can be seen as the set of paths that can follow a conveyor-load
originated in the workstation wj with destination workstation wi, an this path
satisfy the minimality condition of the considered routing algorithm. Neverthe-
less, we are considering conveyor-loads with more than one trailer of length,

130 PNSE’10 – Petri Nets and Software Engineering



Fig. 3. Minimal Path Graph for all destination of our example.

because a conveyor-load with only one trailer cannot participate into a dead-
lock, since a deadlock must fulfill the Hold and Wait condition. Therefore in our
model we must distinguish states according to the workstations where the head
and tail trailers can be found. On the other hand, it is important to say that the
advancement of the head trailer from a workstation to another can be done if and
only if there exists at least a segment that can be allocated for this movement.
Segments, therefore are resources in our RAS view of the warehouse distribution
center. If the head trailer allocates the needed resources for the movement of the
full conveyor-load, the tail trailer take charge of the release operation after the
use of a segment. In order to represent the states of a conveyor-load with desti-
nation workstation wi we will construct, from the MPGi, the so called Conveyor
Behaviour Graph (CBG) for the destination workstation wi, CBGi=(Q,F ), ver-
ifying that.

1. Q⊆V×V , where ∀wh, wt∈Q, wh=wt or L(wh)<L(wt). That is, the first com-
ponent of the defined states corresponds to the workstation where the head
trailer is, and the second to the workstation where the tail trailer can be
found.

2. F⊆Q×{A,R}×2SG×Q, where F will contain the following edges:
(a) Allocation edges ((wh1, wt), A, S, (wh2, wt)), ∀ wt∈V ,∀((wh1, s, wh2) ∈

E.
(b) Release edges ((wh, wt1), R, S, (wh, wt2)), ∀ wh∈V ,∀((wt1, s, wt2) ∈ E.

Obviously, CBGi is a directed acyclic graph because MPGi is also a directed
acyclic graph. The Fig. 4 shows the Conveyor Behaviour Graph for destina-
tion workstation 0, CBG0, corresponding to the MGP0 of Fig. 3. Finally, to
construct the announced Routing Graph of our warehouse distribution center
we need to incorporate the information corresponding to the routing algorithm.
The routing algorithm is a function R:WS×WS→2SG, such that if wc is the
current workstation of the head trailer and wd the destination workstation of
the conveyor-load R((wc,wd)) determines the output segments of wc to be al-
located in order to reach the destination workstation. The model that we will
construct is a possibilistic model, in the sense that from a current workstation
we can have several alternative transitions, each one corresponding to a different
allocated segment. Therefore in order to represent this information of the rout-
ing algorithm, from each CBGi we will construct the so called Routing Graph

C. Rovetto et al.: Deadlock Control Software for TAGV using Petri Nets 131



Fig. 4. Conveyor Behaviour Graph for destination workstation 0.

(RG) to the destination workstation wi, RGi=(Q′, F ′), where Q ⊆ V ×V ×SG∗

represents the set of states in which a conveyor-load can be found.

ALGORITHM 2 Construction of the RGi = (Q′, F ′)
Input: CBGi = (Q,F )
Output: RGi = (Q′, F ′)
begin

next-level := {(w,w, ε)|(w,w) ∈ Q}
Q′ := next-level; F ′ := ∅;
while next-level 6= ∅ do
current-level := next-level; next-level := ∅;
for each (w1, w2, r) ∈ current-level do
for each ((w1, w2), X, S, (w3, w4)) ∈ F do
for each c ∈ S do
if (c ∈ R(w1, wi)) and (X = A)
then next-level := next-level ∪{(w3, w4, r&c)};

Q′ := Q′ ∪ {(w3, w4, r&c)};
F ′ := F ′ ∪ {((w1, w2, r), X, c, (w3, w4, r&c))};

endif
if (r = c&t) and (X = R)
then next-level := next-level ∪{(w3, w4, t)};

Q′ := Q′ ∪ {(w3, w4, t)};
F ′ := F ′ ∪ {((w1, w2, c&t), X, c, (w3, w4, t))};

endif
endfor

endfor
endfor

endwhile
end

The state is characterized by the workstations of the head trailer and the
tail trailer, respectively, and the sequence of segments that, in this state, the
conveyor-load maintains allocated; F ′ ⊆ Q′ × {A,R} × SG × Q′ is the set of
arcs that represents the transition from a state to another by the movement of

132 PNSE’10 – Petri Nets and Software Engineering



the head trailer or tail trailer. The movement of the head trailer allocates (A)
the segment specified in the arc. Observe, that now in the RGi a path from a
state (w,w, ǫ), w 6=wi, that corresponds to the birth of a conveyor-load in the
workstation w, to the state (wi, wi, ǫ), represents the routing of a conveyor-load
in the warehouse distribution center from the source workstation w to the des-
tination workstation wi. So, in order to obtain this RGi = (Q′, F ′) from the
corresponding CBGi(Q,F ), we apply the algorithm 2 (Note: with the symbol &,
in the algorithm, we denote the concatenation operation of two strings) In the

Fig. 5. Routing Graph for destination workstation 0.

Fig. 5 the RG0, obtained from the CBG0 of the Fig. 4. Applying the previous
algorithm, we use the solid arcs to represent the segment allocation, and the
dashed arcs to represent the segment release.

5 The Petri Net Model

In the previous section we have obtained the RAS abstraction of the warehouse
distribution center plus the considered path selection algorithm. This abstraction
is composed by the resources: The set SG of segments; and the set of processes :
the set of routing processes to a destination workstation, each one represented by
means of the corresponding Routing Graph. From these elements, in this section
we proceed to the construction of a Petri Net integrating all processes and all
resources.
First, from the RGi(Q

′, F ′), we construct the Petri Net Ni = 〈P0i ∪ Psi, Ti, Fi〉
representing the state space of a conveyor-load born in the warehouse distribu-
tion center with destination workstation wi. This construction proceeds accord-
ing to the following rules.

C. Rovetto et al.: Deadlock Control Software for TAGV using Petri Nets 133



Fig. 6. Petri Net model for the example of the Fig. 1.

1. Add a place to the set Psi for each vertex of the RGi, (w1, w2, s) ∈ Q′ such
that w1 6= w2. The name of the place will be formed by the concatenation
of identifiers of the workstations of the head and tail trailer, w1 and w2,
respectively, and the sequence of segments that remain allocated for this
conveyor-load and represented by s. All these places are unmarked at the
initial marking M0, because in the initial state there are not conveyor-loads
in transit. We call these places process places.

134 PNSE’10 – Petri Nets and Software Engineering



2. Add a unique place poi, Poi = {poi}, corresponding to the fusion of states
of the form (w,w, ǫ) ∈ Q′. The initial marking of this place will be equal
to the maximum number of conveyor-loads that can be simultaneously in
transit to the destination workstation wi. If this number is not limited, or
it its unknown, then we don’t need to add a place poi, i.e. the number
of conveyor-loads with destination workstation wi, in this network, is only
limited by the available segments. These places will be called idle places.

3. Add a transition to the set Ti for each arc of the graph RGi. For an
arc ((w1, w2, s), X, c, (w3, w4, r)) ∈ F ′, the name of the transition will be
w1&w2&s&w3&w4&r. (The concatenation of this strings identifying the el-
ements of the arcs).

4. For each arc ((w1, w2, s), X, c, (w3, w4, r)) ∈ F ′, w1 6= w2, add an arc from
the place w1&w2&s to the transition w1&w2&s w3&w4&r, and an arc from
this transition to the place w3&w4&r.

5. For each arc ((w,w, s), X, c, (w3, w4, r)) ∈ F ′ add an arc from the idle place
p0i (if there exists) to the transition w&w&s&w3&w4&r, and an arc from
this transition to the place w3, w4, r.

Observe that the net Ni, obtained following the rules of the preceding para-
graphs, is a strongly connected state machine. In effect, by construction, each
transition has only one input place and only one output place because a transi-
tion has been added for each arc in the graph RGi, and the places correspond
to the both ends of the directed arc. Moreover, it is a strongly connected state
machine because all vertex in RGi, (w1, w2, s), is reachable by a path from a
source vertex (w,w, ǫ), since the construction of RGi requires that we can con-
struct the sequence of allocated segments s from a source vertex; and from a
vertex (w1, w2, s) always exists a path to the destination vertex (w,w, ǫ). Taking
into account that place P0i represent the fusion of all vertices (w,w, ǫ) of the
graph RGi, we can conclude that the net Ni is strongly connected. Additionally,
we can see that all circuits of Ni contain the place p0, because the original RGi

is acyclic. After all these transformations we obtain a set of strongly connected
state machines Ni, each one corresponding to a different destination workstation
in the warehouse distribution center. The last step to obtain the RAS view of
the warehouse distribution center is the addition of the resources, that, in this
case, they are the segments connecting the workstations, and their integration
with to the state machines. This can be done state machine by state machine
and constructing the full model by fusion of the resource places with the same
name. That is, we are constructing the model in modular way. The two steps to
be applied are:

1. Add a place pc to the set PR for each segment c ∈ SG of in the warehouse
distribution center. The initial marking of this place will be equal to the
maximum number of trailers that can be in transit simultaneously in the
segment. (Normally. it will be equal to one representing tha availability of
the segment).

2. For each arc of the graph RGi of the form ((w1, w2, s), A, c, (w3, w4, r)) ∈
F ′, add an arc from the place pc, (resource place representing the segment

C. Rovetto et al.: Deadlock Control Software for TAGV using Petri Nets 135



c) to the transition w1&w2&s&w3&w4&r. This arc, in the Petri Net, will
represent the allocation of the segment c. For each arc of the graph RGi of
the form ((w1, w2, s), R, c, (w3, w4, r)) ∈ F ′ add an arc from the transition
w1&w2&s&w3&w4&r to the place c. This arc in the Petri Net represents the
release of the segment c.

We denote this net by NR
i , representing the routing of the conveyor-loads to

the destination workstation wi, and the competition for the resource/segments.
The full model is obtained from the different NR

i by the fusion of the resource
places (segments places) with the same name that appear in different NR

i . The
Fig. 6 represents, in an schematic way, the full Petri Net corresponding to the
example in Fig. 2. In this Fig. 2 the names of places and transitions have been
simplified in order to maintain readable. In order to identify the states of the
conveyor-loads with the places that represent them, we have used the simplified
notation hi+tj ; that it means that the head trailer is in workstation i and the
tail trailer is in workstation j.

The final part of this section is devoted to prove that the obtained Petri
Nets for warehouse distribution centers with minimal path selection algorithms
belong to the subclass of Petri Nets named S4PR [6][9]. In order to do that we
recall the basic definitions of this class of nets.

