Foundations of Object Oriented
Database Concepts™

Klaus Dieter Schewe!,
Bernhard Thalheim?,
Ingrid Wetzel!

! University of Hamburg, Dept. of Computer Science,

Vogt-Kolln-Str. 30, D-W-2000 Hamburg 54, FRG

2 University of Rostock, Dept. of Computer Science,
Albert-Finstein-Str. 21, D-0O-2500 Rostock, FRG

*This work has been supported in part by research grants from the E.E.C. Basic Research Action
3070 FIDE: “Formally Integrated Data Environments”.

Abstract

It is claimed that object oriented databases (OODBs) overcome many of the limitations
of the relational model. However, the formal foundation of OODB concepts is still an open
problem. Even worse, for relational databases a commonly accepted datamodel existed very
early on whereas for OODBs the unification of concepts is outstanding.

Our research in Hamburg and Rostock is directed towards a formally founded object
oriented datamodel (OODM) and to contribute to the development of a uniform mathematical
theory of OODBs. This report contains the results of our first investigations on the QODM.

A clear distinction between objects and values turns out to be essential in the OODM.
Types and Classes are used to structure values and objects repectively. Then the problem of
unique object identification occurs. We show that this problem can be be solved for classes
with extents that are completely representable by values. Such classes are called wvalue-
representable. The finiteness of a database and the existence of finitely representable rational
tree types are sufficient to decide value-representability.

Another advantage of the relational approach is the existence of structurally determined
canonical update operations. We show that this property can be carried over to object-oriented
datamodels iff classes are value-representable. Moreover, in this case database consistency
with respect to implicitly specified referential and inclusion constraints will be automatically
preserved.

This result can be generalized with respect to distinguished classes of explicitly stated
static constraints. We show that integrity enforcement is always possible. Given some arbi-
trary method 5 and some static or transition constraint 7 there exists a greatest consistent
specialization (GCS) St of S with respect to Z. Such a GCS behaves nice in that it is
compatible with the conjunction of constraints, inheritance and refinement. For the GCS
construction of a user-defined operation, however, it is in general not sufficient to replace the
involved primitive update operations by their GCSs.

From an engineering point of view an algorithm is required to generate these consistent
operations. We address this construction problem by the specification of generators for them.
These generators will be based on the possibility to represent syntactic components of the
language as values within the language itself, which is known to form the basis of linguistic
reflection. Moreover, the generators involve a single generic proof of correctness hence relieve
the user of the burden to write basic update operations and to assure their consistency.

Contents

1 Introduction
1.1 The Identification Problem 0.
1.2 Generic Update Operations oo
1.3 The Consistency Problem o 000
1.4 The Organization of the Paper,

2 An Object Oriented Datamodel
2.1 Motivationo e
2.1.1 The Class Concept as a Structural Primitive
2.1.2 Methods as a Basis for Behaviour Modeling
2.2 Theoretical Background o o o
221 TYPes . . o o e e e e e e e e e
2.2.2 State Transitionso e
2.2.3 Consistency Proof Obligations,
2.3 The Structural Approach o o oo
2.3.1 The Concept ofa Class
2.3.2 The Representation of a Schema
2.3.3 Static Integrity Constraints L.
2.4 The Behavioural Approach
2.4.1 Methods, Transactions and Transition Constraints
2.4.2 Queries and Views Lo e

3 Object Identification and Value-Representation
3.1 On the Notion of Value-Representability
3.1.1 Value-Representability in the Case of Acyclic Reference Graphs
3.1.2 Computation of Value Representation Types
3.1.3 The Finiteness Property o,
3.2 Weak Value-Representability 0.

4 Genericity
4.1 Existence and Consistency of Generic Update Operations
4.1.1 Canonical Update Operations
4.1.2 Existence of Canonical Updates in the Case of Value-Representability
4.2 A Generator Approach to Achieve Higher-Level Genericity
4.2.1 Basic Assumptions e e e e
4.2.2 A Framework for Generator Application

D O = W

10
11
11
12
13
14
14
15
16
17
18
19

22
22
23
25
26
28

31
31
32
33
34
35
36

4.2.3 Representations Types

4.2.4 Generators for Generic Update Operations

5 Integrity Enforcement
5.1 Enforcing Static Integrity . .
5.1.1 The Problem

5.1.2 Greatest Consistent Specializations
5.2 Enforcing Static Integrity in the OODM
5.2.1 Transforming Static Constraints into Primitive Operations
5.2.2 Transforming Static Constraints into Transactions

5.3 Enforcing Transition Integrity

5.3.1 GCSs with Respect to Transition Constraints

5.3.2 Compatibility Results
6 Conclusion

Bibliography

36
38

42
42
43
44
47
47
51
52
53
54

55

58

Chapter 1

Introduction

The shortcomings of the relational database approach encouraged much research aimed at
achieving more appropriate data models. It has been claimed that the object-oriented approach
will be the key technology for future database systems and languages [9]. Several systems
[5, 7, 8, 10, 16, 17, 18, 19, 26, 35, 38, 40] arose from these efforts. However, in contrast to
research in the relational area there is no common formal agreement on what constitutes an
object-oriented database [11, 12, 14].

The basic question “What is an object?” seems to be trivial, but already here the variety
of answers is large. In object oriented programming the notion of an object was intended as
a generalization of the abstract data type concept with the additional feature of inheritance.
In this sense object orientation involves the isolation of data in semi-independent modules
in order to promote high software development productivity. The development of object
oriented databases regarded an object also as a basic unit of persistent data, a view that
is heavily influenced by existing semantic datamodels (SDMs) [2, 29, 31, 41, 42, 61]. Thus,
object oriented databases are composed of independent objects but must also provide for the
maintenance of inter-object consistency, a demand that is to some degree in dissonance with
the basic style of object orientation.

A view that is common in OODB research is that objects are abstractions of real world
entities and should have an identity [9]. This leads to a distinction between values and objects
[11, 12]. A value is identified by itself whereas an object has an identity independent of its
value. This object identity is usually encoded by object identifiers [1, 3, 33]. Abstracting from
the pure physical level the identifier of an object can be regarded as being immutable during
the object’s lifetime. Identifiers ease the sharing and update of data. However, such abstract
identifiers do not relieve us from the task to provide unique identification mechanisms for
objects. In object oriented programming object names are sufficient. Retrieving mass data
by name is senseless.

In most approaches to OODBs an object is coupled with a value of some fixed structure.
To our point of view this contradicts already the goal of objects being abstractions of reality.
In real situations an object has several and also changing aspects that should be captured by
the object model.

Therefore, in our object model each object o consists of a unique identifier #d, a
set of (type-, value-)pairs (1}, v;), a set of (reference-, object-)pairs (ref;,0;) and
a set of methods methy.

Types are used to structure values. Classes serve as structuring primitive for objects having
the same structure and behaviour. It is obvious that the multiple aspects view of an ob-
ject allows them to be simultaneously members of more than one class and to change class
memberships.

In our model a class structure uniformly combines aspects of object values and references.
The extent of classes varies over time, whereas types are immutable. Relationships between
classes are represented by references together with referential constraints on the object iden-
tifiers involved. Moreover, each class is accompanied by a collection of methods. A schema is
given by a collection of class definitions together with explicit static and dynamic constraints.

1.1 The Identification Problem

One important concept of object-oriented databases is object identity. Following [1, 13] the
immutable identity of an object can be encoded by the concept of abstract object-identifiers.
The advantages of this approach are that sharing, mutability of values and cyclic structures
can be represented easily [44]. On the other hand, system provided identifiers can not be used
for object identification, since this would lead to a database of identifiers [36]. Hence the user
can only access objects in the database via values. Object identifiers do not have a meaning
for the user and should be hidden from the user.

We study whether equality of identifiers can be derived from the equality of values. In
the literature the notion of “deep” equality has been introduced for objects with equal values
and references to objects that are also “deeply” equal. This recursive definition becomes
interesting in the case of cyclic references.

Therefore, we introduce functional constraints on classes, in particular uniqueness con-
straints, which express equality on identifiers as a consequence of the equality of some values
or references. On this basis we can address the following problem how to characterize those
classes that are completely representable (and hence also identifiable) by values. We show
that the finiteness of a database and the existence of finitely representable recursive types are
sufficient to decide value-representability.

1.2 Generic Update Operations

The success of the relational data model is due certainly to the existence of simple query and
update-languages. Preserving the advantages of the relational in OODBs is a serious goal.

The generic querying of objects has been approached in [1, 13]. While querying is per se
a set-oriented operation, i.e. it is not necessary to select just one single object, and hence
does not raise any specific problems with object identifiers, things change completely in case
of updates. If an object with a given value is to be updated (or deleted), this is only defined
unambigously, if there does not exist another object with the same value. If more than
one object exists with the same value or more generally with the same value and the same
references to other objects, then the user has to decide, whether an update- or delete-operation
is applied to all these objects, to only one of these objects selected non-deterministically or to
none of them, i.e. to reject the operation. However, it is not possible to specify a priori such
an operation that works in the same way for all objects in all situations. The same applies
to insert-operations. Hence the problem, in which cases operations for the insertion, deletion
and update of objects can be defined generically.

Some authors [45] have chosen the solution to abandon generic operations. Others [7, 8, 10]
use identifying values to represent object identity, thus embody a strict concept of surrogate
keys to avoid the problem. Our approach is different from both solutions in that we use the
concept of hidden abstract identifiers, but at the same time formally characterize those classes
for which unique generic operations for the insertion, deletion and update of single objects
can be derived automatically. It turns out that these are exactly the value-representable ones.

It can be shown that generators for these generic update operations can be specified
for any value-representable class of a schema. The generators can be used to increase the
productivity of system developers while enhancing the quality of the implemented systems.

1.3 The Consistency Problem

One of the primary benefits that database systems offer is automatic enforcement of database
integrity. One type of integrity is maintained through automatic concurrency control and re-
covery mechanisms; allmost all commercial systems provide this. Another one is the automatic
enforcement of user-specified integrity constraints. Most commercial database systems, espe-
cially relational database management systems enforce only a bare minimum of constraints,
largely because of the performance overhead associated with updates. A database system
should be designed to automatically take methods specified by the user or generated by the
system upon checking integrity constraints upon occurrence of certain database operations.

The maintenance problem is the problem how to ensure the database satisfies its con-
straints after certain actions. There are at present two approaches to this maintenance prob-
lem. The first one, more classical is the modification of methods in accordance to the speci-
fied integrity constaints. The second approach uses generation mechanisms for the specified
events. Upon occurrence of certain database events like update operations the management
component is activated for integrity maintenance. The first research direction did not succeed
because of some limitations within the approach. The second one is at present one of the
most active database research areas. One of our objectives is to show that the first approach
can be extended to object-oriented databases using stronger mathematical fundamentals.

Accuracy is an obviously important and desirable feature of any database. To this end,
integrity constraints, conditions that data must satisfy before a database is updated, are
commonly employed as a means of helping to maintain consistency. In relational databases
the specification and enforcement of integrity constraints has a long tradition [63], whereas
in OODBs the integrity problem has only recently drawn attention [27, 51].

In object oriented databases, integrity maintenance can be based on two different ap-
proaches. The first one uses blind update operations. In this case, any update is allowed and
the system organizes the maintenance. The second approach is based on methods rewriting.
This approach is more effective. Assuming a consistent database state the modified method
can not lead to an inconsistent state. In contrast to the relational model the fundamental
concepts of object identity [33] and inheritance imply inevitably the existence of inclusion
and referential constraints that are specified with each OODB schema. Integrity with respect
to these constraints must be preserved by all database updates, especially by basic insert-,
delete- and update-operations. As usual in OODBs such operations are modeled by methods.
Due to the main result in [50] such operations are only uniquely determined by the schema
in the case of value-representable classes. We shall outline these methods and draw specific
attention to the type of the required input-value.

In relational databases distinguished classes of static integrity constraints have been dis-
cussed such as inclusion, exclusion, functional, key and multi-valued dependencies. All these
constraints can be generalized to the object oriented case. Then the result on the existence of
integrity preserving methods can be generalized to capture also these constraints. We shall
also describe the resulting methods.

1.4 The Organization of the Paper

In Chapter 2 we introduce the OODM. We start first motivating the concepts and give a
short review on some theoretical aspects underlying the model. Then we describe in detail
the structural and the behavioural parts of the OODM.

Chapter 3 handles the identification problem. We introduce the notion of value-represen-
tability and show results on the decidability.

The genericity problem will be approached in Chapter 4. We show the relationship be-
tween value-representability and the unique existence of generic update operations. Finally
we describe an algorithmic approach to generate such operations using linguistic reflection.

The consistency problem is dealt with in Chapter 5. We outline an operational approach
based on greatest consistent specializations and describe them for the case of distinguished
classes of static integrity constraints.

We summarize our results and describe some open problems in Chapter 6.

Acknowledgement

We would like to thank Catriel Beeri for stimulating discussions concerning object identifi-
cation. We also want to thank David Stemple who contributed to the engineering aspects
concerning genericity in the OODM. He convinced us on the benefits of linguistic reflection.
Thanks also to Kasimierz Subieta for questioning the theme from a programming point of
view.

Chapter 2

An Object Oriented Datamodel

In this chapter we present the formal object oriented datamodel (OODM) of [49, 50, 51].
We observe that an object in the real world always has an identity. Therefore, abstract (i.e.
system-provided) object identifiers are introduced to capture identity. However, neither the
real world object that was the basis of the abstraction nor the abstract identifier can be used
for the identification of an object.

In contrast to existing object oriented datamodels [1, 3, 5, 7, 8,9, 10, 17, 18, 26, 35, 38, 44,
45, 56] an object is not coupled with a unique type. In contrast, we observe that real world
objects can have different aspects that may change over time. Therefore, a primary decision
was taken to let an object be associated with more than one type and to let these types even
change during the object’s lifetime. The same applies to references to other objects.

Classes are used to abstract from individual objects providing mutable collections of a
given structure and behaviour, where the latter is modelled via methods.

We start with a motivation, where we explain the general notion of an object and illus-
trate by using examples the notions of type, class and method. Throughout this section a
preliminary informal syntax will be used.

Then we give a brief outline of some theoretical background underlying the OODM. This
comprises an algebraic framework for type and method specifications that stems from the
specification language SAMT [47, 54] together will formally defined consistency notions.

The heart of the chapter is formed by Sections 2.3 and 2.4, where we introduce formally
the structural and the behavioural part of the OODM.

2.1 Motivation

Relational approaches to data modelling are called value-oriented since in these models real
world entities are completely represented by their values. In the object-oriented approach
we distinguish between objects and values. Values can be gouped into types. In general, a
type may be regarded as an immutable set of values of a uniform structure together with
operations defined on such values. Subtyping is used to relate values in different types.

Whereas values are encoded by themselves [11, 12], objects have to be encoded by object
identifiers regardless of the content, location or addressability [33]. In our approach to OODBs
each object o consists of a unique identifier id, a set of (type-, value-)pairs (73, v;), a set of
(reference-, object-)pairs (ref;,0;) and a set of methods methy. We assume all identifiers id
to belong to unique given set I.D.

Types represent immutable sets of values. They can be defined algebraically similar to
[13, 21, 23]. Type constructors can be defined analogously by parameterized types. These
can be used to build complex types by nesting and recursive types. We assume that the set
ID of possible object identifiers is also a type. Then an instantiation of a parameterized type
defines a structure that represents a combination of values and references, where references
are expressed by the occurrence of a value of type ID.

Objects can be grouped into classes with some structure built from values and references.
Furthermore, we may associate methods and constraints with each class. This means of
structure building involves implicit referential constraints. Inheritance on classes is given by
IsA-relations, i.e. by set inclusion on object identifiers. Moreover we introduce subtyping and
formalize this by the definition of a continuous function from a subtype to a supertype. The
relation between subtyping and inheritance is given by an inclusion constraint on classes.

2.1.1 The Class Concept as a Structural Primitive

The class concept provides the grouping of objects having the same structure which uniformly
combines aspects of object values and references. Moreover, generic operations on objects such
as object creation, deletion and update of its values and references are associated with classes
provided these operations can be defined unambigously. Objects can belong to different
classes, which guarantees each object of our abstract object model to be captured by the
collection of possible classes. As for values that are only defined via types, objects can only
be defined via classes. Thus, a design consists of type and class definitions.

Type Definitions.

Assume the existence of basic types STRING, NAT, INT and BOOL with the usual oper-
ations on them. Additionally, there exist a basic type I.D that will be used to model object
identifiers and a trivial type L with only one element and no operations.

In this paper we only use fixed type constructors, the tagged tuple constructor denoted by
(), the finite set constructor denoted by {-} and the union constructor denoted U. We use
concatenation on tuple types denoted by the o-operator.

Types and type constructors in general are defined by nesting of these constructors. These
types can be organized in a subtype hierarchy with the subtype relation defined as usual. L
is a supertype of every type.

As a last structuring feature recursive type definitions are allowed. They only occur as
input-types for generated update methods, where rational tree values are required [4].

