
Foundations of Object OrientedDatabase Concepts�Klaus{Dieter Schewe1,Bernhard Thalheim2,Ingrid Wetzel11 University of Hamburg, Dept. of Computer Science,Vogt-K�olln-Str. 30, D-W-2000 Hamburg 54, FRG2 University of Rostock, Dept. of Computer Science,Albert-Einstein-Str. 21, D-O-2500 Rostock, FRG
�This work has been supported in part by research grants from the E.E.C. Basic Research Action3070 FIDE: \Formally Integrated Data Environments".

AbstractIt is claimed that object oriented databases (OODBs) overcome many of the limitationsof the relational model. However, the formal foundation of OODB concepts is still an openproblem. Even worse, for relational databases a commonly accepted datamodel existed veryearly on whereas for OODBs the uni�cation of concepts is outstanding.Our research in Hamburg and Rostock is directed towards a formally founded objectoriented datamodel (OODM) and to contribute to the development of a uniform mathematicaltheory of OODBs. This report contains the results of our �rst investigations on the OODM.A clear distinction between objects and values turns out to be essential in the OODM.Types and Classes are used to structure values and objects repectively. Then the problem ofunique object identi�cation occurs. We show that this problem can be be solved for classeswith extents that are completely representable by values. Such classes are called value-representable. The �niteness of a database and the existence of �nitely representable rationaltree types are su�cient to decide value-representability.Another advantage of the relational approach is the existence of structurally determinedcanonical update operations . We show that this property can be carried over to object-orienteddatamodels i� classes are value-representable. Moreover, in this case database consistencywith respect to implicitly speci�ed referential and inclusion constraints will be automaticallypreserved.This result can be generalized with respect to distinguished classes of explicitly statedstatic constraints. We show that integrity enforcement is always possible. Given some arbi-trary method S and some static or transition constraint I there exists a greatest consistentspecialization (GCS) SI of S with respect to I. Such a GCS behaves nice in that it iscompatible with the conjunction of constraints, inheritance and re�nement. For the GCSconstruction of a user-de�ned operation, however, it is in general not su�cient to replace theinvolved primitive update operations by their GCSs.From an engineering point of view an algorithm is required to generate these consistentoperations. We address this construction problem by the speci�cation of generators for them.These generators will be based on the possibility to represent syntactic components of thelanguage as values within the language itself, which is known to form the basis of linguisticre
ection. Moreover, the generators involve a single generic proof of correctness hence relievethe user of the burden to write basic update operations and to assure their consistency.

Contents1 Introduction 31.1 The Identi�cation Problem : 41.2 Generic Update Operations : 41.3 The Consistency Problem : 51.4 The Organization of the Paper : 62 An Object Oriented Datamodel 72.1 Motivation : 72.1.1 The Class Concept as a Structural Primitive : : : : : : : : : : : : : : 82.1.2 Methods as a Basis for Behaviour Modeling : : : : : : : : : : : : : : : 102.2 Theoretical Background : 112.2.1 Types : 112.2.2 State Transitions : 122.2.3 Consistency Proof Obligations : 132.3 The Structural Approach : 142.3.1 The Concept of a Class : 142.3.2 The Representation of a Schema : 152.3.3 Static Integrity Constraints : 162.4 The Behavioural Approach : 172.4.1 Methods, Transactions and Transition Constraints : : : : : : : : : : : 182.4.2 Queries and Views : 193 Object Identi�cation and Value-Representation 223.1 On the Notion of Value-Representability : 223.1.1 Value-Representability in the Case of Acyclic Reference Graphs : : : : 233.1.2 Computation of Value Representation Types : : : : : : : : : : : : : : 253.1.3 The Finiteness Property : 263.2 Weak Value-Representability : 284 Genericity 314.1 Existence and Consistency of Generic Update Operations : : : : : : : : : : : 314.1.1 Canonical Update Operations : 324.1.2 Existence of Canonical Updates in the Case of Value-Representability 334.2 A Generator Approach to Achieve Higher-Level Genericity : : : : : : : : : : : 344.2.1 Basic Assumptions : 354.2.2 A Framework for Generator Application : : : : : : : : : : : : : : : : : 361

4.2.3 Representations Types : 364.2.4 Generators for Generic Update Operations : : : : : : : : : : : : : : : 385 Integrity Enforcement 425.1 Enforcing Static Integrity : 425.1.1 The Problem : 435.1.2 Greatest Consistent Specializations : 445.2 Enforcing Static Integrity in the OODM : 475.2.1 Transforming Static Constraints into Primitive Operations : : : : : : 475.2.2 Transforming Static Constraints into Transactions : : : : : : : : : : : 515.3 Enforcing Transition Integrity : 525.3.1 GCSs with Respect to Transition Constraints : : : : : : : : : : : : : : 535.3.2 Compatibility Results : 546 Conclusion 55Bibliography 58

2

Chapter 1IntroductionThe shortcomings of the relational database approach encouraged much research aimed atachieving more appropriate data models. It has been claimed that the object-oriented approachwill be the key technology for future database systems and languages [9]. Several systems[5, 7, 8, 10, 16, 17, 18, 19, 26, 35, 38, 40] arose from these e�orts. However, in contrast toresearch in the relational area there is no common formal agreement on what constitutes anobject-oriented database [11, 12, 14].The basic question \What is an object?" seems to be trivial, but already here the varietyof answers is large. In object oriented programming the notion of an object was intended asa generalization of the abstract data type concept with the additional feature of inheritance.In this sense object orientation involves the isolation of data in semi-independent modulesin order to promote high software development productivity. The development of objectoriented databases regarded an object also as a basic unit of persistent data, a view thatis heavily in
uenced by existing semantic datamodels (SDMs) [2, 29, 31, 41, 42, 61]. Thus,object oriented databases are composed of independent objects but must also provide for themaintenance of inter-object consistency, a demand that is to some degree in dissonance withthe basic style of object orientation.A view that is common in OODB research is that objects are abstractions of real worldentities and should have an identity [9]. This leads to a distinction between values and objects[11, 12]. A value is identi�ed by itself whereas an object has an identity independent of itsvalue. This object identity is usually encoded by object identi�ers [1, 3, 33]. Abstracting fromthe pure physical level the identi�er of an object can be regarded as being immutable duringthe object's lifetime. Identi�ers ease the sharing and update of data. However, such abstractidenti�ers do not relieve us from the task to provide unique identi�cation mechanisms forobjects. In object oriented programming object names are su�cient. Retrieving mass databy name is senseless.In most approaches to OODBs an object is coupled with a value of some �xed structure.To our point of view this contradicts already the goal of objects being abstractions of reality.In real situations an object has several and also changing aspects that should be captured bythe object model.Therefore, in our object model each object o consists of a unique identi�er id, aset of (type-, value-)pairs (Ti; vi), a set of (reference-, object-)pairs (refj ; oj) anda set of methods methk . 3

Types are used to structure values. Classes serve as structuring primitive for objects havingthe same structure and behaviour. It is obvious that the multiple aspects view of an ob-ject allows them to be simultaneously members of more than one class and to change classmemberships.In our model a class structure uniformly combines aspects of object values and references.The extent of classes varies over time, whereas types are immutable. Relationships betweenclasses are represented by references together with referential constraints on the object iden-ti�ers involved. Moreover, each class is accompanied by a collection of methods. A schema isgiven by a collection of class de�nitions together with explicit static and dynamic constraints.1.1 The Identi�cation ProblemOne important concept of object-oriented databases is object identity . Following [1, 13] theimmutable identity of an object can be encoded by the concept of abstract object-identi�ers.The advantages of this approach are that sharing, mutability of values and cyclic structurescan be represented easily [44]. On the other hand, system provided identi�ers can not be usedfor object identi�cation, since this would lead to a database of identi�ers [36]. Hence the usercan only access objects in the database via values. Object identi�ers do not have a meaningfor the user and should be hidden from the user.We study whether equality of identi�ers can be derived from the equality of values. Inthe literature the notion of \deep" equality has been introduced for objects with equal valuesand references to objects that are also \deeply" equal. This recursive de�nition becomesinteresting in the case of cyclic references.Therefore, we introduce functional constraints on classes, in particular uniqueness con-straints , which express equality on identi�ers as a consequence of the equality of some valuesor references. On this basis we can address the following problem how to characterize thoseclasses that are completely representable (and hence also identi�able) by values. We showthat the �niteness of a database and the existence of �nitely representable recursive types aresu�cient to decide value-representability .1.2 Generic Update OperationsThe success of the relational data model is due certainly to the existence of simple query andupdate-languages. Preserving the advantages of the relational in OODBs is a serious goal.The generic querying of objects has been approached in [1, 13]. While querying is per sea set-oriented operation, i.e. it is not necessary to select just one single object, and hencedoes not raise any speci�c problems with object identi�ers, things change completely in caseof updates. If an object with a given value is to be updated (or deleted), this is only de�nedunambigously, if there does not exist another object with the same value. If more thanone object exists with the same value or more generally with the same value and the samereferences to other objects, then the user has to decide, whether an update- or delete-operationis applied to all these objects, to only one of these objects selected non-deterministically or tonone of them, i.e. to reject the operation. However, it is not possible to specify a priori suchan operation that works in the same way for all objects in all situations. The same appliesto insert-operations. Hence the problem, in which cases operations for the insertion, deletionand update of objects can be de�ned generically.4

Some authors [45] have chosen the solution to abandon generic operations. Others [7, 8, 10]use identifying values to represent object identity, thus embody a strict concept of surrogatekeys to avoid the problem. Our approach is di�erent from both solutions in that we use theconcept of hidden abstract identi�ers, but at the same time formally characterize those classesfor which unique generic operations for the insertion, deletion and update of single objectscan be derived automatically. It turns out that these are exactly the value-representable ones.It can be shown that generators for these generic update operations can be speci�edfor any value-representable class of a schema. The generators can be used to increase theproductivity of system developers while enhancing the quality of the implemented systems.1.3 The Consistency ProblemOne of the primary bene�ts that database systems o�er is automatic enforcement of databaseintegrity. One type of integrity is maintained through automatic concurrency control and re-covery mechanisms; allmost all commercial systems provide this. Another one is the automaticenforcement of user-speci�ed integrity constraints. Most commercial database systems, espe-cially relational database management systems enforce only a bare minimum of constraints,largely because of the performance overhead associated with updates. A database systemshould be designed to automatically take methods speci�ed by the user or generated by thesystem upon checking integrity constraints upon occurrence of certain database operations.The maintenance problem is the problem how to ensure the database satis�es its con-straints after certain actions. There are at present two approaches to this maintenance prob-lem. The �rst one, more classical is the modi�cation of methods in accordance to the speci-�ed integrity constaints. The second approach uses generation mechanisms for the speci�edevents. Upon occurrence of certain database events like update operations the managementcomponent is activated for integrity maintenance. The �rst research direction did not succeedbecause of some limitations within the approach. The second one is at present one of themost active database research areas. One of our objectives is to show that the �rst approachcan be extended to object-oriented databases using stronger mathematical fundamentals.Accuracy is an obviously important and desirable feature of any database. To this end,integrity constraints , conditions that data must satisfy before a database is updated, arecommonly employed as a means of helping to maintain consistency. In relational databasesthe speci�cation and enforcement of integrity constraints has a long tradition [63], whereasin OODBs the integrity problem has only recently drawn attention [27, 51].In object oriented databases, integrity maintenance can be based on two di�erent ap-proaches. The �rst one uses blind update operations. In this case, any update is allowed andthe system organizes the maintenance. The second approach is based on methods rewriting.This approach is more e�ective. Assuming a consistent database state the modi�ed methodcan not lead to an inconsistent state. In contrast to the relational model the fundamentalconcepts of object identity [33] and inheritance imply inevitably the existence of inclusionand referential constraints that are speci�ed with each OODB schema. Integrity with respectto these constraints must be preserved by all database updates, especially by basic insert-,delete- and update-operations. As usual in OODBs such operations are modeled by methods .Due to the main result in [50] such operations are only uniquely determined by the schemain the case of value-representable classes. We shall outline these methods and draw speci�cattention to the type of the required input-value.5

In relational databases distinguished classes of static integrity constraints have been dis-cussed such as inclusion, exclusion, functional , key and multi-valued dependencies . All theseconstraints can be generalized to the object oriented case. Then the result on the existence ofintegrity preserving methods can be generalized to capture also these constraints. We shallalso describe the resulting methods.1.4 The Organization of the PaperIn Chapter 2 we introduce the OODM. We start �rst motivating the concepts and give ashort review on some theoretical aspects underlying the model. Then we describe in detailthe structural and the behavioural parts of the OODM.Chapter 3 handles the identi�cation problem. We introduce the notion of value-represen-tability and show results on the decidability.The genericity problem will be approached in Chapter 4. We show the relationship be-tween value-representability and the unique existence of generic update operations. Finallywe describe an algorithmic approach to generate such operations using linguistic re
ection.The consistency problem is dealt with in Chapter 5. We outline an operational approachbased on greatest consistent specializations and describe them for the case of distinguishedclasses of static integrity constraints.We summarize our results and describe some open problems in Chapter 6.AcknowledgementWe would like to thank Catriel Beeri for stimulating discussions concerning object identi�-cation. We also want to thank David Stemple who contributed to the engineering aspectsconcerning genericity in the OODM. He convinced us on the bene�ts of linguistic re
ection.Thanks also to Kasimierz Subieta for questioning the theme from a programming point ofview.
6

Chapter 2An Object Oriented DatamodelIn this chapter we present the formal object oriented datamodel (OODM) of [49, 50, 51].We observe that an object in the real world always has an identity. Therefore, abstract (i.e.system-provided) object identi�ers are introduced to capture identity. However, neither thereal world object that was the basis of the abstraction nor the abstract identi�er can be usedfor the identi�cation of an object.In contrast to existing object oriented datamodels [1, 3, 5, 7, 8, 9, 10, 17, 18, 26, 35, 38, 44,45, 56] an object is not coupled with a unique type. In contrast, we observe that real worldobjects can have di�erent aspects that may change over time. Therefore, a primary decisionwas taken to let an object be associated with more than one type and to let these types evenchange during the object's lifetime. The same applies to references to other objects.Classes are used to abstract from individual objects providing mutable collections of agiven structure and behaviour, where the latter is modelled via methods.We start with a motivation, where we explain the general notion of an object and illus-trate by using examples the notions of type, class and method . Throughout this section apreliminary informal syntax will be used.Then we give a brief outline of some theoretical background underlying the OODM. Thiscomprises an algebraic framework for type and method speci�cations that stems from thespeci�cation language SAMT [47, 54] together will formally de�ned consistency notions.The heart of the chapter is formed by Sections 2.3 and 2.4, where we introduce formallythe structural and the behavioural part of the OODM.2.1 MotivationRelational approaches to data modelling are called value-oriented since in these models realworld entities are completely represented by their values. In the object-oriented approachwe distinguish between objects and values. Values can be gouped into types. In general, atype may be regarded as an immutable set of values of a uniform structure together withoperations de�ned on such values. Subtyping is used to relate values in di�erent types.Whereas values are encoded by themselves [11, 12], objects have to be encoded by objectidenti�ers regardless of the content, location or addressability [33]. In our approach to OODBseach object o consists of a unique identi�er id, a set of (type-, value-)pairs (Ti; vi), a set of(reference-, object-)pairs (refj ; oj) and a set of methods methk . We assume all identi�ers idto belong to unique given set ID. 7

Types represent immutable sets of values. They can be de�ned algebraically similar to[13, 21, 23]. Type constructors can be de�ned analogously by parameterized types. Thesecan be used to build complex types by nesting and recursive types. We assume that the setID of possible object identi�ers is also a type. Then an instantiation of a parameterized typede�nes a structure that represents a combination of values and references, where referencesare expressed by the occurrence of a value of type ID.Objects can be grouped into classes with some structure built from values and references.Furthermore, we may associate methods and constraints with each class. This means ofstructure building involves implicit referential constraints . Inheritance on classes is given byIsA-relations, i.e. by set inclusion on object identi�ers. Moreover we introduce subtyping andformalize this by the de�nition of a continuous function from a subtype to a supertype. Therelation between subtyping and inheritance is given by an inclusion constraint on classes.2.1.1 The Class Concept as a Structural PrimitiveThe class concept provides the grouping of objects having the same structure which uniformlycombines aspects of object values and references. Moreover, generic operations on objects suchas object creation, deletion and update of its values and references are associated with classesprovided these operations can be de�ned unambigously. Objects can belong to di�erentclasses, which guarantees each object of our abstract object model to be captured by thecollection of possible classes. As for values that are only de�ned via types, objects can onlybe de�ned via classes. Thus, a design consists of type and class de�nitions.Type De�nitions.Assume the existence of basic types STRING, NAT , INT and BOOL with the usual oper-ations on them. Additionally, there exist a basic type ID that will be used to model objectidenti�ers and a trivial type ? with only one element and no operations.In this paper we only use �xed type constructors, the tagged tuple constructor denoted by(�), the �nite set constructor denoted by f�g and the union constructor denoted [. We useconcatenation on tuple types denoted by the �-operator.Types and type constructors in general are de�ned by nesting of these constructors. Thesetypes can be organized in a subtype hierarchy with the subtype relation de�ned as usual. ?is a supertype of every type.As a last structuring feature recursive type de�nitions are allowed. They only occur asinput-types for generated update methods, where rational tree values are required [4].Example 1 The set and the tuple type constructors are both used in the declaration forPERSONNAME:PERSONNAME = (FirstName : STRING,SecondName : STRING,Titles : fSTRINGg)The de�nition for a type PERSON uses the type PERSONNAME and a type ADDRESSde�ned elsewhere: 8