Definition 1 (The class of S4PR nets) Let IN={1, 2, ...,m} be a finite set
of indices. An S4PR net is a connected generalised self–loop free Petri net
N=〈P, T,C〉 where:

1. P = P0 ∪ PS ∪ PR is a partition such that:
(a) PS =

⋃
i∈IN

PSi , PSi 6= ∅ and PSi ∩ PSj = ∅, for all i 6= j.
(b) P0 =

⋃
i∈IN

{p0i}.
(c) PR = {r1, r2, . . . , rn}, n > 0.

2. T =
⋃

i∈IN Ti, Ti 6= ∅, Ti ∩ Tj = ∅, for all i 6= j

3. For all i ∈ IN , the subnet Ni generated by PSi ∪ {p0i} ∪ Ti is a strongly
connected state machine, such that every cycle contains p0i .

4. For each r ∈ PR there exists a minimal P–Semiflow, yr ∈ IN|P |, such that
{r} = ||yr|| ∩ PR, yr[r] = 1, P0 ∩ ||yr || = ∅, and PS ∩ ||yr|| 6= ∅.

5. PS =
⋃

r∈PR
(||yr || \ {r}).

Each place p0i is called idle place. Places of PR are called resource places being
unique for the whole model. The Places of PS are called process places. This def-
inition must be completed with the definition of the acceptable initial markings.
Initial markings represent no activity in the system, allowing the routing of each
conveyor-load in isolation.

Definition 2 Let N = 〈P0 ∪ PS ∪ PR, T,C〉 be a S4PR net. An initial marking
m0 is acceptable for N if and only if: (1) ∀i ∈ IN , m0[p0i ] > 0. (2) ∀p ∈ PS,
m0[p] = 0. (3) ∀r ∈ PR, m0[r] ≥ maxp∈||yr||\{r} yr[p].

136 PNSE’10 – Petri Nets and Software Engineering



From the previous definitions and the procedures described in the sections 4 and
5 to obtain the Petri Net model of an warehouse distribution center the following
result can be easily verified.

Proposition 1 Given an warehouse distribution center specified by means of
a framework and a minimal adaptive routing algorithm, the Petri Net model
obtained through the procedure described in sections 4 and 5, belongs to the class
of S4PR net systems.

Proof (Sketch of the proof). In the section 5, after the rules to obtain the Petri
Nets Ni from the corresponding Routing Graph RGi, we have proven that each
Ni is a strongly connected state machine, and for all Ni,Nj , i 6= j, they are
disjoint net systems. We have also proven that every cycle of each strongly
connected state machine Ni contains P0i . Therefore, to complete the proof we
only need to prove the existence of a unique p-semiflow yr ∈ IN|P | for each
resource r. But this is very easy to proof because from each transition where the
resource place r inputs (the resource is allocated), there exists a unique path, in
the strongly connected state machine, to reach each transition where r outputs
(the resource is released). Moreover, all transitions where r is an output place
in the state machine Ni are connected by means of a minimal path from some
transition where r is an input place. Therefore, the resource r plus all the process
places defining the minimal paths connecting the output transitions of r and the
input transitions of r form the p-semiflow that it is unique because we are dealing
with the nets Ni that they are state machines.

Observe that the previous result is also true for non-regular frameworks because
we are considering in an explicit way the paths to a destination workstation.
Therefore, non regularity does not affect the final Petri Net. Nevertheless, non-
minimality of the path selection algorithms can lead to more general class of
nets than the S4PR in the case of existence of cycles in the followed route by
some conveyor-load. Once we have characterized the type of nets we can obtain,
we can use the developed theory for S4PR, trying to interpret these results from
the point of view of the warehouse distribution centers, in the next section. In
some cases we will see that we arrive to some negative results.

6 The Analysis and synthesis phase

The Petri Net model obtained in the previous section belong to the S4PR class.
Therefore, we can take advantage of this property and use the theoretical results
about the liveness characterization in S4PR. One of this results is presented in
the following theorem.

Theorem 2 ([6]) An S4PR, 〈N ,m0〉, is non–live if and only if there exists a
marking m ∈ RS(N ,m0) such that the set of m–process–enabled transitions is
non–empty and each one of these transitions is m–resource–disabled.

C. Rovetto et al.: Deadlock Control Software for TAGV using Petri Nets 137



This characterization is a state based characterization. The interpretation in
terms of the warehouse distribution center is very easy. A token in a process place
of the state machine Ni represent a conveyor-load in an intermediate workstation
with destination workstation wi. That is, is a conveyor-load in transit. The
theorem 2 says that if all conveyor-loads in transit cannot advance because there
is no an available segment to advance (each one of these transitions is not enabled
because an input resource place is empty), this situation characterizes a deadlock
state: none of these conveyor-loads will arrive to its destination workstation
because they are stopped forever in the current process places. In [6], verification
procedures of the characterization stated in this theorem are presented. They
are based in Integer Linear Programming Techniques.
An equivalent characterization to the previous one is based in the Petri Net
concept of siphon. A siphon is a set of places that if they become a set of empty
places, they remain empty forever (these is a structural definition of siphon but
we prefer to present the deep reason for the appearing of deadlocks in this class of
nets). Therefore, all output transitions of the places of the empty siphon will be
dead forever because at least an input place (that belong to the siphon) is empty
forever. The presence of one of this siphons in the net is potentially bad because
this siphon can become an empty siphon. The verification procedures search
for a siphon and a reachable marking under which the siphon is empty. Empty
siphons represent a generalization of the circular waits, because in a siphon we
can find an intricate structure of superposed cycles of empty resources. For the
Petri Net in Fig. 6, you can find the two following bad siphons Di={p1, p2, p3,
p4, p13, p15−to−20, p22, p24, p25, p28, p30, p31, p33, p34, p36, p37, p39, p40, p42, p43,
p45, p46} and Dj={p1, p2, p3, p4, p6, p13, p15, p16, p17, p18, p19, p20, p22, p24, p25,
p27, p28, p30, p31, p33, p34, p36, p37, p39, p40, p42, p43, p45, p46}. The deadlock
state described in section 2 corresponds to the reachable marking written as a
symbolic sum mr = p5+p6+5 ·p7+2 ·p8+ ·p9+2 ·p10+p29+p32+p38+p44. The
reader can easily verify that the siphon Di is insufficiently marked or he/she can
verify the mr satisfy the conditions of the theorem 2. Therefore, we conclude that
the proposed path selection algorithm is not deadlock-free. After the previous
analysis phase, the theory of S4PR nets gives results and methods to enforce
the liveness in the case of nets presenting deadlock states. These techniques
transform the initial Petri Net model in such a way that deadlock states become
not reachable. In some sense, they correspond to deadlock prevention techniques.
We can incorporate this phase because we are using Petri Nets as formal model
and they belong to the subclass of S4PR. The known synthesis approaches
enforcing liveness work on the bad siphons that can be found in the Petri Net
model. These techniques can be classified into two groups.

1. Centralized Approach: [6][9] These techniques compute a place for each
bad siphon preventing that the siphon becomes empty. This new place is of
the same category that the resource places, and so it is said that the synthesis
problem is solved by using virtual resources that they are implemented as
a centralized monitors in the central software. In the case of the Petri Net
of the Fig. 6 we need three places to make live the net. In fact, in some

138 PNSE’10 – Petri Nets and Software Engineering



cases, to take the decision to allocate the virtual resource/segment in a local
workstation we can need coordinate the local path selection algorithm with
other local routing algorithms.

2. Distributed Approach:[10]. Previous limitations are solved developing a
distributed control policy using the so called swap virtual segments.

All these methods are iterative, but the performed transformations maintain the
transformed Petri Net inside the class of S4PR nets.

7 Conclusions

The design of deadlock-free minimal adaptive routing algorithms for warehouse
distribution centers is a complex and tedious task, for which the current method-
ologies, in many cases, only supply trial and error procedures. The assistance to
the designer is very small in order to fix the problem in the proposed algorithm.
In this paper we propose a methodology oriented to the design of deadlock-free
minimal adaptive routing algorithms trying to cope with all phases of the design.
The first step in this methodology consists of the abstraction of the system in or-
der to retain only the elements of the system allowing the study of the appearing
of deadlocks. These elements are the segments of the warehouse distribution cen-
ter, that they are seen as the resources for which the routing processes compete
to send conveyor-loads to destination workstations. The other elements are the
routing processes itself that represent the routing sequence through the frame-
work according to the routing algorithm. The result of this abstraction process is
formalized by means of a Routing Graph for each possible destination worksta-
tion. From the Routing Graphs and the segments we have obtained Petri Nets
that, for the class of routing algorithms that we are considering, belong to the
class of S4PR. Therefore, we profit that the class of S4PR is a well studied sub-
class of Petri Nets and using the known results we can proceed with the analysis
and synthesis phases of our methodology. So, the deadlock-free property in the
warehouse distribution center correspond to the liveness-property in our Petri
Net model. The analysis of this liveness property can be done by two alternative
characterizations that have a good interpretation at the level of warehouse dis-
tribution center. Algorithms and methods to verify the property can be found in
[6]. In the case of non-liveness, there exist methods to enforce the liveness prop-
erty based in the addition of places that can be interpreted in terms of Petri Net
model as centralized software monitors.

References

1. Fanti, M.: A deadlock avoidance strategy for AGV systems modelled by coloured
Petri nets. In: Discrete Event Systems, 2002. Proc. Sixth Int. Workshop on. (2002)
61 – 66

2. Wu, N., Zhou, M.: Resource-oriented Petri nets in deadlock avoidance of AGV
systems. In: Robotics and Autom., 2001. Proc. 2001 ICRA. IEEE Int. Conf. on.
Volume 1. (2001) 64 – 69 vol.1

C. Rovetto et al.: Deadlock Control Software for TAGV using Petri Nets 139



3. Wu, N., Zhou, M.: Modeling and deadlock control of automated guided vehicle
systems. Mechatronics, IEEE/ASME Transactions on 9(1) (2004) 50 –57

4. Wu, N., Zhou, M.: Modeling and deadlock avoidance of automated manufacturing
systems with multiple automated guided vehicles. Systems, Man, and Cybernetics,
Part B: Cybernetics, IEEE Transactions on 35(6) (2005) 1193 –1202

5. Wu, N., Zhou, M.: Shortest routing of bidirectional automated guided vehicles
avoiding deadlock and blocking. Mechatronics, IEEE/ASME Transactions on 12(1)
(2007) 63 –72

6. Tricas, F.: Analysis, Prevention and Avoidance of Deadlocks in Sequential Resource
Allocation Systems. PhD thesis, Zaragoza. España, Departamento de Ingeniería
Eléctrica e Informática, Universidad de Zaragoza (2003)

7. Tricas, F., Colóm, J., Ezpeleta, J.: A Solution to the Problem of Deadlocks in
Concurrent Systems Using Petri Nets and Integer Linear Programming. In Horton,
G., Moller, D., Rude, U., eds.: Proc. of the 11th European Simulation Symp.,
Erlangen, Germany, The society for Computer Simulation Int. (1999) 542–546

8. Park, J., Reveliotis, S.A.: Enhancing the Flexibility of Algebraic Deadlock Avoid-
ance Policies Through Petri Net Structural Analysis. In: Proc. of the 2000 IEEE
Int. Conf. on Robotics and Autom., San, Francisco, USA (2000) 3371–3376

9. Tricas, F., García-Vallés, F., Colóm, J.M., Ezpeleta, J.: A Petri Net Structure-
Based Deadlock Prevention Solution for Sequential Resource Allocation Systems.
In: Proc. of the 2005 IEEE Int. Conf. on Robotics and Autom., Barcelona, Spain
(2005) 272–278

10. Rovetto, C., Cano, E., Colóm, J.: Liveness Enforcing Methods for Resource Allo-
cation Distributed Systems using Petri Nets, Research Report RR-056-09. Depto
de Informática e Ingeniería de Sistemas., University of Zaragoza (2009)

Acknowledgement

This work has been partially supported by the European Community’s Seventh
Framework Programme under project DISC (Grant Agreement n. INFSO-ICT-
224498). This work has been also partially supported by the project CICYT-
FEDER DPI2006-15390.