Example 1 The set and the tuple type constructors are both used in the declaration for

PERSONNAMIE:

PERSONNAME = (FirstName : STRING,
SecondName : STRING,
Titles : {STRINGY)

The definition for a type PERSON uses the type PERSONNAME and a type ADDRESS

defined elsewhere:

PERSON = (PersonldentityNo : NAT,
Name : PERSONNAME,
Address : ADDRESS)

The following example defines STUDENT as a subtype of PERSON:

STUDENT = PERSON o (StudNo : NAT, Faculty : NAT) a

Class Definitions.

Each object in a class consists of an identifier, a collection of values and references to objects
in other classes. Identifiers can be represented using the unique identifier type I'D. Values and
references can be combined into a representation type, where each occurence of I D denotes
references to some other classes. Therefore, we may define the structure of a class using type
constructors.

e Let ¢ be a type constructor with parameters aq,...,a, such that ID does not occur
in t. For distinct reference names rq,...,r, and class names C,..., (), the expression
derived from ¢ by replacing each a; in t by r; : C; for i = 1,...,n is called a structure
EXPresSsIon.

o A class consists of a class name (', a structure expression 5, a set of class names
Dy,...,D,, (in the following called the set of superclasses) and a set of methods. We
call r; the reference named r; from class C' to class C;. The type derived from S by
replacing each reference r; : C; by the type I'D is called the representation type T of

the class C'.
o A schema S is a finite collection of classes C,..., (), closed under references and su-
perclasses together with a collection of constraints Zy,...,7Z,.

Example 2 Let the types PERSON and STUDFENT be as in Example 1. In addition
assume a type PROFFESSOR defined as elsewhere as another subtype of PERSON. Then
the following is a simple schema for a university application. For the moment methods are
omitted.

Schema University
Class PEersonC
Structure PERSON
Methods ...

Class MARRIEDPERsONC
IsA PERrRsoNC
Structure PERSONo (Spouse : MARRIEDPERSONC)

Class STUDENTC
IsA PErsONC
Structure STUDENTo (Supervisor : PROFESSORC)

Class PROFESSORC
IsA PERrRsoNC
Structure PROFESSOR

Constraint Unique(PERSONC,PERSON)
Constraint EXCL(STUDENTC,PROFESSORC) a

The notation Unique(C',T") means that values of type 17" do not occur twice in the class C'.
EXCL(C7,C3) states that the classes Cq and C; are disjoint.

At each time, C is given by a finite set of objects. More precisely, C' is a set of pairs (i, v),
where ¢ is of type I'D and v is of type T such that identifiers are unique in this set. This
defines an instance D of a schema §.

Moreover, (' gives rise to referential constraints defined by the structure S and IsA con-
straints defined by the set of superclasses of (', i.e.

e whenever an identifier j :: I.D occurs in » and this occurrence corresponds to the ref-
erence 1 : C, then there must exist an object in Cj with identifier j (referential
integrity), and

o for each superclass Dy, there exist an object with identifier ¢ (and some value w :: T'p, in
Dy) (inclusion integrity). Moreover, if T¢ is a subtype of Tp, , there v must correspond
to w.

Note, that we do not require classes to be disjoint nor that IsA relations require a subtype
relation on the corresponding representation types.

2.1.2 Methods as a Basis for Behaviour Modeling

Methods in general can be described operationally with the usual control constructs. As-
signments are only allowed on the class C' or on a selective expression on (. Therefore, we
dispense with introducing a specific method language here.

Let us now concentrate on basic update methods, i.e. insertion, deletion and update of a
single object on a classes C'. In contrast to the relational datamodel such update operations
can not always be derived in the object-oriented case, because the abstract identifiers have
to be hidden from the user. However, in [50] it has been shown that for value-representable
classes these operations are uniquely determined by the schema and consistent with respect
to the implicit referential and inclusion constraints.

Value-representability of all classes in a schema is implied, if we define a trivial uniqueness
constraint for each class. Such a constraint requires the values of type Ty in the class extension
C' to be unique, which is similar to a (trivial) key definition in the relational case.

Example 3 Let us describe the insert-method for the class PERSONC of Example 2.

insert personc (in: P it PERSON out: 12 ID) =
IF 30 € PersoNC . value(O) = P
THEN [:=ident(O)
ELSE [:= Newld ;
PersoNC := PersoNC U { ([,P)}
ENDIF

10

For the insert on the class MARRIEDPERSONC we need a more complex input type V recur-
sively defined as

V = PERSON o (V UID)

For each P :: V let f(P) :: PERSON be the projection onto PERSON corresponding to
the subtype relation between V and PEFRSON. Then we have

insertaprarricdPersonc (in: P o Vioout: I 2 ID) =
1:= insertPeTsonC(f(P)) ;
IF vV O € MARRIEDPERSONC . ident(Q) # [
THEN P’ := substitute(l,P,Spouse(P)) ;

IF P :ID
THEN J := P’
ELSE J := insertMaTTiedPersonC(Pl)
ENDIF :
MARRIEDPERSONC := MARRIEDPERSONC U { (I,f(P)o(J))}
ENDIF

We used the global method Newld to denote the selection of a new identifier. The expression
substitute(/,P,T") denotes the result of replacing the value I for P in the expression 7. O

2.2 Theoretical Background

For the moment let us abstract from the specific database context. Look at a database being
defined as some state space X with typed state variables z1 :: Ty,...,2z, :: T,,. Then state
transitions on X are expressible by (partial, non-deterministic) guarded commands with a
sophisticated axiomatic semantics defined by predicate transformers. Formulae in first-order
logic can be used to express both static and transition integrity constraints on X. We adopt
this approach in order to formalize the OODM as well as the integrity enforcement problem
within a strict mathematical framework that will later be applied to the OODM.

2.2.1 Types

In general a type is specified by a collection of constructors, selectors and other functions —
the signature of the type — and axioms defined by universal Horn formulae. This is related
to algebraic specifications [21, 23]. Now let Np, Ny, Np, and V denote arbitrary pairwise
disjoint, countably infinite sets representing a reservoir of parameter-, type-, function-, and
variable-names respectively.

Definition 1 A type signature X consists of a type name ¢ € N7, a finite set of supertype-
/function-pairs T C N7 x Np, a finite set of parameters P C Np, a finite set of base types
B C N7 and pairwise disjoint finite sets (', .S, F' C N of constructors, selectors and functions
such that there exist predefined arities ar(c) € (PUB*U{t})*x{t}, ar(s) € {t} x(PUB*U{t})
and ar(f) € (PUB*U{t})* x (PUB*U{t})foreachce C,s€ Sand f € F.

We write f : t — t' to denote a supertype-/function-pair (', f) € T. We write ¢ : ¢y X...Xt, —
t to denote a constructor of arity (¢1...t,,t), s : t — t’ to denote a selector of arity (¢,t') and

11

fitix...xt, — t' to denote a function of arity (t1...t,,¢'). If ¢; = b?...6" € B*, we write
bo(b!...b7). We call S = P U B U {t} the set of sorts of the signature ¥.

Definition 2 A type declaration consists of a type signature ¥ with type name t such that
there exists a type declaration for each b € B L {t} and a set Az of Horn formulae over X.
Moreover, if b(b}...07) with b € B occurs within a constructor, selector or function, then
b9 must have been declared as a parameterized type with m parameters. We say that (3, Axz)
defines the parameterized type t(aq,..., o), iff P = {ay,...,a,} # 0 or the proper type t
respectively.

A type t is defined either by a type declaration or by mutually recursive equations involving
t as a variable.

The semantics of a type is given by term generated algebras that are quotients of the term
algebra defined by the constructors. Subtyping is modelled by the use of a continous function
taking the subtype to the supertype. Recursive types are fixpoints of functors. See [54]
for a completely mathematical treatment of types. It can be shown that even the guarded
commands give rise to a type GC(a, 3,7), where a (3) is the type of the input (output) and
7 is the type of the underlying state space. See [47] for more details.

2.2.2 State Transitions

In general non-deterministic partial state transitions S on a state space X can be described by
a subset of DxD |, where D denotes the set of possible states on X and D; = DU{ L}, where L
is a special symbol used to indicate non-termination. It can be shown that this is equivalent to
defining two predicate transformers wp(9') and wip(.9) associated with 9 satisfying the pairing
condition wp(S)(R) < wip(S)(R) A wp(S)(true) and the universal conjunctivity of wip(.9).
They assign to some postcondition R the weakest (liberal) precondition of S to establish R.
Informally these conditions can be characterized as follows:

o wilp(S)(R) characterizes those initial states such that all terminating executions of §
will reach a final state characterized by R provided 5 is defined in that initial state,
and

o wp(5)(R) characterizes those initial states such that all executions of S terminate and
will reach a final state characterized by R provided 5 is defined.

Such operations S can be specified by guarded commands in the style of Dijkstra [20, 46, 48,
43]:

Definition 3 Let X be some state space. A guarded command S on X consists of a name S,
a set of input-parameters {¢q,...,¢;}, a set of output-parameters {oy,...,0;} and a body. To
each input-parameter ¢; corresponds a type 7; and to each output-parameter o; corresponds
a type O;. The body of S is recursively built from the following constructs:

(i) assignment z := I, where z is a state variable in X or a local variable within § and £
is a term of the same type as z,

(ii) skip, fail, loop,

12

(iii) sequential composition S7; 952, choice §1053, projection z = T | S, guard P — S,
restricted choice 510X 55, where P is a well-formed formula and is a variable of type
T, and

(iv) instantiation @f,...,a} — S'(Eq,..., E}), where 5" is the name of another operation

(§ = 5" is possible) on X with input-parameters ¢,...,¢; and output-parameters
0, ..,0;, such that the variables o, 2, have the same type and the term [has

the same type as the variable L’g.

Each variable occurring in the S has a well-defined scope. The scoping rules are omitted.
Furthermore, we omit the detailed definition of the predicate transformers wip(5) and wp(.5)
[43, 47]. We only give an informal description of the less usual operations projection, guard
and restricted choice. Projection gives the introduction of a new local variable 2 of the given
type. A guard P — 5 gives a precondition P for §. If P is not satisfied, the whole operation
is undefined. Restricted choice STk T means to execute S unless it is undefined in which
case T is taken. The basic commands skip, fail, loop are only introduced for theoretical
completeness: skip does nothing, fa:l is always undefined, and loop never terminates.

Here we dispense with any structuring of state spaces into modules. However, in order to
define “extended operations” we need to know for each operation 5 the subspace Y C X such
that S does neither read nor change the values in X LY. In this case we call S a Y-operation
on X. We omit the formal details [43, 47].

2.2.3 Consistency Proof Obligations

General constraints and arbitrary operations on a state space X raise the problem whether
consistency as defined by the constraints is always satisfied by the operations. One approach
to address this problem is to use general verification techniques. The verification approach
consists in the derivation (and proof) of general proof obligations expressed in the predicate
transformer calculus.

The static constraints on a state space X, i.e. first-order formulae 7 with fr(Z) C X
partition the state space, i.e. the collection of the mutable classes into two distinguished
subspaces. States not satisfying the constraints should never be reached.

In general inherited operations can be overwritten. Unless inheritance is simply regarded
as a copying mechanism we should ensure that this can be done in a concise way, i.e., overriding
should be restricted to “specialization”. The intuition behind this definition is that whenever
an execution of the specialized operation T establishes some post-predicate R, then this
execution should already be one of the general method 5.

Transition constraints on X are expressible as first-order formulae J with fr(J) C X U
X', where X’ is a disjoint copy of X. We may then exploit a weak equivalence between guarded
commands and predicative specifications. We may associate with the transition constraint J
the guarded command ®(7)=2a'|J — a := a2’ where 2 (2) is used as an abbreviation for
the collection zq,...,z, (2,...,2/) of (state) variables. Satisfying J is equivalent to each
operation S specializing ®(7). Hence the following formal definitions:

Definition 4 Let X be a state space, Z C Y C X subspaces, 7 a static and J a transition
constraint on X, S a Z-operation and T a Y -operation.

(i) S is consistent with respect to Z iff 7 = wip(S)(Z) holds on X.

13

(ii) T specializes S iff wp(S)(true) = wp(T)(true) and wip(S)R) = wip(T)(R) hold
for all Z-predicates R (denoted T'C).

(iii) S is consistent with respect to J iff R wlp(®(J))(R) = wlp(S)(R) holds for all
X-predicates.

Note that C defines a partial order on operations. There exists an equivalent characterization
of transition consistency that avoids the quantification over all state predicates [46]. See [47]
for more details.

2.3 The Structural Approach

In the following assume to be given a type system 7 as described e.g. in Section 2.2.1.
Basically such a type system consists of some basic types such as BOOL, NATURAL,
INTEGER, STRING, etc., type constructors (parameterized types) for record, finite sets,
lists, etc. and a subtyping relation. Moreover, assume that (mutually) recursive types, i.e.
types defined by (a system of) domain equations, exist in 7. As an alternative to our def-
inition of 7 in Section 2.2.1 we may restrict 7 being one of the type systems defined in
[5, 6, 15, 16, 19, 24, 39, 40]. In addition we suppose the existence of an abstract identifier
type 1D in 7 without any non-trivial supertype. Arbitrary fypes can then be defined by
nesting. A type T without occurrence of I'D will be called a value-type.

Now let Np, Ny, No, Np, Np, Ny and V' denote arbitrary pairwise disjoint, denumerable
sets representing parameter-, type-, class-, reference-, function-, method- and variable-names
respectively.

2.3.1 The Concept of a Class

The OODM in [50] distinguishes between values grouped into types and objects grouped into
classes. The extent of classes varies over time, whereas types are immutable. Relationships
between classes are represented by references together with referential constraints on the
object identifiers involved. Moreover, each class is accompanied by a collection of methods
defined by deterministic guarded commands [43, 46, 47].

Each object in a class consists of an identifier, a collection of values and references to
objects in other classes. Identifiers can be represented using the unique identifier type ID.
Values and references can be combined into a representation type, where each occurence of
ID denotes references to some other classes. Therefore, we may define the structure of a class
using parameterized types.

Definition 5 (i) Let ¢ be a value type with parameters aq,...,a,. For distinct reference
names rq,...,7, € Ngr and class names C4,...,(, € N¢ the expression derived from ¢
by replacing each «; in t by r; : C; for ¢ = 1, ..., n is called a structure expression.

(ii) A class consists of a class name C' € N¢, a structure expression 5, a set of class names
Dy,...,D, € N¢ (in the following called the set of superclasses) and a set of static
constraints Zy,...,7Z;. We call r; the reference named r; from class C' to class ;. The
type derived from S by replacing each reference r; : C; by the type I'D is called the
representation type To of the class C'.

14

(iii) A (structural) schema S is a finite collection of classes Cy, . .., (), closed under references
and superclasses together with a collection of static constraints Zy,...,7,.

(iv) An instance D of a structural schema § assigns to each class C' a value D(C') of type
PFUN(ID,Tc) such that all implicit and explicit constraints on § are satisfied.

Here we dispense with giving a concrete syntax for constraints. Distinguished classes of static
constraints will be introduced in Section 2.3.3.

2.3.2 The Representation of a Schema

We now associate with each schema § a state space X such that each class C'in § is represented
by a state variable z¢ :: PFUN(ID,T¢) in X. PFUN(ID,T¢) is called the class type
of C. PFUN(a,f3) is the type constructor for partial function from a to 3 with finite
domain!. Moreover, C' gives rise to referential constraints defined by the structure S and
class inclusion constraints defined by the set of superclasses of C'. All other constraints on &
and C' are directly translatable in constraints on X. Let us now formally describe the form
of structurally defined inclusion and referential constraints.

Definition 6 Let C', C’ be classes with representation types T and T/, respectively and let
o:To xID — BOOL be a function.

(i) If T be a subtype of T/, via f : To — T, a class inclusion constraint on C' and C' is
a constraint in the form

Vi ID. Yo Te. member(Pair(i,v), x¢) = true =
member(Pair(i, f(v)),zcr) = true (2.1)

where Pair is the constructor of PAIR(«, 3) and member is a function on finite sets
FSET(a), hence also on the subtype PFUN (a, 3).

In the general case a class inclusion constraint on C' and C” has the form

Vit ID. member(i,dom(zc)) = true = member(i,dom(zcr)) = true .

(ii) A referential constraint on C' and C” is a constraint in the form

Vi,j o ID. Vv T member(Pair(i,v),xc) = true A
o(v,j) = true = member(j,dom(zcr)) = true . (2.2)

It is easy to see that each class D in the set of superclasses of €' gives rise to an inclusion
constraint. Moreover, each reference r : IY occurring in the structure expression S of €' gives
rise to a referential constraint with the function o determined by the type underlying 5.
Then o(v, j) = true means that the identifier j occurs within v at a place corresponding to
the reference.

Let us now finalize the presentation of the datamodel by a simple example.

n fact, we need a more sophisticated semantics for objects and classes as exemplified by the algebraic
approach of the IS-CORE group [22] or by the evolving algebra approach [28].

15

Example 4 Assume the existence of a value type PERSON defined elsewhere. A class €
named PERSONC may be defined as follows.

PERSONC ==
Structure PAIR(PERSON , spouse : PErRSONC)
Constraints VIJ :: ID .V Vit To . member(Pair(LV),z¢) = true A
member(Pair(J,V),z¢) = true == 1 = J
End PERSONC |
2.3.3 Static Integrity Constraints

Let us now introduce some kinds of explicit static constraints are generalizations of constraints
known from the relational model, e.g. functional and key constraints, general inclusion and
exclusion constraints, multi-valued dependencies and path constraints [51, 55].