PERSON = (PersonIdentityNo : NAT ,Name : PERSONNAME,Address : ADDRESS)The following example de�nes STUDENT as a subtype of PERSON:STUDENT = PERSON � (StudNo : NAT , Faculty : NAT) 2Class De�nitions.Each object in a class consists of an identi�er, a collection of values and references to objectsin other classes. Identi�ers can be represented using the unique identi�er type ID. Values andreferences can be combined into a representation type, where each occurence of ID denotesreferences to some other classes. Therefore, we may de�ne the structure of a class using typeconstructors.� Let t be a type constructor with parameters �1; : : : ; �n such that ID does not occurin t. For distinct reference names r1; : : : ; rn and class names C1; : : : ; Cn the expressionderived from t by replacing each �i in t by ri : Ci for i = 1; : : : ; n is called a structureexpression.� A class consists of a class name C, a structure expression S, a set of class namesD1; : : : ; Dm (in the following called the set of superclasses) and a set of methods. Wecall ri the reference named ri from class C to class Ci. The type derived from S byreplacing each reference ri : Ci by the type ID is called the representation type TC ofthe class C.� A schema S is a �nite collection of classes C1; : : : ; Cn closed under references and su-perclasses together with a collection of constraints I1; : : : ; In.Example 2 Let the types PERSON and STUDENT be as in Example 1. In additionassume a type PROFESSOR de�ned as elsewhere as another subtype of PERSON . Thenthe following is a simple schema for a university application. For the moment methods areomitted.Schema UniversityClass PersonCStructure PERSONMethods : : :Class MarriedPersonCIsA PersonCStructure PERSON� (Spouse : MarriedPersonC)Class StudentCIsA PersonCStructure STUDENT� (Supervisor : ProfessorC)Class ProfessorCIsA PersonCStructure PROFESSOR 9

Constraint Unique(PersonC,PERSON)Constraint EXCL(StudentC,ProfessorC) 2The notation Unique(C,T) means that values of type T do not occur twice in the class C.EXCL(C1,C2) states that the classes C1 and C2 are disjoint.At each time, C is given by a �nite set of objects. More precisely, C is a set of pairs (i; v),where i is of type ID and v is of type TC such that identi�ers are unique in this set. Thisde�nes an instance D of a schema S.Moreover, C gives rise to referential constraints de�ned by the structure S and IsA con-straints de�ned by the set of superclasses of C, i.e.� whenever an identi�er j :: ID occurs in v and this occurrence corresponds to the ref-erence rk : Ck, then there must exist an object in Ck with identi�er j (referentialintegrity), and� for each superclass Dk there exist an object with identi�er i (and some value w :: TDk inDk) (inclusion integrity). Moreover, if TC is a subtype of TDk , there v must correspondto w.Note, that we do not require classes to be disjoint nor that IsA relations require a subtyperelation on the corresponding representation types.2.1.2 Methods as a Basis for Behaviour ModelingMethods in general can be described operationally with the usual control constructs. As-signments are only allowed on the class C or on a selective expression on C. Therefore, wedispense with introducing a speci�c method language here.Let us now concentrate on basic update methods, i.e. insertion, deletion and update of asingle object on a classes C. In contrast to the relational datamodel such update operationscan not always be derived in the object-oriented case, because the abstract identi�ers haveto be hidden from the user. However, in [50] it has been shown that for value-representableclasses these operations are uniquely determined by the schema and consistent with respectto the implicit referential and inclusion constraints.Value-representability of all classes in a schema is implied, if we de�ne a trivial uniquenessconstraint for each class. Such a constraint requires the values of type TC in the class extensionC to be unique, which is similar to a (trivial) key de�nition in the relational case.Example 3 Let us describe the insert-method for the class PersonC of Example 2.insertPersonC (in: P :: PERSON , out: I :: ID) =IF 9 O 2 PersonC . value(O) = PTHEN I := ident(O)ELSE I := NewId ;PersonC := PersonC [f (I ,P)gENDIF 10

For the insert on the class MarriedPersonC we need a more complex input type V recur-sively de�ned asV = PERSON � (V [ID)For each P :: V let f(P) :: PERSON be the projection onto PERSON corresponding tothe subtype relation between V and PERSON . Then we haveinsertMarriedPersonC (in: P :: V , out: I :: ID) =I := insertPersonC (f(P)) ;IF 8 O 2MarriedPersonC . ident(O) 6= ITHEN P 0 := substitute(I ,P ,Spouse(P)) ;IF P 0 :: IDTHEN J := P 0ELSE J := insertMarriedPersonC (P 0)ENDIF ;MarriedPersonC := MarriedPersonC [f (I ,f(P) � (J))gENDIFWe used the global method NewId to denote the selection of a new identi�er. The expressionsubstitute(I ,P ,T) denotes the result of replacing the value I for P in the expression T . 22.2 Theoretical BackgroundFor the moment let us abstract from the speci�c database context. Look at a database beingde�ned as some state space X with typed state variables x1 :: T1; : : : ; xn :: Tn. Then statetransitions on X are expressible by (partial, non-deterministic) guarded commands with asophisticated axiomatic semantics de�ned by predicate transformers. Formulae in �rst-orderlogic can be used to express both static and transition integrity constraints on X . We adoptthis approach in order to formalize the OODM as well as the integrity enforcement problemwithin a strict mathematical framework that will later be applied to the OODM.2.2.1 TypesIn general a type is speci�ed by a collection of constructors, selectors and other functions {the signature of the type { and axioms de�ned by universal Horn formulae. This is relatedto algebraic speci�cations [21, 23]. Now let NP , NT , NF , and V denote arbitrary pairwisedisjoint, countably in�nite sets representing a reservoir of parameter-, type-, function-, andvariable-names respectively.De�nition 1 A type signature � consists of a type name t 2 NT , a �nite set of supertype-/function-pairs T � NT � NF , a �nite set of parameters P � NP , a �nite set of base typesB � NT and pairwise disjoint �nite sets C; S; F � NF of constructors, selectors and functionssuch that there exist prede�ned arities ar(c) 2 (P[B�[ftg)��ftg, ar(s) 2 ftg�(P[B�[ftg)and ar(f) 2 (P [B� [ftg)� � (P [B� [ftg) for each c 2 C, s 2 S and f 2 F .We write f : t! t0 to denote a supertype-/function-pair (t0; f) 2 T . We write c : t1�: : :�tn !t to denote a constructor of arity (t1 : : : tn; t), s : t! t0 to denote a selector of arity (t; t0) and11

f : t1� : : :� tn ! t0 to denote a function of arity (t1 : : : tn; t0). If ti = b0i : : : bmi 2 B�, we writeb0i (b1i : : : bmi). We call S = P [B [ftg the set of sorts of the signature �.De�nition 2 A type declaration consists of a type signature � with type name t such thatthere exists a type declaration for each b 2 B � ftg and a set Ax of Horn formulae over �.Moreover, if b0i (b1i : : : bmi) with bji 2 B occurs within a constructor, selector or function, thenb0i must have been declared as a parameterized type with m parameters. We say that (�; Ax)de�nes the parameterized type t(�1; : : : ; �n), i� P = f�1; : : : ; �ng 6= ; or the proper type trespectively.A type t is de�ned either by a type declaration or by mutually recursive equations involvingt as a variable.The semantics of a type is given by term generated algebras that are quotients of the termalgebra de�ned by the constructors. Subtyping is modelled by the use of a continous functiontaking the subtype to the supertype. Recursive types are �xpoints of functors. See [54]for a completely mathematical treatment of types. It can be shown that even the guardedcommands give rise to a type GC(�; �;
), where � (�) is the type of the input (output) and
 is the type of the underlying state space. See [47] for more details.2.2.2 State TransitionsIn general non-deterministic partial state transitions S on a state space X can be described bya subset ofD�D?, whereD denotes the set of possible states onX and D? = D[f?g, where ?is a special symbol used to indicate non-termination. It can be shown that this is equivalent tode�ning two predicate transformers wp(S) and wlp(S) associated with S satisfying the pairingcondition wp(S)(R), wlp(S)(R)^ wp(S)(true) and the universal conjunctivity of wlp(S).They assign to some postcondition R the weakest (liberal) precondition of S to establish R.Informally these conditions can be characterized as follows:� wlp(S)(R) characterizes those initial states such that all terminating executions of Swill reach a �nal state characterized by R provided S is de�ned in that initial state,and� wp(S)(R) characterizes those initial states such that all executions of S terminate andwill reach a �nal state characterized by R provided S is de�ned.Such operations S can be speci�ed by guarded commands in the style of Dijkstra [20, 46, 48,43]:De�nition 3 Let X be some state space. A guarded command S on X consists of a name S,a set of input-parameters f�1; : : : ; �kg, a set of output-parameters fo1; : : : ; olg and a body. Toeach input-parameter �i corresponds a type Ti and to each output-parameter oj correspondsa type Oj . The body of S is recursively built from the following constructs:(i) assignment x := E, where x is a state variable in X or a local variable within S and Eis a term of the same type as x,(ii) skip, fail, loop, 12

(iii) sequential composition S1;S2, choice S12S2, projection x :: T j S, guard P ! S,restricted choice S12� S2, where P is a well-formed formula and x is a variable of typeT , and(iv) instantiation x01; : : : ; x0i S 0(E 01; : : : ; E 0j), where S 0 is the name of another operation(S = S 0 is possible) on X with input-parameters �01; : : : ; �0j and output-parameterso01; : : : ; o0i, such that the variables o0f , x0f have the same type and the term E 0g hasthe same type as the variable �0g.Each variable occurring in the S has a well-de�ned scope. The scoping rules are omitted.Furthermore, we omit the detailed de�nition of the predicate transformers wlp(S) and wp(S)[43, 47]. We only give an informal description of the less usual operations projection, guardand restricted choice. Projection gives the introduction of a new local variable x of the giventype. A guard P ! S gives a precondition P for S. If P is not satis�ed, the whole operationis unde�ned. Restricted choice S2� T means to execute S unless it is unde�ned in whichcase T is taken. The basic commands skip, fail, loop are only introduced for theoreticalcompleteness: skip does nothing, fail is always unde�ned, and loop never terminates.Here we dispense with any structuring of state spaces into modules. However, in order tode�ne \extended operations" we need to know for each operation S the subspace Y � X suchthat S does neither read nor change the values in X�Y . In this case we call S a Y -operationon X . We omit the formal details [43, 47].2.2.3 Consistency Proof ObligationsGeneral constraints and arbitrary operations on a state space X raise the problem whetherconsistency as de�ned by the constraints is always satis�ed by the operations. One approachto address this problem is to use general veri�cation techniques. The veri�cation approachconsists in the derivation (and proof) of general proof obligations expressed in the predicatetransformer calculus.The static constraints on a state space X , i.e. �rst-order formulae I with fr(I) � Xpartition the state space, i.e. the collection of the mutable classes into two distinguishedsubspaces. States not satisfying the constraints should never be reached.In general inherited operations can be overwritten. Unless inheritance is simply regardedas a copying mechanism we should ensure that this can be done in a concise way, i.e., overridingshould be restricted to \specialization". The intuition behind this de�nition is that wheneveran execution of the specialized operation T establishes some post-predicate R, then thisexecution should already be one of the general method S.Transition constraints on X are expressible as �rst-order formulae J with fr(J) � X �[X 0, whereX 0 is a disjoint copy ofX . We may then exploit a weak equivalence between guardedcommands and predicative speci�cations. We may associate with the transition constraint Jthe guarded command �(J) = x0 j J ! x := x0 where x (x0) is used as an abbreviation forthe collection x1; : : : ; xn (x01; : : : ; x0n) of (state) variables. Satisfying J is equivalent to eachoperation S specializing �(J). Hence the following formal de�nitions:De�nition 4 Let X be a state space, Z � Y � X subspaces, I a static and J a transitionconstraint on X , S a Z-operation and T a Y -operation.(i) S is consistent with respect to I i� I) wlp(S)(I) holds on X .13

(ii) T specializes S i� wp(S)(true)) wp(T)(true) and wlp(S)(R)) wlp(T)(R) holdfor all Z-predicates R (denoted T v S).(iii) S is consistent with respect to J i� R wlp(�(J))(R)) wlp(S)(R) holds for allX-predicates.Note that v de�nes a partial order on operations. There exists an equivalent characterizationof transition consistency that avoids the quanti�cation over all state predicates [46]. See [47]for more details.2.3 The Structural ApproachIn the following assume to be given a type system T as described e.g. in Section 2.2.1.Basically such a type system consists of some basic types such as BOOL, NATURAL,INTEGER, STRING, etc., type constructors (parameterized types) for record, �nite sets,lists, etc. and a subtyping relation. Moreover, assume that (mutually) recursive types , i.e.types de�ned by (a system of) domain equations, exist in T . As an alternative to our def-inition of T in Section 2.2.1 we may restrict T being one of the type systems de�ned in[5, 6, 15, 16, 19, 24, 39, 40]. In addition we suppose the existence of an abstract identi�ertype ID in T without any non-trivial supertype. Arbitrary types can then be de�ned bynesting. A type T without occurrence of ID will be called a value-type.Now let NP , NT , NC , NR, NF , NM and V denote arbitrary pairwise disjoint, denumerablesets representing parameter-, type-, class-, reference-, function-, method- and variable-namesrespectively.2.3.1 The Concept of a ClassThe OODM in [50] distinguishes between values grouped into types and objects grouped intoclasses. The extent of classes varies over time, whereas types are immutable. Relationshipsbetween classes are represented by references together with referential constraints on theobject identi�ers involved. Moreover, each class is accompanied by a collection of methodsde�ned by deterministic guarded commands [43, 46, 47].Each object in a class consists of an identi�er, a collection of values and references toobjects in other classes. Identi�ers can be represented using the unique identi�er type ID.Values and references can be combined into a representation type, where each occurence ofID denotes references to some other classes. Therefore, we may de�ne the structure of a classusing parameterized types.De�nition 5 (i) Let t be a value type with parameters �1; : : : ; �n. For distinct referencenames r1; : : : ; rn 2 NR and class names C1; : : : ; Cn 2 NC the expression derived from tby replacing each �i in t by ri : Ci for i = 1; : : : ; n is called a structure expression.(ii) A class consists of a class name C 2 NC , a structure expression S, a set of class namesD1; : : : ; Dm 2 NC (in the following called the set of superclasses) and a set of staticconstraints I1; : : : ; Ik. We call ri the reference named ri from class C to class Ci. Thetype derived from S by replacing each reference ri : Ci by the type ID is called therepresentation type TC of the class C. 14

(iii) A (structural) schema S is a �nite collection of classes C1; : : : ; Cn closed under referencesand superclasses together with a collection of static constraints I1; : : : ; In.(iv) An instance D of a structural schema S assigns to each class C a value D(C) of typePFUN(ID; TC) such that all implicit and explicit constraints on S are satis�ed.Here we dispense with giving a concrete syntax for constraints. Distinguished classes of staticconstraints will be introduced in Section 2.3.3.2.3.2 The Representation of a SchemaWe now associate with each schema S a state spaceX such that each class C in S is representedby a state variable xC :: PFUN(ID; TC) in X . PFUN(ID; TC) is called the class typeof C. PFUN(�; �) is the type constructor for partial function from � to � with �nitedomain1. Moreover, C gives rise to referential constraints de�ned by the structure S andclass inclusion constraints de�ned by the set of superclasses of C. All other constraints on Sand C are directly translatable in constraints on X . Let us now formally describe the formof structurally de�ned inclusion and referential constraints.De�nition 6 Let C, C 0 be classes with representation types TC and T 0C respectively and leto : TC � ID! BOOL be a function.(i) If TC be a subtype of T 0C via f : TC ! T 0C , a class inclusion constraint on C and C 0 isa constraint in the form8i :: ID: 8v :: TC : member(Pair(i; v); xC) = true)member(Pair(i; f(v)); xC0) = true ; (2.1)where Pair is the constructor of PAIR(�; �) and member is a function on �nite setsFSET (�), hence also on the subtype PFUN(�; �).In the general case a class inclusion constraint on C and C 0 has the form8i :: ID: member(i; dom(xC)) = true) member(i; dom(xC0)) = true :(ii) A referential constraint on C and C 0 is a constraint in the form8i; j :: ID: 8v :: TC : member(Pair(i; v); xC) = true^o(v; j) = true) member(j; dom(xC0)) = true : (2.2)It is easy to see that each class D in the set of superclasses of C gives rise to an inclusionconstraint. Moreover, each reference r : E occurring in the structure expression S of C givesrise to a referential constraint with the function o determined by the type underlying S.Then o(v; j) = true means that the identi�er j occurs within v at a place corresponding tothe reference.Let us now �nalize the presentation of the datamodel by a simple example.1In fact, we need a more sophisticated semantics for objects and classes as exempli�ed by the algebraicapproach of the IS-CORE group [22] or by the evolving algebra approach [28].15