140 PNSE’10 – Petri Nets and Software Engineering



Taming the Shrew – Resolving Structural
Heterogeneities with Hierarchical CPNs∗

M. Wimmer1, G. Kappel1, A. Kusel2,
W. Retschitzegger2, J. Schoenboeck1, and W. Schwinger2

1 Vienna University of Technology, Austria
{lastname}@big.tuwien.ac.at

2 Johannes Kepler University Linz, Austria
{firstname.lastname}@jku.at

Abstract. Model transformations play a key role in the vision of Model-
Driven Engineering (MDE) whereby the overcoming of structural hetero-
geneities, being a result of applying different meta-modeling constructs
for the same semantic concept, is a challenging, recurring problem, ur-
gently demanding for reuse of transformations. In this respect, an ap-
proach is required which (i) abstracts from the concrete execution lan-
guage allowing to focus on the resolution of structural heterogeneities, (ii)
keeps the impedance mismatch between specification and execution low
enabling seamless debuggability, and (iii) provides formal underpinnings
enabling model checking. Therefore, we propose to specify model trans-
formations by applying a set of abstract mapping operators (MOPs),
each resolving a certain kind of structural heterogeneity. For specifying
the operational semantics of the MOPs, we propose to use Transforma-
tion Nets (TNs), a DSL on top of Colored Petri Nets (CPNs), since it
allows (i) to keep the impedance mismatch between specification and
execution low and (ii) to analyze model transformations by evaluating
behavioral properties of CPNs.

Key words: Model Transformation Reuse, Hierarchical CPNs, Struc-
tural Heterogeneities, Mapping

1 Introduction

MDE is a current trend in software engineering where models are used as first-
class artifacts throughout the software lifecycle [2], which are then systemati-
cally transformed to concrete implementations. In this respect, model transfor-
mations play a vital role, representing the key mechanism for vertical transfor-
mations like the generation of code and horizontal transformations like model
exchange between different modeling tools, to mention just a few. In the con-
text of transformations between different metamodels and their corresponding
models, the overcoming of structural heterogeneities, being a result of applying
∗ This work has been funded by the Austrian Science Fund (FWF) under grant
P21374-N13.



different meta-modeling constructs for the same semantic concept [11, 13] is a
challenging, recurring problem, urgently demanding for reuse of transformations.

In this respect, reusable transformations should abstract from a concrete
transformation language, allowing to (preferably graphically) specify transfor-
mations in an explicit specification view without having to struggle with the
intricacies of a certain transformation language. Secondly, for being able to de-
bug and comprehend resulting specifications, the impedance mismatch between
the specification view and the executable formalism needs to be minimized, de-
manding for a debugging view which retains the structure of the specification
view, i.e., components used in the specification view should not get scattered in
the debugging view. Finally, since debugging can only provide limited evidence
of correctness by means of a set of test runs, the underlying executable formalism
for the execution view should provide means to enable model checking [3].

We therefore propose to specify horizontal model transformations by means
of abstract mappings representing a set of reusable transformation components,
called mapping operators (MOPs), to resolve recurring structural heterogeneities.
These MOPs operate on different levels of granularity, i.e., we provide a set of
kernel MOPs representing the basic functionality needed for resolving structural
heterogeneities and a set of composite MOPs encapsulating several kernel MOPs,
thus enhancing scalability of our approach. In order to specify the operational
semantics of the MOPs, we propose to use TNs [23], a DSL on top of CPNs [9],
since TNs allow to keep the impedance mismatch between specification view and
debugging view low by encapsulating the transformation logic of a single MOP
together with the metamodels and the models. Thereby debuggability and com-
prehensibility are fostered, i.e., the ability of finding and reducing the number
of bugs. Moreover, the underlying CPNs allow to specify reusable components
in the form of modules, which can be nested in a hierarchical way, allowing to
accordingly represent composite MOPs. Therefore the main contribution of this
paper is to enable reuse also on the execution level, i.e., the Petri Net layer.
Finally, the formal underpinnings of CPNs allow the application of generally
accepted behavioral properties to analyze the transformation specification. The
whole framework is called TROPIC – TRansformations On Petri nets In Color.

The remainder of this paper is structured as follows. Section 2 introduces a
motivating example, Section 3 concentrates on the specification of a transfor-
mation and Section 4 deals with the debugging thereof. The subsequent Section
5 shows how TNs are represented in standard CPNs and how behavioral prop-
erties are exploited to analyze the transformation specification. Lessons learned
are discussed in Section 6 and related work is surveyed in Section 7. Finally,
Section 8 concludes the paper with an outlook on future work.

2 Motivating Example

Structural heterogeneities between different metamodels occur due to the fact
that semantically equivalent concepts can be expressed by different metamod-
eling concepts, e.g., explicitly by classes or only by attributes. Fig. 1 shows an

142 PNSE’10 – Petri Nets and Software Engineering



ClassDiagram

0..*

Source

Class
name : String

classes

target 1

ERDiagram

Target

Entity
name : String

0..*
entities

1:1

1:1
ta

m
o

d
el

s 
(M

2) Property
name : String
type : String

0..*
properties

Attribute
name : String

Type

0..*
attributes

1
type

types

1
refersTo

Relationship
name : String

0..*
relationships

n:1

1:n

M
et

Reference
name : String
upperBound : Int
lowerBound : Int

0..*
references

yp
name : String 0..*

name : String

Role
name : String

Cardinality

roles
2

cardinality
1

1:n

S1:ClassDiagram

C1:Class

classes

f

references

i

properties

S1:ERDiagram

C1:Entity

entities

X1:Relationship

relationships

lowerBound : Int

1
opposite

upper : Int
lower : Int

M
o

d
el

s 
(M

1)

name = ‘Person‘

R1:Reference
name = ‘husband‘
upperBound = 1
lowerBound = 0

opposite

references

target target

P1:Property
name = ‘fname‘
type = ‘String‘

properties name = ‘Person‘name = ‘husband_wife‘

Y1:Role
name = ‘wife‘

roles

Z1:Cardinality
upper = 1
lower = 0

cardinality

refersTo

refersTo

P1:Attribute
name = ‘fname‘

P2:Attribute
name = ‘lname‘

attributes
attributes

type type

R2:Reference
name = ‘wife‘
upperBound = 1
lowerBound = 0

opposite

P2:Property
name = ‘lname‘
type = ‘String‘

Y2:Role
name = ‘husband‘

roles

Z2:Cardinality
upper = 1
lower = 0

cardinality

T1:Type
name = ‘String‘

types

Fig. 1. Metamodels and Models of the Running Example

example used throughout the rest of the paper which exhibits common structural
heterogeneities between metamodels, applying different modeling constructs to
represent relationships as can be found e.g., in Ecore3 or in Entity-Relationship
Models. The ClassDiagram shown on the left side of Fig. 1, only provides uni-
directional references, thus bidirectionality needs to be modeled by a pair of
opposite references. In contrast to that, the ERDiagram explicitly represents bidi-
rectionality, allowing to express relationships in more detail, e.g., using roles.

3 http://www.eclipse.org/modeling/emf/

M. Wimmeret al.: Resolving Structural Heterogeneities 143



In the following, the main correspondences between the ClassDiagram and
the ERDiagram are shortly described. On the level of classes, three main corre-
spondences can be recognized, namely 1:1 correspondences, 1:n correspondences
and n:1 correspondences, which are also indicated by dotted lines in Fig. 1. 1:1
correspondences can be found (i) between the root classes ClassDiagram and
ERDiagram as well as (ii) between Class and Entity. Regarding 1:n correspon-
dences, again two cases can be detected, namely (i) between the class Property
and the classes Attribute and Type and (ii) between the class Reference and
the classes Role and Cardinality. Although these are two occurrences of a 1:n
correspondence, there is a slight difference between them, since in the first case
only for distinct values of the attribute Property.type, an instance of the class
Type should be generated. Finally, there is one occurrence of a n:1 correspon-
dence, namely between the class Reference and the class Relationship. It is
classified as n:1 correspondence, since for every pair of References, that are op-
posite to each other, a corresponding Relationship has to be established. Con-
sidering attributes, only 1:1 correspondences occur, e.g., between Class.name
and Entity.name, whereas regarding references, 1:1 correspondences and 0:1
correspondences can be detected. Concerning the first category, one example
thereof arises between ClassDiagram.classes and ERDiagram.entities. Re-
garding the latter category, e.g., the relationship ERDiagram.types exists in the
target without any corresponding counterpart in the source.

3 Specification View

As mentioned before, the actual specification of a transformation problem should
abstract from a concrete transformation language allowing the transformation
designer to focus on the resolution of structural heterogeneities without having to
struggle with the intricacies of a certain transformation language. Therefore we
propose to specify model transformations by means of abstract mappings being
a declarative description of the transformation, as known from the area of data
engineering [1]. For this we provide a library of composite MOPs [21]. Thereby
we identified typical mapping situations being 1:1 copying, 1:n partitioning, n:1
merging, and 0:1 generating of objects, for which different MOPs are provided.
In this respect, reuse is leveraged as the proposed MOPs are generic in the sense
that they abstract from concrete metamodel types since they are typed by the
core concepts of current meta-modeling languages like Ecore or MOF (i.e., class,
attributes, references). To further structure the mapping process we propose to
specify mappings in two steps.

