Scene Interpretation as a Configuration Task

Lothar Hotz, Bernd Neumann

Technical Report: FBI-HH-B-262/05

Universitat Hamburg, Fachbereich Informatik,
Arbeitsbereich Kognitive Systeme, HITeC e.V.

Marz, 2005






Zusammenfassung

Bisherige Forschung zeigte, dass wissensbasierte Szeneninterpretatioasemsbasierte
Konfigurierung als logische Modellkonstruktion angesehen werden kann. In diesieit Be

zeigen wir, dass auch aus der Anwendungssicht beide Aufgaben &hnlich sind und bestehende
Konfigurierungstechnologien benutzt werden kénnen, um generische Szenenirttensreta
systeme zu implementieren. Nutzbringende Merkmale solcher Systedrausoirucksstarke
Wissensreprasentation, flexible Kontrolle, geleitete Erzeugung von Hygeotlhed
Constraint-Verwaltung. Wir beschreiben, wie eine Videoaufnahme eisemdackszene

mithilfe des Konfigurierungssystems KONWERK, welches Teil unseres
Szeneninterpretationssystems SCENIC ist, interpretiert werden kann.






Scene Interpretation as a Configuration Task

Lothar Hotz and Bernd Neumann

Abstract

From past research it is known that both knowledge-based scene interpretation and
knowledge-based configuration can be conceived as logical model construction. Ipdtis re
we show that also from an application-oriented point of view, both tasks are veey sinl
existing configuration technology can be used to implement a generic scene tatierpre
system with highly useful features, in particular expressive knowledgesesyation, flexible
control, knowledge-guided hypothesis generation and constraint management. Wxe @escri
experiment where a table-laying scene-in-progress is interpreteglthsi configuration

system KONWERK as part of our scene interpretation system SCENIC.

1. Introduction

This paper is about knowledge-based interpretation of real-life dynamic scepiesal Ty
example tasks are traffic scene interpretation, soccer team-plggigneriminal-act
recognition, or understanding indoor activities, such as table-laying, in arcmart
environment. The goals of scene interpretation go beyond single-object remogriseveral
objects may contribute to the meaning of a scene, and common-sense knowledge about
meaningful occurrences and purposeful behaviour of agents may play a part.

Scene interpretations typically involve inferred facts, expectations andtpesicConsider
the example of a table-laying scene observed by a smart-room camerate&s qitlery and
other objects are placed on the table, it is natural to come up with an interpretatias suc
“"the table is laid for a dinner-for-two" before the table is complesatldnd in spite of partial
occlusions. In fact, given context knowledge in terms of daytime and dinner habits, the
interpretation could be inferred almost without visual evidence, for example lolatker of
dishes. In general, one can say that scene interpretations consist of educatsdoguess
hypotheses rather than deductions, or, as Max Clowes (1971) has put it, scene tbegpreta
are "controlled hallucinations". It is the purpose of this paper to shed light opdlis of
feasible hallucinations and on a particular way, inspired by configuration teciintwog
determine a scene interpretation.

Reiter and Mackworth were the first to analyse the space of possibfaétddions in a

formal knowledge-representation framework. They showed that scene itatopres

formally equivalent to logical model construction [Reiter & Mackworth 87]. Roygi¢wed

as model construction, an interpretation can be seen as an instantiation of a cbnceptua
knowledge base consistent with evidence, i.e. with information about the scene delivered by
sensors and low-level image analysis. It is well known that, in generdénea about a scene
may permit multiple scene interpretations. The important insight of this lisean is that,

in a knowledge-based framework, the space of possible interpretations can iedaoan

by logical consistency rather than relying solely on cost functions orenefe measures as,

for example, in probabilistic approaches [Rimey 93].

On the other hand, as pointed out in [Neumann & Weiss 03], the space of consistent
interpretations may still be huge (note that we use "interpretation” both facal logpdel

and for the corresponding scene description in terms of instantiated concepts)e A sce
interpretation may contain arbitrary propositions, for example about objects dbtsiiikd

of view, as long as they do not contradict axiomatic knowledge and evidence. Hémee fur
criteria are required to narrow down the interpretation space and sebest'aifiterpretation.