Example 4 Assume the existence of a value type PERSON de�ned elsewhere. A class Cnamed PersonC may be de�ned as follows.PersonC ==Structure PAIR(PERSON , spouse : PersonC)Constraints 8 I,J :: ID . 8 V :: TC . member(Pair(I,V),xC) = true ^member(Pair(J,V),xC) = true) I = JEnd PersonC 22.3.3 Static Integrity ConstraintsLet us now introduce some kinds of explicit static constraints are generalizations of constraintsknown from the relational model, e.g. functional and key constraints, general inclusion andexclusion constraints, multi-valued dependencies and path constraints [51, 55].De�nition 7 Let C;C1; C2 be classes in a schema S and let ci : TC ! Ti (i = 1; 2; 3) andci : TCi ! T (i = 1; 2) be functions.(i) A functional constraint on C is a constraint of the form8i; i0 :: ID: 8v; v0 :: TC : c1(v) = c1(v0) ^ member(Pair(i; v); xC) = true^member(Pair(i0; v0); xC) = true) c2(v) = c2(v0) : (2.3)A functional constraint is called a value constraint i� neither T1 nor T2 contains ID.(ii) A uniqueness constraint on C is a constraint of the form8i; i0 :: ID: 8v; v0 :: TC : c1(v) = c1(v0) ^ member(Pair(i; v); xC) = true^member(Pair(i0; v0); xC) = true) i = i0 : (2.4)A uniqueness constraint on C is called trivial i� TC = T1 and c1 = id hold.(iii) A general inclusion constraint on C1 and C2 is a constraint of the form8t :: T: 9i1 :: ID; v1 :: TC1 : member(Pair(i1; v1); xC1) = true ^ c1(v1) = t) 9i2 :: ID; v2 :: TC2 : member(Pair(i2; v2); xC2) = true ^ c2(v2) = t: (2.5)(iv) An exclusion constraint on C1, C2 is a constraint of the form8i1; i2 :: ID: 8v1 :: TC1 : 8v2 :: TC2 : member(Pair(i1; v1); xC1) = true^member(Pair(i2; v2); xC2) = true) c1(v1) 6= c2(v2) : (2.6)(v) An object generating constraint on C is a constraint of the form8i1; i2 :: ID: 8v1; v2 :: TC : member(Pair(i1; v1); xC) = true ^member(Pair(i2; v2); xC) = true ^ c1(v1) = c1(v2))9i :: ID; v :: TC : member(Pair(i; v); xC) = true^c1(v) = c1(v1) ^ c2(v) = c2(v1) ^ c3(v) = c3(v2) : (2.7)16

Note that the de�nition of uniqueness constraints is a generalization of the key concept andobject generating constraints are a straightforward generalization of multi-valued dependen-cies in the relational model [63]. The following de�nition extends these constraints to pathconstraints.De�nition 8 (i) Let C1; : : : ; Cnbe classes in a schema S with representation types TC1 , : : :,TCn and let referential constraints on Ci�1; Ci be de�ned via oi : TCi�1 � ID! BOOL.Then C1; : : : ; Cn de�ne a path in S and the corresponding path expression is given bymember(Pair(i1; v1); xC1) = true ^ o2(v1; i2) = true ^member(Pair(i2; v2); xC2) = true ^ : : :^ on(vn�1; in) = true^member(Pair(in; vn); xCn) = true : (2.8)(ii) Let C, C 0 be classes in a schema S and let P be a f (general) inclusion j exclusionj functional j uniqueness j object generating g constraint on C, C 0 or C respectively.If C1; : : : ; Cn and C 01; : : : ; C 0m are paths in S with Cn = C and C 0m = C 0, then re-placing the corresponding path expressions for member(Pair(i; v); xC) = true andmember(Pair(i0; v0); xC0) = true respectively in P de�nes a path constraint P 0 on C1and C 01. We assume all free variables in P 0 other than xC and xC0 to be universallyquanti�ed. More precisely we call P 0 a f (general) path inclusion j path exclusion j pathfunctional j path uniqueness j path object generating g constraint.2.4 The Behavioural ApproachSo far, only static aspects have been considered. A structural schema is simply a collectionof data structures called classes. Let us now turn to adding dynamics to this picture. Asrequired in the object oriented approach operations will be associated with classes. This givesus the notion of a method.We shall distinguish between visible and hidden methods to emphasize those methodsthat can be invoked by the user and others. This is not intended to de�ne an interface of aclass, since for the moment all methods of a class including the hidden ones can be accessedby other methods. The justi�cation for such a weak hiding concept is due to two reasons.� Visible methods serve as a means to specify (nested) transactions. In order to buildsequences of database instances we only regard these transactions assuming a linearinvocation order on them.� Hidden methods can be used to handle identi�ers. Since these identi�ers do not have anymeaning for the user, they must not occur within the input or output of a transaction.In general methods describe possible sequences of database instances. In order to restrict thisset of possible sequences to legal ones dynamic integrity constraints are used. In general sometemporal logic is required to express such constraints [37]. In order to avoid this we restrictthe OODM to allow only transition constraints to be speci�ed.In a second part we shall have a short look on queries and views.17

2.4.1 Methods, Transactions and Transition ConstraintsLet us now address the formalization of the notions method , class and transition constraintand then generalize the notion of schema.De�nition 9 Let T1; : : : ; Tn; T 01; : : : ; T 0m 2 NT such that there exist types in T with thesenames. Let M 2 NM and �1; : : : ; �n; o1; : : : ; om 2 V .(i) A method signature consists of a method nameM , a set of input-parameter / input-typepairs �i :: Ti and a set of output-parameter / output-type pairs oj :: T 0j . We writeo1 :: T 01; : : : ; om :: T 0m M(�1 :: T1; : : : ; �n :: Tn) :(ii) Let C be some class as in De�nition 5. A method M on C consists of a method signaturewith name M and a body that is represented as a guarded command on X = fxCg.(iii) A method M on a class C with signature o1 :: T 01; : : : ; om :: T 0m M(�1 :: T1; : : : ; �n ::Tn) is called value-de�ned i� all Ti (i = 1 : : :n) and T 0j (j = 1; : : : ; m) are proper valuetypes.On the representation level (see Section 2.3.2) we use guarded commands for methods. Asmentioned above the OODM distinguishes between transactions, i.e. methods visible to theuser, and hidden methods. We require each transaction to be value-de�ned.Subclasses inherit the methods of their superclasses, but overriding is allowed as longas the new method is a specialization of all its corresponding methods in its superclasses.Overriding becomes mandatory in the case of multiple inheritance with name con
icts. Amethod that overrides a hidden method on some superclass must also be hidden.De�nition 10 Let C be a class as in De�nition 5 with superclasses D1; : : : ; Dk. A methodspeci�cation on C consists of two sets of methods S = fM1; : : : ;Mng (called transactions)and H = fM 01; : : : ;M 0mg (called hidden methods) such that the following properties hold:(i) Each Mi (i = 1; : : : ; n) is value-de�ned.(ii) For each transaction M l on some superclass Dl there exists some i 2 f1; : : : ; ng suchthat Mi specializes M l.(iii) For each hidden method M l on some superclass Dl there exists some j 2 f1; : : : ; mgsuch that M 0j specializes M l.Let us brie
y discuss what specialization means for the input- and output-types. Sometimesit is required that the input-type for an overriding method should be a subtype of the originalone (covariance rule), sometimes the opposite (contravariance rule) is required. The �rst ruleapplies e.g. if we want to override an insert method. In this case the inherited method has noe�ect on the subclass, but simply calls the \old" method. The second rule applies if input-types reuired on the superclass can be omitted on the subclass. Both rules are captured bythe formal notion of specialization. We omit the details [47].18

Example 5 Let us now describe methods on the class PersonC introduced in Example 4.Some details such as the de�nition of the method named \exists" are omitted, but we remarkthat the described insert-method is in fact the canonical one [50].Methodsinsert(P :: VC = PAIR(PERSON,VC)) == I insert0(P)(hidden)I :: ID insert0(P :: VC = PAIR(PERSON,UNION(VC ,ID))) ==B :: BOOL j (B exists(P,xC) ;B = true !(I :: ID j (member(I,dom(xC)) = false !P00 :: TC j(9 P0 :: TC . P0 = P ! P00 := P 2�(J :: ID j J insert0(substitute(P,I,second(P))) ;P00 := Pair(�rst(P),J))) ;xC := union(xC ,single(Pair(I,P00)))))2� skip 2The dynamic part of a schema also requires transition constraints to be speci�ed.De�nition 11 Let C be a class as in De�nition 5. A transition constraint on C is a �rst-orderformula R with fr(R) � fxC ; x0Cg, where x0C represents the value of xC after performing someoperation.Now we are prepared to generalize the de�nition of classes, schemata and instances.De�nition 12 (i) A class consists of a class name C 2 NC , a structure expression S, aset of class names D1; : : : ; Dm 2 NC (called the set of superclasses), a set of static con-straints I1; : : : ; Ik, a set of transition constraints J1; : : : ;Jl and a method speci�cation(S = fM1; : : : ;Mng , H = fM 01; : : : ;M 0n0g) on C. We call ri the reference named rifrom class C to class Ci. The type derived from S by replacing each reference ri : Ciby the type ID is called the representation type TC of the class C.(ii) A schema S is a �nite collection of classes C1; : : : ; Cn closed under references, super-classes and method call together with a collection of static constraints I1; : : : ; In and acollection of transition constraints J1; : : : ;Jl.(iii) An instance D of a structural schema S assigns to each class C a value D(C) of typePFUN(ID; TC) such that all implicit and explicit constraints on S are satis�ed.2.4.2 Queries and ViewsRoughly speaking the querying of a database is an operation on the database without changingits state. The emphasis of a query is on the output. While such a general view of queriescan be subsumed by transactions, hence by methods in the OODM, query languages are inparticular intended to be declarative in order to support an ad-hoc querying of a databasewithout the need to write new transactions [9].Querying a relational database can be expressed by terms in relational algebra. This viewcan be easily generalized to the OODM that is built upon a sophisticated extensible type19

system T . Each type is algebraically speci�ed and hence gives rise to an algebra { to be moreprecise: a G-algebra [54]. Therefore, terms over such types occur naturally. Moreover, typespeci�cations are based on other type speci�cations via constructors, selectors and functions.Hence, T allows arbitrary terms involving more than one class variable xC to be built. Thena query turns out be be represented by term t over some type T such that the free variablesof t are all class variables. This approach is in accordance with the algebraic approach in [13]and with so called universal traversal combinators [25].In relational algebra a view may be regarded simply as a stored query (or derived relation).We shall try to generalize also this view to the OODM.However, things change dramatically, when object identi�ers come into play [14], sincenow we have to distinguish between queries that result in values and those that result in(collections of) objects. Therefore we distinguish in the OODM between value queries andgeneral access expressions.A value query on a schema S can then be represented by a term t of some value type Twith fr(t) � fxC j C 2 Sg. Ad-hoc querying of a database should then be restricted to valuequeries. This is no loss of generality, because for any type T in T involving identi�ers thereexists a corresponding type T 0 allowing multiple occurrences. Take e.g. a class C. If we wantto get all the objects in that class no matter whether they have the same values or not, thecorresponding term of type T = PFUN(ID; TC) would be xC . This is not a value query, butif TC is a value type, we may take T 0 = BAG(TC) and the natural projection given by thesubtype functionsPFUN(�; �)! FSET (PAIR(�; �))! BAG(PAIR(�; �))! BAG(�) :In Section 3.1 we shall see how to generalize this to be case where TC is arbitrary. We thenhave to replace TC by the value-representation type VC provided this exists.In the case of arbitrary access expressions another problem occurs [14]. So far, we canonly build terms t that involve identi�ers already existing in the database. Thus, such queriesare called object preserving . If we want the result of a query to represent \new" objects, i.e.if we want to have object generating queries , we have to apply a mechanism to create newobject identi�ers. This can be achieved by object creating functions on the type ID with arityID � : : :� ID! ID [32, 34].The idea that a view is a stored query then carries over easily. However, the structure of aview should be compatible with the structure of the schema, i.e. each view may be regardedas a derived class. Summarizing, we get the following formal de�nition.De�nition 13 Let S = fC1; : : : ; Cng be some schema.(i) A value query on S is a term t over some proper value type T withfr(t) � fxC1 ; : : : ; xCng.(ii) An access expression on S is a term t over some proper type T withfr(t) � fxC1 ; : : : ; xCng.(iii) A view on S consists of a view name v 2 NC such that there is no class C 2 S withthis name, a structure expression S(v) containing references to classes in S or to viewson S and a de�ning access expression t(v) of type PFUN(ID; Tv), where Tv is therepresentation type corresponding to S(v).20

Let us now �nalize this chapter with a simple example of a view in the OODM.Example 6 Take again the class PersonC of Example 4. Let Age be some selector on thetype PERSON and let the function filter be de�ned on FSET (�) with arity FSET (�)�FUN(�;BOOL)! FSET (�) (see also [13]). Then the following de�nes the subset of Per-sonC of all old persons.View OldPersonV ==Structure PAIR(PERSON; spouse : PersonC)Definition �lter(PersonC,Lambda[X](greater(Age(First(Second(X))),60)))End OldPersonV 2

21

Chapter 3Object Identi�cation andValue-RepresentationThis chapter is devoted to the identi�cation problem in object oriented databases. Roughlyspeaking databases are considered to contain persistent mass data. From an object orientedpoint of view a database may be considered as a huge collection of objects of arbitrary complexstructure. Hence the problem to uniquely identify and retrieve objects in such collections.Each object in a database is an abstraction of a real world object that has a unique identity .The representation of such objects in the OODM uses an abstract identi�er I of type ID toencode this identity. Such an identi�er may be considered as being immutable. However, froma systems oriented view permutations or collapses of identi�ers without changing anythingelse should not a�ect the behaviour of the database.For the user the abstract identi�er of an object which may be e.g. a physical address has nomeaning. Therefore, a di�erent access to the identi�cation problem is required. We show thatthe unique identi�cation of an object in a class leads to the notions of value-identi�abilityand value-representability . We discuss the identi�cation problem in Section 3.1 under theassumption that the only explicit constraints are uniqueness constraints. Then we analysethe weaker concept of weak value-representability that can be used to capture also objectsthat do not exists for there own, but depend on other objects. This is related to weak entitiesin entity-relationship models [64].3.1 On the Notion of Value-RepresentabilityAccording to our de�nitions two objects in a class C are identical i� they have the sameidenti�er. By the use of constraints, especially uniqueness constraints, we could restrict thisnotion of equality.The goal of this section is the characterization of those classes, the objects in which arecompletely representable by values, i.e. we could drop the object identi�ers and replacereferences by values of the referred object. We shall see in Section 4.1 that in case of value-representable classes we are able to preserve an important advantage of relational databases,i.e. the existence of structurally determined update operations.De�nition 14 Let C be a class in a schema S with representation type TC .22

(i) C is called value-identi�able i� there exists a proper value type IC such that for allinstances D of S there is a function c : TC ! IC such that the uniqueness constraint onC de�ned by c holds for D.(ii) C is called value-representable i� there exists a proper value type VC such that for allinstances D of S there is a function c : TC ! VC such that for D(a) the uniqueness constraint on C de�ned by c holds and(b) for each uniqueness constraint on C de�ned by some function c0 : TC ! V 0C withproper value type V 0C there exists a function c00 : VC ! V 0C that is unique onc(codomD(C)) with c0 = c00 � c.It is easy to see that each value-representable class C is also value-identi�able. Moreover, thevalue-representation type VC in De�nition 14 is unique up to isomorphism.Theorem 15 Let C be a class in a schema S. Then C is value-representable i� C is value-identi�able and Ci is value-representable for all references ri : Ci in the structure expressionS.Proof. This follows directly from the de�nitions. 23.1.1 Value-Representability in the Case of Acyclic Reference GraphsSince value-representability is de�ned by the existence of a certain proper value type, it ishard to decide, whether an arbitrary class is value-representable or not. In case of simpleclasses the problem is easier, since we only have to deal with uniqueness and value constraints.In this case it is helpful to analyse the reference structure of the class. Hence the followinggraph-theoretic de�nitions.De�nition 16 The reference graph of a class C in a schema S is the smallest labelled graphGrep = (V;E; l) satisfying:(i) There exists a vertex vC 2 V with l(vC) = ft; Cg, where t is the top-level type in thestructure expression S of C.(ii) For each proper occurrence of a type t 6= ID in TC there exists a unique vertex vt 2 Vwith l(vt) = ftg.(iii) For each reference ri : Ci in the structure expression S of C the reference graph Giref isa subgraph of Gref .(iv) For each vertex vt or vC corresponding to t(x1; : : : ; xn) in S there exist unique edgese(i)t from vt or vC respectively to vti in case xi is the type ti or to vCi in case xi is thereference ri : Ci. In the �rst case l(e(i)t) = fSig, where Si is the corresponding selectorname; in the latter case the label is fSi; rig.De�nition 17 Let S = fC1; : : : ; Cng be a schema. Let S 0 = fC 01; : : : ; C 0ng be another schemasuch that for all i either T 0Ci = TCi holds or there exists a uniqueness constraint on Ci de�nedby some ci : TCi ! TC0i . Then an identi�cation graph Gid of the class Ci is obtained from thereference graph of C 0i by changing each label C 0j to Cj .23

mm? ������ HHHf PAIR , MarriedPersonC gf PERSON gf �rst g f second , spouse g mm ? ������ HHHf PAIR , MarriedPersonC gf NAT gf �rst g f second , spouse gFigure 3.1: The reference graph and identi�cation graph of class MarriedPersonCExample 7 Let MarriedPersonC be de�ned as in Example 4. Then the reference graphand the identi�cation graph with respect to the uniqueness constraint of this class are shownin Figure 3.1. 2Theorem 18 Let C be a class in a schema S with acyclic reference graph Gref such thatthere exist uniqueness constraints for C and each Ci such that Ci occurs as a label in Gref .Then C is value-representable.Proof. We use induction on the maximum length of a path in Gref . If there are noreferences in the structure expression S of C the type TC is a proper value type. Since thereexists a uniqueness constraint on C, the identity function id on TC also de�nes a uniquenessconstraint. Hence VC = TC satis�es the requirements of De�nition 14.If there are references ri : Ci in the structure expression S of C, then the inductionhypothesis holds for each such Ci, because Gref is acyclic. Let VC result from S by replacingeach ri : Ci by VCi . Then VC satis�es the requirements of De�nition 14. 2Theorem 19 Let C be a class in a schema S such that there exist an acyclic identi�cationgraph Gid and uniqueness constraints for C and each Ci occuring as a label in Gid. Then Cis value-identi�able.Proof. The proof is analogous to that of Theorem 18. 2Theorem 20 Let C be a class with acyclic reference graph in a schema S. Then the value-representability of C is decidable.Proof. So far the only explicit constraints in our model are uniqueness constraints. Accord-ing to De�nition 7 equality of identi�ers occurs only as a positive literal in such constraints.Therefore, it is impossible to derive a uniqueness constraint for a class C that has not onea priori. Theorem 18 implies that value-representability can be decided by checking theexistence of uniqueness constraints in the class de�nitions. 2Theorem 21 Let C be a class in a schema S such that there exist an acyclic identi�cationgraph. Then the value-identi�ability of C is decidable.Proof. The proof is analogous to that of Theorem 20. 224