In a first step, composite MOPs, describing mappings between classes are
applied, providing an abstract blackbox-view (cf. Fig. 2). Every composite MOP
consists of so-called kernel MOPs, thus the composite behavior is realized by
a set of basic building blocks. These kernel MOPs are responsible for resolving
structural heterogeneities and therefore they have to be able to map classes, at-
tributes, and references in all possible combinations and mapping cardinalities.
In this respect, MOPs are provided for copying exactly one object, value, or link

144 PNSE’10 – Petri Nets and Software Engineering



ClassDiagram ERDiagram

Source TargetMapping

a

0..*

Class
name : String

classes

1 Entity
name : String

0..*
entities

0..*

attributes types
1

properties

relationships

C
C

b

cl cl
C

attr1 attr1

CCC CC
T

22C   CC   C22C   CC   C22C   CC   C

CC

referencestarget

Attribute
name : String

Type
name : String

1

type

0..*

refersTo

Property
name : String
type : String

0..*

p p

Relationship
0..*

C
C

c

e

ref1
R

attr1
A

attr1
CC

CC

T

R

CC

AA AA
A22A   AA   A22A   AA   A22A   AA   A

ref1
RR RR 22R   RR   R22R   RR   R22R   RR   R

Reference
name : String
upperBound : Int
lowerBound : Int

0..*

1 opposite

Relationship
name : String

Role
name : String

roles
2

cardinality
1

C
C

d

e

C
C

Cardinality
upper : Int
lower : Int

cl cl

ref1

C

R

attr1
A

attr1

CC C
T

22C   CC   C

C

C
R

A A

C

A22A   AA   A

ref1
R R 22R   RR   R

T C

Fig. 2. Solution of the Running Example

from source to target, respectively (denoted as C(lass)2C(lass), A(ttribute)2A(ttri-
bute), and R(eference)2R(eference)). Moreover, MOPs are needed for merging
objects, values, and links (denoted as Cn

2C, An
2A, and Rn

2R) resolving the struc-
tural heterogeneity that concepts in the source metamodel are more fine-grained
than in the target metamodel. Finally, MOPs are needed for generating a target
element without an obvious source element (denoted as 02C, 02A, and 02R) to
resolve heterogeneities resulting from expressing the same modeling concept with
different meta-modeling concepts – a situation which often occurs in metamod-
eling practice.4 In a second step, the composite MOPs, which solely describe a
mapping between classes at first, have to be refined to also map attributes and
references in the so-called whitebox-view by the usage of kernel MOPs (cf. ex-
panded Copier (b) in Fig. 2). Furthermore, kernel MOPs can be used to assemble
new, user-defined composite MOPs.

As a concrete syntax for MOPs we are using a subset of the UML 2 com-
ponent diagram concepts enabling the specification of model transformations in
a plug & play manner. With this formalism, every MOP is defined as a dedi-
cated component, representing a modular part of the transformation specifica-
tion which encapsulates an arbitrary complex structure and behavior, providing
well-defined interfaces. Every MOP has input ports with required interfaces (left
side of the component) as well as output ports with provided interfaces (right

4 Please note, that although composite MOPs for 1:n partitioning are provided, no
additional kernel MOps are needed, since such situations can be simulated by n x 1:1
MOps.

M. Wimmeret al.: Resolving Structural Heterogeneities 145



Table 1. Overview of Composite MOPs used in the Example

1:1 - copying Copier creates exactly one target object per 
source object Copier: C2C { A2A | An

2A | 02A | R2R | Rn
2R | 02R }

1:n - partitioning VerticalPartitioner splits one source object into several 
target objects VerticalPartitioner: Copier { ObjectGenerator | Copier }

n:1 - merging VerticalMerger merges several source objects to one 
target object VerticalMerger: Cn

2C { A2A | An
2A | 02A |R2R | Rn

2R | 02R }

0:1 - generating ObjectGenerator generates a new target object without 
corresponding source object ObjectGenerator: 02C { A2A | An

2A | 02A | R2R | Rn
2R | 02R }

Composition of Kernel MOPs (EBNF)Correspondence MOP Description

side of the component), typed to classes (C), attributes (A), and relationships
(R) (cf. Copier (b) in Fig. 2). Since there are dependencies between MOPs,
e.g., a value can only be set after the owning object has been created, MOPs
dealing with the transformations of classes additionally offer a trace port (T)
at the bottom providing context information, indicating which target object has
been produced from which source object(s). This port can be used by depen-
dent MOPs to access context information via required context ports (T). In case
of MOPs dealing with the mapping of attributes the corresponding interface is
shown via one port on top, or in case of MOPs dealing with the mapping of ref-
erences via two ports, whereby the top port depicts the required source context
and the bottom port the required target context (cf. Copier (b) in Fig. 2).

For solving the running example, several composite MOPs have been applied
as can be seen in Fig. 2. Table 1 presents an overview of the used composite
MOPs to solve the example as well as their composition of kernel MOPs. For a
detailed classification and description of all available kernel as well as composite
MOPs we refer to [21]. To resolve the 1:1 correspondences between ClassDiagram
and ERDiagram as well as between Class and Entity in our example we ap-
plied two Copiers since for every source object a corresponding target object
should be generated (cf. MOPs (a) and (b) in Fig. 2)). The whitebox-view of
the Copier (b) thereby shows the mapping of class Class to class Entity using
a C2C MOP. Moreover, the attribute Class.name is mapped to the attribute
Entity.name by using an A2A MOP. Finally, the reference Class.properties
is mapped to the reference Entity.attribute using a R2R MOP. To split the
attributes of the class Reference to the target classes Role and Cardinality a
VerticalPartitioner is applied (cf. MOP (d) in Fig. 2). Besides this default
behavior, aggregation functionality is sometimes needed as is the case when split-
ting the Property concept into the Attribute and Type concepts, since a Type
should only be instantiated for distinct Property.type values (cf. MOP (c) in
Fig. 2). To merge two Reference objects to a single Relationship object a
VerticalMerger is applied (cf. MOP (e) in Fig. 2).

4 Debugging View

In the previous section we showed how structural heterogeneities can be resolved
by applying MOPs resulting in a declarative mapping specification. In order

146 PNSE’10 – Petri Nets and Software Engineering



to execute this specification it has to be translated into an executable formal-
ism, i.e., every MOP has to be assigned an operational semantics. Thereby, the
impedance mismatch between the declarative specification and the actual oper-
ational semantics should be minimized in order to foster comprehensibility and
debuggability. Since current transformation languages (cf. [4] for an overview)
provide only a limited view on a model transformation problem, i.e., they do not
visualize the actual metamodel and model being transformed, we proposed the
TN formalism [23], being a DSL on top of CPNs [9]. The basic idea of TNs is to
represent the transformation logic together with the metamodels and the models,
whereby metamodel elements are represented by places, model elements by the
according markings and the actual transformation logic by a system of transi-
tions. Thus, an explicit runtime model is provided which can be used to observe
the runtime behavior of a certain transformation. In the following we describe
the core concepts of TNs as well as the adaptations introduced in comparison to
standard CPNs to better suit the domain of model transformations.

Representation of Metamodels and Models. Since we rely on the core
concepts of an object-oriented meta-metamodel the graph which represents the
metamodel consists of classes, attributes, and references which are represented
by according places in TNs. Therefore Fig. 3 depicts a place for the class Class
as well as one place for the attribute Class.name and one place for the reference
Class.properties. The graph which represents a conforming model consists of
objects, data values and links which are represented by tokens in the according
places. For every object that occurs in a model a one-colored ObjectToken is
produced, which is put into a place that corresponds to the respective class in
the source metamodel, e.g., the token C1 in the Class place and the tokens P1 and
P2 in the place Property, representing the objects of the source model depicted
at the bottom of Fig. 1. The color is realized through a unique value that is
derived from the object id (OID). For every value, two-colored AttributeTokens
are produced whereby the upper color represents the object and the lower color
the actual value, e.g., the C1|Person token represents the value “Person” of the
attribute Class.name for the object C1 in Fig. 3. Finally, for every link a two-
colored ReferenceToken is produced. The outer color refers to the color of the
token that corresponds to the owning object. The inner color is given by the color
of the token that corresponds to the referenced target object, which is depicted
by the corresponding tokens in the Class.properties place in Fig. 3.

Specification of Transformation Logic. The actual transformation logic
is specified by means of a system of transitions and additional places, so-called
trace places storing context information which reside in-between those places
representing the original input and output metamodels. Transitions consist of
so-called query tokens (LHS of the transition) representing the pre-condition of
a certain transition, whereas production tokens (RHS of the transition) depict its
postcondition. Thereby different query and production tokens for objects, values,
links and context information are provided whose colors represent variables that
are bound during execution, i.e, colors of query tokens are not the required colors
for input tokens, instead they describe configurations that have to be fulfilled by

M. Wimmeret al.: Resolving Structural Heterogeneities 147



input tokens. In the copying sceanrio the color of the production tokens depend
on the color of the query tokens, e.g., the production token and the query token
of the C2C transition exhibit the same color and therefore the source and the
target object tokens exhibit the same color (cf. Fig. 3). However, it is also possible
to produce a token of a not yet existing color if a target object is needed which
does not directly correspond to a source object, e.g., in case a Cn

2C MOP which
merges several source objects to a single new target object. Furthermore, to
represent trace ports of MOPs, trace places containing context tokens indicate
which target object has been created from which source object(s). Thereby the
color(s) of the slot (left side) indicate(s) the used source object(s) whereas the
generated target object is represented by the color of the remaining slice (right
side of token). Since object tokens are simply copied in case of the depicted C2C
transition source and target context tokens exhibit equal colors (cf. Fig. 3(a)).
Only if context information is available in a trace place, dependent transitions,
e.g., the A2A and R2R transitions, are able to fire. For this, they query the
context tokens in order to add a value or a link to the target object acquired
from the context token (cf. Fig. 3(b)). Please note that in case of creating a
new target object, source and target color of the context tokens differ from each
other. Thus, dependent transitions must be able to cope with differently colored
context tokens and therefore the context query tokens of the dependent A2A
and R2R transitions in Fig. 3 show different colors (which are only variables and
are therefore also able to match for same colored tokens).

Adaptations of Standard CPNs. In contrast to standard CPNs, TNs ex-
hibit a different default firing behavior, i.e., tokens are not consumed per default
(therefore source tokens are preserved in their corresponding source places). This
is since all possible token combinations must be taken into account. For example,
if the R2R transition would consume Class tokens and Property tokens from
the trace places (cf. Fig. 3), the transition could fire only once although multiple
Properties would be available, since there is a 1:n relationship between Class
and Property. Moreover, if more than one transition accesses a certain place,
consuming firing behavior would lead to erroneous race conditions.