Nevertheless, a system which allows to construct interpretations congigteatconceptual
knowledge base and with concrete evidence may provide a useful framework for scene
interpretation. This led us to examine existing model-construction systemssisible use in
scene interpretation tasks. Description Logics (DLs) were inveddigafdleumann & Moller

04], in particular the DL system RACER [Haarslev & Mdller 01]. It turned loat the
model-construction procedure of RACER which is at the heart of consistencyrahexkild

not be used for generating "possible interpretations” as it is optimised to proverovelithe
existence of models, but not to generate task-dependent models. However, the RAGER quer
language provides powerful retrieval mechanisms [Haarslev et al. 04], vémdieaised for
constructing scene interpretations, along with other inference procefeses tfy RACER.

In this paper we examine configuration technology for a possible employmectfo
interpretation. Configuration systems have been developed in support of tasks wisere part
(usually technical components) have to be configured to form a system, whiclgimepts
specifications. A typical configuration task is to configure a computeradiogpto customer
wishes. It may seem far-fetched to look at technical configuration tasks inctionneith
real-life scene interpretation, but it has been shown [Buchheit et al. 95] thatitisedibg
configuration are equivalent to model construction and hence essentially the sheme as
logics of scene interpretation. Furthermore, configuration technology is wellstmalafter
two decades of research and development, and there exist many implementeaatcorfi
systems.

In the folllowing section we take a closer look at model construction, which is thre@om
logical basis for configuration and scene interpretation. We then show corresperalehce
differences between configuration and scene interpretation tasks, and propase how
configuration process can in principle be used for scene imterpretation.

In Section 3 we describe the concrete scene interpretation system S@aithas been
implemented using the configuration system KONWERK [Glnter 95], and presentrateonc
interpretation experiment to demonstrate the potential of the approach.

We conclude that the object-oriented knowledge-representation facilitiesafrthguration
system KONWERK, in particular its constraint system, provide a very usedis! foa
conceptual modelling and flexible interpretation strategies.

2. Conceptual Framework for Scene Interpretation and Configuration

In this section we first present the rationale for modelling scene intipreas logical
model construction. We then show that configuration tasks have basically the searueestr
and how scene interpretation can be modelled as a configuration process.

The work of Reiter and Mackworth mentioned above shows that, under certain assumptions,
scene interpretation can be formulated as a finite model construction tashkphechénted as
constraint satisfaction. Model construction essentially applies to the sgmpbadiessing after
primitive symbols (representing evidence) have been determined by lowAege analysis.
In general, to construct a logical model means to construct a mapping from cepsthats
and predicates of a symbolic language into the corresponding entities of a dachatinas all
predicates become true. In scene interpretation tasks, the domain is tisuedigd world, the
constant symbols denote scene elements, objects and higher-level entitragddtby a
vision system, and the predicates express class membership and relatiors émtites.
Part of the mapping is determined by low-level scene analysis, which cesgadiols to
real-world scene entities, the remaining part is constructed in ternypotheses about the
scene and represented by the corresponding symbols as place-holders.



The finiteness assumption underlying the analysis of Reiter and Mackworthadistioréor
real-world tasks, and scene interpretation must be definedaatia model construction if

the knowledge representation language permits infinite models [Schréder 99).etatiéons

in terms of partial models are also natural for focussed tasks, such as avordivimg
obstacle or answering a query, where complete model construction is not require].iklenc
general, it is appropriate to describe the logical basis of scene @téiqm as partial model
construction. Accordingly, from a logical point of view, scene interpretatidreis t
construction of a symbolic description consistent with conceptual knowledge abouwtrktie w
and concrete knowledge about the scene, the latter consisting of sensor-based awdtlence
context information.