3.1.2 Computation of Value Representation TypesWe want to address the more general case where cyclic references may occur in the schemaS = fC1; : : : ; Cng. In this case a simple induction argument as in the proof of Theorem 18 isnot applicable. So we take another approach. We de�ne algorithms to compute types VC andIC that turn out to be proper value types under certain conditions. In the next subsectionwe then show that these types are the value representation type and the value identi�cationtype required by De�nition 14.Algorithm 22 Let G(Ci) = TCi provided there exists a uniqueness constraint on Ci, other-wise let G(Ci) be unde�ned. If ID occurs in some G(Ci) corresponding to rj : Cj (j 6= i), wewrite IDj.Then iterate as long as possible using the following rules:(i) If G(Cj) is a proper value type and IDj occurs in some G(Ci) (j 6= i), then replace thiscorresponding IDj in G(Ci) by G(Cj).(ii) If IDi occurs in some G(Ci), then let G(Ci) be recursively de�ned by G(Ci) == Si,where Si is the result of replacing IDi in G(Ci) by the type name G(Ci).This iteration terminates, since there exists only a �nite collection of classes. If these rulesare no longer applicable, replace each remaining occurrence of IDj in G(Ci) by the type nameG(Cj) provided G(Cj) is de�ned. 2Note that the the algorithm computes (mutually) recursive types. Now we give a su�cientcondition for the result of Algorithm 22 to be a proper value type.Lemma 23 Let C be a class in a schema S such that there exists a uniqueness constraintfor all classes Ci occurring as a label in the reference graph Gref of C. Let VC be the typeG(C) computed by Algorithm 22. Then VC is a proper value type.Proof. Suppose VC were not a proper value type. Then there exists at least one occurrenceof ID in VC . This corresponds to a class Ci without uniqueness constraint occurring as alabel in Gref , hence contradicts the assumption of the lemma. 2Algorithm 24 Let F (Ci) = Ti provided there exists a uniqueness constraint on Ci de�nedby ci : TCi ! Ti, otherwise let F (Ci) be unde�ned. If ID occurs in some F (Ci) correspondingto rj : Cj (j 6= i), we write IDj.Then iterate as long as possible using the following rules:(i) If F (Cj) is a proper value type and IDj occurs in some F (Ci) (j 6= i), then replace thiscorresponding IDj in F (Ci) by F (Cj).(ii) If IDi occurs in some F (Ci), then let F (Ci) be recursively de�ned by F (Ci) == Si,where Si is the result of replacing IDi in F (Ci) by the type name F (Ci).This iteration terminates, since there exists only a �nite collection of classes. If these rulesare no longer applicable, replace each remaining occurrence of IDj in F (Ci) by the type nameF (Cj) provided F (Cj) is de�ned. 225

Lemma 25 Let C be a class in a schema S such that there exists a uniqueness constraintfor all classes Ci occurring as a label in some identi�cation graph Gid of C. Let IC be thetype F (C) computed by Algorithm 24 with respect to the uniqueness constraints used in thede�nition of Gid. Then IC is a proper value type.Proof. The proof is analogous to that of Lemma 23. 23.1.3 The Finiteness PropertyLet us now address the general case. The basic idea is that there is always only a �nite numberof objects in a database. Assuming the database being consistent with respect to inclusionand referential constraints yields that there can not exist in�nite cyclic references. This willbe expressed by the �niteness property. We show that this property implies the decidabilityof value-representability provided the type system allows recursive types to be de�ned in sucha way that all their values are �nitely representable, i.e. representable as rational trees. Notethat the type speci�cations introduced in Section 2.2.1 satisfy this property.De�nition 26 Let C be a class in a schema S and let gk;l denote a path in Gref from vCkto vCl provided there is a reference rl : Cl in the structure expression of Ck. Then a cycle inGref is a sequence g0;1 � � �gn�1;n with C0 = Cn and Ck 6= Cl otherwise.Note that we use paths instead of edges, because the edges in Gref do not always correspondto references. According to our de�nition of a class there exists a referential constraint onCk, Cl de�ned by ok;l : TCk � ID ! BOOL corresponding to gk;l. Therefore, to each cyclethere exists a corresponding sequence of functions o0;1 � � �on�1;n. This can be used as followsto de�ne a function cyc : ID � ID! BOOL corresponding to a cycle in Gref .De�nition 27 Let C be a class in a schema S and let g0;1 � � �gn�1;n be a cycle in Gref . Thecorresponding cycle relation cyc : ID � ID ! BOOL is de�ned by cyc(i; j) = true i� thereexists a sequence i = i0; i1; : : : ; in = j (n 6= 0) such that (il; vl) 2 Cl and ol;l+1(il+1; vl) = truefor all l = 0; : : : ; n� 1.Given a cycle relation cyc, let cycm the m-th power of cyc.Lemma 28 Let C be a class in a schema S. Then C satis�es the �niteness property, i.e. foreach instance D of S and for each cycle in Gref the corresponding cycle relation cyc satis�es8i 2 dom(C): 9n: 8j 2 dom(C): 9m< n: (cycn(i; j) = true) cycm(i; j) = true) :Proof. Suppose the �niteness property were not satis�ed. Then there exist an instance D,a cycle relation cyc and an object identi�er i0 such that8n: 9j 2 dom(C): 8m< n: (cycn(i0; j) = true ^ cycm(i0; j) = false)holds. Let such a j corresponding to n > 0 be in. Then the elements i0; i1; i2; : : : are pairwisedistinct. Hence there would be in�nitely many objects in D contradicting the �niteness of adatabase. 2Lemma 29 LetD be an instance of schema S = fC1; : : : ; Cng. Then D satis�es at each stageof Algorithm 22 uniqueness constraints for all i = 1; : : : ; n de�ned by some ci : TCi ! G(Ci).26

Proof. It is su�cient to show that whenever a rule is applied replacing G(Ci) by G(Ci)0,then G(Ci)0 also de�nes a uniqueness constraint on Ci.Suppose that Pair(i; v) 2 Ci holds in D. Since it is possible to apply a rule to G(Ci),there exists at least one value j :: ID occurring in ci(v). Replacing IDj in G(Ci) correspondsto replacing j by some value vj :: G(Cj). Because of the �niteness property such a value mustexist. Moreover, due to the uniqueness constraint de�ned by cj the function f : G(Ci) !G(Ci)0 representing this replacement must be injective on ci(codomD(Ci)). Hence, c0i = f � cide�nes a uniqueness constraint on Ci. 2Lemma 30 LetD be an instance of schema S = fC1; : : : ; Cng. Then D satis�es at each stageof Algorithm 24 uniqueness constraints for all i = 1; : : : ; n de�ned by some c0i : TCi ! F (Ci).Proof. The proof is analogous to the proof of Lemma 29. 2Lemma 31 Let D be an instance of schema S = fC1; : : : ; Cng. Then at each stage of thealgorithms 22 and 24 for all i = 1; : : : ; n there exists a function �ci : G(Ci) ! F (Ci) that isunique on ci(codomD(Ci)) with c0i = �ci � ci.Proof. As in the proof of Lemma 29 it is su�cient to show that the required property ispreserved by the application of a rule from Algorithm 22 or 24. Therefore, let �ci satisfythe required property and let g : G(Ci) ! G(Ci)0 and f : F (Ci) ! F (Ci)0 be functionscorresponding to the application of a rule to G(Ci) and F (Ci) respectively. Such functionswere constructed in the proofs of Lemma 29 and Lemma 30 respectively.Then f � �ci satis�es the required property with respect to the application of f . In the caseof applying g we know that g is injective on ci(codomD(Ci)). Let h : G(Ci)0 ! G(Ci) be anycontinuation of g�1 : g(ci(codomD(Ci)))! G(Ci). Then �ci �h satis�es the required property.2Theorem 32 Let C be a class in a schema S such that there exists a uniqueness constraintfor all classes Ci occurring as a label in the reference graph Gref of C. Let VC be the typeG(C) computed by Algorithm 22. Then C is value-representable with value representationtype VC.Proof. VC is a proper value type by Lemma 23. From Lemma 29 it follows that if D is aninstance of S, then there exists a function c : TC ! VC such that the uniqueness constraintde�ned by c holds for D.If V 0C is another proper value type and D satis�es a uniqueness constraint de�ned byc0 : TC ! V 0C , then V 0C is some value-identi�cation type IC . Hence by Lemma 31 there existsa function c00 : VC ! V 0C that is unique on c(codomD(C)) with c0 = c00 � c. This proves theTheorem. 2Corollary 33 Let S be a schema such that all classes C in S are value-identi�able. The allclasses C in S are also value-representable. 2Theorem 34 Let C be a class in a schema S such that there exists a uniqueness constraintfor all classes Ci occurring as a label in some identi�cation graph Gid of C. Let IC be thetype F (C) computed by Algorithm 24 with respect to the uniqueness constraints used in thede�nition of Gid. Then C is value-identi�able with value identi�cation type IC .27

Proof. The proof is analogous to that of Theorem 32. 2Theorem 35 Let C be a class in a schema S. Then the value-representability and thevalue-identi�ability of C are decidable.Proof. The proof is analogous to that of Theorem 20. 23.2 Weak Value-RepresentabilityLet us now ask whether there exist also weaker identi�cation mechanisms other than value-representability. In several papers, e.g. [44] a navigational approach on the basis of thereference structure has been favoured. This leads to dependent classes similar to \weakentities" in the entity-relationship model [64]. We shall show that such an approach requiresat least a value-identi�able \entrance" of some path and the hard restriction on references tobe representable by surjective functions.De�nition 36 Let S be some schema.(i) If r is a reference from class C to D in S and o : TC � ID ! BOOL is the functionof De�nition 6 expressing the corresponding referential constraint, then r satis�es the(SF)-condition i�(a) o(v; i) = true ^ o(v; j) = true) i = j and(b) member(j; dom(xD)) = true) 9v :: TC : member(v; codom(xC)) = true ^o(v; j) = truehold for all i; j :: ID; v :: TC .(ii) An (SF)-chain from class D to C in S is a sequence of classes D = C0; : : : ; Cn = Ctogether with references ri (i = 1; : : : ; n) from Ci�1 to Ci such that each ri satis�es the(SF)-condition.(iii) A class C in S is called weakly value-identi�able i� there exists a value-identi�able classD and an (SF)-chain from D to C.The notation (SF)-condition has been chosen to emphasize that such a reference representsa surjective function. It is easy to see taking n = 0 that each value-identi�able class is alsoweakly value-identi�able.Lemma 37 If C is a weakly value-identi�able class in a schema S, then there exists a propervalue type IC such that for each instance D of S there exists a function c : ID ! IC suchthat c is injective on domD(C).Call IC a weak value-identi�cation type of the class C.Proof. Let D = C0; : : : ; Cn = C be an (SF)-chain from the value-identi�able class D toC with corresponding references ri (i = 1; : : : ; n). Since ri satis�es the (SF)-condition, thereexists a function ci : ID ! ID such that j 2 domD(Ci)) (ci(j); v) 2 xCi�1 for some v withoi(v; j) = true (just take some inverse image of j under the surjective reference function).Since ri de�nes a function, ci is clearly injective.If c0 : ID! ID is the function de�ned by the uniqueness constraint on D and c00 : ID !ID is the concatenation c1 � : : : � cn, then c = c0 � c00 satis�es the required property. 228

Problem. Does the converse of Lemma 37 also hold?De�nition 38 A class C in a schema S is called weakly value-representable i� there exists aproper value type VC such that for each instance D of S the following properties hold.(i) There is a function c : ID! VC that is injective on domD(C).(ii) For each proper value type V 0C and each function c0 : ID ! V 0C that is injective ondomD(C) there exists a function c00 : VC ! V 0C that is unique on c(domD(C)) withc0 = c00 � c.We call VC the weak value-representation type of the class C.Note that the weak value-representation type is unique provided it exists. Again it is easy tosee that value-representability implies weak value-representability. Moreover, due to Lemma37 each weakly value-representable class is also weakly value-identi�able. We shall see thatalso the converse of this fact is true.Algorithm 39 Let the schema be S = fC1; : : : ; Cng. Start with H(Ci) = TCi (i = 1; : : : ; n).If ID occurs in some H(Ci) corresponding to rj : Cj (j 6= i), we write IDj.Then iterate as long as possible using the following rules:(i) If H(Cj) is a proper value type and IDj occurs in some H(Ci) (j 6= i), then replacethis corresponding IDj in H(Ci) by H(Cj).(ii) If IDi occurs in some H(Ci), then let H(Ci) be recursively de�ned by H(Ci) == Si,where Si is the result of replacing IDi in H(Ci) by the type name H(Ci).This iteration terminates, since there exists only a �nite collection of classes. If these rules areno longer applicable, replace each remaining occurrence of IDj in H(Ci) by the type nameH(Cj). 2This algorithm is similar to the Algorithms 22 and 24. However, we completely ignore unique-ness constraints.Lemma 40 Let C be a class in a schema S and let IC be the type H(C) computed byAlgorithm 39. Then IC is a proper value type.Proof. The proof is analogous to that of Lemma 23. 2Lemma 41 Let D be an instance of the schema S = fC1; : : : ; Cng. Let C, D be classes suchthat C is weakly value-identi�able, D is value-identi�able and there exists some (SF)-chainfrom D to C. Let c : ID ! IC be the function of Lemma 37 corresponding to this chain.Let c0 : ID ! H(D) be a function corresponding to the uniqueness constraint on D and theinstance D. Then at each stage of the Algorithm 39 there exists a function �c : H(D) ! ICthat is unique on c0(domD(C)) with c = �c � c0.Proof. The proof is analogous to the one of Lemma 29. 229

Theorem 42 Let C be a weakly value-identi�able class in a schema S and let VC be theproduct of all types H(D), where D is the leading value-identi�able class in some maximal(SF)-chain corresponding to C and H(D) is the result of Algorithm 39. Then C is weaklyvalue-representable with weak value-representation type VC.Proof. VC is a proper value type by Lemma 40. From Lemmata 30 and 37 it follows thatthere exists a function c0 : ID! VC that is injective on domD(C).From Lemma 41 it follows that there exists a function �c : VC ! IC that is unique onc0(domD(C)) with c = �c � c0. This proves the Theorem. 2