22C   CC   C 22C CC C
Class

name

properties

Entity

name

attributes

22

22A   AA   A

22R RR R

trace

c1

‘Person‘
c1

c1

c1 c1
p1 p2

Class

name

properties

Entity

name

attributes

22C   CC   C

22A   AA   A

22R RR R

trace

c1

‘Person‘
c1

c1

‘Person‘
c1

c1 c1
p1 p2

c1 c1
p1 p2

Property
name
type

0..*

name

0..*
22R   RR   R

T

Attributep1 p2 p1 p2

trace

Property
name
type

0..*

name

0..*
22R   RR   R

T

Attributep1 p2 p1 p2

trace

T

C C …
T

C C …

(a) Running State of Transformation Net (b) Finished State of Transformation Net

Fig. 3. Debugging View of Copier MOP

148 PNSE’10 – Petri Nets and Software Engineering



Summarizing, TNs provide a formalism to specify the operational seman-
tics of the provided MOPs. Thereby TNs reduce the impedance mismatch be-
tween the abstract declarative mapping specification and the actual operational
semantics since there is a 1:1 correspondence between kernel MOPs and tran-
sitions. Additionally, all artifacts in a model transformation, i.e., metamodel,
transformation logic and the involved models are represented in a homogenous
view. Furthermore, as query and production tokens are only typed to the core
concepts of object-oriented metamodels (class, attributes and references) the
specified transformation logic can be reused between arbitrary metamodels (as
intended by the MOPs). Due to the fact that every MOP is realized by an
independent set of transitions every MOP can be debugged individually, thus
enabling a component-oriented debugging approach.

5 Execution View

Since TNs represent a DSL on top of CPNs they can be fully translated into exist-
ing CPN concepts to make use of efficient execution engines and their properties
to analyze model transformations [20]. The actual translation is transparent to
the user since a TN is automatically converted to an according CPN using the
ASAP platform [19]. The ASAP platform provides an EMF-based implementa-
tion of the PNML standard5 for CPNs. The CPN model can then be used to
check the syntax of the corresponding TN, to simulate the TN and to calcu-
late behavioral properties for the specified model transformations. Since every
MOP is realized by an independent set of TN transitions we provide pre-defined
hierarchical CPNs for kernel and composite MOPs, detailed in the following.
Furthermore, the application of behavioral properties for analyzing model trans-
formations is shown.

5.1 Representation of Kernel MOPs

Kernel MOPs and their respective operational semantics in TNs can be repre-
sented by means of modules or so-called substitution transitions in hierarchical
CPNs whereby the ports of the substitution transitions are only typed by classes,
attributes, and references. The ports are then bound to the corresponding socket
places being the places derived from the source and target metamodel. In the
following we show how to realize the non-consuming behavior in CPNs as well
as the translation of kernel MOPs to hierarchical CPNs.

Adaptations of Standard CPNs. To realize the non-consuming firing be-
havior, a so-called history place is introduced for every transition. It stores all
token combinations that have already been fired by this transition in a sorted
list in order not to blow up the state space, i.e., there is no difference if token P1
or token P2 has been transformed first in our scenario. The history place is con-
nected to the corresponding transition whereby a guard condition prevents the

5 http://www.pnml.org/

M. Wimmeret al.: Resolving Structural Heterogeneities 149



Context

1`{object=2,name="C1",valueId=3,value="Person"}

1`{source=2,sname="C1",target=12,tname="P1"}++
1`{source=2,sname="C1",target=13,tname="P2"}

1`{object=2,name="C1"}

Contextctx_Entity
OutOut

Reference

Attribute

ClassClass

Attribute

Reference

Class
I/OI/O

Entity
OutOut

C2C

C2CC2C

R2R

R2RR2R

Entity_attributes
OutOut

A2A

A2AA2A

Entity_name
OutOut

ctx_Attribute
I/OI/O

Class_properties
I/OI/O

Class_name
I/OI/O

h

A2A

nil

History

Attribute

Attribute

history

InsertSorted [id,valId] h

target
OutOut

{object=tid,name=tlit,
valueId=valId,value=v}

{object=id,name=lit,
valueId=valId,value=v}

source
I/OI/O

Context

{source=ctx,target={object=tid,name=tlit}}

[not (List.exists(fn x=>Contains(x,[id,valId],2))h)andalso
List.exists(fn y=>y={object=id,name=lit}) ctx]

context
I/OI/O

{object=id,name=lit}
C2C Class

Class

Context

nil

History

1`{object=2,name="C1"}

source
I/OI/O

{object=id,name=lit}
target

OutOut

h InsertSorted[id] h

{source=[{object=id,name=lit}],
target={object=id,name=lit}}

context
OutOut

history

[not (List.exists(fn x=>Contains(x,[id],1))h)]

R2R

Context

Context

Reference

History

Reference

history

InsertSorted [id1,id2] hh

target

OutOut

{source=tid1,sname=tlit1,
target=tid2,tname=tlit2}

[not (List.exists(fn x=>Contains(x,[id1,id2],2))h)andalso
List.exists(fn y=>y={object=id1,name=lit1}) sctx andalso
List.exists(fn z=>z={object=id2,name=lit2}) tctx]

nil

{source=sctx,
target={object=tid1,name=tlit1}}

{source=id1,sname=lit1,
target=id2,tname=lit2}

{source=tctx,
target={object=tid2,name=tlit2}}

sourceCtx
I/OI/O

source
I/OI/O

targetCtx
I/OI/O

(a) C2C

(b) A2A

(c) R2R (d) Copier

Fig. 4. Realization of MOPs by Hierarchical CPNs

transition from firing a certain token combination twice. Moreover, the standard
arcs are replaced by so-called test arcs, which do not consume tokens from the
connected input places. For further details on the translation of TNs to CPNs
we refer the interested reader to [23].

MOPs mapping Classes. In case of kernel MOPs dealing with the map-
ping of classes, e.g., a C2C MOP as depicted in Fig. 4(a), the in- and outports
have to be typed to the colorset Class (colset Class = record object :
INT * name : STRING). As a C2C MOP simply copy tokens, the same arc in-
scription can be found on the in- and outgoing arcs (represented by the same
colors of query and production token in TNs). Furthermore, kernel MOPs map-
ping classes provide context information stored in the context port6. The col-
orset Context thereby defines a record consisting of a list of classes (since more
than one class can be used to enable the transition in case of a Cn

2C) and a
target class (colset Context = record source:SourceContext * target :
Class; colset SourceContext = list Class;).

6 Note that ports providing context information in MOPs and CPNs are used to
enable dependent MOPs or transitions, i.e, they provide required tokens to enable a
transition, whereas the history concepts solely hinders multiple firings of transition
in CPNs

150 PNSE’10 – Petri Nets and Software Engineering



MOPs mapping Attributes or References. In case of kernel MOPs
dealing with the mapping of attributes or references, e.g., an A2A MOP or
R2R MOP as depicted in Fig. 4(b) and (c), the ports have to be typed to the
colorset Attribute and Reference respectively (colset Attribute = record
object:INT * name:STRING * valueId : INT * value : STRING; colset
Reference = record source:INT * sname: STRING * target:INT * tname:
STRING;). Since attributes and references should only be transformed if the own-
ing object of an attribute or the source and target objects of a reference have
already been transformed, the guard condition of the transition not only prevents
the multiple firing but additionally checks if the context place already contains
the necessary context information. If the condition is fulfilled, an attribute or
reference token is produced whereby the new owning object tid is acquired from
the context tokens (cf. arc inscription at the in- and outgoing arcs from context
places Fig. 4(b) and (c)). These hierarchical CPNs can then be assembled to
more coarse-grained hierarchical CPNs to represent, e.g., a Copier as shown in
Fig. 4(d). In the following, composite MOPs are elaborated in more detail.

5.2 Representation of Composite MOPs

Specification View. In Section 3 we introduced coarse-grained composite MOPs
which encapsulate several kernel MOPs, e.g., a Copier consists of exactly one
C2C, and several MOPS for mapping attributes or references. As can be seen in
Table 1, composite MOPs can not only consist of kernel MOPs but might encom-
pass composite ones themselves, e.g., VerticalPartitioner which consists of
a Copier and an ObjectGenerator (cf. Fig. 5(a)). In our running example this
MOP was used to split the source concept Property into the concepts Attribute
(achieved by the contained Copier) and Type, whereby a Type should only be in-
stantiated for distinct Property.type values overcoming the heterogeneity that
a concept is expressed as an attribute in the source metamodel and as a class in
the target metamodel (achieved by the contained ObjectGenerator).

Debugging View. The relation between composite and the kernel MOPs
can be seen in the debugging view (cf. Fig. 5(b)). First, the C2C transition of the
copier streams the corresponding object tokens, thus creating an Attribute for
every Property. The thereby generated context information enables the A2A
transition in order to set the Attribute.name values. Second, the A2C tran-
sition generates a Type object token for distinct Property.type values, which
is indicated by the distinctInputValue annotation on the transition meaning
that only context information in the according trace place is generated but no
new target token in case that a value occurs several times. Therefore, the trace
place of the ObjectGenerator composite MOP contains two Property.type to-
kens which both have been mapped to the same Type object (depicted by the
equal target color of the context tokens) since both source tokens have the same
value “String”. In order not to produce too many attribute tokens the depen-
dent A2A MOP has to match only for distinct target colors of context tokens
resulting in distinct output values (indicated by the according annotation in (cf.

M. Wimmeret al.: Resolving Structural Heterogeneities 151



Fig. 5(b)). Finally, the generated Attribute and Type objects have to be accord-
ingly linked by the reference Attribute.type. Since there is no according source
reference available we have to generate this reference by applying a 02R MOP.
Nevertheless, the transformation designer has to define during specification how
the generated target objects are related to each other in the source model. In
our example the intention is to generate a reference for every Attribute object
having set an according Attribute.type value. In order to get this input the
InputGen transition collects the tokens and thereby generates (self) references.
These references can then be processed by the Linker component which finally
produces the according Attribute.type references.