The conceptual knowledge for scene interpretation is commonly modellechsdér
taxonomical and compositional hierarchies. It has been shown in [Neumann and Weiss 03]
that constructing a scene interpretation is essentially a search prebieimcan be viewed as
"navigating" in the space of possible interpretations defined by the taxonondcal a
compositional relations and by incrementally instantiating concepts whiteaiméng
consistency. Four kinds of interpretation steps suffice to construct any sapectaition
consistent with conceptual knowledge, evidence and context:

* aggregate instantiation (moving up a compositional hierarchy)
* aggregate expansion (moving down a compositional hierarchy)
 instance specialisation (moving down a taxonomical hierarchy)
* instance merging (unifying instances obtained separately)

table-top-scene|

.. A
cluttered-table| | dinner-for-two| | lonely-dinner |

Id-decoration

| cv-plate| | Cv-cup&saucer| | cv-fork || cv-knife | | candle flowers
[ '

Cs-Ccup Cs-saucer H l

i
| v v
;'I "* :* | candle-view || flowers-view |

| cup-view || saucer-view| | knife-view |

Fig. 1: lllustration of knowledge-based scene interpretation.
Solid edges denote has-part relations, dotted edges has-specialisatimms;edat-dashed
edges connect evidence to scene objects. Shaded boxes indicate concepts, whiltthyare init
instantiated in example task.

As a concrete example, consider scene interpretation based on the (extiampidigd)
knowledge structure shown in Fig. 1. Note that evidence (such as a plate-viewylalthou
connected by special "has-evidence" edges, is considered as part ofébparating scene
objects and treated accordingly by the interpretation steps. Prior knowledge eftpabl
scene and initial evidence in terms of a plate-view, a saucer-view, and a\dend&e
assumed to be given and marked as instantiated concepts (shaded boxes). 8tarting w
evidence, aggregate-instantiation steps may lead to the instantiation oflbigh@oncepts
such as "ld-cover" and "lonely-dinner”, an aggregate-expansion step may 'daddration”



as part of a "lonely-dinner", an instance-specialisation step mayagerieandle”, and after
expansion,“candle-view" may then be merged with the candle evidence, etc.

We now turn to configuration tasks, which also obey the logical model-construction
paradigm, as pointed out above. What are the correspondences and differences between s
interpretation and configuration? We restrict our comparison to structure-t@asgguration,
which can be considered the prevailing configuration methodology. Structure-based
configuration is also the underlying method for several implemented systepasticular
PLAKON [Cunis et al. 89] and KONWERK [Gunter 95], which originated in the rekearc
group of the authors.

We can use Fig. 1 again to illustrate configuration. Simply interpret treeptual structure
as a representation of allowed table-top configurations and consider the taskgtHay
table according to some specific requirements, e.g. "lonely-dinner withe€ahdstructure-
based configuration, such tasks are solved stepwise with essentially thiersdsref steps as
used for interpretation. Requirements constitute the initial instantiatigmsalty including a
high-level aggregate and constraints on parts. The final configuration megdbed by a
mix of top-down and bottom-up steps.

Comparing the configuration process with scene interpretation in detail, we vertal se
correspondences:

(i) A conceptual knowledge base for scene interpretation uses essehéapme structural
relations (aggregation and generalisation) as a conceptual knowledderbase
configuration.

(i) Evidence and context information in interpretation tasks correspond to tasteraents
in configuration tasks.

(iif) The four kinds of interpretation steps listed above also occur as coniogussps.
However, there are also differences, which will be discussed in the following

Partiality

It had been argued that a scene interpretation is a partial model in ta¢hsgranly a task-
dependent subset of all instantiations inferrable from the conceptual knowlegge st be
included in an interpretation. Hence, depending on the task on hand, a specific scene may be
interpreted in diverse ways, for example including details in one interpretation @tidgom

details in another. A configuration, on the other hand, typically constitutes a comptié m

for an aggregate specified by the configuration task.