30

Chapter 4GenericityThe preservation of advantages of relational databases requires the de�nability of genericoperations for querying and for the insertion, deletion and update of single objects. Whilequerying [1, 13, 30, 57] is per se a set-oriented operation, i.e. it is not necessary to selectjust one single object, and hence does not raise any speci�c problems with object identi�ers,things change completely in case of updates. If an object with a given value is to be updated(or deleted), this is only de�ned unambigously, if there does not exist another object withthe same value. If more than one object exists with the same value or more generally withthe same value and the same references to other objects, then the user has to decide, whetheran update- or delete-operation is applied to all these objects, to only one of these objectsselected non-deterministically or to none of them, i.e. to reject the operation. However, it isnot possible to specify a priori such an operation that works in the same way for all objectsin all situations. The same applies to insert-operations. Hence the problem, in which casesoperations for the insertion, deletion and update of objects can be de�ned generically.Some authors [45] have chosen the solution to abandon generic operations. Others [7, 8, 10]use identifying values to represent object identity, thus embody a strict concept of surrogatekeys to avoid the problem. Our approach is di�erent from both solutions in that we use theconcept of hidden abstract identi�ers, but at the same time formally characterize those classesfor which generic operations for the insertion, deletion and update of single objects can bederived automatically. We show that there is a close connection between value-representabilityand the unique existence of generic operations for the insertion, deletion and update of singleobjects. Furthermore, inclusion and referential integrity are enforced by these operations.In Section 4.1 we describe these operations. In Section 4.2 we then specify an algorithm tocompute generic update methods [52, 53]. The speci�cation is built on the same theoreticalground as the OODM, hence sets up a speci�c case of linguistic re
ection [60].4.1 Existence and Consistency of Generic Update Opera-tionsMethods are used to specify the dynamics of an object-oriented database. Here, we do notwant to give a concrete language for methods. In general methods can be speci�ed in thestyle of Dijkstra focussing on deterministic operations [47].In this paper we are only interested in canonical update operations, i.e. we want toassociate with each class C in a schema S methods for insertion, deletion and update on31

single objects. These operations should be consistent with respect to the constraints in S.Thus, they are su�cient to express the creation, deletion and change of objects includingthe migration between classes. However, we would like to regard these operations as being\generic" in the sense of polymorphic functions, since insert, delete and update should bede�ned for each class. The problem is that the input-type and the body of these operationsrequire information from the schema. This leads to polymorphism with respect to meta-types.For the purpose of this paper we do not discuss this problem.4.1.1 Canonical Update OperationsThe requirement that object-identi�ers have to be hidden from the user imposes the restrictionon canonical update operations to be value-de�ned in the sense that the identi�er of a newobject has to be chosen by the system whereas all input- and output-data have to be valuesof proper value types.We now formally de�ne canonical update operations. For this purpose regard an instanceD of a schema S as a set of objects. For each recursively de�ned type T let �T denote byreplacing each occurrence of a recursive type T 0 in T by UNION(T 0; ID).De�nition 43 Let C be a class in a schema S. Canonical update operations on C are insertC ,deleteC and updateC satisfying the following properties:(i) Their input types are proper value types; their output type is the trivial type ?.(ii) In the case of insert applied to an instance D there exists a distinguished object o ::PAIR(ID; TC) such that(a) the result is an instance D0 with o 2 D0 and D � D0 hold and(b) if �D is any instance with D � �D and o 2 �D, then D0 � �D.(iii) In the case of delete applied to an instance D there exists a distinguished object o ::PAIR(ID; TC) such that(a) the result is an instance D0 with o 62 D0 and D0 � D hold and(b) if �D is any instance with �D � D and o 62 �D, then �D � D0.(iv) In the case of update applied to an instance D = D1 �[D2, where D2 = fog if o 6= o0and D2 = ; otherwise there exist distinguished objects o; o0 :: PAIR(ID; TC) witho = Pair(i; v) and o0 = Pair(i; v0) such that(a) the result is an instance D0 = D1 �[D02 with D2 \ D02 = ;,(b) o 2 D, o0 2 D0,(c) if �D is any instance with D1 � �D and o0 2 �D, then D0 � �D.Quasi-canonical update operations on C are insert0C , delete0C and update0C de�ned analogouslywith the only di�erence of their output type being ID and their input-type being �T for somevalue-type T . 32

Note that this de�nition of canonical update operations includes the consistency with respectto the implicit and explicit constraints on S. We show that value-representability is su�cientfor the existence and uniqueness of such operations. We use a guarded command notation asin [47] for these update operations.Lemma 44 Let C be a class in a schema S such that there exist quasi-canonical updateoperations on C. Then also canonical update operations exist on C.Proof. In the case of insert de�ne insertC(V :: VC) == I insert0C(V), i.e. call thecorresponding quasi-canonical operation and ignore its output. The same argument appliesto delete and update. 24.1.2 Existence of Canonical Updates in the Case of Value-RepresentabilityOur next goal is to reduce the existence problem of quasi-canonical update operations toschemata without IsA relations.Lemma 45 Let C, D be value-representable classes in a schema S such that C is a subclassof D with subtype function g : TC ! TD. Then there exists a function h : VC ! VD such thatfor each instance D of S with corresponding functions c : TC ! VC and d : TD ! VD we haveh(c(v)) = d(g(v)) for all v 2 codomD(C).Proof. By De�nition 14 c is injective on codomD(C), hence any continuation h of d�g �c�1satis�es the required property.It remains to show that h does not depend on D. Suppose D1, D2 are two instances suchthat w = c1(v1) = c2(v2) 2 VC , where c1; d1; h1 correspond to D1 and c2; d2; h2 correspond toD2. Then there exists a permutation � on ID such that v2 = �(v1). We may extend � to apermutation on any type. Since ID has no non-trivial supertype, g permutes with �, henceg(v2) = �(g(v1)). From De�nition 14 it follows d2(g(v2)) = d1(g(v1)), i.e. h2(w) = h1(w). 2In the following let S0 be a schema derived from a schema S by omitting all IsA relations.Lemma 46 Let C be a value-representable class in S such that all its superclasses D1 : : :Dnare also value-representable. Then quasi-canonical update operations exist on C in S i� theyexist on C and all Di in S0.Proof. By Theorem 32 the value-representation type VC is the result of Algorithm 22,hence VC does not depend on the inclusion constraints of S. Then we haveI :: ID insert0C(V :: VC) ==I insert0D1(h1(V)); : : : ; I insert0Dn(hn(V)); I insert0C(V) ;where hi : VC ! VDi is the function of Lemma 45 and insert0C denotes a quasi-canonicalinsert on C in S0. Hence in this case the result for the insert follows by structural inductionon the IsA-hierarchy.If the subtype function g required in Lemma 45 does not exist for some superclass D thensimply add VD to the input type. We omit the details for this case.The arguments for delete and update are analogous. 233

Now assume the existence of a global operation NewId that produces a fresh identi�er I :: ID.Lemma 47 Let C be a value-representable class in S0. Then there exist unique quasi-canonical update operations on C.Proof. Let ri : Ci (i = 1 : : :n) denote the references in the structure expression of C. IfV be a value of type �VC , then there exist values Vi;j :: �VCi (i = 1 : : :n; j = 1 : : :ki) occurringin V . Let �V = fVi;j=Ji;j j i = 1 : : :n; j = 1 : : :kig:V denote the value of type TC that resultsfrom replacing each Vi;j by some Ji;j :: ID. Moreover, for I :: ID letV (I)i;j = � fV=Ig:Vi;j if V occurs in Vi;jVi;j elseThen the quasi-canonical insert operation can be de�ned as follows:I :: ID insert0C(V :: �VC) ==IF 9 I 0 :: ID ; V 0 :: TC : (Pair(I 0; V 0) 2 C ^ c(V 0) = V)THEN I := I 0ELSE I NewId ; J1;1 insert0C1(V (I)1;1) ; : : : ; Jn;kn insert0Cn(V (I)n;kn) ;C := C [fPair(I; �V)gFIIt remains to show that this operation is indeed quasi-canonical. Apply the operation to someinstance D. If there already exists some object o = Pair(I 0; V 0) in C with c(V 0) = V , theresult is D0 = D and the requirements of De�nition 43 are trivially satis�ed. Otherwise letthe distinguished object be o = Pair(I; �V). If �D is an instance with D � �D and o 2 �D, wehave Ji;j 2 dom(Ci) for all i = 1 : : :n, j = 1 : : :ki, since �D satis�es the referential constraints.Hence �D contains the distinguished objects corresponding to the involved quasi-canonicaloperations insert0Ci . By induction on the length of call-sequences Di;j � �D for all i = 1 : : :n,j = 1 : : :ki, where Di;j is the result of Ji;j insert0Ci(V (I)i;j). Hence D0 = Si;jDi;j [fog � �D.The uniqueness follows from the uniqueness of VC .The de�nitions and proofs for delete and update are analogous. 2Theorem 48 Let C be a value-representable class in a schema S such that all its superclassesare also value-representable. Then there exist unique canonical update operations on C.Proof. By Lemma 44 and Lemma 46 it is su�cient to show the existence of quasi-canonicalupdate operations on C and all its superclasses in the schema S0. This follows from Lemma47. 24.2 A Generator Approach to Achieve Higher-Level Gener-icityOur aim is to generate canonical update methods insertC , deleteC and updateC for each class Cof a database schema. These operations demand the identi�cation of objects without accessingthe object identi�er, since oids are an internal concept and do not have a meaning for the user34

of a database. Hence the need for value-representability. Besides this identi�cation problemwe also have to cope with the enforcement of implicit integrity constraints. In Section 3.1it has been shown that value-representability is a necessary and su�cient condition for theexistence of consistent canonical update operations.These update operations are \generic" in the sense, that they are applicable to each classof a schema. Our aim now is to provide an algorithmic solution to the generation of canonicalupdate operations. A natural �rst idea is to exploit polymorphism as in [16] for this task.However, canonical consistent updates on a class C require an input-type VC without anyoccurrence of ID. Such an input-type has to be computed from the schema. Hence thegeneration of such operations requires meta-information. It has been shown in [58, 59] thatthe need for meta-information exceeds the capability of polymorphism. Two solutions arethen possible:� introduce polymorphic meta-types or� use linguistic re
ection as proposed in [60].The �rst approach is �ne as long as we do not care about decidability problems in typechecking, however, re
ection is more practical.The basic idea of linguistic re
ection is to use representation types such as SCHEMArep,CLASSrep and TY PErep for the representation of abstract syntax expressions representingschemata, class de�nitions and type declarations respectively. For each of these, there existsa function raise associating with this syntactic expression a true schema, class or type re-spectively. Moreover, we need functions i and v with signature SCHEMArep�CLASSrep !TY PErep. v(S; C) represents a value-type needed for the insertion of a new object intoraise(C). Clearly, this type is also required for updates. i(S; C) represents a value-type neededfor the identi�cation of some object, hence is needed for delete and update-operations.If OPERrep(I;S) represents the operations on the schema de�ned by S (de�ned viamethods) with input type represented by I, then the problem is to de�ne three re
ectivefunctionsinsert : S :: SCHEMArep� C :: CLASSrep ! OPERrep(v(S; C);S) ,delete : S :: SCHEMArep� C :: CLASSrep ! OPERrep(i(S; C);S) andupdate : S :: SCHEMArep� C :: CLASSrep ! OPERrep(i(S; C)� v(S; C);S).OPERrep is a type constructor applicable only to representation types. Clearly, we shouldhave OPERrep(Irep; Srep) = (OPER(I; S))rep, where OPER is again a type constructor andOPER(I; S) is the type of the operations on S with input-type I .4.2.1 Basic AssumptionsSince we are concerned with providing generic update operations we have to discuss theuniqueness and existence of these operations in general.Whenever object oriented data models include the principle of hiding identi�ers from theuser insert, delete and update operations demand the unique accessibility of objects from\outside", i.e. by the user, in a way di�erent from using the internal identi�ers. This isin accordance with the identi�er being only an implementation concept [12, 14]. Otherwisedatabase management of the identi�ers themselves would be required [36]. The approach ofnaming objects in a program scope usually applied in object oriented programming languages35

is to be ruled out in the database context. Therefore we have to require that objects withina class need to be distinguished by values and referenced objects.Our previous work on these topics [50, 49] gives a characterization of those classes hav-ing objects that are completely representable by values, i.e. we can replace references byvalues of referred objects and identify an object by its values. These classes are called value-representable i.e. it is possible to identify each object by some value of a proper value type(without occurrence of oids). (In the case of cyclic references the �niteness of the databaseimposes the instances of such a type to be �nitely representable).It is shown that the value-representability of classes is decidable under certain conditionsand that a unique value type (serving as input type for canonical update operations) canbe derived for any value-representable class. Moreover, the unique existence of canonicalinsert, delete and update operations of a class C turns out to be guaranteed i� C is value-representable.4.2.2 A Framework for Generator ApplicationApplying the approach discussed above to practically support meta polymorphism we needto introduce in our context:� Representation types for syntactic components of our language capturing meta informa-tion, e.g. Schemarep, Classrep, Typerep about schemata, class and type de�nitions orrepresenting code to be generated, e.g. Methrep. For each of these a function raise existsassociating with this abstract syntax a true schema, class, type or method respectively.� Generator functions that are de�ned on these representation types and produce againabstract syntax which extends { after a raise { our speci�cation. In particular we needa generator Vgen with signatureVgen : Schemarep � Classrep ! Typerepderiving a value type de�nition serving as input type in insert and update operations.Moreover, we need at least one generator Igen with the same signature that derivesan identi�cation type used in delete and update operations. For the sake of simplicitywe neglect Igen and use also Vgen for identi�cation. Canonical update operations aregenerated by functions Insertgen, Deletegen, Updategen with signatures:Insertgen : Schemarep � Classrep ! MethrepDeletegen : Schemarep � Classrep ! MethrepUpdategen : Schemarep � Classrep ! Methrep4.2.3 Representations TypesIn this section we present the de�nition of representation types forming the framework inwhich generator functions are de�ned. Here we make use of general algebraic type speci-�cations as in [47, 13]. However, we distinguish between constructors, selectors and otherfunctions. Axioms are given by conditional equations. A type de�nition may refer to othertype de�nitions which is indicated by the keyword basedOn.We concentrate on those representation types that are necessary for de�ning Insertgen.Constructions for Deletegen and Updategen can be given analogously. Although needed we36

omit all details concerning the representation type for types and the de�nition of the generatorfor value-representation types that are needed for input. The following type de�nitions provideabstract syntax values for structures, classes, methods and commands.The type de�nition for Structurerep uses representations of types as de�ned in [50] ontop of which structures are built. The list of reference-name/class-name pairs indicates thereferences of a class whereby class objects can have a complex structure with referencesoccurring as parameters at any level in nested type constructors. The axiom indicates thata reference list of a structure has to be as long as its parameter list whereby params is afunction on types returning lists of their parameters.Structurerep ==basedOnClassNamerep , Typerep , List(�), Pair(�,�), RefNamerepconstructorsstructurecon : Typerep � List(Pair(RefNamerep ,ClassNamerep)) ! StructurerepselectorsstructureTypesel : Structurerep ! Typerepreferencessel : Structurerep ! List(Pair(RefNamerep ,ClassNamerep))axiomsWith s : Structurerep .length(params(structureTypesel(s)) = length(referencessel(s))endThe de�nition of Classrep can be given in the following way omitting for now user de�nedmethods.Classrep ==basedOnClassNamerep , Structurerep , Fset(�)constructorsclasscon : ClassNamerep � Fset(ClassNamerep) � Structurerep ! ClassrepselectorsclassNamesel : Classrep ! ClassNamerepisAsel : Classrep ! Fset(ClassNamerep)structuresel : Classrep ! Structurerepaxioms: : :endAn abstract representation of a method consists of its name, the declaration of its input andoutput parameters together with a representation of its body.Methrep =basedOnMethNamerep , VarNamerep , Commandrep , Typerep , Fset(�), Pair(�; �)constructorsmethcon : MethNamerep � Fset(Pair(VarNamerep , Typerep)) �Fset(Pair(VarNamerep , Typerep)) � Commandrep ! MethrepselectorsmethNamesel : Methrep ! MethNamerep37

inputsel : Methrep ! Fset(Pair(VarNamerep ,Typerep))outputsel : Methrep ! Fset(Pair(VarNamerep ,Typerep))commandsel : Methrep ! CommandrependFinally, the representation of commands is inductively de�ned by:Commandrep ==basedOnMethNamerep , VarNamerep , List(�), Pair(�; �), Exprrep ,Predrepconstructorsskipcon : ! Commandrepcallcon : MethNamerep � List(VarNamerep) � List(VarNamerep) ! Commandrepassigncon : VarNamerep � Exprrep ! Commandrepseqcon : List(commandrep) ! Commandrepifcon : Predrep � Commandrep � Commandrep ! Commandrepwhilecon : Predrep � Commandrep ! Commandrepanycon : VarNamerep � Typerep � Predrep � Commandrep ! Commandrepselectors: : :axioms: : :endPredicates will have the constructors truecon, falsecon, forallcon , existcon , notcon, impliescon ,eqcon , isIncon : : :. We omit the details.4.2.4 Generators for Generic Update OperationsThe generator to be presented produces abstract syntax for insert operations, i.e. it is de�nedin terms of methcon. The case of update and delete can be handled analogously. Its taskis the generation of the appropriate actual parameters for methcon from class and schemarepresentations. The parameters are the operation's name, a list of input parameters, a listof output parameters and a representation of a command forming the body of the insertoperation. Omitting other details we concentrate on parts of the body managing inclusionconstraints, dealing with references in the acyclic and cyclic case and changing the class extent.For each subtask we will brie
y discuss the code to be produced followed by a discription of thealgorithm to produce the actual parameters forming this code and then present the generatorde�nition together with its (raised) output.Managing Inclusion ConstraintsIn the case of IsA-relationships we have to generate calls of insert operations on each of thedirect superclasses while providing appropriate input values for these operations.Since class representations capture IsA-information through a set of class names we canproduce the insert calls by applying a general set-reduce function as de�ned in [58]. It willreturn a list of calls which, serving as parameter for a sequence constructor, will lead to asequence of commands. Roughly speaking set-reduce applies a function to each element of aset and accomodates the results by the application of another function.For generating a call we need the method's name together with a list of input and outputvariables. Of further interest is the input value. In parallel to the generation of insert38