Definition 7 Let C,Cy,C; be classes in a schema S and let ¢’ : Te — T; (i = 1,2,3) and
¢; T, — T (1 =1,2) be functions.

(i) A functional constraint on C' is a constraint of the form
Vi, i = ID. Yo, v = To. M(v) = (V') A member(Pair(i,v),z¢) = true
A member(Pair(i',v'), x¢) = true = c*(v) = *(v') . (2.3)
A functional constraint is called a value constraint iff neither 77 nor T5 contains ID.
(ii) A uniqueness constraint on C' is a constraint of the form
Vi, i = ID. Yo, v = To. M(v) = (V') A member(Pair(i,v),z¢) = true
A member(Pair(V,v'), z¢) = true = i =1 . (2.4)
A uniqueness constraint on C is called trivial iff T = T} and ¢! = id hold.
(iii) A general inclusion constraint on Cy and Cy is a constraint of the form
Vi T30 o ID, vy i T, member(Pair(iy, v1), 2o,) = true A c¢q(v1) =1
= iy 1 I D, vy :: T, . member(Pair(iz, v2), xc,) = true A co(vg) = t. (2.5)
(iv) An ezclusion constraint on Cq, Cy is a constraint of the form
Vi, 2t ID. Yoy o2 T, Vg = T, member(Pair(iy, v1), x¢,) = true
A member(Pair(iz, v2), xc,) = true = c1(v1) # ca(vg) . (2.6)

(v) An object generating constraint on C' is a constraint of the form

Vi, 12 it ID. Yoy, vy it To. member(Pair(iy, v1),2¢c) = true A
member(Pair(iy, v2),z¢) = true A ¢'(v) = ¢'(v2) =
Jv ID, v To. member(Pair(i,v),zc) = true A

vy =c(v) A A(v) = (1) A (v) = P(vg) . (2.7)

16

Note that the definition of uniqueness constraints is a generalization of the key concept and
object generating constraints are a straightforward generalization of multi-valued dependen-
cies in the relational model [63]. The following definition extends these constraints to path
constraints.

Definition 8 (i) Let Cq,...,C,be classes in a schema S with representation types T¢,, .. .,
Tc, and let referential constraints on 14, C; be defined via o; : To,_, X ID — BOOL.
Then Cq,...,C), define a path in § and the corresponding path expression is given by

member(Pair(iy, v1), zc,) = true A og(vy,i2) = true A

member(Pair(ig, v2),xc,) = true A ... Aoy (Vni1,0,) = truel
member(Pair(iy, v,), xc,) = true . (2.8)

(ii) Let C', C" be classes in a schema & and let P be a { (general) inclusion | exclusion

| functional | uniqueness | object generating } constraint on C', C’ or C respectively.
If Cq,...,C, and C1,...,C! are paths in § with €}, = C and C/ = ', then re-
placing the corresponding path expressions for member(Pair(i,v),zc) = true and
member(Pair(i',v'), xcr) = true respectively in P defines a path constraint P’ on C
and C7. We assume all free variables in P’ other than ¢ and z¢ to be universally
quantified. More precisely we call P" a { (general) path inclusion | path exclusion | path

functional | path uniqueness | path object generating } constraint.

2.4 The Behavioural Approach

So far, only static aspects have been considered. A structural schema is simply a collection
of data structures called classes. Let us now turn to adding dynamics to this picture. As
required in the object oriented approach operations will be associated with classes. This gives
us the notion of a method.

We shall distinguish between visible and hidden methods to emphasize those methods
that can be invoked by the user and others. This is not intended to define an interface of a
class, since for the moment all methods of a class including the hidden ones can be accessed
by other methods. The justification for such a weak hiding concept is due to two reasons.

e Visible methods serve as a means to specify (nested) transactions. In order to build
sequences of database instances we only regard these transactions assuming a linear
invocation order on them.

¢ Hidden methods can be used to handle identifiers. Since these identifiers do not have any
meaning for the user, they must not occur within the input or output of a transaction.

In general methods describe possible sequences of database instances. In order to restrict this
set of possible sequences to legal ones dynamic integrity constraints are used. In general some
temporal logic is required to express such constraints [37]. In order to avoid this we restrict
the OODM to allow only transition constraints to be specified.

In a second part we shall have a short look on queries and views.

17

2.4.1 Methods, Transactions and Transition Constraints

Let us now address the formalization of the notions method, class and transition constraint
and then generalize the notion of schema.

Definition 9 Let T,...,T,,Ty{,...,T! € Nr such that there exist types in 7 with these
names. Let M € Ny and ¢1,...,t4,01,...,0, € V.

(i) A method signature consists of a method name M, a set of input-parameter / input-type
pairs ¢; :: 1; and a set of output-parameter / output-type pairs o; :: T](. We write

oy =Ty, 0p Tl — Mg :Tyyoeu, 2 Ty) .

(ii) Let C' be some class as in Definition 5. A method M on C' consists of a method signature
with name M and a body that is represented as a guarded command on X = {z¢}.

(iii) A method M on a class C' with signature oy =2 17, ..., 04 = T) — M1 =T1,. .. 0,
T,) is called value-defined iff all T; (i = 1...n) and T7 (j = 1,...,m) are proper value
types.

On the representation level (see Section 2.3.2) we use guarded commands for methods. As
mentioned above the OODM distinguishes between transactions, i.e. methods visible to the
user, and hidden methods. We require each transaction to be value-defined.

Subclasses inherit the methods of their superclasses, but overriding is allowed as long
as the new method is a specialization of all its corresponding methods in its superclasses.
Overriding becomes mandatory in the case of multiple inheritance with name conflicts. A
method that overrides a hidden method on some superclass must also be hidden.

Definition 10 Let C be a class as in Definition 5 with superclasses Dy,..., Dy. A method

specification on C' consists of two sets of methods & = {My,..., M, } (called transactions)
and H ={Mj,...,M] } (called hidden methods) such that the following properties hold:

(i) Each M; (i =1,...,n) is value-defined.

(ii) For each transaction M! on some superclass D; there exists some ¢ € {1,...,n} such
that M; specializes M.

(iii) For each hidden method M' on some superclass D, there exists some j € {1,...,m}
such that M} specializes M.

Let us briefly discuss what specialization means for the input- and output-types. Sometimes
it is required that the input-type for an overriding method should be a subtype of the original
one (covariance rule), sometimes the opposite (contravariance rule) is required. The first rule
applies e.g. if we want to override an insert method. In this case the inherited method has no
effect on the subclass, but simply calls the “old” method. The second rule applies if input-
types reuired on the superclass can be omitted on the subclass. Both rules are captured by
the formal notion of specialization. We omit the details [47].

18

Example 5 Let us now describe methods on the class PERSONC introduced in Example 4.
Some details such as the definition of the method named “exists” are omitted, but we remark
that the described insert-method is in fact the canonical one [50].

Methods
insert(P :: Vo = PAIR(PERSON,V¢)) == 1 < insert/(P)
(hidden)
[::ID « insert’(P :: Vo = PAIR(PERSON,UNION(V¢,ID))) ==
B:: BOOL | (B « exists(Pz¢) ;
B = true —
(I::ID]| (member(l,dom(z¢)) = false —
P Te |
(3P =T . P=P—-P':=P K
(J:ID| J < insert’(substitute(P,I,second(P))) ;
P := Pair(first(P),J))) ;
z¢ := union(zc,single(Pair(I,P")))))
K skip a

The dynamic part of a schema also requires transition constraints to be specified.

Definition 11 Let C be a class as in Definition 5. A transition constraint on C is a first-order
formula R with fr(R) C {z¢, 2}, where 2, represents the value of 2¢ after performing some
operation.

Now we are prepared to generalize the definition of classes, schemata and instances.

Definition 12 (i) A class consists of a class name C' € N¢, a structure expression 5, a
set of class names D1, ..., D,, € N¢ (called the set of superclasses), a set of static con-
straints Z4,...,7Z;, a set of transition constraints [Jq,...,J; and a method specification
(§ ={My,.... M.} , H={M,....M!,}) on C. We call r; the reference named r;
from class C' to class ;. The type derived from 5 by replacing each reference r; : C;
by the type I'D is called the representation type T of the class C.

(ii) A schema S is a finite collection of classes C1q,...,C), closed under references, super-
classes and method call together with a collection of static constraints Zy,...,7Z, and a
collection of transition constraints J1,...,J].

(iii) An instance D of a structural schema S assigns to each class C' a value D(C') of type
PFUN(ID,Tc) such that all implicit and explicit constraints on § are satisfied.

2.4.2 Queries and Views

Roughly speaking the querying of a database is an operation on the database without changing
its state. The emphasis of a query is on the output. While such a general view of queries
can be subsumed by transactions, hence by methods in the OODM, query languages are in
particular intended to be declarative in order to support an ad-hoc querying of a database
without the need to write new transactions [9].

Querying a relational database can be expressed by terms in relational algebra. This view
can be easily generalized to the OODM that is built upon a sophisticated extensible type

19

system 7. FEach type is algebraically specified and hence gives rise to an algebra — to be more
precise: a G-algebra [54]. Therefore, terms over such types occur naturally. Moreover, type
specifications are based on other type specifications via constructors, selectors and functions.
Hence, 7 allows arbitrary terms involving more than one class variable ¢ to be built. Then
a query turns out be be represented by term t over some type T such that the free variables
of t are all class variables. This approach is in accordance with the algebraic approach in [13]
and with so called universal traversal combinators [25].

In relational algebra a view may be regarded simply as a stored query (or derived relation).
We shall try to generalize also this view to the OODM.

However, things change dramatically, when object identifiers come into play [14], since
now we have to distinguish between queries that result in values and those that result in
(collections of) objects. Therefore we distinguish in the OODM between value queries and
general access expressions.

A walue query on a schema § can then be represented by a term ¢ of some value type T
with fr(t) C{zc | C € §}. Ad-hoc querying of a database should then be restricted to value
queries. This is no loss of generality, because for any type T in 7 involving identifiers there
exists a corresponding type 7" allowing multiple occurrences. Take e.g. a class C'. If we want
to get all the objects in that class no matter whether they have the same values or not, the
corresponding term of type ' = PFUN(ID,T¢) would be z¢. This is not a value query, but
if Tc is a value type, we may take 7" = BAG(T¢) and the natural projection given by the
subtype functions

PFUN(a,) — FSET(PAIR(a, 3)) — BAG(PAIR(a,3)) — BAG(B) .

In Section 3.1 we shall see how to generalize this to be case where T is arbitrary. We then
have to replace T by the value-representation type Vi provided this exists.

In the case of arbitrary access expressions another problem occurs [14]. So far, we can
only build terms ¢ that involve identifiers already existing in the database. Thus, such queries
are called object preserving. If we want the result of a query to represent “new” objects, i.e.
if we want to have object generating queries, we have to apply a mechanism to create new
object identifiers. This can be achieved by object creating functions on the type I D with arity
ID x...xID — ID [32, 34].

The idea that a view is a stored query then carries over easily. However, the structure of a
view should be compatible with the structure of the schema, i.e. each view may be regarded
as a derived class. Summarizing, we get the following formal definition.

Definition 13 Let S = {C1,...,C,} be some schema.
(i) A value query on S is a term ¢ over some proper value type 17" with
frt) C{zey, - o ze, -

(ii) An access expression on S is a term ¢ over some proper type 1" with
frt) C{zey, - o ze, -

(ili) A view on S consists of a view name v € N¢ such that there is no class C' € § with
this name, a structure expression S(v) containing references to classes in S or to views
on & and a defining access expression t(v) of type PFUN(ID,T,), where T, is the
representation type corresponding to S(v).

20

Let us now finalize this chapter with a simple example of a view in the OODM.

Example 6 Take again the class PERSONC of Example 4. Let Age be some selector on the
type PERSON and let the function filter be defined on F\SET(«) with arity FSET (a) x
FUN(a, BOOL) — FSET(a) (see also [13]). Then the following defines the subset of PER-
sONC of all old persons.

View OLDPERSONV ==
Structure PAIR(PERSON,spouse: PERSONC)
Definition filter(PERSONC,Lambda[X](greater(Age(First(Second(X))),60)))
End OLDPERSONV]

21

Chapter 3

Object Identification and
Value-Representation

This chapter is devoted to the identification problem in object oriented databases. Roughly
speaking databases are considered to contain persistent mass data. From an object oriented
point of view a database may be considered as a huge collection of objects of arbitrary complex
structure. Hence the problem to uniquely identify and retrieve objects in such collections.

Each object in a database is an abstraction of a real world object that has a unique identity.
The representation of such objects in the OODM uses an abstract identifier I of type I'D to
encode this identity. Such an identifier may be considered as being immutable. However, from
a systems oriented view permutations or collapses of identifiers without changing anything
else should not affect the behaviour of the database.

For the user the abstract identifier of an object which may be e.g. a physical address has no
meaning. Therefore, a different access to the identification problem is required. We show that
the unique identification of an object in a class leads to the notions of value-identifiability
and wvalue-representability. We discuss the identification problem in Section 3.1 under the
assumption that the only explicit constraints are uniqueness constraints. Then we analyse
the weaker concept of weak value-representability that can be used to capture also objects
that do not exists for there own, but depend on other objects. This is related to weak entities
in entity-relationship models [64].

3.1 On the Notion of Value-Representability

According to our definitions two objects in a class €' are identical iff they have the same
identifier. By the use of constraints, especially uniqueness constraints, we could restrict this
notion of equality.

The goal of this section is the characterization of those classes, the objects in which are
completely representable by values, i.e. we could drop the object identifiers and replace
references by values of the referred object. We shall see in Section 4.1 that in case of value-
representable classes we are able to preserve an important advantage of relational databases,
i.e. the existence of structurally determined update operations.

Definition 14 Let C be a class in a schema § with representation type T¢.

22

(i) C is called value-identifiable iff there exists a proper value type ¢ such that for all
instances D of § there is a function ¢ : T¢ — I such that the uniqueness constraint on

(' defined by ¢ holds for D.

(ii) C is called value-representable iff there exists a proper value type Vi such that for all
instances D of § there is a function ¢ : T — Vg such that for D

(a) the uniqueness constraint on C' defined by ¢ holds and

(b) for each uniqueness constraint on C' defined by some function ¢ : T — V/, with
proper value type V/. there exists a function ¢’ : Vo — V/ that is unique on
c(codomp(C')) with ¢/ = ¢ o c.

It is easy to see that each value-representable class €' is also value-identifiable. Moreover, the
value-representation type Vo in Definition 14 is unique up to isomorphism.

Theorem 15 Let C' be a class in a schema §. Then C' is value-representable iff C' is value-
wdentifiable and C; is value-representable for all references r; : C; in the structure expression

S.

Proof. This follows directly from the definitions. a

3.1.1 Value-Representability in the Case of Acyclic Reference Graphs

Since value-representability is defined by the existence of a certain proper value type, it is
hard to decide, whether an arbitrary class is value-representable or not. In case of simple
classes the problem is easier, since we only have to deal with uniqueness and value constraints.
In this case it is helpful to analyse the reference structure of the class. Hence the following
graph-theoretic definitions.

Definition 16 The reference graph of a class C'in a schema § is the smallest labelled graph
Grep = (V, E, 1) satisfying:

(i) There exists a vertex vc € V with [(ve) = {t,C}, where t is the top-level type in the
structure expression 5 of C'.

(ii) For each proper occurrence of a type t # I D in T there exists a unique vertex v, € V.
with {(v) = {t}.

(iii) For each reference r; : C; in the structure expression S of C' the reference graph Gj“ef is
a subgraph of G,.;.

(iv) For each vertex v; or vo corresponding to #(z1,...,2,) in S there exist unique edges

egi) from v; or vo respectively to vy, in case z; is the type ¢; or to vg, in case z; is the
(@)

reference r; : C;. In the first case l(e; ') = {9;}, where 5; is the corresponding selector
name; in the latter case the label is {5}, 7;}.

Definition 17 Let S = {C4,...,C,} be aschema. Let S’ = {C{,...,]} be another schema
such that for all 7 either Téi = T¢, holds or there exists a uniqueness constraint on C; defined
by some ¢; : T, — 1. Then an identification graph G;q of the class C; is obtained from the
reference graph of C/ by changing each label ' to C.

23

{ PAIR , MARRIEDPERSONC } { PAIR , MARRIEDPERSONC }

{first } [{ second , spouse } { first } { second , spouse }

{ PERSON } { NAT }

Figure 3.1: The reference graph and identification graph of class MARRIEDPERSONC

Example 7 Let MARRIEDPERSONC be defined as in Example 4. Then the reference graph
and the identification graph with respect to the uniqueness constraint of this class are shown
in Figure 3.1. ad

Theorem 18 Let C' be a class in a schema S with acyclic reference graph G,.y such that
there exist uniqueness constraints for C' and each C; such that C; occurs as a label in Gcy.
Then C is value-representable.

Proof. We use induction on the maximum length of a path in G,.y. If there are no
references in the structure expression S of C' the type T is a proper value type. Since there
exists a uniqueness constraint on (', the identity function ¢d on T also defines a uniqueness
constraint. Hence Vi = T satisfies the requirements of Definition 14.