Non-monotonicity

When interpreting dynamic scenes, one has to deal with time-dependency and.drRange
example, moving objects may enter or leave the scene, hence interpretationgatance
may no longer be true at another. On first glance, this seems to correspond tguaatoorfi
task with changing requirements, which would be outside the scope of existing ratidigu
technology. However, by relating propositions about a dynamic scene to thatBmals for
which the propositions hold, evidence about a dynamic scene need not be withdrawn.

Incrementality

In many applications, it is desirable to perform incremental scene intgrpnetThis means
that a partial model must be constructed, possibly involving predictions, before alloevisien
available. In configuration, this would correspond to selecting components altesngtaves
before receiving all requirements. It is obvious that new requirements niaydeflict with
premature configuration decisions and, similarly, new evidence may be irctuouith
premature interpretations, hence backtracking is in order in such cases.nnisti



configuration tasks incremental requirements can easily be avoidetimeaeene
interpretation, and in particular robot vision, must deal with incremental evidence.

Fortunately, existing configuration technology supports the additional reaantsmposed by
incremental processing to a large extent. First, backtracking mectsaais available to undo
decisions which have led into a conflict. Second, configuration systems often offei cont
mechanisms, which allow to focus on specific parts of the evolving configurationl-timrea
scene interpretation, this can be used to focus on interpreting the past befonaréhd fus
would require, of course, that the advancing real-time is known to the system and can be
exploited for interpretation control.

Uncertainty

Different from typical configuration tasks, scene interpretation usualbies uncertain
information of several kinds. For one, it is well-known that evidence provided by sensor
signals about physical objects is probabilistic by nature because of margnm
influencing factors. Hence any piece of evidence may be attributed to gosaiy objects,
causing a potentially large interpretation space from which the most likehpietation has
to be chosen. Similarly, concepts at any representation level may be panycdggaegates
at higher levels, from which to choose in a stepwise interpretation processouisis detail
in [Neumann & Maller 04], such choice points are characteristic for model caistruca
formal knowledge-representation framework, and it is highly desirable toderaypreference
measure in order to guide local decisions. For the interpretation of naturas sstistics
about the variability of scenes (or estimates thereof) provide a natured $ouprobabilistic
guidance and, as a rule, such information should be brought to bear.

Another source of uncertainty is the fuzziness of high-level concepts in scepeetaiaon,
for example of spatial relations corresponding to natural-language prepesiich as
"behind" or "near". When transforming quantitative results of low-level iraagdysis into
high-level predicates, it may be useful to represent the grade of apjiljoald predicate by
a fuzzy value. Epistemically, the degree of applicability is clearfemiht from a measure of
likelihood, so this is a distinct challenge for representation formalisms.

Both kinds of uncertainty are not relevant for typical configuration problems, and
configuration systems are not designed to support uncertainty management of.tBistsbr
is conceivable that the constraint propagation framework of structural gratian systems
can also harbour probabilistic inferences, hence configuration technology rengaiod
candidate for scene interpretation.

3. Interpreting Table-laying Scenes with KONWERK

In this section we describe the experimental system SCENIC (SCENerétddion as
Configuration) which utilises configuration technology for concrete sceng@iatation
experiments. The purpose is twofold, to show that the formal correspondences between sce
interpretation and configuration described above can in fact be exploited for vidiem sys
development, and second, to provide additional detail about knowledge representation
requirements and control issues which arise in incremental scene intepretat

The example scenes are taken from the table-laying scenario mentidiexd &a@amera is
installed above the table and observes a table-top. Human agents, sometiges acti
parallel, place dishes and other objects onto the table, for example, covers aarmuistiom
dinner-for-two. It is the task of the scene interpretation system to geheghatkevel
interpretations such as "place-cover" or "lay-dinner-table-for-twotu@ences of this kind
are complex enough to involve several interesting aspects of high-levelsegpeetation



such as temporally and spatially constrained multiple-object motion, a knowledgeitbase
compositional structure, and the need for mixed bottom-up and top-down interpretation steps.