operations we have to generate functions on the value types involved. For sake of simplicitywe assume that IsA-relationship between classes C1 and C2 (C1 IsA C2) includes subtyperelationships on their structure types (T C1 subtypeOf T C2). This is not required in general.IsA-relation on classes means inclusion relation on their corresponding sets of oids. If we hadno subtype relationship on the value-types we would have to produce a di�erent input typefor a subclass including all values necessary in superclasses. This is easy compared to thecase of an existing subtype relation. In Lemma 45 it has been shown that in the case ofsubtype relationship a subtype function between the value types of sub- and superclassesexists. Thus, a generator for these functions exists. At this point we omit the de�nition. Wemerely make use of the name of the generated function which we built by the concatenationinstead of applying a name selector to the generator's output. The function taking V C toV Di is called h C,Di.Again for simplicity we make the further assumption for the case of more than one distinctsuperclasses. We assume the existence of a common superclass of these superclasses. Other-wise we would run into problems of renaming or having synonyms of identi�ers. A technicalsolution for this problem is indicated in [62].Insertgen has input values C of type Classrep and S of type Schemarep . The insertoperation being produced uses variable name 'v' for its input value.seqcon(setReduce(isAsel(C),lambda D.callcon(concat('insert ',D),singleList(applycon(concat('h ', concat(classNamerep (C),D)),'v'))singleList(concat('i ',D))),append,nil))If we apply raise to the produced output code for superclasses D1, : : : Dn the result will be:i D1 insert D1(h C,D1(v));: : :;i Dn insert Dn(h C,Dn(v));Enforcing Referential Constraints in the Acyclic CaseIn this section we handle classes with an acyclic reference structure. In this case the insertoperation includes calls with appropriate input values for each class being referred to. Theoperation has somehow to gather the returned identi�ers for producing a value of type T Cwhich forms a prerequisite for adding the new object to the class extent.In order to produce the sequence of insert calls for referenced objects we proceed in thesame way as shown above. We apply list-reduce to the list of references which has to beselected from the structure representation of the class. list-reduce is de�ned analogously toset-reduce.Again we have to provide input values for which we assume generated functions doingthe job [50]. For each reference ri to a class Ci we have a function val ri taking an input39

value of type V C to the set of all those values of type V Ci that occur at the correspondingplace in v. These values correspond to existing or new objects in Ci to which the futureobject in C will refer to via ri. As we explained above the value type of a class includesfor each reference the value type of the class referenced to. Since references can occur indeeply nested type constructors (e.g. we can have lists of sets of referred objects) they arein general multivalued. This requires the call of a method insertObjects Ci before the �nalinsert. The method insertObjects Ci receives a set of input values for Ci and returns sets ofidenti�er/input-value pairs. Its de�nition is given below.The calling insert operation gathers these sets of identi�er-value pairs in a list l.1 It shouldbe indicated that in the case of references to C1, : : : Cn the list l has type List(Set(Pair(Id,Union(V C1, : : : V Cn)))) where Union means a variadic union type constructor. Since weneglect the representation type for types we introduce a function makeTypeRep taking a typede�nition and turning it into its representation.anycon('l',makeTypeRep(List(Set(Pair(Id,Union(V C1,: : :V Cn))))),eqcon('l','nil'),seqcon(listReduce(referencessel(structuresel(C)),lambda D.cons(callcon(concat('insertObjects ',second(D)),applycon(concat('val ', �rst(D)),v), 'j'),singleList(assigncon('l', 'append(Pair(j,l))'))),append,nil)))The generator will produce the following code for references to classes C1 to Cn.l : List(Set(Pair(Id,Union(V C1,..,V Cn)))) j l = nil �!(j insertObjects C1(val r1(v)); l := append(Pair(j,l));...;j insertObjects Cn(val rn(v)); l := append(Pair(j,l)));The called methods insertObjects Ci have the following form:k insertObjects Ci (vs : Set(V Ci)) =s:Set(Pair(Id,V Ci) j s = empty �!(j:Nat j j = 1 �!(do vs 6= emptyv : V Ci j v 2 vs �!(idri;j insert Ci(v);s := insert(Pair(idri;j ,v),s);vs := vs - fvg;j := j+1);od);k := s)1At this place a list structure is needed which corresponds to the order in which the references are given inthe reference list. Referenced classes might have the same structure so that a value alone would not su�ce toindicate to which class the object with a value belongs to.40

Clearly, there also exists a generator for insertObjects Ci, but for the sake of brevity weomit its description here.Changing the Class ExtentThis part deals with adding the new object to the class' extent. According to our datamodelling approach we have to insert a pair consisting of an identi�er and a value of typeT C. This requires a function f C on V C producing a value of type T C. It is applied tothe input value of the insert operation together with the provided list l of sets of identi�er-/values-pairs and substitutes \reference-wise" values of type V Ci by their related identi�ersas provided in list l. Generator code and raised generated code are the following:assigncon(namesel(C), unionExprrep (namesel(C),singleSet(concat('Pair', concat('i',apply(concat('f ',namesel(C)),'Pair(v,l)')))))C := C [fPair(i,f C(Pair(v,l)))gDealing with Cyclic Reference StructuresNow we extend our generator to the case of a cyclic reference structure. In this case thevalue type V C will be recursively de�ned. In general, even mutual recursive de�nitions arerequired [50]. Recursive types have to be de�ned in such a way that all their values are�nitely representable, i.e. representable as rational trees. The �niteness of the databasewhich imposes the �niteness of cycles �ts perfectly with rational trees as input values.Let us consider the insert call arising by a cycle on class C. To simplify the explanation, weconcentrate on single-valued and direct cyclic references �rst. In this case val rc(v) is unary,say fv 0g, where v 0 is of type V C. We need a function occurs de�ned on two values of typeV C. It checks the input value whether v occurs in v 0 which is true i� the object correspondingto v 0 refers to the object corresponding to v, i.e. the cycle on class C is closed just at thisinput object. Furthermore, this means that the calls of insertions on C will stop with thesecond occurrence of the rational tree v in v. It requires the already created identi�er to beavailable on the later applied insert operation. It also serves as indication that the cycle hasto be closed at this point and no further insert call on C need to follow. This passing on ofthe identi�er is simply managed by substituting the identi�er for v in v 0 and calling the nextinserts on C for reducing the cycle with the substituted value. This requires to change V Cby substituting Union(V C,Id) for V C in the de�ning expression of V C. Let the resultingtype be denoted V C. Here Union(�; �) denotes a simple union type. Consider, that functionval ri provides only values of type V C, hence without identi�ers. Therefore, if an identi�erwas substituted in the case of a cycle no input value will be provided for a further input calland, moreover, the identi�er is already part of the value to be inserted.General cycles are handled analogously. The function occurs in this case has to check if voccurs in some value v 0 in the set val rc(v).However, since substitution of i for v in v 0 does not change v 0 if occurs(v,v 0) = false, weonly have to replace the parameter val Ci (in the acyclic case) by substitute(val Ci(v),(v,i)).Hence all insert operations may take values of the extended type V C as input which includesV C. 41

Chapter 5Integrity EnforcementConsistency is a crucial property of database application systems. In general a database maybe considered as a triplet (S;O; C), where S de�nes a structure, O denotes a collection ofstate changing operations and C is a set of constraints. Constraints can be classi�ed intostatic, transition and general dynamic constraints describing legal states, state transitions orstate sequences respectively. Then the consistency problem is to guarantee that each speci�edoperation o 2 O will never violate any constraint I 2 C. Integrity enforcement aims at thederivation of a new set O0 of operations such that (S;O0; C) satis�es this property.Let us now address the integrity enforcement problem with respect to static and transitionconstraints. In general, veri�cation techniques based on predicate transformers are applicable[47] but an obvious disadvantage of the veri�cation approach is that it does not help theuser in writing consistent operations. An alternative is to generate a Greatest ConsistentSpecialization (GCS) of a given method with respect to the given constraints. This comprisesthe following problems:(i) Does a GCS exist in general? Is it compatible with the conjunction of constraints,optimization, inheritance and re�nement?(ii) How does a GCS look like in the OODM with respect to distinguished classes of con-straints?(iii) How to enforce integrity of general user-de�ned operations with respect to arbitraryconstraints? Is it su�cient to replace involved primitive operations by their GCSs?In Section 5.1 we address these problems for static constraints. We show the existence ofGCSs and also discuss compatibility results with respect to the conjunction of constraints,specialization and re�nement. In Section 5.2 we describe the structure of GCSs in the OODMwith respect to speci�c classes of constraints. Moreover, we show that the general enforcementproblem can not be reduced to primitive operations. In Section 5.3 we derive the existenceof GCSs for transition constraints and also discuss compatibility properties.5.1 Enforcing Static IntegrityAn alternative to consistency veri�cation is the computation of methods that enforce all con-straints of a schema. We now address this problem �rst for static constraints and generalize42

Theorem 48. Our approach starts with a formalization of the integrity enforcement problemfocussing on GCSs. We show that GCSs always exist and are unique (up to semantic equiva-lence). On this formal basis we are able to describe certain compatibility results and outlinethe structure of GCSs with respect to basic update operations and distinguished classes ofstatic constraints.5.1.1 The ProblemSuppose now to be given an update operation S and a static constraint I. Assume that S isan X-operation, whereas I is de�ned on Y with X � Y . The idea is to construct a \new"Y -operation SI that is consistent with respect to I and can be used to replace S. Roughlyspeaking this means that the e�ect of SI on the state variables in X should not be di�erentfrom the e�ect of S. Formally this is expressed by the specialization relation introduced inDe�nition 4. Clearly, if any there will be more than one such specialization. Hence the ideato distinguish one of them as the \greatest", i.e. all others should specialize it.Before giving now the de�nition of a GCS let us �rst remark that for any predicatetransformer f the conjugate predicate transformer f� is de�ned by f�(R) = :f(:R). Hencethe following de�nition of a greatest consistent specialization:De�nition 49 Let X � Y be state spaces, S an X-operation and I a static integrity con-straint on Y . A Y -operation SI is a Greatest Consistent Specialization (GCS) of S withrespect to I i�(i) wlp(S)(R)) wlp(SI)(R) holds on Y for all formulae R with fr(R) � X ,(ii) wp(S(true)) wp(S)I)(true) holds on Y ,(iii) I) wlp(SI)(I) holds on Y and(iv) for each Y -operation T satisfying properties (i) { (iv) (instead of SI) we have(a) wlp(SI)(R)) wlp(T)(R) for all formulae R with fr(R) � X and(b) wp(SI)(true)) wp(T)(true) :Note that properties (i) and (ii) require SI to be a specialization of S. Property (iii) requiresSI to be consistent with respect to the constraint I. Finally, property (iv) states that eachconsistent specialization T of S with T v S also specializes SI .Based on the formal de�nition of a GCS we can now raise the following questions:� Does such a GCS always exist? If it does, is it uniquely determined by S and I (up tosemantic equivalence)?� Is the GCS SI of a deterministic operation S itself deterministic? If not, how to achievea deterministic consistent operation?� Does a GCS (SI1)I2 (provided it exists) with respect to more than one integrity con-straint depend on the order of enforcement? Is it su�cient to take (SI1)I2 in order toenforce integrity with respect to I1 ^ I2?43

� What is the relation between integrity enforcement and inheritance, i.e. is the GCS TIof a specialization T of S a specialization of the GCS SI of S?� How does a GCS look like (if it exists)?Partial results for these questions will be discussed in the next subsections.5.1.2 Greatest Consistent SpecializationsLet us �rst address the existence problem. Based on the axiomatic semantics via predicatetransformers we can show that a GCS always exists and is uniquely determined up to semanticequivalence. First, however, we need some general properties concerning the specializationorder v.Lemma 50 Let T be a set of X-operations. Then there exists the least upper bound S0 =FS2T S with respect to v. S0 is uniquely determined (up to semantic equivalence) and satis�es(i) wlp(S0)(R) , Ŝ2T wlp(S)(R) and (5.1)(ii) wp(S0)(R) , Ŝ2T wp(S)(R) (5.2)for all formulae R with fr(R) � X.Proof. Let S0 be de�ned (up to semantic equivalence) by (5.1) and (5.2). Then the universalconjunctivity and the pairing condition are trivially satis�ed. It follows that S0 is an X-operation.Let T 2 T and R be an arbitrary formula with fr(R) � X . Then we have:� Ŝ2T wlp(S)(R)) wlp(T)(R) and� Ŝ2T wp(S)(R)) wp(T)(R) :Thus, S0 is an upper bound of T . If T0 is any upper bound of T , we get� wlp(T0)(R)) wlp(T)(R) and� wp(T0)(R)) wp(T)(R)for all T 2 T , hence also� wlp(T0)(R)) Ŝ2T wlp(S)(R) and� wp(T0)(R)) Ŝ2T wp(S)(R) :It follows that S0 v T0, i.e. S0 is the least upper bound. 244

Note that for T = ; the least upper bound is fail. Now we are prepared to present our resultconcerning the unique existence of a GCS.Theorem 51 Let S be an X-operation, X � Y and I a static integrity constraint on Y .Then there exists a greatest consistent specialization SI of S with respect to I. Moreover, SIis uniquely determined (up to semantic equivalence) by S and I.Proof. Let T be the set of Y -operations T satisfying (in place of SI the properties (i) {(iii) of De�nition 49 and let SI = FT2T T . By de�nition of a least upper bound SI satis�esproperties (i), (ii) and (iv). Property (iii) follows from Lemma 50(i). 2Although Theorem 51 states that there is always a (unique) solution of the integrity enforce-ment problem, it does not help us in constructing a GCS, since its proof is non-constructive.Another general problem is that there are usually more than just one static integrity con-straint. If we successively build GCSs, can we guarantee that the �nal result will be indepen-dent of the order of constraints? Is the �nal result the same, if we simply take the conjunctionof all constraints? We address these two problems next.Theorem 52 Let I1 and I2 be static constraints on Y1 and Y2 respectively. If for any opera-tion S the GCS with respect to Ii is denoted by SIi (i = 1; 2), then for any X-command withX � Y1 \ Y2 the GCSs (SI1)I2 and (SI2)I1 are semantically equivalent.Proof. For symmetric reasons it is su�cient to show(SI1)I2 v (SI2)I1 :We have I2) wlp((SI1)I2)(I2) . Because of the transitivity of the implication (SI1)I2then satis�es properties (i) { (iii) with respect to S and I2, hence by property (iv) we get(SI1)I2 v SI2 . We haveI1) wlp(SI1)(I1)) wlp((SI1)I2)(I1) :The �rst implication is the consistency of SI1 with respect to I1, the second implicationfollows from property (i) for (SI1)I2 with R = I1.Thus, (SI1)I2 satis�es properties (i) {(iii) with respect to SI2 and I1, i.e.(SI1)I2 v (SI2)I1 by property (iv). 2Theorem 53 Let I1 and I2 be static constraints on Y1 and Y2 respectively. If for any opera-tion S the GCS with respect to Ii is denoted by SIi (i = 1; 2), then for any X-command withX � Y1 \ Y2 the GCSs (SI1)I2 and S(I1^I2) coincide on initial states satisfying I1 ^ I2, i.e.,I1 ^ I2 ! (SI1)I2 and I1 ^ I2 ! S(I1^I2) are semantically equivalent.Proof. From the transitivity of the implication and De�nition 49 it follows that(SI1)I2 v SI1^I2 holds. 45

Then alsoI1 ^ I2 ! (SI1)I2 v I1 ^ I2 ! SI1^I2 holds.We have to show the converse. Let�SI1 = I1 ^ I2 ! SI1^I2 2� SI1 :Then we get wlp(S)(R)) wlp(�SI1)(R) and wp(S)(R)) wp(�SI1)(R) for all formulae Rwith fr(R) � X .Moreover, I1) wlp(�SI1)(I1) holds, hence by De�nition 49 it follows that �SI1 v SI1 :If we de�ne�SI1;I2 = I2 ! �SI1 2� (SI1)I2 ;then by analogous arguments we derive �SI1;I2 v (SI1)I2 . In particular we concludeI1 ^ I2 ! �SI1;I2 v I1 ^ I2 ! (SI1)I2 ;but I1 ^ I2 ! �SI1;I2 is semantically equivalent to I1 ^ I2 ! �SI1 and this to I1 ^ I2 !(SI1)I2 . Hence the theorem. 2In Section 2.3.1 we required methods on subclasses that override inherited methods to bespecializations. Since we regard methods as operations on some state space de�ned by theschema, the problem occurs, whether the GCS of a specialized operation T of S remains tobe a specialization of the GCS of S. Fortunately this is also true.Theorem 54 Let SI be the GCS of the X-operation S with respect to the static integrityconstraint I de�ned on Y with X � Y . Let T be a Z-operation that specializes S. If I isregarded as a constraint on Y [Z, then the GCS TI of T with respect to I is a specializationof SI .Proof. From the transitivity of the implication and the consistency of TI with respect to Iit follows that TI satis�es properties (i) { (iii) of De�nition 49, hence TI v SI . 2In Section 2.3.1 methods were introduced as deterministic guarded commands. Hence thequestion whether this property is preserved under GCS construction. Unfortunately this isnot true as the following example shows.Example 8 Let x, y and z be state variables, all of type FSETS(T), where FSETS(�)is the �nite set constructor (see e.g. [47]) and T is any value type. Let X = fyg andY = fx; y; zg. Then we de�ne an X-operation S byS(t :: T) == y0 :: FSET (T) jy = Union(y0; Single(t))^member(t; y0) = false ! y := y0and a static constraint I on Y byx = Union(y; z) ^ 8t :: T:member(t; y) = true) member(t; z) = false :46