If there are references r; : (; in the structure expression 5 of C', then the induction
hypothesis holds for each such (;, because G,y is acyclic. Let V¢ result from 5 by replacing
each r; : C; by Vi,. Then V¢ satisfies the requirements of Definition 14. a

Theorem 19 Let C' be a class in a schema S such that there exist an acyclic identification
graph G;q and uniqueness constraints for C' and each C; occuring as a label in G;q. Then C
s value-identifiable.

Proof. The proof is analogous to that of Theorem 18. O

Theorem 20 Let C' be a class with acyclic reference graph in a schema S. Then the value-
representability of C' is decidable.

Proof. So far the only explicit constraints in our model are uniqueness constraints. Accord-
ing to Definition 7 equality of identifiers occurs only as a positive literal in such constraints.
Therefore, it is impossible to derive a uniqueness constraint for a class C' that has not one
a priori. Theorem 18 implies that value-representability can be decided by checking the
existence of uniqueness constraints in the class definitions. a

Theorem 21 Let C' be a class in a schema S such that there exist an acyclic identification
graph. Then the value-identifiability of C' is decidable.

Proof. The proof is analogous to that of Theorem 20. O

24

3.1.2 Computation of Value Representation Types

We want to address the more general case where cyclic references may occur in the schema
S ={Cq,...,Cy,}. In this case a simple induction argument as in the proof of Theorem 18 is
not applicable. So we take another approach. We define algorithms to compute types Vo and
Io that turn out to be proper value types under certain conditions. In the next subsection
we then show that these types are the value representation type and the value identification
type required by Definition 14.

Algorithm 22 Let G(C;) = T¢, provided there exists a uniqueness constraint on C;, other-
wise let G(C;) be undefined. If D occurs in some G(C;) corresponding to r; : C; (j # 1), we
write 1.D);.

Then iterate as long as possible using the following rules:

(i) If G(C;) is a proper value type and ID; occurs in some G(C;) (j # 1), then replace this
corresponding ID; in G(C;) by G(Cj).

(ii) If ID; occurs in some G(C5), then let G(C;) be recursively defined by G(C;) == i,
where 5; is the result of replacing ID; in G/(C;) by the type name G(C;).

This iteration terminates, since there exists only a finite collection of classes. If these rules
are no longer applicable, replace each remaining occurrence of 1.D; in G(C;) by the type name

G(C;) provided G(C;) is defined.]

Note that the the algorithm computes (mutually) recursive types. Now we give a sufficient
condition for the result of Algorithm 22 to be a proper value type.

Lemma 23 Let C be a class in a schema & such that there exists a uniqueness constraint
for all classes C; occurring as a label in the reference graph G,y of C. Let Vo be the type
G(C) computed by Algorithm 22. Then Vi is a proper value type.

Proof. Suppose Vi were not a proper value type. Then there exists at least one occurrence
of ID in V. This corresponds to a class ; without uniqueness constraint occurring as a
label in G,.y, hence contradicts the assumption of the lemma. a

Algorithm 24 Let F(C;) = T, provided there exists a uniqueness constraint on C; defined
by ¢; : Te, — T}, otherwise let F/(C;) be undefined. If I.D occurs in some F(C;) corresponding
tor;: C; (j# 1), we write [D;.

Then iterate as long as possible using the following rules:

(i) If F(C;) is a proper value type and ID; occurs in some F/(C;) (j # 1), then replace this
corresponding ID; in FI(C;) by F(C;).

(ii) If ID; occurs in some F(C;), then let F'(C;) be recursively defined by F(C;) == 5,
where 5; is the result of replacing I D; in F(C;) by the type name F(C}).

This iteration terminates, since there exists only a finite collection of classes. If these rules
are no longer applicable, replace each remaining occurrence of 1.D; in F/(C;) by the type name

F(C;) provided F(C;) is defined.]

25

Lemma 25 Let C be a class in a schema & such that there exists a uniqueness constraint
for all classes C; occurring as a label in some identification graph G;q of C. Let Io be the
type F(C') computed by Algorithm 24 with respect to the uniqueness constraints used in the
definition of Gq. Then Io is a proper value type.

Proof. The proofis analogous to that of Lemma 23. O

3.1.3 The Finiteness Property

Let us now address the general case. The basic idea is that there is always only a finite number
of objects in a database. Assuming the database being consistent with respect to inclusion
and referential constraints yields that there can not exist infinite cyclic references. This will
be expressed by the finiteness property. We show that this property implies the decidability
of value-representability provided the type system allows recursive types to be defined in such
a way that all their values are finitely representable, i.e. representable as rational trees. Note
that the type specifications introduced in Section 2.2.1 satisfy this property.

Definition 26 Let (' be a class in a schema S and let g;; denote a path in G,.s from v¢,
to v, provided there is a reference r; : Cj in the structure expression of (. Then a cycle in
Girep is a sequence go 1+ gni1,, With Co =), and Cj # C; otherwise.

Note that we use paths instead of edges, because the edges in G,y do not always correspond
to references. According to our definition of a class there exists a referential constraint on
C, Oy defined by o : T, x ID — BOOL corresponding to gi;. Therefore, to each cycle
there exists a corresponding sequence of functions og 1 ---0,11,. This can be used as follows
to define a function cyc: ID x ID — BOOL corresponding to a cycle in Gy.

Definition 27 Let C' be a class in a schema & and let gg 1 -+ gn11,, be a cyclein G,.s. The
corresponding cycle relation cyc : ID x ID — BOOL is defined by cye(i, j) = true iff there
exists a sequence 1 = i, iy,...,i, = j (n # 0) such that (¢, v;) € C; and 07 141(t141, 1) = true
forall I=10,...,n L 1.

Given a cycle relation cye, let cye™ the m-th power of cye.

Lemma 28 Let C be a class in a schema §. Then C satisfies the finiteness property, i.e. for
each instance D of S and for each cycle in G,cy the corresponding cycle relation cyc satisfies

Vi € dom(C).In.Vj € dom(C). Im < n. (eyc"(i,7) = true = cyc™(i,j) = true) .

Proof. Suppose the finiteness property were not satisfied. Then there exist an instance D,
a cycle relation cyc and an object identifier 7g such that

Vn.3j € dom(C).Vm < n. (cyc™(ip, j) = true A cyc™(ig,j) = false)

holds. Let such a j corresponding to n > 0 be ¢,,. Then the elements ig, i1, 73, ... are pairwise
distinct. Hence there would be infinitely many objects in D contradicting the finiteness of a
database. a

Lemma 29 Let D be an instance of schema S = {C4,...,C,}. Then D satisfies at each stage
of Algorithm 22 uniqueness constraints for all t = 1,...,n defined by some ¢; : Tc, — G(C)).

26

/

Proof. It is sufficient to show that whenever a rule is applied replacing G(C;) by G(C;),
then G/(C;) also defines a uniqueness constraint on C;.

Suppose that Pair(i,v) € C; holds in D. Since it is possible to apply a rule to G(C)),
there exists at least one value j :: I.D occurring in ¢;(v). Replacing ID; in G(C}) corresponds
to replacing j by some value v; :: G(C;). Because of the finiteness property such a value must
exist. Moreover, due to the uniqueness constraint defined by ¢; the function f : G(C;) —
G/(C;) representing this replacement must be injective on ¢;(codomp(C;)). Hence, ¢, = fo¢;
defines a uniqueness constraint on C;. a

Lemma 30 LetD be an instance of schema S = {C4,...,C,}. Then D satisfies at each stage
of Algorithm 24 uniqueness constraints for all i =1,...,n defined by some ¢; : To, — F(C;).

Proof. The proof is analogous to the proof of Lemma 29. a

Lemma 31 Let D be an instance of schema § = {Cy,...,C,}. Then at each stage of the
algorithms 22 and 24 for all i = 1,...,n there exists a function ¢; : G(C;) — F(C;) that is
unique on c¢;(codomp(Cy)) with ¢; = ¢; o ¢;.

Proof. As in the proof of Lemma 29 it is sufficient to show that the required property is
preserved by the application of a rule from Algorithm 22 or 24. Therefore, let ¢; satisfy
the required property and let ¢ : G(C;) — G(C;) and f : F(C;) — F(C;)" be functions
corresponding to the application of a rule to G(C;) and F(C;) respectively. Such functions
were constructed in the proofs of Lemma 29 and Lemma 30 respectively.

Then foe¢; satisfies the required property with respect to the application of f. In the case
of applying g we know that g is injective on ¢;(codomp(C;)). Let h : G(C;) — G(C;) be any
continuation of gt : g(¢;(codomp(C;))) — G(C;). Then ¢; o h satisfies the required property.

O

Theorem 32 Let C' be a class in a schema S such that there exists a uniqueness constraint
for all classes C; occurring as a label in the reference graph G,y of C. Let Vo be the type
G(C) computed by Algorithm 22. Then C is value-representable with value representation
type V.

Proof. Vi is a proper value type by Lemma 23. From Lemma 29 it follows that if D is an
instance of §, then there exists a function ¢ : Ty — Vi such that the uniqueness constraint
defined by ¢ holds for D.

If V/, is another proper value type and D satisfies a uniqueness constraint defined by
' : Te — V[, then V. is some value-identification type Ic. Hence by Lemma 31 there exists
a function ¢ : Vo — V/. that is unique on ¢(codomp(C')) with ¢/ = ¢/’ o ¢. This proves the
Theorem. a

Corollary 33 Let S be a schema such that all classes C' in S are value-identifiable. The all
classes C' in S are also value-representable. a

Theorem 34 Let C' be a class in a schema S such that there exists a uniqueness constraint
for all classes C; occurring as a label in some identification graph G;q of C. Let Io be the
type F(C') computed by Algorithm 24 with respect to the uniqueness constraints used in the
definition of Giq. Then C' is value-identifiable with value identification type Ic .

27

Proof. The proof is analogous to that of Theorem 32. O

Theorem 35 Let C' be a class in a schema §. Then the value-representability and the
value-identifiability of C' are decidable.

Proof. The proof is analogous to that of Theorem 20. O

3.2 Weak Value-Representability

Let us now ask whether there exist also weaker identification mechanisms other than value-
representability. In several papers, e.g. [44] a navigational approach on the basis of the
reference structure has been favoured. This leads to dependent classes similar to “weak
entities” in the entity-relationship model [64]. We shall show that such an approach requires
at least a value-identifiable “entrance” of some path and the hard restriction on references to
be representable by surjective functions.

Definition 36 Let S be some schema.

(i) If r is a reference from class C' to D in § and o : T x ID — BOOL is the function
of Definition 6 expressing the corresponding referential constraint, then r satisfies the

(SF)-condition iff

(a) o(v,i)=true No(v,j)=true = 1= j and
(b) member(j,dom(zp)) = true = v = To.member(v,codom(zc)) = true A
o(v,j) = true

hold for all 2,5 :: ID,v:: T¢.

(ii) An (SF)-chain from class D to C' in § is a sequence of classes D = Cy,...,C,, = C
together with references r; (i = 1,...,n) from C; 1 to C; such that each r; satisfies the
(SF)-condition.

(iii) A class C'in S is called weakly value-identifiable iff there exists a value-identifiable class
D and an (SF)-chain from D to C.

The notation (SF)-condition has been chosen to emphasize that such a reference represents
a surjective function. It is easy to see taking n = 0 that each value-identifiable class is also
weakly value-identifiable.

Lemma 37 If C is a weakly value-identifiable class in a schema S, then there exists a proper
value type I such that for each instance D of & there exists a function ¢ : ID — Io such
that ¢ is injective on domp(C).

Call I¢ a weak value-identification type of the class C'.

Proof. Let D = Cy,...,C,, = C be an (SF)-chain from the value-identifiable class D to
C with corresponding references r; (¢ = 1,...,n). Since r; satisfies the (SF')-condition, there
exists a function ¢; : I'D — ID such that j € domp(C;) = (¢;,(5),v) € z¢,_, for some v with
0;(v,7) = true (just take some inverse image of j under the surjective reference function).
Since r; defines a function, ¢; is clearly injective.

If ¢ : ID — Ip is the function defined by the uniqueness constraint on D and ¢ : I D —
ID is the concatenation ¢ o...0¢,, then ¢ = ¢/ o ¢’ satisfies the required property. a

28

Problem. Does the converse of Lemma 37 also hold?

Definition 38 A class C in a schema § is called weakly value-representable iff there exists a
proper value type Vi such that for each instance D of S the following properties hold.

(i) There is a function ¢ : I D — V¢ that is injective on domp(C').

(ii) For each proper value type V/, and each function ¢ : ID — V/, that is injective on
domp(C') there exists a function ¢’ : Vo — V/, that is unique on c¢(domp(C')) with
d=c"oc.

We call Vi the weak value-representation type of the class C'.

Note that the weak value-representation type is unique provided it exists. Again it is easy to
see that value-representability implies weak value-representability. Moreover, due to Lemma
37 each weakly value-representable class is also weakly value-identifiable. We shall see that
also the converse of this fact is true.

Algorithm 39 Let the schema be § = {C4,...,C,}. Start with H(C;) =T¢, (i =1,...,n).
If 1D occurs in some H(C;) corresponding to r; : C; (j # ¢), we write 1.D;.
Then iterate as long as possible using the following rules:

(i) If H(C;) is a proper value type and ID; occurs in some H(C;) (j # 1), then replace
this corresponding ID; in H(C;) by H(C};).

(ii) If I1D; occurs in some H(C}), then let H(C;) be recursively defined by H(C;) == 5;,
where 5; is the result of replacing ID; in H(C;) by the type name H(C;).

This iteration terminates, since there exists only a finite collection of classes. If these rules are
no longer applicable, replace each remaining occurrence of ID; in H(C;) by the type name

H(C]) O

This algorithm is similar to the Algorithms 22 and 24. However, we completely ignore unique-
ness constraints.

Lemma 40 Let C' be a class in a schema S and let Ic be the type H(C') computed by
Algorithm 39. Then I is a proper value type.

Proof. The proofis analogous to that of Lemma 23. O

Lemma 41 Let D be an instance of the schema § = {C4,...,C,}. Let C', D be classes such
that C is weakly value-identifiable, D is value-identifiable and there exists some (SF)-chain
from D to C. Let ¢ : 1D — Ig be the function of Lemma 37 corresponding to this chain.
Let ¢ : ID — H(D) be a function corresponding to the uniqueness constraint on D and the
instance D. Then at each stage of the Algorithm 39 there exists a function ¢ : H(D) — I¢
that is unique on c'(domp(C')) with ¢ = ¢o ¢'.

Proof. The proof is analogous to the one of Lemma 29. O

29

Theorem 42 Let C' be a weakly value-identifiable class in a schema § and let Vo be the
product of all types H(D), where D is the leading value-identifiable class in some mazimal
(SF)-chain corresponding to C' and H(D) is the result of Algorithm 39. Then C is weakly
value-representable with weak value-representation type V.

Proof. Vi is a proper value type by Lemma 40. From Lemmata 30 and 37 it follows that
there exists a function ¢’ : I D — Vi that is injective on domp(C).

From Lemma 41 it follows that there exists a function ¢ : Vo — Io that is unique on
d(domp(C')) with ¢ = ¢ o ¢!. This proves the Theorem.]

30

Chapter 4

Genericity

The preservation of advantages of relational databases requires the definability of generic
operations for querying and for the insertion, deletion and update of single objects. While
querying [1, 13, 30, 57] is per se a set-oriented operation, i.e. it is not necessary to select
just one single object, and hence does not raise any specific problems with object identifiers,
things change completely in case of updates. If an object with a given value is to be updated
(or deleted), this is only defined unambigously, if there does not exist another object with
the same value. If more than one object exists with the same value or more generally with
the same value and the same references to other objects, then the user has to decide, whether
an update- or delete-operation is applied to all these objects, to only one of these objects
selected non-deterministically or to none of them, i.e. to reject the operation. However, it is
not possible to specify a priori such an operation that works in the same way for all objects
in all situations. The same applies to insert-operations. Hence the problem, in which cases
operations for the insertion, deletion and update of objects can be defined generically.

Some authors [45] have chosen the solution to abandon generic operations. Others [7, 8, 10]
use identifying values to represent object identity, thus embody a strict concept of surrogate
keys to avoid the problem. Our approach is different from both solutions in that we use the
concept of hidden abstract identifiers, but at the same time formally characterize those classes
for which generic operations for the insertion, deletion and update of single objects can be
derived automatically. We show that there is a close connection between value-representability
and the unique existence of generic operations for the insertion, deletion and update of single
objects. Furthermore, inclusion and referential integrity are enforced by these operations.

In Section 4.1 we describe these operations. In Section 4.2 we then specify an algorithm to
compute generic update methods [52, 53]. The specification is built on the same theoretical
ground as the OODM, hence sets up a specific case of linguistic reflection [60].

4.1 Existence and Consistency of Generic Update Opera-
tions

Methods are used to specify the dynamics of an object-oriented database. Here, we do not
want to give a concrete language for methods. In general methods can be specified in the
style of Dijkstra focussing on deterministic operations [47].