In the following we first give an overview of the modelling and inferenciofgrtigues
provided by the configuration system KONWERK, which performs the symbolic
interpretation subtask in SCENIC. In Section 3.2 we describe SCENIC and the&gewl
base, which is used for interpreting table-laying scenes. An experintarthigi knowledge
base is described in Section 3.3.

3.1 Overview of the Configuration System KONWERK

The configuration system KONWERK used for the experiments is a prototypical
implementation of a generic configuration system [Gunter 95] designed to support the
configuration of aggregates based on component descriptions in a knowledge-base. The
relevant knowledge is organised in four separate modules:

Concept Hierarchy. Object classes (concepts) are described using a highly expressive object
description language, and embedded in a taxonomical hierarchy. Object psopertie

specified by parameters with restricted value ranges or sets of valoespositional

hierarchy is induced by the special structural relation part-of. Objdetdex:for a concrete
configuration are instantiations of these object classes.

Constraints. Constraints pertaining to properties (parameters) of more than one object are
administered by a constraint net. Conceptual constraints are formulatet @<sipar
conceptual knowledge base and instantiated as the corresponding objects arat@ustant
Constraints are multi-directional, i.e. propagated regardless of the order in whathamt
variables are instantiated. At any given time, the remaining possibles\ailaeconstraint
variable are given as ranges or value sets.

Task Description. A configuration task is specified in terms of an aggregate which must be
configured (the goal) and possibly additional restrictions such as chbisagsy prescribed
properties, etc. Typically, the goal is the root node of the compositional hierascimythe
example shown in Fig. 1.

Procedural Knowledge. Configuration strategies can be specified in a declarative manner.
For example, it is possible to prescribe phases of bottom-up or top-down processing
conditioned on certain features of the evolving configuration.

The KONWERK executive system performs stepwise configuration aogptalithe
following basic algorithm:

Repeat
Check for goal completion
Determine current strategy
Determine possible configuration steps
Select from agenda and execute one of
{ aggregate instantiation,
aggregate expansion,
instance specialisation,
parameterisation,
instance merging }
Propagate constraints
Check for conflict

Comparing with the configuration (and interpretation) steps discussed in Section 2, the
KONWERK executive cycle features all the steps mentioned there, but alsdescl
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parameterisation as an additional operation. Parameterisation meansahmgcsment
property such as size or position is specified or constrained. This can be conasdare
substep of specialisation, refining the description of a component.

In KONWERK, an aggregate is completely configured if all properties of thegatgr have
been parameterised, all its required parts have been completely configurdtcanstiaints
are satisfied. As noted earlier, this completeness requirement is at dadsenibtion of
scene interpretation as a partial model, where details may be missimeyszope of an
interpretation may be limited depending on the task. However, KONWERK offerakever
means for automatic parameterisation, for example by using default,wahiel can be used
to hide configuration steps not required for a scene interpretation.

A conflict is encountered when the constraint net cannot be satisfied with the pantéeait
configuration. In this case, automatic backtracking occurs. Backtrackingeccontrolled by
procedural knowledge to achieve "intelligent backtracking” and avoid unnecessatijion
of configuration steps.

3.2 The Scene Interpretation System SCENIC

To perform scene interpretation, KONWERK has been combined with image analysi
modules as shown in Fig. 2.

Image Sequencel

Segmentation and Tracking Unit (STU)

Geometric Scene

Description (GSD)
A

Metric-symbolic Interface (MSI)

Primitive Symbolic Scene
Description (PSSD)

A

High-Level Interpretation System (KONWERK)

Scene Interpretation l

Fig. 2: The scene interpretation system SCENIC consists of three mdtielessgmentation
and tracking unit STU, the metric-symbolic interface MSI, and the high-letexpretation
module realised by the configuration system KONWERK.