Then the GCS SI has the formSI(t :: T) == I ! S(t) ;(z := Union(z; Single(t)2x0 :: FSET (T) j x = Union(x0; Single(t))^member(t; x0) = false !x := x0) 2� S(t) :We omit the formal proof of the properties of De�nition 49. 2A general approach to remove non-determinism is operational re�nement as de�ned in [47].However, operational re�nement allows to \complete" a speci�cation of an operation S when-ever S is unde�ned are never terminating. In this paper we do not regard completion viare�nement. Therefore, we regard the notion of specialization instead. Due to [47, Proposition4.1] it is easy to see that whenever S is consistent with respect to a static constraint I, theneach specialization T of S does so, too.Hence a deterministic specialization of SI is still a consistent specialization of S withrespect to I. The next theorem states that we can choose a maximal one.Theorem 55 Let SI be the GCS of a deterministic operation S with respect to the staticconstraint I and let T be some deterministic specialization of SI. Then T specializes S.Moreover, if T 0 is any deterministic specialization of S that is consistent with respect to I,then T 0 also specializes some deterministic specialization T of SI .Proof. The �rst statement is trivial, since v is a partial order.If T 0 is a deterministic specialization of S consistent with respect to I, then according toDe�nition 49 T 0 must be a specialization of SI , hence the second statement. 25.2 Enforcing Static Integrity in the OODMLet us now apply the results of Section 5.1.2 to the OODM presented in Section 2.3. In thissection we restrict ourselves to the basic update operations of Theorem 48 and describe thestructure of their GCSs with respect to distinguished classes of static constraints. Moreover,we discuss whether the general problem of GCS construction could be reduced to these basicoperations. Unfortunately this is not true.5.2.1 Transforming Static Constraints into Primitive OperationsLet us now try to generalize the result of theorem 48 with respect to explicit static constraints.Let S be some schema and let I be an explicit static constraint on S. We want to deriveagain insert-, delete- and update-operations for each class C in S such that these are consistentwith respect to I. Based on the Conjunctivity Theorem 53 we only approach the problemseparately for the classes of constraints introduced in the previous subsection.Moreover, we apply a speci�c kind of operational re�nement in order to reduce the non-determinism of the resulting GCS. Whenever an arbitrary value of some proper value typeis required, then we extend the input-type. However, this can not be applied to reduce thenon-determinism arising from choice operations. In general, there exists a choice normal formfor the GCS such that its components are the maximal deterministic operational re�nementsof the GCS that exist by Theorem 55. 47

In the following we restrict ourselves to the case of a single explicit constraint in additionto the one (trivial) uniqueness constraint that is required to assure value-representability andthat has been used in [50] to construct canonical update operations. Then we look at anexample with more than one constraint. We illustrate that although Theorem 53 holds, thestructure of S(I1^I2) may be not at all obvious.General (Path) Inclusion Constraints.Let I be a general inclusion constraint on C1, C2 de�ned via ci : TCi ! T (i = 1; 2). Then eachinsertion into C1 requires an additional insertion into C2 whereas a deletion on C2 requires adeletion on C1. Update on one of the Ci requires an additional update on the other class.Let us �rst concentrate on the insert-operation on C1 (for an insert on C2 there is nothingto do). Insertion into C1 requires an input-value of type VC1 ; an additional insert on C2then requires an input-value of type VC2 . However, these input-values are not independent,because the corresponding values of type TC1 and TC2 must satisfy the general inclusionconstraint. Therefore we �rst show that the constraint can be \lifted" to a constraint onthe value-representation types. Note that this is similar to the handling of IsA-constraints inLemma 45.Lemma 56 Let C1, C2 be classes, ci : TCi ! T functions and let VCi be the value-represen-tation type of Ci (i = 1; 2). Then there exist functions fi : VCi ! T such that for all databaseinstances Df1(dD1 (v1)) = f2(dD2 (v2)) , c1(v1) = c2(v2) (5.3)for all vi 2 codomD(xCi) (i = 1; 2) holds. Here dDi : TCi ! VCi denotes the function used inthe uniqueness constraint on Ci with respect to D.Proof. Due to De�nition 14 we may de�ne fi = ci � (dDi)�1 on ci(codomD(xCi)) (i = 1; 2).Then we have to show that this de�nition is independent of the instance D. SupposeD1, D2 are two di�erent instances. Then there exists a permutation � on ID such thatdD2i = dD1i � �, where � is extended to TCi . Thenci � (dD2i)�1 = ci � ��1 � (dD1i)�1 = ��1 � ci � (dD1i)�1 ;since ci permutes with ��1. Then the stated equality follows. 2Now let VC1;C2 be a subtype of VC1 � VC2 de�ned via the equality f1(v1) = f2(v2), wherevi :: VCi are the components of a value and fi are the functions of Lemma 56. We omit thedetails. Then we can de�ne the new insert-operation on C1 by (insertC1)I(V :: VC1;C2) ==insertC1(first(V)) ; insertC2(second(V)) : (5.4)Now we are able to generalize Theorem 48 with respect to general inclusion constraint.Theorem 57 Let I be a general inclusion constraint on C1, C2 de�ned via ci : TCi ! T andlet SI be the insert-operation of (5.4). Suppose that C1 is not referenced by C2. Then SI isthe GCS of the canonical insert-operation of Theorem 48 with respect to I.48

Proof. We use the abbreviations Si = insertCi(Vi :: VCi) (i = 1; 2). Thenwlp(SI)(R) � fV1=first(V)g:wlp(S1)(fV2=second(V)g:wlp(S2)(R) :Since Si is total and always terminating, we have wlp(Si) = wp(Si). Since C1 is not referencedby C2, we know that S2 is a fxC2g-operation. Therefore, wlp(S2)(R) is a logical combinationof R without any substitution, hence wlp(S1)(R)) wlp(SI)(R). This proves (i) and (ii).In particular wlp(SI)(I) �f xC1=Union(xC1 ; Single(Pair(I1; V1))) ;xC2=Union(xC2 ; Single(Pair(I2; V2))) g:Iwith I1; I2 :: ID and Vi :: TCi with c1(V1) = f1(first(V)) and c2(V2) = f2(first(V)), wherefi are the functions of Lemma 56. Then property (iii) follows immediately. We omit the proofof (iv). 2Note there there is no need to require C1 6= C2. Delete- and update-operations can be de�nedanalogously to (5.4). Then a result analogous to Theorem 57 holds. We omit the details here.The generalization to path constraints is also straightforward.(Path) Functional and Uniqueness Constraints.Now let I be a functional constraint on C de�ned via c1 : TC ! T1 and c2 : TC ! T2. Inthis case nothing is required for the delete operation whereas for inserts (and updates) wehave to add a postcondition. Moreover, let cD : TC ! VC denote the function associatedwith the value-representability of C and the database instance D and let all other notationsbe as before. Let us again concentrate on the insert-operation. Let insert0C denote thequasi-canonical insert on C [50]. Then we de�ne(insertC)I(V :: VC) ==I :: ID j I insert0C(V) ;V 0 :: TC j member(Pair(I; V 0); xC) = true !(8J :: ID;W :: TC : (member(Pair(J;W); xC) = true^ c1(W) = c1(V 0)) c2(W) = c2(V 0)) !skip (5.5)Note that in this case there is no change of input-type.Theorem 58 Let I be a functional constraint on the class C de�ned via c1 : TC ! T1 andc2 : TC ! T2 and let SI be the insert-operation of (5.5). Then SI is the GCS of the canonicalinsert-operation on C de�ned by Theorem 48 with respect to I.Proof. The proof is analogous to the one of Theorem 57. 2For delete- and update-operations an analogous result holds. We omit the details. Thegeneralization to path constraints is also straightforward.A uniqueness constraint de�ned via c1 : TC ! T1 is equivalent to a functional constraintde�ned via c1 and c2 = id : TC ! TC plus the trivial uniqueness constraint. Since trivialuniqueness constraints are already enforced by the canonical update operations, there is noneed to handle separately arbitrary uniqueness constraints.49

(Path) Exclusion Constraints.The handling of exclusion constraints is analogous to the handling of inclusion constraints.This means that an insert (update) on one class may cause a delete on the other, whereasdelete-operations remain unchanged.We concentrate on the insert-operation. Let I be an exclusion constraint on C1 and C2de�ned via ci : TCi ! T (i = 1; 2). Let fi : VCi ! T denote the functions from Lemma 56.Then we de�ne a new insert-operation on C1 by(insertC1)I(V :: VC1) ==insertC1(V) ;�S: ((I :: ID j V 0 :: TC2 j member(Pair(I; V 0); xC2) = true^c2(V 0) = f1(V) ! deleteC2(V 0) ; S)2� skip) : (5.6)Theorem 59 Let I be an exclusion constraint on the classes C1 and C2 de�ned via ci : TCi !T (i = 1; 2) and let SI be the insert-operation of (5.6). Then SI is the GCS of the canonicalinsert-operation on C1 de�ned by Theorem 48 with respect to I.Proof. The proof is analogous to the one of Theorem 57. 2For delete- and update-operations an analogous result holds. We omit the details. Thegeneralization to path constraints is also straightforward.(Path) Object Generating Constraints.Let I be an object generating constraint on a class C de�ned via the functions ci : TC ! Ti(i = 1; 2; 3). Then integrity enforcement requires to add additional inserts (deletes, updates)to each insert- (delete-, update-) operation. Let us illustrate the new insert-operation. Thehandling of delete and update-operations is analogous. As in the case of inclusion constraintswe need a preliminary lemma.Lemma 60 Let ci : TC ! Ti be functions (i = 1; 2; 3) such that c1 � c2 � c3 de�nes auniqueness constraint on the class C. Then there exist functions fi : VC ! Ti such that ci =fi �cD holds for all instances D, where cD : TC ! VC corresponds to the value-representabilityof C.Proof. Since c1� c2� c3 de�nes a uniqueness constraint on C, it follows from De�nition 14that there exists some f : VC ! T1 � T2 � T3 with c1 � c2 � c3 = f � cD. Then fi = �i � f ,where �i is the projection to Ti (i = 1; 2; 3), satisfy the required property. 2Then we de�ne a new insert-operation on C as follows:(insertC)I(V :: VC) ==9I 0 :: ID; V 0 :: TC : member(Pair(I 0; V 0); xC) = true^ c1(V 0) = f1(V) !((V 00 :: VC j f1(V 00) = f1(V) ^ f2(V 00) = f2(V)50

^ f3(V 00) = c3(V 0) ! insertC(V 00)) ;(V 000 :: VC j f1(V 000) = f1(V) ^ f2(V 000) = c2(V 0) ^f3(V 000) = f3(V) ! insertC(V 000))) ;2� skip) ;insertC(V) (5.7)Theorem 61 Let I be an object generating constraint on a class C de�ned via the functionsci : TC ! Ti (i = 1; 2; 3) such that c1 � c2 � c3 de�nes a uniqueness constraint on theclass C and let SI be the insert-operation of (5.7). Then SI is the GCS of the canonicalinsert-operation on C with respect to I.Proof. The proof is analogous to the one of Theorem 57. 2For delete- and update-operations an analogous result holds. We omit the details. Thegeneralization to path constraints is also straightforward.Theorem 62 Let S be a schema such that each class C in S is value representable. Supposeall explicit constraints in S are general inclusion constraints, exclusion constraints, functionalconstraints, uniqueness constraints, object generating constraints and path constraints. Thenthere exist generic update methods insertC , deleteC and updateC for each class C in S thatare consistent with respect to all implicit and explicit static constraints on S.Proof. The result has been shown above in the Theorems 57{61 for a single explicit con-straint. Then the general result follows from Theorem 53. 25.2.2 Transforming Static Constraints into TransactionsLet us now consider the case of arbitrary methods which can be used to model transactions.We concentrate on the question whether it is possible to achieve general consistent methodsas combinations of consistent primitive operations as e.g. given by Theorem 62. Regard thefollowing simple example:Example 9AccountClass ==Structure TRIPLE(PERSON,NAT,NAT)End AccountClassConstraintsPair(I; V) 2 AccountClass) second(V) + third(V) � 0Pair(I; V) 2 AccountClass ^ Pair(I 0; V 0) 2 AccountClass^first(V) = first(V 0)) I = I 0The second component gives the account of a person and the third component gives his/hercredit limit. Lettransfer(P1 :: PERSON; P2 :: PERSON; T :: NAT) ==I1; I2 :: ID;N1; N2;M1;M2 :: NAT j51

Pair(I1; Triple(P1; N1;M1)) 2 AccountClass^Pair(I2; Triple(P2; N2;M2)) 2 AccountClass !updateAccountClass(P1; Triple(P1; N1 � T;M1)) ;updateAccountClass(P2; Triple(P2; N2 + T;M2))In this case the precondition to be added is simply the weakest precondition, i.e. N1+M1�T �0. Now regard the operationS = transfer(P1; P2; T1) ; transfer(P2; P1; T2) :The precondition to be added to S in order to enforce the �rst constraint simply is N1+M1�T1+T2 � 0^N2+M2�T2+T1 � 0, which is trivially satis�ed if T1 = T2. However, for largevalues of T1 = T2 this condition is weaker then adding three precondition separately. 2Theorem 63 Let S be a method and let S1 : : :Sn be canonical update operations on a schemaS occurring within S. Let S 0 result from S by replacing each Si by its GCS (Si)I with respectto some static constraint I. Then SI and S 0 are in general not semantically equivalent.Proof. A counterexample has been given in Example 9. 2As a consequence of this theorem it is even not su�cient to know explicitly the GCS of basicupdate operations with respect to a single constraint. Although Theorem 53 allows the GCSwith respect to more than one constraint to be built successively, we have seen in Theorems57{61 that the GCS with respect to one constraint is no longer a basic update operation. Letus illustrate this open problem by a simple example.Example 10 Let C1, C2, C3 be classes and ci : TCi ! T (i = 1; 2; 3) be functions andsuppose there are de�ned� a general inclusion constraint I1 on C1 and C2 via c1 and c2,� a general inclusion constraint I2 on C1 and C3 via c1 and c3 and� an exclusion constraint I3 on C2 and C3 via c2 and c3.Clearly, the GCS of the insert-operation on C1 with respect to I1 ^ I2 ^ I3 is loop, which ishard to build successively. 25.3 Enforcing Transition IntegrityIn Section 5 we discussed integrity enforcement in a general framework with respect to staticconstraints. Let us now try to generalize the results for transition constraints. Thus, letS be an X-operation and J a transition constraint on Y with X � Y . The idea is againto construct a \new" Y -operation SJ that is consistent with respect to J and specializesS. Again this leads to the idea to construct a Greatest Consistent Specialization of S withrespect to J . The di�erence to the case of static constraints is the use of a di�erent proofobligation for consistency according to De�nition 4.52

5.3.1 GCSs with Respect to Transition ConstraintsWe start giving a formal de�nition of a Greatest Consistent Specialization (GCS) of an oper-ation S with respect to a transition constraint J .De�nition 64 Let X � Y be state spaces, S an X-operation and J a transition integrityconstraint on Y . A Y -operation SJ is a Greatest Consistent Specialization (GCS) of S withrespect to J i�(i) wlp(S)(R)) wlp(SJ)(R) holds on Y for all formulae R with fr(R) � X ,(ii) wp(S)(true)) wp(SJ)(true) holds on Y ,(iii) wlp(�(J))(R)) wlp(SJ)(R) holds on Y for all formulae R with fr(R) � Y and(iv) for each Y -operation T satisfying properties (i) { (iv) (instead of SJ) we have(a) wlp(SJ)(R)) wlp(T)(R) for all formulae R with fr(R) � X and(b) wp(SJ)(true)) wp(T)(true) :Note that properties (i), (ii) and (iii) say that SJ v S, where v is the specialization orderof De�nition 4. Property (iv) requires SJ to be consistent with respect to the constraintJ . Finally, property (v) states that each consistent specialization T of S with T v S alsospecializes SJ .Based on this formal de�nition of a GCS we can now raise the same questions as in thestatic case. Before we state the result on the (unique) existence of GCSs, let us �rst examinethe relation between static and transition constraints. Suppose I is a static constraint onY , then we may regard I also as a transition constraint. Let I 0 result from I by replacingeach state variable xi occurring freely in I by x0i. Then I) I 0 de�nes the correspondingtransition constraint denoted as JI . Then we know that consistency with respect to I isequivalent to consistency with respect to JI . This implies the following result:Theorem 65 Let S be an X-operation and I a static constraint on Y with X � Y . If SIand SJI are the GCSs of S with respect to I and the transition constraint JI respectively,then these two GCSs are semantically equivalent.Proof. This follows directly from De�nitions 49 and 64. Using the equivalence of consistencyproof obligations with respect to I and JI implies the two de�nitions to coincide. 2Next, we are able to proof the (unique) existence of a GCS also for transition constraints. Asin the static case the proof will be non-constructive, hence does not help to construct a GCS.Theorem 66 Let S be an X-operation, X � Y and J a transition integrity constraint on Y .Then there exists a greatest consistent specialization SJ of S with respect to J . Moreover,SJ is uniquely determined (up to semantic equivalence) by S and J .Proof. The proof is analogous to the one of Theorem 51. 253