In this paper we are only interested in canonical update operations, i.e. we want to
associate with each class €' in a schema & methods for insertion, deletion and update on

31

single objects. These operations should be consistent with respect to the constraints in S.
Thus, they are sufflicient to express the creation, deletion and change of objects including
the migration between classes. However, we would like to regard these operations as being
“generic” in the sense of polymorphic functions, since insert, delete and update should be
defined for each class. The problem is that the input-type and the body of these operations
require information from the schema. This leads to polymorphism with respect to meta-types.
For the purpose of this paper we do not discuss this problem.

4.1.1 Canonical Update Operations

The requirement that object-identifiers have to be hidden from the user imposes the restriction
on canonical update operations to be value-defined in the sense that the identifier of a new
object has to be chosen by the system whereas all input- and output-data have to be values
of proper value types.

We now formally define canonical update operations. For this purpose regard an instance
D of a schema S as a set of objects. For each recursively defined type T let T denote by
replacing each occurrence of a recursive type 77 in T' by UNION (T',1D).

Definition 43 Let C be a class in a schema S. Canonical update operationson C are insertc,
deletec and updatec satisfying the following properties:

(i) Their input types are proper value types; their output type is the trivial type L.

(ii) In the case of insert applied to an instance D there exists a distinguished object o ::

PAIR(ID,T¢) such that

(a) the result is an instance D’ with o € D’ and D C D’ hold and
(b) if D is any instance with D C D and o € D, then D’ C D.

(iii) In the case of delete applied to an instance D there exists a distinguished object o ::

PAIR(ID,T¢) such that

(a) the result is an instance D’ with o ¢ D’ and D’ C D hold and
(b) if D is any instance with D C D and o ¢ D, then D C D'.

(iv) In the case of update applied to an instance D = Dy U D,, where Dy = {o} if o # o
and Dy = () otherwise there exist distinguished objects 0,0’ :: PATR(ID,T¢) with
o = Pair(i,v) and o' = Pair(i,v") such that

(a) the result is an instance D’ = Dy U D), with Dy N D, = 0,
(b) o€ D, €D,
(c) if D is any instance with DP; C D and o’ € D, then D’ C D.
Quasi-canonical update operations on C' are inserty,, deletey, and update}, defined analogously

with the only difference of their output type being I'D and their input-type being T for some
value-type T.

32

Note that this definition of canonical update operations includes the consistency with respect
to the implicit and explicit constraints on §. We show that value-representability is sufficient
for the existence and uniqueness of such operations. We use a guarded command notation as
in [47] for these update operations.

Lemma 44 Let C be a class in a schema § such that there exist quasi-canonical update
operations on C'. Then also canonical update operations exist on C.

Proof. In the case of insert define insertc(V 2 Vo) == I «— insert, (V), i.e. call the
corresponding quasi-canonical operation and ignore its output. The same argument applies
to delete and update. a

4.1.2 Existence of Canonical Updates in the Case of Value-Representability

Our next goal is to reduce the existence problem of quasi-canonical update operations to
schemata without IsA relations.

Lemma 45 Let C', D be value-representable classes in a schema S such that C' is a subclass
of D with subtype function g : Tc — Tp. Then there exists a function h : Vo — Vp such that

for each instance D of § with corresponding functions ¢ : T — Vo and d : Tp — Vp we have
h(c(v)) = d(g(v)) for all v € codomp(C).

Proof. By Definition 14 ¢ is injective on codomp(C'), hence any continuation h of dogoct?

satisfies the required property.

It remains to show that h does not depend on D. Suppose Dy, Dy are two instances such
that w = ¢1(v1) = ca(v2) € Vi, where ¢1,dq, by correspond to Dy and cg, dz, he correspond to
D;. Then there exists a permutation 7 on /D such that vy = 7(v1). We may extend 7 to a

permutation on any type. Since I'D has no non-trivial supertype, ¢ permutes with 7, hence
g(v2) = w(g(v1)). From Definition 14 it follows d2(g(v3)) = d1(g(v1)), i.e. ho(w) = hy(w). O

In the following let Sp be a schema derived from a schema & by omitting all IsA relations.

Lemma 46 Let C' be a value-representable class in S such that all its superclasses Dy ... D,
are also value-representable. Then quasi-canonical update operations exist on C' in S iff they
exist on C' and all D; in Sy.

Proof. By Theorem 32 the value-representation type V¢ is the result of Algorithm 22,
hence V¢ does not depend on the inclusion constraints of §. Then we have

T:1D «— inserte(V i Vo) ==
I — inserty (hi(V));...s 1 — inserty (ho(V)); 1 — insertg:(V)

where h; : Vo — Vp, is the function of Lemma 45 and insert% denotes a quasi-canonical
insert on €' in Sg. Hence in this case the result for the insert follows by structural induction
on the IsA-hierarchy.

If the subtype function g required in Lemma 45 does not exist for some superclass D then
simply add Vp to the input type. We omit the details for this case.

The arguments for delete and update are analogous. a

33

Now assume the existence of a global operation Newld that produces a fresh identifier I :: I D.

Lemma 47 Let C' be a value-representable class in Sg. Then there exist unique quasi-
canonical update operations on C'.

Proof. Let r;: C; (¢ = 1...n) denote the references in the structure expression of C'. If
V be a value of type Vi, then there exist values Vi Vo, (i=1...n,j = 1...k;) occurring
in V. Let V.={Vi;/J;j|i=1...n,5=1...k}.V denote the value of type T¢ that results
from replacing each V;; by some J; ; :: I.D. Moreover, for [:: ID let

v _ { {V/I}.V,; iV occursin V; ;

2% Vi else
Then the quasi-canonical insert operation can be defined as follows:

I:1D — insertp(V = Ve) ==

IF3T = ID, V' T (Pair(I',V)Ye C A (V') =V)

THEN I :=1

ELSET — Newlds Jyy — insertp, V()i .. Jug, — inserty, (V))
C = CU{Pair(I,V)}

FI

It remains to show that this operation is indeed quasi-canonical. Apply the operation to some
instance D. If there already exists some object o = Pair(I’,V’) in C' with ¢(V') = V, the
result is D’ = D and the requirements of Definition 43 are trivially satisfied. Otherwise let
the distinguished object be 0 = Pair(I,V). If D is an instance with D C D and o € D, we
have J; ; € dom(C;) foralli = 1...n, j = 1...k;, since D satisfies the referential constraints.
Hence D contains the distinguished objects corresponding to the involved quasi-canonical
operations insert’ci. By induction on the length of call-sequences D; ; C D forall i = 1...n,
j=1...k;, where D, ; is the result of J; ; — insert’ci(Vig)). Hence D' = |JD;; U {0} C D.

27]
The uniqueness follows from the uniqueness of V.

The definitions and proofs for delete and update are analogous. a

Theorem 48 Let C' be a value-representable class in a schema § such that all its superclasses
are also value-representable. Then there exist unique canonical update operations on C'.

Proof. By Lemma 44 and Lemma 46 it is sufficient to show the existence of quasi-canonical
update operations on €' and all its superclasses in the schema &y. This follows from Lemma
47. O

4.2 A Generator Approach to Achieve Higher-Level Gener-
icity

Our aim is to generate canonical update methods inserts, deletec and updates for each class C
of a database schema. These operations demand the identification of objects without accessing
the object identifier, since oids are an internal concept and do not have a meaning for the user

34

of a database. Hence the need for value-representability. Besides this identification problem
we also have to cope with the enforcement of implicit integrity constraints. In Section 3.1
it has been shown that value-representability is a necessary and sufficient condition for the
existence of consistent canonical update operations.

These update operations are “generic” in the sense, that they are applicable to each class
of a schema. Our aim now is to provide an algorithmic solution to the generation of canonical
update operations. A natural first idea is to exploit polymorphism as in [16] for this task.
However, canonical consistent updates on a class €' require an input-type Vo without any
occurrence of I'D. Such an input-type has to be computed from the schema. Hence the
generation of such operations requires meta-information. It has been shown in [58, 59] that
the need for meta-information exceeds the capability of polymorphism. Two solutions are
then possible:

e introduce polymorphic meta-types or

e use linguistic reflection as proposed in [60].

The first approach is fine as long as we do not care about decidability problems in type
checking, however, reflection is more practical.

The basic idea of linguistic reflection is to use representation types such as SCHEMA,.,,
CLASS,cp, and TY PE,., for the representation of abstract syntax expressions representing
schemata, class definitions and type declarations respectively. For each of these, there exists
a function raise associating with this syntactic expression a true schema, class or type re-
spectively. Moreover, we need functions ¢ and v with signature SCHEMA, ., x CLASS,cp, —
TY PE,.,. v(S,C) represents a value-type needed for the insertion of a new object into
raise(C). Clearly, this type is also required for updates. i(S,C) represents a value-type needed
for the identification of some object, hence is needed for delete and update-operations.

If OPER,¢,(Z,S) represents the operations on the schema defined by S (defined via
methods) with input type represented by Z, then the problem is to define three reflective
functions

insert : S SCHEMA, ., x C :: CLASS,., — OPER,.,(v(S,C),S),

delete : S : SCHEMA, .y X C:: CLASS,.p, — OPER,,(1(S,0),

update : S :: SCHEMAyep, X C :: CLAS S, ey — OPER,,(1(S,C)

OPER,.p, is a type constructor applicable only to representation types. Clearly, we should
have OPER, (1 ep, Srep) = (OPER(I,5))ep, where OPER is again a type constructor and

OPFER(I,S)is the type of the operations on S with input-type I.

4.2.1 Basic Assumptions

Since we are concerned with providing generic update operations we have to discuss the
uniqueness and existence of these operations in general.

Whenever object oriented data models include the principle of hiding identifiers from the
user insert, delete and update operations demand the unique accessibility of objects from
“outside”, i.e. by the user, in a way different from using the internal identifiers. This is
in accordance with the identifier being only an implementation concept [12, 14]. Otherwise
database management of the identifiers themselves would be required [36]. The approach of
naming objects in a program scope usually applied in object oriented programming languages

35

is to be ruled out in the database context. Therefore we have to require that objects within
a class need to be distinguished by values and referenced objects.

Our previous work on these topics [50, 49] gives a characterization of those classes hav-
ing objects that are completely representable by values, i.e. we can replace references by
values of referred objects and identify an object by its values. These classes are called value-
representable i.e. it is possible to identify each object by some value of a proper value type
(without occurrence of oids). (In the case of cyclic references the finiteness of the database
imposes the instances of such a type to be finitely representable).

It is shown that the value-representability of classes is decidable under certain conditions
and that a unique value type (serving as input type for canonical update operations) can
be derived for any value-representable class. Moreover, the unique existence of canonical
insert, delete and update operations of a class C turns out to be guaranteed iff C is value-
representable.

4.2.2 A Framework for Generator Application

Applying the approach discussed above to practically support meta polymorphism we need
to introduce in our context:

o Representation types for syntactic components of our language capturing meta informa-
tion, e.g. Schema,.p, Class,cp, Type,., about schemata, class and type definitions or
representing code to be generated, e.g. Meth,.,. For each of these a function raise exists
associating with this abstract syntax a true schema, class, type or method respectively.

o Generator functions that are defined on these representation types and produce again
abstract syntax which extends — after a raise — our specification. In particular we need
a generator Vgen with signature

Vgen : Schema,., X Class,e, — Type,ep

deriving a value type definition serving as input type in insert and update operations.
Moreover, we need at least one generator Igen with the same signature that derives
an identification type used in delete and update operations. For the sake of simplicity
we neglect Igen and use also Vgen for identification. Canonical update operations are
generated by functions Insertgen, Deletegen, Updategen with signatures:

Insertgen : Schema,., x Class,., — Meth;¢,
Deletegen : Schema,e, x Class,., — Meth,,
Updategen : Schema,¢, X Class,., — Meth,,

4.2.3 Representations Types

In this section we present the definition of representation types forming the framework in
which generator functions are defined. Here we make use of general algebraic type speci-
fications as in [47, 13]. However, we distinguish between constructors, selectors and other
functions. Axioms are given by conditional equations. A type definition may refer to other
type definitions which is indicated by the keyword basedOn.

We concentrate on those representation types that are necessary for defining Insertgen.
Constructions for Deletegen and Updategen can be given analogously. Although needed we

36

omit all details concerning the representation type for types and the definition of the generator
for value-representation types that are needed for input. The following type definitions provide
abstract syntax values for structures, classes, methods and commands.

The type definition for Structure,., uses representations of types as defined in [50] on
top of which structures are built. The list of reference-name/class-name pairs indicates the
references of a class whereby class objects can have a complex structure with references
occurring as parameters at any level in nested type constructors. The axiom indicates that
a reference list of a structure has to be as long as its parameter list whereby params is a
function on types returning lists of their parameters.

Structure,e, ==
basedOn
ClassName,, , Type,., , List(a), Pair(a,(3), RefName,,
constructors
structuree,, : Typey, X List(Pair(RefName,., ,ClassName,.,)) — Structure,.,
selectors
structureTypese : Structuremp — TypeTep
references,; : Structure,., — List(Pair(RefName,., ,ClassName,.,))
axioms
With s : Structure,, .
length(params(structureTypes.(s)) = length(referencess.(s))
end

The definition of Class,., can be given in the following way omitting for now user defined
methods.

Class,cp ==
basedOn
ClassName,, , Structure,., , Fset(a)
constructors
class.o, : ClassName,., x Fset(ClassName,.,) X Structure,., — Class,¢,
selectors
classNamege;: Class,e, — ClassName,,
i8A el : Class;ep — Fset(ClassName,.,)
structures.; : Class,., — Structure,.,
axioms...
end

An abstract representation of a method consists of its name, the declaration of its input and
output parameters together with a representation of its body.

Meth,., =

basedOn

MethName,, , VarName,., , Command,., , Type,., , Fset(a), Pair(a, 3)
constructors

methe,, : MethName,., x Fset(Pair(VarName,¢, , Type,e,)) X

Fset(Pair(VarName,., , Type,.,)) x Command,., — Meth,,

selectors

methNames. : Meth,., — MethName,.,

37

inputsy : Meth,¢, — Fset(Pair(VarName,., ,Typec,))

output, : Meth,¢, — Fset(Pair(VarName,., ,Typec,))
commandse; : Meth,., — Command,.,
end

Finally, the representation of commands is inductively defined by:

Command,., ==
basedOn
MethName,, , VarName,., , List(o), Pair(a,), Expr,e, ,Pred,.,
constructors
skipeon, ¢ — Command,.,
call.,, : MethName,., x List(VarName,,) X List(VarName,,) — Command,.,
assigncon : VarName,., X Expr.., — Command,.,
S€qeon ¢ List(command,.,) — Command,.,
ifeom : Pred,., x Command,., x Command,., — Command,,
while.on, : Pred,., x Command,., — Command,,
anycon, : VarName,., X Type,., X Pred,., x Command,., — Command,,
selectors...
axioms...
end

Predicates will have the constructors true.,,, false.on, forall.,,, exist.on, nN0tey,, implies.o, ,
€Qcon , 181cop We omit the details.

4.2.4 Generators for Generic Update Operations

The generator to be presented produces abstract syntax for insert operations, i.e. it is defined
in terms of meth.,,. The case of update and delete can be handled analogously. Its task
is the generation of the appropriate actual parameters for meth.,, from class and schema
representations. The parameters are the operation’s name, a list of input parameters, a list
of output parameters and a representation of a command forming the body of the insert
operation. Omitting other details we concentrate on parts of the body managing inclusion
constraints, dealing with references in the acyclic and cyclic case and changing the class extent.
For each subtask we will briefly discuss the code to be produced followed by a discription of the
algorithm to produce the actual parameters forming this code and then present the generator
definition together with its (raised) output.

Managing Inclusion Constraints

In the case of IsA-relationships we have to generate calls of insert operations on each of the
direct superclasses while providing appropriate input values for these operations.

Since class representations capture IsA-information through a set of class names we can
produce the insert calls by applying a general set-reduce function as defined in [58]. It will
return a list of calls which, serving as parameter for a sequence constructor, will lead to a
sequence of commands. Roughly speaking set-reduce applies a function to each element of a
set and accomodates the results by the application of another function.

For generating a call we need the method’s name together with a list of input and output
variables. Of further interest is the input value. In parallel to the generation of insert

38

operations we have to generate functions on the value types involved. For sake of simplicity
we assume that IsA-relationship between classes C; and Cy (Cy IsA C3) includes subtype
relationships on their structure types (T_Cy subtypeOf T_C3). This is not required in general.
IsA-relation on classes means inclusion relation on their corresponding sets of oids. If we had
no subtype relationship on the value-types we would have to produce a different input type
for a subclass including all values necessary in superclasses. This is easy compared to the
case of an existing subtype relation. In Lemma 45 it has been shown that in the case of
subtype relationship a subtype function between the value types of sub- and superclasses
exists. Thus, a generator for these functions exists. At this point we omit the definition. We
merely make use of the name of the generated function which we built by the concatenation
instead of applying a name selector to the generator’s output. The function taking V_C to
V_D; is called h_C,D;.

Again for simplicity we make the further assumption for the case of more than one distinct
superclasses. We assume the existence of a common superclass of these superclasses. Other-
wise we would run into problems of renaming or having synonyms of identifiers. A technical
solution for this problem is indicated in [62].

Insertgen has input values C of type Class,., and S of type Schema,., . The insert
operation being produced uses variable name ’v’ for its input value.