Execution View. In order to represent the different levels of granularity, the
corresponding hierarchical CPN again consists of several nested ones, thus lead-
ing to multi-level hierarchical CPNs. As shown in Fig. 5(c) the VerticalParti-
tioner consists of two substitution transitions, being a Copier and an ObjectGen-
erator. As already shown in the debugging view (cf. Fig. 5(b)), the main part of
an ObjectGenerator is an A2C kernel MOP. Since only for distinct values a new
target object should be generated, an additional values place containing a list
of records (colset A2CList = list A2C; colset A2C = record value:INT

22C CC C22C   CC   C

cl parent
CCC CCCC CC 22C   CC   C22C   CC   C22C   CC   CProperty 11 Attribute Attribute22A   AA   A p pCC

namename
CC CC

T
222222p y

name11
11 Attribute22

trace
p1 p2

p1p1 p2p2
typetype *

CC

11

Property namep1 p2
‘fname‘
p1

‘fname‘
p1

‘lname‘
p2

‘lname‘
p2

attr1 AparAttr1
CC

A22A AA A22A AA A22A AA A A name type
‘f ‘
p1

‘f ‘
p1

‘lname‘
p2

‘lname‘
p2 0   R0   R22

f
AA

A

CC
AA AA

A22A   AA   A22A   AA   A22A   AA   A A name

type

y

Li kLi k

‘fname‘‘fname‘ ‘lname‘‘lname‘

p1 p2
distinctOutputInputGenInputGenref R type

CC
R220   R0   R R

type
1..1

LinkerLinker‘String‘
p1

‘String‘
p2 InputGenInputGen

CC
Typet1

child T t1CC
name

yp
t1child

T t2

name
‘String‘

1

1
C child C TypeType

1
C22AA CC22AA CC22AA CC distinctInputValueC Type

name
Type
name

C

T
222222

22A   CA   C
p

childAttr1attr2 CC distinctOutputchildAttr1 Aattr2
AA AA AAA A22AA AA22AA AA22AA AA 22A   AA   A

tracetrace

T t1 U  t2

(a) Specification View - VPartitioner (b) Debugging View - VPartitioner
nil

histoAttribute

History
1000

historyAttribute
OutOut History

1`{object=12,name="P1",valueId=16,value="String"}++
1`{object=13,name="P2",valueId=16,value="String"}

NewColPlace
Fusion 1Fusion 1 i+1Copier

Class

Property

h

{ j , , , g } Fusion 1Fusion 1 i+1
InsertSorted[id] hINT

Copier

CopierCopier

Property

I/OI/O Attribute name
i if List.exists(fn y=>(#value y)=valId) vals 

then

CopierCopier
Class

Attribute_name

OutOut

{object=id,name=lit,
valueId=valId,value=v}

empty else
1`{object=i,name="default"}

Attribute

ctx Attribute A2C
, }

Property_type
I/OI/O

{ j , }
Type

OutOutProperty_name
ctx_Attribute

I/OI/O I/OI/O
Attribute Class[not (List.exists(fn x=>Contains(x,[id],1))h)]

Attribute
I/OI/O Attribute_type

OutOut

Context

if List.exists(fn y=>(#value y)=valId) vals then
vals

if List.exists(fn y=>(#value y)=valId) vals then  
{source=[{object=id,name=lit}],

Attribute

Reference

OutOut
ctx_Type

I/OI/O
else
{value=valId,

{ [{ j , }],
target=
(#target (valOf(List.find(fn y=>(#value y)=valId) vals)))}Context

I/OI/O

vals

{ ,
target={object=i,
name="default"}}::vals

( g ( ( ( y ( y) ) )))}
else 
{source=[{object=id,name=lit}],Type

nil
}}{ [{ j , }],

target={object=i,name="default"}}
ObjectGenerator ClassProperty type

OutOut

Context_6
values

ObjectGenerator

ObjectGeneratorObjectGenerator

ClassProperty_type

I/OI/O _

OutOut
Context

A2CList
jj

Attribute
Type name Context

Attribute

ype_ a e

OutOut

( ) E ti Vi VP titi (d) E ti Vi A2C
Attribute

(c) Execution View - VPartitioner (d) Execution View - A2C

Fig. 5. Different Views of VerticalPartitioner

152 PNSE’10 – Petri Nets and Software Engineering



* target:Class), expressing which values have already been converted to a
certain class token, is introduced (cf. Fig. 5(d)). The conditions on the outgoing
arcs to the target place and to the values places ensure that a token is only
created if the value has not been contained in the values list before. In contrast
to that, context information is produced for any firing of the transition whereby
the source object is connected to an already existing class target token if the
values list contains an according entry, i.e., if a Type has already been created
for a certain Property.type value. To represent the fact that a Type object has
no according counterpart in the source model, we generate a new object id which
is the task of the (fusion) place NewColPlace and the according arc inscriptions
represented by a newly colored object production token in TNs.

5.3 Behavioral Properties to Analyze Mappings

Although the operational semantics of MOPs is predefined, configuration errors
might occur when applying the MOPs in the specification phase leading to an
erroneous interplay between MOPs. In the following we show how typical errors
can be detected by means of behavioral properties of the underlying CPNs [20].

Model Comparison using Boundedness Properties. Typically, the first
step in analyzing the correctness of a transformation is to compare the generated
target model to an expected target model. To identify wrong or missing target
elements in terms of tokens automatically, Boundedness properties can be ap-
plied. An example thereof could be the A2C MOP in the above example which
creates target tokens for distinct values only. Therefore dependent transitions
need to generate a distinct output as well, e.g., to set the Type.name value only
once. If this is not specified by the user accordingly, too many Type.name tokens
are generated which can be detected by comparing the Boundedness properties
of the according place of the generated model to the expected target model.

Checking Interplay of MOPs using Liveness Properties. Another
source of error during the refinement of composite MOPs by kernel MOPs is
the mapping of dependent attributes and references. In case that MOPs dealing
with attributes and references are connected to wrong source or target context
ports the corresponding transition is not able to fire which can be detected by
Liveness Properties such as Dead Transition Instances or L0-Liveness.

Termination and Confluence Analysis using Dead and Home Mark-
ings. A transformation specification must always terminate, thus the state space
has to contain at least one Dead Marking, which is typically ensured by the his-
tory concept. Moreover, it has to be ensured that a dead marking is always
reachable, meaning that a transformation specification is confluent, which can
be checked by the Home Marking. Furthermore, it is possible to check if a cer-
tain marking, i.e., the target marking derived from the expected target model, is
reachable. If this marking is equal to the Dead and Home Marking it is ensured
that the specified mapping always generates the expected target model.

M. Wimmeret al.: Resolving Structural Heterogeneities 153



6 Lessons Learned

This section presents lessons learned and discusses key features of our approach.
Kernel MOPs Enable Extensibility. Kernel MOPs form the basis for

overcoming structural heterogeneities and thereby have to exhibit a well-defined
operational semantics. Since composite MOPs are solely based on kernel MOPs,
the composite operational semantics results from the operational semantics of the
kernel MOPs. Therefore, the library of composite MOPs can be easily extended
on basis of the kernel MOPs without the need of adapting the compilation to
TNs and CPNs, respectively.

CPNs Allow for Parallel Execution. As CPNs exhibit an inherent con-
currency, parallel execution of transformation logic is possible thereby increasing
the efficiency of a transformation execution. In particular, mappings between
classes are independent from each other and therefore the transformation of ob-
jects can be fully parallelized. The same is true for depending attributes and
references which can also be transformed in parallel after the owning objects
have been created and thus the needed context tokens are available.

Visual Formalism Eases Debugging and Understandability. TNs pro-
vide a visual formalism for defining model transformations which is especially
useful for debugging purposes, since the actual execution of a certain model
transformation can be simulated. In this respect, the transformation of model
elements can be directly followed by observing the flow of tokens and therefore
undesired results can be detected easily.

History Ensures Termination. As mentioned above, TNs introduce a
specific firing behavior in that transitions do not consume the source tokens
satisfying the precondition but hold them in a history. Thus, a transition can
only fire once for a specific combination of input tokens prohibiting infinite loops,
even for test arcs or cycles in the net. Only if a transition occurs in a cycle
and if it produces new objects every time it fires, the history concept can not
ensure termination. Such cycles, however, can be detected at design time and are
automatically prevented for TNs. In contrast to model transformation languages
based on graph grammars, where termination is undecidable in general [14], TNs
ensure termination already at design time.

State Space Explosion Limits Model Size. A known problem of model
checking and thus also of behavioral properties of Petri Nets is that the state
space might become very large. Currently, the full occurrence graph is con-
structed to calculate properties leading to memory and performance problems
for large source models and transformation specifications. Often a marking M
has n concurrently enabled, different binding elements leading all to the same
marking. Nevertheless, the enabled markings can be sorted in n! ways, resulting
in an explosion of the state space. As model transformations typically do not
care about the order how certain elements are bound, the number of bindings
can be reduced to 2n bindings, thus enhancing scalability of our approach.

154 PNSE’10 – Petri Nets and Software Engineering



7 Related Work

In the following, related work is summarized according to the proposed views.
Specification View. In the area of model engineering only the ATLAS

Model Weaver (AMW) [7] provides a dedicated mapping tool allowing the def-
inition of model transformations independent of a concrete transformation lan-
guage. By extending the weaving metamodel, one can define the abstract syntax
of new weaving operators which roughly correspond to our MOPs. The semantics
of weaving operators is determined by a higher-order transformation [16], taking
a model transformation as input and generating another model transformation
as output. Compared to our approach, the weaving models are compiled into
low-level ATL [10] transformation code which is in fact a mixture of declarative
and imperative language constructs. Thus, this solution exhibits an impedance
mismatch, hindering the understanding and debugging of the resulting code.

Debugging View. Concerning model transformations in general, there is
little debugging support available. Most often only low-level information avail-
able through the execution engine is provided, but traceability according to the
higher-level correspondence specifications is missing. For example, in the Fujaba
environment, a plugin called MoTE [18] compiles TGG rules [12] into Fujaba
story diagrams that are implemented in Java, which obstructs a direct debug-
ging on the level of TGG rules. In [8], the generated source code is annotated
accordingly to allow the visualization of debugging information in the generated
story diagrams, but not on the TGG level. Concerning the understandability of
model transformations in terms of a visual representation and a possibility for
a graphical simulation, only graph transformation approaches like Fujaba allow
for a similar functionality. However, these approaches neither provide an inte-
grated view on all transformation artifacts nor do they provide an integrated
view on the whole transformation process in terms of the past state, i.e., which
rules fired already, the current state, and the prospective future state, i.e., which
rules are now enabled to fire. Therefore, these approaches provide snapshots of
the current transformation state, only.

Execution View. Current transformation languages provide only limited
support to analyze transformation specifications as summarized in the follow-
ing. In the area of graph transformations some work has been conducted that
uses Petri Nets to check properties of graph production rules. Thereby, the ap-
proach proposed in [17] translates individual graph rules into a Place/Transition
Net and checks for its termination. Another approach is described in [6], where
the operational semantics of a visual language in the domain of production sys-
tems is described with graph transformations. The production system models as
well as the graph transformations are transformed into Petri Nets in order to
make use of analysis techniques for checking properties of the production system
models. Finally, a recent work by de Lara and Guerra [5] proposes to translate
QVT-Relations into CPNs - on the one hand to provide a formal semantics for
QVT Relations and on the other hand to analyze QVT Relations specifications -
pursuing similar ideas as followed in our previous work [22]. Nevertheless, these
approaches are using Petri Nets only as a back-end for analyzing properties of

M. Wimmeret al.: Resolving Structural Heterogeneities 155



transformations, whereas we are using a DSL on top of CPNs as a front-end for
model transformations, thereby fostering debuggability.