The segmentation and tracking unit STU is tailored to meet the needs of our yatge-la
scenes. Important static objects (such as the table) are segmentedyraartliatitered into
the factual knowledge base off-line. Moving objects are detected by compacoessive
image frames and by region growing around seed points determined from chaisgd laee
shapes of moving objects are classified into view types for each frame, iceoaris
restricted to view-types corresponding to table-top objects such as platesaiecer-view,
fork-view, etc. Objects are tracked throughout the image sequence, and tlssigacce
positions are recorded as object trajectories. The trajectory and viewettigap to a point of
time constitute the evolving Geometric Scene Description (GSD), which aaitpet of the
STU. The view type of an object may be ambiguous regarding the correctgbloygect
class, or change along the trajectory, e.g. because of occlusion. To be ablebigdiste



such low-level classifications is an important requirement for the highilgegpretation
component.

The task of generating symbolic entities from the GSD is performed byetnesymbolic
interface MSI. Following the approach presented in [Neumann 02], symbolic entties ar
assigned to interesting perceptual primitives for time intervals wheraligatjue constancy
can be observed. In our scenario, interesting perceptual primitives are loqaeeuh and
orientation of moving objects, distances between objects, and angles betwesmceef
orientations, as well as temporal derivatives thereof. Interestingajivaitonstancies are

- moving / stationary

- increasing / decreasing distance

- increasing / decreasing angle

- disjoint / touching / overlapping / within

The high-level interpretation system realised by the configuratiomsys@NWERK

performs interpretations based on a conceptual knowledge base for tabiestames, see

Fig. 3. The Upper Ontology of the knowledge base - i.e. the domain-independent part -
consists of concepts related to real-world scenes and to the evidence obtainedryy sens
equipment. A real-world scene is composed of subscenes which may be decomposed into
further subscenes, thus forming a compositional hierarchy. A subscene concepesiesc
aggregate of objects (or activities) which constitute a meaningful egtthyelnselves. In our
domain, typical subscenes aomver or | ayi ng-a-di nner-for-two activities.

evidence

01

subscene » subscene-evidenc
S T
[0 M [0 inf]
[0 inf] 3
stationary- stationary-subscene
subscene 01 | evidence
[0 inf] v [0 inf] f [0 inf]
moving- 01 moving-subscene-
subscene g evidence
staionary- ‘,’l i moving-
thing I thing
Lo
_________;_Jv__h____________
r I ¥ | 4 A 4
. . ;o
stationary fod transport | | clutter- lay-table clear-table
table-subsceng i ! table
/ | - T -
/ | A\ A 4 A
/ ; — \ lay-dinner- lay-dinner-
. ! A\ for-two for-one
7 | \
/ |
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hand \ . cover cover
v : A/< l
place-fork- place-plate- | | place-knife-
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fork plate || knife fork plate || kmife | T > has-specialization
——— —» has-evidence

Fig. 3: Structure of conceptual knowledge base of SCENIC. Upper part above dashed line
shows domain-independent concepts (Upper Ontology), lower part illustrates some-domai
specific concepts of the table-laying scenario (not all relations shown).



The root conceptscene represents all possible symbolic scene descriptions. One can think
of scene as a concept both for real scene descriptions and for (possibly hypothetical)
descriptions to be constructed by the interpretation process. Scene intenpsetdtialways
contain an instance accene, which may therefore be used as a starting point for top-
down processing.

The numbers in brackets are bounds on the number of instances of a relation. For example, a
specific scene (i.e. an instance of the concepéne) may consist of any number of
subscene instances.

Evidence concepts describe the evidence provided by the MSI. In our scenario,esiddenc

only modelled for primitive objects, and STU and MSI attempt to provide evidence for the
behaviour of primitive objects only. In general, however, a knowledge base may aide inc

evidence concepts directly associated with scene and subscene aggrégates) be useful

if an aggregate view is much different from the composition of the individual \Géiis

parts, or evidence pertains to a scene as a whole (e.g. daytime).