S€qcon (Set Reduce(
iSAsel (C)y
lambda D.
call.o, (concat(’insert_’,D),
singleList(apply .o, (concat(’h_’, concat(className,., (C),D)),’v’))
singleList(concat(’i-’,D))),
append,

nil))

If we apply raise to the produced output code for superclasses Dy, ... D, the result will be:

i-Dy « insert_Dy(h_C,D1(v));

iD,, « insert_D, (h_-C.D,(v));

Enforcing Referential Constraints in the Acyclic Case

In this section we handle classes with an acyclic reference structure. In this case the insert
operation includes calls with appropriate input values for each class being referred to. The
operation has somehow to gather the returned identifiers for producing a value of type T_C
which forms a prerequisite for adding the new object to the class extent.

In order to produce the sequence of insert calls for referenced objects we proceed in the
same way as shown above. We apply list-reduce to the list of references which has to be
selected from the structure representation of the class. list-reduce is defined analogously to
set-reduce.

Again we have to provide input values for which we assume generated functions doing
the job [50]. For each reference r; to a class C; we have a function val_r; taking an input

39

value of type V_C to the set of all those values of type V_(; that occur at the corresponding
place in v. These values correspond to existing or new objects in C; to which the future
object in C will refer to via r;. As we explained above the value type of a class includes
for each reference the value type of the class referenced to. Since references can occur in
deeply nested type constructors (e.g. we can have lists of sets of referred objects) they are
in general multivalued. This requires the call of a method insertObjects_C; before the final
insert. The method insertObjects_C; receives a set of input values for C; and returns sets of
identifier /input-value pairs. Its definition is given below.

The calling insert operation gathers these sets of identifier-value pairs in a list 1.! It should
be indicated that in the case of references to Cy, ... C, the list | has type List(Set(Pair(ld,
Union(V_Cy, ... V_C,)))) where Union means a variadic union type constructor. Since we
neglect the representation type for types we introduce a function makeTypeRep taking a type
definition and turning it into its representation.

aHYCon(
T makeTypeRep(List(Set(Pair(1d,Union(V_Cy,...V_C,))))),
€(4con (71 77 ‘nil 7)7
Seqeon (listReduce(
references,(structures.;(C)),
lambda D.cons
(call.o,, (concat(’insertObjects_’second(D)),
applycon (concat(val_’, first(D)),v), ’j’),
singleList(assign.., (I, append(Pair(j,1))’))),
append,

nil)))

The generator will produce the following code for references to classes Cy to C,,.

I': List(Set(Pair(Id,Union(V_Cy,..,V_C})))) | I = nil 1—
(j < insertObjects_Cy(val_ri(v)); I := append(Pair(j.1));

ooy

j < insertObjects_C,,(val_r,(v)); I := append(Pair(j,1)));
The called methods insertObjects_C; have the following form:

k — insertObjects_C; (vs : Set(V_C;)) =
s:Set(Pair(1d,V_C;) | s = empty 1—
(j:Nat|j=11—

(do vs # empty
v: VO |vevs L—
(id,, ; < insert_C;(v);
s := insert(Pair(id,, ;,v),s);
vs := vs - {v};
Jj=j+1);

od);

k:=s)

L At this place a list structure is needed which corresponds to the order in which the references are given in
the reference list. Referenced classes might have the same structure so that a value alone would not suffice to
indicate to which class the object with a value belongs to.

40

Clearly, there also exists a generator for insertObjects_C;, but for the sake of brevity we
omit its description here.

Changing the Class Extent

This part deals with adding the new object to the class’ extent. According to our data
modelling approach we have to insert a pair consisting of an identifier and a value of type
T_C. This requires a function f-C on V_C producing a value of type T_C. It is applied to
the input value of the insert operation together with the provided list I of sets of identifier-
/values-pairs and substitutes “reference-wise” values of type V_C; by their related identifiers
as provided in list I. Generator code and raised generated code are the following:

assigheon (namese (C), unionExpry., (names.(C),
singleSet(concat(’Pair’, concat(’i’,apply(concat(’f_’,name,.(C)), Pair(v,1)’)))))

C := C U {Pair(i,f C(Pair(v,])))}

Dealing with Cyclic Reference Structures

Now we extend our generator to the case of a cyclic reference structure. In this case the
value type V_C will be recursively defined. In general, even mutual recursive definitions are
required [50]. Recursive types have to be defined in such a way that all their values are
finitely representable, i.e. representable as rational trees. The finiteness of the database
which imposes the finiteness of cycles fits perfectly with rational trees as input values.

Let us consider the insert call arising by a cycle on class C. To simplify the explanation, we
concentrate on single-valued and direct cyclic references first. In this case val_r.(v) is unary,
say {v'}, where v’ is of type V_C. We need a function occurs defined on two values of type
V_C. It checks the input value whether v occurs in v’ which is true iff the object corresponding
to v’ refers to the object corresponding to v, i.e. the cycle on class C is closed just at this
input object. Furthermore, this means that the calls of insertions on C will stop with the
second occurrence of the rational tree v in v. It requires the already created identifier to be
available on the later applied insert operation. It also serves as indication that the cycle has
to be closed at this point and no further insert call on C need to follow. This passing on of
the identifier is simply managed by substituting the identifier for vin v’ and calling the next
inserts on C for reducing the cycle with the substituted value. This requires to change V_C
by substituting Union(V_C,Id) for V_C in the defining expression of V_C. Let the resulting
type be denoted V_C. Here Union(a, 3) denotes a simple union type. Consider, that function
val_r; provides only values of type V_C, hence without identifiers. Therefore, if an identifier
was substituted in the case of a cycle no input value will be provided for a further input call
and, moreover, the identifier is already part of the value to be inserted.

General cycles are handled analogously. The function occurs in this case has to check if v
occurs in some value v’ in the set val_r.(v).

However, since substitution of i for v in v’ does not change v’ if occurs(v,v’') = false, we
only have to replace the parameter val_C; (in the acyclic case) by substitute(val_C;(v),(v.i)).
Hence all insert operations may take values of the extended type V_C as input which includes

V_C.

41

Chapter 5

Integrity Enforcement

Consistency is a crucial property of database application systems. In general a database may
be considered as a triplet (S,0,C), where S defines a structure, O denotes a collection of
state changing operations and C is a set of constraints. Constraints can be classified into
static, transition and general dynamic constraints describing legal states, state transitions or
state sequences respectively. Then the consistency problem is to guarantee that each specified
operation o € O will never violate any constraint Z € C. Integrity enforcement aims at the
derivation of a new set (0" of operations such that (S, 0',C) satisfies this property.

Let us now address the integrity enforcement problem with respect to static and transition
constraints. In general, verification techniques based on predicate transformers are applicable
[47] but an obvious disadvantage of the verification approach is that it does not help the
user in writing consistent operations. An alternative is to generate a Greatest Consistent
Specialization (GCS) of a given method with respect to the given constraints. This comprises
the following problems:

(i) Does a GCS exist in general? Is it compatible with the conjunction of constraints,
optimization, inheritance and refinement?

(ii) How does a GCS look like in the OODM with respect to distinguished classes of con-
straints?

(iii) How to enforce integrity of general user-defined operations with respect to arbitrary
constraints? Is it sufficient to replace involved primitive operations by their GCSs?

In Section 5.1 we address these problems for static constraints. We show the existence of
GCSs and also discuss compatibility results with respect to the conjunction of constraints,
specialization and refinement. In Section 5.2 we describe the structure of GCSs in the OODM
with respect to specific classes of constraints. Moreover, we show that the general enforcement
problem can not be reduced to primitive operations. In Section 5.3 we derive the existence
of GCSs for transition constraints and also discuss compatibility properties.

5.1 Enforcing Static Integrity

An alternative to consistency verification is the computation of methods that enforce all con-
straints of a schema. We now address this problem first for static constraints and generalize

42

Theorem 48. Our approach starts with a formalization of the integrity enforcement problem
focussing on GCSs. We show that GCSs always exist and are unique (up to semantic equiva-
lence). On this formal basis we are able to describe certain compatibility results and outline
the structure of GCSs with respect to basic update operations and distinguished classes of
static constraints.

5.1.1 The Problem

Suppose now to be given an update operation S and a static constraint Z. Assume that 5 is
an X-operation, whereas 7 is defined on Y with X C Y. The idea is to construct a “new”
Y -operation S7 that is consistent with respect to Z and can be used to replace 5. Roughly
speaking this means that the effect of 57 on the state variables in X should not be different
from the effect of 5. Formally this is expressed by the specialization relation introduced in
Definition 4. Clearly, if any there will be more than one such specialization. Hence the idea
to distinguish one of them as the “greatest”, i.e. all others should specialize it.

Before giving now the definition of a GCS let us first remark that for any predicate
transformer f the conjugate predicate transformer f*is defined by f*(R) = =f(-R). Hence
the following definition of a greatest consistent specialization:

Definition 49 Let X C Y be state spaces, S an X-operation and 7 a static integrity con-
straint on Y. A Y-operation S7 is a Greatest Consistent Specialization (GCS) of S with
respect to 7 iff

(i

) wip(S)R) = wip(S7)(R) holds on Y for all formulae R with fr(R) C X,
(i) w

)

)

p(S(true) = wp(S)r)(true) holds on Y,
(ii) Z = wlp(S7)(Z) holds on Y and

(iv) for each Y-operation 7" satisfying properties (i) — (iv) (instead of S7) we have

(a) wlp(S7)(R) = wip(T)(R) for all formulae R with fr(R)C X and
(b) wp(ST)(true) = wp(T)(true) .

Note that properties (i) and (ii) require S7 to be a specialization of 5. Property (iii) requires
S7 to be consistent with respect to the constraint Z. Finally, property (iv) states that each
consistent specialization T of § with T" C § also specializes St.

Based on the formal definition of a GCS we can now raise the following questions:

e Does such a GCS always exist? If it does, is it uniquely determined by S and Z (up to
semantic equivalence)?

o Is the GCS 57 of a deterministic operation 5 itself deterministic? If not, how to achieve
a deterministic consistent operation?

e Does a GCS (57;)7, (provided it exists) with respect to more than one integrity con-
straint depend on the order of enforcement? Is it sufficient to take (57,)7, in order to
enforce integrity with respect to 7y A Z5?

43

o What is the relation between integrity enforcement and inheritance, i.e. is the GCS Tt
of a specialization T of § a specialization of the GCS 57 of 57

o How does a GCS look like (if it exists)?

Partial results for these questions will be discussed in the next subsections.

5.1.2 Greatest Consistent Specializations

Let us first address the existence problem. Based on the axiomatic semantics via predicate
transformers we can show that a GCS always exists and is uniquely determined up to semantic
equivalence. First, however, we need some general properties concerning the specialization
order C.

Lemma 50 Let T be a set of X -operations. Then there exists the least upper bound Sy =

L] S with respect to C. Sy is uniquely determined (up to semantic equivalence) and satisfies
SeT

(i) wip(So)(R) & \ wip(S)(R) and (5.1)
SeT

(i) wp(So)(R) & [\ wp(S)HR) (5.2)
SeT

for all formulae R with fr(R)C X.

Proof. Let S be defined (up to semantic equivalence) by (5.1) and (5.2). Then the universal
conjunctivity and the pairing condition are trivially satisfied. It follows that Sy is an X-
operation.

Let '€ 7 and R be an arbitrary formula with fr(R) C X. Then we have:

. /\ wip(S)R) = wip(T)(R) and
SeT

o N\ wp(SNR) = wp(T)(R) .
SeT

Thus, S is an upper bound of 7. If Ty is any upper bound of 7, we get
o wip(Ty)(R) = wip(T)(R) and
o wp(To)(R) = wp(T)(R)

for all T € 7, hence also

o wip(To)(R) = J\ wip($)(R) and
SeT

o wp(To)(R) = N wp(SHR) .
SeT

It follows that S C Tg, i.e. Yq is the least upper bound. a

44

Note that for 7 = () the least upper bound is fail. Now we are prepared to present our result
concerning the unique existence of a GCS.

Theorem 51 Let S be an X-operation, X C Y and I a stalic integrity constraint on Y.
Then there exists a greatest consistent specialization St of S with respect to . Moreover, St
is uniquely determined (up to semantic equivalence) by S and I.

Proof. Let 7 be the set of Y-operations T satisfying (in place of S7 the properties (i) —

(iii) of Definition 49 and let S7 = || 7. By definition of a least upper bound 57 satisfies
TeT
properties (i), (i) and (iv). Property (iii) follows from Lemma 50(i). o

Although Theorem 51 states that there is always a (unique) solution of the integrity enforce-
ment problem, it does not help us in constructing a GCS, since its proof is non-constructive.
Another general problem is that there are usually more than just one static integrity con-
straint. If we successively build GCSs, can we guarantee that the final result will be indepen-
dent of the order of constraints? Is the final result the same, if we simply take the conjunction
of all constraints? We address these two problems next.

Theorem 52 Let 71 and Iy be static constraints on Y, and Yy respectively. If for any opera-
tion S the GCS with respect to Z; is denoted by S7, (i = 1,2), then for any X -command with
X CY1NYy the GCSs (57,)7, and (S7,)7, are semantically equivalent.

Proof. For symmetric reasons it is sufficient to show

(SI1)I2 L (SI2)I1 :

We have I = wip((S7,)7,)(Z2) - Because of the transitivity of the implication (57,)7,
then satisfies properties (i) — (iii) with respect to S and Z3, hence by property (iv) we get
(57,)7, & 57, - We have

L = wip(S1,)(Th) = wip((51,)7,)(T1) -

The first implication is the consistency of 57, with respect to Z;, the second implication
follows from property (i) for (S7,)7, with R = Z;.
Thus, (57,)7, satisfies properties (i) —(iii) with respect to Sz, and Zy, i.e.

(511)12 C (sz)zl by property (iv).
O

Theorem 53 Let 71 and Iy be static constraints on Y, and Yy respectively. If for any opera-
tion S the GCS with respect to Z; is denoted by S7, (i = 1,2), then for any X -command with
X CY1NY; the GOSs (51,)7, and S(z,a1,) coincide on initial states satisfying Ty A Iz, i.e.,
Iy NIy — (57y)7, and Iy NIy — S(1,a1,) are semantically equivalent.

Proof. From the transitivity of the implication and Definition 49 it follows that

(57,)7, E S1ya7, holds.

45

Then also

Iy NIy — (S1)7, © Zi ATy — S, holds.
We have to show the converse. Let

511 = T1 NIy — Star, X S, .

Then we get wip(S)(R) = wip(Sz,)(R) and wp(S)(R) = wp(S7,)(R) for all formulae R
with fr(R) C X.

Moreover, 7y = wlp(Sz,)(Z1) holds, hence by Definition 49 it follows that S7, C Sz, .

If we define

§I1,I2 = IQ - §I1 B¢ (Sz-l)z-g ?
then by analogous arguments we derive Sz, 7, T (57,)z, In particular we conclude
ThnTy — Spz, © ThinTy — (SI1)12)

but 77 A2y — 511712 is semantically equivalent to 7y A Zg — 511 and this to 77 A1y —
(57,)7,- Hence the theorem. O

In Section 2.3.1 we required methods on subclasses that override inherited methods to be
specializations. Since we regard methods as operations on some state space defined by the
schema, the problem occurs, whether the GCS of a specialized operation T of § remains to
be a specialization of the GCS of 5. Fortunately this is also true.

Theorem 54 Let St be the GCS of the X -operation S with respect to the static integrity
constraint T defined on' Y with X C Y. LetT be a Z-operation that specializes S. If T is
regarded as a constraint on'Y U Z, then the GCS Tt of T with respect to T is a specialization

of 5T.

Proof. From the transitivity of the implication and the consistency of T7 with respect to 7
it follows that T7 satisfies properties (i) — (iii) of Definition 49, hence T7r C S7. o

In Section 2.3.1 methods were introduced as deterministic guarded commands. Hence the
question whether this property is preserved under GCS construction. Unfortunately this is
not true as the following example shows.

Example 8 Let 2, y and z be state variables, all of type F.SETS(T), where FSETS(a)
is the finite set constructor (see e.g. [47]) and T is any value type. Let X = {y} and
Y ={z,y,z}. Then we define an X-operation S by

S(t=T) == ¢ = FSET(T) |
y = Union(y', Single(t)) A member(t,y') = false — y:=y

and a static constraint 7 on Y by

x = Union(y, z) A Vt::T.member(t,y)= true = member(t,z) = false .

46

Then the GCS S7 has the form

St =T) == I — S(t);
(z:= Union(z, Single(t) O
' i FSET(T) | @ = Union(a', Single(t)) A member(t,z') = false —
voi= a2)& S(t) .

We omit the formal proof of the properties of Definition 49. a

A general approach to remove non-determinism is operational refinement as defined in [47].
However, operational refinement allows to “complete” a specification of an operation 5 when-
ever 5 is undefined are never terminating. In this paper we do not regard completion via
refinement. Therefore, we regard the notion of specialization instead. Due to [47, Proposition
4.1] it is easy to see that whenever S is consistent with respect to a static constraint Z, then
each specialization T of 5" does so, too.

Hence a deterministic specialization of S7 is still a consistent specialization of S with
respect to 7. The next theorem states that we can choose a maximal one.