8 Future Work

Currently, only the most important concepts of modeling languages, i.e., classes,
attributes and relationships have been considered by our MOPs. It would be
desirable, however, to extend our MOP library to be able to deal also with
concepts such as inheritance or complex mathematical operations. Furthermore,
only a basic prototype of the proposed debugging view is available. We therefore
focus on improving our prototype, e.g., by accordingly visualizing the findings
of the formal properties. Concerning verification support, we focused on small
mapping scenarios up to now only, not least due to the state space explosion
problem. Nevertheless the ASAP platforms provides the possibility to specify
own algorithms to explore the state space which could additionally be adopted
to the domain of model transformation to enable verification support for larger
scenarios. To further support the transformation designer in complementing the
mapping in the whitebox-view, auto-completion strategies should be incorpo-
rated. In this respect, we will investigate on matching strategies [15] which may
be applied to automatically derive attribute and relationship mappings.

References

1. P. A. Bernstein and S. Melnik. Model management 2.0: manipulating richer map-
pings. In Proc. of SIGMOD’07, pages 1–12. ACM, 2007.

2. J. Bézivin. On the Unification Power of Models. Journal on Software and Systems
Modeling, 4(2):31, 2005.

3. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press,
1999.

4. K. Czarnecki and S. Helsen. Feature-based Survey of Model Transformation Ap-
proaches. IBM Systems Journal, 45(3):621–645, 2006.

5. J. de Lara and E. Guerra. Formal Support for QVT-Relations with Coloured Petri
Nets. In Proc. of MoDELS’09, 2009.

6. J. de Lara and H. Vangheluwe. Automating the Transformation-Based Analysis of
Visual Languages. Formal Aspects of Computing, 21, Mai 2009.

7. M. Del Fabro and P. Valduriez. Towards the efficient development of model trans-
formations using model weaving and matching transformations. SoSyM, 8(3):305–
324, 2009.

8. L. Geiger. Model Level Debugging with Fujaba. In Proceedings of 6th International
Fujaba Days, pages 23–28, Dresden, Germany, 2008.

9. K. Jensen and L. M. Kristensen. Coloured Petri Nets - Modeling and Validation
of Concurrent Systems. Springer, 2009.

10. F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev. ATL: A Model Transformation
Tool. Science of Computer Programming, 72(1-2):31–39, June 2008.

11. V. Kashyap and A. Sheth. Semantic and schematic similarities between database
objects: A context-based approach. The VLDB Journal, 5(4):276–304, 1996.

12. A. Koenigs. Model Transformation with TGGs. In Proc. of Model Transformations
in Practice Workshop of MoDELS’05, Montego Bay, Jamaica, 2005.

156 PNSE’10 – Petri Nets and Software Engineering



13. F. Legler and F. Naumann. A Classification of Schema Mappings and Analysis of
Mapping Tools. In Proc. of BTW’07, 2007.

14. D. Plump. Termination of graph rewriting is undecidable. Fundamental Informat-
ics, 33(2), 1998.

15. E. Rahm and P. A. Bernstein. A survey of approaches to automatic schema match-
ing. The VLDB Journal, 10(4):334–350, 2001.

16. M. Tisi, F. Jouault, P. Fraternali, S. Ceri, and J. Bézivin. On the Use of Higher-
Order Model Transformations. In Proc. of ECMDA-FA’09, pages 18–33, 2009.

17. D. Varró, S. Varró-Gyapay, H. Ehrig, U. Prange, and G. Taentzer. Termination
Analysis of Model Transformation by Petri Nets. In Proc. of ICGT’06, pages
260–274, 2006.

18. R. Wagner. Developing Model Transformations with Fujaba. In Proc. of the 4th
Int. Fujaba Days 2006, pages 79–82, 2006.

19. M. Westergaard and L. M. Kristensen. The Access/CPN Framework: A Tool for
Interacting with the CPN Tools Simulator. In Proc. of the 30th Int. Conf. on
Applications and Theory of Petri Nets, pages 313–322, 2009.

20. M. Wimmer, G. Kappel, A. Kusel, W. Retschitzegger, J. Schoenboeck, and
W. Schwinger. Right or Wrong? - Verification of Model Transformations using
Colored Petri Nets. In Proc. of 9th DSM Workshop, 2009.

21. M. Wimmer, G. Kappel, A. Kusel, W. Retschitzegger, J. Schönböck, and
W. Schwinger. Surviving the Heterogeneity Jungle with Composite Mapping Op-
erators. In Proc. of ICMT’10, 2010.

22. M. Wimmer, A. Kusel, J. Schoenboeck, G. Kappel, W. Retschitzegger, and
W. Schwinger. Reviving QVT Relations: Model-based Debugging using Colored
Petri Nets. In Proc. of MoDELS’09, pages 727–732, 2009.

23. M. Wimmer, A. Kusel, J. Schönböck, T. Reiter, W. Retschitzegger, and
W. Schwinger. Lets’s Play the Token Game – Model Transformations Powered
By Transformation Nets. In Proc. of PNSE’09, pages 35–50, 2009.

M. Wimmeret al.: Resolving Structural Heterogeneities 157



158 PNSE’10 – Petri Nets and Software Engineering



Part IV

Poster Abstracts





MATLAB / Simulink and Program Sketcher for 
Verification of Hybrid Petri Nets Implementation into 

Programmable Logic Controller 

Luděk Chomát, Petr Malounek, Petr Pivoňka 

 
Brno University of Technology, Faculty of Elektrotechnical Engineering and 

Communication, Department of Control and Instrumentation, 2906/4 Kolejní, 612 00 Brno, 
Czech Republic 

xchoma00@phd.feec.vutbr.cz  

Abstract: The main goal of this work-in-progress is to find a suitable tool for 
modeling and verification of Hybrid Petri Nets.  A suitable mathematical tool is 
MATLAB/Simulink for which is created PN_CLGtoolbox in CLG laboratory. 
The created tool together with already existing program Sketcher will be used 
to explore and consider different approaches for engine control modeling. 

Keywords: MATLAB / Simulink, PLC, Sketcher, Petri Net, Motor, 
Implementation and Verification. 

1   Introduction 

Currently, we have high demands on engine control and synchronization between 
them. Petri nets are a suitable tool for parallel system modeling which can be used for 
engine control. Essentially, it is possible to control any power (DC, synchronous, 
asynchronous, stepper, etc.) with approximately the same control algorithm. 
However, it is necessary to find a similar basic structure of control that can be 
implemented by hybrid Petri nets. Programmable logic controllers in conjunction with 
Petri nets are appropriate tools for managing dynamic systems. At the beginning, it is 
important to identify and verify hybrid Petri net [1], which will help us in finding the 
basic structure for engines. 

2   Identification and Verification of Petri Nets  

Figure 1. shows the Petri nets process scheme and deployment to a real 
technological process. Here we see that at first, it is necessary to propose a hybrid 
Petri net, which we simulate to determine the proper functioning of the net, prior to 
implementation of the real process. Using simulations, we identify characteristics of 
hybrid Petri nets, which we compare with the identification of hybrid Petri nets from 
the programmable controller or other platforms. For identification we use MATLAB / 



Simulink. Verification of hybrid Petri nets is very important for safe working of the 
real process. This prevents possible engine accident condition, which could have 
disastrous financial or environmental threats, or may endanger human life. If we 
implemented a hybrid Petri net into programmable logic controller [2] (PLC or on 
other platforms), we can use visualization to monitor active hybrid Petri nets, which is 
connected to a real process with input and output modules. Controlled process can be 
further identified and compared with the desired or expected results. Ideally should be 
the real verification process 100% identical, but in practice often only comes close to 
this value. 

 

Fig. 1. Verification hybrid Petri nets 

3   Conclusion 

The already created tool Sketcher [3] is suitable for design, simulation, 
visualization and implementation of Petri Nets into a Programmable Logic Controller.  
In CLG laboratory is being developed PN_CLGtoolbox for   MATLAB/Simulink for 
Hybrid Petri Nets design. The toolbox currently supports reading, writing and 
displaying parameters from PLC in real-time. 

  
 
Acknowledgments This work has been supported in part by Ministry of Education, 
Youth and Sports of the Czech Republic (Research Intent MSM0021630529 
Intelligent systems in automation), Grant Agency of the Czech Republic 
(102/09/H081 SYNERGY - Mobile Sensoric Systems and Network) and by Brno 
University of Technology. 
 

References 

1.  David, R., Alla, H.,: Discrete, Continuous and Hybrid Petri Nets, Springer-Verlag (2005)  
2. Chomát, L.: Petri net in environment of program logic controller B&R, Diploma thesis, 

VUT Brno (2006)  
3. Chomát, L.: Paper about Petri Nets, GRAFCET, Ladder Diagram and Manual for software 

Sketcher, Rovira I Virgili Tarragona (2008) 

162 PNSE’10 – Petri Nets and Software Engineering



Instruction Pipeline Modeling using Petri Nets

Adam Husár, Tomáš Hruška, Karel Masařík, Zdeněk Přikryl

Brno University of Technology, Faculty of Information Technology
{ihusar, hruska, masarik, iprikryl}@fit.vutbr.cz

Abstract. This paper deals with instruction pipeline modeling using
Petri Nets. Such model would be useful for processor pipeline design,
verification and also for instruction scheduling in C compiler backend.
This paper presents ongoing work and mainly states what requirements
we have on such model.

1 Introduction

Embedded systems are more and more performance demanding, especially in
the areas of multimedia processing, software radio and diverse pattern recog-
nition. One possible solution is to improve application performance by using
application-specific instruction set processors (ASIPs), where instruction set ex-
tensions (ISEs) can speed the critical parts of application up. This gets us to
project Lissom, where we develop an ASIP development environment. Using
it, the user can describe processor architecture and microarchitecture with an
architecture description language called ISAC.

Architecture description languages (ADLs) are languages targeted at pro-
cessor design. Three of the most popular languages that are used in industry
to develop processors are LISA from CoWare, nMl from Target and TIE from
Tensilica. Our language ISAC is partially based on LISA. ADL models try to
capture all the information needed for generation of toolchain (mainly compiler
and assembler), simulator and hardware description.

2 Pipeline Modeling in ISAC

Two types of processor models can be designed using ISAC: 1) architectural that
describe only the HW/SW interface and 2) microarchitectural, where architec-
ture implementation using instruction pipeline is also captured.

Instruction set syntax and binary coding is in ISAC modeled using context-
free grammars [4]. Instruction behavior is described in C language. Together
with constructs for delayed execution, we can define the instruction pipeline.
There are two ways how to describe pipelines in ISAC.