5.3.2 Compatibility ResultsLet us now address the compatibility problems with respect to the conjunction of constraints,inheritance and re�nement. Note that due to Theorem 65 some of the results in Section 5.1.2occur as special cases of the results here.Theorem 67 Let J1 and J2 be transition constraints on Y1 and Y2 respectively. If for anyoperation S the GCS with respect to Ji is denoted by SJi (i = 1; 2), then for any X-commandS with X � Y1 \ Y2 the GCSs (SJ1)J2 and (SJ2)J1 are semantically equivalent.Proof. The proof is analogous to Theorem 52. 2Theorem 68 Let SJ be the GCS of the X-operation S with respect to the transition con-straint J de�ned on Y with X � Y . Let T be a Z-operation that specializes S. If J isregarded as a constraint on Y [Z, then the GCS TJ of T with respect to J is a specializationof SJ .Proof. The proof is analogous to the one of Theorem 54. 2Theorem 69 The GCS SJ of a deterministic X-operation S with respect to a transitionconstraint J is in general non-deterministic.Proof. This follows from Theorem 65, since determinism is not even preserved by GCSswith respect to static constraints as shown by the counter-example in Example 8. 2Hence the problem remains to remove the non-determinism. Due to [47, Proposition 4.2] itis easy to see that whenever S is consistent with respect to a transition constraint J , theneach specialization T of S does so, too.Theorem 70 Let SJ be the GCS of a deterministic operation S with respect to the transitionconstraint J and let T be some deterministic operational re�nement of SJ . Then T specializesS. Moreover, if T 0 is any deterministic specialization of S that is consistent with respect toJ , then T 0 also specializes some deterministic operational re�nement T of SJ .Proof. The proof is analogous to Theorem 55. 2An unsolved open problem concerns the generalization to arbitrary dynamic constraints.Lipeck has shown in [37] that dynamic constraints expressed in some generalized propositionaltemporal logic give rise to transition graphs. It should be possible to derive a suitable proofobligation in the predicate transformer calculus also for such constraints. Then the idea ofGCS construction should carry over even to this class of constraints that comprises static andtransition constraints.
54

Chapter 6ConclusionIn this report we describe results from �rst investigations in Hamburg and Rostock concerningthe formal foundations of object oriented database concepts. For this purpose we introduceda formal object oriented datamodel (OODM) with the following characteristics.� Objects are considered to be abstractions of real world entities, hence they have animmutable identity. This identity is encoded by abstract identi�ers that are assumedto form some type ID. This identi�er concept eases the modelling of shared data andcyclic references, however, it does not relieve us from the problem to provide uniqueidenti�cation mechanisms for objects in a database.� In our approach there is not only one value of a given type that is associated with anobject. In contrast we allow several values of possibly di�erent types to belong to anobject, and even this collection of types may change.� Types are used to structure values. In our approach general algebraic type speci�cationsare allowed including parameterization, subtyping and mutual recursion.� Classes are used to structure objects. At each time a class corresponds to a collection ofobjects with values of the same type and references to objects in a �xed set of classes.Inheritance is based on IsA relations that express an inclusion at each time of the setsof objects. Moreover, referential integrity is supported.� We associate with each class a collection of methods. Methods are speci�ed by guardedcommands, hence the method language is computationally complete. In order to allowthe handling of identi�ers that are always hidden from the user as well as user-accessibletransactions a hiding operator on methods is introduced. Generic update operations, i.e.insert, delete and update on a class are assumed to be automatically derived wheneverthis is possible.� We associate static and transition constraints to classes and also to a schema. Certainkinds of such constraints can be obtained by generalizing corresponding constraints inthe relational model.On this basis of this formal OODM we study the problems of identi�cation, genericity andintegrity. 55

We show that the unique identi�cation of objects in a class requires the class to be value-representable. Assuming that only uniqueness constraints are de�ned we can show thatvalue-representability is decidable.An advantage of database systems is to provide generic update operations. We show thatthe unique existence of such generic operations on some class requires also value-representabi-lity. However, in this case referential and IsA integrity can be enforced automatically. Froman engineering point of view an algorithm is required to generate these consistent operations.We address this construction problem by the speci�cation of generators for them. Thesegenerators will be based on the possibility to represent syntactic components of the languageas values within the language itself, which is known to form the basis of linguistic re
ection.Moreover, the generators involve a single generic proof of correctness hence relieve the userof the burden to write basic update operations and to assure their consistency.The existence result can be generalized with respect to distinguished classes of explicitlystated static constraints. We show that integrity enforcement is always possible. Givensome arbitrary method S and some static or transition constraint I there exists a greatestconsistent specialization (GCS) SI of S with respect to I. Such a GCS behaves nice in thatit is compatible with the conjunction of constraints, inheritance and re�nement. For the GCSconstruction of a user-de�ned operation, however, it is in general not su�cient to replace theinvolved primitive update operations by their GCSs.This report is far from giving a complete mathematical foundation of OODB concepts.A lot of problems are still left open and are the matter of current investigations or futureresearch.� OODBs have been claimed to support engineering applications without proving this.We believe that our approach to types will allow really complex objects to be de�nedand that the general notion of object will ease the support of versions. In order tosupport multiple objects in a class the parameterization seems to be a good idea. Weshall work on this idea.� In our approach classes are sets. What are other bulk types? Does it make sense toabstract from classes in this way?� In this report we left aside much of the formal semantics which is based on the speci�-cation language SAMT. However, there also exist some open problems with this, e.g. amore general approach to transactions without assuming linear order of execution andtraces on classes.� The problem of updatable views is still open. We work on it.� Our approach to genericity only handles the worst case expressed by the value repre-sentation type. We assume that polymorphism will help to generalize our results to thegeneral case. Moreover, we must integrate communication aspects at least with respectto the user.� So far, we have shown an existence result for greatest consistent specializations that areused to achieve integrity enforcement. We do not know how to �nd such a GCS in thegeneral case. 56

� The axiomatic semantics used for guarded commands abstracts from an executionmodel. All results are true for semantic equivalence classes. However, we also needoptimization, especially with respect to the derived GCSs.� We only presented a formal OODM without looking into methodological aspects suchas the characterization of good designs or stepwise re�nement approaches.We express the hope that others will also contribute to solve outstanding problems in OODBfoundation or in the implementation of more sophisticated object oriented database languageson a sound mathematical basis.

57

Bibliography[1] S. Abiteboul: Towards a deductive object-oriented database language, Data & KnowledgeEngineering, vol. 5, 1990, pp. 263 { 287[2] S. Abiteboul, R. Hull: IFO: A Formal Semantic Database Model, ACM ToDS, vol. 12(4), December 1987, pp. 525 { 565[3] S. Abiteboul, P. Kanellakis: Object Identity as a Query Language Primitive, in Proc.SIGMOD, Portland Oregon, 1989, pp. 159 { 173[4] H. A��t-Kaci: An Overview of LIFE, in J. W. Schmidt, A. A. Stognij (Eds.): Proc. NextGeneration Information Systems Technology , Springer LNCS, vol. 504, 1991, pp. 42 {58[5] A. Albano, G. Ghelli, R. Orsini: Types for Databases: The Galileo Experience, in TypeSystems and Database Programming Languages, University of St. Andrews, Dept. ofMathematical and Computational Sciences, Research Report CS/90/3, 27 { 37[6] A. Albano, A. Dearle, G. Ghelli, C. Marlin, R. Morrison, R. Orsini, D. Stemple: AFramework for Comparing Type Systems for Database Programming Languages, in TypeSystems and Database Programming Languages, University of St. Andrews, Dept. ofMathematical and Computational Sciences, Research Report CS/90/3, 1990[7] A. Albano, G. Ghelli, R. Orsini: Objects and Classes for a Database Programming Lan-guage, FIDE technical report 91/16, 1991[8] A. Albano, G. Ghelli, R. Orsini: A Relationship Mechanism for a Strongly Typed Object-Oriented Database Programming Language, in A. Sernadas (Ed.): Proc. VLDB 91,Barcelona 1991[9] M. Atkinson, F. Bancilhon, D. DeWitt, K. Dittrich, D. Maier, S. Zdonik: The Object-Oriented Database System Manifesto, Proc. 1st DOOD, Kyoto 1989[10] F. Bancilhon, G. Barbedette, V. Benzaken, C. Delobel, S. Gamerman, C. L�ecluse, P. Pf-e�er, P. Richard, F. Velez: The Design and Implementation of O2, an Object-OrientedDatabase System, Proc. of the ooDBS II workshop, Bad M�unster, FRG, September 1988[11] C. Beeri: Formal Models for Object-Oriented Databases, Proc. 1st DOOD 1989, pp. 370{ 395[12] C. Beeri: A formal approach to object-oriented databases, Data and Knowledge Engi-neering, vol. 5 (4), 1990, pp. 353 { 382 58

[13] C. Beeri, Y. Kornatzky: Algebraic Optimization of Object-Oriented Query Languages, inS. Abiteboul, P. C. Kanellakis (Eds.): Proc. ICDT '90, Springer LNCS 470, pp. 72 { 88[14] C. Beeri: New Data Models and Languages - the Challange in Proc. PODS '92[15] L. Cardelli, P. Wegner: On Understanding Types, Data Abstraction and Polymorphism,ACM Computing Suerveys 17,4, pp 471 { 522[16] L. Cardelli: Typeful Programming, Digital Systems Research Center Reports 45, DECSRC Palo Alto, May 1989[17] M. Carey, D. DeWitt, S. Vandenberg: A Data Model and Query Language for EXODUS,Proc. ACM SIGMOD 88[18] M. Caruso, E. Sciore: The VISION Object-Oriented Database Management System, Proc.of the Workshop on Database Programming Languages, Rosco�, France, September 1987[19] A. Dearle, R. Connor, F. Brown, R. Morrison: Napier88 - A Database Programming Lan-guage?, in Type Systems and Database Programming Languages, University of St. An-drews, Dept. of Mathematical and Computational Sciences, Research Report CS/90/3,10 { 26[20] E. W. Dijkstra, C. S. Scholten: Predicate Calculus and Program Semantics, Springer-Verlag, 1989[21] H.-D. Ehrich, M. Gogolla, U. Lipeck: Algebraische Spezi�kation abstrakter Datentypen,Teubner-Verlag, 1989[22] H.-D. Ehrich, A. Sernadas: Fundamental Object Concepts and Constructors, in G. Saake,A. Sernadas (Eds.): Information Systems { Correctness and Reusability, TU Braun-schweig, Informatik Berichte 91-03, 1991[23] H. Ehrig, B. Mahr: Fundamentals of Algebraic Speci�cation, vol.1, Springer 1985[24] L. Fegaras, T. Sheard, D. Stemple: The ADABTPL Type System, in Type Systems andDatabase Programming Languages, University of St. Andrews, Dept. of Mathematicaland Computational Sciences, Research Report CS/90/3, 45 { 56[25] L. Fegaras, T. Sheard, D. Stemple: Uniform Traversal Combinators: De�nition, Useand Properties, University of Massachusetts, 1992[26] D. Fishman, D. Beech, H. Cate, E. Chow et al.: IRIS: An Object-Oriented DatabaseManagement System, ACM ToIS, vol. 5(1), January 1987[27] P. Fraternali, S. Paraboschi, L. Tanca: Automatic Rule Generation for Constraint En-forcement in Active Databases, in U. Lipeck (Ed.): Proc. 4th Int. Workshop on Foun-dations of Models and Languages for Data and Objects \MODELLING DATABASEDYNAMICS", Volkse (Germany), October 19-22, 1992[28] G. Gottlob, G. Kappel, M. Schre
: Semantics of Object-Oriented Data Models { TheEvolving Algebra Approach, in J. W. Schmidt, A. A. Stognij (Eds.): Proc. Next Genera-tion Information Systems Technology, Springer LNCS, vol. 504, 199159

[29] M. Hammer, D. McLeod: Database Description with SDM: A Semantic Database Model,J. ACM, vol. 31 (3), 1984, pp. 351 { 386[30] A. Heuer, P. Sander: Classifying Object-Oriented Results in a Class/Type Lattice, inB. Thalheim et al. (Ed.): Proceedings MFDBS 91, Springer LNCS 495, pp. 14 { 28[31] R. Hull, R. King: Semantic Database Modeling: Survey, Applications and Research Is-sues, ACM Computing Surveys, vol. 19(3), September 1987[32] R. Hull, M. Yoshikawa: ILOG: Declarative Creation and Manipulation of Object Identi-�ers, in Proc. 16th VLDB, Brisbane (Australia), 1990, pp. 455 { 467[33] S. Khosha�an, G. Copeland: Object Identity, Proc. 1st Int. Conf. on OOPSLA, Portland,Oregon, 1986[34] M. Kifer, J. Wu: A Logic for Object-Oriented Logic Programming (Maier's O-LogicRevisited), in PODS'89, pp. 379 { 393[35] W. Kim, N. Ballou, J. Banerjee, H. T. Chou, J. Garza, D. Woelk: Integrating an Object-Oriented Programming System with a Database System, in Proc. OOPSLA 1988[36] P. Lockemann, J. W. Schmidt: Datenbankhandbuch, Springer, 1987[37] U. W. Lipeck: Dynamische Integrit�at von Datenbanken (in German), Springer IFB 209,1987[38] D. Maier, J. Stein, A. Ottis, A. Purdy: Development of an Object-Oriented DBMS,OOPSLA, September 1986[39] F. Matthes, J. W. Schmidt: The Type System of DBPL, in Type Systems and DatabaseProgramming Languages, University of St. Andrews, Dept. of Mathematical and Com-putational Sciences, Research Report CS/90/3, 38 { 44[40] F. Matthes, J. W. Schmidt: Bulk Types { Add-On or Built-In?, in Proc. DBPL III,Nafplion 1991[41] J. Mylopoulos, P. A. Bernstein, H. K. T. Wong: A Language Facility for DesigningInteractive Database-Intensive Applications, ACM ToDS, vol. 5 (2), April 1980, pp. 185{ 207[42] J. Mylopoulos, A. Borgida, M. Jarke, M. Koubarakis: Telos: Representing KnowledgeAbout Information Systems, ACM ToIS, vol. 8 (4), October 1990 pp. 325 { 362[43] G. Nelson: A Generalization of Dijkstra's Calculus, ACM TOPLAS, vol. 11 (4), October1989, pp. 517 { 561[44] A. Ohori: Representing Object Identity in a Pure Functional Language, Proc. ICDT 90,Springer LNCS, pp. 41 { 55[45] G. Saake, R. Jungclaus: Speci�cation of Database Applications in the TROLL Language,in Proc. Int. Workshop on the Speci�cation of Database Systems, Glasgow, 199160

[46] K.-D. Schewe, J. W. Schmidt, I. Wetzel, N. Bidoit, D. Castelli, C. Meghini: AbstractMachines Revisited, FIDE Technical Report 1991/11, February 1991[47] K.-D. Schewe, I. Wetzel, J. W. Schmidt: Towards a Structured Speci�cation Languagefor Database Applications, in D. Harper, M. Norrie (Eds.): Proc. Int. Workshop on theSpeci�cation of Database Systems, Springer WICS, 1991, pp. 255 { 274 (an extendedversion appeared as FIDE technical report 1991/30, October 1991)[48] K.-D. Schewe, J. W. Schmidt, I. Wetzel: Speci�cation and Re�nement in an IntegratedDatabase Application Environment, Proc. VDM 91, Noordwijkerhout, October 1991[49] K.-D. Schewe, B. Thalheim, I. Wetzel, J. W. Schmidt: Extensible Safe Object-OrientedDesign of Database Applications, University of Rostock, Preprint CS - 09 - 91, September1991[50] K.-D. Schewe, J. W. Schmidt, I. Wetzel: Identi�cation, Genericity and Consistency inObject-Oriented Databases, in J. Biskup, R. Hull (Eds.): Proc. ICDT '92, Springer LNCS646, pp. 341 { 356[51] K.-D. Schewe, B. Thalheim, J. W. Schmidt, I. Wetzel: Integrity Enforcement in Object-Oriented Databases, in U. Lipeck (Ed.): Proc. 4th Int. Workshop on Foundations ofModels and Languages for Data and Objects \MODELLING DATABASE DYNAMICS",Volkse (Germany), October 19-22, 1992[52] K.-D. Schewe, J. W. Schmidt, D. Stemple, B. Thalheim, I. Wetzel: Generating Methodsto Assure Global Integrity, submitted 1992[53] K.-D. Schewe, J. W. Schmidt, D. Stemple, B. Thalheim, I. Wetzel: A Re
ective Approachto Method Generation in Object Oriented Databases, University of Rostock, RostockerInformatik Berichte, no. 13, 1992[54] K.-D. Schewe: Class Semantics in Object Oriented Databases, submitted 1992[55] K.-D. Schewe, B. Thalheim, I. Wetzel: Integrity Preserving Updates in Object OrientedDatabases, in M. Orlowska (Ed.) : Proc. Australian Database Conference, Brisbane,February 1993 (to appear)[56] M. H. Scholl, H.-J. Schek: A Relational Object Model, in Proc. ICDT 90, Springer LNCS,pp. 89 { 105[57] G. M. Shaw, S. B. Zdonik: An Object-Oriented Query-Algebra, IEEE Data Engineering,vol. 12 (3), 1989, pp. 29 { 36[58] D. Stemple, T. Sheard: A Recursive Base for Database Programming Primitives, inProceedings of the First International East/West Database Workshop, Kiev, October1990[59] D. Stemple, T. Sheard: Exceeding the Limits of Polymorphism, in Proc. EDBT '90[60] D. Stemple, T. Sheard, L. Fegaras: Re
ection: A Bridge from Programming to DatabaseLanguages, in Proc. HICSS '92 61

[61] S. Y. W. Su: SAM�: A Semantic Association Model for Corporate and Scienti�c-Statistical Databases, Inf. Sci., vol. 29, 1983, pp. 151 { 199[62] K. Subieta: A Persistent Object Store for the LOQIS Programming System, to appearin: International Journal of Microcomputer Applications[63] B. Thalheim: Dependencies in Relational Databases, Teubner Leipzig, 1991[64] B. Thalheim: The Higher-Order Entity-Relationship Model, in J. W. Schmidt, A. A. Stog-nij (Eds.): Proc. Next Generation Information Systems Technology, Springer LNCS, vol.504, 1991

62