Theorem 55 Let S7 be the GCS of a deterministic operation S with respect to the static
constraint L and let T be some deterministic specialization of St. Then T specializes 5.
Moreover, if T' is any deterministic specialization of S that is consistent with respect to T,
then T' also specializes some deterministic specialization T of S7.

Proof. The first statement is trivial, since C is a partial order.
If T’ is a deterministic specialization of S consistent with respect to Z, then according to
Definition 49 7’ must be a specialization of S7, hence the second statement. a

5.2 Enforcing Static Integrity in the OODM

Let us now apply the results of Section 5.1.2 to the OODM presented in Section 2.3. In this
section we restrict ourselves to the basic update operations of Theorem 48 and describe the
structure of their GCSs with respect to distinguished classes of static constraints. Moreover,
we discuss whether the general problem of GCS construction could be reduced to these basic
operations. Unfortunately this is not true.

5.2.1 Transforming Static Constraints into Primitive Operations

Let us now try to generalize the result of theorem 48 with respect to explicit static constraints.
Let & be some schema and let 7 be an explicit static constraint on §. We want to derive
again insert-, delete- and update-operations for each class €' in § such that these are consistent
with respect to Z. Based on the Conjunctivity Theorem 53 we only approach the problem
separately for the classes of constraints introduced in the previous subsection.

Moreover, we apply a specific kind of operational refinement in order to reduce the non-
determinism of the resulting GCS. Whenever an arbitrary value of some proper value type
is required, then we extend the input-type. However, this can not be applied to reduce the
non-determinism arising from choice operations. In general, there exists a choice normal form

for the GCS such that its components are the maximal deterministic operational refinements
of the GCS that exist by Theorem 55.

47

In the following we restrict ourselves to the case of a single explicit constraint in addition
to the one (trivial) uniqueness constraint that is required to assure value-representability and
that has been used in [50] to construct canonical update operations. Then we look at an
example with more than one constraint. We illustrate that although Theorem 53 holds, the
structure of Sz, A7,) may be not at all obvious.

General (Path) Inclusion Constraints.

Let 7 be a general inclusion constraint on Cy, Cy defined via ¢; : T, — T (¢ = 1,2). Then each
insertion into 1 requires an additional insertion into C's whereas a deletion on C5 requires a
deletion on €. Update on one of the C; requires an additional update on the other class.

Let us first concentrate on the insert-operation on Cy (for an insert on Cy there is nothing
to do). Insertion into Cy requires an input-value of type Vi, ; an additional insert on Cj
then requires an input-value of type V,. However, these input-values are not independent,
because the corresponding values of type T, and T, must satisfy the general inclusion
constraint. Therefore we first show that the constraint can be “lifted” to a constraint on
the value-representation types. Note that this is similar to the handling of IsA-constraints in
Lemma 45.

Lemma 56 Let Cy, Cy be classes, ¢; : T, — T functions and let Vi, be the value-represen-
tation type of C; (i = 1,2). Then there exist functions f; : Vo, — T such that for all database
nstances D

FildT(v1)) = fo(d3 (v2)) & (1) = ca(v2) (5.3)

for all v; € codomp(zxc,) (i = 1,2) holds. Here dP : T¢, — Vi, denotes the function used in
the uniqueness constraint on C; with respect to D.

Proof. Due to Definition 14 we may define f; = ¢; o (dP)*! on ¢;(codomp(z¢,)) (i = 1,2).

Then we have to show that this definition is independent of the instance D. Suppose
Dy, Dy are two different instances. Then there exists a permutation © on ID such that
d?z’ = d?l om, where 7 is extended to T,. Then

c; 0 (d})2)J‘1 = ¢ortlo (d})l)J‘1 = atloco (d})l)J‘1 ,
since ¢; permutes with 71!, Then the stated equality follows. a
Now let Vi, o, be a subtype of Vi, X Vi, defined via the equality fi(v1) = fa(vz), where
v; 1t Vi, are the components of a value and f; are the functions of Lemma 56. We omit the
details. Then we can define the new insert-operation on Cy by (insertc,)7(V 1 Vo, ¢,) ==
inserto, (first(V)) ; insertc,(second(V')) . (5.4)

Now we are able to generalize Theorem 48 with respect to general inclusion constraint.

Theorem 57 Let I be a general inclusion constraint on Cy, Cy defined via ¢; : T, — T and
let ST be the insert-operation of (5.4). Suppose that Cy is not referenced by Cy. Then St is
the G'CS of the canonical insert-operation of Theorem 48 with respect to 1.

48

Proof. We use the abbreviations 5; = inserte, (Vi :: Vi) (¢ = 1,2). Then

wip(ST)(R) = {Vi/first(V)}awlp(S1)({Vz/second(V)}.wilp(S92)(R) .

Since 5; is total and always terminating, we have wip(.;) = wp(.5;). Since (7 is not referenced
by Cy, we know that S5 is a {z¢, }-operation. Therefore, wip(S2)(R) is a logical combination
of R without any substitution, hence wlp(S1)(R) = wilp(S7)(R). This proves (i) and (ii).
In particular wip(S7)(Z) =
{zc,/Union(zc,, Single(Pair(11,V1))),
zc, /Union(zc,, Single(Pair(1y, Vs))) }.1
with Iy, 1y 2 ID and V; it T, with ¢q(Vh) = fi(first(V)) and ca(Va) = fo(first(V)), where
fi are the functions of Lemma 56. Then property (iii) follows immediately. We omit the proof
of (iv).]

Note there there is no need to require 'y # (5. Delete- and update-operations can be defined
analogously to (5.4). Then a result analogous to Theorem 57 holds. We omit the details here.
The generalization to path constraints is also straightforward.

(Path) Functional and Uniqueness Constraints.

Now let 7 be a functional constraint on C' defined via ¢! : T — Ty and ¢? : Tg — Ty, In
this case nothing is required for the delete operation whereas for inserts (and updates) we
have to add a postcondition. Moreover, let ¢? : To — Vi denote the function associated
with the value-representability of C' and the database instance D and let all other notations
be as before. Let us again concentrate on the insert-operation. Let insert,, denote the
quasi-canonical insert on C' [50]. Then we define

(insertc),(V 0 Vo) ==
I:ID | I — insertp:(V);
V' Te | member(Pair(I,V'),z¢) = true —
(VJ = ID, W = Te. (member(Pair(J, W), zc) = true
ANe'(W)y=c'(V) = A(W)=E(V)) —
skip (5.5)

Note that in this case there is no change of input-type.

Theorem 58 Let I be a functional constraint on the class C defined via ¢* : T — T, and
c? : Tg — Ty and let St be the insert-operation of (5.5). Then St is the GCS of the canonical
insert-operation on C' defined by Theorem 48 with respect to 1.

Proof. The proof is analogous to the one of Theorem 57. O

For delete- and update-operations an analogous result holds. We omit the details. The
generalization to path constraints is also straightforward.

A uniqueness constraint defined via ¢' : Te — Ty is equivalent to a functional constraint
defined via ¢' and ¢? = id : T — T¢ plus the trivial uniqueness constraint. Since trivial
uniqueness constraints are already enforced by the canonical update operations, there is no
need to handle separately arbitrary uniqueness constraints.

49

(Path) Exclusion Constraints.

The handling of exclusion constraints is analogous to the handling of inclusion constraints.
This means that an insert (update) on one class may cause a delete on the other, whereas
delete-operations remain unchanged.

We concentrate on the insert-operation. Let Z be an exclusion constraint on €y and Cy
defined via ¢; : T, — T (i = 1,2). Let f; : Vo, — T denote the functions from Lemma 56.
Then we define a new insert-operation on €4 by

(inserto,)7 (V 2 Vg,) ==
inserte, (V) ;
wS. (I 1D | V' 2 Te, | member(Pair(I,V'),xc,) = true
ANE(V) = f1(V) — deletec, (V') ; S)

X skip) . (5.6)

Theorem 59 LetZ be an exclusion constraint on the classes C'y and Cy defined via ¢; : To, —
T (i=1,2) and let St be the insert-operation of (5.6). Then St is the GCS of the canonical
insert-operation on Cy defined by Theorem 48 with respect to T.

Proof. The proof is analogous to the one of Theorem 57. O

For delete- and update-operations an analogous result holds. We omit the details. The
generalization to path constraints is also straightforward.

(Path) Object Generating Constraints.

Let Z be an object generating constraint on a class C' defined via the functions ¢ : Tg — T;
(i = 1,2,3). Then integrity enforcement requires to add additional inserts (deletes, updates)
to each insert- (delete-, update-) operation. Let us illustrate the new insert-operation. The
handling of delete and update-operations is analogous. As in the case of inclusion constraints
we need a preliminary lemma.

Lemma 60 Let ¢ : Tg — T; be functions (i = 1,2,3) such that ¢' x ¢? x ¢® defines a
uniqueness constraint on the class C'. Then there exist functions f; : Vo — T; such that ¢' =
fiocP holds for all instances D, where ¢P : Te — Vo corresponds to the value-representability

of C'.

Proof. Since ¢! x ¢? x ¢ defines a uniqueness constraint on C', it follows from Definition 14
that there exists some f: Vo — Ty x Ty x Ts with ¢' x ¢2 x ¢® = foeP. Then f; = w0 f,
where 7; is the projection to T} (i = 1,2, 3), satisfy the required property. a

Then we define a new insert-operation on C as follows:
(inserto)p(V Vo) ==
' ID, V' Te. member(Pair(I', V'), z¢) = true
NNV = A(V) =
(V"2 Ve | V) = A(V) A LV = H(V)

50

Af(VY = (V) — insertc(V'"))

(V/// . VO | fl(V///) — fl(v) /\ fz(V///) — CQ(V/) /\
LV = (V) — dnsertc(V'")));

X skip) ;

insertc(V) (5.7)

Theorem 61 Let T be an object generating constraint on a class C' defined via the functions
T — T (i = 1,2,3) such that ¢! x ¢* x ¢ defines a uniqueness constraint on the
class C and let ST be the insert-operation of (5.7). Then St is the GCS of the canonical
insert-operation on C' with respect to 1.

Proof. The proof is analogous to the one of Theorem 57. O

For delete- and update-operations an analogous result holds. We omit the details. The
generalization to path constraints is also straightforward.

Theorem 62 Let S be a schema such that each class C' in S is value representable. Suppose
all explicit constraints in § are general inclusion constraints, exclusion constraints, functional
constraints, uniqueness constraints, object generating constraints and path constraints. Then
there exist generic update methods inserto, deletec and updatec for each class C' in S that
are consistent with respect to all implicit and explicit static constraints on §.

Proof. The result has been shown above in the Theorems 5761 for a single explicit con-
straint. Then the general result follows from Theorem 53. O

5.2.2 Transforming Static Constraints into Transactions

Let us now consider the case of arbitrary methods which can be used to model transactions.
We concentrate on the question whether it is possible to achieve general consistent methods
as combinations of consistent primitive operations as e.g. given by Theorem 62. Regard the
following simple example:

Example 9
AccouNT(CLASS ==

Structure TRIPLE(PERSON,NAT,NAT)
End AccouNTCLASS

Constraints
Pair(1,V) € AccountCrass = second(V) + third(V) > 0
Pair(I,V) € AccountCrass A Pair(I',V') € AccouNTCLASS A
first(V) = first(V') = I =1

The second component gives the account of a person and the third component gives his/her
credit limit. Let

transfer(Py :: PERSON, Py :: PERSON,T :: NAT) ==
Il,IQ o ID,Nl,NQ,Ml,MQ w NAT |

51

Pair(Iy, Triple(Py, N1, My)) € AccOUNTCLASS A
Pair(ly, Triple(Py, No, M3)) € AccouNTCLASS —
update sccountCiass(Pr, Triple(Py, Ny LT, My));
update sccountClass(Po, Triple(Py, No + T, My))

In this case the precondition to be added is simply the weakest precondition, i.e. Ny+M; LT >
0. Now regard the operation

S =transfer(Py, P2, T1); transfer(Py, Py, T5) .

The precondition to be added to S in order to enforce the first constraint simply is Ny + My L
Ti4+T15 > 0ANy+ My LT+ Ty > 0, which is trivially satisfied if Ty = T5. However, for large
values of T7 = T5 this condition is weaker then adding three precondition separately. a

Theorem 63 Let S be a method and let 5 . .. 5, be canonical update operations on a schema
S occurring within S. Let 5" result from S by replacing each S; by its GCS (S;); with respect
to some static constraint Z. Then St and 5" are in general not semantically equivalent.

Proof. A counterexample has been given in Example 9. a

As a consequence of this theorem it is even not suflicient to know explicitly the GCS of basic
update operations with respect to a single constraint. Although Theorem 53 allows the GCS
with respect to more than one constraint to be built successively, we have seen in Theorems
57-61 that the GCS with respect to one constraint is no longer a basic update operation. Let
us illustrate this open problem by a simple example.

Example 10 Let Cq, Cy, C3 be classes and ¢; : T, — T (¢ = 1,2,3) be functions and
suppose there are defined

e a general inclusion constraint 7; on €7 and €5 via ¢1 and ¢g,
e a general inclusion constraint Z; on €7 and C5 via ¢; and ¢3 and

e an exclusion constraint Zs on C5 and (5 via ¢y and cs.

Clearly, the GCS of the insert-operation on 7 with respect to Zy A Zy A I3 is loop, which is
hard to build successively. a

5.3 Enforcing Transition Integrity

In Section 5 we discussed integrity enforcement in a general framework with respect to static
constraints. Let us now try to generalize the results for transition constraints. Thus, let
S be an X-operation and J a transition constraint on Y with X C Y. The idea is again
to construct a “new” Y-operation S that is consistent with respect to J and specializes
S. Again this leads to the idea to construct a Greatest Consistent Specialization of S with
respect to J. The difference to the case of static constraints is the use of a different proof
obligation for consistency according to Definition 4.

52

5.3.1 GCSs with Respect to Transition Constraints

We start giving a formal definition of a Greatest Consistent Specialization (GCS) of an oper-
ation S with respect to a transition constraint 7.

Definition 64 Let X C Y be state spaces, S an X-operation and 7 a transition integrity
constraint on Y. A Y-operation Sz is a Greatest Consistent Specialization (GCS) of S with
respect to J iff

(i) wip(S)(R) = wip(S7)(R) holds on Y for all formulae R with fr(R)C X,

)
(ii) wp(S)(true) = wp(Ss)(true) holds on Y,

)

)

(iii) wlp(@(J))(R) = wlp(S7)(R) holds on Y for all formulae R with fr(R)CY and

(iv) for each Y-operation 7' satisfying properties (i) — (iv) (instead of S 7) we have

(a) wlp(S7)(R) = wlp(T)(R) for all formulae R with fr(R) C X and
(b) wp(S7)(true) = wp(T)(true) .

Note that properties (i), (ii) and (iii) say that Sy T 5, where C is the specialization order
of Definition 4. Property (iv) requires S to be consistent with respect to the constraint
J. Finally, property (v) states that each consistent specialization 7" of S with 7" C 5 also
specializes S 7.

Based on this formal definition of a GCS we can now raise the same questions as in the
static case. Before we state the result on the (unique) existence of GCSs, let us first examine
the relation between static and transition constraints. Suppose Z is a static constraint on
Y, then we may regard 7 also as a transition constraint. Let 7’ result from 7 by replacing
each state variable a; occurring freely in Z by a!. Then 7 = 7’ defines the corresponding
transition constraint denoted as J7. Then we know that consistency with respect to I is
equivalent to consistency with respect to J7. This implies the following result:

Theorem 65 Let S be an X -operation and T a static constraint on'Y with X CY. If 51
and S, are the GCSs of S with respect to I and the transition constraint Jr respectively,
then these two G'CSs are semantically equivalent.

Proof. This follows directly from Definitions 49 and 64. Using the equivalence of consistency
proof obligations with respect to Z and J7 implies the two definitions to coincide. O

Next, we are able to proof the (unique) existence of a GCS also for transition constraints. As
in the static case the proof will be non-constructive, hence does not help to construct a GCS.

Theorem 66 Let S be an X -operation, X CY and J a transition integrity constraint on Y.
Then there exists a greatest consistent specialization Sz of S with respect to J. Moreover,
Sz is uniquely determined (up to semantic equivalence) by S and J.

Proof. The proof is analogous to the one of Theorem 51. O

53

5.3.2 Compatibility Results

Let us now address the compatibility problems with respect to the conjunction of constraints,
inheritance and refinement. Note that due to Theorem 65 some of the results in Section 5.1.2
occur as special cases of the results here.

Theorem 67 Let J1 and Jy be transition constraints on Y, and Yy respectively. If for any
operation S the GCS with respect to J; is denoted by Sz, (i = 1,2), then for any X -command
S with X CY1NYy the GOSs (S7,) 7, and (Sz,) 7 are semantically equivalent.

Proof. The proof is analogous to Theorem 52. O

Theorem 68 Let 57 be the GCS of the X -operation S with respect to the transition con-
straint J defined on' Y with X C Y. Let T be a Z-operation that specializes S. If J is
regarded as a constraint on Y U Z, then the GCS T 1 of T with respect to [J is a specialization

of S7.
Proof. The proof is analogous to the one of Theorem 54. O

Theorem 69 The GCS S5 of a deterministic X -operation S with respect to a transition
constraint J is in general non-deterministic.