In dynamic scenes, object descriptions extend over time, and the correspondipgscarece
designed to specify time-dependent properties - such as position - over sonmeetiaae. iin
our knowledge-representation framework, time is represented by disoretpdints
corresponding to the image frame rate provided by a video camera. ltuktas#stinguish
between time intervals of motion and non-motion; hence the Upper Ontology includes
novi ng- subscene andst at i onar y- subscene concepts which partition the
behaviour of the corresponding parent concept into motion and non-motion subintervals.
Consecutive subintervals of an object are related by the temporal retegos (not shown

in the figure).

The domain-specific part of the conceptual knowledge base (below heavy dashed line)
describes concepts of our table-laying scenario, in particular composda descriptions for
laying a dinner for a specific number of persons, clearing the table, pladinglual items
onto the table, etc. There are also concepts describing static conbigsisich as various
kinds of covers. At the most specific level, the domain-specific knowledge basmsonta
primitive object concepts such asvi ng- pl at e associated with concepts for
corresponding evidence via the relatias - evi dence.

The knowledge base also encompasses constraints between objects, e.g.thetwee
components of an aggregate or between a scene object and its associated evidence.
Constraints are not shown in Fig. 3, but play a significant role in defining the geometry of
table-top concepts. For example, the geometry of the aggite@site - cover consisting of
plate, knife, fork, spoon and table edge, is defined in terms of distance ranges bedween th
bounding-boxes of all objects of the aggregate.

The constraint system of the configuration framework plays an important parepesents
spatial and temporal coherence between the components of an aggregate and allows
propagating evidence through the constraint net. It is interesting to note thah#tint net
plays a role comparable to a Bayesian Networks in probabilistic sceneetaér (e.g.
[Rimey 93]). Constraints on value ranges can be interpreted as flat distigyuand
constraint propagation as a special form of belief propagation. It seentdef¢@aextend the
configuration approach by integrating probability distributions instead ofreamts. This
would also provide the much needed preference measure for the space of logicailly poss
interpretations.



3.3 A Scene-Interpretation Experiment

To demonstrate the effectiveness of the configuration approach for scene tatiemre/e
have set up SCENIC to interpret an evolving scene where a dinner-for-two ig taid b
human agents. Initially, a context is defined by creating instancegsehe and t abl e

(in view of the camera). Then, by one agent, a plate and a saucer are laid fibccthesle
and simultaneously by another agent, a saucer and a cup are laid for the second eover. Th
corresponding evidence is supplied to KONWERK in one bulk at frame 300 in terms of
tracked regions, classified correctly by the STUhend- vi ew, pl ate-vi ew, etc.
except of the cup which was sometimes mistaken as a saucer and hencectlassifi
ambiguously asdi sh-vi ew (the parent concept ofup-vi ew and saucer - vi ew).

In addition, KONWERK receives as input instances of the topological predicaie h-

vi ew, which is true if two regions touch while having the same motion state.

High-level interpretation begins bottom-up by instantiating the physicaltslgjearesponding
to the evidence, includingli sh- 2 for the ambiguously classified region, analuch
occurrences for theouch- vi ew evidence (see Fig. 4). Furthermore, based on a list of
interesting bottom-up predicatés,ansport occurrences are determined by specialising
t ouch occurrences involving laand.

0 50 100 150 200 250 300
scene-1
-.--..statt:able-l ...........................
—1O 71 ------------------------------------------------------
moving-saucer-3 stat-saucer-3
22 90
moving-hand-2
_22 85 cccccccccccccccccccccccccccccccccccccccccccccccccc
moving-plate-2 stat-plate-2
_46 97 _188 229 ----------------
moving-hand-5 moving-dish-2 stat-dish-2
192 279
moving-hand-4
—194 260 ---------
moving-saucer-2 stat-saucer-2
208 289
moving-hand-3
230
stat-touch-1 (dish-2 saucer-3)
192 266
moving-touch-1 (hand-4 dish-2)
208 270
moving-touch-2 (hand-3 saucer-2)
22 78 192 266
transport-1 (hand-2 plate-3) transport-3 (hand-4 dish-2)
46 92 208 270
transport-2 (hand-5 plate-2) transport-4 (hand-3 saucer-2)

Fig. 4: Instantiated concepts during initial bottom-up phase of scene integureliatances
of primitive motion concepts are marked as solid lines, of the corresponding stationary
concepts as dotted lines, of aggregates as double lines. Components of aggregate amstance
shown in parentheses.