First approach is hardware-oriented. Here is each pipeline stage described
using a C function that reads input latch registers and stores stage result in
output latch registers.



Second approach is instruction-set-oriented. In a description of an instruction
behavior, user may specify what action should be executed in specific clock cycles
after the instruction was decoded.

Microarchitectural models defined in ISAC using instruction-set-oriented ap-
proach tend to be rather large (5000 lines for a model of microcontroller 8051),
compared to hardware-oriented approach (2500 lines for VLIW DSP Chili 2
from OnDemand Microelectronics and 2000 lines for partial model of VLIW
DSP C6400 from Texas Instruments), so even if the instruction-set-oriented ap-
proach was planned to be more abstract, the advantage is disputable. On the
other hand, when using the hardware-oriented approach, every little detail of
the pipeline must be described. None of these two approaches is very much suit-
able and we need to find a model that is as abstract as possible and reflects the
pipeline behavior.

3 Approaches to Modeling Pipelines Using Petri Nets

The main reason to model pipelines using Petri Nets is that they allow to de-
scribe instruction flows, hazards, pipeline stalls and memory subsystems in a
straightforward way. Also, one of the most important requirements on the model
is verification. Here can be already existing Petri Nets analysis tools used.

For example in paper [1], the authors use for pipeline description so-called
Reduced Colored Petri Nets, where two types of tokens are used. First type
represents instructions and may carry additional information. Second type is a
simple synchronization token. Another approach is described in [3]. Even though
the pipeline modeling did not receive much attention yet, the problematics of
hardware modeling using Petri Nets is already quite explored [2].

As stated in the abstract, this paper presents ongoing work and the exact
modeling style that will be used is still under consideration. This paper accom-
panies a poster, where some examples of considered approaches will be presented.

This research was supported by the grants of MPO Czech Republic FT-TA3/128
and FR-TI1/038, by the Research Plan MSM No. 0021630528, by the doctoral
grant GA CR 102/09/H042 and by the BUT FIT grant FIT-SS-10-1.

References

1. Reshadi, M., Dutt, N.: Generic Pipelined Processor Modelling and High Perfor-
mance Cycle-Accurate Simulator Generation. In: Proceedings of the conference on
Design, Automation and Test in Europe - Volume 2, (2005) 786–791

2. Yakovlev, A. V., Koelmans, A. M.: Petri Nets and Digital Hardware Design. In:
Lectures on Petri Nets II: Applications, (1998) 154-236, ISBN 978-3-540-65307-3

3. Razouk, R. R.: The Use of Petri Nets for Modeling Pipelined Processors. In: Pro-
ceedings of the 25th ACM/IEEE Design Automation Conference, (1988) 548–553

4. Lukáš, R., Hruška, T., Kolář, D., Masařík, K.: Two-Way Deterministic Translation
and Its Usage in Practice. In: ISIM’05, Ostrava, CZ, 2005, p. 101–107.

164 PNSE’10 – Petri Nets and Software Engineering



BDD-based Bounded Model Checking for
Elementary Net Systems?

extended abstract

Artur Mȩski1, Wojciech Penczek2,3, and Agata Półrola1

1 University of Łódź, FMCS, ul. Banacha 22, 90-238 Łódź, Poland
{meski,polrola}@wmi.uni.lodz.pl

2 Polish Academy of Sciences, ICS, ul. Ordona 21, 01-237 Warsaw, Poland
3 University of Podlasie, ICS, Sienkiewicza 51, 08-110 Siedlce, Poland

penczek@ipipan.waw.pl

The process of design and production of both systems and software – among
them the concurrent ones – involves testing whether the product conforms to its
specification. To this aim, various kinds of formal methods can be applied. One
of the possible approaches, widely used and intensively developed, are model
checking techniques.

The main idea of model checking consists in representing a system to be
verified in a form of a transition system (model), representing a specification
as a temporal logic formula, and checking automatically whether the formula
holds in the model. Unfortunately, the practical applicability of the approach is
usually limited due to the state explosion problem: the state space of the system
tested, which is to be searched when testing whether the formula holds, grows
significantly for large concurrent systems, which follows, among others, from
representing concurrency of operations by their interleavings.

One of the methods used to overcome the above problem is to apply a sym-
bolic model checking technique. A wide class of these techniques exploits various
kinds of decision diagrams to represent the model [3, 6, 7], among them reduced
ordered binary decision diagrams – ROBDDs. Another branch involves SAT-
based verification methods.

Bounded model checking (BMC) is an efficient verification method whose
main idea consists in considering a model truncated up to a specific depth. There
exist numerous papers which deal with that approach in the context of SAT-
based verification for existential temporal properties: a model checking problem
on a fraction of the model is translated into a test of propositional satisfiabil-
ity, which is then performed using a SAT-solver [1, 9, 10]. SAT-based BMC for
elementary net systems and the existential fragment of the Computation Tree
Logic (CTL) was considered in [8].

Performing bounded model checking using BDDs instead of SAT was in-
vestigated in [4, 2]. However, both these papers focused on a limited class of
properties. On the other hand, Jones and Lomuscio [5] presented a BDD-based

? Partly supported by the Polish Ministry of Science and Higher Education under the
grant No. N N206 258035.



bounded model checking for the existential fragment of the epistemic logic CTLK
and interpreted systems.

The aim of our work is to present a BDD-based BMC verification for elemen-
tary net systems and the existential fragment of the logic CTL. Although the
novelty of the approach is not significant, we expect to obtain a technique of a
better efficiency than the previous SAT-based one shown in [8]. Such an expec-
tation follows from the encouraging results of Jones and Lomuscio presented in
[5]. We are going to provide a comparison of the experimental results.

In order to obtain a possibly complete verification tool for elementary net
systems, we are also going to describe and implement a BDD-based BMC veri-
fication of LTL properties.

References
1. P. A. Abdulla, P. Bjesse, and N. Eén. Symbolic reachability analysis based on SAT-

solvers. In Proc. of the 6th Int. Conf. on Tools and Algorithms for the Construc-
tion and Analysis of Systems (TACAS’00), volume 1785 of LNCS, pages 411–425.
Springer-Verlag, 2000.

2. G. Cabodi, P. Camurati, and S. Quer. Can BDD compete with SAT solvers on
bounded model checking? In Proc. of the 39th Design Automation Conference
(DAC’02), pages 117–122, 2002.

3. G. Cabodi, S. Nocco, and S. Quer. Mixing forward and backward traversals in
guided-prioritized BDD-based verification. In Proc. of the 14th Int. Conf. on
Computer Aided Verification (CAV’02), volume 2404 of LNCS, pages 471–484.
Springer-Verlag, 2003.

4. F. Copty, L. Fix, R. Fraer, E. Giunchiglia, G. Kamhi, A. Tacchella, and M. Vardi.
Benefits of bounded model checking at an industrial setting. In Proc. of the 13th
Int. Conf. on Computer Aided Verification (CAV’01), volume 2102 of LNCS, pages
436–453. Springer-Verlag, 2001.

5. A. Jones and A. Lomuscio. A BDD-based BMC approach for the verification of
multi-agent systems. In L. Czaja, editor, Proc. of the Int. Workshop on Con-
currency, Specification and Programming (CS&P’09), volume 1, pages 253–264.
Warsaw University, 2009.

6. A. Miner and G. Ciardo. Efficient reachability set generation and storage using
decision diagrams. In Proc. of the 20th Int. Conf. on Applications and Theory
of Petri Nets (ICATPN’99), volume 1639 of LNCS, pages 6–25. Springer-Verlag,
1999.

7. J. Møller, J. Lichtenberg, H. Andersen, and H. Hulgaard. Difference Decision
Diagrams. In Proc. of the 13th Int. Workshop Computer Science Logic (CSL’99),
volume 1683 of LNCS, pages 111–125. Springer-Verlag, 1999.

8. W. Penczek, B. Woźna, and A. Zbrzezny. Bounded model checking for the universal
fragment of CTL. Fundamenta Informaticae, 51(1-2):135–156, 2002.

9. W. Penczek, B. Woźna, and A. Zbrzezny. Towards bounded model checking for the
universal fragment of TCTL. In Proc. of the 7th Int. Symp. on Formal Techniques
in Real-Time and Fault Tolerant Systems (FTRTFT’02), volume 2469 of LNCS,
pages 265–288. Springer-Verlag, 2002.

10. O. Strichman. Tuning SAT checkers for bounded model checking. In Proc. of the
12th Int. Conf. on Computer Aided Verification (CAV’00), volume 1855 of LNCS,
pages 480–494. Springer-Verlag, 2000.

166 PNSE’10 – Petri Nets and Software Engineering




	Frontmatter
	Report Title
	Retrievability
	Abstract
	Title
	Preface
	Contents

	Part I Invited Talk
	Combining Petri Nets and UML for Model-based Software Engineering
	João Miguel Fernandes

	Part II Long Presentations
	The Resource Allocation Problem in Software Applications: A Petri Net Perspective
	Juan-Pablo López-Grao and José-Manuel Colom
	Nets Within Nets Paradigm and Grid Computing
	Fabio Farina and Marco Mascheroni
	Verifying Reference Nets By Means of Hypernets: a Plugin for RENEW
	Marco Mascheroni, Thomas Wagner and Lars Wustenberg
	Improving a Workflow Management System with an Agent Flavour
	Daniel Moldt, José Quenum, Christine Reese and Thomas Wagner

	Part III Short Presentations
	IRS-MT: Tool for Modeling Resource Allocation in Workflow Petri Nets
	Piotr Chrzastowski-Wachtel and Jakub Rauch
	Detecting and Repairing Unintentional Change on In-use Data in Concurrent Workflow Management System
	Thi Thanh Huyen Phan and Koichiro Ochimizu
	Automata and Petri Net Models for Visualizing and Analyzing Complex Questionnaires - A Case Study
	Heiko Rölke
	Deadlock Control Software for Tow Automated Guided Vehicles using Petri Nets
	Carlos Rovetto, Elia Esther Cano Acosta and José Manuel Colom Piazuelo
	Taming the Shrew - Resolving Structural Heterogeneities with Hierarchical CPN
	Manuel Wimmer, Gerti Kappel, Angelika Kusel, Werner Retschitzegger, Johannes Schoenboeck and Wieland Schwinger

	Part IV Poster Abstracts
	MATLAB / Simulink and Program Sketcher for Verification of Hybrid Petri Nets Implementation into Programmable Logic Controller
	Ludek Chomát
	Instruction Pipeline Modeling using Petri Nets
	Adam Husar, Tomas Hruska, Karel Masarik and Zdenek Prikryl
	BDD-based Bounded Model Checking for Elementary Net Systems
	Artur Meski, Wojciech Penczek and Agata Polrola