Proof. This follows from Theorem 65, since determinism is not even preserved by GCSs
with respect to static constraints as shown by the counter-example in Example 8. a

Hence the problem remains to remove the non-determinism. Due to [47, Proposition 4.2] it
is easy to see that whenever 5 is consistent with respect to a transition constraint [, then
each specialization T of 5" does so, too.

Theorem 70 Let S7 be the GCS of a deterministic operation S with respect to the transition
constraint J and let T be some deterministic operational refinement of S 7. ThenT' specializes
S. Moreover, if T' is any deterministic specialization of S that is consistent with respect to
J, then T' also specializes some deterministic operational refinement T of S 7.

Proof. The proof is analogous to Theorem 55. O

An unsolved open problem concerns the generalization to arbitrary dynamic constraints.
Lipeck has shown in [37] that dynamic constraints expressed in some generalized propositional
temporal logic give rise to transition graphs. It should be possible to derive a suitable proof
obligation in the predicate transformer calculus also for such constraints. Then the idea of
GCS construction should carry over even to this class of constraints that comprises static and
transition constraints.

54

Chapter 6

Conclusion

In this report we describe results from first investigations in Hamburg and Rostock concerning
the formal foundations of object oriented database concepts. For this purpose we introduced
a formal object oriented datamodel (OODM) with the following characteristics.

e Objects are considered to be abstractions of real world entities, hence they have an
immutable identity. This identity is encoded by abstract identifiers that are assumed
to form some type I D. This identifier concept eases the modelling of shared data and
cyclic references, however, it does not relieve us from the problem to provide unique
identification mechanisms for objects in a database.

e In our approach there is not only one value of a given type that is associated with an
object. In contrast we allow several values of possibly different types to belong to an
object, and even this collection of types may change.

o Types are used to structure values. In our approach general algebraic type specifications
are allowed including parameterization, subtyping and mutual recursion.

e Classes are used to structure objects. At each time a class corresponds to a collection of
objects with values of the same type and references to objects in a fixed set of classes.
Inheritance is based on IsA relations that express an inclusion at each time of the sets
of objects. Moreover, referential integrity is supported.

o We associate with each class a collection of methods. Methods are specified by guarded
commands, hence the method language is computationally complete. In order to allow
the handling of identifiers that are always hidden from the user as well as user-accessible
transactions a hiding operator on methods is introduced. Generic update operations, i.e.
insert, delete and update on a class are assumed to be automatically derived whenever
this is possible.

o We associate static and transition constraints to classes and also to a schema. Certain
kinds of such constraints can be obtained by generalizing corresponding constraints in
the relational model.

On this basis of this formal OODM we study the problems of identification, genericity and
integrity.

55

We show that the unique identification of objects in a class requires the class to be value-
representable. Assuming that only uniqueness constraints are defined we can show that
value-representability is decidable.

An advantage of database systems is to provide generic update operations. We show that
the unique existence of such generic operations on some class requires also value-representabi-
lity. However, in this case referential and IsA integrity can be enforced automatically. From
an engineering point of view an algorithm is required to generate these consistent operations.
We address this construction problem by the specification of generators for them. These
generators will be based on the possibility to represent syntactic components of the language
as values within the language itself, which is known to form the basis of linguistic reflection.
Moreover, the generators involve a single generic proof of correctness hence relieve the user
of the burden to write basic update operations and to assure their consistency.

The existence result can be generalized with respect to distinguished classes of explicitly
stated static constraints. We show that integrity enforcement is always possible. Given
some arbitrary method 5 and some static or transition constraint Z there exists a greatest
consistent specialization (GCS) St of S with respect to Z. Such a GCS behaves nice in that
it is compatible with the conjunction of constraints, inheritance and refinement. For the GCS
construction of a user-defined operation, however, it is in general not sufficient to replace the
involved primitive update operations by their GCSs.

This report is far from giving a complete mathematical foundation of OODB concepts.
A lot of problems are still left open and are the matter of current investigations or future
research.

e OODBs have been claimed to support engineering applications without proving this.
We believe that our approach to types will allow really complex objects to be defined
and that the general notion of object will ease the support of versions. In order to
support multiple objects in a class the parameterization seems to be a good idea. We
shall work on this idea.

e In our approach classes are sets. What are other bulk types? Does it make sense to
abstract from classes in this way?

e In this report we left aside much of the formal semantics which is based on the specifi-
cation language SAMT. However, there also exist some open problems with this, e.g. a
more general approach to transactions without assuming linear order of execution and
traces on classes.

e The problem of updatable views is still open. We work on it.

e Our approach to genericity only handles the worst case expressed by the value repre-
sentation type. We assume that polymorphism will help to generalize our results to the
general case. Moreover, we must integrate communication aspects at least with respect
to the user.

e So far, we have shown an existence result for greatest consistent specializations that are
used to achieve integrity enforcement. We do not know how to find such a GCS in the
general case.

56

e The axiomatic semantics used for guarded commands abstracts from an execution
model. All results are true for semantic equivalence classes. However, we also need
optimization, especially with respect to the derived GCSs.

o We only presented a formal OODM without looking into methodological aspects such
as the characterization of good designs or stepwise refinement approaches.

We express the hope that others will also contribute to solve outstanding problems in OODB
foundation or in the implementation of more sophisticated object oriented database languages
on a sound mathematical basis.

57

Bibliography

[1]

[2]

[10]

[11]

[12]

S. Abiteboul: Towards a deductive object-oriented database language, Data & Knowledge
Engineering, vol. 5, 1990, pp. 263 — 287

S. Abiteboul, R. Hull: TFO: A Formal Semantic Database Model, ACM ToDS, vol. 12
(4), December 1987, pp. 525 — 565

S. Abiteboul, P. Kanellakis: Object Identity as a Query Language Primitive, in Proc.
SIGMOD, Portland Oregon, 1989, pp. 159 — 173

H. Ait-Kaci: An Overview of LIFE,in J. W. Schmidt, A. A. Stognij (Eds.): Proc. Next
Generation Information Systems Technology , Springer LNCS, vol. 504, 1991, pp. 42 —
58

A. Albano, G. Ghelli, R. Orsini: Types for Databases: The Galileo Frperience, in Type
Systems and Database Programming Languages, University of St. Andrews, Dept. of
Mathematical and Computational Sciences, Research Report CS/90/3, 27 — 37

A. Albano, A. Dearle, G. Ghelli, C. Marlin, R. Morrison, R. Orsini, D. Stemple: 4
Framework for Comparing Type Systems for Database Programming Languages, in Type
Systems and Database Programming Languages, University of St. Andrews, Dept. of
Mathematical and Computational Sciences, Research Report CS/90/3, 1990

A. Albano, G. Ghelli, R. Orsini: Objects and Classes for a Database Programming Lan-
guage, FIDE technical report 91/16, 1991

A. Albano, G. Ghelli, R. Orsini: A Relationship Mechanism for a Strongly Typed Object-
Oriented Database Programming Language, in A. Sernadas (Ed.): Proc. VLDB 91,
Barcelona 1991

M. Atkinson, F. Bancilhon, D. DeWitt, K. Dittrich, D. Maier, S. Zdonik: The Object-
Oriented Database System Manifesto, Proc. 1st DOOD, Kyoto 1989

F. Bancilhon, G. Barbedette, V. Benzaken, C. Delobel, S. Gamerman, C. Lécluse, P. Pf-
effer, P. Richard, F. Velez: The Design and Implementation of O, an Object-Oriented
Database System, Proc. of the ooDBS II workshop, Bad Miinster, FRG, September 1988

C. Beeri: Formal Models for Object-Oriented Databases, Proc. 1st DOOD 1989, pp. 370
- 395

C. Beeri: A formal approach to object-oriented databases, Data and Knowledge Engi-
neering, vol. 5 (4), 1990, pp. 353 — 382

58

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

C. Beeri, Y. Kornatzky: Algebraic Optimization of Object-Oriented Query Languages, in
S. Abiteboul, P. C. Kanellakis (Eds.): Proc. ICDT 90, Springer LNCS 470, pp. 72 — 88

C. Beeri: New Data Models and Languages - the Challange in Proc. PODS 92

L. Cardelli, P. Wegner: On Understanding Types, Data Abstraction and Polymorphism,
ACM Computing Suerveys 17,4, pp 471 — 522

L. Cardelli: Typeful Programming, Digital Systems Research Center Reports 45, DEC
SRC Palo Alto, May 1989

M. Carey, D. DeWitt, S. Vandenberg: A Data Model and Query Language for EXODUS,
Proc. ACM SIGMOD 88

M. Caruso, E. Sciore: The VISION Object-Oriented Database Management System, Proc.
of the Workshop on Database Programming Languages, Roscoff, France, September 1987

A. Dearle, R. Connor, F. Brown, R. Morrison: Napier88 - A Database Programming Lan-
guage?, in Type Systems and Database Programming Languages, University of St. An-
drews, Dept. of Mathematical and Computational Sciences, Research Report CS/90/3,
10 — 26

E. W. Dijkstra, C. S. Scholten: Predicate Calculus and Program Semantics, Springer-
Verlag, 1989

H.-D. Ehrich, M. Gogolla, U. Lipeck: Algebraische Spezifikation abstrakter Datentypen,
Teubner-Verlag, 1989

H.-D. Ehrich, A. Sernadas: Fundamental Object Concepts and Constructors, in G. Saake,
A. Sernadas (Eds.): Information Systems — Correctness and Reusability, TU Braun-
schweig, Informatik Berichte 91-03, 1991

H. Ehrig, B. Mahr: Fundamentals of Algebraic Specification, vol.1, Springer 1985

L. Fegaras, T. Sheard, D. Stemple: The ADABTPL Type System, in Type Systems and
Database Programming Languages, University of St. Andrews, Dept. of Mathematical
and Computational Sciences, Research Report CS/90/3, 45 — 56

L. Fegaras, T. Sheard, D. Stemple: Uniform Traversal Combinators: Definition, Use
and Properties, University of Massachusetts, 1992

D. Fishman, D. Beech, H. Cate, E. Chow et al.: IRIS: An Object-Oriented Database
Management System, ACM TolS, vol. 5(1), January 1987

P. Fraternali, S. Paraboschi, L. Tanca: Automatic Rule Generation for Constraint En-
forcement in Active Databases, in U. Lipeck (Ed.): Proc. 4th Int. Workshop on Foun-
dations of Models and Languages for Data and Objects “MODELLING DATABASE
DYNAMICS”, Volkse (Germany), October 19-22, 1992

G. Gottlob, G. Kappel, M. Schrefl: Semantics of Object-Oriented Data Models — The
Fvolving Algebra Approach, in J. W. Schmidt, A. A. Stognij (Eds.): Proc. Next Genera-
tion Information Systems Technology, Springer LNCS, vol. 504, 1991

59

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]
[37]

[38]

[39]

[40]

[41]

M. Hammer, D. McLeod: Database Description with SDM: A Semantic Database Model,
J. ACM, vol. 31 (3), 1984, pp. 351 — 386

A. Heuer, P. Sander: Classifying Object-Oriented Results in a Class/Type Lattice, in
B. Thalheim et al. (Ed.): Proceedings MFDBS 91, Springer LNCS 495, pp. 14 — 28

R. Hull, R. King: Semantic Database Modeling: Survey, Applications and Research Is-
sues, ACM Computing Surveys, vol. 19(3), September 1987

R. Hull, M. Yoshikawa: ILOG: Declarative Creation and Manipulation of Object Identi-
fiers, in Proc. 16th VLDB, Brisbane (Australia), 1990, pp. 455 — 467

S. Khoshafian, G. Copeland: Object Identity, Proc. 1st Int. Conf. on OOPSLA, Portland,
Oregon, 1986

M. Kifer, J. Wu: A Logic for Object-Oriented Logic Programming (Maier’s O-Logic
Revisited), in PODS’89, pp. 379 — 393

W. Kim, N. Ballou, J. Banerjee, H. T. Chou, J. Garza, D. Woelk: Integrating an Object-
Oriented Programming System with a Database System, in Proc. OOPSLA 1988

P. Lockemann, J. W. Schmidt: Datenbankhandbuch, Springer, 1987

U. W. Lipeck: Dynamische Integritit von Datenbanken (in German), Springer IF'B 209,
1987

D. Maier, J. Stein, A. Ottis, A. Purdy: Development of an Object-Oriented DBMS,
OOPSLA, September 1986

F. Matthes, J. W. Schmidt: The Type System of DBPL, in Type Systems and Database
Programming Languages, University of St. Andrews, Dept. of Mathematical and Com-
putational Sciences, Research Report CS/90/3, 38 — 44

F. Matthes, J. W. Schmidt: Bulk Types — Add-On or Built-In?, in Proc. DBPL III,
Nafplion 1991

J. Mylopoulos, P. A. Bernstein, H. K. T. Wong: A Language Fuacility for Designing
Interactive Database-Intensive Applications, ACM ToDS, vol. 5 (2), April 1980, pp. 185
- 207

J. Mylopoulos, A. Borgida, M. Jarke, M. Koubarakis: Telos: Representing Knowledge
About Information Systems, ACM TolS, vol. 8 (4), October 1990 pp. 325 — 362

G. Nelson: A Generalization of Dijkstra’s Calculus, ACM TOPLAS, vol. 11 (4), October
1989, pp. 517 — 561

A. Ohori: Representing Object Identity in a Pure Functional Language, Proc. ICDT 90,
Springer LNCS, pp. 41 — 55

G. Saake, R. Jungclaus: Specification of Database Applications in the TROLL Language,
in Proc. Int. Workshop on the Specification of Database Systems, Glasgow, 1991

60

[46]

[47]

[54]

[55]

[56]

[57]

[58]

[59]
[60]

K.-D. Schewe, J. W. Schmidt, 1. Wetzel, N. Bidoit, D. Castelli, C. Meghini: Abstract
Machines Revisited, FIDE Technical Report 1991/11, February 1991

K.-D. Schewe, 1. Wetzel, J. W. Schmidt: Towards a Structured Specification Language
for Database Applications, in D. Harper, M. Norrie (Eds.): Proc. Int. Workshop on the
Specification of Database Systems, Springer WICS, 1991, pp. 255 — 274 (an extended
version appeared as FIDE technical report 1991/30, October 1991)

K.-D. Schewe, J. W. Schmidt, 1. Wetzel: Specification and Refinement in an Integrated
Database Application Environment, Proc. VDM 91, Noordwijkerhout, October 1991

K.-D. Schewe, B. Thalheim, I. Wetzel, J. W. Schmidt: Faztensible Safe Object-Oriented
Design of Database Applications, University of Rostock, Preprint CS - 09 - 91, September
1991

K.-D. Schewe, J. W. Schmidt, 1. Wetzel: Identification, Genericity and Consistency in
Object-Oriented Databases, in J. Biskup, R. Hull (Eds.): Proc. ICDT 92, Springer LNCS
646, pp. 341 — 356

K.-D. Schewe, B. Thalheim, J. W. Schmidt, I. Wetzel: Integrity Enforcement in Object-
Oriented Databases, in U. Lipeck (Ed.): Proc. 4th Int. Workshop on Foundations of
Models and Languages for Data and Objects “MODELLING DATABASE DYNAMICS”,
Volkse (Germany), October 19-22, 1992

K.-D. Schewe, J. W. Schmidt, D. Stemple, B. Thalheim, 1. Wetzel: Generating Methods
to Assure Global Integrity, submitted 1992

K.-D. Schewe, J. W. Schmidt, D. Stemple, B. Thalheim, I. Wetzel: A Reflective Approach
to Method Generation in Object Oriented Databases, University of Rostock, Rostocker
Informatik Berichte, no. 13, 1992

K.-D. Schewe: Class Semantics in Object Oriented Databases, submitted 1992

K.-D. Schewe, B. Thalheim, I. Wetzel: Integrity Preserving Updates in Object Oriented
Databases, in M. Orlowska (Ed.) : Proc. Australian Database Conference, Brisbane,
February 1993 (to appear)

M. H. Scholl, H.-J. Schek: A Relational Object Model, in Proc. ICDT 90, Springer LNCS,
pp- 89 — 105

G. M. Shaw, S. B. Zdonik: An Object-Oriented Query-Algebra, IEEE Data Engineering,
vol. 12 (3), 1989, pp. 29 — 36

D. Stemple, T. Sheard: A Recursive Base for Database Programming Primitives, in
Proceedings of the First International Fast/West Database Workshop, Kiev, October
1990

D. Stemple, T. Sheard: FEzceeding the Limits of Polymorphism, in Proc. EDBT ’90

D. Stemple, T. Sheard, L. Fegaras: Reflection: A Bridge from Programming to Database
Languages, in Proc. HICSS 92

61

[61] S. Y. W. Su: SAM*: A Semantic Association Model for Corporate and Scientific-
Statistical Databases, Inf. Sci., vol. 29, 1983, pp. 151 — 199

[62] K. Subieta: A Persistent Object Store for the LOQIS Programming System, to appear
in: International Journal of Microcomputer Applications

[63] B. Thalheim: Dependencies in Relational Databases, Teubner Leipzig, 1991

[64] B. Thalheim: The Higher-Order Entity-Relationship Model, in J. W. Schmidt, A. A. Stog-
nij (Eds.): Proc. Next Generation Information Systems Technology, Springer LNCS, vol.
504, 1991

62