At this point, the control strategy of KONWERK has exhausted its bottom-up repanibry
invokes top-down interpretation steps by expandagene- 1, which was created as an
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initial context. One may think of this phase as an exploration of high-level concepts, whic
might be responsible for the objects and occurrences observed so far. The ensuing
specialisation steps require that choices are made, for example bdtagedi nner -
for-one or lay-dinner-for-two or clutter-tabl e. We have used
KONWERKS option to specify preferred values in terms of defaults to firssguag-

di nner - f or - t wo, hence two instances afover are hypothesised with locations
constrained by abl e- 1. Next, both covers are expanded intbasi c- cover and a
cup-cover (an aggregate composed of cup and saucer), and continuing top-down
hypothesis generation, the ldftasi c- cover is expanded into plate, knife, fork, and
spoon.

At this point, the plate is immediately merged wiph at e- 2 generated from the evidence,
and the well-defined location obl at e- 2 is propagated through the constraint net
generating restricted locations for all other hypothesised objectsa8ymihe right

basi c- cover and cup-cover are expanded. The saucer component ofc¢he-

cover is instantly merged withsaucer - 3 and the cup component wittli sh- 2,
exploiting the high-level knowledge of the cup-cover hypothesis to specialisesithasda
cup. This demonstrates that low-level ambiguities can indeed be resolved by top-dow
expectations.

The state of interpretation at frame 300 is illustrated in Fig. 5. Objects seghjpgrevidence
are shown in natural colours. Hypotheses are shown in artificial colours togéthegually
coloured boxes delineating possible positions according to current constraints.

Fig. 5: Intermediate scene interpretation as an instané¢eagf di nner - f or - t wo.
Objects in natural colours are supported by evidence, objects in artifi@arsaire
hypotheses based on high-level conceptual knowledge. Hypotheses are shown at the centre of
boxes, which represent possible locations.

It is important to note that this interpretation is not unique. In fact, by settingfineltd
choice of the top-down hypothesis-generation phadeag- di nner - f or - one, an
alternative interpretation is generated at frame 300, shown in Fig. 6. ffeaed saucer on
the right are treated as unconstrained componentscofid t er - t abl e occurrence. As
pointed out in Section 2, model construction allows for all interpretations consistent wit
conceptual knowledge and evidence.

51 interpretation steps were needed to obtain the first intermediate scepreiation, using

90 sec of CPU time (1.8 GHz PC). Backtracking and additional 8 interpretation steps w
needed to arrive at the alternative intermediate interpretation, usingadbdb sec of CPU

time.
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Fig. 6: Alternative intermediate scene interpretation generated feathe scene in terms of
instances forl ay- di nner-for-one and clutter-table.

4. Conclusions

Starting from the observation that scene interpretation and configuration are bodh logi
model-construction tasks, we have shown that scene interpretation can in fact beemgde
within the framework of a configuration system. Several desirable é&satfima scene
interpretation system can be realised:

» The framework is generic and allows to construct interpretations of awbéareare
consistent with conceptual knowledge, evidence and context information.

* By utilising the flexible control facilities of structure-based configion, a mix of bottom-
up and top-down processing is possible which allows to hypothesise high-level aggregates
from partial evidence and thus predict the spatial and temporal evolution ofea sce

» High-level knowledge may be brought to bear to resolve ambiguities arismddw-level
image analysis or even guide low-level processing.

The configuration approach can be seen as a framework which allows to navigassdy(pos
large) space of logically consistent interpretations., but does not provide guidatacehich
interpretation is more likely. However, there are well-defined placesangueding

knowledge in terms of probability distributions or other preference measures can be
introduced without jeopardising logical consistency. This is a topic of ongoirlgofitine
authors.
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